Rémi Imbach

Courant Institute of Mathematical Sciences - New York University
251 Mercer Street,
New York, NY 10012, USA

Office: 302, Warren Weaver Hall
E-mail: remi.imbach(at)nyu.edu

Teaching

Summer 2018 Mathematical Techniques for Computer Science Applications
Fall 2018 Mathematical Techniques for Computer Science Applications
Spring 2019 Mathematical Techniques for Computer Science Applications


Short bio

I am a postdoc at Courant Institute of Mathematical Sciences, New York University and at City University of New York, Graduate Center.

From June 2017 to March 2018 I was part of the AGAG (Algebra, Geometry and Computer Algebra) group as Scientific Assistant at Technische Universität Kaiserslautern, department of Mathematics.

From November 2014 to October 2016 I held a post-doctoral position in the VEGAS (Effective Geometric Algorithms for Surfaces and Visibility) research team at INRIA (National Institute for Research in Computer Science and Control).

I was previously PhD student, then A.T.E.R (teaching & research position), in the IGG (Computer Graphics and Geometry) team of the ICube laboratory, Université de Strasbourg.


Software

June 2018 Ccluster is the beta version of a neer optimal complex root clustering algorithm (see [BSMS+16]). It is available either as a stand-alone program, or in the package Ccluster.jl for the programming language Julia

March 2016 subdivision_solver is a solver for square systems of polynomial equations using exhaustive search in an initial bounded real domain given as a box (i.e. a vector of intervals). It is specifically designed to handle systems of large dense polynomials and uses adaptive multi-precision arithmetic to stay robust to hard cases. subdivision_solver is proposed as a package for the mathematical software SageMath .

[BSMS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu and Chee Yap. Complexity Analysis of Root Clustering for a Complex Polynomial. Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '16 [ DOI ]

List of publications

International Journals
[IMP18] Rémi Imbach, Guillaume Moroz, and Marc Pouget. Reliable location with respect to the projection of a smooth space curve. Reliable Computing, 26:13 -- 55, 2018. [ bib | http ]
[IMP17] Rémi Imbach, Guillaume Moroz, and Marc Pouget. A certified numerical algorithm for the topology of resultant and discriminant curves. Journal of Symbolic Computation, 80, Part 2:285 -- 306, 2017. [ bib | DOI | http ]
[IMS16] Rémi Imbach, Pascal Mathis, and Pascal Schreck. A robust and efficient method for solving point distance problems by homotopy. Mathematical Programming, pages 1--30, 2016. [ bib | DOI | http ]
[ISM14] Rémi Imbach, Pascal Schreck, and Pascal Mathis. Leading a continuation method by geometry for solving geometric constraints. Computer-Aided Design, 46:138--147, 2014. [ bib | .pdf ]
International Conferences proceedings
[IPY18a] Rémi Imbach, Victor Y. Pan, and Chee Yap. Implementation of a near-optimal complex root clustering algorithm. In James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban, editors, Mathematical Software -- ICMS 2018, pages 235--244, Cham, 2018. Springer International Publishing. [ bib | DOI | http ]
[IMP16] Rémi Imbach, Guillaume Moroz, and Marc Pouget. Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve, pages 78--92. Springer International Publishing, Cham, 2016. [ bib | DOI | http ]
[MSI12] Pascal Mathis, Pascal Schreck, and Rémi Imbach. Decomposition of geometrical constraint systems with reparameterization. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, pages 102--108. ACM, 2012. [ bib | http ]
[IMS11] Rémi Imbach, Pascal Mathis, and Pascal Schreck. Tracking method for reparametrized geometrical constraint systems. In 2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 31--38. IEEE, 2011. [ bib | .pdf ]
Preprints
[Imb18] Rémi Imbach. Local solution clustering for a triangular system of polynomials. Research report, June 2018. [ bib | http ]
Technical Report
[Imb16] Rémi Imbach. A Subdivision Solver for Systems of Large Dense Polynomials. Technical Report RT-0476, INRIA Nancy, March 2016. [ bib | http | .pdf ]
French Workshop proceedings
[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget. A certified numerical approach to describe the topology of projected curves. In Journées de l'Association Française d'Informatique Graphique, 2015. [ bib | .pdf ]
[IMS12] Rémi Imbach, Pascal Mathis, and Pascal Schreck. Une approche par décomposition et reparamétrisation de systèmes de contraintes géométriques. In Journées du Groupe de Travail en Modélisation Géométrique, 2012. [ bib | .pdf ]
PhD Thesis
[Imb13] Rémi Imbach. Résolution de contraintes géométriques en guidant une méthode homotopique par la géométrie. PhD thesis, Université de Strasbourg, 2013. [ bib | .pdf ]

Selected communications

Seminars
May 2018 Numerical and certified computation of the topology of projected curves.
Joint CUNY Graduate Center-Courant Seminar in Symbolic-Numeric Computing, CUNY Graduate Center, New York [ http  ]
Jul. 2017 Certified numerical tools for computing the topology of projected curves.
Algebra, Geometrie und Computer Algebra seminars, Technische Universit\"at Kaiserslautern Germany [ http  ]
Sep. 2016 Certified numerical tools for computing the topology of projected curves.
AriC seminar, Lyon, France [ http  | pdf ]
International Conferences
June 2016 Interval tools for computing the topology of projected curves. SWIM 2016 (Summer Workshop on Interval Methods) Lyon, France [.pdf ]
Nov. 2015 Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve. MACIS 2015 (Sixth International Conference on Mathematical Aspects of Computer and Information Sciences), Berlin, Germany [.pdf ]
Nov. 2013 Leading a continuation method by geometry for solving geometric constraints. GD/SPM 13 (Geometric and Physical Modeling), Denver, Colorado, USA [.pdf ]
Sept. 2011 Tracking method for reparametrized geometrical constraint systems. SYNASC 11 (Symposium on Symbolic and Numeric Algorithms for Scientific Computing), Timisoara, Roumanie
National Workshops
Nov. 2015 A Certified Numerical Approach to Describe the Topology of Projected Curves. Journées de l'Association Française d'Informatique Graphique 2015, Lyon [.pdf ]
Oct. 2015 Numeric certified algorithm for computing the topology of projections of real spatial curves. Journées Informatique et Géométrie 2015, ESIEE Parie, Marne-la-Vallée [.pdf ]
Jun. 2014 Une méthode de continuation guidée par la géométrie pour résoudre des systémes de contraintes géométriques. INRIA Nancy - Grand Est, France [.pdf ]
Mar. 2012 Une approche par décomposition et reparamétrisation de systèmes de contraintes géométriques. Journées du Groupe de Travail en Modélisation Géométrique, Strasbourg, France
PHD Defense
Oct. 2013 Résolution de contraintes géométriques en guidant une méthode homotopique par la géométrie. Université de Strasbourg, France [.pdf ]
Some of the documents proposed here contains animations that can only be, as far as I know, visualized with latest versions of a well-known pdf viewer. You can contact me to obtain a version without animations.

Bibliography generated by bibtex2html 1.98.