Polar Coordinates

Liming Pang

1 Polar Coordinates

There are different ways to locate a point on a plane, among which is the Cartesian coordinates that we have been using for a long time. Besides the Cartesian coordinates, another popular coordinate system for the plane is the polar coordinates, where the location of a point is described by its distance and direction to the origin.
P is a point on the plane. We connect the origin O and P by a line segment. The length of the line segment $\overline{O P}$ is denoted by r, and the angle whose terminal edge (recall that by default, the initial edge for an angle coincides with the positive x-axis) coincides with $\overline{O P}$ is denoted by θ (Note that the choice of θ is not unique, since angles differed by multiples of 2π will have terminal edge coincide). Then in polar coordinates, the point P is represented by the pair (r, θ).

A special convention is that given (r, θ), the polar coordinates of a point P, if $r<0$, this denotes the point with polar coordinates $(-r, \theta+\pi)$. For example, the point $\left(-1, \frac{\pi}{2}\right)$ in polar coordinates is the same as $\left(1, \frac{3 \pi}{2}\right)$.

If a point on the plane P has Cartesian coordinates (x, y) and polar coordinates (r, θ), by Trigonometry, we can obtain the conversion formulas
between the two coordinates:

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

Example 1. If a point has polar coordinates $r=3, \theta=-\frac{\pi}{6}$, then its Cartesian coordinates can be recovered by $x=3 \cos \left(-\frac{\pi}{6}\right)=3 \times \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2}$, $y=3 \sin \left(-\frac{\pi}{6}\right)=3 \times\left(-\frac{1}{2}\right)=-\frac{3}{2}$, so its Cartesian Coordinates is $\left(\frac{3 \sqrt{3}}{2},-\frac{3}{2}\right)$.

We can also convert the other way round:

$$
\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\tan \theta=\frac{y}{x} \text { if } x \neq 0
\end{array}\right.
$$

You will need to determine the value for θ after you find the value for $\tan \theta$. If we use the inverse tangent function, we can choose θ in the following way:

$$
\theta=\left\{\begin{array}{l}
\tan ^{-1} \frac{y}{x}, \text { if }(x, y) \text { is in Quadrant I or IV } \\
\pi+\tan ^{-1} \frac{y}{x}, \text { if }(x, y) \text { is in Quadrant II or III }
\end{array}\right.
$$

Example 2. If P is a point with Cartesian coordinates $(-1,-1)$, find the polar coordinates for P.
$r=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2} . \tan \theta=\frac{-1}{-1}=1$, and P is in the Quadrant III, so $\theta=\pi+\tan ^{-1}(1)=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}$. In polar coordinates the point P is $r=\sqrt{2}, \theta=\frac{5 \pi}{4}$.

When the point has x-coordinate to be 0 , it lies on the y-axis, so its angle is $\theta=\frac{\pi}{2}$ if it's on positive y-axis, and $\theta=-\frac{\pi}{2}$ if it is on the negative y-axis.
Example 3. The polar coordinates for the point $(0,3)$ is $r=3, \theta=\frac{\pi}{2}$, and the polar coordinates for the point $(0,-3)$ is $r=3, \theta=-\frac{\pi}{2}$

Similar to Cartesian coordinates, the polar coordinates can be used to describe not only points, but also curves, an equation $F(r, \theta)=0$ denotes the set of all points on the plane whose polar coordinates satisfy this equation.

Example 4. The circle of radius R with centre at origin corresponds to the equation $r=R$, since it is the set of points whose distance to the origin is R.

A ray coming out from Origin can be described by the equation $\theta=\theta_{0}$, where θ_{0} is the angle formed by the positive x-axis and this ray. For example, the equation for the diagonal ray of the Quadrant II is $\theta=\frac{3 \pi}{4}$.

Example 5. What is the polar equation of the circle of radius 2 with centre at $(1,0)$?

For angle θ, the corresponding radius is $2 \cos \theta$, so the equation is

$$
r=2 \cos \theta
$$

You can also fine some other interesting examples in the textbook, for example, $r=1+\sin \theta$ (cardioid) and $r=\cos 2 \theta$ (four-leaved rose).

Example 6. Find the intersections of the four leaved rose $r=2 \cos \theta$ and the circle $r=\frac{1}{2}$

We need to first find points of intersection of the two curves. They intersect at the points on the four leaved rose such that $r= \pm \frac{1}{2}$, i.e., $|r|=\frac{1}{2}$. We get the equation

$$
\frac{1}{2}=|r|=|\cos 2 \theta|
$$

and the solutions are $\pm \frac{\pi}{6}, \pm \frac{\pi}{3}, \pm \frac{2 \pi}{3}, \pm \frac{5 \pi}{6}$, which correspond to the points in Cartesian coordinates:

$$
\left(\pm \frac{\sqrt{3}}{4}, \pm \frac{1}{4}\right),\left(\pm \frac{1}{4}, \pm \frac{\sqrt{3}}{4}\right)
$$

2 Calculus for Polar Coordinates

Given the polar equation $r=f(\theta)$ of a curve, we can find the slope of the curve by the chain rule:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d(r \sin \theta)}{d \theta}}{\frac{d(r \cos \theta)}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

In particular, if the curve passes through the origin, its slope is given by

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta}{\frac{d r}{d \theta} \cos \theta}=\tan \theta
$$

when $\frac{d r}{d \theta} \neq 0$, and this formula agrees with our geometric understanding of the slope.

Example 7. Find the points on the curve $r=1+\sin \theta$ at which the tangent line is horizontal or vertical.

We know the tangent line is horizontal when the slope is zero; the tangent line is vertical when the slope tends to infinity. So we compute the slope first.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta} \\
& =\frac{\cos \theta \sin \theta+(1+\sin \theta) \cos \theta}{\cos ^{2} \theta-(1+\sin \theta) \sin \theta} \\
& =\frac{(1+2 \sin \theta) \cos \theta}{\left(1-\sin ^{2} \theta\right)-\sin ^{2} \theta-\sin \theta} \\
& =\frac{(1+2 \sin \theta) \cos \theta}{-2 \sin ^{2} \theta-\sin \theta+1}
\end{aligned}
$$

The numerator is zero when $(1+2 \sin \theta) \cos \theta=0$, i.e., $\sin \theta=-\frac{1}{2}$ or $\cos \theta=0$, we get $\theta=-\frac{\pi}{6},-\frac{5 \pi}{6}, \frac{\pi}{2},-\frac{\pi}{2}$.

The denominator is zero when $-2 \sin ^{2} \theta-\sin \theta+1=0$, i.e., $\sin \theta=\frac{1}{2}$ or $\sin \theta=-1$, we get $\theta=\frac{\pi}{6}, \frac{5 \pi}{6},-\frac{\pi}{2}$.

Note $-\frac{\pi}{2}$ is a solution to both the numerator and denominator, and

$$
\lim _{\theta \rightarrow-\frac{\pi}{2}}\left|\frac{d y}{d x}\right|=\lim _{\theta \rightarrow-\frac{\pi}{2}}\left|\frac{(1+2 \sin \theta) \cos \theta}{-2 \sin ^{2} \theta-\sin \theta+1}\right|=\infty
$$

So the tangent line is vertical at this point.
We conclude the tangent line is horizontal when $\theta=-\frac{\pi}{6},-\frac{5 \pi}{6}, \frac{\pi}{2}$, they correspond to points $\left(\frac{\sqrt{3}}{4},-\frac{1}{4}\right),\left(-\frac{\sqrt{3}}{4},-\frac{1}{4}\right),(0,2)$ in Cartesian coordinates.

The tangent line is vertical when $\theta=\frac{\pi}{6}, \frac{5 \pi}{6},-\frac{\pi}{2}$, they correspond to points $\left(\frac{3 \sqrt{3}}{4}, \frac{3}{4}\right),\left(-\frac{3 \sqrt{3}}{4}, \frac{3}{4}\right),(0,0)$ in Cartesian coordinates.

We can compute the arc length of a polar curve of the form $r=f(\theta)$, with $a \leq \theta \leq b$. This in in Cartesian coordinates a parametric curve

$$
(r \cos \theta, r \sin \theta)=(f(\theta) \cos \theta, f(\theta) \sin \theta)
$$

Theorem 8. The arc length of the parametric curve $r=f(\theta)$, with $a \leq \theta \leq b$ is

$$
\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Proof.

$$
\begin{aligned}
& \int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
= & \int_{a}^{b} \sqrt{\left(\frac{r \cos \theta}{d \theta}\right)^{2}+\left(\frac{r \sin \theta}{d \theta}\right)^{2}} d \theta \\
= & \int_{a}^{b} \sqrt{\left(\frac{d r}{d \theta} \cos \theta-r \sin \theta\right)^{2}+\left(\frac{d r}{d \theta} \sin \theta+r \cos \theta\right)^{2}} d \theta \\
= & \int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
\end{aligned}
$$

Example 9. Compute the arclength of the four cadioiod $r=1+\sin \theta$.

$$
\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{(1+\sin \theta)^{2}+(\cos \theta)^{2}} d \theta=8
$$

We can also use polar coordinates to compute some area.
Theorem 10. A polar curve is given by the equation $r=f(\theta)$, with $a \leq$ $\theta \leq b$. Connect the two endpoints to the origin, then the area enclosed can be computed by

$$
\int_{a}^{b} \frac{r^{2}}{2} d \theta
$$

Proof. We can divide $[a, b]$ into n pieces of length $\Delta \theta=\frac{b-a}{n}$, with endpoints $a=\theta_{0}<\theta_{1}<\ldots<\theta_{n-1}<\theta_{n}=b$. Choose a point $\theta_{i}^{*} \in\left[\theta_{i-1}, \theta_{i}\right]$. The rays $\theta=\theta_{1}, \ldots, \theta=\theta_{n-1}$ divide the region into n parts, and when n is big, each of

them can be approximated by a sector of a circle with radius $f\left(\theta_{i}^{*}\right)$ and angle $\Delta \theta$, whose are is $\frac{r^{2} \theta}{2}$. So taking the limit of the Riemann sum, we obtain the area enclosed is

$$
\lim _{\Delta \theta \rightarrow 0} \sum_{i=1}^{n} \frac{f\left(\theta_{i}^{*}\right)^{2}}{2} \Delta \theta=\int_{a}^{b} \frac{f(\theta)^{2}}{2} d \theta=\int_{a}^{b} \frac{r^{2}}{2} d \theta
$$

Example 11. Find the region enclosed by one loop of the four leaved rose $r=\cos 2 \theta$.

$$
\int_{0}^{2 \pi} \frac{(\cos 2 \theta)^{2}}{2} d \theta=\int_{0}^{2 \pi} \frac{1+\cos 4 \theta}{4} d \theta=\int_{0}^{8 \pi} \frac{1+\cos u}{16} d u=\frac{\pi}{2}
$$

Example 12. Find the area of the region that lies inside the circle $r=3 \sin \theta$ and outside of the cardioid $r=1+\sin \theta$.

We first find the points of intersection of the two curves:

$$
\left\{\begin{array}{l}
r=3 \sin \theta \\
r=1+\sin \theta
\end{array}\right.
$$

We get $\theta=\frac{\pi}{6}$ or $\theta=\frac{5 \pi}{6}$, and $r=\frac{3}{2}$. So the area is

$$
\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{(3 \sin \theta)^{2}}{2}-\frac{(1+\sin \theta)^{2}}{2} d \theta=\pi
$$

