1. Prove
\[\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \]
\[(k, n) \mapsto k \cdot n = (-1)^k \cdot n \]
defines a group action of the group \(\mathbb{Z} \) on itself, and find the stabilizer of \(n \in \mathbb{Z} \).

2. \(G \) is a group acting on a set \(S \). \(g \in G \) and \(s \in S \). Prove
\[G_{g,s} = gG_s g^{-1} \]

3. \(G \) is a finite group acting on a finite set \(S \). For each \(g \in G \), define the set \(S^g = \{ s \in S | g \cdot s = s \} \).
 (i). Prove \(\sum_{s \in S} |G_s| = \sum_{g \in G} |S^g| \).
 (ii). Prove \(\sum_{s \in S} |G_s| = |G| \times n \), where \(n \) is the number of orbits in \(S \).

4. \(G \) is a group, \(H \) and \(K \) are normal subgroups of \(G \), \(G = HK \).
 (i). Prove \(G \times (G/H \times G/K) \to G/H \times G/K \) given by
 \[g.(xH, yK) = (gxH, gyK) \]
is a group action.
 (ii). Compute the stabilizer \(G_{(xH, yK)} \)
 (iii). If \(G \) is a finite group, express the order of \(G/H \times G/K \) in terms of \(|H|, |K|, |H \cap K| \).
 (iv). Use the Counting Formula to prove: if \(G \) is a finite group, the above action is transitive.
 (v). Let \(f : G \to G/H \times G/K \) be the map \(f(g) = (gH, gK) \). Prove \(f \) is surjective if and only if the action in (i) is transitive.
 (vi). Prove \(f \) is surjective without the assumption that \(G \) is finite.
 (So (v) and (vi) together imply that the action in (i) is transitive)

5. \(G \) is a group with \(|G| = p^2 \) for some prime \(p \). Prove either \(G \cong \mathbb{Z}/p^2\mathbb{Z} \) or \(G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \)