1. A is a real $n \times n$ matrix. Prove $A \in O_n(\mathbb{R})$ if and only if the rows (columns) of A are unit vectors that are pairwisely perpendicular.

2. Prove that a linear operator on \mathbb{R}^2 is a reflection if and only if its eigenvalues are 1 and -1, and the eigenvectors with these eigenvalues are orthogonal.

3. Prove that every matrix in SO_3 has an eigenvalue $\lambda = 1$. Is it still true for O_3?

4. Let $H = \{t_\tilde{a} \rho_\theta \in M_2|\tilde{a} \in \mathbb{Z} \times \mathbb{Z}, \theta = \frac{\pi k}{2}, k \in \mathbb{Z}\}$. Prove H is a subgroup of M_2, where M_2 is the group of isometries on the plane.

5. Prove that $\rho_\theta r^k = \rho_\omega r^l$ in O_2 if and only if $\theta - \omega = 2\pi m$ for some $m \in \mathbb{Z}$ and $\bar{k} \equiv \bar{l} \pmod{2}$

6. Define a map
 \[\Psi : M_2 \longrightarrow \{\pm 1\} \]
 \[t_\tilde{a} \rho_\theta r^k \mapsto (-1)^k \]
 Prove Ψ is a well-defined homomorphism.

7. The plane \mathbb{R}^2 has another description, i.e. the complex plane \mathbb{C}. The identification is $(x, y) \in \mathbb{R}^2$ corresponds to $z = x + iy \in \mathbb{C}$. Under this identification, describe each of the following concepts in terms of complex numbers:
 (i). Inner Product of two plane vectors
 (ii). Distance between two points
 (iii). Translations
 (iv). Rotation centered at origin with angle θ
 (v). Reflection along x-axis
 (vi). $r \rho_\theta = \rho_{-\theta} r$