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Definition 1. A sequence {an}∞n=1 (often denoted as {an} for short) is a
list of numbers labelled by natural numbers: a1, a2, a3, ...

A common way to describe the terms in a sequence {an} is to give a for-
mula involving n, called the defining equation. For example, if the sequence
is given by {an} with an = n+1

n
, then the first five terms of the sequence are

a1 = 2
1
, a2 = 3

2
, a3 = 4

3
, a4 = 5

4
, a5 = 6

5
.

Sometimes it is very hard to find an explicit defining equation. In-
stead, we use some recursive formula to define a sequence. For example, the
Fibonacci sequence {Fn} is defined by F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2
for all n ≥ 2. So the first few terms of this sequence are:

1, 1, 2, 3, 5, 8, 13, 21, ...

This is a sequence of great interest to mathematicians. For more story about
it, the reader may refer to the WikiPedia page https://en.wikipedia.org/
wiki/Fibonacci_number

Definition 2. A sequence {an} has limit L if for any ε > 0, there exists a
positive integer N such that n > N implies |an − L| < ε.

If L is the limit of {an}, we say {an} converges to L, and denote by

lim
n→∞

an = L

If {an} has no limit, we say {an} diverges.
If for any positive number M , there is positive integer N such that n > N

implies an > M , we say the sequence diverges to +∞, and denote by

lim
n→∞

an = +∞
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If for any negative number M , there is positive integer N such that n > N
implies an < M , we say the sequence diverges to −∞, and denote by

lim
n→∞

an = −∞

Remark 3. The definition of the limit of a sequence intuitively says that {an}
has limit L if an can be arbitrarily close to L for sufficient large n.

Example 4. lim
n→∞

1

n
= 0, lim

n→∞
(−1)n diverges, lim

n→∞
n = +∞

The following theorem tells us that we may make use of our knowledge
about limit of functions to study limits of sequences:

Theorem 5. If lim
x→+∞

f(x) = L, then lim
n→∞

f(n) = L. Similar results hold for

the case of diverging to ±∞.

Example 6. Find lim
n→∞

lnn

n
.

We know by the L’Hospital’s Rule that lim
x→+∞

lnx

x
= lim

x→∞

1
x

1
= 0, so by

the theorem, lim
n→∞

lnn

n
= 0

The limit of sequences follow some rules that are similar to those for the
limits of functions:

Proposition 7. If {an} and {bn} are two sequences with lim
n→∞

an = L1 and

lim
n→∞

bn = L2, then:

1. lim
n→∞

an ± bn = lim
n→∞

an ± lim
n→∞

bn = L1 ± L2

2. lim
n→∞

λan = λ( lim
n→∞

an) = λ lim
n→∞

an for any real number λ

3. lim
n→∞

anbn = ( lim
n→∞

an)( lim
n→∞

bn) = L1L2

4. lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
=
L1

L2

(L2 6= 0)

5. lim
n→∞

apn = ( lim
n→∞

an)p = Lp
1 if p > 0 and an > 0
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Example 8. lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1
n

=
lim
n→∞

1

lim
n→∞

1 +
1

n

= 1

Proposition 9 (Squeeze Theorem/Sandwich Theorem). If {an}, {bn}, {cn}
are sequences and there exists natural number N such that for any n ≥ N ,
an ≤ bn ≤ cn. If lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Corollary 10. {an} is a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. −|an| ≤ an ≤ |an|, and lim
n→∞

|an| = lim
n→∞

−|an| = 0. Applying the

Squeeze Theorem, we conclude lim
n→∞

an = 0.

Example 11. lim
n→∞

(−1)n

n
= 0 since lim

n→∞
|(−1)n

n
| = lim

n→∞

1

n
= 0.

Theorem 12. If f(x) is a function that is continuous at L, and {an} is a
sequence with lim

n→∞
an = L

lim
n→∞

f(an) = f( lim
n→∞

an) = f(L)

Corollary 13. If lim
n→∞

an = L, then lim
n→∞

|an| = |L|.

Example 14. lim
n→∞

cos(
1

n
) = cos( lim

n→∞

1

n
) = cos 0 = 1

Example 15. r is a constant.
If r > 0, we know

lim
x→+∞

rx =


0, if 0 ≤ r ≤ 1

1, if r = 1

+∞, if r > 1

So we get

lim
n→∞

rn =


0, if 0 ≤ r ≤ 1

1, if r = 1

+∞, if r > 1

When r = 0, lim
n→∞

rn = lim
n→∞

rn0 = 0

When −1 < r < 0, lim
n→∞

|rn| = 0, so lim
n→∞

rn = 0.

When r = −1, the sequence becomes {(−1)n}, which diverges.
When r < −1, {|rn|} diverges, so {rn} diverges.
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Definition 16. {an} is increasing if an < an+1 for all n. {an} is decreasing
if an > an+1 for all n. {an} is monotinoc if it is increasing or decreasing.
{an} is bounded above if there exists real number M such that an < M

for all n; {an} is bounded below if there exists real number M such that
an > M for all n. {an} is bounded if it is both bounded above and bounded
below.

Theorem 17. A bounded above increasing sequence converges; A bounded
below decreasing sequence converges.

Example 18. The sequence {1 + 1
n3} converges since it is decreasing and

bounded below by 1.
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