Sequences

Liming Pang

Definition 1. A sequence $\{a_n\}_{n=1}^{\infty}$ (often denoted as $\{a_n\}$ for short) is a list of numbers labelled by natural numbers: a_1, a_2, a_3, \ldots

A common way to describe the terms in a sequence $\{a_n\}$ is to give a formula involving n, called the defining equation. For example, if the sequence is given by $\{a_n\}$ with $a_n = \frac{n+1}{n}$, then the first five terms of the sequence are $a_1 = \frac{2}{1}, a_2 = \frac{3}{2}, a_3 = \frac{4}{3}, a_4 = \frac{5}{4}, a_5 = \frac{6}{5}$.

Sometimes it is very hard to find an explicit defining equation. Instead, we use some recursive formula to define a sequence. For example, the **Fibonacci sequence** $\{F_n\}$ is defined by $F_1 = 1$, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$. So the first few terms of this sequence are:

$$1, 1, 2, 3, 5, 8, 13, 21, \dots$$

This is a sequence of great interest to mathematicians. For more story about it, the reader may refer to the WikiPedia page https://en.wikipedia.org/ wiki/Fibonacci_number

Definition 2. A sequence $\{a_n\}$ has limit L if for any $\epsilon > 0$, there exists a positive integer N such that n > N implies $|a_n - L| < \epsilon$.

If L is the limit of $\{a_n\}$, we say $\{a_n\}$ converges to L, and denote by

$$\lim_{n \to \infty} a_n = L$$

If $\{a_n\}$ has no limit, we say $\{a_n\}$ diverges.

If for any positive number M, there is positive integer N such that n > Nimplies $a_n > M$, we say the sequence diverges to $+\infty$, and denote by

$$\lim_{n \to \infty} a_n = +\infty$$

If for any negative number M, there is positive integer N such that n > N implies $a_n < M$, we say the sequence diverges to $-\infty$, and denote by

$$\lim_{n \to \infty} a_n = -\infty$$

Remark 3. The definition of the limit of a sequence intuitively says that $\{a_n\}$ has limit L if a_n can be arbitrarily close to L for sufficient large n.

Example 4. $\lim_{n \to \infty} \frac{1}{n} = 0$, $\lim_{n \to \infty} (-1)^n$ diverges, $\lim_{n \to \infty} n = +\infty$

The following theorem tells us that we may make use of our knowledge about limit of functions to study limits of sequences:

Theorem 5. If $\lim_{x\to+\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$. Similar results hold for the case of diverging to $\pm\infty$.

Example 6. Find $\lim_{n \to \infty} \frac{\ln n}{n}$.

We know by the L'Hospital's Rule that $\lim_{x \to +\infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$, so by the theorem, $\lim_{n \to \infty} \frac{\ln n}{n} = 0$

The limit of sequences follow some rules that are similar to those for the limits of functions:

Proposition 7. If $\{a_n\}$ and $\{b_n\}$ are two sequences with $\lim_{n\to\infty} a_n = L_1$ and $\lim_{n\to\infty} b_n = L_2$, then:

- 1. $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = L_1 \pm L_2$
- 2. $\lim_{n \to \infty} \lambda a_n = \lambda (\lim_{n \to \infty} a_n) = \lambda \lim_{n \to \infty} a_n$ for any real number λ
- 3. $\lim_{n \to \infty} a_n b_n = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n) = L_1 L_2$

4.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{L_1}{L_2} \ (L_2 \neq 0)$$

5. $\lim_{n \to \infty} a_n^p = (\lim_{n \to \infty} a_n)^p = L_1^p \text{ if } p > 0 \text{ and } a_n > 0$

Example 8. $\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \frac{1}{n}} = 1$

Proposition 9 (Squeeze Theorem/Sandwich Theorem). If $\{a_n\}, \{b_n\}, \{c_n\}$ are sequences and there exists natural number N such that for any $n \ge N$, $a_n \le b_n \le c_n$. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$. **Corollary 10.** $\{a_n\}$ is a sequence. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$. *Proof.* $-|a_n| \le a_n \le |a_n|$, and $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} -|a_n| = 0$. Applying the Squeeze Theorem, we conclude $\lim_{n\to\infty} a_n = 0$.

Example 11. $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$ since $\lim_{n \to \infty} |\frac{(-1)^n}{n}| = \lim_{n \to \infty} \frac{1}{n} = 0.$

Theorem 12. If f(x) is a function that is continuous at L, and $\{a_n\}$ is a sequence with $\lim_{n\to\infty} a_n = L$

$$\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(L)$$

Corollary 13. If $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} |a_n| = |L|$.

Example 14. $\lim_{n \to \infty} \cos(\frac{1}{n}) = \cos(\lim_{n \to \infty} \frac{1}{n}) = \cos 0 = 1$

Example 15. r is a constant.

If r > 0, we know

$$\lim_{x \to +\infty} r^x = \begin{cases} 0, & \text{if } 0 \le r \le 1\\ 1, & \text{if } r = 1\\ +\infty, & \text{if } r > 1 \end{cases}$$

So we get

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } 0 \le r \le 1\\ 1, & \text{if } r = 1\\ +\infty, & \text{if } r > 1 \end{cases}$$

When r = 0, $\lim_{n \to \infty} r^n = \lim_{n \to \infty} r^n 0 = 0$ When -1 < r < 0, $\lim_{n \to \infty} |r^n| = 0$, so $\lim_{n \to \infty} r^n = 0$. When r = -1, the sequence becomes $\{(-1)^n\}$, which diverges. When r < -1, $\{|r^n|\}$ diverges, so $\{r^n\}$ diverges. **Definition 16.** $\{a_n\}$ is **increasing** if $a_n < a_{n+1}$ for all n. $\{a_n\}$ is **decreasing** if $a_n > a_{n+1}$ for all n. $\{a_n\}$ is **monotinoc** if it is increasing or decreasing.

 $\{a_n\}$ is **bounded above** if there exists real number M such that $a_n < M$ for all n; $\{a_n\}$ is **bounded below** if there exists real number M such that $a_n > M$ for all n. $\{a_n\}$ is **bounded** if it is both bounded above and bounded below.

Theorem 17. A bounded above increasing sequence converges; A bounded below decreasing sequence converges.

Example 18. The sequence $\{1 + \frac{1}{n^3}\}$ converges since it is decreasing and bounded below by 1.