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Abstract

In the Ising and Potts model, random cluster representations provide a geometric
interpretation to spin correlations. We discuss similar constructions for the Villain and
XY models, where spins take values in the circle, as well as extensions to models with
different single site spin spaces. In the Villain case, we highlight natural interpretation
in terms of the cable system extension of the model. We also list questions and open
problems on the cluster representations obtained in this fashion.

1 Introduction

The planar rotator model, or XY model, is a continuous spin model where single site spins
take values in the unit circle U which exhibits the Berezinskii-Kosterlitz-Thouless phase
transition [8, 33], a fact proved first by Fröhlich and Spencer [25] and revisited more recently
in [32, 40, 1]. This result states that above a critical temperature Tc, the decay of spin
correlation is exponential, whereas there is only a power law decay below Tc, i.e. 〈σxσy〉T =
|x−y|−αT+o(1) for some exponent αT > 0 whenever T < Tc. Moreover, in this low temperature
phase it is conjectured since the work of Fröhlich and Spencer [26] that the the XY model
should behave at large scale like eiTeffΦ, where Φ is the planar Gaussian free field (GFF).

The Villain model is a variant with the same phenomenology which is more tractable
due to exact duality identities involving the integer-valued GFF. In this article, the Villain
interaction is singled for a related but distinct reason, namely its relation with the so-called
cable systems: there is a natural way to extend the spins defined on the vertices of the lattice
to a continuous family of spins on the edges with a locally Brownian structure. Similar
constructions were used in the context of isomorphism theorems between the Gaussian free
field and the occupation field of trajectories by Lupu in [34], and then in the context of the
first passage sets of the 2d GFF in [2], the set of points in the domain that can be connected
to the boundary by a path along which the GFF is greater than or equal to a fixed height.
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Our goal is to provide a geometric interpretation to spin correlations: first, for the Villain
model in Proposition 3.2 and Proposition 3.3 below, by introducing random clusters in the
extended Villain model, and then, for appropriate random cluster constructions in the XY
model, which is the content of Theorem 4.5 below. In fact, this theorem covers more generally
the O(2) model, the XY and Villain models being special cases. Our constructions have the
same spirit as the one of the Fortuin-Kasteleyn (FK)/random cluster representations of the
Ising and Potts models (the joint distribution of random clusters with spins goes under
the name of Edwards-Sokal coupling [21] [30, Section 1.4]). In the Ising model, two equal
nearest neighbor spins are in the same cluster with a fixed probability, independently of other
edges and the spins themselves can be retrieved from the geometrical clusters by attributing
random signs to each cluster [30, Section 1.4]. Then, [30, Theorem 1.6] states

〈σxσy〉Tc � P(x↔ y),

where in the right-hand side x is connected to y if they are in the same cluster. In fact,
they are equal up to a multiplicative constant, this doesn’t specifically rely on being at the
critical temperature and the same holds for the Potts model. Our motivation is twofold: first,
akin to the FK model, these random clusters can be seen as a tool to study the continuous
spin models; second, the FK model is a model interesting in itself (it provides a continuous
interpolation of the q-Potts model in which q is restricted to be an integer) and we believe
the same is true in our case.

The planar Ising model, with spins taking values only in {+1,−1} has a phenomenology
different than the one of the aforementioned continuous spin models. Rather, it is only at
the critical temperature that the spin correlations have polynomial decay and below that
temperature, the two-point correlation function may not vanish (as the separation goes to
infinity), depending on the boundary conditions/Gibbs measure considered. Indeed, in this
case and at low temperature, there is no uniqueness of translation invariant infinite-volume
measure. Although we expect qualitative similarities, the interfaces of our random clusters
in the KT phase and the interfaces in the critical Ising/FK model may also be different, and
this is discussed in further details below.

The Swendsen-Wang (SW) algorithm is commonly used to implement Monte Carlo simu-
lations of the Ising spin model; at each step an FK cluster of spins (sampled conditionally on
the spins) is flipped. More precisely, a step of the algorithm consists of the following: first,
a bond is formed between every pair of nearest neighbors that are equal, with an explicit
probability p depending on the temperature and coupling constant of the model. Then, all
spins in each cluster are flipped. Finally, all bonds are erased and the step is complete. The
algorithm generalizes to the q-state Potts models in which each lattice site corresponds to
a variable that can take q different values. One of these q values is assigned with probabil-
ity 1/q to each cluster and all variables in the cluster take this new value. In [43], when
considering continuous spin models, Wolff replaced the global spin-inversion operation by a
reflection operation in which only the connected component of one spin chosen uniformly at
random is reflected over a randomly oriented plane. At each iteration, a new spin and an
orientation of the plane are chosen. A review of cluster algorithms in a general framework
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(which includes Potts model, random surfaces, continuous spins, among others) can be found
in Section 2 of [17].

In the case of the XY model, Chayes considered a graphical representation based on the
Wolff algorithm in [14]. He did so by writing spins in the form (σx cos θx, τx sin θx) where
σx, τx ∈ {−1, 1} and then by considering the FK-Ising model associated with one of these ±1
spins. In particular, he proved that these percolation measures satisfy the FKG property and
obtained a characterization of the positive magnetization of the system in term of percolation
in the graphical representation (see also [11] for an extension to the Heisenberg model). The
clusters he considered are the same as those in Lemma 4.1. In this work, in order to obtain
result for higher spin observables, we also consider clusters made of correlated bonds (instead
of only one bond as in [14, 11, 17]).

To conclude this introduction, we mention that the planar Villain and XY models have
recently been the center of a regain of interest in the mathematics community, in particular
with the the works [35, 42, 27, 28] and the ones mentioned above. Furthermore, some progress
was made on the Fröhlich Spencer conjecture as [5] proved the convergence of the integer-
valued Gaussian free field towards the Gaussian free field, when the temperature is sufficiently
large (which corresponds to low temperature continuous spin model). Ultimately, we refer
the reader who wish to learn more about these spin models to [24, 36], for an introduction
to the field.

This paper is organized as follows. First, we define the Villain model and cable systems in
Section 2. Then, in Section 3 we prove some two sided estimates for some spin observables in
terms of connectivity properties of random clusters. In Section 4, we generalize these results
to O(2) models by introducing random clusters made of open/close bonds with appropriate
joint distributions. In Section 5.1, we explain in which sense the usual random cluster model
and its dilute version (related with the Blume-Capel-Potts model) can be seen from random
clusters associated with similar cable systems but with a different continuous-time Markov
chain. Finally, we list questions and open problems in Section 5.2.

Acknowledgments. We wish to thank Ron Peled for pointing out several references.

2 Villain model and cable systems

Villain model. The Villain model is a statistical mechanics model with spins taking values
in the unit circle U ' R/2πZ and interactions given by a θ function. The specific choice of
interaction was motivated by the following considerations. If one considers a low temperature
T (or β large), then the XY weight eβ cos(θx−θy) can be approximated by e−

1
2
β(θx−θy)2

as the
spins tend to be aligned in this regime, by a Taylor expansion. In order to preserve a
model well-defined for angles modulo 2π, it is natural to consider a periodized version of this
interaction, leading to the Villain model. The reason one is interested in this approximation
comes from the fact that the Fourier modes of this new interaction are Gaussian terms, which
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can be used to show powerful identities relating Villain observables to dual, integer-valued
height models.

More precisely, let G = (V,E) be a finite subgraph of Zd (typically, a box or a torus). The
probability measure on configurations (ux)x∈V = (eiθx)x∈V ∈ UV is given by 1

Z e
−H(θ)

∏
x∈V dθx

where the energy is defined as

e−H(θ) =
∏

(xy)∈E

∑
n∈Z

exp
(
−β(θx − θy + 2nπ)2

)
.

Here, β > 0 plays the role of inverse temperature.
We now turn to the Fourier decomposition of this interaction. To this end, recall the

Jacobi Θ function (=(τ) > 0)

Θ(z, τ) =
∑
n∈Z

eiπn
2τe2iπnz,

so that (for t = 4πβ > 0, v = (θx − θy)/2π)

Θ(itv, it) = eπtx
2
∑
n∈Z

exp(−πt(v + n)2).

We have the functional equation (e.g. (8.9) in [13])
√
tΘ(z, it) = e−

πz2

t Θ( z
it
, it−1) or

√
t
∑
n∈Z

exp(−πt(x+ n)2) =
∑
n∈Z

e−πn
2t−1

exp(2iπnx)

= 1 + 2
∞∑
n=1

e−πn
2t−1

cos(2πnx), (2.1)

a standard instance of the Poisson summation formula. Note that the LHS (resp RHS) series
converges faster when t > 1 (resp. t < 1).

Cable systems. While the Villain model was introduced for its special duality properties,
we are exploiting here an indirectly related property. Observe that

pt(θ1, θ2) =
1√
2πt

∑
n∈Z

exp

(
− 1

2t
(θ1 − θ2 + 2nπ)2

)
(2.2)

where (pt) denotes the transition function for Brownian motion on U ' R/2πZ. In particular,
by Chapman-Kolmogorov:

pt+s(θ1, θ3) =

∫
pt(θ1, θ2)ps(θ2, θ3)dθ2.

Then, the energy can be written as a product of transition functions, i.e.

e−H(θ) = (2πt)|V |/2
∏

(xy)∈E

pt(θx, θy), (2.3)
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with 1/2t = β (t is thus a temperature parameter).

Now, we consider the cable system (also known as a metric graph) G̃ obtained by adding
a segment of length t(e) = t between x and y, where e = (xy) is any edge of G (i.e., any
abstract edge in G becomes a line segment in G̃). One can extend the Villain model from
a measure on UV to a measure on C0(G̃,U) by sampling a U-valued Brownian bridge (of
duration t, from θx to θy) to fill the values on these added intervals. This is modeled on
the construction of the Gaussian Free Field (GFF) on cable systems by Lupu [34] (where
the single site spin space is R, rather than U here). Earlier references on diffusions in cable
systems include [6, 22, 23].

More generally, the construction works if the spin space is, say, a compact manifold S
with a Riemannian metric whose associated volume form is µ and (pt) is the heat kernel for
a symmetric diffusion on that manifold w.r.t. µ. One can also consider S non-compact if µ
is finite; if the underlying graph G is finite, there is no restriction. The interaction is still
given by

∏
(xy)∈E pt(ux, uy), the symmetry assumption implies pt(ux, uy) = pt(uy, ux) and (pt)

satisfies

pt+s(ux, uy) =

∫
S

pt(ux, uz)ps(uz, uy)µ(duz). (2.4)

This property is used extend the distribution on vertices to the refined graphs with Kol-
mogorov extension (e.g, the midpoints of edges can be added by using pt/2 for the interaction
on each half-edge), and the consistency follows from (2.4). In the case of the GFF, pt is the
heat kernel on R considered by Lupu and in the case of the Villain model described above,
it is the heat kernel on U.

The resulting extended model (Xv)v∈G̃ provides a continuous stochastic process with

sample paths in C0(G̃, S) which satisfies a simple and strong Markov property as described
in the lemma below.

In the following lemma, we consider two setups. The first one includes extended models
with sample paths in C0(G̃, S), coming from symmetric diffusions. The second one includes
Markov chains with finite state spaces, in which the extension comes from sampling Markov
chain bridges.

Lemma 2.1. Consider an extended model (Xv)v∈G̃ associated with a Markov process or

chain as described above and a random connected compact set K ⊆ G̃ such that {K ⊂ U} is
measurable w.r.t. (X) for all open sets U . Then, conditionally on (K,X|K), the distribution
of X|Kc is described as an extended model with the same transition probabilities (i.e., any
finite marginal is described by a nearest neighbor spin system whose edge energies are of the
form (2.3) but depend on the length of the edges) with boundary condition (Xv)v∈∂K.

In the above lemma, the sigma algebra associated with X|∂K is that of ∩ε>0σ(XKε\K)
where Kε is an ε-neighborhood of K. In particular, if ∂K corresponds to the location of
a jump in the case of the extension with Markov chains, although the value at the jump is
ambiguous, the left-limit and the right-limit around it are not. This case does not occur for
extensions using a diffusion. An example below will be the case of the dilute Ising model,
say with some boundary conditions, for which the state space is {−1, 0, 1} and where Kx is
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the closure of {y ∈ G̃ | there is a path π from x to y such that Xv = Xx∀v ∈ π}. The set
∂Kx consists exactly of jumps, can be seen as with two values (the limits from the inside
and outside) and of the boundary of G̃. Any tiny neighborhood around the jumps will reveal
the value of the boundary conditions (which will always be 0 in the case of the dilute Ising
model below).

The strong Markov property was considered in the context of the GFF on metric graphs
in Section 3 of [34]. Also, still in this context, an example of a random compact set is the
first passage set of level −a considered in [2], which is the set of points on the metric graph
that are joined to the boundary by some path, on which the extended version of the GFF
does not go below the level −a. The two-valued local sets considered in [4, 3] are also very
close to the set-up here.

3 Random clusters in the Villain model

In the Villain or XY models, there is a natural family of primary fields: eikθx for k ∈ Z; this
is especially of interest in the low temperature (KT) phase where it is expected that

〈
∏
j

eikxj θxj 〉 ∝ 〈
∏
j

eikjΦxj 〉 =
∏
i<j

|xi − xj|−αT kikj (3.5)

where Φ is a planar Gaussian free field with some effective coupling constant fixing αT .

Consider the following connectivity events given θ ∈ C(G̃,U) a configuration in the
extended Villain model: if S is a subset of U, and x, y are points in G̃, we write

x
S←→ y (3.6)

is there is a path γ from x to y in G̃ such that θ(γ) ⊂ S. In other words, the clusters
are the connected components of θ−1(S). We will be in particular interested in the case
S = {±eiθ0}c.

Lemma 3.1. If (xy) ∈ E and t = t(xy), the probability that u(z) ∈ {±i}c for all z ∈ [xy]
given u(x) = eiθx , u(y) = eiθy is:

0 if cos(θx) cos(θy) ≤ 0

p
[−π/2,π/2]
t (θx, θy)/pt(θx, θy) if θx, θy ∈ (−π/2, π/2)

p
[−π/2,π/2]
t (θx − π, θy − π)/pt(θx, θy) if θx, θy ∈ (π/2, 3π/2) mod 2π

The first case corresponds to two spins in the closure of the two connected components
of U\{i,−i}. Here p

[a,b]
t denotes the heat kernel for linear Brownian motion in the segment

[a, b], absorbed on the boundary. By a repeated use of the reflection principle, one has (see.
e.g. [10], Appendix 1.6)

p
[−π/2,π/2]
t (θ1, θ2) =

1√
2πt

∑
n∈Z

(
e−

1
2t

(θ1−θ2+2nπ)2 − e−
1
2t

(θ1+θ2+(2n−1)π)2
)
. (3.7)
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Hence the conditional probability can be written as

ft(θ1 − θ2)− ft(θ1 + θ2 − π)

ft(θ1 − θ2)
1cos(θx) cos(θy)>0 =

pt(θ1, θ2)− pt(θ1, π − θ2)

pt(θ1, θ2)
1cos(θx) cos(θy)>0,

(3.8)
where ft(x) =

∑
n∈Z exp(− 1

2t
(x + 2nπ)2). Note that the second expression has a simple

interpretation (and direct proof) in terms of a single application of the reflection principle
(across the vertical axis) applied directly to the BM on U (rather then repeated applications
of the reflection principle to its lift to R).

If x, y ∈ G, the conditional probability of x
{±i}c←→ y given θ|G is the probability that x and

y are connected by a random cluster sampled as follows: for each (xy) ∈ E, the edge is open
in the random cluster with probability (4.12) independently of other edges.

We consider an underlying graph G which is connected and with a non-empty subset
∂ ⊂ V designated as the boundary. We consider the Villain model with boundary conditions
θ = 1 on ∂; 〈·〉 denotes the expectation under the corresponding Villain measure. Under this
measure, we remark that the distribution of (ux)x is equal to that of (ūx)x, and consequently
〈eiθx〉 = 〈cos(θx)〉 ∈ R for all x ∈ G̃.

The following proposition relates the asymptotics of the field eikθx with k = 1 to those of
the connectivity properties of the clusters of spins in {±i}c.

Proposition 3.2. For each t0 > 0, there is δ = δ(t0, deg(x)) > 0 such that, if t(xy) ≥ t0 for
all y ∼ x, then

δ ≤ 〈cos(θx)〉

P(x
{±i}c←→ ∂)

≤ 1.

The proof of the upper bound relies on exact cancellations using the strong Markov
property of the extended Villain model and an appropriate reflection, and the lower bound
follows from a local resampling of the spins nearby the site x, on the random cluster event.

Proof. Let C ⊂ G̃ denote the cluster

C = {y ∈ G̃ : y
{±i}c←→ ∂}

a random open subset of G̃. Consider the transformation σ : Ω = C0(G̃,U)→ Ω given by:{
σ(u)y = uy if y ∈ C
σ(u)y = −uy if y /∈ C

By the strong Markov property, σ is a measure-preserving transformation (this can be seen
as a reflection principle). Consequently,

〈cos(θx)1x/∈C〉 = 〈cos(π − θx)1x/∈C〉 = 0

which gives already the claimed upper bound. See the left part of Figure 1 for an illustration.
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Figure 1: Left figure: The inner boundary of the random cluster C is in green and is obtained
as an interpolation of the blue spins ↑↓. Each spin inside this green loop is reflected over
(Oy) by the map σ. Right figure: a 1-neighborhood of a vertex x in G; y ∈ N are the blue
disks, the star metric graph G̃x has five branches, and y ∈ S are further surrounded by red
circles.

On the event x ∈ C, θx ∈ (−π
2
, π

2
) (because θ = 0 on ∂), and cos(θx) > 0; we have to

show that E(cos(θx)|x ∈ C) ≥ δ > 0. We will prove this by using the local randomness near
the site x.

Let G̃x ⊂ G̃ be the union of segments connected to x, a star metric graph. Let S be the
set of neighbors of x (in G) that are connected to the boundary by a path outside of G̃x.
Then x ∈ C if and only if S is non-empty, and x is connected to S in G̃x. See the right part
of Figure 1.

Let N be the set of neighbors of x. Using that cos(θx) ≥ 0 when {x ∈ C} occurs, we can
bound from below

E(cos(θx)1x∈C) ≥ 1√
2

∑
N⊃s 6=∅

P(θx ∈ (−π
4
,
π

4
), x↔ s, S = s).

Furthermore, since the conditional laws of the spins in G̃x and the ones in G̃\G̃x are indepen-
dent given (θy : y ∈ N), we have

P(θx ∈ (−π
4
,
π

4
), x↔ s, S = s|(θy)y∈N) = PG̃x(θx ∈ (−π

4
,
π

4
), x↔ s|(θy)y∈N)P(S = s|(θy)y∈N)

Then we use

PG̃x(θx ∈ (−π
4
,
π

4
), x↔ s|(θy)y∈N) = PG̃x(θx ∈ (−π

4
,
π

4
)|(θy)y∈N , x↔ s)PG̃x(x↔ s|(θy)y∈N)

Hence, since

P(x ∈ C, S = s) = E
(
PG̃x(x↔ s|(θy)y∈N)P(S = s|(θy)y∈N)

)
,
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we just need a local estimate in G̃x of the form

PG̃x(θx ∈ (−π
4
,
π

4
)|x↔ s, (θy)y∈N) ≥ δ,

uniformly in (θy)y∈N (with θy ∈ (−π
2
, π

2
) if y ∈ s).

This boils down to standard estimates of the form:

Px(Bt ∈ (c, d)|∀s ∈ [0, t],Bs ∈ (a, b)) ≥ δ > 0

uniformly in t ≥ t0 > 0 and x ∈ (a, b), where a < c < d < b and B is standard Brownian
motion (started from x under Px). This can be e.g. read off explicit formulae of the form
(3.7).

Remark. With free boundary conditions or on the torus, for x, y ∈ G, one can fix θy = 0
using global rotational invariance and set ∂ = {y} to obtain

〈ei(θx−θy)〉 � P(x
{±ieiθy}c←→ y).

Proposition 3.2 dealt with the case k = 1 for which eikθx = σx. In the following propo-
sition, we provide a geometric interpretation to ei2θx = σ2

x in which clusters of spins in the
half-circles (ξ,−ξ) and (ξ̄,−ξ̄) arise where ξ := eiπ/4. The set-up is as before.

Proposition 3.3. For each t0 > 0, there is δ = δ(t0, deg(x)) > 0 such that, if t(xy) ≥ t0 for
all y ∼ x, then

δ ≤ 〈cos(2θx)〉

P(x
{±ξ}c←→ ∂, x

{±ξ̄}c←→ ∂)
≤ 1.

The scheme of the proof is similar to that of Proposition 3.2. However, finding the appro-
priate random cluster connection event in order to obtain exact cancellations via reflections
becomes more involved.

Proof. Consider the clusters

C1 = {y ∈ G̃ : y
{±ξ}c←→ ∂}

C2 = {y ∈ G̃ : y
{±ξ̄}c←→ ∂}

and the measure-preserving transformations σ1, σ2:

σ1(u)x = ux if u ∈ C1, σ1(u)x = ξ2ux otherwise

σ2(u)x = ux if u ∈ C2, σ2(u)x = ξ̄2ux otherwise

Remark that the set {x : ux ∈ {±ξ}} is preserved both by σ1 and σ2 (and similarly for
{x : ux ∈ {±ξ̄}}); in particular both σ1 and σ2 preserve the events x ∈ C1, x ∈ C2 and their
complements. Moreover, if x /∈ Ci, <((σi(u)x)

2) = −<(u2
x). It follows that

〈cos(2θx)1A〉 = 0
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Figure 2: Left figure: the maps z 7→ ξ2z and z 7→ ξ
2
z are the reflection across (±ξ) and (±ξ)

involved in the definition of σ1 and σ2. Right figure: The point x belongs to the intersection
of the clusters C1 and C2. The colors blue, green, and orange denote spins with values in the
south, east and north quadrant respectively. The path in green contains spins in [−π/4, π/4]
and then splits in points in C1 (in blue) and C2 (in orange).

if A is one of three exclusive connection events: x /∈ C1, x ∈ C2; or x ∈ C1, x /∈ C2; or
x /∈ C1, x /∈ C2. So

〈cos(2θx)〉 = 〈cos(2θx)1x∈C1∩C2〉.

Moreover, on the event {x ∈ C1 ∩ C2}, θx ∈ (−π
4
, π

4
) and cos(2θx) > 0. For the lower bound

one argues as in the proof of Proposition 3.2.

Cluster-swapping algorithm. The type of conditional spin-flip measure-preserving trans-
formations also provides a cluster-swapping algorithm for sampling the Villain model, akin
to the classical Swendsen-Wang algorithm [39] for the Ising model. This is closely related to
the Wolff algorithm [43]

The underlying graph is G (typically a box in {1, . . . , N}d ⊂ Zd, or a box (Z/NZ)d). The
boundary conditions are: θ = 0 on the boundary ∂ (e.g. for a box), or free (e.g. for a torus).

One step of the algorithm consists of:

1. Pick an angle ν uniformly in [0, 2π].

2. For each edge (xy) ∈ E, declare the edge open with probability:
gt(θx − ν, θy − ν) if cos(θx − ν) > 0 and cos(θy − ν) > 0
gt(π + (θx − ν), π + (θy − ν)) if cos(θx − ν) < 0 and cos(θy − ν) < 0
0 otherwise

3. For each cluster C (connected component of open edges):
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• (case with boundary) if C is connected to the boundary, do nothing

• otherwise, with probability 1/2, do nothing; with probability 1/2, for all x ∈ C
replace θx with 2ν + π − θx mod 2π.

Repeat until (close enough to) equilibrium.
Remark that the step is equivalent to the following. Sample σ̃, the extension of σ = eiθ

to the cable system, conditionally on σ; resample σ̃ conditionally on =(e−iν σ̃); restrict it
back to G. In other words, the role of extended configuration played by the Edwards-Sokal
coupling for the Swendsen-Wang algorithm is played here by the cable system extension.

For θ1, θ2 ∈ (−π
2
, π

2
),

gt(θ1, θ2) =
ft(θ1 − θ2)− ft(θ1 + θ2 − π)

ft(θ1 − θ2)

where ft(x) =
∑

n∈Z exp(− 1
2t

(x + 2nπ)2), an even, 2π-periodic function. If t (a fixed tem-
perature parameter) is small (t < 2π) (resp. large, t ≥ 2π), the LHS of (2.1) (resp. RHS
of (2.1)) converges faster. In the first case, with x ∈ [−π, π], a truncation of the series to
n ∈ {−2, . . . , 2} gives a good approximation; in the second case, a truncation to n ∈ {1, 2}.

4 Generalization to the O(2) model

Definition of the model and examples. We consider a spin model on a graph G where
spins (ux)x∈G take values on the unit circle with interactions given by

P(du) ∝
∏

(xy)∈E

w(ux, uy)
∏
x

dθx (4.9)

Here w(u, v) ∈ (0,∞) and ux = eiθx . We assume that w is invariant under rotations and
reflections. Typically, we want to favor configurations of spins that are aligned so it is
natural to assume that w(·, ·) is continuous and that θ 7→ w(1, eiθ) is increasing on [−π, 0]
and decreasing on [0, π].

Let us mention some examples: when w is the heat kernel on the unit circle (2.2), this
corresponds to the Villain model. Furthermore, taking w(ux, uy) = eβux·uy gives the classical
XY model. More generally, this covers the O(2) model (see, e.g. [24, Section 9]).

In what follows, we denote by R the reflection w.r.t the imaginary axis (for z ∈ C,
R(z) = −z̄). We will be interested in clusters of spins that lie in the same half circles UL :=
ei[−π/2,π/2], UR := ei[π/2,3π/2], built by open/closed bonds. We will add extra randomness to
this model by conditionally sampling open/closed bonds independently of each others, given
the spins on G. We fix the boundary conditions to be ux = 1 for x ∈ ∂G.

In a context of numerical simulations to estimate physical observables of the critical Ising
and XY models, Wolff [43] introduced an algorithm that revolves around cluster reflections
that generalize the Swendsen-Wang algorithm for Potts spins [39]. The algorithm considers
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O(n) spins models (for which spins take values in Sn−1 and the interaction is given by eβσx·σy).
On a lattice with periodic boundary conditions, a uniform reflection R and a uniform site x
are chosen. The spin at x is reflected via R and so is its cluster, made of bonds open with
explicit probabilities given the value of the spins (see [43, Equation (5)]). The construction
of the clusters below (from the next paragraph up to Lemma 4.1) provide an extension of
Wolff’s considerations.

Cluster distribution and swapping map σx. We motivate here the choice of extended
model (u, e) where u refers to the above spin model and e refers to a collection of bonds
e = (exy)(xy)∈E we will consider. We say that (xy) is open if exy = 1 and close if exy = 0.

We look for a probability distribution on bonds p(ux, uy) = P(exy = 1) which satisfies
p(ux, uy) = 0 if ux, uy lie in the two different sides of U, p(R(u), R(v)) = p(u, v) for every
u, v and such that the following maps σ̄z : (u, e) 7→ (σz(u, e), e) are measure-preserving for
any point z ∈ G: if z is connected to the boundary, then σz(u, e) = u. If this is not the case,
then σz(u, e)y = R(uy) for each y ∈ Cz, the cluster containing z, and σz(u, e)y = uy for every
y ∈ G \ Cz. This transformation doesn’t affect the clusters but only the spins.

Then, we will consider the random cluster model sampled as follows: conditionally on
(ux)x∈G, for each (xy) ∈ E, the edge is open in the random cluster with probability p(ux, uy)
independently of other edges.

We denote by P the distribution on spins u and bonds e obtained by the combination of
w and p. Clearly, if z is connected to the boundary in u, then dP (σ̄z(u, e))/dP (u, e) = 1. If
this is not the case, then

dP (σ̄z(u, e))

dP (u, e)
=

∏
x∈Cz ,y∈G\Cz ,x∼y

w(R(ux), uy)

w(ux, uy)

1− p(R(ux), uy)

1− p(ux, uy)
. (4.10)

If ux, uy are in opposite sides, p(ux, uy) = 0 and

w(R(ux), uy)

w(ux, uy)

1− p(R(ux), uy)

1− p(ux, uy)
= 1⇒ p(R(ux), uy) = 1− w(ux, uy)

w(R(ux), uy)
,

which is in (0, 1) from the assumptions on w (positivity, finiteness and monotonicity). The
other case is symmetric: if ux, uy are in the same side, p(R(ux), uy) = 0 and

w(R(ux), uy)

w(ux, uy)

1− p(R(ux), uy)

1− p(ux, uy)
= 1⇒ p(ux, uy) = 1− w(R(ux), uy)

w(ux, uy)
.

These two conditions are the same given that R2 = Id.
This choice of probability for opening/closing bonds, i.e.

p(ux, uy) = (1− w(R(ux), uy)

w(ux, uy)
)1ux,uy are in the same side of U,

12



gives dP (σ̄z(u,e))
dP (u,e)

= 1 so that, for any function F : UG × {0, 1}E → R,

E(F (σ̄z(u, e))) =

∫
F (σ̄z(u, e))dP (u, e) =

∫
F (σ̄z(u, e))dP (σz(u, e)) = E(F (u, e)).

We record this in the following lemma. Also, we note that (4.11) below is a generalization
of (3.8) to general weights.

Lemma 4.1. Consider the extended model with random clusters (u, e) where u = (ux)x∈G is
as in (4.9) and e = (exy)(xy)∈E ⊂ {0, 1}E is obtained by opening edges (i.e., setting exy = 1)
independently of other edges given the spins with probability

p(ux, uy) = (1− w(R(ux), uy)

w(ux, uy)
)1ux,uy are in the same side of U. (4.11)

Then, for every z ∈ G, (u, e) 7→ σ̄z(u, e) is measure preserving.

We observe that the clusters considered in this lemma, conditionally on the spins, coincide
with those of Chayes in [14]. Indeed, with his notation (cos θx, sin θx) = (axσx, bxτx) with
σx, τx ∈ {−1, 1}. When cos(θx) cos(θy) > 0,

w(Rux, uy)

w(ux, uy)
=
eβ cos(π−θx−θy)

eβ cos(θx−θy)
= e−2β cos(θx) cos(θy) = e−2βaxay .

In his paper, this term corresponds to the FK expansion of the Ising model associated to
the σx’s (see equation (7) in [14]). These clusters are also included in the general exposition
of Cohen-Alloro and Peled, see the paragraph on spins O(n) models in Section 2 of [17].

With the same assumptions as above, we have

Proposition 4.2. There is δ = δ(deg(x)) > 0 such that,

δ ≤ 〈cos(θx)〉
P(x

C←→ ∂)
≤ 1.

This is a generalization of Proposition 3.2. However, the strong Markov property of the
extended Villain model on edges is lost and we instead rely on the swapping map of the
previous lemma.

Proof. We start with the upper bound. We use the measure preserving map σ̄x (Lemma 4.1)
to obtain

E(<(ux)1Cx∩∂G=∅) = E(−<(ux)1Cx∩∂G=∅) = 0.

Here, Cx ∩ ∂G = ∅ is equivalent to x
C= ∂ so the spin ux is reflected. In combination with

θx
(d)
= θx, the upper bound follows.

13



For the lower bound, the same scheme as in the proof of Proposition 3.2 applies (instead
of using the local randomness in the metric graph G̃x we use the randomness of the adjacent
bonds). This time, the result boils down to a lower bound on

P(θx ∈ [−π/4, π/4] | x↔ s, (θy)y∈N).

Here, instead of relying on Brownian motion estimates, this is based on the following.
Suppose the graph has only one edge (xy) and uy is fixed in UR. We want a lower bound on

P(ux ∈ ei[−π/4,π/4] | (xy) is open , uy),

which is uniform in uy ∈ ei[−π/2,π/2]. This follows from the expression (Bayes formula)

P(dux | (xy) is open , uy) =
w(ux, uy)p(ux, uy)∫

UR
w(v, uy)p(v, uy)λ(dv)

dux,

where λ is the Lebesgue measure on the unit circle U. This implies, by integrating the above
equation and given the explicit expression of p(ux, uy) in (4.11),

P(ux ∈ ei[−π/4,π/4] | (xy) is open , uy) =
P(ux ∈ ei[−π/4,π/4] | uy)− P(ux ∈ Rei[−π/4,π/4] | uy)

P(ux ∈ UR | uy)− P(ux ∈ UL | uy)
.

This function is continuous and positive in uy ∈ UR. Indeed, it is clear away from uy = ±i.
Furthermore, as uy → i,∫

ei[−π/4,π/4] w(u, uy)− w(u,Ruy)λ(du)∫
ei[−π/2,π/2] w(u, uy)− w(u,Ruy)λ(du)

→

∫
ei[−π/4,π/4]

d
dh |h=0

w(u, ieih)λ(du)∫
ei[−π/2,π/2]

d
dh |h=0

w(u, ieih)λ(du)
> 0

as w(u, ie−ih)− w(u, ieih) = −2h d
dh |h=0

w(u, ieih) + o(h), from the strict monotonicity of w.

Note that when w(ux, uy) = ρ(cos(θx − θy)) with ρ increasing, the RHS is equal to
ρ(
√

2/2)−ρ(−
√

2/2)
ρ(1)−ρ(−1)

when uy = i.
The general case is treated similarly. We roughly sketch it and omit the details. In this

case, with s 6= ∅, we write

P(dux | x↔ s, (uy)y∈N) =

∏
y∼xw(ux, uy)

∏
z∈s p(ux, uz)∫

UR

∏
y∼xw(u, uy)

∏
z∈s p(u, uz)λ(du)

dux.

There we integrate in ei[−π/4,π/4]. The y’s in N\s do not cause concern. For those in s, we
use w(ux, uy)p(ux, uy) = w(ux, uy)− w(ux, Ruy) and proceed as above.

Clusters correlation. The clusters we introduced in the Villain model are all measurable
with respect to the extended model with the cable systems. There are two clusters in
Proposition 3.3 that naturally live in the same space (in term of randomness). To consider
two random clusters associated with pairs of open/close bonds for the model 4.9, we need

14



to prescribe their joint distribution. The choice we make is motivated by the explicit joint
distribution for the Villain model, written in a more general fashion.

We still use the expression of the bond probability from (4.11), i.e.

p(ux, uy) = (1− w(R(ux), uy)

w(ux, uy)
)1ux,uy are in the same side

when considering reflections associated with two half-circles. We will consider the clusters
C1 (associated with the half-circles separated by ξ, −ξ, with reflection R = R1) made of
what we call bonds 1, denoted by e1

xy, and C2 (associated with the half-circles separated by

ξ, −ξ, with reflection R = R2), made of bonds 2, denoted by e2
xy. We also denote by Cz

i the
connected component of Ci which contains z.

To define them on the same probability space, it is enough to impose the covariance or
correlation between the two events. If X ∼ Ber(p), Y ∼ Ber(q), then c = P(X = 1, Y = 1)
determines the joint distribution of X and Y as well. (Note also that Cov(X, Y ) = c− pq.)

P(X = 1, Y = 1) = c

P(X = 1, Y = 0) = p− c
P(X = 0, Y = 1) = q − c
P(X = 0, Y = 0) = 1− p− q + c

These equalities immediately imply the constraints:

max(0, p+ q − 1) ≤ c ≤ min(p, q) (4.12)

and any c is this range can be chosen.
In the case of the Villain model we can compute the corresponding value of c above

explicitly. We have in this case

w(ux, uy) = pUt (θ1, θ2), where ux = eiθ1 , uy = eiθ2 .

Recalling ξ = eiπ/4, with R1(ux) = ξ2ux (the reflection fixing ξ and −ξ), and R2(ux) = ξ
2
ux

(the one fixing ξ̄ and −ξ̄), we observe that

pxy = P(e1
xy = 1) = (1− w(R1ux, uy)

w(ux, uy)
)1ux,uy are in the same side of {±ξ}c , (4.13)

qxy = P(e2
xy = 1) = (1− w(R2ux, uy)

w(ux, uy)
)1ux,uy are in the same side of {±ξ}c , (4.14)

and

c = P(e1
xy = 1, e2

xy = 1) =
p

[−π/4,π/4]
t (θ1, θ2)

pUt (θ1, θ2)
1ux,uy∈[−π/4,π/4] mod π/2. (4.15)
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Furthermore, by using the reflection principle and splitting the following series with k
odd and k even, we have

p
[−π/4,π/4]
t =

∑
k∈Z

pt(θ1, θ2 + kπ)− pt(θ1,−θ2 + kπ − π/2)

=
∑
k∈Z

pt(θ1, θ2 + 2kπ) +
∑
k∈Z

pt(θ1, θ2 + 2kπ + π)

−
∑
k∈Z

pt(θ1 + θ2 + 2kπ + π/2)−
∑
k∈Z

pt(θ1 + θ2 + 2kπ − π/2)

=w(ux, uy) + w(ux,−uy)− w(R1(ux), uy)− w(R2(ux), uy),

since

w(R1(ux), uy) = w(ei(π/2−θ1), eiθ2) =
∑
k∈Z

pt(θ1 + θ2 + 2kπ − π/2),

w(R2(ux), uy) = w(e−i(π/2+θ1), eiθ2) =
∑
k∈Z

pt(θ1 + θ2 + 2kπ + π/2).

Hence, in the Villain model, c defined as in (4.15) can be expressed as

c = (1− w(R1ux, uy)

w(ux, uy)
− w(R2ux, uy)

w(ux, uy)
+
w(ux,−uy)
w(ux, uy)

)1ux,uy∈[−π/4,π/4] mod π/2. (4.16)

Alternatively, this can also be seen by using directly the reflection principle (or method of
images) for Brownian motion on the circle. Furthermore, we note that R1R2 = R2R1 = −Id.

Remark. For a general weight function as in (4.9), as soon as c defined in (4.15) satisfies
c ≥ 0, the other constraints in (4.12) are all satisfied. Indeed, if ux, uy are not in the same
connected component of U\{±ξ,±ξ̄}, cxy = 0 ≤ pxy. When they are in the same component,
pxy ≥ cxy from the fact that w(R2ux, uy) ≥ w(−ux, uy) (the spins in the first term are in
adjacent connected components, whereas they are in opposite components in the second one).
Similarly, we obtain qxy ≥ cxy. Finally, if the spins are not in the same component, either
pxy = 0 or qxy = 0 and pxy+qxy−1 ≤ 0. Else, it is equal to cxy−w(−ux, uy)/w(ux, uy) ≤ cxy.

Remark. In the XY model, the non-negativity of c in (4.16) boils down to the following
inequality: for every θx, θy ∈ [−π/4, π/4],

eβ cos(θx−θy) + e−β cos(θx−θy) ≥ eβ sin(θx+θy) + e−β sin(θx+θy).

For any w, this becomes an equality when θx ∈ {−π/4, π/4}, for every θy, since one reflection
fixes ux and the other maps it to −ux. By a change of variables u = θx− θy, v = θx + θy, we
see that

d

du
(eβ cosu+e−β cosu) = −β sinu (eβ cosu−e−β cosu),

d

dv
(eβ sin v+e−β sin v) = β cos v (eβ sin v−e−β sin v)
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This is equal to zero when u = 0 mod π or u = π/2 mod π and the same result holds for
v. The case u = 0 corresponds to θx = θy, and v = 0 gives θx = −θy. In this case, we indeed
have eβ + e−β ≥ 2.

In the case of a more general increasing function ρ : [−1, 1] → (0,∞) and w(ux, uy) =
ρ(cos(θx − θy)), this becomes

d

du
ρ(cosu) = − sinu (ρ′(cosu)− ρ′(− cosu)),

d

dv
ρ(sin v) = cos v (ρ′(sin v)− ρ′(− sin v)).

If ρ is strictly convex, ρ′ is increasing and the condition boils down again to ρ(1) + ρ(−1) ≥
2ρ(0), which is also satisfied by the convexity assumption.

For the following Proposition 4.3, Lemma 4.4 and Theorem 4.5, we consider an extended
model (i.e., with additional pairs of bonds) for which c defined in (4.16) satisfies the con-
straints (4.12) with p, q respectively given in (4.13) and (4.14).

Proposition 4.3. There is δ = δ(deg(x)) > 0 such that,

δ ≤ 〈cos(2θx)〉
P(x

C1←→ ∂, x
C2←→ ∂)

≤ 1.

where C1 alone (resp. C2) corresponds to clusters of bonds that are open with probability p
as in (4.13) (resp. q as in (4.14)), with correlation determined by the parameter c in (4.16).

To prove this proposition, we need to introduce the map σz1 which reflects the spins
of the cluster Cz

1 using R1 when z is not connected to ∂ through C1 (equivalently, when
Cz

1 ∩ ∂G = ∅). The map σ̄z2 is defined analogously with C2 and R2. We also introduce
σ̄zi : (u, e) 7→ (σzi (u, e), e). Here, e = ((e1

xy)(xy)∈E, (e
2
xy)(xy)∈E).

We note that if two neighboring spins in C1 are flipped using R1 then: if they are in the
same arc of U for C2, they still are after reflection by R1; if there are not in the same arc for
C2, this is also preserved after reflection by R1.

Lemma 4.4. The maps σ̄z1 and σ̄z2 defined on the space ((ux)x∈G, (e
1
xy)(xy)∈E, (e

2
xy)(xy)∈E) are

measure preserving.

We postpone the proof of Lemma 4.4 and prove first Proposition 4.3.

Proof of Proposition 4.3. The upper bound relies on the exact cancellations coming from
the invariance under σ̄zi (Lemma 4.4) with the reflections of the spins. Again, we emphasize
that e is unaffected by these maps and only spins may be affected. Therefore, connectivity
properties of the random clusters remain unchanged, and spins are flipped. The remaining
details are in the proof of Proposition 3.3.

The lower bound is obtained as before.

Altogether, we have
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Theorem 4.5. Consider an O(2) model as in (4.9), and suppose furthermore that the weight
function w(eiθx , eiθy) is given by the Villain model or by ρ(cos(θx−θy)) with ρ strictly convex.
Then, there exists extended models ((ux)x∈G, (exy)(xy)∈E) and ((ux)x∈G, (e

1
xy)(xy)∈E, (e

2
xy)(xy)∈E)

with random clusters C and (C1, C2) such that

δ ≤ 〈cos(θx)〉
P(x

C←→ ∂)
≤ 1, δ ≤ 〈cos(2θx)〉

P(x
C1←→ ∂, x

C2←→ ∂)
≤ 1,

where δ depends only on the degree of x and on the weight function w.
Furthermore, the assumptions include the case of the XY model and the distribution of

the extensions with bonds coincides with the ones associated with the extended Villain model
with cable systems.

Remark. Let us mention that the convexity assumption in the above theorem is used
only to ensure the term c in (4.15) is non-negative. We could instead simply make that
assumption.

Proof. The result follows by combining Propositions 3.2, 3.3, 4.2, and 4.3.

Now, we come back to the proof that was skipped and which is the only remaining part
to obtain Theorem 4.5.

Proof of Lemma 4.4. We have to show that the map σ̄z1 associated with reflecting spins of
the cluster Cz

1 using R1 (when z is not connected to ∂ through C1) is measure-preserving.
The result for the map σ̄z2 follows by symmetry.

To this end, we will make use of the exact expression of c in (4.16) and of pxy, qxy. As in
the proof of Lemma 4.1, we want the analogue of(4.10) to be equal to one. However, in this
equation only one case arose whereas now we have to take into account several possibilities.

To simplify the notation, we set

b0
xy := P(e1

xy = 0, e2
xy = 0) = 1− pxy − qxy + cxy,

b1
xy := P(e1

xy = 1, e2
xy = 0) = pxy − cxy,

b2
xy := P(e1

xy = 0, e2
xy = 1) = qxy − cxy.

Spins and bonds outside of Cz
1 are not affected by σz1 and the same holds for bonds

between vertices in Cz
1 : a) if both bonds are open (with probability cxy), after reflection R1

of the spins, by direct inspection the probability (4.16) is not affected. b) In the case where
only bond 1 is open (with probability b1

xy) the probability remains unchanged by R1 since
pxy in (4.13) does not change.

Most of the remaining work lies in the case of edges (xy) at the boundary of Cz
1 where

x ∈ Cz
1 and x ∼ y /∈ Cz

1 . We distinguish all possible cases. It could be useful to the reader
to look at Figure 3 when following the arguments, although most cases are not covered in
the figure.
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Figure 3: Some of the cases and reflections involved in the proof of Lemma 4.4

Cases where both bonds are closed. There are 4 cases (others follow by symmetries).
We partition U in four arcs of equal size, I1, I2, I3, I4, ordered counterclockwise and with
I1 = [−π/4, π/4] mod 2π (see Figure 3). We show below that, for every case , the following
relation holds,

w(R1ux, uy)

w(ux, uy)

b0
R1ux,uy

b0
ux,uy

= 1.

Suppose ux, uy ∈ I1. Only ux is reflected and R1ux ∈ I2 so pxy = cxy = 0 for the new
configuration σz1(u) so this reduces to

b0
R1ux,uy

= 1− (1− w(R2R1ux, uy)

w(R1ux, uy)
) =

w(R2R1ux, uy)

w(R1ux, uy)
.

The result follows from

b0
ux,uy =1− (1− w(R1ux, uy)

w(ux, uy)
)− (1− w(R2ux, uy)

w(ux, uy)
)

+ (1− w(R1ux, uy)

w(ux, uy)
− w(R2ux, uy)

w(ux, uy)
+
w(ux,−uy)
w(ux, uy)

)

=
w(R2R1ux, uy)

w(ux, uy)
).

Suppose ux ∈ I2, uy ∈ I1. Then R1ux ∈ I1 so from the equalities of the previous case (in
reverse order)

b0
R1ux,uy

=
w(R2R1R1ux, uy)

w(R1ux, uy)
) =

w(R2ux, uy)

w(R1ux, uy)
), b0

ux,uy =
w(R2ux, uy)

w(ux, uy)
.

Suppose ux ∈ I3, uy ∈ I1. Then R1ux ∈ I4 so qxy = cxy = 0 for the new configuration
σz1(u) so this reduces to

b0
R1ux,uy

= 1− (1− w(R1R1ux, uy)

w(R1ux, uy)
) =

w(ux, uy)

w(R1ux, uy)
.

19



For the configuration u, pxy = qxy = cxy = 0 so b0
ux,uy = 1 and the result follows.

Finally, suppose ux ∈ I4, uy ∈ I1. The computations follow by the results of the previous
case and we obtain

b0
R1ux,uy

= 1, b0
ux,uy =

w(R1ux, uy)

w(ux, uy)
.

Cases where only the bond 2 is open. Similarly, we want to show that

w(R1ux, uy)

w(ux, uy)

b2
R1ux,uy

b2
ux,uy

= 1.

Here, two cases occur modulo symmetries.
Suppose ux, uy ∈ I1. Then

b2
ux,uy = (1− w(R2ux, uy)

w(ux, uy)
)− (1− w(R1ux, uy)

w(ux, uy)
− w(R2ux, uy)

w(ux, uy)
+
w(ux,−uy)
w(ux, uy)

)

=
w(R1ux, uy)

w(ux, uy)
− w(R1R2ux, uy)

w(ux, uy)
,

and since R1ux ∈ I2, cxy = 0 for σz1(u) so the result follows from

b2
R1ux,uy

= (1− w(R2R1ux, uy)

w(R1ux, uy)
).

Now, suppose ux ∈ I2, uy ∈ I1. Using the intermediate results of the previous case, we
find

b2
ux,uy = (1− w(R2ux, uy)

w(ux, uy)
)

and

b2
R1ux,uy

=
w(R1R1ux, uy)

w(R1ux, uy)
− w(R1R2R1ux, uy)

w(R1ux, uy)
=

w(ux, uy)

w(R1ux, uy)
− w(R2ux, uy)

w(R1ux, uy)
.

This concludes the proof.

5 Extensions, questions and open problems

5.1 Dilute Potts model

Following [37], the dilute Potts model is a model of spins taking values in {1, . . . , Q} with
vacancies (represented by the state 0), whose distribution is given by

P((σx)x) ∝ eK
∑
x∼y δσx,σy (1−δσxσy,0)+V

∑
x∼y δσxσy,0+D

∑
x δσx,0 , (5.17)

where δa,b = 1 if a = b and zero otherwise. It generalizes the Potts model and admits a
random-cluster representation [37, Equation (5)], as the Potts model itself [30]. It also gen-
eralizes the Blume-Capel model, a version of the Ising model with vacancies introduced in
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[9, 12], and more generally the Blume-Capel-Potts model, which was studied in the mathe-
matics literature in [29] (see, e.g., [37, Section 5]). We refer the reader to [29, 37] and the
references therein for background on these models, simulations, and their conjectured phase
diagrams.

The goal of this section is to explain in which sense the usual random cluster model (i.e.,
for Potts) can be seen from random clusters in the extension of the Potts model to cable
systems and that the models arising from this extension fall in (5.17).

The Markov chain and the cable system. We consider a continuous-time Markov
chain with Q+1 states: Q spins labeled by {1, . . . , Q} and an empty state labeled by 0. The
process evolves as follows: when in the empty state, it jumps to any other state at rate λ
and when in a spin state, it jumps to the empty state with rate 1. The invariant probability
measure of the system is given by

µ(dy) =
λ

1 +Qλ
δy 6=0 +

1

1 +Qλ
δy=0, (5.18)

as detailed balance for the measure µ is satisfied, µ1q10 = λ
1+Qλ

× 1 = 1
1+Qλ

× λ = µ0q01.

Now, we consider pt(x, y) the transition density w.r.t. µ, i.e.

Ptf(x) = Ex[f(Xt)] =
∑
y

Px(Xt = y)f(y) =

∫
pt(x, y)f(y)µ(dy),

which is a symmetric function, i.e., pt(σx, σy) = pt(σy, σx) as

pt(σx, σy) = µ(σy)
−1P(Xt = σy|X0 = σx) = µ(σx)

−1P(Xt = σx|X0 = σy). (5.19)

From Chapman-Kolmogorov Pt+sf(x) = Pt(Psf)(x), we find pt+s(x, y) =
∫
pt(x, z)ps(z, y)µ(dz)

hence the extension to a cable system.
Below, we consider the measure on spins

P (σ) ∝
∏
x∼y

pt(σx, σy)
∏
x

µ(dσx). (5.20)

More generally, one can also consider

Pu(σ) ∝ uN0(σ)
∏
x∼y

pt(σx, σy)
∏
x

µ(dσx). (5.21)

where N0(σ) is the number of vacancies in the spin configuration. The measures in (5.21)
give another parametrization of those in (5.17). Indeed, the space of the log of the weights
associated with two neighbors is 4 dimensional: equal spins, different spins, one vacancy and
one spin, and two vacancies. Here, one can write uN0(σ) =

∏
x∼y u

(δσx/deg(x)+δσy/deg(y)), where
deg(x) is the degree of the vertex x. The fourth parameter is obtained by multiplying (5.17)
or (5.21) by eA for a normalization parameter A.
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Explicit transition densities. We provide an explicit expression of pt(σx, σy). Consider
the matrix whose entry qij is given by the rate to go from state i to state j and where
i = 0 corresponds to empty spin. The eigenvalues of this matrix are 0,−Qλ − 1 both with
multiplicity 1, and −1 with multiplicity Q− 1. So, each transition probability is of the form
αe−(Qλ+1)t + βe−t + γ for every t ≥ 0. To identify (α, β, γ), we use that t → ∞ gives the
invariant probability measure µ, that t = 0 gives either 0 or 1, and for t close to 0, the rates
qi,j give the first order in t. Therefore,

γ = µ(σy), α + β + γ = δσx,σy , −α(Qλ+ 1)− β = qσx,σy ,

and we solve in (α, β),[
1 1

−(1 +Qλ) −1

] [
α
β

]
=

[
δσx,σy − µ(σy)

qσx,σy

]
,

[
α
β

]
=

1

Qλ

[
−δσx,σy + µ(σy)− qσx,σy

(1 +Qλ)(δσx,σy − µ(σy)) + qσx,σy

]
We find, for σxσy 6= 0 and σx 6= σy,

Pσx(Xt = σy) =
1

Q(1 +Qλ)
e−(Qλ+1)t − 1

Q
e−t +

λ

1 +Qλ

Pσx(Xt = 0) =
1

1 +Qλ
(1− e−(Qλ+1)t)

Pσx(Xt = σx) =
1

Q(1 +Qλ)
e−(Qλ+1)t +

Q− 1

Q
e−t +

λ

1 +Qλ

and

P0(Xt = 0) =
1

1 +Qλ
(1 +Qλe−(Qλ+1)t), P0(Xt = σx) =

λ

1 +Qλ
(1− e−(Qλ+1)t).

We note that for the transitions with an empty state, a reduced chain shows directly the
absence of e−t term. Combining theses expressions with (5.18) and (5.19) gives

pt(σx, σx) = 1− 1

Qλ
e−(1+Qλ)t +

1 + λQ

λ

Q− 1

Q
e−t, pt(σx, 0) = 1− e−(1+Qλ)t,

pt(σx, σy) = 1 +
1

Qλ
e−(1+Qλ)t − 1 + λQ

λ

1

Q
e−t, pt(0, 0) = 1 +Qλe−(1+Qλ)t.

The probabilistic representation shows that each of them is positive, for every λ, t > 0.

Clusters: correlations and connectivity. We define the clusters to be the connected
components of {x : σx = 0}c. There are Q types of clusters, one for each spin. Associated to
these is a natural percolation model where a bond is open if its extremities have the same
spin and are not separated by a zero (i.e. the Markov chain bridge has not jumped), and
closed otherwise (see Figure 4). Given the values of the spins on the vertices, a bond between
two neighbors x and y is closed if σx 6= σy or σxσy = 0, it is otherwise closed with probability

Pσx(T0 < t|Xt = σx) =
Pσx(T0 < t)

Pσx(Xt = σx)
Pσx(Xt = σx|T0 < t) =

1− e−t

Pσx(Xt = σx)

1

Q
,
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Figure 4: Left: an extended configuration with two spins (blue and red) and the empty state
(black); crosses mark jumps of the Markov chain bridges. Right: the associated random
clusters

where T0 = inf{t ≥ 0 : Xt = 0}.
With this notion of clusters and percolation model, we have the following relation between

correlations of spins and connectivity properties:

τx,y := E(δσx,σy |σxσy 6= 0)− 1

q
= (1− q−1)P(x↔ y|σxσy 6= 0) (5.22)

Indeed, E(δσx,σy |σxσy 6= 0) = E(1 · 1x↔y + δσx,σy1x=y|σxσy 6= 0) and the result follows from

P(σx = σy, T0 < t|σxσy 6= 0) = P(σx = σy|T0 < t, σxσy 6= 0)P(T0 < t|σxσy 6= 0)

=
1

q
P(x= y|σxσy 6= 0).

In the case of the random cluster model, this is [30, Theorem (1.16)], and in the diluted
random cluster one, this is [29, Equation (3.9)].

The limit λ → ∞ and the Potts model. When λ → ∞, the invariant measure µ
becomes the uniform distribution on {1, . . . , Q} and for σx 6= σy,

pt(σx, σx) = 1 + (Q− 1)e−t, pt(σx, σy) = 1− e−t.

In order to relate this limiting model with the usual random cluster model, we look for (α, β)
such that

pt(σx, σy) = eα+βδσx,σy , β = ln
1 + (Q− 1)e−t

1− e−t
, e−β =

1− e−t

1 + (Q− 1)e−t

where β is the inverse temperature of the model. To identify this extended model with the
usual coupling between the Q-Potts model and the random cluster model, we need to verify

23



that bonds are open only between neighboring spins with the same values with probability
1− e−β. When λ→∞ we get limλ→∞ Pσx(Xt = σx) = 1

Q
+ (1− 1

Q
)e−t hence

p = 1− 1− e−t

1 + (Q− 1)e−t
=

Qe−t

1 + (Q− 1)e−t
= 1− e−β

and we indeed retrieve the FK model (see Theorem (1.13) part (b) in [30]). A generalization
of this description of the coupling in the case of the Blume-Capel-Potts and diluted random
cluster models can be found in the paragraphs following the proof of Theorem 3.7 in [29].

5.2 Heisenberg and O(N) models for N ≥ 3

Similar results hold for the extension of the Villain model corresponding to O(N) models for
whichN ≥ 3 (the Brownian motion on the unit circle for the Villain model now takes values in
theN−1 sphere) or the Heisenberg model (whose edge weight is given by w(ux, uy) = eβux·uy).

The result can be stated as follows. In dimension N with the canonical basis (ei)1≤i≤N
and coordinates (xi)1≤i≤N , the spins take values in {x : x2

1 + · · ·+ x2
N = 1}. We consider the

observables xi1xi2 . . . xik for k coordinates in {1, . . . , N}, the clusters Ci of spins connected
to the boundary by avoiding the hypersurface e⊥i and staying in the half-space xi > 0, and
the boundary conditions given by the spins whose value is constant and positive in each of
these k directions and zero in the others. Then, we have (in the same sense as above), for a
lattice point z,

〈xi1(z) . . . xik(z)〉 � P(z
Ci1←→ ∂, . . . , z

Cik←→ ∂), (5.23)

where xi(z) := uz · ei. The proof relies on the same methodology as above, using now the
reflections with respect to the hypersurfaces associated with ei1 , . . . , eik .

This is a direct extension (in the dimension) of the case k = 1 and k = 2 for the Villain
model. In this latter case, x = cos(θ), y = sin(θ) then xy = sin(2θ)/2, the boundary
condition is this time given by θ = π/4 and we used the reflections over the axis (Ox)
and (Oy). (Note that by the change of variable θ 7→ θ − π/4, we retrieve the observable
sin(2θ − π/2)/2 = cos(2θ).)

5.3 Questions and open problems

Improvements of the results. Proposition 3.2 and Proposition 3.3 above (and their
extensions to other models) provide two-sided bounds between connectivity properties of
the random clusters and spin correlations. One improvement would be to prove that the
ratio of these observables converge to some positive constant. Furthermore, akin to the
incipient infinite cluster (IIC) in percolation (defined as the limit of the conditional law of
the system given that the origin is connected to the boundary of a box of size N and N →∞
at p = pc, or equivalently directly in infinite volume measure with p ↓ pc), a natural question
is to prove the existence of an IIC-type limit for the Villain model. In this case the limiting
ratios should be 〈eikθ0〉IICk for k = 1, 2 respectively.
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Higher-order spin observables. We found two random cluster connectivity events that
give two-sided uniform bounds on 〈eikθx〉: for k = 1 and k = 2. In particular, these observ-
ables have the same exponents in the KT phase. The first natural question is to generalize
this.

Question: Find a “simple” random clusters representation that encodes 〈eikθx〉 for k ≥ 3,
and more generally 〈eik1θx1eik2θx2 . . . eiknθxn 〉.

Given our results on 〈eikθx〉 for k = 1 and k = 2, it is natural to try to generalize them
to k ≥ 3, i.e. to find some connectivity events for random clusters in the extended Villain
model whose probability is up to multiplicative constant comparable to 〈eikθx〉. For k = 3,

it seems natural to consider Ci := {x ∈ G̃ : x
{±αi}c←→ ∂} where α1 = ei

π
6 , α2 = e−i

π
6 and

α3 = i, and the measure preserving mappings σi associated with the reflections Ri(z) = α2
i z̄.

However, complications arise when trying to generalize our methods to the clusters C1 ∩C2

or C1 ∩ C2 ∩ C3. For instance, the reflections do not commute anymore as R1R2(z) = ei
π
3 z

and R2R1(z) = e−i
π
3 z.

A direct generalization is to consider the following. Let A be the set of 2k-th roots
of (−1). To almost every configuration σ we associate a combinatorial type T (σ) in the
following way. On each edge of G̃, consider the points x where ux ∈ A. This consists a.s.
of a finite number of perfect sets; points where ux = α ∈ A not separated by a point where
u ∈ A \ {α} are identified as a single point in the combinatorial type, labelled by α. The
order of these new vertices (each representing a perfect set) labelled by elements of A is
recorded, but not their position.

For each pair ±α ∈ A we consider a transformation σα = σ−α defined as follows: Let
C ⊂ G̃ denote the cluster

C = {y ∈ G̃ : y
{±α}c←→ x0},

a random compact subset of G̃; x0 is a fixed point of interest. Then σα : Ω = C0(G̃,U)→ Ω
is given by: {

σ(u)y = uy if y ∈ C
σ(u)y = α2uy if y /∈ C, and ∂ /∈ C.

This gives k measure-preserving involutions. Remark that ukx0
is unchanged by application of

σ in the first case, and replaced by −ukx0
in the second case. In the case k = 1 (resp. k = 2),

these measure-preserving involutions on configuration space generate an abelian group of
order 2 (resp. 4); whereas for k ≥ 3 they generate an infinite group of measure-preserving
transformations.

Exponent interpolation. The interpolation of the events considered for k = 1 and k = 2
can be understood as “splitting and continuously sliding” the semi-circle (−i, i) in two semi-
circles (−ξ, ξ) and (ξ̄,−ξ̄) via θ 7→ (−ie−iθ, ie−iθ) and θ 7→ (−ieiθ, ieiθ) on [0, π

4
]. Given this

observation, the following question naturally arises.

Question: Does the analogue of Proposition 3.3 hold for non-integer 1 < k < 2, now
with the semi-circles (−ieiθ, ieiθ) and (−ie−iθ, ie−iθ) and θ = π

2k
?
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Our method of proof does not seem to apply directly to this extension, for the same diffi-
culties as those mentioned in Question 1. There are other natural ways to define continuous
families of critical exponents in the extended Villain model; in particular one can consider

cluster connectivities x
S←→ y (as in (3.6)), where S is a circular arc exp(i(−α, α)) with

α ∈ (0, π). This can also be made sense of if α ≥ π by lifting spins to the universal cover; i.e.
one can consider points that are connected to the boundary by a simple path along which θ
has a real lift staying in (−α, α).

More generally, in the XY model, there is only a countable family of spin operators (the
eikθ, k ∈ Z); so that e.g. in (3.5), the LHS only makes sense for kj ∈ Z, whereas the RHS is
defined for kj ∈ R. One can further ask if there are cluster connectivity or geometric events
corresponding to such non-integer kj’s.

Convergence of interfaces. The critical Ising and FK interfaces are well known to converge
to the Schramm-Loewner Evolutions and Conformal Loop Ensembles with parameter κ = 3
and κ = 16/3 [15, 7]. Extending this to q ∈ [1, 4) remains a tantalizing problem. Are there
similar results for interfaces of spins/random clusters in the Villain and XY models? To be
more precise, we raise the following

Question: Consider the extended Villain model with boundary condition θ = 0. Es-
tablish and describe the scaling limit of the loops obtained as boundaries of the cluster

{x : x
{±i}c←→ ∂}, in the low temperature phase.

A usual first step to study the scaling limit of such interfaces is to derive Russo-Seymour-
Welsh (RSW) type estimates in order to prove the existence of non-trivial subsequential
limits via the Aizenman-Burchard criterion. One can be interested more generally in the
percolation properties of these random cluster models, such as presence/absence of FKG
inequality, existence of infinite clusters, etc. In the specific case of the XY and Heisenberg
models, the FKG inequality was established in [14, 11]. Note that, as the temperature goes
to zero, the edge density of clusters goes to 1; however we still expect RSW estimates to
hold. Furthermore, it is natural to expect that this scaling limit is related with the Conformal
Loop Ensemble as well, which is characterized by conformal invariance and a domain Markov
property.

For the critical Ising model, two independent rigorous approaches have been developed
to study the conformal symmetries of the spin correlations: [18] proceeds by equating the
product of two Ising correlators with a free field (bosonic) correlator; the proof [16] was based
on convergence results for fermionic observables, used in earlier works to study the conformal
invariance and the convergence of critical Ising interfaces. In the KT phase considered here
for continuous spin systems, due to the Fröhlich-Spencer conjecture, the spins correlations
should be conformally covariant, and the conformal invariance of the scaling limit of these
interfaces should also reasonably hold. The Hausdorff dimension of the scaling limit of the
interfaces should be encoded by the asymptotics of the two-point spin correlation function,
in particular by the effective temperature of the associated limiting GFF.

However, the domain Markov property should a priori not hold: given the geometric po-
sition of the interface, the restriction of the spin field to the separated connected components
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are not independent, there is an extra randomness due to the value of the boundary spins
(they are either vertical, or horizontal, see Figure 1), which is for instance not the case in
the Ising model. Our situation is somewhat closer to the one of the XOR Ising model (where
the spin field σ1σ2 is given by the product of two independent Ising models (σ1) and (σ2))
at criticality. Indeed, the interfaces between + and − spins in this model corresponds to
interfaces between σ1 = σ2 and σ1 6= σ2. In the pre-limit, the domain Markov property does
not hold since given the position of the loop, the distribution of the restriction of the spin
field to the separated connected components are not independent.

To further draw the comparison, we need to recall the notion of two-valued local sets of
a GFF φ, denoted by A−a,b(φ), which are formally speaking points that can be reached from
the boundary by staying in the set of level lines of the free field φ in [−a, b]. For a particular
case, the boundaries of this set has the law of CLE4. Furthermore, an other particular case
was conjectured by Wilson [41] to describe the scaling limit of the interfaces of the 2d critical
XOR-Ising model: interfaces of the spin field σ1σ2. Although not proved yet, [19, 20] showed
that this scaling limit holds for the critical double random current model on the square
lattice.

The general version of these local sets, A−a,b(φ), was rigorously introduced and studied in
[4, 3] (the latter work proved in particular that the heights of the loops are independent only
in one case), and their Hausdorff dimension was computed in [38] via a relation with (the
real part of) an imaginary chaos measure, it was earlier shown in [31] that the renormalized
scaling limit of the spin configuration of an XOR-Ising model with +/+ boundary condition
agrees in law with the real part of an imaginary chaos.
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