
Lecture 12: Detailed balance and Eigenfunction methods

Readings

Recommended:

• Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility), 4.2-4.4 (explicit examples of eigen-
function methods)

• Gardiner [2009] 6.2-6.3 (detailed balance), 6.5 (eigenfunction methods, multi-dimensional), 5.4 (eigen-
function methods, 1-dimensional)

Optional:

• Pavliotis [2014] 4.9 (reduction to a Schrodinger equation)
• Risken [1984] has many examples of solving the Fokker-Planck equation using eigenfunction expan-

sions.

Consider a time-homogeneous diffusion X on a domain Ω⊂Rd which could be bounded or unbounded:

dXt = b(Xt)dt +σ(Xt)dWt . (1)

Recall the generator and its adjoint are

L f = b(x) ·∇ f +a(x) : ∇
2 f , L ∗p =−∇ · (b(x)p)+∇ ·∇ · (a(x)p),

where a(x) = 1
2 σ(x)σT (x). Throughout this lecture we assume that a is uniformly elliptic, i.e. yT a(x)y ≥

λ0 > 0 for all x ∈Ω, y ∈ Rd .

The Fokker-Planck equation for the evolution of probability density ρ is

∂tρ = L ∗
ρ =−∇ · j

¯
, (2)

where j
¯
= bρ−∇ · (aρ) is the flux associated with ρ , and L ∗ comes with suitable boundary conditions. A

stationary density π(x) solves
∇ · j

¯s
= 0 (3)

with probability-conserving boundary conditions (reflecting or periodic boundary conditions in a bounded
domain, decay conditions at infinity in an unbounded domain), where j

¯s
= bπ−∇ ·(aπ) is the flux associated

with π . We saw in an earlier lecture that sometimes the flux vanishes in steady-state:

j
¯s
= 0. (4)

Condition (4) is stronger than (3), because it involves d equations, whereas (3) is only one equation. There-
fore (4) shouldn’t be expected to hold in general. When does it hold? And what does it imply or require
about the physics of the process? In this lecture we will show the following:

j
¯s
= 0 ⇐⇒ L is symmetric in L2

π(Ω) ⇐⇒ X satisfies detailed balance. (5)

Here L2
π(Ω) is a weighted inner product space, which uses a locally stationary distribution π as a weight for

the inner product:

〈 f ,g〉π =
∫

Ω

f (x)g(x)π(x)dx. (6)
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We retain the notation 〈 f ,g〉=
∫

Ω
f gdx to mean the regular L2 inner product in Ω. Hereafter we will suppress

Ω in our notation, and simply write L2
π = L2

π(Ω),
∫
·dx =

∫
Ω
·dx.

A locally stationary distribution is a bounded function solving L ∗π = 0 with probability-conserving bound-
ary conditions. Sometimes π is a stationary distribution, when one exists, but when it doesn’t we may still
find a solution to L ∗π = 0 that is not normalizable (see Exercise 12.1). We know from PDE theory that
π(x)> 0.

Example 12.1 Consider Brownian motion on R. A locally stationary distribution is π(x) = 1.

We will then show that when (5) holds, we can use eigenfunction expansions of L to solve for quantities
like the transition probability, correlation functions, and mean-first passage times.

We give a definition of detailed balance in Section 12.3, although some references take the condition j
¯s
= 0

as a definition of detailed balance. The definition we will give will be easier to generalize to systems with
odd variables such as velocities; see Section 12.5.

As for Markov chains, detailed balance is equivalent to the system being time-reversible. When constructing
a model of a physical system, it is important to keep in mind whether the system is time-reversible or not. Not
only should the model have the correct stationary distribution, but, if the system is time-reversible, the model
should also have zero flux in steady-state. Indeed, if j

¯s
6= 0, then the steady-state flux will move, on average,

and so by conservation of probability it must contain loops. If this were possible in an isolated system, then
we could extract energy indefinitely out of these cycles! Therefore, when j

¯s
6= 0, the system must be subject

to external forcing, and furthermore, the amount of energy required to sustain the non-zero flux, must be
consistent with the energy input by the forcing. Some systems where external forcing occurs and hence j

¯s
6= 0

include active matter, such as particles that propel themselves by chemical reactions, bacteria that swim, etc,
and many biological systems, like molecular motors, where energy is input via ATP consumption.

These developments generalized our results for Markov chains. Recall that for Markov chains that satisfy
detailed balance, we symmetrized the transition matrix by the similarity transformation D1/2PD−1/2, where
Di j = πiδi j is the matrix with the stationary distribution on its diagonal. We used this to argue that P has real
eigenvalues and a complete orthonormal basis of eigenvectors, and then we expanded many quantities of
interest in terms of these eigenvectors. We will follow the same path here, which is more involved because
we are working in infinite-dimensional vector spaces, so instead of linear algebra, the conclusions follow
from functional analysis.

Remark. We will only show that L is symmetric, not self-adjoint. In our examples it will be true that it
is self-adjoint, but this is harder to show. A symmetric operator is one such that 〈L f ,g〉 = 〈 f ,L g〉 for all
f ,g in the domain of L , and it is self-adjoint, roughly, if the domains of the operator and its adjoint are the
same.

12.1 Flux in steady-state

We start by asking what conditions on b(x),a(x) are required for j
¯s
= 0 to hold. First consider a one-

dimensional process X ∈R. Equation (3) implies that j
¯s
= cst. Consider different possibilities for Ω.

• If Ω = [a,b] and the boundaries are reflecting, then j
¯s
= 0 since it’s zero at the boundary.
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• If Ω = R then the probability and flux must decay at ±∞, so similarly j
¯s
= 0.

• If Ω = [a,b] and the boundaries are periodic, then it is possible to have j
¯s
6= 0.

Therefore j
¯s
= 0 should hold for reflecting boundary conditions, but for periodic boundary conditions it

doesn’t necessarily have to hold.

Exercise 12.1. Find conditions on the drift and diffusion that ensure j
¯s
= 0 for periodic boundary conditions.

Now consider a higher-dimensional process X ∈ Rd . Suppose the stationary distribution satisfies j
¯s
= 0.

Rewriting this equation gives
a(x)∇π(x) = π(x)(b(x)−∇ ·a(x)) . (7)

Since a(x) is uniformly elliptic it is invertible, so

∇ logπ(x) = Q(x) , where Q(x) = a−1(x)(b(x)−∇ ·a(x)) . (8)

In components, Qi = ∑k a−1
ik (2bk −∑ j

∂

∂x j
ak j). Notice that this implies Q is a perfect gradient: Q(x) =

−∇Φ(x) for some scalar function Φ : Ω→ R. A necessary and sufficient condition for Q to be a perfect
gradient is that its curl is zero:

∂Qi

∂x j
−

∂Q j

∂xi
= 0 for all i 6= j.

Given a,b but not π , one can compute the curl to verify whether j
¯s
= 0. T

We can express π in terms of Φ as

π(x) = Z−1e−Φ(x), with Φ(x) =−
∫ x

x0

Q(x′)dx′. (9)

Here Z is a normalizing constant (which could be absorbed into the definition of Φ), and x0 is some arbitrary,
fixed point; changing it changes Φ(x) by a constant. Note that it doesn’t matter which path is taken in the
integral since Q(x) is a gradient.

Equation (9) gives a general expression for the stationary density when j
¯s
= 0. This expression is similar

to the Boltzmann distribution e−U(x) we considered in the last lecture, showing that Φ plays the role of a
potential energy; it is sometimes called a generalized potential.

Example 12.2 Suppose the diffusivity is constant: ai j(x) = Ai j, where Ai j are constants and Ai j = A ji. Then
∇ ·a(x) = 0, so A−1b(x) = ∇Φ or equivalently,

b(x) = ∇φ(x)

for some scalar function φ . This is an important result: given constant diffusivity, the flux in steady-state
vanishes if and only if the drift is a perfect gradient. If the drift has any curl component, the flux cannot
vanish in steady-state.

Example 12.3 If a(x) 6= cst, then using (7) we solve for the drift in terms of a,Φ, as b =−a∇Φ+∇ ·a, and
obtain

L ∗
ρ =−∇ · (−a∇Φ ρ +∇ ·a ρ−∇ · (aρ)) . (10)
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This corresponds to an SDE
dXt =−a∇Φ dt +∇ ·a dt +

√
2a dWt (11)

where
√

2a means any matrix σ such that σσT = 2a. This shows the dynamics of a diffusion with zero flux
in steady-state are fully prescribed by two ingredients: the generalized potential Φ, and the diffusivity tensor
a.

Equation (11) is the most general form of the overdamped Langevin equation. Compared to the overdamped
Langevin equation from Lecture 10, we have introduced a varying friction or diffusivity matrix, and an
additional drift ∇ · a. The addition drift compensates for the non-constant diffusivity matrix, pushing the
system back to regions of high diffusivity (see Exercise 12.2). One of the uses of this equation is to model
a collection of N particles in a d−dimensional fluid, x ∈ RNd , which interact with potential energy Φ(x)
(nondimensionalized by kBT ) and via hydrodynamic interactions. The effect of the hydrodynamic interac-
tions is not to change the stationary distribution, which is constrained by the laws of statistical mechanics to
be the Boltzmann distribution e−Φ(x), but rather to change the particles’ dynamics. If the dynamics are given
by a time-reversible SDE, then our calculations showed the only way to change the particles’ dynamics is to
change their diffusivity tensor, a(x). For example, for a pair of microspheres close to each other, a(x) will be
smaller for motions v that push spheres normal to each other’s surfaces (meaning vT a(x)v is small), because
this requires squeezing fluid in or out of the small gap, and larger for motions where the spheres move in the
tangential direction.

Exercise 12.2. Consider the one-dimensional diffusion dXt = (sinXt +2)dWt with periodic boundary condi-
tions on [−π,π]. Solve for the stationary distribution and show it is larger in regions with low diffusivity, and
smaller in regions with high diffusivity. Work out the drift one would have to add, to ensure the stationary
distribution is constant.

Exercise 12.3. Show that if j
¯s
= 0, then L ∗ and its adjoint can be written as

L ∗
ρ = ∇ ·

(
πa∇ ·

(
ρπ
−1)) , L f = π

−1
∇ · (πa∇ f ) .

where π = Z−1eΦ is the stationary distribution.

12.2 Symmetry of L

In this section we’ll consider the symmetry of the generator, and show that L is symmetric in L2
π (see (6))

if and only if j
¯s
= 0.

Lemma. Let π be a locally stationary distribution, and let j
¯ s

= bπ−∇ · (aπ) be the associated steady-state
flux. Then

〈L f ,g〉π =−〈a∇ f ,∇g〉π −〈 f ,π−1
∇g · j

¯ s
〉π (12)

for all f ,g ∈ L2
π satisfying boundary conditions consistent with the relation 〈L f ,g〉= 〈 f ,L ∗g〉.

The boundary conditions could include reflecting or absorbing boundary conditions, for example.
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Proof. This follows from multiple integration by parts. In detail,

〈L f ,g〉π =
∫

b ·∇ f gπ +
∫
(a : ∇

2 f )gπ.

Consider each of the terms on the right-hand side separately. We have∫
b ·∇ f gπ =

∫
∇ · ( f gπb)︸ ︷︷ ︸

boundary

−
∫

f πb ·∇g︸ ︷︷ ︸
A

−
∫

f g∇ · (bπ)︸ ︷︷ ︸
B

.

We also have∫
(a : ∇

2 f )gπ =
∫

∇ · (a∇ f gπ)−
∫

a∇ f ·∇gπ−
∫
(∇ f g) ·∇ · (aπ)

=
∫

∇ · (a∇ f gπ)︸ ︷︷ ︸
boundary

−〈a∇ f ,∇g〉π −
∫

∇ · ( f g∇ · (aπ))︸ ︷︷ ︸
boundary

+
∫

f ∇g ·∇ · (aπ)︸ ︷︷ ︸
A

+
∫

f g∇ ·∇ · (aπ)︸ ︷︷ ︸
B

.

The terms labelled ‘A’ combine to give −
∫

f ∇g · j
¯s
=−〈 f ,π−1∇g · j

¯s
〉π .

The terms labelled ‘B’ combine to give −
∫

f g∇ · j
¯s
= 0.

The terms labelled ‘boundary’ vanish, by assumption. We are left with (12).

Proposition. j
¯ s

= 0 if and only if L is symmetric in L2
π .

Proof. Suppose j
¯s
= 0. Then by the Lemma above,

〈L f ,g〉π = 〈a∇ f ,∇g〉π and 〈 f ,L g〉π = 〈a∇g,∇ f 〉π = 〈a∇ f ,∇g〉π

so 〈L f ,g〉π = 〈 f ,L g〉π .

Now suppose L is symmetric in L2
π . Then from the Lemma above,∫

f ∇g · j
¯s
−g∇ f · j

¯s
= 0

or all f ,g ∈ L2
π satisfying suitable boundary conditions. This is only possible if j

¯s
= 0 (for example, take

f = cst).

Here is another useful relationship when j
¯s
= 0 or equivalently (7) holds.

Lemma. If j
¯ s

= 0, then for g ∈ L2
π ,

L ∗(gπ) = πL g . (13)

This holds no matter what the boundary conditions on L ,L ∗ are.

Proof. Calculate:

L ∗(gπ) =−∇ · (bgπ)+∇ ·∇ · (agπ)

=−∇ · (bgπ)+∇ · (g(∇ ·a)π +ga∇π +πa∇g) expanding ∇·
=−∇ · (bgπ)+∇ · (bgπ +πa∇g) using (7)

= ∇ · (πa∇g) .
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This representation is useful in itself (see Exercise 12.3). Continue expanding this expression:

L ∗(gπ) = a∇π ·∇g+π∇ ·a∇g+πa : ∇
2g

= πb ·∇g+πa : ∇
2g using (7)

= πL g .

Exercise 12.4. Derive the symmetry of L , using the result of the Lemma above .

Exercise 12.5. Let the probability density be ρ(x, t) = g(x, t)π(x), so that g is the density of ρ with respect
to π . Use the Lemma above to show that if j

¯s
= 0 and ρ solves the forward equation, then g solves the

backward equation.

12.3 Detailed balance

Our goal is to show that

L is symmetric in L2
π ⇐⇒ Xt satisfies detailed balance. (14)

Recall that a Markov Chain satisfies detailed balance if πi pi j = π j p ji. Advancing this equation by n steps
in time, shows that πiP

(n)
i j = π jP

(n)
ji for all n, where P(n) is the n-step transition matrix. The condition can

be interpreted in terms of flux: πi pi j is the flux of probability from edge i→ j in steady-state, and π j p ji is
the flux of probability from edge j→ i in steady-state, so the net flux of probability across each edge is 0 in
steady-state.

We generalize these ideas to a continuous Markov process.

Definition. A continuous Markov process is reversible or satisfies detailed balance if, for all x,y ∈ Ω and
all s < t,

π(x)p(y, t|x,s) = π(y)p(x, t|y,s) . (15)

One can show that detailed balance is equivalent to the process (Xt)0≤t≤T with X0 ∼ π and the time-reversed
process (XT−t)0≤t≤T having the same law; including the same finite-dimensional distributions; see Pavliotis
[2014], Section 4.6 Theorem 4.5.

Our arguments to show (14) will be purely formal [Pavliotis, 2014, Section 4.6]. In particular, we’ll make
frequent use of the operator eL t = I +L t + 1

2L 2t2 + · · · , which is such that if u(x, t) solves the PDE
∂tu = L u, u(x,0) = f (x), then u(x, t) = eL t f (x). In particular, we have the representation

p(y, t|x,s) = eL ∗y (t−s)
δ (x− y). (16)

One can show that the adjoint of eL t is eL ∗t , and similarly that L is symmetric in a given inner product
space, if and only if eL t is too.
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Multiply both sides of (15) by test functions f (x),g(y) and integrate over x,y. The left-hand side be-
comes ∫

π(x) f (x)g(y)p(y, t|x,s)dxdy =
∫

π(x) f (x)g(y)eL ∗y (t−s)
δ (x− y)dxdy

=
∫

π(x) f (x)δ (x− y)eLy(t−s)g(y)dxdy

=
∫

π(y) f (y)eLy(t−s)g(y)dy

= 〈 f ,eLy(t−s)g〉π .

This quantity has stochastic interpretation E[ f (Xs)g(Xt)|Xs ∼ π] = Eπ [ f (X0)g(XT )] for T = t− s.

The right-hand side becomes∫
π(y) f (x)g(y)p(x, t|y,s)dxdy =

∫
π(x) f (y)g(x)p(y, t|x,s)dxdy

=
∫

π(x) f (y)g(x)eL ∗y (t−s)
δ (x− y)dxdy

=
∫

π(x)g(x)δ (x− y)eLy(t−s) f (y)dxdy

=
∫

π(y)g(y)eLy(t−s) f (y)dy

= 〈g,eLy(t−s) f 〉π .

This quantity has stochastic interpretation E[ f (Xt)g(Xs)|Xs ∼ π] = Eπ [ f (XT )g(X0)].

Now suppose that (15) holds. Putting together the pieces above shows that

〈 f ,eLy(t−s)g〉π = 〈g,eLy(t−s) f 〉π . (17)

Therefore eL t is symmetric in L2
π ; differentiate in t to show that L is symmetric in L2

π .

Conversely, suppose that L is symmetric in L2
π . Then (17) holds, so working backwards,∫

π(x) f (x)g(y)p(y, t|x,s)dxdy =
∫

π(y) f (x)g(y)p(x, t|y,s)dxdy.

This holds for all test functions f ,g, so (15) holds.

12.4 Eigenfunction methods

When L is symmetric in L2
π , its eigenvalues are real, countable, and its eigenfunctions are orthonormal in

L2
π : ∫

φiψ jπdx = δi j,

where δ is the Kronecker delta. To expand the transition probability using eigenfunctions, we need to know
the eigenfunctions are complete, i.e. they span L2

π . This is a question in functional analysis ; see [Pavliotis,
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2014, Chapter 4] for a discussion of some conditions that imply completeness of the eigenfunctions, partic-
ularly for the overdamped Langevin equation. Henceforth we will assume that the eigenfunctions of L
are complete for the examples we study, and solve for various quantities of interest in terms of eigenfunc-
tions.

Let us write {λi}∞
i=1 for the eigenvalues of L and L ∗, {φi}∞

i=1 for the eigenfunctions of L , and {ψi}∞
i=1

for the eigenfunctions of L ∗. The eigenfuctions and eigenvalues must satisfy the same boundary conditions
imposed on the operators they are associated with; note that changing the boundary conditions will change
both the eigenvalues and eigenfunctions.

Here are some facts about the eigenvalues and eigenfunctions, assuming throughout that L is symmetric in
L2

π and a(x) is uniformly elliptic.

(1) L is negative semi-definite, so the eigenvalues of L are nonpositive, λi ≤ 0.

(In fact, it can be shown that λi→−∞ as i→ ∞.)

Proof. Since j
¯s
= 0, (12) implies that

〈L f , f 〉π =
∫

π f L f =−
∫

π(∇ f )T a∇ f ≤ −λ0‖∇ f‖π ≤ 0.

(2) If L has reflecting boundary conditions, then its null space is one-dimensional and contains only
constants. Therefore the largest eigenvalue is λ1 = 0 with multiplicity 1, and the corresponding eigen-
functions are φ0 = 1, ψ0 = π .

Proof. Suppose L f = 0. By the calculations above,

0 = 〈L f , f 〉π ≤−λ0‖∇ f‖π ≤ 0.

The only way this is possible is if ∇ f = 0, so f = cst. Notice that this one-dimensional space of
solutions does satisfy the reflecting boundary condition.

(3) If L has absorbing boundary conditions, then all eigenvalues are strictly negative.

Proof. This follows from the calculations above, because there is no nontrivial solution satisfying
f |∂Ω = 0.

(4) The left and right eigenfunctions are related by a factor of π:

ψi(x) = π(x)φi(x) . (18)

Recall this same relation was true for Markov chains.

Proof. Calculate, using (13) for an eigenfunction φi,

L ∗(πφi) = πL φi = λiπφi.

Therefore if φi is an eigenfunction of L with eigenvalue λi, then πφi is an eigenfunction of L ∗ with
the same eigenvalue.
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(5) φi,ψi form a bi-orthogonal set in L2:
〈φi,ψ j〉= δi j , (19)

where δ is the Kronecker delta.

Proof. This follows from the orthonormality of {φi} in L2
π .

Many quantities can be expressed using eigenfunctions.

Example 12.4 (Transition probability) Let’s solve for the transition probability using separation of variables.
Make the ansatz

p(x, t|y,0) =
∞

∑
i=1

aigi(t)ψi(x)

where ai ∈ R are unknown coefficients and gi are unknown functions. Substitute into the forward equation
to find

pt = L ∗
x p ⇒

∞

∑
i=1

aig′i(t)ψi(x) =
∞

∑
i=1

aigi(t)λiψi(x) .

Projecting onto φi and using (19) shows that gi(t) = eλit . To find the coefficients ai use the initial condition
p(x,0|y,0) = δ (x− y) and take the L2 inner product of p(x,0|y,0) with φi to get

ai = 〈p(x,0|y,0),φi(x)〉= 〈δ (x− y),φi(x)〉= φi(y).

Putting this all together shows the transition probability can be written as

p(x, t|y,0) =
∞

∑
i=1

φi(y)ψi(x)eλit . (20)

Example 12.5 (Stationary covariance matrix) We derive an expression for the covariance matrix of a sta-
tionary process when Eπ Xt = 0; calculations with Eπ Xt 6= 0 give the same result and are left as an exercise.
Note that the process must have reflecting or probability-conserving boundary conditions, in order to be
stationary. The stationary covariance matrix is

C(t) = Eπ XtXT
0 =

∫∫
xyT p(x, t|y,0)π(y)dxdy

=
∫∫

xyT
π(y)

∞

∑
k=1

φk(y)ψk(x)eλktdxdy

=
∞

∑
k=1

(∫
xψk(x)dx

)(∫
xψk(x)dx

)T

eλkt using(18)

=
∞

∑
k=2

C(k)eλkt . (21)

Here C(k) is a matrix constructed as

C(k) = x(k)⊗ x(k) = x(k) (x(k))T , with x(k) =
∫

xψk(x)dx.

That is, it has i jth element C(k)
i j = (

∫
xiψk(x)dx)(

∫
x jψk(x)dx). Notice that the sum in (21) starts at i= 2 since∫

xψ1(x)dx =
∫

xπ(x)dx = Eπ Xt = 0. The covariance function is therefore a sum of decaying exponentials,
with a decay rate governed by |λ2|.
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Exercise 12.6. Consider Brownian motion on an interval [0,1] with reflecting boundary conditions. Calculate
the eigenvalues and eigenfunctions. Suppose you start the process with initial condition ρ(x,0) = 2 ·1x∈[0, 1

2 ]
.

Write down an expression for the probability density ρ(x, t) at time t. Estimate how quickly this decays to
the stationary distribution.

Example 12.6 (Ornstein-Uhlenbeck process, 1D) The generator and its adjoint are

L f =−αx fx +
1
2

σ
2 fxx , L ∗p = ∂x(αxp)+

1
2

σ
2
∂xx p .

The eigenfunctions of the generator solve

φ
′′
λ
− 2αx

σ2 φ
′
λ
− 2λ

σ2 φλ = 0

with appropriate decay conditions at ±∞. Let y = x
√

2α

σ2 . The eigenfunction equation becomes

φ
′′
λ
− yφ

′
λ
− λ

α
φλ = 0.

This is the eigenvalue equation for the Hermite polynomials1 (with eigenvalues scaled by α), which are
defined as:

Hn(x) = (−1)nex2/2 dn

dxn e−x2/2, Hn = {1, x, x2−1, x3−3x, x4−6x2 +3, . . .}

Therefore, with normalizing constants chosen so that ‖φn‖π = 1, we have

φn(x) = (n!)−1/2Hn(x
√

2α/σ2), λn =−nα, n = 0,1, . . . .

The probability density at time t is

ρ(x, t) =
1√

2πσ2/2α
e−

x2α

σ2 ∑
n
(n!)−1/2AnHn(x

√
2α/σ2)e−nαt

where the coefficients are
An =

1√
n!
〈ρ0(x),Hn(x

√
2α/σ2)〉 .

The probability density relaxes to the stationary probability exponentially quickly, with a rate governed by
the smallest non-zero eigenvalue λ1 = α .

Let’s calculate the stationary covariance function. Using our earlier calculations,

C(t) =
∞

∑
n=0

c2
ne−nαt , where cn = 〈x,ψn〉L2 .

Note that x =
√

σ2/2αφ1(x), and 〈φ1,ψ j〉 = 0 if j 6= 1. Therefore c1 =
√

σ2/2α , and cn = 0 for n 6= 1.
Putting this together gives

C(t) =
σ2

2α
e−αt .

The covariance function is just a single exponential, because x itself is an eigenfunction of the generator!
1 This is the “probabilist’s” definition of Hermite polynomials. You may also encounter the “physicist’s” definition: H p

n (x) =
(−1)nex2 dn

dxn e−x2
, which differs from the probabilist’s definition by a rescaling: H p

n (x) = 2n/2Hn(
√

2x).
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Example 12.7 (Mean first passage time) Let’s calculate the T (x), the mean first passage time to ∂D from
x ∈ D, using an eigenfunction expansion. Expand the mfpt as

T (x) =
∞

∑
i=1

aiφi(x) ,

where φi are eigenfunctions for the problem with absorbing boundary conditions. Then, substituting into the
equation for the mfpt and taking the inner product with ψi, gives

L T =−1 ⇒
∞

∑
i=1

aiλiφi(x) =−1 ⇒ aiλi = 〈−1,ψi〉 .

Therefore
T (x) = ∑

i

1
|λi|

φi(x)
∫

ψi(y)dy .

Suppose the smallest eigenvalue (in absolute value) is a lot smaller than all the others: |λ1| � |λi| for i > 1.
Then the series above can be approximated by its first term. Then L φ1 = λ1φ1 ≈ 0, since |λ1| is small.
Therefore φ1 ≈ K, a constant, so 1 =

∫
ψ1(x)φ1(x)≈ K

∫
ψ1(x). We obtain the approximation

T (x)≈ 1
|λ1|

.

That is, the smallest absolute eigenvalue gives the inverse timescale for reaching the boundary. These ap-
proximations can be made more systematic using asymptotic methods, see [Gardiner, 2009, Section 6.6.1,
p.166] and [Gardiner, 2009, Chapter 14].

Example 12.8 (Two-dimensional Brownian motion in a square) [From Gardiner, 2009, section 6.6.1, p.166]
Consider a two-dimensional Brownian motion with constant diffusivity D in a square E with corners (0,0),(0,1),(1,0),(1,1),
and let T (x) be the mean first passage time to the boundary, ∂E. T solves

D
2
(∂xxT +∂yyT ) =−1, T (∂E) = 0 .

The eigenfunctions and eigenvalues for this problem are

ψn,m(x,y) = sin(nπx)sin(mπy), φn,m(x,y) = 4sin(nπx)sin(m,πy) , λn,m =
π2D

2
(n2 +m2) ,

with n,m = 1,2, . . .. One can work out that an,m = 0 if either of n,m are even, and an,m = 4
mnπ2 if both n,m

are odd. Therefore
T (x,y) =

1
D ∑

n,m odd

32
π2nm(m2 +n2)

sin(nπx)sin(mπy) .

12.5 Even versus Odd variables*

Our discussion so far applies to physical systems where all variables are even: they “look” the same forward
and backward in time. For example, if you watch a movie of a car driving down the road, and you stop
the movie halfway through and start playing it backwards, the car’s position doesn’t change the instant you

11
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start playing the movie backwards. If you only observe the car’s position instantaneously, you can’t tell
if the movie is playing forwards or backwards – position is an even variable. However, the car’s velocity
does change when you play the movie backwards – the velocity reverses sign. Based on the instantaneous
velocity, you can tell whether the movie is playing forward or backward in time. Velocity is an example of
an odd variable – it changes sign, if time starts going backward.

In general, each physical variable xi is classified as either even or odd, depending on how it transforms under
time reversal. We have xi → εixi, with εi = +1(−1) for an even (odd) variable respectively. Examples
of even variables include position, acceleration, force, voltage, energy, electric polarization. Examples of
odd variables include velocity, angular and linear momentum, magnetic field, density of electric current,
etc.

The previous results that link reversibility to a zero steady-state flux, do not apply to systems with odd
variables. For example, you saw in a previous homework that in the Langevin equations, which contain
velocities, the steady-state flux is not zero. These equations are used to model equilibrium systems all the
time. How then should the concept of reversibility be generalized to such systems?

As an example, consider a gas of particles with positions contained in vector x and velocities contained in
vector v, and remember that dx

dt = v. Suppose the system moves from state (x,v)→ (x′,v′) in some time
interval of length ∆t. This is not the same as moving from (x′,v′)→ (x,v) backwards in time, because if
you change the direction of time, then the velocities of each particle must change sign. What it is physically
equivalent to is moving from (x′,−v′)→ (x,−v) in the same time interval ∆t. Indeed, to go from x→ x′ in
a small time ∆t requires v≈ (x′− x)/∆t, and to go from x′→ x requires v′ ≈ (x− x′)/∆t =−v.

Therefore, for this gas of particles, detailed balance or time-reversibility should be written as

p(r′,v′,τ|r,v,0)π(r,v) = p(r,−v,τ|r′,−v′,0)π(r′,v′) .

The most general principle of detailed balance requires that

P(x→ y, forward in time) = P(y→ x, backward in time), in steady-state, (22)

i.e. the probability of making some transition forward in time, equals the probability of making the reverse
transition, backward in time, when the system is in steady-state, and where all variables change sign in the
appropriate way. This principle comes from microscopic reversibility: Newton’s laws are time-reversible, so
if we coarse-grain them, we want the stochastic system to preserve the same property. More precisely,

Definition. A Markov process is reversible or satisfies detailed balance if

p(y, t|x,s)π(x) = p(εx, t|εy)π(y). (23)

Conditions on the coefficients b(x),a(x) of a time-homogeneous SDE that are both necessary and sufficient
for detailed balance to be satisfied are [Gardiner, 2009, Section 6.3.5]

(i) εibi(εx)π(x) =−bi(x)π(x)+∑ j ∂ j(2ai j(x)π(x))

(ii) εiε jai j(εx) = ai j(x).

Notice that these are formulated in terms of π(x), so you need to know this first in order to check the
conditions. When all variables are even, these conditions reduce to j

¯s
= 0.
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