
Polar Coordinates

Liming Pang

1 Polar Coordinates

There are different ways to locate a point on a plane, among which is the
Cartesian coordinates that we have been using for a long time. Besides the
Cartesian coordinates, another popular coordinate system for the plane is
the polar coordinates, where the location of a point is described by its
distance and direction to the origin.

P is a point on the plane. We connect the origin O and P by a line
segment. The length of the line segment OP is denoted by r, and the angle
whose terminal edge (recall that by default, the initial edge for an angle
coincides with the positive x-axis) coincides with OP is denoted by θ (Note
that the choice of θ is not unique, since angles differed by multiples of 2π
will have terminal edge coincide). Then in polar coordinates, the point P is
represented by the pair (r, θ).

A special convention is that given (r, θ), the polar coordinates of a point
P , if r < 0, this denotes the point with polar coordinates (−r, θ + π). For
example, the point (−1, π

2
) in polar coordinates is the same as (1, 3π

2
).

If a point on the plane P has Cartesian coordinates (x, y) and polar
coordinates (r, θ), by Trigonometry, we can obtain the conversion formulas
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between the two coordinates: {
x = r cos θ

y = r sin θ

Example 1. If a point has polar coordinates r = 3, θ = −π
6
, then its

Cartesian coordinates can be recovered by x = 3 cos(−π
6
) = 3 ×

√
3

2
= 3

√
3

2
,

y = 3 sin(−π
6
) = 3× (−1

2
) = −3

2
, so its Cartesian Coordinates is (3

√
3

2
,−3

2
).

We can also convert the other way round:{
r =

√
x2 + y2

tan θ = y
x

if x 6= 0

You will need to determine the value for θ after you find the value for tan θ.
If we use the inverse tangent function, we can choose θ in the following way:

θ =

{
tan−1 y

x
, if (x, y) is in Quadrant I or IV

π + tan−1 y
x
, if (x, y) is in Quadrant II or III

Example 2. If P is a point with Cartesian coordinates (−1,−1), find the
polar coordinates for P .

r =
√

(−1)2 + (−1)2 =
√

2. tan θ = −1
−1

= 1, and P is in the Quadrant

III, so θ = π + tan−1(1) = π + π
4

= 5π
4

. In polar coordinates the point P is

r =
√

2, θ = 5π
4

.

When the point has x-coordinate to be 0, it lies on the y-axis, so its angle
is θ = π

2
if it’s on positive y-axis, and θ = −π

2
if it is on the negative y-axis.

Example 3. The polar coordinates for the point (0, 3) is r = 3, θ = π
2
, and

the polar coordinates for the point (0,−3) is r = 3, θ = −π
2

Similar to Cartesian coordinates, the polar coordinates can be used to
describe not only points, but also curves, an equation F (r, θ) = 0 denotes
the set of all points on the plane whose polar coordinates satisfy this equation.

Example 4. The circle of radius R with centre at origin corresponds to the
equation r = R, since it is the set of points whose distance to the origin is
R.

A ray coming out from Origin can be described by the equation θ = θ0,
where θ0 is the angle formed by the positive x-axis and this ray. For example,
the equation for the diagonal ray of the Quadrant II is θ = 3π

4
.
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Example 5. What is the polar equation of the circle of radius 2 with centre
at (1, 0)?

For angle θ, the corresponding radius is 2 cos θ, so the equation is

r = 2 cos θ

You can also fine some other interesting examples in the textbook, for
example, r = 1 + sin θ (cardioid) and r = cos 2θ (four-leaved rose).

Example 6. Find the intersections of the four leaved rose r = 2 cos θ and
the circle r = 1

2

We need to first find points of intersection of the two curves. They inter-
sect at the points on the four leaved rose such that r = ±1

2
, i.e., |r| = 1

2
. We

get the equation
1

2
= |r| = | cos 2θ|

and the solutions are ±π
6
,±π

3
,±2π

3
,±5π

6
, which correspond to the points in

Cartesian coordinates:

(±
√

3

4
,±1

4
), (±1

4
,±
√

3

4
)

2 Calculus for Polar Coordinates

Given the polar equation r = f(θ) of a curve, we can find the slope of the
curve by the chain rule:

dy

dx
=

dy
dθ
dx
dθ

=
d(r sin θ)

dθ
d(r cos θ)

dθ

=
dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ
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In particular, if the curve passes through the origin, its slope is given by

dy

dx
=

dr
dθ

sin θ
dr
dθ

cos θ
= tan θ

when dr
dθ
6= 0, and this formula agrees with our geometric understanding of

the slope.

Example 7. Find the points on the curve r = 1 + sin θ at which the tangent
line is horizontal or vertical.

We know the tangent line is horizontal when the slope is zero; the tangent
line is vertical when the slope tends to infinity. So we compute the slope first.

dy

dx
=

dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos2 θ − (1 + sin θ) sin θ

=
(1 + 2 sin θ) cos θ

(1− sin2 θ)− sin2 θ − sin θ

=
(1 + 2 sin θ) cos θ

−2 sin2 θ − sin θ + 1

The numerator is zero when (1 + 2 sin θ) cos θ = 0, i.e., sin θ = −1
2

or
cos θ = 0, we get θ = −π

6
,−5π

6
, π

2
,−π

2
.

The denominator is zero when −2 sin2 θ− sin θ+ 1 = 0, i.e., sin θ = 1
2

or
sin θ = −1, we get θ = π

6
, 5π

6
,−π

2
.

Note −π
2

is a solution to both the numerator and denominator, and

lim
θ→−π

2

|dy
dx
| = lim

θ→−π
2

| (1 + 2 sin θ) cos θ

−2 sin2 θ − sin θ + 1
| =∞

So the tangent line is vertical at this point.
We conclude the tangent line is horizontal when θ = −π

6
,−5π

6
, π

2
, they

correspond to points (
√

3
4
,−1

4
), (−

√
3

4
,−1

4
), (0, 2) in Cartesian coordinates.

The tangent line is vertical when θ = π
6
, 5π

6
,−π

2
, they correspond to points

(3
√

3
4
, 3

4
), (−3

√
3

4
, 3

4
), (0, 0) in Cartesian coordinates.
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We can compute the arc length of a polar curve of the form r = f(θ),
with a ≤ θ ≤ b. This in in Cartesian coordinates a parametric curve

(r cos θ, r sin θ) = (f(θ) cos θ, f(θ) sin θ)

Theorem 8. The arc length of the parametric curve r = f(θ), with a ≤ θ ≤ b
is ∫ b

a

√
r2 + (

dr

dθ
)2 dθ

Proof. ∫ b

a

√
(
dx

dθ
)2 + (

dy

dθ
)2 dθ

=

∫ b

a

√
(
r cos θ

dθ
)2 + (

r sin θ

dθ
)2 dθ

=

∫ b

a

√
(
dr

dθ
cos θ − r sin θ)2 + (

dr

dθ
sin θ + r cos θ)2 dθ

=

∫ b

a

√
r2 + (

dr

dθ
)2 dθ

Example 9. Compute the arclength of the four cadioiod r = 1 + sin θ.∫ 2π

0

√
r2 + (

dr

dθ
)2 dθ =

∫ 2π

0

√
(1 + sin θ)2 + (cos θ)2 dθ = 8

We can also use polar coordinates to compute some area.

Theorem 10. A polar curve is given by the equation r = f(θ), with a ≤
θ ≤ b. Connect the two endpoints to the origin, then the area enclosed can
be computed by ∫ b

a

r2

2
dθ

Proof. We can divide [a, b] into n pieces of length ∆θ = b−a
n

, with endpoints
a = θ0 < θ1 < ... < θn−1 < θn = b. Choose a point θ∗i ∈ [θi−1, θi]. The rays
θ = θ1, ..., θ = θn−1 divide the region into n parts, and when n is big, each of
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them can be approximated by a sector of a circle with radius f(θ∗i ) and angle
∆θ, whose are is r2θ

2
. So taking the limit of the Riemann sum, we obtain the

area enclosed is

lim
∆θ→0

n∑
i=1

f(θ∗i )
2

2
∆θ =

∫ b

a

f(θ)2

2
dθ =

∫ b

a

r2

2
dθ

Example 11. Find the region enclosed by one loop of the four leaved rose
r = cos 2θ.

∫ 2π

0

(cos 2θ)2

2
dθ =

∫ 2π

0

1 + cos 4θ

4
dθ =

∫ 8π

0

1 + cosu

16
du =

π

2

Example 12. Find the area of the region that lies inside the circle r = 3 sin θ
and outside of the cardioid r = 1 + sin θ.

We first find the points of intersection of the two curves:{
r = 3 sin θ

r = 1 + sin θ

We get θ = π
6

or θ = 5π
6

, and r = 3
2
. So the area is∫ 5π

6

π
6

(3 sin θ)2

2
− (1 + sin θ)2

2
dθ = π

6


	Polar Coordinates
	Calculus for Polar Coordinates

