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1 Series

Given a sequence {an}, we consider the sequence {sN} where sN =
∑N

n=1 an =

a1 + ... + aN , and we write
∑∞

n=1 an = lim
N→∞

sN = lim
N→∞

N∑
n=1

an.
∑∞

n=1 an is

called a series, and when the limit exists, we say the series converges, oth-
erwise we say the series diverges. Sometimes we also write

∑
an instead of∑∞

n=1 an.
The role of a series is to study if the terms of a given sequence can be

summed up to be a finite number. For example,
∑∞

n=1
1

10n
= 0.1 + 0.01 +

0.001 + ... = 0.11111.... = 1
9

is convergent.

The most elementary method to determine if a given series converges is
based on its definition, that is, we study the convergence of the sequence of
its partial sums {sN}.
Example 1. We are going to show that the series

∑
rn converges, where

|r| < 1 is a constant.

sN =
N∑
n=1

rn, so rsN = r

N∑
n=1

rn =
N∑
n=1

rn+1 =
N+1∑
2

rn.

Subtracting these two equations, we obtain

(1− r)sN = r − rN+1

so

sN =
r − rN+1

1− r
Taking the limit,∑

rn = lim
N→∞

sN = lim
N→∞

r − rN+1

1− r
=

r

1− r
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so the series converges.

Proposition 2. If
∑

an and
∑

bn are two convergent series and c is a
constant, then:

1.
∑

an + bn =
∑

an +
∑

bn

2.
∑

an − bn =
∑

an −
∑

bn

3.
∑

can = c
∑

an

Example 3. A series of the form
∑

arn, where a and r are constant, is
called a geometric series. When |r| < 1, we have shown that

∑
rn converges

to r
1−r , so

∑
arn = ar

1−r is also convergent.

Example 4.
∑

2n31−n =
∑

3× (2
3
)n = 3×

2
3

1− 2
3

= 6

Proposition 5. If
∑

an converges, then lim
n→∞

an = 0.

The idea of proof is that an = sn − sn−1, and if {sn} converges, the
difference sn − sn−1 will approach 0.

Example 6. For |r| ≥ 1, the series
∑

rn diverges since the sequence {rn}
doesn’t converge to 0.

The following examples shows the inverse of the previous proposition in
general is not true, that is, lim

n→∞
an = 0 does not necessarily imply

∑
an

converges:

Example 7. Consider the series
∑

1
n
.

S2N = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + ... + (

1

2N−1 + 1
+ ... +

1

2N
)

> 1 +
1

2
+ 2× 1

4
+ 4× 1

8
+ ... + 2N−1 × 1

2N

= 1 +
1

2
+ ... +

1

2

= 1 +
N

2

We see lim
N→∞

S2N = +∞, so {SN} diverges, hence
∑

1
n
diverges.
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Example 8. The series
∑

1
n2+n

converges:
1

n2+n
= 1

n(n+1)
= 1

n
− 1

n+1
. So

sN = (1− 1

2
) + (

1

2
− 1

3
) + ... + (

1

n
− 1

n + 1
) = 1− 1

n + 1∑ 1

n2 + n
= lim

N→∞
sN1− 1

n + 1
= 1

An application of series is to write a given decimal number into a fraction
of integers.

Example 9. Write 1.325 = 1.325252525... as a fraction of integers.

1.325 = 1 +
3

10
+

25

103
+

25

105
+

25

107
+ ...

= 1 +
3

10
+

25

10

∑
(

1

100
)n

= 1 +
3

10
+

5

2
×

1
100

1− 1
100

= 1 +
3

10
+

5

2
× 1

99

=
656

495

2 Convergence Tests of Series

In this section we are going to introduce some tests for the convergence
of series. The proofs are omitted in this notes, and you may refer to the
textbook for the proofs.

Proposition 10 (Integral Test). f(x) is a positive and decreasing function
on [K,+∞) for some constant K.

∑
an is a series such that an = f(n) for

any positive integer n ≥ K. Then the series
∑

an converges if and only if
the improper integral

∫ +∞
K

f(x) dx converges.

Example 11. We know the improper integral
∫ +∞
1

1
xp

dx converges for p > 1,
diverges for 0 < p ≤ 1, so by Integtal Test. the series

∑
1
np

converges for
p > 1 and diverges for 0 < p ≤ 1.
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Example 12. Determine if the series
∑

lnn
n

is convergent or divergent.
Let f(x) = lnx

x
. Note that f ′(x) = 1−lnx

x2
, so f(x) is positive and decreasing

on [e,+∞).∫ t
e

lnx
x

dx =
∫ t
e

lnx d lnx = (lnx)2

2

∣∣∣∣t
e

= (ln t)2−1
2

, so

∫ +∞

e

lnx

x
dx = lim

t→+∞

∫ t

e

lnx

x
dx = lim

t→+∞

(ln t)2 − 1

2
= +∞

The improper integral diverges, so the series
∑

lnn
n

diverges.

Proposition 13 (Comparison Test).
∑

an and
∑

bn are series. If there
exists K > 0 such that for all n ≥ K, 0 < an < bn, then:

1.
∑

an diverges implies
∑

bn diverges

2.
∑

bn converges implies
∑

an converges

Example 14. Consider the series
∑

2
n2+3n

. Since 0 < 2
n2+3n

< 2
n2 , and

∑
2
n2

converges, we conclude by Comparison Test that
∑

2
n2+3n

converges.

Example 15. We can also use Comparison Test to show
∑

lnn
n

diverges:
lnn
n

> 1
n
> 0 for all n > e, and

∑
1
n
diverges, we conclude

∑
lnn
n

diverges.

Proposition 16 (Limit Comparison Test).
∑

an and
∑

bn are series with
positive terms for all large n. If

lim
n→∞

an
bn

= c > 0

Then both series converge or both series diverge.

Example 17. Consider
∑

1
2n−1 . Since

lim
n→∞

1
2n−1
1
2n

= lim
n→∞

2n

2n − 1
= 1

and
∑

1
2n

converges, by the Limit Comparison Test, we get
∑

1
2n−1 converges.

A sequence is called alternating if its terms are alternately positive and
negative.
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Proposition 18 (Alternating Series Test). If {an} is a positive decreasing
sequence or a negative increasing sequence, and lim

n→∞
an = 0, then the alter-

nating series
∑

(−1)nan converges.

Example 19. The sequence { 1
n
} is positive and decreasing, with lim

n→∞

1

n
= 0,

so by the Alternating Series Test, we conclude the alternating series
∑ (−1)n

n

converges.

Example 20. Determine if the series {(−1)n+1 n
n2+1
} converges.

Observe that the series is alternating. We will show the positive sequence
{ n
n2+1
} is decreasing:

Let f(x) = x
x2+1

, then f ′(x) = 1−x2
(x2+1)2

< 0 for x > 1, so the sequence

{ n
n2+1
} is decreasing, and also

lim
n→∞

n

n2 + 1
= lim

n→∞

1

n + 1
n

= 0

So the Alternating Series Test implies the series
∑

(−1)n+1 n
n2+1

converges.

A series
∑

an is said to be absolutely convergent if
∑
|an| converges. A

series
∑

an is said to be conditionally convergent if
∑
|an| diverges but

∑
an

converges.

Proposition 21 (Absolute Convergence Test). An absolutely convergent se-
ries converges.

Example 22. The series
∑ cos nπ

2
+sin nπ

2

n2 converges absolutely since∑
|
cos nπ

2
+ sin nπ

2

n2
| =

∑ 1

n2

By Absolute Convergence Test, we conclude the series converges.

Example 23. Consider
∑

sinn
n2 . < | cosn

n2 | ≤ 1
n2 , and

∑
1
n2 converges, by Com-

parison Test,
∑
| cosn
n2 | converges, so the Absolute Convergence Test implies∑

sinn
n2 converges.

Proposition 24 (Ratio Test).
∑

an is a series:

1. If lim
n→∞

|an+1

an
| < 1, then

∑
an converges absolutely.
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2. If lim
n→∞

|an+1

an
| > 1, then

∑
an diverges.

Example 25. The series
∑

(−1)n n
3

3n
converges absolutely:

lim
n→∞

|an+1

an
| = lim

n→∞

(n+1)3

3n+1

n3

3n

= lim
n→∞

1

3
(
n + 1

n
)3 =

1

3
< 1, so the Ratio Test

implies the absolute convergence.

Example 26. The series
∑

n!
nn

converges absolutely:

lim
n→∞

|an+1

an
| = lim

n→∞

(n+1)!
(n+1)n+1

n!
nn

= lim
n→∞

(
n

n + 1
)n = lim

n→∞

1

(1 + 1
n
)n

=
1

e
< 1, so

the Ratio Test implies the absolute convergence.

Proposition 27 (Root Test).
∑

an is a series:

1. If lim
n→∞

n
√
|an| < 1, then

∑
an converges absolutely.

2. If lim
n→∞

n
√
|an| > 1, then

∑
an diverges.

Example 28.
∑

( n+3
2n+5

)n. lim
n→∞

n

√
|( n + 3

2n + 5
)n| = lim

n→∞

n + 3

2n + 5
=

1

2
< 1, so by

the Root Test, the series converges absolutely.
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