1. Prove any group of order 77 is cyclic.

2. Prove a group of order 90 is not simple.

3. \(G \) is a group with \(|G| = pq\), where \(p, q \) are primes. Prove \(G \) is not simple.

4. \(G \) is a simple group of order 168. How many elements of order 7 are there in \(G \)?

5. \(\phi : \mathbb{Z}/2\mathbb{Z} \rightarrow Aut(\mathbb{Z}) \) is defined by
 \[
 \phi(\bar{m}) : \mathbb{Z} \rightarrow \mathbb{Z} \\
 k \mapsto (-1)^m k
 \]
 Let \(G = \mathbb{Z} \rtimes_{\phi} (\mathbb{Z}/2\mathbb{Z}) \). Find all the elements of finite order in \(G \).

6. Prove \(O_2(\mathbb{R}) = SO_2(\mathbb{R}) \rtimes < r > \), where \(r = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)

7. \(G \) and \(G' \) are groups. \(\phi : G' \rightarrow Aut(G) \) is a homomorphism. Prove \(G \rtimes_{\phi} G' \) is abelian if and only if \(G, G' \) are both abelian and \(\phi \) is the trivial homomorphism.