Theorem 1. \(R \) is a region on the \(xy \)-plane whose projection to \(x \)-axis is the interval \([a, b]\). If for each \(x \in [a, b] \), the vertical section of \(R \) at \(x \) has length \(L(x) \), then the area of \(R \) is

\[
\int_{a}^{b} L(x) \, dx
\]

Proof. We will divide \([a, b]\) into \(n \) intervals of length \(\Delta x = \frac{b-a}{n} \), and construct rectangles with width \(\Delta x \), and length \(L(x_i) \). The sum of the area of these rectangles is

\[
\sum_{i=1}^{n} L(x_i) \Delta x
\]

When \(n \to \infty \), the total area of these rectangles converges to the area of the region \(R \), so the area of \(R \) is

\[
\lim_{\Delta x \to 0} \sum_{i=1}^{n} L(x_i) \Delta x = \int_{a}^{b} L(x) \, dx
\]

\[\quad \square\]

Similarly, if we consider the \(y \)-axis instead, we have:
Theorem 2. \(R \) is a region on the \(xy \)-plane whose projection to \(y \)-axis is the interval \([c,d] \). If for each \(y \in [c,d] \), the vertical section of \(R \) at \(y \) has length \(L(y) \), then the area of \(R \) is

\[
\int_{c}^{d} L(y) \, dy
\]

Example 3. Find the area enclosed by a circle of radius \(R \).

We can put the circle into \(xy \)-coordinate such that the centre of the circle is at \((0,0) \). Then the projection of the circle to the \(x \)-axis is \([-1,1]\), and for each \(x \in [-1,1] \), by Pythagorean Theorem, the vertical segment has length

\[
L(x) = 2\sqrt{1-x^2}
\]

So the area enclosed by the circle is

\[
\int_{-1}^{1} 2\sqrt{1-x^2} \, dx = 2 \int_{-1}^{1} \sqrt{1-x^2} \, dx = \pi R^2
\]

A special case of the above theorem is that when the area is bounded by the graph of a pair of functions:
Corollary 4. If \(y = g_1(x) \) and \(y = g_2(x) \) are integrable functions on \(x \in [a, b] \) such that \(g_1(x) \leq g_2(x) \), then the area enclosed by these two functions between \([a, b] \) is

\[
\int_a^b g_2(x) - g_1(x) \, dx
\]

Corollary 5. If \(x = h_1(y) \) and \(x = h_2(y) \) are integrable functions on \(y \in [c, d] \) such that \(h_1(y) \leq h_2(y) \), then the area enclosed by these two functions between \([c, d] \) is

\[
\int_c^d h_2(y) - h_1(y) \, dy
\]

Example 6. Find the area enclosed by the parabolas \(y = x^2 \) and \(y = 2 - x^2 \)

Solving for \(\begin{cases} y = x^2 \\ y = 2 - x^2 \end{cases} \), we obtain \(x = 1, y = 1 \) or \(x = -1, y = 1 \), so the two curves intersect at \((-1, 1)\) and \((1, 1)\). By the graph of the two functions, we get the area is

\[
\int_{-1}^{1} (2 - x^2) - x^2 \, dx = \int_{-1}^{1} 2 - 2x^2 \, dx = \frac{8}{3}
\]

Example 7. Find the area enclosed by the line \(y = x - 1 \) and the parabola \(y^2 = 2x + 6 \)

Solving for \(\begin{cases} y = x - 1 \\ y^2 = 2x + 6 \end{cases} \), we obtain \(x = -1, y = -2 \) or \(x = 5, y = 4 \), so the two curves intersect at \((-1, -2)\) and \((5, 4)\). By the graph of the two functions, we get the area is

\[
\int_{-2}^{4} (y + 1) - \frac{1}{2}(y^2 - 6) \, dy = \int_{-2}^{4} -\frac{y^2}{2} + y + 4 \, dy = \frac{62}{3}
\]
Because we can compute the area as an integral, we may make use of the approximation technique for integrals to estimate the area of a region.

Example 8. A pool of irregular shape is shown as follows. Try to use the Simpson’s Rule to approximate the area of the pool.

Let $L(y)$ be the width of the pool. Based on the given information, we take $n = 8$ and $\Delta x = 4$. The area is approximated as:

$$
\int_{0}^{32} L(y) \, dy \approx \frac{4}{3} (0 + 4 \times 22 + 2 \times 25 + 4 \times 22 + 2 \times 20 + 4 \times 19 + 2 \times 16 + 4 \times 11 + 0)
$$

$$
\approx 557.3
$$

Sometimes, instead of using Rectangular approximations of an area, we can also use other shapes based on the given question.

Example 9. We are going to compute the area formula for circles in another way.
First, recall the definition of the number \(\pi \): \(\pi \) is the ratio of the circumference and diameter of a circle. By this definition, we know that the circumference of a circle of radius \(R \) is \(2\pi R \), since \(2R \) is the diameter.

Now given a circle of radius \(R \), we are going to find its area. We divide \([0, R]\) into \(n \) subintervals of equal length \(\Delta r = \frac{R}{n} \), with endpoints \(r_0 = 0, r_1, ..., r_{n-1}, r_n = R \), and by the following picture, we see that when \(n \) is getting big, the area of the circle can be approximated by the following:

\[
R_n = \sum_{i=1}^{n} (2\pi r_i) \Delta r
\]

Taking the limit, we get the area of the circle is

\[
\lim_{n \to \infty} R_n = \int_{0}^{R} 2\pi r \, dr = \pi r^2 \bigg|_{0}^{R} = \pi R^2
\]

In other words, for a circle, the circumference is the rate of change of the area with respect to its radius.