
Approximation

Liming Pang

We have learned some techniques of integration during the previous sever-
al sections, and now we are able to deal with some complicated integrals. But
there are more integrals that are hard to compute or impossible to express
the accurate solution. In such circumstances, the best we would expect is to
obtain a good estimation of the integral, and applications of mathematics to
other subjects or the industry usually do not require an accurate value, so
an efficient approximation of integrals will work in those cases.

1 Endpoint Approximation

A most natural trial for approximating definite integrals is to come back to
its definition: Riemann Sum. Recall that a definite integral is the limit of
the corresponding Riemann Sum∫ b

a

f(x) dx = lim
max ∆xi→0

f(x∗i )∆xi

where ∆xi = xi − xi−1 and x∗i ∈ [xi−1, xi].
Recall that in practice, we have the freedom for choosing xi and choosing

x∗i ∈ [xi−1, xi]. Different choices of x∗i will lead to different ways of approxi-
mation.

We now let xi = a + b−a
n
i, then ∆x1 = ∆x2 = ... = ∆xn = ∆x = b−a

n
.

If we choose x∗i = xi−1, then the Riemann Sum is

Ln = (
n−1∑
i=0

f(xi))∆x = (
n−1∑
i=0

f(xi))
b− a

n

So we get Left Endpoint Approximation:∫ b

a

f(x) dx ≈ (
n−1∑
i=0

f(xi))∆x
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Similarly, if we choose x∗i = xi−, then the Riemann Sum is

Rn = (
n∑

i=1

f(xi))∆x = (
n∑

i=1

f(xi))
b− a

n

So we get Right Endpoint Approximation:∫ b

a

f(x) dx ≈ (
n∑

i=1

f(xi))∆x

Instead of using endpoints, we can also use midpoints of each interval for
the approximation. Take x∗i = x̄i = xi−1+xi

2
, then the Riemann Sum is

Mn =
n∑

i=1

f(x̄i))∆x = (
n∑

i=1

f(x̄i))
b− a

n

So we get Midpoint Approximation:∫ b

a

f(x) dx ≈ (
n∑

i=1

f(x̄i))∆x
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2 Trapezium Rule

Another commonly used approximation of integrals is the Trapezium Rule
(also called the Trapezoid Rule). This method is not based on the idea of
Riemann Sum, but to use a sequence of trapeziums to approximate the area
on the xy-plane that represents the integral.

We first divide the interval [a, b] evenly into n subintervals of equal length
∆x = b−a

n
, and let xi = a + i∆x. We construct n trapeziums, with the i-th

one based on the interval [xi−1, xi], with the two vertical edges having top
vertex on the graph of y = f(x).

The area of the i-th trapezium is

f(xi−1) + f(xi)

2
∆x

So the sum of these area is

n∑
i=1

f(xi−1) + f(xi)

2
∆x = (f(x0)+2f(x1)+2f(x2)+...+2f(xi−2)+2f(xi−1)+f(xi))

b− a

2n

Then we use the sum of the area of these trapeziums to approximate the
integral, which is called the Trapezium Rule:∫ b

a

f(x) dx ≈ (f(x0)+2f(x1)+2f(x2)+ ...+2f(xi−2)+2f(xi−1)+f(xi))
∆x

2

3 Simpson’s Rule

A generalisation of the idea of Trapezium Rule is to use parabolas to inter-
polate the function instead of straight lines, and evaluate the area bounded
by the parabolas.

Again, we divide the interval [a, b] into n equal length subintervals with
length ∆x = b−a

n
, but now we require n to be an even number. For an even

number 0 ≤ i ≤ n− 2, we consider the parabola passing through the points
(xi, f(xi)), (xi+1, f(xi+1)), (xi+2, f(xi+2)). To compute the area bounded by
this parabola on the interval [xi, xi+2], we can shift the parabola horizontally,
and compute the area of the parabola y = ax2 + bx + c passing through the
points (−∆x, f(xi)), (0, f(xi+1)), (∆x, f(xi+2)) on the interval [−∆x,∆x].
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Plug in the three points to the equation of the parabola, we have
f(xi) = a(−∆x)2 + b(−∆x) + c

f(xi+1) = c

f(xi+2) = a(∆x)2 + b(∆x) + c

This implies

f(xi) + 4f(xi+1) + f(xi+2) = 2a(∆x)2 + 6c

The area is∫ ∆x

−∆x

ax2+bx+c dx =
a

3
x3+

b

2
x2+cx

∣∣∣∣∆x

−∆x

=
∆x

3
(2a(∆x)2+6c) =

∆x

3
(f(xi)+4f(xi+1)+f(xi+2))

Next we sum up the area bounded by each of these parabolas:

∆x

3
((f(x0) + 4f(x1) + f(x2)) + (f(x0) + 4f(x1) + f(x2)) + ... + (f(xn−2) + 4f(xn−1) + f(xn)))

=
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ... + 2f(xn−2) + 4f(xn−1) + f(xn))

And this area provides an approximation of the integral
∫ b

a
f(x) dx, called

the Simpson’s Rule:∫ b

a

f(x) dx ≈ ∆x

3
(f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+...+2f(xn−2)+4f(xn−1)+f(xn))

4 Example

Let f(x) = ln x on [1, 2], we know∫ 2

1

lnx dx = ln 4− 1 ≈ 0.386294

We will approximate
∫ 2

1
lnx dx by the methods described above, by taking

n = 5, so ∆x = 0.2, x0 = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6, x4 = 1.8, x5 = 2
Left Endpoint Approximation:∫ 2

1

lnx dx ≈ (f(1) + f(1.2) + f(1.4) + f(1.6) + f(1.8))× 0.2 ≈ 0.315317
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Right Endpoint Approximation:∫ 2

1

lnx dx ≈ (f(1.2) + f(1.4) + f(1.6) + f(1.8) + f(2))× 0.2 ≈ 0.453947

Midpoint Approximation:∫ 2

1

lnx dx ≈ (f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9))× 0.2 ≈ 0.387124

Trapezium Rule:

.

∫ 2

1

lnx dx ≈ (f(1)+2f(1.2)+2f(1.4)+2f(1.6)+2f(1.8)+f(2))×0.1 ≈ 0.384633

For the Simpson’s Rule, we take n = 10, so ∆x = 0.1.
Simpson’s Rule: and∫ 2

1

lnx dx

≈(f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + 2f(1.4) + 4f(1.5) + 2f(1.6)

+ 4f(1.7) + 2f(1.8) + 4f(1.9) + f(2))× 0.1

3
≈0.386294

5 Error for Approximation

Definition 1. The error of an approximation is defined to be the different
between the accurate value and the approximated value. If we use An to
denote an approximation with number of subintervals n, we denote the error
by EA =

∫ b

a
f(x) dx− An

The following Theorem follows from some theory in Numerical Analysis.

Theorem 2. (i). f is a function on [a, b] with |f ′′(x)| ≤ K. Then the error

for the Trapezium Rule is |ET | ≤ K(b−a)3

12n2 , and the error for the Midpoint

Rule is |EM | ≤ K(b−a)3

24n2 .
(ii). f is a function on [a, b] with |f (4)(x)| ≤ K. Then the error for the

Simpson’s Rule is |ES| ≤ K(b−a)5

180n4
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Example 3. How large should we take n in order to make sure the error
using Simpson’s Rule for

∫ 2

1
lnx dx is within 0.00001 = 10−5?

f(x) = ln x, so f (4)(x) = − 6
x4 , so |f (4)| = | − 6

x4 | ≤ 6.

We thus need K(b−a)5

180n4 = ES ≤ 10−6, taking K = 6, a = 1, b = 2:

6(2− 1)5

180n4
=

1

30n4
≤ 1

105

we get n ≥ 4

√
105

30
≈ 4.27, so we need to take at least n = 5 to make sure the

error is within 10−5.
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