1. $G = GL_2(\mathbb{R})$. G acts on itself by conjugation. Compute the orbit and the stabilizer of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

2. M_2 is the isometry group of the plane. X is the set of all the squares with edge length 2 on the plane. M_2 acts on X by sending each square to the image of the isometry. Determine the stabilizer of the square with vertices $(\pm 1, \pm 1)$.

3. G is a group and H is a subgroup of G. G acts on the set of left cosets G/H by $g.xH = (gx)H$.
 (i). Prove this is a well-defined group action.
 (ii). Is this action transitive?
 (iii). What is the stabilizer of xH?
 (iv). Give a proof of the Lagrange Theorem using Counting Formula.

4. If a group G acts on a set X, we define the kernel of the group action to be $K = \{ g \in G | \forall x \in X, g.x = x \}$.
 (i). Prove that K is a normal subgroup of G.
 (ii). We say an action is faithful if for any $g \neq g'$ in G, there exists $x \in X$ such that $g.x \neq g'.x$. Prove an action is faithful if and only if its kernel is trivial.
 (iii). Prove that there is a well-defined faithful induced group action of G/K on S by $(gK).s = g.s$.

5. G is a finite group acting on a finite set S. For each $g \in G$, define the set $S^g = \{ s \in S | g.s = s \}$.
 (i). Prove $\sum_{s \in S} |G_s| = \sum_{g \in G} |S^g|$.
 (ii). Prove $\sum_{s \in S} |G_s| = |G| \times n$, where n is the number of orbits in S.

6. G is a group acting on a set X. S is a set. Let $M(X, S)$ to be the set of all functions $X \rightarrow S$. Prove $(g.f)(x) = f(g^{-1}.x)$ defines a group action of G on $M(X, S)$.

7. H is a subgroup of G. Define $N = N(H) = \{ g \in G | gHg^{-1} = H \}$ to be the normalizer of H.
 (i). Prove N is a subgroup of G.
 (ii). Prove H is a normal subgroup of N.
 (iii). Prove H is a normal subgroup of G if and only if $N = G$.

1