1. H and K are subgroups of G, $x, y \in G$. Prove if $xH \cap yK \neq \emptyset$, then $xH \cap yK = g(H \cap K)$ for some $g \in G$.

Solution: Let $g \in xH \cap yK$, then $g \in xH$ implies $gH = xH$, and $g \in yK$ implies $gK = yK$.

$xH \cap yK = gH \cap gK = g(H \cap K)$.

2. If G is a group of order p^n, where p is a prime and $n > 1$. Prove G contains an element of order p.

Solution: Pick any non-identity element $x \in G$. $|x|$ divides $|G| = p^n$, so $|x| = p^r$ for some $1 \leq r \leq n$.

If $r = 1$, then x is an element of order p, done.

If $r > 1$, consider the element $y = x^{p^{r-1}}$: $y^p = (x^{p^{r-1}})^p = x^{p^r} = 1$, so $|y| = p$ if we can show $y \neq 1$.

Suppose $y = 1$, then this is to say $x^{p^{r-1}} = 1$, contradict to $|x| = p^r$, we conclude that $y \neq 1$.

3. If G has five subgroups of order 7, prove G has at least 35 elements.

Solution: If H and K are two subgroups of order 7 in G such that $H \neq K$, then $H \cap K = \{1\}$: Suppose there is non-identity $x \in H \cap K$, then in particular, $x \in H$, so $|x|$ divides $|H| = 7$, and x is not the identity, it follows $|x| = 7$, so $< x > = H$. Similarly, $< x > = K$, we get $H = K$, contradict to the assumption $H \neq K$, therefore such x does not exists. we conclude $H \cap K = \{1\}$.

If there are five different subgroups of order 7, then by the above paragraph, except the identity element, any two of those five subgroups share no element. It follows there are $1 + 5 \times (7 - 1) = 31$ elements in the union of these five subsets, so $|G| \geq 31$.

G contains subgroups of order 7 implies 7 divides $|G|$, and 35 is the smallest multiple of 7 that is no smaller than 31, so we conclude $|G| \geq 35$.

4. \(G \) is a group of order 25. If \(G \) has only one subgroup of order 5, prove \(G \) is cyclic.

Solution: If the only cyclic subgroup of order 5 is \(< x >\), let \(y \in G \) and \(y \notin < x >\). \(|y| \) divides \(|G| = 25\), \(y \neq 1 \) since it is not the identity, \(|y| \neq 5\) otherwise there will be another cyclic subgroup of order 5, so \(|y| = 25\), \(G = < y >\) is cyclic.

5. Prove that every subgroup of index two is a normal subgroup.

Solution: When \(g \in H \), it is obvious that \(gHg^{-1} = H \).

When \(g \notin H \), since the index of \(H \) is two, there are two left cosets \(H \) and \(gH \), two right cosets \(H \) and \(Hg \). Since cosets make a partition of \(G \),

\[
H \sqcup gH = G = H \sqcup Hg
\]

This implies \(gH = Hg \), i.e. \(gHg^{-1} = H \).

We conclude \(gHg^{-1} = H \) for all \(g \in G \), so \(H \) is a normal subgroup of \(G \).

6. \(\overline{a} \in \mathbb{Z}/n\mathbb{Z} \) and \(\overline{a} \neq \overline{0} \), what is the order of \(\overline{a} \) in \(\mathbb{Z}/n\mathbb{Z} \)?

Solution: \(ka = \overline{0} \iff \overline{ka} = \overline{0} \iff ka \in n\mathbb{Z} \iff ka \in n\mathbb{Z} \cap a\mathbb{Z} \iff ka \in m\mathbb{Z} \) where \(m \) is the least common multiple of \(a \) and \(n \). So we see

\[
k \in \frac{m}{a}\mathbb{Z}
\]

\(|\overline{a}| \), the smallest positive choice for \(k \), is \(k = \frac{m}{a} = \frac{n}{g} \), where \(g \) is the greatest common divisor of \(a \) and \(n \).

7. Is \(Aut(\mathbb{Z}/8\mathbb{Z}) \) isomorphic to \(Aut(\mathbb{Z}/10\mathbb{Z}) \)? Why?

Solution: \(Aut(\mathbb{Z}/8\mathbb{Z}) \cong (\mathbb{Z}/8\mathbb{Z})^\times = \{1, 3, 5, 7\} \).

\(Aut(\mathbb{Z}/10\mathbb{Z}) \cong (\mathbb{Z}/10\mathbb{Z})^\times = \{1, 3, 7, 9\} \).

So The order of both groups are 4.

They are not isomorphic since in \((\mathbb{Z}/8\mathbb{Z})^\times \), all the non-identity elements have order 2 but in \((\mathbb{Z}/10\mathbb{Z})^\times \), there are elements (3 and 7) of order 4.

8. \(m \geq 2, n \geq 2 \) are positive integers and they are relatively prime. \(a, b \in \mathbb{Z} \).

Prove there exists \(k, l \in \mathbb{Z} \) such that \(x = anl + bmk \) is a solution to the system of equations

\[
\begin{align*}
x &\equiv a \pmod{m} \\
x &\equiv b \pmod{n}
\end{align*}
\]
Solution: m and n are relatively prime, so $\bar{m} \in (\mathbb{Z}/n\mathbb{Z})^\times$ and $\bar{n} \in (\mathbb{Z}/m\mathbb{Z})^\times$, there exists $\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^\times$ such that $\bar{m}\bar{k} = \bar{1} \in \mathbb{Z}/n\mathbb{Z}$, and there exists $\bar{l} \in (\mathbb{Z}/m\mathbb{Z})^\times$ such that $\bar{n}\bar{l} = \bar{1} \in \mathbb{Z}/m\mathbb{Z}$.

In $\mathbb{Z}/m\mathbb{Z}$: $\bar{x} = \bar{a}n\bar{l} + \bar{b}mk = \bar{a}n\bar{l} = \bar{a}\bar{1} = \bar{a}$, so $x \equiv a \pmod{m}$.

In $\mathbb{Z}/n\mathbb{Z}$: $\bar{x} = \bar{a}n\bar{l} + \bar{b}mk = \bar{b}mk = \bar{b}\bar{1} = \bar{b}$, so $x \equiv b \pmod{n}$.

Remark 0.1. k and l can be chosen to be the numbers making $mk + nl = 1$, such k, l exist since m, n are relatively prime. In practice, to find explicit values of k and l, you need to apply the Euclidean Algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm) to the pair (m, n).