
Area

Liming Pang

Theorem 1. R is a region on the xy-plane whose projection to x-axis is the
interval [a, b]. If for each x ∈ [a, b], the vertical section of R at x has length
L(x), then the area of R is ∫ b

a

L(x) dx

Proof. We will divide [a, b] into n intervals of length ∆x = b−a
n

, and construct
rectangles with width ∆x, and length L(xi). The sum of the area of these
rectangles is

n∑
i=1

L(xi)∆x

When n→∞, the total area of these rectangles converges to the area of the
region R, so the area of R is

lim
∆x→0

n∑
i=1

L(xi)∆x =

∫ b

a

L(x) dx

Figure 1:
∫ +∞
a

f(x) dx and
∫ a

−∞ f(x) dx

Similarly, if we consider the y-axis instead, we have:
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Theorem 2. R is a region on the xy-plane whose projection to y-axis is the
interval [c, d]. If for each y ∈ [c, d], the vertical section of R at y has length
L(y), then the area of R is ∫ d

c

L(y) dy

Example 3. Find the area enclosed by a circle of radius R.

We can put the circle into xy-coordinate such that the centre of the circle
is at (0, 0). Then the projection of the circle to the x-axis is [−1, 1], and for
each x ∈ [−1, 1], by Pythagorean Theorem, the vertical segment has length

L(x) = 2
√

1− x2

So the area enclosed by the circle is∫ 1

−1

2
√

1− x2 dx = 2

∫ 1

−1

√
1− x2 dx = πR2

A special case of the above theorem is that when the area is bounded by
the graph of a pair of functions:
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Corollary 4. If y = g1(x) and y = g2(x) are integrable functions on x ∈ [a, b]
such that g1(x) ≤ g2(x), then the area enclosed by these two functions between
[a, b] is ∫ b

a

g2(x)− g1(x) dx

Corollary 5. If x = h1(y) and x = h2(y) are integrable functions on y ∈ [c, d]
such that h1(y) ≤ h2(y), then the area enclosed by these two functions between
[c, d] is ∫ d

c

h2(y)− h1(y) dy

Example 6. Find the area enclosed by the parabolas y = x2 and y = 2− x2

Solving for

{
y = x2

y = 2− x2
, we obtain x = 1, y = 1 or x = −1, y = 1,

so the two curves intersect at (−1, 1) and (1, 1). By the graph of the two
functions, we get the area is

∫ 1

−1

(2− x2)− x2 dx =

∫ 1

−1

2− 2x2 dx =
8

3

Example 7. Find the area enclosed by the line y = x − 1 and the parabola
y2 = 2x+ 6

Solving for

{
y = x− 1

y2 = 2x+ 6
, we obtain x = −1, y = −2 or x = 5, y = 4,

so the two curves intersect at (−1,−2) and (5, 4). By the graph of the two
functions, we get the area is∫ 4

−2

(y + 1)− 1

2
(y2 − 6) dy =

∫ 4

−2

−y
2

2
+ y + 4 dy =

62

3
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Because we can compute the area as an integral, we may make use of the
approximation technique for integrals to estimate the area of a region.

Example 8. A pool of irregular shape is shown as follows. Try to use the
Simpson’s Rule to approximate the area of the pool.

Let L(y) be the width of the pool. Based on the given information, we
take n = 8 and ∆x = 4. The area is approximated as:∫ 32

0

L(y) dy ≈ 4

3
(0 + 4× 22 + 2× 25 + 4× 22 + 2× 20 + 4× 19 + 2× 16 + 4× 11 + 0)

≈ 557.3

Sometimes, instead of using Rectangular approximations of an area, we
can also use other shapes based on the given question.

Example 9. We are going to compute the area formula for circles in another
way.
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First, recall the definition of the number π: π is the ratio of the cir-
cumference and diameter of a circle. By this definition, we know that the
circumference of a circle of radius R is 2πR, since 2R is the diameter.

Now given a circle of radius R, we are going to find its area. We di-
vide [0, R] into n subintervals of equal length ∆r = R

n
, with endpoints r0 =

0, r1, ..., rn−1, rn = R, and by the following picture, we see that when n is
getting big, the are of the circle can be approximated by the following:

Rn =
n∑

i=1

(2πri)∆r

Taking the limit, we get the area of the circle is

lim
n→∞

Rn =

∫ R

0

2πr dr = πr2

∣∣∣∣R
0

= πR2

In other words, for a circle, the circumference is the rate of change of the
area with respect to its radius.
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