1. Determine whether the following series is convergent or divergent.

 (i). \(\sum \frac{n!}{2n^2} \)

 (ii). \(\sum \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n \)

2. Determine whether the following series is absolutely convergent, conditionally convergent or divergent.

 (i). \(\sum \frac{(-1)^n \tan^{-1} n}{n^2} \)

 (ii). \(\sum \left(-\frac{2}{n}\right)^n \)

3. \(\{b_n\} \) is a sequence and \(\lim_{n \to \infty} b_n = \frac{1}{2} \). Determine whether the given series is absolutely convergent, conditionally convergent or divergent.

 \[\sum \frac{(-1)^n n!}{n^n b_1 b_2 \ldots b_n} \]

4. Find all the values for \(k \) such that the series

 \[\sum \frac{(n!)^2}{(kn)!} \]

 converges.

5. Find the radius of convergence and interval of convergence of the power series.

 (i). \(\sum_{n=1}^{\infty} \frac{n}{4^n} (x + 1)^n \)

 (ii). \(\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \)

6. Let \(p \) and \(q \) be real numbers with \(p < q \). Find a power series whose interval of convergence is \([p, q)\).