

Sylow Theorem

Liming Pang

1 Sylow Theorem

Definition 1. \(p \) is a prime and \(G \) is a group whose order is divisible by \(p \). A subgroup \(H \) of \(G \) is a **p-subgroup** if \(|H| = p^r \) for some positive integer \(r \).

Definition 2. \(G \) is a group such that \(|G| = p^e m \), where \(p \) is a prime, \(e \) is a positive integer and \(p \) doesn’t divide \(m \). A subgroup \(H \) of \(G \) is a **Sylow p-subgroup** if \(|H| = p^e \).

Theorem 3 (Sylow Theorem). \(G \) is a group such that \(|G| = p^e m \), where \(p \) is a prime, \(e \) is a positive integer and \(p \) doesn’t divide \(m \). Then:

(i). There exists a Sylow \(p \)-subgroup of \(G \)

(ii). If \(H \) is a Sylow \(p \)-subgroup of \(G \) and \(K \) is a \(p \)-group of \(G \), then there exists \(g \in G \) such that \(K \subseteq gHg^{-1} \)

(iii). The number of Sylow \(p \)-subgroups divides \(m \) and congruent to 1 modulo \(p \).

We will prove this significant theorem in the next section, and we will first see some applications instead.

Corollary 4. All the Sylow \(p \)-subgroups are conjugate to each other, and a Sylow \(p \)-subgroup is a normal subgroup of \(G \) if and only if it is the only Sylow \(p \)-subgroup of \(G \).

Proof. Take both \(H \) and \(K \) be Sylow \(p \)-subgroups in part (ii) of Sylow’s Theorem, we get \(H \) is conjugate to \(K \).

Let \(H \) be a Sylow \(p \)-subgroup of \(G \). \(G \) acts on \(S \), the set of all Sylow \(p \)-subgroups of \(G \), by conjugation, then this action is transitive by the previous paragraph, \(S = O(H) \). \(H \) is a normal subgroup of \(G \) \(\iff \) \(G_H = G \) \(\iff \) \(S = O(H) = \{H\} \) \(\iff \) \(H \) is the unique Sylow \(p \)-subgroup. \(\square \)
Example 5. We will show that any group of order 15 is isomorphic to $\mathbb{Z}/15\mathbb{Z}$.

If G is a group of order $15 = 3 \times 5$, it will have Sylow 3-subgroups and Sylow 5-subgroups, i.e. subgroups of order 3 and order 5. (This can also be seen from the Cauchy’s Theorem). The number of Sylow 3-subgroups divides 5 and is congruent to 1 modulo 3, so it has to be 1, which then implies this unique Sylow 3-subgroup is a normal subgroup of G, and call it H. Similarly, we can show that there is a unique Sylow 5-subgroup of G that is a normal subgroup, and call it K. Since 3 and 5 are primes, we know $H \cong \mathbb{Z}/3\mathbb{Z}$ and $K \cong \mathbb{Z}/5\mathbb{Z}$.

$|H| = 3$ and $|K| = 5$ implies $|H \cap K| = 1$, so $H \cap K = \{1\}$.
$|HK| = \frac{|H| \times |K|}{|H \cap K|} = \frac{3 \times 5}{1} = 15 = |G|$, so $HK = G$.

and together with the fact H, K are normal subgroups of G, we conclude $G \cong H \times K \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/15\mathbb{Z}$

Example 6. Consider the alternating group A_5. $|A_5| = \frac{|S_5|}{2} = \frac{5!}{2} = 60 = 2^2 \times 3 \times 5$. By Sylow Theorem, the number of Sylow 5-subgroups divides $2^2 \times 3 = 12$ and is congruent to 1 modulo 5, so it is 1 or 6. We know A_5 is a simple group, so it has no proper normal subgroups, the Sylow 5-subgroups cannot be unique, so the number of Sylow 5-subgroups has to be 6.

Note the union of these 6 Sylow 5-subgroups consists of the identity and $6 \times (5 - 1) = 24$ non-identity elements.

Example 7. We will show that a group of order 30 is not simple.

$30 = 2 \times 3 \times 5$. By Sylow Theorem, there exists Sylow 3-subgroup of order 3 and Sylow 5-subgroup of order 5. The number of Sylow 3-subgroup divides 10 and congruent to 1 modulo 3, so it may be 1 or 10. The number of Sylow 5-subgroup divides 6 and congruent to 1 modulo 5, so it may be 1 or 6.

Suppose there are 10 subgroups of order 3 and 6 subgroups of order 5. Since 3 and 5 are prime numbers, the intersection of any two of these 10 + 6 subgroups is $\{1\}$. So the union of these 16 subgroups have $1 + 10 \times (3 - 1) + 6 \times (5 - 1) = 45 > 30$, contradiction. We conclude at least one of the number of Sylow 3-subgroups and the number of Sylow 5-subgroups is 1, so either the Sylow 3-subgroup or the Sylow 5-subgroup is a proper normal subgroup.

Example 8. We will show that any group of order 224 is not simple.
If $|G| = 224 = 2^5 \times 7$, then it has Sylow 2-subgroup of order 32 and Sylow 7-subgroup of order 7. The number of Sylow 2-subgroups divides 7 and is congruent to 1 modulo 2, so it may be 1 or 7.

If the number of Sylow 2-subgroups is 1, then this unique Sylow 2-subgroup is a proper normal subgroup, so G is not simple.

If the number of Sylow 2-subgroups is 7, let S be the set of all Sylow 2-subgroups, and G acts on S by conjugation, and this group action corresponds to a homomorphism

$$
\Phi : G \rightarrow S_7
$$

Φ is not the trivial homomorphism, since the action is transitive, which implies the action is not the trivial action. Also Φ cannot be injective, since $|G| = 2^5 \times 7$ does not divide $|S_7| = 7!$. So $\ker \Phi$ is neither G nor $\{1\}$, we conclude $\ker \Phi$ is a proper normal subgroup of G, so G is not simple.

2 Proof of Sylow Theorem

Lemma 9. If $n = p^e m$ where p is a prime, $e > 1$ and p doesn't divide m, then p does not divide $\binom{n}{p^e}$, which the number of ways to choose p^e elements from a set of n elements.

Lemma 10. G is a group and k is a positive integer with $k \leq |G|$. S is the set of all subsets of cardinality k of G. G has an action on S by left multiplication:

$$
g.\{x_1, ..., x_k\} = \{gx_1, ..., gx_k\}
$$

and for this action, $|G_U|$ divides k for any $U \in S$.

Proof. It is easy to see $g.\{x_1, ..., x_k\} = \{gx_1, ..., gx_k\}$ defines a group action, so we leave this part as an exercise.

To show G_U divides k, it suffices to show U is a disjoint union of some right cosets of G_U in G, since all the right cosets of G_U in G are disjoint and have the same number of elements.

If $G_U g \cap U \neq \emptyset$, then there exists $g' \in G$ such that $g' \in G_U g \cap U$, so $G_U g = G_U g'$. G_U is the stabiliser of U, and $g' \in U$, so $G_U g' \subseteq U$. We thus see U is a disjoint union of some right cosets of G_U in G.

Lemma 11 (Fixed Point Theorem). G is a group acting on a set X. $|G| = p^k$, where p is a prime and $k > 0$. If p does not divide $|X|$, then there exists a fixed point $x \in X$ under this action, i.e. $g.x = x$ for any $g \in G$.

3
Proof. Suppose there is no fixed point. Then for any \(y \in X \), the orbit \(O(y) \) has size \(|O(y)| > 1 \), and \(|O(y)| = \frac{|G|}{|G_y|} = \frac{p^k}{|G_y|} \), so \(|O(y)| \) is a positive power of \(p \), in particular, \(p \) divides \(O(y) \).

\(X \) is the disjoint union of all the orbits, so it follows \(|X| \) is divisible by \(p \), contradiction.

\[\text{Lemma 12. } G \text{ is a group acting on } X. \text{ For any } g \in G, \text{ any } x \in X: \]

\[G_{g, x} = gG_xg^{-1} \]

Proof. \(h \in G_{g, x} \iff h.(g.x) = g.x \iff (hg).x = g.x \iff (g^{-1}hg).x = x \iff g^{-1}hg \in G_x \iff h \in gG_xg^{-1} \]

Now we shall begin the proof of Sylow Theorem.

2.1 Proof of (i)

We are going to show that \(G \) has a Sylow \(p \)-subgroup.

Let \(G \) act on \(S \), the set of all subsets of \(G \) with \(p^e \) elements. \(|S| = \binom{n}{p^e}\),
and by Lemma 9, \(p \) does not divide \(|S|\), so there exists \(U \in S \) such that \(p \) does not divide \(|O(U)|\).

Applying the Counting Formula,

\[|O(U)||G_U| = |G| = p^e m \]

so \(p \) not dividing \(|O(U)|\) implies \(p^e \) dividing \(|G_U|\)

if we apply Lemma 10, we get \(|G_U|\) divides \(p^e \) as well, so we conclude \(|G_U| = p^e\), and thus we have found a Sylow \(p \)-subgroup of \(G \).

2.2 Proof of (ii)

Let \(H \) be a Sylow \(p \)-subgroup of \(G \) and \(K \) a \(p \)-subgroup of \(G \), so \(|H| = p^e\) and \(|K| = p^r\) for some \(1 \leq r \leq e \).

\(G \) acts on \(X = G/H \), the set of left cosets of \(H \) in \(G \), by left multiplication:

\[g.xH = (gx)H \]

it is left as an exercise to show that \(G_H = H \).
Now restrict the action to the subgroup K. $|K| = p^r$, and by Lagrange Theorem, $|X| = \frac{|G|}{|H|} = m$, which is not divisible by p. So we can apply Lemma 11, there exists a fixed point $gH \in X$ for this K-action on X, i.e. $K_{gH} = K$.

In particular, we get $K \subseteq G_{gH} = gG_Hg^{-1} = gHg^{-1}$ by Lemma 12.

2.3 Proof of (iii)

Let Y be the set of Sylow p-subgroups of G. By Corollary 4 (which is a consequence of (ii) and (ii) has been proved), G acts on Y by conjugation transitively.

Let $H \in Y$, then $G_H = \{g \in G | gHg^{-1} = H\} = N(H)$, the normaliser of H. We leave it as an exercise to show that H is a normal subgroup of $N(H)$.

In particular, $|H|$ divides $N(H)$, so $\frac{|G|}{|N(H)|}$ divides $\frac{|G|}{|H|}$.

The Counting Formula implies $|Y| = |O(H)| = \frac{|G|}{|N(H)|}$, which divides $\frac{|G|}{|H|} = \frac{p^r m}{p^e} = m$, i.e. $|Y|$ divides m.

Now we restrict the group action to the subgroup H, that is, let H act on Y by conjugation.

$H \subseteq N(H)$ implies $O(H) = \{H\}$, $|O(H)| = 1$. Note $|H| = p^e$, so the number of elements in any orbit divides p^e. We know $|Y|$ is the summation of the cardinality of all its orbits, so in order to show $|Y| \equiv 1 \pmod{p}$, it suffices to show the number of elements in any orbit other than $\{H\}$ is more than one:

If $H' \in Y$ and $O(H') = \{H'\}$, then $H \subseteq N(H')$, we see both H and H' are Sylow p-subgroups of $N(H')$. But H' is a normal subgroup in $N(H')$, which implies H' is the only Sylow p-subgroup of $N(H')$, hence $H = H'$. So $\{H\}$ is the only orbit with one element.