Practical Advances in Complex Root Clustering

Collaborative and ongoing works

R. Imbach1, V. Pan2, M. Pouget3, C. Yap1

1 Courant Institute of Mathematical Sciences, New York University, USA
2 Lehman College, City University of New York, USA
3 INRIA Nancy - Grand Est, France
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$\begin{align*}
(z_1 - 2^{-\sigma})(z_1 + 2^{-\sigma}) &= 0 \\
(z_2 + 2^\sigma z_1^2)(z_2 - 1)z_2 &= 0
\end{align*}$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

$$\begin{align*}
a_1 &= (2^{-\sigma}, 0) \\
a_2 &= (2^{-\sigma}, 1) \\
a_3 &= (-2^{-\sigma}, 1) \\
a_4 &= (-2^{-\sigma}, 0) \\
a_5 &= (-2^{-\sigma}, -2^{-\sigma}) \\
a_6 &= (2^{-\sigma}, -2^{-\sigma})
\end{align*}$$
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$\begin{align*}
(z_1 - 2^{-\sigma})(z_1 + 2^{-\sigma}) &= 0 \\
(z_2 + 2^\sigma z_1^2)(z_2 - 1)z_2 &= 0
\end{align*}$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

- $a_1 = (2^{-\sigma}, 0)$, $m(a_1, f) = 1$
- $a_2 = (2^{-\sigma}, 1)$, $m(a_2, f) = 1$
- $a_3 = (-2^{-\sigma}, 1)$, $m(a_3, f) = 1$
- $a_4 = (-2^{-\sigma}, 0)$, $m(a_4, f) = 1$
- $a_5 = (-2^{-\sigma}, -2^{-\sigma})$, $m(a_5, f) = 1$
- $a_6 = (2^{-\sigma}, -2^{-\sigma})$, $m(a_6, f) = 1$

Natural clusters:

- $(\Delta^1, 4)$
- $(\Delta^2, 2)$

Notations: $m(a, f)$: multiplicity of a as a sol. of f
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$
\begin{align*}
(z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) &= 0 \\
(z_2 + 2^{\sigma}z_1^2)^2(z_2 - 1)z_2 &= 0
\end{align*}
$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

- $a^1 = (2^{-\sigma}, 0) \quad \leftarrow m(a^1, f) = 2$
- $a^2 = (2^{-\sigma} , 1) \quad \leftarrow m(a^2, f) = 2$
- $a^3 = (-2^{-\sigma}, 1) \quad \leftarrow m(a^3, f) = 1$
- $a^4 = (-2^{-\sigma}, 0) \quad \leftarrow m(a^4, f) = 1$
- $a^5 = (-2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow m(a^5, f) = 2$
- $a^6 = (2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow m(a^6, f) = 4$

Natural clusters:

- $(\Delta^1, 9)$
- $(\Delta^2, 3)$

Notations: $m(a, f)$: multiplicity of a as a sol. of f
Local solution Clustering Problem (LCP)

Input: a polynomial map \(f : \mathbb{C}^n \to \mathbb{C}^n \) (assume \(f(z) = 0 \) is 0-dim), a polybox \(B \subset \mathbb{C}^n \), the Region of Interest (RoI), \(\epsilon > 0 \)

Output:

Notations: \(f = (f_1, \ldots, f_n) \), \(B = (B_1, \ldots, B_n) \) where the \(B_i \)'s are square complex boxes
Local solution Clustering Problem (LCP)

Input: a polynomial map $f : \mathbb{C}^n \rightarrow \mathbb{C}^n$ (assume $f(z) = 0$ is 0-dim), a polybox $B \subset \mathbb{C}^n$, the Region of Interest (RoI), $\epsilon > 0$

Output: a set of pairs $\{(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^js are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,

Notations: $f = (f_1, \ldots, f_n)$, $B = (B_1, \ldots, B_n)$ where the B_i's are square complex boxes, $\Delta^j = (\Delta^j_1, \ldots, \Delta^j_n)$ where the Δ^j_i's are complex discs, $r(\Delta^j) = \max_i r(\Delta^j_i)$
Local solution Clustering Problem (LCP)

Input: a polynomial map \(f : \mathbb{C}^n \rightarrow \mathbb{C}^n \) (assume \(f(z) = 0 \) is 0-dim),
a polybox \(B \subset \mathbb{C}^n \), the Region of Interest (RoI),
\(\epsilon > 0 \)

Output: a set of pairs \(\{(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)\} \) where:

- the \(\Delta^j \)'s are pairwise disjoint polydiscs of radius \(r(\Delta^j) \leq \epsilon \),
- \(m^j = \#(\Delta^j, f) = \#(3\Delta^j, f) \) for all \(1 \leq j \leq \ell \), and

Notations: \(f = (f_1, \ldots, f_n) \),
\(B = (B_1, \ldots, B_n) \) where the \(B_i \)'s are square complex boxes
\(\Delta^j = (\Delta^j_1, \ldots, \Delta^j_n) \) where the \(\Delta^j_i \)'s are complex discs
\(r(\Delta^j) = \max_i r(\Delta^j_i) \)
\(\#(S, f) \): nb. of sols (with mult.) of \(f(z) = 0 \) in \(S \)

Local solution Clustering Problem (LCP)

Input: a polynomial map \(f : \mathbb{C}^n \to \mathbb{C}^n \) (assume \(f(z) = 0 \) is 0-dim), a polybox \(B \subset \mathbb{C}^n \), the Region of Interest (RoI), \(\epsilon > 0 \)

Output: a set of pairs \(\{ (\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell) \} \) where:

- the \(\Delta^j \)'s are pairwise disjoint polydiscs of radius \(r(\Delta^j) \leq \epsilon \),
- \(m^j = \#(\Delta^j, f) = \#(3\Delta^j, f) \) for all \(1 \leq j \leq \ell \), and
- \(Z(B, f) \subseteq \bigcup_{j=1}^\ell Z(\Delta^j, f) \subseteq Z((1+\delta)B, f) \) for a small \(\delta \)

Notations:
- \(f = (f_1, \ldots, f_n) \),
- \(B = (B_1, \ldots, B_n) \) where the \(B_i \)'s are square complex boxes
- \(\Delta^j = (\Delta^j_1, \ldots, \Delta^j_n) \) where the \(\Delta^j_i \)'s are complex discs
- \(r(\Delta^j) = \max_i r(\Delta^j_i) \)
- \(\#(S, f) \): nb. of sols (with mult.) of \(f(z) = 0 \) in \(S \)
- \(Z(S, f) \): sols of \(f(z) = 0 \) in \(S \)
Local solution Clustering Problem (LCP)

Input: a polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ (assume $f(z) = 0$ is 0-dim), a polybox $B \subset \mathbb{C}^n$, the Region of Interest (RoI), $\epsilon > 0$

Output: a set of pairs $\{(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^js are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,
- $m^j = #(\Delta^j, f) = #(3\Delta^j, f)$ for all $1 \leq j \leq \ell$, and
- $Z(B, f) \subseteq \bigcup_{j=1}^{\ell} Z(\Delta^j, f) \subseteq Z((1 + \delta)B, f)$ for a small δ

Notations: $f = (f_1, \ldots, f_n)$, $B = (B_1, \ldots, B_n)$ where the B_i's are square complex boxes $\Delta^j = (\Delta^j_1, \ldots, \Delta^j_n)$ where the Δ^j_i's are complex discs $r(\Delta^j) = \max_i r(\Delta^j_i)$ $\#(S, f)$: nb. of sols (with mult.) of $f(z) = 0$ in S $Z(S, f)$: sols of $f(z) = 0$ in S
Local solution Clustering Problem (LCP)

Input: a polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ (assume $f(z) = 0$ is 0-dim),
a polybox $B \subset \mathbb{C}^n$, the Region of Interest (RoI),
$\epsilon > 0$

Output: a set of pairs $\{(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^js are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,
- $m^j = #(\Delta^j, f) = #(3\Delta^j, f)$ for all $1 \leq j \leq \ell$, and
- $Z(B, f) \subseteq \bigcup_{j=1}^\ell Z(\Delta^j, f) \subseteq Z((1 + \delta)B, f)$ for a small δ

Notations: $f = (f_1, \ldots, f_n)$,
$B = (B_1, \ldots, B_n)$ where the B_i's are square complex boxes
$\Delta^j = (\Delta^j_1, \ldots, \Delta^j_n)$ where the Δ^j_i's are complex discs
$r(\Delta^j) = \max_i r(\Delta^j_i)$
$#(S, f)$: nb. of sols (with mult.) of $f(z) = 0$ in S
$Z(S, f)$: sols of $f(z) = 0$ in S
Local solution Clustering Problem (LCP)

Input: a polynomial map \(f : \mathbb{C}^n \to \mathbb{C}^n \) (assume \(f(z) = 0 \) is 0-dim), a polybox \(B \subset \mathbb{C}^n \), the Region of Interest (RoI), \(\epsilon > 0 \)

Output: a set of pairs \(\{(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)\} \) where:

- the \(\Delta^j \)'s are pairwise disjoint polydiscs of radius \(r(\Delta^j) \leq \epsilon \),
- \(m^j = \#(\Delta^j, f) = \#(3\Delta^j, f) \) for all \(1 \leq j \leq \ell \), and
- \(Z(B, f) \subseteq \bigcup_{j=1}^{\ell} Z(\Delta^j, f) \subseteq Z((1 + \delta)B, f) \) for a small \(\delta \)

Definition: a pair \((\Delta, m) \) is called natural cluster (relative to \(f \)) when it satisfies:

\[
m = \#(\Delta, f) = \#(3\Delta, f) \geq 1
\]

if \(r(\Delta) \leq \epsilon \), it is a natural \(\epsilon \)-cluster
Example

System: Let \(\sigma \geq 3 \) and \(f(z) = 0 \) be:

\[
\begin{align*}
(z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) &= 0 \\
(z_2 + 2^\sigma z_1^2)^2(z_2 - 1)z_2 &= 0
\end{align*}
\]

Solutions: \(f(z) = 0 \) has 6 solutions, all real:

\[
\begin{align*}
a_1 &= (2^{-\sigma}, 0) \quad \leftarrow \quad m(a_1, f) = 2 \\
a_2 &= (2^{-\sigma}, 1) \quad \leftarrow \quad m(a_2, f) = 2 \\
a_3 &= (-2^{-\sigma}, 1) \quad \leftarrow \quad m(a_3, f) = 1 \\
a_4 &= (-2^{-\sigma}, 0) \quad \leftarrow \quad m(a_4, f) = 1 \\
a_5 &= (-2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a_5, f) = 2 \\
a_6 &= (2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a_6, f) = 4
\end{align*}
\]

Natural clusters:

\((\Delta_1, 9)\)

\((\Delta_2, 3)\)

Notations: \(m(a, f) \): multiplicity of \(a \) as a sol. of \(f \)
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$
\begin{cases}
(z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) = 0 \\
(z_2 + 2^\sigma z_1^2)^2(z_2 - 1)z_2 = 0
\end{cases}
$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

- $a_1 = (2^{-\sigma}, 0) \quad \langle m(a_1, f) = 2$
- $a_2 = (2^{-\sigma}, 1) \quad \langle m(a_2, f) = 2$
- $a_3 = (-2^{-\sigma}, 1) \quad \langle m(a_3, f) = 1$
- $a_4 = (-2^{-\sigma}, 0) \quad \langle m(a_4, f) = 1$
- $a_5 = (-2^{-\sigma}, -2^{-\sigma}) \quad \langle m(a_5, f) = 2$
- $a_6 = (2^{-\sigma}, -2^{-\sigma}) \quad \langle m(a_6, f) = 4$

Natural clusters:

- $(\Delta^1, 9)$
- $(\Delta^2, 3)$

$(\Delta^3, 3)$, $(\Delta^4, 6)$ are not natural clusters
Why root clustering instead of root isolation?

Root isolation:
- input polynomials with \(\mathbb{Z} \) or \(\mathbb{Q} \) coefficients, or
- input polynomials squarefree

Root clustering:
- input polynomials with any \(\mathbb{C} \) coefficients
- robust to multiple roots
0 - Univariate case:

Complexity analysis of root clustering for a complex polynomial.

Near optimal: bit complexity $\tilde{O}(d^2(\sigma + d))$
for the benchmark problem

Efficient implementation *Ccluster* described in

Implementation of a near-optimal complex root clustering algorithm.

Notations: d, σ: degree, bit-size of f
Menu

0 - Univariate case:

1 - Multivariate triangular case

[IPY19] Rémi Imbach, Marc Pouget, and Chee Yap.
Clustering complex zeros of triangular systems of polynomials.

\[
\begin{align*}
 f_1(z_1) &= 0 \\
 f_2(z_1, z_2) &= 0 \\
 &\vdots \\
 f_n(z_1, z_2, \ldots, z_n) &= 0
\end{align*}
\]

, \deg_{z_i}(f_i) \geq 1

with: finite number of sols
Symbolic-Numeric solving of systems of polynomials:

\[
\begin{align*}
 p_1(z_1, z_2, \ldots, z_n) &= 0 \\
 p_2(z_1, z_2, \ldots, z_n) &= 0 \\
 \vdots \\
 p_n(z_1, z_2, \ldots, z_n) &= 0
\end{align*}
\]

rewriting step

\[
\begin{align*}
 f_1(z_1) &= 0 \\
 f_2(z_1, z_2) &= 0 \\
 \vdots \\
 f_n(z_1, z_2, \ldots, z_n) &= 0,
\end{align*}
\]

with: finite number of sols

\[
\text{deg}_{z_i}(f_i) \geq 1,
\]

with finite number of sols.
Symbolic-Numeric solving of systems of polynomials:

\[
\begin{align*}
 p_1(z_1, z_2, \ldots, z_n) &= 0 \\
 p_2(z_1, z_2, \ldots, z_n) &= 0 \\
 \vdots \\
 p_n(z_1, z_2, \ldots, z_n) &= 0
\end{align*}
\]

\[\downarrow\text{rewriting step}\]

\[
\begin{align*}
 f_1(z_1) &= 0 \\
 f_2(z_1, z_2) &= 0 \\
 \vdots \\
 f_n(z_1, z_2, \ldots, z_n) &= 0
\end{align*}
\]

, \deg_{z_i}(f_i) \geq 1, \quad \ldots \]

with: finite number of sols
Symbolic-Numeric solving of systems of polynomials:

<table>
<thead>
<tr>
<th>system</th>
<th>Isolate RC, Maple</th>
<th>solve.lib, Singular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>symbolic numeric \mathbb{R}</td>
<td>symbolic numeric \mathbb{C}</td>
</tr>
<tr>
<td>S_4</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>S_5</td>
<td>24.2</td>
<td>>1000</td>
</tr>
</tbody>
</table>

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
asked precision: 53 bits

\[S_4 \begin{cases}
 z_1^4 - 57 * z_1^2 * z_2 - 86 * z_1 * z_2^2 - 160 * z_2^3 + 95 * z_2^2 * z_3 + 35 * z_1^2 - 106 * z_3 = 0 \\
 z_2^4 - 64 * z_2^3 - 190 * z_1 * z_2 + 186 * z_1 * z_3 - 119 * z_2 * z_3 + 188 * z_3 + 93 = 0 \\
 z_3^4 + 116 * z_1 * z_2^2 - 168 * z_1 * z_2 * z_3 + 135 * z_1 * z_3^2 + 29 * z_3^3 - 8 * z_1 * z_3 + 119 * z_2 * z_3 = 0
\end{cases} \]
Symbolic-Numeric solving of systems of polynomials:

<table>
<thead>
<tr>
<th>system</th>
<th>Isolate RC, Maple</th>
<th>solve.lib, Singular</th>
<th>Tcluster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>symbolic numeric (\mathbb{R})</td>
<td>symbolic numeric (\mathbb{C})</td>
<td>numeric (\mathbb{C})</td>
</tr>
<tr>
<td>(S_4)</td>
<td>3.8</td>
<td>3.7</td>
<td>0.6</td>
</tr>
<tr>
<td>(S_5)</td>
<td>24.2</td>
<td>>1000</td>
<td>42.9</td>
</tr>
</tbody>
</table>

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
asked precision: 53 bits

\[
\begin{align*}
S_4 \quad & \left\{ \begin{array}{l}
z_1^4 - 57 \cdot z_1^2 \cdot z_2 - 86 \cdot z_1 \cdot z_2^2 - 160 \cdot z_2^3 + 95 \cdot z_2^2 \cdot z_3 + 35 \cdot z_1^2 - 106 \cdot z_3 = 0 \\
z_2^4 - 64 \cdot z_2^3 - 190 \cdot z_1 \cdot z_2 + 186 \cdot z_1 \cdot z_3 - 119 \cdot z_2 \cdot z_3 + 188 \cdot z_3 + 93 = 0 \\
z_3^4 + 116 \cdot z_1 \cdot z_2^2 - 168 \cdot z_1 \cdot z_2 \cdot z_3 + 135 \cdot z_1 \cdot z_3^2 + 29 \cdot z_3^3 - 8 \cdot z_1 \cdot z_3 + 119 \cdot z_2 \cdot z_3 = 0
\end{array} \right.
\]
Menu

0 - Univariate case:

1 - Multivariate triangular case

2 - Back to univariate case

- polynomials with real coefficients
- new counting test

New practical advances in polynomial root clustering.
In *MACIS 19*, 2019.
Menu

0 - Univariate case:

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for α: function $O_\alpha : \mathbb{Z} \to \square \mathbb{C}$

such that $\alpha \in O_\alpha (L)$ and $w(O_\alpha (L)) \leq 2^{-L}$

Notations: $\square \mathbb{C}$: set of complex interval
Oracle numbers and polynomials

Let \(\alpha \in \mathbb{C} \).

Oracle for \(\alpha \): function \(O_\alpha : \mathbb{Z} \to \Box \mathbb{C} \)

\[\text{s.t. } \alpha \in O_\alpha(L) \text{ and } w(O_\alpha(L)) \leq 2^{-L} \]

Let \(f \in \mathbb{C}[z_1, \ldots, z_n] \)

Oracle for \(f \): function \(O_f : \mathbb{Z} \to \Box \mathbb{C}[z_1, \ldots, z_n] \)

\[\text{s.t. } f \in O_f(L) \text{ and } w(O_f(L)) \leq 2^{-L} \]

\(\simeq \text{ oracles for the coeffs of } f \)

Notations:
- \(\Box \mathbb{C} \): set of complex interval
- \(\Box \mathbb{C}[z_1, \ldots, z_n] \): polynomials with coefficients in \(\Box \mathbb{C} \)
Outline of [BSS+16]

Counting test: \(T^* : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \ldots, d\} \)
\[T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m \]

Discarding test: \(T^0 : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\} \)
\[T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0 \]

Subdivision approach:

Notations: \(\#(S, f) : \text{sum of multiplicities of roots of } f \text{ in } S \)
\(d: \text{degree of } f \)
Outline of [BSS+16]

Counting test: \(T^* : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \ldots, d\} \)
\(T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m \)

Discarding test: \(T^0 : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\} \)
\(T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0 \)

Subdivision approach:

Notations: \(\#(S, f) : \) sum of multiplicities of roots of \(f \) in \(S \)
\(d : \) degree of \(f \)
Outline of [BSS+16]

Counting test: \(T^* : (\Delta, O_f) \mapsto m \in \{-1, 0, \ldots, d\} \)
\[T^*(\Delta, O_f) \geq 0 \Rightarrow #(\Delta, f) = m \]

Discarding test: \(T^0 : (\Delta, O_f) \mapsto m \in \{-1, 0\} \)
\[T^0(\Delta, O_f) = 0 \Rightarrow #(\Delta, f) = 0 \]

Subdivision approach:

Notations: \(#(S, f) : \) sum of multiplicities of roots of \(f \) in \(S \)
\(d: \) degree of \(f \)
Outline of [BSS$^+$16]

Counting test: $T^* : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \ldots, d\}$

$T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test: $T^0 : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$

$T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Notations: $\#(S, f)$: sum of multiplicities of roots of f in S

d: degree of f
Outline of [BSS+16]

Counting test: \(T^* : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \ldots, d\} \)
\(T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m \)

Discarding test: \(T^0 : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\} \)
\(T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0 \)

Subdivision approach:

Notations: \(\#(S, f) : \text{sum of multiplicities of roots of } f \text{ in } S \)
\(d : \text{degree of } f \)
Outline of \([BSS^{+}16]\)

Counting test: \(T^* : (\Delta, O_f) \mapsto m \in \{-1, 0, \ldots, d\}\)
\[T^*(\Delta, O_f) \geq 0 \Rightarrow \#(\Delta, f) = m\]

Discarding test: \(T^0 : (\Delta, O_f) \mapsto m \in \{-1, 0\}\)
\[T^0(\Delta, O_f) = 0 \Rightarrow \#(\Delta, f) = 0\]

Subdivision approach:

Notations: \(\#(S, f)\) : sum of multiplicities of roots of \(f\) in \(S\)
d: degree of \(f\)
Outline of [BSS+16]

Counting test: \(T^* : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \ldots, d\} \)
\(T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m \)

Discarding test: \(T^0 : (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\} \)
\(T^0(\Delta, \mathcal{O}_f) = 0 \iff T^*(\Delta, \mathcal{O}_f) = 0 \)

Subdivision approach:

Notations: \(\#(S, f) \) : sum of multiplicities of roots of \(f \) in \(S \)
\(d \) : degree of \(f \)
The Pellet’s test

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_\Delta = f(c + rz)$.

If $\exists \ 0 \leq m \leq d$ s.t.

$$|(f_\Delta)_m| > \sum_{i \neq k} |(f_\Delta)_i|$$ (1)

then f has exactly m roots in Δ.

Notations: $(f)_m$: coeff. of the monomial of degree m of f
The Pellet’s test

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_\Delta = f(c + rz)$.

If $\exists \ 0 \leq m \leq d$ s.t.
\[
| (f_\Delta)_m | > \sum_{i \neq k} | (f_\Delta)_i |
\]

then f has exactly m roots in Δ.

If f has no root in this annulus \rightarrow
$\exists m$ s.t. eq. (1) holds.

Notations: $(f)_m$: coeff. of the monomial of degree m of f
The Pellet’s test

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \text{deg}(f)$ and $f_\Delta = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$ |(f_\Delta)_m| > \sum_{i \neq k} |(f_\Delta)_i| $$

then f has exactly m roots in Δ.

With Dandelin-Gräffe’s iterations:
If f has no root in this annulus \rightarrow
$\exists m$ s.t. eq. (1) holds.

Notations: $(f)_m$: coeff. of the monomial of degree m of f
The Pellet’s test

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists \ 0 \leq m \leq d \ s.t.
\begin{equation}
|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i|
\end{equation}

then f has exactly m roots in Δ.

PelletTest(Δ, f) //Output in \{-1, 0, 1, \ldots, d\}

1. compute f_{Δ}
2. for m from 0 to d do
3. \hspace{1em} if $|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i|$
4. \hspace{1em} return m //m roots (with mult.) in Δ
5. return -1 //Roots near the boundary of Δ
The soft Pellet’s test: for interval polynomials

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_\Delta = f(c + rz)$.

If $\exists \ 0 \leq m \leq d$ s.t.
\[
|f_\Delta|^m > \sum_{i \neq k} |f_\Delta|^i
\]

then f has exactly m roots in Δ.

\[
\text{(2)}
\]
The soft Pellet’s test: for interval polynomials

Pellet’s Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \text{deg}(f)$ and $f_\Delta = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(f_\Delta)_m| > \sum_{i \neq k} |(f_\Delta)_i|$$ \hspace{1cm} (2)

then f has exactly m roots in Δ.

SoftCompare($\Box a$, $\Box b$) // $\Box a$, $\Box b$ are real intervals

Input: $\Box a$, $\Box b$ real intervals

Output: a number in $\{-2, -1, 1\}$ s.t.:

1. $1 \Rightarrow \Box a > \Box b$
2. $-1 \Rightarrow \Box a < \Box b$ or $\Box a$, $\Box b$ are too close
3. $-2 \Rightarrow \Box a \cap \Box b \neq \emptyset$
The soft Pellet’s test: for interval polynomials

SoftPelletTest(\(\Delta, \square f\))
// Output in \(\{-2, -1, 0, 1, \ldots, d\}\)

1. compute \(\square f_\Delta\)
2. for \(m\) from 0 to \(\text{deg}\) do
3. \(R \leftarrow \text{SoftCompare}(|(\square f_\Delta)_m|, \sum_{i \neq k} |(\square f_\Delta)_i|)\)
4. if \(R \geq 0\) then return \(m\) // any \(f \in \square f\) has \(m\) roots
 // (with mult.) in \(\Delta\)
5. if \(R = -2\) then return \(-2\) // \(\square f\) is too wide
6. return \(-1\) // Roots near the boundary of \(\Delta\)

SoftCompare(\(\square a, \square b\)) // \(\square a, \square b\) are real intervals

Input: \(\square a, \square b\) real intervals

Output: a number in \(\{-2, -1, 1\}\) s.t.:
1 \(\Rightarrow \square a > \square b\)

\(-1 \Rightarrow \square a < \square b\) or \(\square a, \square b\) are too close

\(-2 \Rightarrow \square a \cap \square b \neq \emptyset\)
The soft Pellet’s test: for oracle polynomials

\begin{align*}
\text{SoftPelletTest}(\Delta, \mathcal{F}) & \quad \text{//Output in \{-2, -1, 0, 1, \ldots, d\}} \\
1. & \text{compute } \mathcal{F}\Delta \\
2. & \text{for } m \text{ from } 0 \text{ to } \deg \text{ do} \\
3. & \quad R \leftarrow \text{SoftCompare}(|(\mathcal{F}\Delta)_m|, \sum_{i \neq k} |(\mathcal{F}\Delta)_i|) \\
4. & \quad \text{if } R \geq 0 \text{ then return } m \quad \text{//any } f \in \mathcal{F} \text{ has } m \text{ roots} \\
5. & \quad \text{if } R = -2 \text{ then return } -2 \quad \text{// } \mathcal{F} \text{ is too wide} \\
6. & \quad \text{return } -1 \quad \text{//Roots near the boundary of } \Delta \\
\end{align*}

Loop on precision:
The soft Pellet’s test: for oracle polynomials

SoftPelletTest(Δ, □f)

1. compute □fΔ
2. for m from 0 to deg do
3. \(R \leftarrow \text{SoftCompare}(|(□f_\Delta)_m|, \sum_{i \neq k} |(□f_\Delta)_i|) \)
4. if \(R \geq 0 \) then return \(m \)
 \(\quad \text{//any } f \in □f \text{ has } m \text{ roots} \)
 \(\quad \text{// (with mult.) in } \Delta \)
5. if \(R = -2 \) then return \(-2\)
 \(\quad \text{//□f is too wide} \)
6. return \(-1\)
 \(\quad \text{//Roots near the boundary of } \Delta \)

Loop on precision:

T*(Δ, O_f)

1. \(L \leftarrow 53, □f \leftarrow O_f(L), m \leftarrow \text{SoftPelletTest}(\Delta, □f) \)
2. while \(m = -2 \) do
3. \(L \leftarrow 2L, □f \leftarrow O_f(L), m \leftarrow \text{SoftPelletTest}(\Delta, □f) \)
4. return \(m \)
Univariate root clustering algorithms

ClusterOracle: solves the LCP in 1D ([BSS+16])

\(T^* \) embedded in a subdivision framework
accepts oracle polynomials in input

Complexity analysis of root clustering for a complex polynomial.
Univariate root clustering algorithms

ClusterOracle: solves the LCP in 1D ([BSS+16])
- T^* embedded in a subdivision framework
- accepts oracle polynomials in input

ClusterInterval: solves the LCP in 1D
- Input: interval polynomial
- Output: a flag in $\{\text{success, fail}\}$, a list of natural clusters
 - SoftPelletTest embedded in a subdivision framework
 - returns fail when SoftPelletTest returns -2

Complexity analysis of root clustering for a complex polynomial.

Menu

0 - Univariate case:

1 - Multivariate triangular case

Rational, bivariate

\[
\begin{align*}
\left\{ \begin{array}{l}
f_1(z_1) = 0 \\
f_2(z_1, z_2) = 0
\end{array} \right. , \text{deg}_z(f_i) \geq 1, f_i \in \mathbb{Q}[z_1, z_2]
\]

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for α: function $O_\alpha : \mathbb{Z} \rightarrow \square \mathbb{C}$

s.t. $\alpha \in O_\alpha(L)$ and $w(O_\alpha(L)) \leq 2^{-L}$

Let $f \in \mathbb{C}[z_1, \ldots, z_n]$

Oracle for f: function $O_f : \mathbb{Z} \rightarrow \square \mathbb{C}[z_1, \ldots, z_n]$

s.t. $f \in O_f(L)$ and $w(O_f(L)) \leq 2^{-L}$

\simeq oracles for the coeffs of f

Let $f_2 \in \mathbb{Q}[z_1, z_2]$ and $\alpha_1 \in \mathbb{C}$

Partial specialization of f_2: $f_2(\alpha_1) \in \mathbb{C}[z_2]$

Notations:

- $\square \mathbb{C}$: set of complex interval
- $\square \mathbb{C}[z_1, \ldots, z_n]$: polynomials with coefficients in $\square \mathbb{C}$
Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for α: function $O_{\alpha} : \mathbb{Z} \rightarrow \mathcal{L} \mathbb{C}$

such that $\alpha \in O_{\alpha}(L)$ and $w(O_{\alpha}(L)) \leq 2^{-L}$

Let $f \in \mathbb{C}[z_1, \ldots, z_n]$

Oracle for f: function $O_{f} : \mathbb{Z} \rightarrow \mathcal{L} \mathbb{C}[z_1, \ldots, z_n]$

such that $f \in O_{f}(L)$ and $w(O_{f}(L)) \leq 2^{-L}$

\simeq oracles for the coeffs of f

Let $f_2 \in \mathbb{Q}[z_1, z_2]$ and $\bar{\alpha}_1 \in \mathcal{L} \mathbb{C}$

Partial specialization of f_2: $f_2(\bar{\alpha}_1) \in \mathcal{L} \mathbb{C}[z_2]$

Notations:

- $\mathcal{L} \mathbb{C}$: set of complex interval
- $\mathcal{L} \mathbb{C}[z_1, \ldots, z_n]$: polynomials with coefficients in $\mathcal{L} \mathbb{C}$
Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

(i) f_1 has m_1 roots in Δ_1 with multiplicity

(ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.
Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

(i) f_1 has m_1 roots in Δ_1 with multiplicity

(ii) $\forall \alpha_1 \in Z(\Delta_1, f_1), f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proof: direct consequence of

Theorem [ZFX11]: Let $\alpha \in Z(\mathbb{C}^2, f), \alpha = (\alpha_1, \alpha_2)$. Then

$$m(\alpha, f) = m(\alpha_2, f_2(\alpha_1)) \times m(\alpha_1, f_1)$$

[ZFX11] Zhihai Zhang, Tian Fang, and Bican Xia.

Real solution isolation with multiplicity of zero-dimensional triangular systems.

Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$\begin{cases}
(z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) = 0 \\
(z_2 + 2^{\sigma} z_1^2)^2(z_2 - 1)z_2 = 0
\end{cases}$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

\[a^1 = (2^{-\sigma}, 0) \quad \leftarrow \quad m(a^1, f) = \frac{2}{1 \times 2}\]
\[a^2 = (2^{-\sigma}, 1) \quad \leftarrow \quad m(a^2, f) = \frac{2}{1 \times 2}\]
\[a^3 = (-2^{-\sigma}, 1) \quad \leftarrow \quad m(a^3, f) = \frac{1}{1 \times 1}\]
\[a^4 = (-2^{-\sigma}, 0) \quad \leftarrow \quad m(a^4, f) = \frac{1}{1 \times 1}\]
\[a^5 = (-2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a^5, f) = \frac{2}{2 \times 1}\]
\[a^6 = (2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a^6, f) = \frac{4}{2 \times 2}\]

Natural clusters:

$(\Delta^1, 9)$
$(\Delta^2, 3)$

Notations: $m(a, f)$: multiplicity of a as a sol. of f
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^\sigma z_1^2)^2(z_2 - 1)z_2 = 0 \end{cases}$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

- $a_1 = (2^{-\sigma}, 0) \leftarrow m(a_1, f) = 2 = 1 \times 2$
- $a_2 = (2^{-\sigma}, 1) \leftarrow m(a_2, f) = 2 = 1 \times 2$
- $a_3 = (-2^{-\sigma}, 1) \leftarrow m(a_3, f) = 1 = 1 \times 1$
- $a_4 = (-2^{-\sigma}, 0) \leftarrow m(a_4, f) = 1 = 1 \times 1$
- $a_5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a_5, f) = 2 = 2 \times 1$
- $a_6 = (2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a_6, f) = 4 = 2 \times 2$

Natural clusters:

- $(\Delta^1, 9) \leftarrow 9 = 3 \times 3$
- $(\Delta^2, 3) \leftarrow 3 = 1 \times 3$

Notations: $m(a, f)$: multiplicity of a as a sol. of f
Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

(i) f_1 has m_1 roots in Δ_1 with multiplicity

(ii) $\forall \alpha_1 \in Z(\Delta_1, f_1), f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

(i) (Δ_1, m_1) is a natural cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1, (\Delta_2, m_2)$ is a natural cluster relative to $f_2(\alpha_1)$
Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

(i) f_1 has m_1 roots in Δ_1 with multiplicity

(ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural ϵ-tower (relative to f) if

(i) (Δ_1, m_1) is a natural cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower,

$f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.
Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

(i) f_1 has m_1 roots in Δ_1 with multiplicity

(ii) $\forall \alpha_1 \in Z(\Delta_1, f_1), f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural ϵ-tower (relative to f) if

(i) (Δ_1, m_1) is a natural ϵ-cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1, (\Delta_2, m_2)$ is a natural ϵ-cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower,$f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.
Example

System: Let $\sigma \geq 3$ and $f(z) = 0$ be:

$$\begin{align*}
(z_1 - 2^{-\sigma})^2(z_1 + 2^{-\sigma}) &= 0 \\
(z_2 + 2^\sigma z_1^2)^2(z_2 - 1)z_2 &= 0
\end{align*}$$

Solutions: $f(z) = 0$ has 6 solutions, all real:

- $a_1 = (2^{-\sigma}, 0) \quad \leftarrow \quad m(a_1, f) = 2 = 1 \times 2$
- $a_2 = (2^{-\sigma}, 1) \quad \leftarrow \quad m(a_2, f) = 2 = 1 \times 2$
- $a_3 = (-2^{-\sigma}, 1) \quad \leftarrow \quad m(a_3, f) = 1 = 1 \times 1$
- $a_4 = (-2^{-\sigma}, 0) \quad \leftarrow \quad m(a_4, f) = 1 = 1 \times 1$
- $a_5 = (-2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a_5, f) = 2 = 2 \times 1$
- $a_6 = (2^{-\sigma}, -2^{-\sigma}) \quad \leftarrow \quad m(a_6, f) = 4 = 2 \times 2$

Natural clusters:

- $(\Delta_1, 9) \quad \leftarrow \quad 9 = 3 \times 3$
- $(\Delta_2, 3) \quad \leftarrow \quad 3 = 1 \times 3$

Natural towers:

- $(\Delta_1, (3, 3))$
- $(\Delta_2, (1, 3))$
Pellet’s test and natural towers

Definition: A pair \((\Delta, m)\) is a natural tower (relative to \(f\)) if

(i) \((\Delta_1, m_1)\) is a natural cluster relative to \(f_1\)

(ii) \(\forall \alpha_1 \in \Delta_1, (\Delta_2, m_2)\) is a natural cluster relative to \(f_2(\alpha_1)\)

\(f(z) = 0\) has \(m_2 \times m_1\) solutions in \(\Delta\) with multiplicity.
Pellet’s test and natural towers

Definition: A pair \((\Delta, m)\) is a natural tower (relative to \(f\)) if

(i) \((\Delta_1, m_1)\) is a natural cluster relative to \(f_1\)
(ii) \(\forall \alpha_1 \in \Delta_1, (\Delta_2, m_2)\) is a natural cluster relative to \(f_2(\alpha_1)\)

\(f(z) = 0\) has \(m_2 \times m_1\) solutions in \(\Delta\) with multiplicity.

Proposition 3: Suppose

(i) \(\text{SoftPelletTest}(\Delta_1, f_1)\) returns \(m_1 \geq 1\)
(ii) \(\text{SoftPelletTest}(\Delta_2, f_2(\Delta_1))\) returns \(m_2 \geq 1\)

Then \((\Delta, m)\) is a natural tower relative to \(f\).
Pellet’s test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

(i) (Δ_1, m_1) is a natural cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

$f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

(i) $\text{SoftPelletTest}(\Delta_1, f_1)$ returns $m_1 \geq 1$

(ii) $\text{SoftPelletTest}(\Delta_2, f_2(\mathcal{G} \Delta_1))$ returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.
Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

(i) (Δ_1, m_1) is a natural cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1, (\Delta_2, m_2)$ is a natural cluster relative to $f_2(\alpha_1)$

$f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

(i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$

(ii) SoftPelletTest$(\Delta_2, f_2(\Delta_1))$ returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.
Pellet’s test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

(i) (Δ_1, m_1) is a natural cluster relative to f_1

(ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

$f(z) = 0$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

(i) $\text{SoftPelletTest}(\Delta_1, f_1)$ returns $m_1 \geq 1$

(ii) $\text{SoftPelletTest}(\Delta_2, f_2(\Box \Delta_1))$ returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.
Main data structure

A tower is a triple $T = \langle \ell, B, L \rangle$ where

- ℓ is an integer in $\{0, 1, 2\}$ called level
- $B = (B_1, B_2)$ is a polybox called domain
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called precision
Main data structure

A tower is a triple $\mathcal{T} = \langle \ell, B, L \rangle$ where

- ℓ is an integer in $\{0, 1, 2\}$ called **level**
- $B = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

We will guarantee that if $\ell = 1$, $\exists m_1$ so that:

1. $\text{SoftPelletTest}(\Delta(B_1), f_1)$ returns m_1 and $r(\Delta(B_1)) < 2^{-L_1}$
Main data structure

A **tower** is a triple $\mathcal{T} = \langle \ell, B, L \rangle$ where

- ℓ is an integer in $\{0, 1, 2\}$ called **level**
- $B = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in \mathbb{Z}^2 called **precision**

We will guarantee that if $\ell = 2$, $\exists (m_1, m_2)$ so that:

(i) $\text{SoftPelletTest}(\Delta(B_1), f_1)$ returns m_1 and $r(\Delta(B_1)) < 2^{-L_1}$

(ii) $\text{SoftPelletTest}(\Delta(B_2), f_2(\Delta(B_1)))$ returns m_2 and $r(\Delta(B_2)) < 2^{-L_2}$

From proposition 3: $(\Delta(B), m)$ is a natural tower (relative to f) and $f(z) = 0$ has $m_2 \times m_1$ sols in $\Delta(B)$ with mult.
Lift of a tower from level 0 to level 1

Cluster1(\(f, \mathcal{T} \)) //for \(f \) with exact coefficients

Input: \(f = (f_1, f_2) \), \(\mathcal{T} = \langle \ell, B, L \rangle \) a tower at any level

Output: a list of towers at level 1

1. calls ClusterOracle ([BSS+16]) for \(f_1, B_1, 2^{-L_1} \)
Lift of a tower from level 1 to level 2

\[\Delta(B_1) \rightarrow \ldots \]

\[\Delta(B_2) \]

Cluster2(f, \mathcal{T}) // for \(f \) with exact coefficients

Input: \(f = (f_1, f_2), \mathcal{T} = \langle \ell, B, L \rangle \) a tower at level 1

Output: a flag in \{success, fail\} and a list of towers at level 2

1. calls ClusterInterval for \(f_2(\Delta(B_1)), B_2, 2^{-L_2} \)
 - **fail** if SoftPelletTest returns -2 (i.e. not enough prec. on \(\Delta(B_1) \))
Main algorithm

<table>
<thead>
<tr>
<th>ClusterTri(f, B, L)</th>
<th>//for f with exact coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a triangular system $f(z) = 0$, a polybox B, $L > 0$</td>
<td>Output: a set of natural 2^{-L}-towers solving the LCP</td>
</tr>
<tr>
<td>1. Q.push($\langle 0, B, (L, L) \rangle$)</td>
<td></td>
</tr>
<tr>
<td>2. while Q contains towers of level < 2 do</td>
<td></td>
</tr>
<tr>
<td>3. $T = \langle \ell, B, (L_1, L_2) \rangle \leftarrow Q$.pop() with $\ell < 2$</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
</tr>
<tr>
<td>12. return Q</td>
<td></td>
</tr>
</tbody>
</table>
Main algorithm

ClusterTri(f, B, L) // for f with exact coefficients

Input: a triangular system $f(z) = 0$, a polybox B, $L > 0$
Output: a set of natural 2^{-L}-towers solving the LCP

1. $Q.push(\langle 0, B, (L, L) \rangle)$
2. while Q contains towers of level < 2 do
3. \hspace{1em} $T = \langle \ell, B, (L_1, L_2) \rangle \leftarrow Q.pop()$ with $\ell < 2$
4. \hspace{1em} if $\ell = 0$ then
5. \hspace{2em} $Q.push(Cluster1(f, T))$
6. \hspace{1em} else
7. \hspace{1em} else
8. \hspace{1em} else
9. \hspace{1em} else
10. \hspace{1em} else
11. \hspace{1em} else
12. return Q
Main algorithm

ClusterTri(f, B, L) //for f with exact coefficients

Input: a triangular system $f(z) = 0$, a polybox B, $L > 0$
Output: a set of natural 2^{-L}-towers solving the LCP

1. $Q.push(\langle 0, B, (L, L) \rangle)$
2. while Q contains towers of level < 2 do
3. \hspace{1em} $T = \langle \ell, B, (L_1, L_2) \rangle \leftarrow Q.pop()$ with $\ell < 2$
4. \hspace{1em} if $\ell = 0$ then
5. \hspace{2em} $Q.push(Cluster1(\ f, T))$
6. \hspace{1em} else
7. \hspace{2em} flag, $S \leftarrow Cluster2(\ f, T)$
8. \hspace{1em} if flag = success then
9. \hspace{2em} \hspace{1em} $Q.push(S)$
10. \hspace{1em} else \hspace{1em} // not enough precision on B_1
11. \hspace{2em} $Q.push(\langle 0, B, (2L_1, L_2) \rangle)$
12. return Q
Our implementation

Ccluster: library in C based on

- FLINT\(^1\): arithmetic for the geometric algorithm
- Arb\(^2\): arbitrary precision floating arithmetic with error bounds

Available at https://github.com/rimbach/Ccluster

Ccluster.jl: package for Julia\(^3\) based on \(\mathbb{N}e^mO^4\)

- interface for Ccluster
- Tcluster: implementation of ClusterTri

Available at https://github.com/rimbach/Ccluster.jl

\(^1\)https://github.com/wbhart/flint2
\(^2\)http://arblib.org/
\(^3\)https://julialang.org/
\(^4\)http://nemocas.org/
Benchmark: systems

Type of a triangular system:

\[f(z) = 0 \] has type \((d_1, \ldots, d_n)\) if \(f_i\) has degree \(d_i\) in \(z_i\), \(\forall 1 \leq i \leq n\).

Table: for each type, average on 5 random dense systems

Seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

<table>
<thead>
<tr>
<th>Type</th>
<th>#Clus</th>
<th>#Sols</th>
<th>$t(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems with only simple solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9,9,9)</td>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>(9,9,9,9)</td>
<td></td>
<td></td>
<td>0.37</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>(9,9,9,9,9)</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>(2,2,2,2,2,2,2,2,2,2,2)</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems with multiple solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9,9)</td>
</tr>
<tr>
<td>(6,6,6)</td>
</tr>
<tr>
<td>(9,9,9)</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
</tr>
<tr>
<td>(9,9,9,9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>#Clus</th>
<th>#Sols</th>
<th>$t(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,2,2,2,2,2,2,2,2,2,2,2)</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>

Tcluster local:

\[B = ([-1, 1] + i[-1, 1])^2, \epsilon = 2^{-53} \]

Tcluster global:

chosen with upper bound for roots

HomCont.jl:

HomotopyContinuation.jl

triang solve:

Singular solver for triangular systems
Benchmark: local vs global comparison

Type of a triangular system:
\(f(z) = 0 \) has type \((d_1, \ldots, d_n)\) if \(f_i \) has degree \(d_i \) in \(z_i \), \(\forall 1 \leq i \leq n \)

Table: for each type, average on 5 random dense systems
seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

<table>
<thead>
<tr>
<th>type</th>
<th>Tcluster local</th>
<th>Tcluster global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(#Clus, #Sols)</td>
<td>t(s)</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(149 : 149)</td>
<td>0.24</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(63.4 : 63.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>(9,9,9,9)</td>
<td>(559 : 559)</td>
<td>1.06</td>
</tr>
<tr>
<td>(6,6,6,6,6)</td>
<td>(155 : 155)</td>
<td>0.37</td>
</tr>
<tr>
<td>(9,9,9,9,9,9)</td>
<td>(1739 : 1739)</td>
<td>4.83</td>
</tr>
<tr>
<td>(2,2,2,2,2,2,2,2,2)</td>
<td>(0 : 0)</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Systems with multiple solutions

<table>
<thead>
<tr>
<th></th>
<th>Tcluster local</th>
<th>Tcluster global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(#Clus, #Sols)</td>
<td>t(s)</td>
</tr>
<tr>
<td>(9,9)</td>
<td>(23.8 : 13.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>(6,6,6)</td>
<td>(35.2 : 8.80)</td>
<td>0.05</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(113 : 37.6)</td>
<td>0.22</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(81.6 : 10.2)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

\(\text{Tcluster local} : B = ([−1, 1] + \nu[−1, 1])^2, \epsilon = 2^{-53} \)

\(\text{Tcluster global} : B \) chosen with upper bound for roots
Benchmark: extern comparison

Type of a triangular system:
\(f(z) = 0 \) has type \((d_1, \ldots, d_n)\) if \(f_i \) has degree \(d_i \) in \(z_i \), \(\forall 1 \leq i \leq n \)

Table: for each type, average on 5 random dense systems
seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

<table>
<thead>
<tr>
<th>Type</th>
<th>Tcluster local</th>
<th>Tcluster global</th>
<th>HomCont.jl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(#Clus, #Sols)</td>
<td>(#Clus, #Sols)</td>
<td>#Sols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t (s)</td>
</tr>
<tr>
<td>Systems with only simple solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9,9)</td>
<td>(149 : 149)</td>
<td>(729 : 729)</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>729</td>
<td>4.21</td>
</tr>
<tr>
<td>(6,6,6)</td>
<td>(63.4 : 63.4)</td>
<td>(1296 : 1296)</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>1296</td>
<td>4.70</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(559 : 559)</td>
<td>(6561 : 6561)</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>6561</td>
<td>14.0</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(155 : 155)</td>
<td>(7776 : 7776)</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>7776</td>
<td>11.5</td>
</tr>
<tr>
<td>(9,9,9,9,9)</td>
<td>(1739 : 1739)</td>
<td>(59049 : 59049)</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>4.83</td>
<td>59049</td>
<td>116</td>
</tr>
<tr>
<td>(2,2,2,2,2,2,2,2)</td>
<td>(0 : 0)</td>
<td>(1024 : 1024)</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>1024</td>
<td>4.84</td>
</tr>
<tr>
<td>Systems with multiple solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9,9)</td>
<td>(23.8 : 13.6)</td>
<td>(81 : 45)</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>33.6</td>
<td>3.27</td>
</tr>
<tr>
<td>(6,6,6)</td>
<td>(35.2 : 8.80)</td>
<td>(216 : 54)</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>53.2</td>
<td>2.75</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(113 : 37.6)</td>
<td>(729 : 225)</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>159</td>
<td>28.4</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(81.6 : 10.2)</td>
<td>(1296 : 162)</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>134</td>
<td>8.06</td>
</tr>
</tbody>
</table>

Tcluster local: \(B = ([-1, 1] + \iota[-1, 1])^2, \, \epsilon = 2^{-53} \)

Tcluster global: \(B \) chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl
Benchmark:

Type of a triangular system:

\(f(z) = 0 \) has type \((d_1, \ldots, d_n) \) if \(f_i \) has degree \(d_i \) in \(z_i \), \(\forall 1 \leq i \leq n \)

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

| Type | Tcluster local | | Tcluster global | | HomCont.jl | |
|------|----------------|---|----------------|---|-------------|
| | (#Clus, #Sols) | t (s) | (#Clus, #Sols) | t (s) | #Sols | t (s) |
| Systems with only simple solutions | | | | | |
| (9,9,9) | (149 : 149) | 0.24 | (729 : 729) | 1.21 | 729 | 4.21 |
| (6,6,6,6) | (63.4 : 63.4) | 0.10 | (1296 : 1296) | 1.73 | 1296 | 4.70 |
| (9,9,9,9) | (559 : 559) | 1.06 | (6561 : 6561) | 12.9 | 6561 | 14.0 |
| (6,6,6,6,6) | (155 : 155) | 0.37 | (7776 : 7776) | 11.1 | 7776 | 11.5 |
| (9,9,9,9,9) | (1739 : 1739) | 4.83 | (59049 : 59049) | 113 | 59049 | 116 |
| (2,2,2,2,2,2,2,2,2,2) | (0 : 0) | 0.13 | (1024 : 1024) | 2.42 | 1024 | 4.84 |
| Systems with multiple solutions | | | | | |
| (9,9) | (23.8 : 13.6) | 0.03 | (81 : 45) | 0.15 | 33.6 | 3.27 |
| (6,6,6) | (35.2 : 8.80) | 0.05 | (216 : 54) | 0.24 | 53.2 | 2.75 |
| (9,9,9) | (113 : 37.6) | 0.22 | (729 : 225) | 1.06 | 159 | 28.4 |
| (6,6,6,6) | (81.6 : 10.2) | 0.21 | (1296 : 162) | 1.28 | 134 | 8.06 |

Tcluster **local** : \(B = (-1, 1] + \epsilon [-1, 1])^2 \), \(\epsilon = 2^{-53} \)

Tcluster **global** : \(B \) chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl
Benchmark:

Type of a triangular system:
\(f(z) = 0 \) has type \((d_1, \ldots, d_n)\) if \(f_i \) has degree \(d_i \) in \(z_i \), \(\forall 1 \leq i \leq n \)

Table: for each type, average on 5 random dense systems
seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

<table>
<thead>
<tr>
<th>type</th>
<th>Tcluster local</th>
<th>Tcluster global</th>
<th>HomCont.jl</th>
<th>triang_solve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(#Clus, #Sols)</td>
<td>(#Clus, #Sols)</td>
<td>#Sols</td>
<td>t (s)</td>
</tr>
<tr>
<td></td>
<td>t (s)</td>
<td>#Sols</td>
<td>t (s)</td>
<td>#Sols</td>
</tr>
<tr>
<td>Systems with only simple solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9,9)</td>
<td>(149 : 149)</td>
<td>0.24</td>
<td>(729 : 729)</td>
<td>1.21</td>
</tr>
<tr>
<td>(6,6,6)</td>
<td>(63.4 : 63.4)</td>
<td>0.10</td>
<td>(1296 : 1296)</td>
<td>1.73</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(559 : 559)</td>
<td>1.06</td>
<td>(6561 : 6561)</td>
<td>12.9</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(155 : 155)</td>
<td>0.37</td>
<td>(7776 : 7776)</td>
<td>11.1</td>
</tr>
<tr>
<td>(9,9,9,9,9)</td>
<td>(1739 : 1739)</td>
<td>4.83</td>
<td>(59049 : 59049)</td>
<td>113</td>
</tr>
<tr>
<td>(2,2,2,2,2,2,2,2,2,2)</td>
<td>(0 : 0)</td>
<td>0.13</td>
<td>(1024 : 1024)</td>
<td>2.42</td>
</tr>
<tr>
<td>Systems with multiple solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9,9)</td>
<td>(23.8: 13.6)</td>
<td>0.03</td>
<td>(81 : 45)</td>
<td>0.15</td>
</tr>
<tr>
<td>(6,6,6)</td>
<td>(35.2: 8.80)</td>
<td>0.05</td>
<td>(216 : 54)</td>
<td>0.24</td>
</tr>
<tr>
<td>(9,9,9)</td>
<td>(113 : 37.6)</td>
<td>0.22</td>
<td>(729 : 225)</td>
<td>1.06</td>
</tr>
<tr>
<td>(6,6,6,6)</td>
<td>(81.6: 10.2)</td>
<td>0.21</td>
<td>(1296: 162)</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Tcluster local : \(B = (-1, 1] + \iota[-1, 1]^2, \epsilon = 2^{-53} \)
Tcluster global: \(B \) chosen with upper bound for roots
HomCont.jl: HomotopyContinuation.jl
triang_solve: Singular solver for triangular systems
Menu

0 - Univariate case:

1 - Multivariate triangular case

2 - Back to univariate case

• polynomials with real coefficients
• new counting test

New practical advances in polynomial root clustering.
In MACIS 19, 2019.
Pols with real coefficients

Example:
\[\text{Mign}_d(z) = z^d - 2(2^{14}z - 1)^2 \]

\(d \) even \(\Rightarrow \) 4 real roots

\(d = 64 \)

Subdivision tree:
Pols with real coefficients (II)

Example:
\[\text{Bern}_d(z) = \sum_{k=0}^{d} \binom{d}{k} b_{d-k} z^k \]

\(b_i\)'s: Bernoulli numbers

d even \(\Rightarrow\) \(d/4\) real roots

\(d = 64\)

Subdivision tree:

2492 \(T^0\)-tests

1476 \(T^0\)-tests (ratio \(\approx 0.6\))
Results (I)

Ccluster: version of [IPY18]

- t_1: time; s_1: number of T^0-tests

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

- t_2: time; s_2: number of T^0-tests

<table>
<thead>
<tr>
<th></th>
<th>Ccluster (#Clus, #Sols)</th>
<th>s$_1$</th>
<th>t$_1$</th>
<th>s$_2$</th>
<th>t$_1$/t$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern$_{128}$</td>
<td>(128, 128)</td>
<td>4732</td>
<td>6.30</td>
<td>2712</td>
<td>1.72</td>
</tr>
<tr>
<td>Bern$_{191}$</td>
<td>(191, 191)</td>
<td>7220</td>
<td>20.2</td>
<td>4152</td>
<td>1.74</td>
</tr>
<tr>
<td>Bern$_{256}$</td>
<td>(256, 256)</td>
<td>9980</td>
<td>41.8</td>
<td>5698</td>
<td>1.67</td>
</tr>
<tr>
<td>Bern$_{383}$</td>
<td>(383, 383)</td>
<td>14504</td>
<td>120</td>
<td>8198</td>
<td>1.82</td>
</tr>
<tr>
<td>Mign$_{128}$</td>
<td>(127, 128)</td>
<td>4508</td>
<td>5.00</td>
<td>2292</td>
<td>1.92</td>
</tr>
<tr>
<td>Mign$_{191}$</td>
<td>(190, 191)</td>
<td>6260</td>
<td>15.5</td>
<td>3180</td>
<td>2.01</td>
</tr>
<tr>
<td>Mign$_{256}$</td>
<td>(255, 256)</td>
<td>8452</td>
<td>31.8</td>
<td>4304</td>
<td>2.04</td>
</tr>
<tr>
<td>Mign$_{383}$</td>
<td>(382, 383)</td>
<td>12564</td>
<td>79.7</td>
<td>6410</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux
Menu

0 - Univariate case:

1 - Multivariate triangular case

2 - Back to univariate case

- polynomials with real coefficients
- new counting test

New practical advances in polynomial root clustering.
In MACIS 19, 2019.
Approximating Power Sums

Let $\Delta = \Delta(0, 1), f$ has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d\Delta}$ in Δ with mults $m_1, \ldots, m_{d\Delta}$

Power Sums: let $h \in \mathbb{Z}$

$$s_h = m_1 \times \alpha_1^h + \ldots + m_{d\Delta} \times \alpha_{d\Delta}^h$$
Approximating Power Sums

Let $\Delta = \Delta(0, 1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_d$ in Δ with mults m_1, \ldots, m_d

Power Sums: let $h \in \mathbb{Z}$

$$s_h = m_1 \times \alpha_1^h + \ldots + m_d \times \alpha_d^h$$

Theorem [S82, P18]:

If no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho\}$

Use evaluations of f and f' at q points to approximate s_h within error $\simeq d\rho^{-q}$

Old and new nearly optimal polynomial root-finders.

[Sch82] Arnold Schönhage.

The fundamental theorem of algebra in terms of computational complexity.

Manuscript. Univ. of Tübingen, Germany, 1982.
Approximating 0-th Power Sum

Let $\Delta = \Delta(0, 1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d\Delta}$ in Δ with mults $m_1, \ldots, m_{d\Delta}$

Power Sums: let $h \in \mathbb{Z}$

$$s_0 = m_1 \times \alpha_1^0 + \ldots + m_{d\Delta} \times \alpha_{d\Delta}^0 = \#(\Delta, f)$$

Theorem [S82, P18]:
if no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho\}$
use evaluations of f and f' at q points to approximate s_h within error $\simeq d \rho^{-q}$

Old and new nearly optimal polynomial root-finders.

[Sch82] Arnold Schönhage.
The fundamental theorem of algebra in terms of computational complexity.

Manuscript. Univ. of Tübingen, Germany, 1982.
Approximating 0-th Power Sum

Let $\Delta = \Delta(0, 1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

0-th Power Sum:

$s_0 = \#(\Delta, f)$

Approximation formula: let $q \in \mathbb{N}_*$, $\omega = e^{\frac{2\pi i}{q}}$

$$s_0^* = \frac{1}{q} \sum_{g=0}^{q-1} \omega^g \frac{f'(\omega^g)}{f(\omega^g)}$$
Approximating 0-th Power Sum

Let $\Delta = \Delta(0, 1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d\Delta}$ in Δ with mults $m_1, \ldots, m_{d\Delta}$

0-th Power Sum:

$$s_0 = \#(\Delta, f)$$

Approximation formula: let $q \in \mathbb{N}_*$, $\omega = e^{\frac{2\pi i}{q}}$

$$s_0^* = \frac{1}{q} \sum_{g=0}^{q-1} \omega^g \frac{f'(\omega^g)}{f(\omega^g)}$$

Corollary of [S82, P18]: if no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho \}$, $\theta = 1/\rho$, then

(i) $|s_0^* - s_0| \leq \frac{d\theta^q}{1 - \theta^q}$.

(ii) Fix $\delta > 0$. If $q = \lceil \log_\theta \left(\frac{\delta}{d+\delta} \right) \rceil$ then $|s_0^* - s_0| \leq \delta$.
Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for α: function $O_\alpha : \mathbb{Z} \to \mathbb{C}$

$$s.t. \quad \alpha \in O_\alpha(L) \quad \text{and} \quad w(O_\alpha(L)) \leq 2^{-L}$$

Let $f \in \mathbb{C}[z]$

Evaluation oracle for f: function $I_f : \mathbb{Z} \times (\mathbb{Z} \to \mathbb{C}) \to \mathbb{C}$

$$s.t. \quad f(\alpha) \in I_f(L, O_\alpha) \quad \text{and} \quad w(I_f(L, O_\alpha)) \leq 2^{-L}$$

Notations: \mathbb{C}: set of complex interval
$\mathbb{Z} \to \mathbb{C}$: set of oracle numbers
The P^*-test

\[P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho) \quad //\text{Output in } \{0, 1, \ldots, d\} \]

Input: \(\mathcal{I}_f, \mathcal{I}_{f'} \) evaluation oracles for \(f \) and \(f' \), \(\Delta \) a disc \(\rho \)-isolated

Output: \#(\(\Delta, f \))

1. \(\delta \leftarrow 1/4, \theta \leftarrow 1/\rho \)
2. \(q \leftarrow \left\lceil \log_{\theta} \left(\frac{\delta}{d+\delta} \right) \right\rceil \)
3.
4.
5.
The P^*-test

$$P^* (I_f, I_{f'}, \Delta, \rho)$$ //Output in $\{0, 1, \ldots, d\}$

Input: $I_f, I_{f'}$ evaluation oracles for f and f', Δ a disc ρ-isolated

Output: $\#(\Delta, f)$

1. $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
2. $q \leftarrow \lceil \log_\theta (\delta/(d+\delta)) \rceil$
3. compute $\square s_0^*$ with $q, I_f, I_{f'}$ so that $w(\square s_0^*) < 1/2$
4.
5.

Example: f has degree 500, $\rho = 2$

Example: evaluate f and f' at $q = 11$ points

Example: then get $\#(\Delta, f)$ in $O(q)$ arithmetic operations

Efficiency: directly related to evaluation but requires ρ to be known and $\rho > 1$.
The P^*-test

\[P^*(I_f, I_{f'}, \Delta, \rho) \quad //\text{Output in } \{0, 1, \ldots, d\} \]

Input: \(I_f, I_{f'} \) evaluation oracles for \(f \) and \(f' \), \(\Delta \) a disc \(\rho \)-isolated

Output: \(\#(\Delta, f) \)

1. \(\delta \leftarrow 1/4, \theta \leftarrow 1/\rho \)
2. \(q \leftarrow \lceil \log_\theta(\frac{\delta}{d+\delta}) \rceil \)
3. compute \(\Box s_0^* \) with \(q, I_f, I_{f'} \) so that \(w(\Box s_0^*) < 1/2 \)
4. \(\Box s_0 \leftarrow \Box s_0^* + [-1/4, 1/4] + i[-1/4, 1/4] \quad // w(\Box s_0) < 1 \)
The P^*-test

\[P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho) \] //Output in \{0, 1, \ldots , d\}

Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f', Δ a disc ρ-isolated

Output: $\#(\Delta, f)$

1. $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
2. $q \leftarrow \lceil \log_\theta (\frac{\delta}{d+\delta}) \rceil$
3. compute $\mathcal{R}s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\mathcal{R}s_0^*) < 1/2$
4. $\mathcal{R}s_0 \leftarrow \mathcal{R}s_0^* + [-1/4, 1/4] + \iota[-1/4, 1/4]$ // $w(\mathcal{R}s_0) < 1$
5. return the unique integer in $\mathcal{R}s_0$

Example: f has degree 500, $\rho = 2$

- evaluate f and f' at $q = 11$ points
- then get $\#(\Delta, f)$ in $O(q)$ arithmetic operations
The \(P^* \)-test

\[
P^*(I_f, I_{f'}, \Delta, \rho) \\
\text{Input: } I_f, I_{f'} \text{ evaluation oracles for } f \text{ and } f', \Delta \text{ a disc } \rho\text{-isolated} \\
\text{Output: } #(\Delta, f)
\]

1. \(\delta \leftarrow 1/4, \theta \leftarrow 1/\rho \)
2. \(q \leftarrow \lceil \log_\theta(\frac{\delta}{d+\delta}) \rceil \)
3. compute \(\square s^*_0 \) with \(q, I_f, I_{f'} \) so that \(w(\square s^*_0) < 1/2 \)
4. \(\square s_0 \leftarrow \square s^*_0 + [-1/4, 1/4] + i[-1/4, 1/4] \) \(\text{// } w(\square s_0) < 1 \)
5. return the unique integer in \(\square s_0 \)

Example: \(f \) has degree 500, \(\rho = 2 \)

- evaluate \(f \) and \(f' \) at \(q = 11 \) points
- then get \(#(\Delta, f) \) in \(O(q) \) arithmetic operations

Efficiency: directly related to evaluation
The \(P^\ast \)-test

<table>
<thead>
<tr>
<th>(P^\ast)-tests</th>
<th>Discarding tests</th>
<th>(T^\ast)-tests</th>
<th>(P^\ast)-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb</td>
<td>(t_0)</td>
<td>(t_0 / t) (%)</td>
<td>(t'_0)</td>
</tr>
<tr>
<td>(Bern_{128})</td>
<td>4732</td>
<td>5.50</td>
<td>1.38</td>
</tr>
<tr>
<td>(Bern_{256})</td>
<td>9980</td>
<td>36.3</td>
<td>7.61</td>
</tr>
<tr>
<td>(Mign_{128})</td>
<td>4508</td>
<td>4.73</td>
<td>0.25</td>
</tr>
<tr>
<td>(Mign_{256})</td>
<td>8452</td>
<td>27.8</td>
<td>0.60</td>
</tr>
</tbody>
</table>

\(P^\ast \)-tests: \(P^\ast(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2) \)

nb: nb of discarding tests performed

\(t \): time in Ccluster

\(t_0 \): time in discarding \(T^\ast \)-tests

\(t'_0 \): time in \(P^\ast \)-tests

Example: \(f \) has degree 500, \(\rho = 2 \)

- evaluate \(f \) and \(f' \) at \(q = 11 \) points
- then get \(\#(\Delta, f) \) in \(O(q) \) arithmetic operations

Efficiency: directly related to evaluation
The P^*-test

\[P^*(I_f, I_{f'}, \Delta, \rho) \]

//Output in \{0, 1, \ldots, d\}

Input: \(I_f, I_{f'} \) evaluation oracles for \(f \) and \(f' \), \(\Delta \) a disc \(\rho \)-isolated

Output: \#(\(\Delta, f \))

1. \(\delta \leftarrow 1/4, \theta \leftarrow 1/\rho \)
2. \(q \leftarrow \lceil \log_\theta \left(\frac{\delta}{d+\delta} \right) \rceil \)
3. compute \(\mathcal{I}s^*_0 \) with \(q, I_f, I_{f'} \) so that \(w(\mathcal{I}s^*_0) < 1/2 \)
4. \(\mathcal{I}s_0 \leftarrow \mathcal{I}s^*_0 + [-1/4, 1/4] + \mathcal{I}[-1/4, 1/4] \) \quad \text{// } w(\mathcal{I}s_0) < 1
5. `return` the unique integer in \(\mathcal{I}s_0 \)

Example: \(f \) has degree 500, \(\rho = 2 \)

- evaluate \(f \) and \(f' \) at \(q = 11 \) points
- then get \#(\(\Delta, f \)) in \(O(q) \) arithmetic operations

Efficiency: directly related to evaluation

But: requires \(\rho \) to be known and \(> 1 \).
The P^*-test

<table>
<thead>
<tr>
<th>Discarding tests</th>
<th>T^*-tests</th>
<th>P^*-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb</td>
<td>t_0</td>
<td>t_0/t (%)</td>
</tr>
<tr>
<td>Bern$_{128}$</td>
<td>4732</td>
<td>5.50</td>
</tr>
<tr>
<td>Bern$_{256}$</td>
<td>9980</td>
<td>36.3</td>
</tr>
<tr>
<td>Mign$_{128}$</td>
<td>4508</td>
<td>4.73</td>
</tr>
<tr>
<td>Mign$_{256}$</td>
<td>8452</td>
<td>27.8</td>
</tr>
</tbody>
</table>

P^*-tests: $P^*(I_f, I_{f'}, \Delta, 2)$

nb: nb of discarding tests performed
n_{-1}: nb of times $\left\lfloor s_0 \right\rfloor$ does not contains integer
n_{err}: nb of times result is not correct

Example: f has degree 500, $\rho = 2$

- evaluate f and f' at $q = 11$ points
- then get $\#(\Delta, f)$ in $O(q)$ arithmetic operations

Efficiency: directly related to evaluation

But: requires ρ to be known and > 1.
Using the P^*-test as a filter

The C^0-test:

$$C^0(\Delta) := \begin{cases}
-1 & \text{if } P^*(I_f, I_{f'}, \Delta, 2) \neq 0, \\
-1 & \text{if } P^*(I_f, I_{f'}, \Delta, 2) = 0 \text{ and } T^*(\Delta, O_f) \neq 0, \\
0 & \text{if } P^*(I_f, I_{f'}, \Delta, 2) = 0 \text{ and } T^*(\Delta, O_f) = 0.
\end{cases}$$
Results (I)

Ccluster: version of [IPY18]
- t_1: time; s_1: number of T^0-tests

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$
- t_2: time; s_2: number of T^0-tests

CclusterP: CclusterR with P^*-test as a filter
- t_3: time; s_3: number of T^0-tests

<table>
<thead>
<tr>
<th></th>
<th>Ccluster (#Clus, #Sols)</th>
<th>CclusterR s_2 t_1/t_2</th>
<th>CclusterP s_3 t_3 t_2/t_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern$_{128}$</td>
<td>(128, 128) 4732 6.30</td>
<td>2712 1.72</td>
<td>1983 3.30 1.10</td>
</tr>
<tr>
<td>Bern$_{191}$</td>
<td>(191, 191) 7220 20.2</td>
<td>4152 1.74</td>
<td>3073 10.7 1.08</td>
</tr>
<tr>
<td>Bern$_{256}$</td>
<td>(256, 256) 9980 41.8</td>
<td>5698 1.67</td>
<td>4067 21.9 1.14</td>
</tr>
<tr>
<td>Bern$_{383}$</td>
<td>(383, 383) 14504 120</td>
<td>8198 1.82</td>
<td>5813 53.5 1.23</td>
</tr>
<tr>
<td>Mign$_{128}$</td>
<td>(127, 128) 4508 5.00</td>
<td>2292 1.92</td>
<td>1668 1.81 1.43</td>
</tr>
<tr>
<td>Mign$_{191}$</td>
<td>(190, 191) 6260 15.5</td>
<td>3180 2.01</td>
<td>2431 4.34 1.77</td>
</tr>
<tr>
<td>Mign$_{256}$</td>
<td>(255, 256) 8452 31.8</td>
<td>4304 2.04</td>
<td>3223 10.7 1.44</td>
</tr>
<tr>
<td>Mign$_{383}$</td>
<td>(382, 383) 12564 79.7</td>
<td>6410 1.98</td>
<td>4883 26.8 1.49</td>
</tr>
</tbody>
</table>

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux
Pols with real coefficients

Example:

\[\text{Mign}_d(z) = z^d - 2(2^{14}z - 1)^2\]

\(d\) even \(\Rightarrow\) 4 real roots

only 4 non-zero coeffs

\[d = 64\]

Subdivision tree:

2044 \(T^0\)-tests

1072 \(T^0\)-tests (ratio \(\approx 0.52\))
Procedural polynomials

Procedure: Mand\(_k\)(z)

Input: \(k \in \mathbb{N}^*, z \in \mathbb{C}\)

Output: \(r \in \mathbb{C}\)

1. if \(k = 1\) then
2. return \(z\)
3. else
4. return \(z\)Mand\(_{k-1}\)(z\(^2\) + 1

\[k = 6 \text{ (deg = 63)}\]
Procedural polynomials

Procedure: $\text{Mand}_k(z)$

Input: $k \in \mathbb{N}^*, z \in \mathbb{C}$

Output: $r \in \mathbb{C}$

1. if $k = 1$ then
2. return z
3. else
4. return $z\text{Mand}_{k-1}(z)^2 + 1$

![Graph for $k = 6$ (deg = 63)](image)

Procedure: $\text{Runn}_k(z)$

Input: $k \in \mathbb{N}, z \in \mathbb{C}$

Output: $r \in \mathbb{C}$

1. if $k = 0$ then
2. return 1
3. else if $k = 1$ then
4. return z
5. else
6. return $\text{Runn}_{k-1}(z)^2 + z\text{Runn}_{k-2}(z)^4$

![Graph for $k = 8$ (deg = 170)](image)
Results (II)

Ccluster: version of [IPY18]

\[t_1 \]: time

CclusterR: Ccluster for polynomials in \(\mathbb{R}[z] \)

\[t_2 \]: time

CclusterP: CclusterR with \(P^* \)-test as a filter

\[t_3 \]: time

<table>
<thead>
<tr>
<th></th>
<th>Ccluster (#Clus, #Sols)</th>
<th>(t_1)</th>
<th>CclusterR (t_1/t_2)</th>
<th>CclusterP</th>
<th>(t_2/t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mand6</td>
<td>(63, 63)</td>
<td>0.99</td>
<td>1.69</td>
<td>0.44</td>
<td>1.30</td>
</tr>
<tr>
<td>Mand7</td>
<td>(127, 127)</td>
<td>7.17</td>
<td>1.62</td>
<td>2.88</td>
<td>1.52</td>
</tr>
<tr>
<td>Mand8</td>
<td>(255, 255)</td>
<td>40.6</td>
<td>1.71</td>
<td>15.1</td>
<td>1.56</td>
</tr>
<tr>
<td>Runn7</td>
<td>(54, 85)</td>
<td>2.15</td>
<td>1.58</td>
<td>0.97</td>
<td>1.39</td>
</tr>
<tr>
<td>Runn8</td>
<td>(107, 170)</td>
<td>13.3</td>
<td>1.61</td>
<td>6.51</td>
<td>1.26</td>
</tr>
<tr>
<td>Runn9</td>
<td>(214, 341)</td>
<td>76.2</td>
<td>1.70</td>
<td>32.2</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux
Results (II)

Ccluster: version of [IPY18]

\[t_1 : \text{time} \]

CclusterR: Ccluster for polynomials in \(\mathbb{R}[z] \)

\[t_2 : \text{time} \]

CclusterP: CclusterR with \(P^* \)-test as a filter

\[t_3 : \text{time} \]

<table>
<thead>
<tr>
<th></th>
<th>Ccluster (#Clus, #Sols)</th>
<th>t</th>
<th>CclusterR</th>
<th>t/t2</th>
<th>CclusterP</th>
<th>t/t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mand6</td>
<td>(63, 63)</td>
<td>0.99</td>
<td>1.69</td>
<td>0.44</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Mand7</td>
<td>(127, 127)</td>
<td>7.17</td>
<td>1.62</td>
<td>2.88</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>Mand8</td>
<td>(255, 255)</td>
<td>40.6</td>
<td>1.71</td>
<td>15.1</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Runn7</td>
<td>(54, 85)</td>
<td>2.15</td>
<td>1.58</td>
<td>0.97</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Runn8</td>
<td>(107, 170)</td>
<td>13.3</td>
<td>1.61</td>
<td>6.51</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Runn9</td>
<td>(214, 341)</td>
<td>76.2</td>
<td>1.70</td>
<td>32.2</td>
<td>1.38</td>
<td></td>
</tr>
</tbody>
</table>

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux
Results (II)

Ccluster: version of [IPY18]
- \(t_1 \): time

CclusterR: Ccluster for polynomials in \(\mathbb{R}[z] \)
- \(t_2 \): time

CclusterP: CclusterR with \(P^* \)-test as a filter
- \(t_3 \): time

<table>
<thead>
<tr>
<th></th>
<th>Ccluster (#Clus, #Sols)</th>
<th>t₁</th>
<th>CclusterR t₁/t₂</th>
<th>CclusterP t₃</th>
<th>t₂/t₃</th>
<th>MPSolve t₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mand₆</td>
<td>(63, 63)</td>
<td>0.99</td>
<td>1.69</td>
<td>0.44</td>
<td>1.30</td>
<td>0.01</td>
</tr>
<tr>
<td>Mand₇</td>
<td>(127, 127)</td>
<td>7.17</td>
<td>1.62</td>
<td>2.88</td>
<td>1.52</td>
<td>0.06</td>
</tr>
<tr>
<td>Mand₈</td>
<td>(255, 255)</td>
<td>40.6</td>
<td>1.71</td>
<td>15.1</td>
<td>1.56</td>
<td>0.39</td>
</tr>
<tr>
<td>Runn₇</td>
<td>(54, 85)</td>
<td>2.15</td>
<td>1.58</td>
<td>0.97</td>
<td>1.39</td>
<td>0.01</td>
</tr>
<tr>
<td>Runn₈</td>
<td>(107, 170)</td>
<td>13.3</td>
<td>1.61</td>
<td>6.51</td>
<td>1.26</td>
<td>0.04</td>
</tr>
<tr>
<td>Runn₉</td>
<td>(214, 341)</td>
<td>76.2</td>
<td>1.70</td>
<td>32.2</td>
<td>1.38</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Sequential times in s. on an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux
Thank you for your attention!