Definition. A function F is called an antiderivative of f on an interval I if $F(x) = f(x)$ for all x in I.

Example. If $f(x) = x^2$, then $F(x) = \frac{1}{3}x^3$ is an antiderivative of f.

Also note that for any constant C, $F(x) = \frac{1}{3}x^3 + C$ is also an antiderivative of f, since $\frac{d}{dx} \left(\frac{1}{3}x^3 + C \right) = x^2$.

In general, we can do this for the antiderivative of any function:

Theorem. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is arbitrary constant.

Example. Find the most general antiderivative of $f(x) = \sin x$.

If $F(x) = -\cos x$, $F(x) = 5\sin x$.

So the most general antiderivative of f is

$$F(x) = -\cos x + C$$

Proposition. If $F(x)$ is an antiderivative of $f(x)$, $G(x)$ is an antiderivative of $g(x)$.

(i) $CF(x)$ is an antiderivative of $c f(x)$.

(ii) $F(x) \pm G(x)$ is an antiderivative of $f(x) \pm g(x)$.

Example. Find the most general antiderivative of $f(x) = \frac{1 - \cos^2 x}{1 - \sin^2 x}$.

$$f(x) = \frac{1 - \cos^2 x}{1 - \sin^2 x} = \frac{1 - \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} - \cos x$$

$$F(x) = \tan x - \sin x + C.$$
We've seen that for a given function \(f \), there're many antiderivatives: \(F(x) + C \) for each constant \(C \).

But sometimes we are looking for an antiderivative with some extra condition, in this case, the constant \(C \) is often determined by the extra condition.

Example. Find \(f \) if \(f'(x) = e^x + 20(1+x^2)^{-1} \) and \(f(10) = -2 \).

\[
f'(x) = e^x + \frac{20}{1+x^2}.
\]

so \(f(x) = e^x + 20 \tan^{-1} x + C \).

\[-2 = f(10) = e^0 + 20 \tan^{-1} 0 + C \Rightarrow -2 = 1 + 0 + C \Rightarrow C = -3 \]

so \(f(x) = e^x + 20 \tan^{-1} x - 3 \)

Example. Find \(f(x) \) if \(f''(x) = 12x^2 + 6x - 4 \), \(f'(10) = 4 \), \(f'(1) = 1 \).

\[
f''(x) = 12x^2 + 6x - 4, \quad so \quad f'(x) = 4x^3 + 3x^2 - 4x + C_1
\]

\[
f(x) = x^4 + x^3 - 2x^2 + C_1 x + C_2
\]

\[
\begin{cases}
4 = f(10) = C_2 \\
1 = f(1) = 1 + 1 - 2 + C_1 + C_2
\end{cases} \Rightarrow \begin{cases}
C_1 = -3 \\
C_2 = 4
\end{cases}
\]

so \(f(x) = x^4 + x^3 - 2x^2 - 3x + 4 \)

Example. A particle moves in a straight line and has acceleration given by \(a(t) = 6t + 4 \). Its initial velocity is \(v(0) = -6 \) m/s and its initial displacement is \(s(0) = 9 \) m. Find its position function \(s(t) \).

Recall that \(v(t) = s'(t) \) and \(a(t) = v'(t) \).
\(a(t) = 6t + 4 \), so \(v(t) = 3t^2 + 4t + C_1 \).

-6 = v(0) = C_1, so \(v(t) = 3t^2 + 4t - 6 \)

Then \(s(t) = t^3 + 2t^2 - 6t + C_2 \).

9 = s(0) = C_2, so \(s(t) = t^3 + 2t^2 - 6t + 9 \).

Example. A ball is thrown upward with speed 4.9 m/s from the edge of a cliff 9.8 m. above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground? (From Newtonian physics, the acceleration of the ball is 9.8 m/s² pointing downward).

\(a(t) = -9.8 \), so \(v(t) = -9.8t + C \).

4.9 = v(0) = C, so \(v(t) = -9.8t + 4.9 \).

It reaches maximum height when \(v(t) = s'(t) = 0 \).

Let \(v(t) = -9.8t + 4.9 = 0 \) we get \(t = 0.5 \).

So it reaches maximum height at 0.5 second.

\(s(t) = -4.9t^2 + 4.9t + C_2 \).

9.8 = s(0) = C_2 \Rightarrow \ s(t) = -4.9t^2 + 4.9t + 9.8 \)

Let \(s(t) = -4.9t^2 + 4.9t + 9.8 = 0 \).

\[-4.9t^2 - t - 2 = 0\]

\[-4.9(t+1)(t-2) = 0\]

So \(t = 2 \) or \(t = -1 \) (drop).

We see it hit the ground at 2 second.