1. Define a map
\[\Psi : M_2 \rightarrow \{ \pm 1 \} \]
\[t_{\vec{a} \rho \theta}^k \mapsto (-1)^k \]

Prove \(\Psi \) is a well-defined homomorphism.

(Remark: This provides an algebraic way to define the orientation of an isometry. Those corresponding to \(+1\) are called orientation preserving, and those corresponding to \(-1\) are called orientation reversing.)

2. Let \(s \) be the rotation of the plane with angle \(\frac{\pi}{2} \) about the point \((1,1)\). Write the formula for \(s \) as a product \(t_{\vec{a} \rho \theta} \).

3. Let \(s \) be the reflection along the line \(y = x + 1 \) followed by a translation along the vector \(\vec{v} = (1,1) \). Write \(s \) in the form \(t_{\vec{a} \rho \theta} \).

4. Describe in geometry what operation we will get if we first rotate the plane around \((2,3)\) by angle \(\pi \) and then do a reflection along the \(y \)-axis.

5. Find subgroups \(H \) and \(K \) of \(D_4 \) satisfying: \(H \) is a normal subgroup of \(D_4 \), \(K \) is a normal subgroup of \(H \), but \(K \) is not a normal subgroup of \(D_4 \).

(Remark. This exercise shows that a normal subgroup of a normal subgroup of a group \(G \) may not be a normal subgroup of \(G \))

6. \(G \) is a group acting on a set \(X \). \(S \) is a set. Let \(M(X, S) \) to be the set of all functions \(X \rightarrow S \). Prove \((g.f)(x) = f(g^{-1}.x)\) defines a group action of \(G \) on \(M(X, S) \).

7. Given a group action of \(G \) on a set \(X \), we define the kernel of the group action to be \(K = \{ g \in G | \forall x \in X, g.x = x \} \).

(i). Prove that \(K \) is a normal subgroup of \(G \).

(ii). We say an action is **faithful** if for any \(g \neq g' \) in \(G \), there exists \(x \in X \) such that \(g.x \neq g'.x \). Prove an action is faithful if and only if its kernel is trivial.

(iii). Prove that there is a well-defined faithful induced group action of \(G/K \) on \(X \) by \((gK).x = g.x\)