1. Compute the area of the region enclosed by $y=e^{x}, y=x^{2}-1, x=-1$ and $x=1$.

Solution:

$$
\int_{-1}^{1} e^{x}-\left(x^{2}-1\right) d x=e^{x}-\frac{x^{3}}{3}+\left.x\right|_{-1} ^{1}=\frac{4}{3}-e^{-1}+e
$$

2. Compute the area of the the region enclosed by $y=|x|$ and $y=x^{2}-2$.

Solution:

Solve

$$
\left\{\begin{array}{l}
y=|x| \\
y=x^{2}-2
\end{array}\right.
$$

We get $x=2, y=2$ or $x=-2, y=2$. So the intersection points of these two graphs are $(-2,2)$ and $(2,2)$. The area is:

$$
\int_{-2}^{2}|x|-\left(x^{2}-2\right) d x=2 \int_{0}^{2} x-x^{2}+2 d x=\frac{20}{3}
$$

3. Compute the volume of a frustum of a right circular cone with height h, lower base radius R and top radius r.
Solution: We set a vertical axis, and let the lower base at level $z=0$. Then denote the cross section for level z is a circle of radius ρ. By the similar triangles shown in the picture, we get

$$
\frac{l}{R}=\frac{l-H}{r}=\frac{l-z}{\rho}
$$

We get $\rho=R-\frac{R-r}{H} z$.
So the volume is

$$
\int_{0}^{H} \pi\left(R-\frac{R-r}{H} z\right)^{2} d z=\frac{\pi H\left(R^{2}+r^{2}+R r\right)}{3}
$$

4. Compute the volume of the cap of a sphere with radius r and height h.

Solution:

Construct a vertical axis with the centre of the ball at origin. The cross section at level z is $\sqrt{r^{2}-z^{2}}$ by the Pythagorean theorem. So the volume is

$$
\int_{r-h}^{r} \pi\left(r^{2}-z^{2}\right) d z=\pi h^{2}\left(r-\frac{h}{3}\right)
$$

5. Find the volume of the solid obtained by rotating the region bounded by $y=$ $1-x^{2}$ and $y=0$ about x-axis.

Solution:

$y=1-x^{2}$ intersects $y=0$ at $(-1,0)$ and $(1,0)$.
We take the x-axis and the cross section for each x is a disk of radius $1-x^{2}$.
So the volume is

$$
\int_{-1}^{1} \pi\left(1-x^{2}\right)^{2} d x=\frac{16}{15} \pi
$$

6. The region enclosed by $x=y^{2}, x=1$ on the $x y$-plane is rotated about $x=1$ to form a solid. Find the volume of the solid.

Solution:

The curve $x=y^{2}$ intersects $x=1$ at $(1,1)$ and $(1,-1)$.
We take the y-axis, and the cross section for each y is $1-y^{2}$. So the volume is

$$
\int_{-1}^{1} \pi\left(1-y^{2}\right)^{2} d y=\frac{16}{15} \pi
$$

7. Use the cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=e^{-x^{2}}, y=0, x=0, x=1$ about the y-axis.

Solution:

The cylindrical shell of radius x has height $e^{-x^{2}}$, so the volume is

$$
\int_{0}^{1} 2 \pi x e^{-x^{2}} d x=\pi\left(1-e^{-1}\right)
$$

8. Use the cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, y=2-x^{2}$ about $x=1$.

Solution:

$y=x^{2}$ and $y=2-x^{2}$ intersect at $(-1,1)$ and $(1,1)$. The cylindrical shell at x has base radius $1-x$ and height $\left(2-x^{2}\right)-x^{2}=2-2 x^{2}$, so the volume is

$$
\int_{-1}^{1} 2 \pi(1-x)\left(2-2 x^{2}\right) d x=\frac{8 \pi}{3}
$$

