1. f is a function defined on [0, 1]. Some of its values are shown in the table below:

	x	0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1
$\int f$	\dot{x}	2	2.5	3.5	3	4	4.5	3.5	2	1.5

Approximate $\int_0^1 f(x) dx$ by the following rules:

- (i). Midpoint Rule for n = 4
- (ii). Trapezoid Rule for n = 4
- (iii). Simpson's Rule for n = 8
- 2. How large should n be to guarantee that the Midpoint Rule Approximation to $\int_0^1 e^{x^2} dx$ is accurate to within $0.00001 = 10^{-5}$?
- 3. Determine if each of the following improper integrals is convergent or divergent, and evaluate if it is convergent:

(i).
$$\int_{3}^{+\infty} \frac{1}{(x-2)^{\frac{3}{2}}} dx$$

(ii).
$$\int_{0}^{+\infty} \frac{x^{2}}{\sqrt{1+x^{3}}} dx$$

(iii).
$$\int_{-\infty}^{+\infty} x e^{-x^{2}} dx$$

(iv).
$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx$$

(v).
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$$

(vi).
$$\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} dx$$

(vii).
$$\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} dx$$

(viii).
$$\int_{0}^{+\infty} \frac{1}{\sqrt{x(1+x)}} dx$$

4. Show that

$$\int_0^{+\infty} x^2 e^{-x^2} \, dx = \frac{1}{2} \int_0^{+\infty} e^{-x^2} \, dx$$