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Abstract

We study Liouville first passage percolation metrics associated to a Gaussian free field h mollified
by the two-dimensional heat kernel p; in the bulk, and related star-scale invariant metrics. For v &€
(0,2) and & = 7, where d, is the Liouville quantum gravity dimension defined in [13], we show that

al

renormalized metrics (A, lespt*hds)te((),l) are tight with respect to the uniform topology. We also show
that subsequential limits are bi-Holder with respect to the Euclidean metric, obtain tail estimates for
side-to-side distances, and derive error bounds for the normalizing constants \;.
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1 Introduction and main statement

We consider the problem of rigorously constructing a metric for Liowville quantum gravity (LQG), a random
geometry formally given by reweighting Euclidean space by e, where h is a Gaussian free field. LQG
was originally introduced in the physics literature by Polyakov in 1981 [40]. In its mathematical form, the
LQG measure is a special case of Gaussian multiplicative chaos, introduced in [29]. In the last two decades,
there has been an explosion of interest in the probability community towards rigorously constructing the
relevant objects. In particular, the LQG measure was constructed rigorously in the regime v < 2, via a
renormalization procedure, in [21]. Other relevant work in this area includes [44] [4T] [42] 48] 3] 43} 2].

Much remains open regarding the construction of the LQG metric. When v = 1/8/3, LQG is intimately
connected with the Brownian map [31) B2 [35] and a metric for LQG has been constructed in [38], [36, 37].
Substantial work has also been devoted to understanding the distance exponents for natural discrete LQG
metrics; see [I7, 1] 23, 24, 03, @]. In [I6l 04] some non-universality results were established for first-
passage percolation distance exponents for metrics of the form e7?3ds, where ¢; is discretization of a log-
correlated Gaussian field. This indicates that precisely understanding such exponents must involve rather
fine information about the structure of the particular field in question.

The present study concerns the tightness of Liouville first-passage percolation (LFPP) metrics, which
are natural smoothed LQG metrics. This proves the existence of subsequential limiting metrics. Given this,
it remains to show that such limiting metrics are unique in law for each v € (0,2) in order to complete the
construction of the LQG metric in this regime. After this paper was posted, the latter task was carried
out in the series of works [27, 19, 28|, 25| 26], thus completing the construction. The present study follows
three main tightness results for discretized or smoothed LQG metrics. In [9], tightness of LFPP metrics
(on a discrete lattice) was proved in the small noise regime for which « is very small. In [I8], tightness was
shown for metrics arising in the same way from x-scale invariant fields, still in the small noise regime. In
[10], tightness was shown for all v < 2 for the Liouville graph distance, which is a graph metric equal to the
least number of Euclidean balls of a given LQG measure necessary to cover a path between a pair of points.

We consider a smoothed Gaussian field

os() = V7 [ [ pye—nWianan (11)

2
for ¥ € R? and 6 € (0,1), where pi(z —y) := 5~e~ = and W is a space-time white noise. This
approximation is natural since it can be uniformly compared on a compact domain with a Gaussian free field
h mollified by the heat kernel defined on a slightly larger domain, viz. ¢ ;5 and p;z* h (where * denotes the
convolution operator) are comparable. Furthermore, this approximation provides some nice invariance and
scaling properties on the full plane.



For v € (0,2), we will use the notation
§=7/dy (1.2)
where d, is the “Liouville quantum gravity dimension” defined in [I3]. It is known (see Theorem 1.2 and
Proposition 1.7 in [I3]) that the function v + 7/d, is strictly increasing and continuous on (0,2). Therefore,
in this article we will be interested in the range & € (0, (2/d2)™), where (2/d2)™ = limy42 v/d,,.

We consider the length metric e€%3ds (equivalently, the metric whose Riemannian metric tensor is given
by €2¢#3ds?), restricted to the unit square [0,1]2. We recall that a length metric is a metric such that the
distance between two points is given by the infimum over the arc lengths of paths connecting the two points.
We denote by As the median of the left-right distance of [0,1]? for the metric e?sds. Our main theorem is
the following.

Theorem 1. 1. Ify € (0,2), then (A e*%%ds)

space of continuous functions [0,1]% x [0,1]2 — RT. Furthermore, any subsequential limit is almost
surely bi-Hélder with respect to the Euclidean metric on [0,1]2.

is tight with respect to the uniform topology on the

2. Let K = [0,1]2. If h is a Gaussian free field with zero boundary conditions on a bounded open domain
*h
D containing K (extended to zero outside of D), then the internal metrics ()\\_/%egp% Lds)(;e(o’l) on K

are tight with respect to the uniform topology of continuous functions K x K — R*.

Furthermore, the normalizing constants (Xs)se(o,1) satisfy
As = 1€ 0 (VITogdl) (1.3)
_ 2
where Q = 4+ 7

A year after our article was posted, the subsequent work [I2] proved a similar result to ours when
¢ > (2/d2)~. However, in that case the tightness does not hold in the uniform topology and the Beer
topology on lower semicontinuous functions was used.

In order to establish the tightness of the family of renormalized metrics (dg;)se(0,1) := (Agleﬁ¢5ds)5e(o71),
we prove a number of uniform estimates for that family (which also hold when the approximation is the
GFF mollified by the heat kernel). Such estimates that are closed under weak convergence also apply to
subsequential limits. Let us summarize these properties. Let D denote the family of laws of dy,, 0 € (0,1)
(i.e. seen as random continuous functions on ([0, 1]2)?), and D denotes its closure under weak convergence
(i.e., D also includes the laws of all subsequential limits).

1. Under any P € D, d is P-a.s. a length metric. This is clear for the renormalized metrics dg; by
definition, and the property of being a length metric extends to limits. (See [0l Exercise 2.4.19].)

2. If d is a metric on R? and R is a rectangle, we denote by d(R) the left-right length of R for d. We have
the following tail estimates. There exists ¢, C' > 0 such that for s > 2, uniformly in P € D we have

ce 0 <P (d(R)<e®) < Ce™°", (1.4)
ce 0% < P(d(R) > e®) < Ce “Toss . (1.5)

The upper bounds are proved in Section |4} while the lower bounds are consequences of the Cameron—
Martin theorem, considering shifts of the field at the coarsest scale as in [18, Section 5.4].

3. If d is a metric on R? and R is a rectangle, we denote by Diam (R, d) the diameter of R for d. We have
the following uniform first moment bound:

sup E (Diam(R, d)) < occ. (1.6)
PeD

This is shown in the course of the proof of Proposition [27] below.



4. Under any P € D, d is P-a.s. bi-Holder with respect to the Euclidean metric and we have the following
bounds for exponents: for a < £(Q —2), 8 > £(Q + 2), and R a rectangle, the families

_ | d /
( sup M) and ( sup (:c,m/)ﬁ) (1.7)
z,x'€ER d(JC,$ ) £(d)eD z,x'€R |£C - | L(d)eD
are tight. Here £(d) means the law of d. These properties are shown in Proposition [28| below.

Let us also mention that subsequential limits are consistent with the Weyl scaling: for a function f in
the Cameron-Martin space of the Gaussian free field h, for any coupling (h, d) associated to a subsequential

limit of the sequence of laws of ((h, A;%egp%*hds))5>0, the couplings (h,d) and (h + f,e¢f - d) are mutually
absolutely continuous with respect to each other and the associated Radon-Nikodym derivative is the one
of the first marginal. This can be proved using similar arguments to those of [I8, Section 7]. An analogue
of this property for the Liouville measure together with the conservation of the Liouville volume average is
enough to characterize the Liouville measure, as seen by Shamov in [48].

It may be interesting to draw a parallel between our work and those in random planar maps, since both
aim to obtain the scaling limits of random metrics and the limiting objects are related for v = /8/3. We start
with a brief overview on the convergence of random planar maps. Chassaing and Schaeffer [7] identified n'/4
as the proper scaling and compute certain limiting functionals for random quadrangulations. Marckert and
Mokkadem [34] established limit theorems (in a sense weaker than Gromov-Hausdorft) and introduced the
Brownian map. Le Gall [30] showed tightness for rescaled 2p-angulations in the Gromov-Hausdorff topology
and shows that the limiting topology is the same as the Brownian map. Le Gall and Paulin [33] showed that
the limiting topology is that of the 2-sphere and Le Gall studied properties of geodesics in [31]. Finally, Le
Gall [32] (resp. Miermont [35]) proved the uniqueness of subsequential limits of uniform triangulations and
2p-angulations (resp. quadrangulations). In both cases, the proof relied on a careful study of geodesics and
in particular on confluence properties, together with a rough bound quantifying an approximate equivalence
of the two metrics to match.

In our framework, an important result was obtained in [I3], where the authors identified the exponent
of LFPP distances to be 1 — £Q + o(1). By contrast, in the random planar map setting, the normalization
is exactly n'/* and Chassaing and Schaeffer [7] obtained the convergence in law of some observables. In
our case, the tightness of any observable renormalized by its median is far from obvious. This is a common
feature of some concentration problems for extrema of random fields. As an analogy, one can consider the
problem of the tightness of the maxima of branching random walks (BRW), where, also by subadditivity,
the expected value of the maxima of BRW on a d-ary tree at level n is of order (z* + o(1))n for some x*
(which depends on the rate function of the distribution of the increments). A powerful and well-understood
method in proving tightness for BRW is by an explicit truncated second moment estimate which computes
the expected maxima up to additive O(1) constant (see [4] for maxima of BRW and [5] for maxima of discrete
GFF). In contrast, in our setup, explicit computation on the distance seems really difficult; in fact it remains
a major challenge to compute the value of the distance exponent, let alone computing the distance up to
constant. In order to circumvent this difficulty, we had to build our proof by exploring delicate intrinsic
structure of the distance. We point out here that it was shown in [I] that for v € (0,2), 1 —£Q > 0 (and it
is believed to be > 0), therefore the normalization As should be thought as small.

Furthermore, in our setting where the metrics are on a compact subset of C, we can directly use the
uniform topology instead of working with the Gromov-Hausdorff topology (note that the former is stronger
than the latter). In this paper, we show tightness for the full subcritical range v € (0, 2) of renormalized side-
to-side crossing lengths, point-to-point distance and metrics. Limiting metrics are bi-Holder with respect to
the Euclidean metric.



1.1 Strategy of the proof and comparison with previous works

In contrast with previous works on the LQG measure, the variational problem defining the LQG metric
means that most direct computations are impossible, and in particular most of techniques used in the theory
of Gaussian multiplicative chaos and LQG measure are unavailable. This necessitates the more intricate
multiscale geometric arguments that we employ.

Our tightness proof relies on two key ingredients, a Russo-Seymour-Welsh argument and multiscale
analysis. In both parts we extend and refine many arguments used in the previous works [9] [I8, [I0] on the
tightness of various types of LQG metrics.

Russo-Seymour-Welsh. The RSW argument relates, to within a constant factor, quantiles of the left—
right LFPP crossing distances of a “portrait” rectangle and of a “landscape” rectangle. (By a crossing
distance we simply mean the distance between two opposite sides of a rectangle.) In [9, [I0], these crossings
are referred to as “easy” and “hard” respectively. The utility of such a result is that crossings of larger
rectangles necessarily induce easy crossings of subrectangles, while hard crossings of smaller rectangles can
be glued together to create crossings of larger rectangles. Thus, multiscale analysis arguments can establish
lower bounds in terms of easy crossings and upper bounds in terms of hard crossings. RSW arguments then
allow these bounds to be compared.

RSW arguments originated in the works [45, [47, [46] for Bernoulli percolation, and have since been adapted
to many percolation settings. The work [9] introduced an RSW result for LFPP in the small noise regime
based on an RSW result for Voronoi percolation devised by Tassion [49]. Tassion’s result is beautiful but
intricate, and becomes quite complex when it is adapted to take into account the weights of crossing in the
first-passage percolation setting, as was done in [9].

The RSW approach of this paper is based on the much simpler approach introduced in [I8], which relies
on an approximate conformal invariance of the field. (We recall that the Gaussian free field is exactly
conformally invariant in dimension 2, and that the LQG measure enjoys an exact conformal covariance.)
Roughly speaking, the conformal invariance argument relies on writing down a conformal map between the
portrait and landscape rectangles, and analyzing the effect of such a map on crossings of the rectangle. We
note that the approximate conformal invariance used in this paper relies in an important way on the exact
independence of different “scales” of the field, which is manifest in the independence of the white noise
at different times in the expression . Thus, the argument we use here is not immediately applicable
to mollifications of the Gaussian free field by general mollifiers (for example, the common “circle-average
approximation” of the GFF). The RSW argument of [I8] was also adapted in [I0] to the Liouville graph
distance case.

Tail estimates. Once the RSW result is established, we derive tail estimates with respect to fixed quantiles.
The lower tail estimate is unconditional, while the upper tail estimate depends on a quantity A, measuring
the concentration at the current scale, which will later be uniformly bounded by an inductive argument.

Multiscale analysis. With RSW and tail estimates in hand, we turn to the multiscale analysis part of the
paper. This argument turns on the Condition (T) formulated in below, which, informally, states that
the arclength of the crossing is not concentrated on a small number of subarcs of small Euclidean diameter.
The argument of [I0] requires similar input, which is a key role of the subcriticality v < 2. While [10]
relies directly on certain scaling symmetries of the Liouville graph distance to use subcriticality, the present
work relies on the characterization of the Hausdorff dimension d. obtained in [I3], along with some weak
multiplicativity arguments and concentration obtained from percolation arguments.



Condition (T). Our formulation of Condition (T), which has not appeared in previous works, precisely
captures the property of the metric needed to obtain the tightness of the left—right crossing distances, the
existence of the exponent, and the tail estimates (via a uniform bound on the A,,).

Condition (T) makes sense for LFPP with any underlying field and any parameter £. In particular, this
condition or a variant thereof could possibly hold for LFPP for some £ > 2/dy. Therefore, a byproduct
of the present work is a simple criterion (that implies, as noted above, tightness of the crossing distances,
existence of exponents, and tail estimates) that may be applicable more generally.

The utility of Condition (T) is that it allows us to use an Efron-Stein argument to obtain a contraction in
an inductive bound on the crossing distance logarithm variance. Informally, since the crossing distance feels
the effect of many different subboxes, the subbox crossing distances are effectively being averaged to form the
overall crossing distance. This yields a contraction in variance. (Of course, the coarse scales also contribute
to the variance, and hence the variance of the crossing distance does not decrease as the discretization scale
decreases but rather stays bounded.)

The way we verify Condition (T) is quite rough: we bound the field uniformly over a coarse grained
geodesic by the supremum of the field over the unit square. It turns out that this bound together with the
identification of the exponent 1 — £Q) is enough to establish the condition.

Tightness of the metrics. Once the tightness of the left—right crossing distance is established, we turn
to the tightness of the diameter and of the metric itself. This is done by a chaining argument, and requires
again & < 2/ds. The diameter is not expected to be tight when £ > 2/ds, since there are points that become
infinitely distant from the bulk of the space as the discretization scale goes to 0.

2 Description and comparison of approximations

We recall that a white noise W on R? is a random Schwartz distribution such that for every smooth and
compactly supported test function f, (W, f) is a centered Gaussian variable with variance || f||12(ray (see
e.g. [8]). The main approximation of the Gaussian free field that we consider in this paper is defined for
5 €(0,1) by

os(x) == \/E-/(S2 /R2 pi(z —y)W(dy,dt) (2.8)

1 |z —y|2

where pi(r —y) := 55e~ 2 and W is a space-time white noise on [0, 1] x R2. This approximation is

different than the one considered in [I8] which is

bs(x) = /51 /Rk (T”) £73/2W (dy, dt)

for a smooth nonnegative bump function k, radially symmetric and with compact support. Up to a change
of variable in ¢, the difference is essentially replacing p; by k. Both fields are normalized in such a way that
E(éo(x)do(y)) = —log|z — y| + g(x,y) with g continuous (see e.g. Section 2 in [I8]): this is the reason for

the factor /7 in (2.8).

Let us mention that x-scale invariant Gaussian fields with compactly-supported bump function &

1. are invariant under Euclidean isometries,
2. have finite-range correlation at each scale,

3. and have convenient scaling properties.



The Gaussian field ¢ introduced above satisfies [I] and [3] but not 2} Because of the lack of finite-range
correlation, we will also use a field s (defined in the next section) which satisfies |1 I and [2) I such that
Sup,,>q ||¢o,n — ¢0,n||Loo([o 12) has Gaussian tails, where we use the notation ¢¢,, for ¢s with § = 27",

2.1 Basic properties of ¢5s and

Scaling property of ¢s. We use the scale decomposition

¢:=  ¢n where ¢n(z) =7 /2 . /R pyo—y)W(dy, dt)

n>0

If we denote by C,, the covariance kernel of ¢, so Cy,(z,2") = E(¢,(2)dn(z")), then we have

CA Ry
Cp(z, ') = / —e 2z dt =Cp(2"x,2"").
o—2(n+1) 2t

Therefore, the law of (¢y,(x))ze(0,1)2 is the same as (¢o(2"x)),e[0,1)2. Because of the 3 above, we choose 42

and not ¢ in (2.8)) so that the pointwise variance ¢; is logd~!. Similarly, for 0 < a < b and = € R?, set
b2
¢a vl f/ / pt Xr — (dy, dt) (29)

and note that we have the scaling identity ¢4 4(7) @ ba/rb/r(-). Indeed, we have

2 2
b 122

p(r(z —2'))dt = /a Ee_zitdt,

2

E(¢a,p(ra)gap(ra’)) = 7T/ / (re —y)ps (y — ra’)dydt = 7r/

a?

and by the change of variable t = r2u, this gives

v (b/r)?
1 rleali? Ul e ,
/ %€ dt = / %€ 7 A =By (@)Pasrpse ().
a2 (a/r)?

We will use the notation ¢y, when a =27" and b = 27k for 0 < k < n.

Maximum and oscillation of ¢;. We have the same estimates for the supremum of the field ¢g , as
those for the %-scale invariant case considered in [I8] (it is essentially a union bound combined with a scaling
argument). The following proposition corresponds to Lemma 10.1 and Lemma 10.2 in [I8].

Proposition 2 (Maximum bounds). We have the following tail estimates for the supremum of ¢o , over

the unit square: for a >0, n >0,

P <r(1)1211]>2< |po,n| > a(n + C’f)) < C4re " (2.10)

as well as the following moment bound: if v < 2, then

E(eymax[0,1]2 |¢0,n|) g 47”4’0(\/77‘) (211)

We will also need some control on the oscillation of the field ¢g ,. We introduce the following notation
for the L>-norm on a subset of R, If A is a subset of R? and f : A — R™, we set

[f1.4 == sup | f ()| (2.12)
Tz€A



We introduce the following notation to describe the oscillation of a smooth field ¢: if A C R? we set
osca(¢) = diam(A) |Vl 4, (2.13)
so that if A is convex then sup, ,¢ 4 |#(z) — ¢(y)| < osca(¢) and

) n < Cz_n n b)
PGP?PE}?[O,I]? ObCP((%’ ) - ”V(bO, ”[0,1]2

where P,, denotes the set of dyadic blocks at scale n, viz.
Ppoi={27"([i,i+ 1] x [j,j +1]) : i, € Z}. (2.14)
In order to simplify the notation P € P, P C [0, 1]? later on, we also set
Pl.={PeP,: PcCl01?. (2.15)

Proposition 3 (Oscillation bounds). We have the following tail estimates for the oscillation of ¢g ,: there
exists C > 0, 02 > 0, so that, for all x,e >0, n >0,

22
P (2_n ||V¢O,n||[071]2 > 1') < C4"e 207 (2.16)

as well as the following moment bound: for a > 0, there exists ¢, > 0 so that forn >0,

o (eanﬁz-”|\v¢o,nu[o,l]z> < gean? T+O(n*) (2.17)

Proof. Inequality (2.16) was obtained between Equation (10.3) and Equation (10.4) in [18]. Now, we prove
(2.17). Set ay, := an®, O, = 27" ||V<z50,n||[0 127 and take x,, = a,0° + ao\/n with a > 0 so that %2 = log 4.
We have, using (2.16]),

/ P (ea"o" > :c) dr = / P (e“"o" > es) e’ds < 04"/

anT
nen AnTn AnTn

© 2
e 29n77 e%ds

By a change of variable (s <> a,0s + (a,0)?), we get

o VLIS 12 2 [ 2 1.2 2 [ 2
T 3aZ a2 1 _ 2 1 _ 52
/ e 2’ e’ds = anoe2%n? / e” 27ds =anoe2%n? / e” 7ds
a In g0 ay/n

x
ndn o

since x,, = a,0? + ao\/n. Using that [ e dx < (2ab)~te™" | we get Jomen P (0 > ) da < O™,
The result follows from writing E(en9n) < ean®n 4 [7°  P(e®On > x)dx. O

eInTn

Definition of ¢s. We fix a smooth, nonnegative, radially symmetric bump function ® such that 0 < & <1
and @ is equal to one on B(0, 1) and to zero outside B(0,2). We also fix small constants o > 0 and ¢ > 0.
We will specify these constants later on. In particular, €y appears in the main proof in and its final
effect is in . All other constants C, ¢ will implicitly depend on r¢ and £9. Then, we introduce for each
§ € 10,1], the field

vt = [ [ et uimye W = [ [ p¥e—ywias.a)

2

where oy = r9V/1|logt|*®, ®,,(-):= ®(-/o;) and pjg =p:D,,. (2.18)

t
2

Thanks to the truncation, the fields (15)sc(0,1] have finite correlation length 8rg sup,c(o 1 Vt|logt|5o.



Decomposition in scales and blocks of 5. We have the scale decomposition

2— 2k+2

//pt (2 — o)W (dy, dt) = ZZ/ / Wdy.dt) =3 S nple) (219)

R? k=1 Pep, /27" k>1 PEPy

where ¢y, p is defined for P € Py by ¢y p(z) := f2 - fP pi(x — y)W(dy,dt) and thus has correlation
2

length less than Ck®02~F. In particular, a ﬁxed block field is only correlated with fewer than Ck2*° other
block fields at the same scale. In fact, when we apply the Efron-Stein inequality (see (5.58))) we will use the
following decomposition:

—2K+2

U =0kt Y Vrap(a) where diop(@) = [ [ pF@-pWina). @)
2 2n

PePk

We note that there is a formal conflict in notation between (2.9) and (2.20)), but it will always be clear from
context whether the second subscript is a number or an element of Py, (a set), so confusion should not arise.

Variance bounds for ¢; and 5. Later on we will need the following lemma.
Lemma 4. There exists C > 0 so that for § € [0,1] and z,2’ € R?, we have

|z — ]

Var (¢5(z) — ¢s(2')) + Var (s5(z) — 5(2")) < C 5 (2.21)

Proof. We start by estimating the first term. Using the inequality 1 — e * < z < /z for z € [0,1] and
1—e*<1</zforz>1 we get

Var (¢5(z) — 65(2')) = c/ py #05(0) ~ py *py(a —2)) de

1 _le—a'? o[t dt |z — /|
_C/ pe(0) — pi(z —2'))dt = C 52¥(1_e 2t )dt§C|x—x|/62W:C S

Similarly, for the second term, we have

Var (5(z) = vs(2') = C [ (pF 5 pT(0) = pF xpF(w— 2 ) .
62

=: p(w)qi(z). Using the identity py/o(y)psj2(z — y) = pe(2)pe/aly — x/2) we get

at(x) = /Rz pt/Q(y)zit(/;)(x ) Py, (Y) @0, (z — y)dy = /RZ Pi/a(y — 2/2) 0, (y) @0, (z — y)dy.

We rewrite the variance in terms of ¢;: replacing x — 2’ by z we look at
1
Var (0s(a) = s(@)) = C | (u(0)ar(0) = ({2

1
=0 [ 0@ ~ )i+ € [ a0 -

We deal with these two terms separately. For the second one, since 0 < & < 1, we have 0 < ¢ < 1.
Therefore, following what we did for ¢5 above we directly have 0 < f612 ¢t (2)(p:(0) — p(2))dt < Cléil. For the



first term, since p;(0) = Ct™1, it is enough to get the bound v/#|q;(0) — q:(z)| < C|z| to complete the proof
of the lemma. Changing variables, we have

qt(z> =C e_Q‘y‘Q(I)Ut(\/%yJ’_Z/2>(D7t(\/iy_2/2)dy'
R2

Therefore, using that 0 < ® <1,

0(2) = 0 < C [ 00, (Vg + 2/2) — @, (Vipldy+C [ 08 80, (Vi = 2/2) — o, (VD) ldy
R2 R2
< Claf [ 0 |90, e dy < o yvay,. [ ety
R2 g R2

t

Since o, = 19v/t| log t|*°, we see that SUP4eo,1] %t < 00, and the result follows. O

2.2 Comparison between ¢s and s

The following proposition justifies the introduction of the field 5.

Proposition 5. There exist C > 0 and ¢ > 0 such that for all x > 0, we have
2
P (Slir()) HQSO,n - ¢0,n”[0’1]2 Z :L'> S Ceicm . (222)

Proof. For k > 1, we introduce the quantity Dy(z) := ¢p_1.1(2) — ¥g—1,k(x). The proof follows from an
adaptation of Lemma 2.7 in [I5] as soon as we have the estimates

Var Dy (z) < Cle k™™ (2.23)

and
Var (¢r(z) — ¢r(y)) + Var (¢ (z) — vi(y)) < 2F|z —yl. (2.24)

(The estimate (2.23]) is weaker than that used in [I5, Lemma 2.7] but still much stronger than required for
the proof given there.) Note that (2.24) follows from Lemma [4| and for (2.23]) we proceed as follows: first

note that
272k+2

B ((0rale) = vinn@)?) = [ [y @20 = o))yt

For every y, we have p;/2(y)(1 — @4,(y)) < (2mt)~te=7i/t since 0 < ®,, < 1 and Dy, (y) = 1 for |y| < o¢.

Therefore,
2
—2k+2 oF
2 - Tf

E ((61-14(0) ~ r1s@)’) < [

(y)dydt < Ce=¥ . O
9—2k 27t /RZ p%(y) yar=

Let us point out that in fact > o E(||¢nns1 — ¢n,n+1||[0 1}2) < oo holds but we won’t use it. Since
we will be working with two different approximations of the Gaussian free field, we introduce here some
notation, referring to one field or the other. We will denote by R, := [0, a] x [0,b] the rectangle of size
(a,b). We define

(2.25)

Xap = sup||don — Yon ‘Ra b
n>0 ;

and X, := X, , for the supremum norm of the difference between the two fields on various rectangles.
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2.3 Length observables

The symbol L((l”b) (¢) (and similarly L (n)(w)) will refer to the left-right distance of the rectangle R, for the
length functional e$%0.»(s:

ij}g(@ = inf / etPonds, (2.26)

where ds refers to the Euclidean length measure and the infimum is taken over all smooth curves 7 connecting
the left and right sides of R, ;. We will sometimes consider a geodesic associated to this variational problem.
Such a path exists by the Hopf-Rinow theorem and a compactness argument.

We introduce some notation for the quantiles associated to this observable: E((fg (¢, p) (similarly K (z/), D))
is such that P <L((lng (9) < E((;lg (¢)) = p. For high quantiles, we introduce [7(”) (¢,p) := Ef:fg (¢, 1—p). Note that

E((L"g(gb,p) is increasing in p whereas Ea b (¢,p) is decreasing in p. Note that both are well-defined, i.e., there

are no Dirac deltas in the law of Lf:g .

will also need the notation

_ Zk((bap)
Anl@:p) = mpex k(9. p)

This follows from an application of the Cameron—Martin formula. We

where £(¢,p) == £} (¢,p) and  Fi(¢,p) = € (¢, p). (2.27)

The following inequalities are straightforward:
e—éXa,bLS’lb) (1) < LaT,llz (¢) < eEXa,bLE:g () (2.28)

Therefore, using Proposition [5[ (and a union bound, if necessary), we obtain that for some C' > 0 (depending
only on a and b), for any € > 0 we have

e~ €OV =/C17M (4 &) < 1) (,p) < SOVITOE/CIET) (4 p — )
,gc\/mw(n)(w p—E) <£( (¢ ) < eﬁcmw(n ('(/) p—|—6)

In particular, there exists C}, > 0 such that, uniformly in n,

G0,0/2) > VG, 0a(di0), Da($.p/2) < V/Cola(dip)  and  Au(4,p/2) < Cpha(dip).  (2.29)

Now, we discuss how the scaling property of the field ¢ translates at the level of lengths. We will use the
following equality in law: for a,b > 0 and 0 < m < n,

m,n (d) —m n—m
Lg,b )((15) 2 L((z 27"132"L(¢)' (2.30)

Finally, for a rectangle P with two marked opposite sides, we define L™ (P, ¢) to be the crossing distance
between the two marked sides under the field e%0-». The marked sides will be clear from context: if we call
P a “long rectangle,” then we mean that the marked sides are the two shorter sides, so that L™ (P, @) is
the distance across P “the long way.”

2.4 Outline of the proof and roles of ¢; and ¥

The key idea of the proof is to obtain a self-bounding estimate associated to a measure of concentration of
some observables, say rectangle crossing lengths. This is naturally expected because of the tree structure
of our model. We introduce a general condition, which we call Condition (T), (see (5.1)) which ensures a
contraction in the self-bounding estimate 7 which relates a measure of concentration at scale n, the

11



variance, with the measure of concentration that we inductively bound, A,,_x (see (2.27))), which is at a
smaller scale.

We then prove that this condition, which depends only on ¢ and on the field considered, is satisfied when
&€ €(0,(2/d2)™). This proof uses a result taken from [I3] about the existence of an exponent for circle average
Liouville first passage percolation and this is the reason we don’t consider the simpler x-scale invariant field
with compactly-supported kernel but the field ¢, which can be compared to the circle average process by a
result obtained in [I1].

The roles of ¢5 and s in the proof are the following.

1. Prove Russo-Seymour-Welsh estimates for ¢.
2. Prove tail estimates w.r.t low and high quantiles for both ¢ and ¥:

(a) Lower tails: Use directly the RSW estimates together with a Fernique-type argument for the field
1 with local independence properties.

(b) Upper tails: use a percolation/scaling argument, percolation using ¢ and scaling using ¢.

3. Concentration of the log of the left-right distance: use Efron-Stein for the field 1 (because of the local
independence properties at each scale). This gives the same result for ¢.

4. To conclude for the concentration of diameter and metric, this is essentially a chaining/scaling argument
using only the field ¢.

3 Russo-Seymour-Welsh estimates

3.1 Approximate conformal invariance

In order to establish our RSW result, we first show an approximate conformal invariance property of the
field. The arguments in this section are similar to those of [I8, Section 3.1]. The difference is that the
Gaussian kernel has infinite support.

oey|?

Recall that ¢s(x) = f512 Jze pr(xz — y)W(dy,dt) where pi(z —y) = ﬁe*‘ 2. Consider a conformal
map F between two bounded, convex, simply-connected open sets U and V such that |F'| > 1 on U,
| F'||; < oo and ||F"||,, < co. (We point out here that the assumption |F’| > 1 will be obtained later on

by starting from a very small domain; this is exactly the content of Lemma ) We consider another field

bs(x) = f;? Sz pe(z— y)W (dy, dt) where W is a white noise that we will couple with W in order to compare

¢s and ¢s o F. The coupling goes as follows: for y € U, t € (0,00), let i/ = F(y) € V and t' = t|F’(y)|* and
set W(dy',dt') = |F'(y)|*W (dy, dt). That is, for every L? function w on V x (0, o0),

/wmwwwmav=/wﬂwﬂF@WHF@WWw%w

and both sides have variance ||w||2Lz The rest of the white noises are chosen to be independent, i.e.,
Wirex(0,00)y WU x(0,00) and Wivex(0,00) are jointly independent.
Lemma 6. Under this coupling, we can compare the two fields qgg(F(l')) and ¢s(x) on a compact, convex
subset K of U as follows,

05(F(2)) = ds(x) = 61 (1) + 17 (), (3.31)
where qi)r(js) (L for low frequency noise) is a smooth Gaussian field whose L -norm on K has uniform Gaussian
tails, and qbg ) (H for high frequency noise) is a smooth Gaussian field with uniformly bounded pointwise

variance (in § and x € K ). Furthermore, qf)g) is independent of (¢s, g)).
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This aforementioned independence property will be crucial for our argument.

Proof. Step 1: Decomposition. For fixed F and small §, we decompose ¢s(z) — ds(F(z)) = :(16)(96)—!-(;5%5) (x)+
2 (x), where
3 b

2

/ /6F ()] (p; (@ —y) —ps (W)) W (dy, dt)
/L/zszpt x —y)W(dy,dt) — /0/621% —y) W(dy, dt)
// - pe(x —y)W(dy, dt)

//62F/<y>| 2 2<W> W(dy, dt)

Remark also that (;Séé) is independent of ¢y, 55)’ and qbgé).

|F' ()| ~* )
D= [ [ (s =0 = pyee (F@ = FO) P @) W

w

Step 2: Conclusion, assuming uniform estimates. We will estimate qﬁgé), 1 =1,2,3, over K. In what
follows, we take z, 2’ € K. We assume first the following uniform estimates:

E((0}” (0) = 0" (@)?) < Clo—a'|, (65" (@) = 08" (@))2) < Cla—a'|, E (")) <C.

An application of Kolmogorov’s continuity criterion and Fernique’s theorem give uniform Gaussian tails for
) and gzﬁgé). We then set gbg) = qﬁéé) and ¢£6) = (6) + ¢(5).

Step 8: Uniform estimates.

First term. We prove that E((d)gé)(z) - ¢(16)(x'))2) < C'lx — 2’| by controlling

/Ol/U (p;(x—y) — Dy (W) —py(@ —y) +py <W>)2dydt

. 2
By introducing p(z) = e and by a change of variable ¢ «+» 22, it is equivalent (up to a multiplicative

constant) to bound from above the quantity

/ / ( ( >_p<w>—p(m/;y> +p<w>>2dy. (3.32)

We will estimate this term by considering the case where t < \/|z — 2’| and the case where ¢ > +/|z — z/|.

Step 3.(A): Case t > y/|z — #'|. Using the identity |z — y|? + |2/ — y|? = L]z — 2/|* + 2|y — %I/P and
the inequality 1 — e™* < z, we get

. ! 2 z—a'|?
/ (P (x : y) P<x t y>) dy < CP(1—e "7 ) < Cla—a', (3:33)
U
Similarly,

[ (p (P20 (PPN gy < 01p) - P < cle—ws e
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where the constant C depends on | F’||y. Then the corresponding part in (3.32) is bounded from above by
|o — 2|2 f o] t3 < Clx —2'|.
Step 3.(B): For t < \/|x — 2’|, using the Taylor inequality |F(z)— F(y) — F'(y)(z —y)| < 5 [|F" |y |z —y[?

and the mean value inequality (as we have assumed that K is convex),

2 2 ) o 2
’p (x—y> B (F(w)—F(y)N <clr—yl (II—yI eyl )eQ:meae(o,n|a<xy>+<1a>w1 .

t tF'(y) t t t

(3.35)
Step 3.(B): case (a). If y € B(x,¢) for € small enough (depending only on || F"[|;), we have, using again
|F(x) = F(y) = F'(y)(@ = y)| < 5 | F"[l |2 — y[*, uniformly in o € (0,1),

1
=5 Iy e = y* = Sl =yl

DN | =

afz—y)+(1-a)

Fla) - F(y)
) ‘2”

Therefore, for such y’s we have, coming back to (3.35|),
_ _ _ 3 —y|2
b (E50) - (L E 0| clal

t tF' (y) 12

For this case we get the bound

Ty F(x) —F(y)))2 o —yl® ey B )
p -p|—%—~)) &y<C T2 e mr = Ot 2E(|Be|®) < Ctt.
/B(x,e) < ( t ) ( tF' (y) 4 Bz 1 (1Be2|%)

where B; denotes a two-dimensional Gausbian variable with covariance matrix ¢ times the identity. This

term contributes to (3.32) as C' [V |o—a dtt4 < Clz —2/|.
Step 3.(B): case (b) Now, for t < y/|z — 2’| and y € U \ B(z,¢) we write
Viz=a'l gy T—y Vie=a'l gy Vie=a'l gp 2
/ = p( ) y<C/ —IP’|Btz|>s <C’/ s 22 < Clz—a'|,
0 t° Ju\B(z.e)

and similarly
Ve F@) - F))* ,
/0 & U\B(aae)p(tF’(y)) dy < Cle =],
where the constant C' depends on ||[F'||y and ||(F~1) ||y
Applying Step 3.(A) and then Step 3.(B) twice (once for = and then again for 2') to (3.32), we get
E((¢\" () — ¢\” (@))2) < Cla — /|,

Second term. We want to prove here that E(( gs)(a:) - qﬁgs) (2'))?) < C'|x — 2'|. Note that three terms
contribute to d¢o. The third one is a nice Gau551an ﬁeld mdependent of §. The first two terms are similar,

so we will just focus on the first one, namely (b fUC f52 Pt (x — y)W(dy,dt). We have, similarly to

B3) and B33,
E(( (@) — 6 (@ ) /52/ pi(z—y) —pfj(ffl—y)fdydt
el E )00 ()

\|z—z’ dt _ r_
< / p(zty>+p(zty>dy+0|x—x’|.
0

t?’

14



The remaining term can be controlled as follows (noting the symmetry between x and 2'):

Vie=e'l gt 1 s Vie=a'l gy Vie=a'l g 2
/ 7/ L dy<C’/ —]P’(|Btz|>d)<0/ Teiz <Cla—d.
0 U 0

t e 12

where d = d(K,U°). Thus E((¢$ (z) — ¢5 (2/))2) < C |z — /).

Third term. We give here a bound on the pointwise variance of ¢3 By using ‘ ) E(y) ’ > |m5y| we

F'(y)
le—yl?

get E(0(2)?) < [0 % frw Cdy < C. O

= Jes2 v t

3.2 Russo-Seymour-Welsh estimates

The main result of this section is the following RSW estimate. It shows that appropriately-chosen quantiles
of crossing distances of “long” and “short” rectangles at the same scale can be related by a multiplicative
factor that is uniform in the scale. This is the equivalent of Theorem 3.1 from [I8] but with the field mollified
by the heat kernel instead of a compactly-supported kernel. It holds for any fixed £ > 0.

Proposition 7 (RSW estimates for ¢5). If [4, B] C (0,00), there exists C > 0 such that for (a,b), (a’,b') €
[A, B] with § <1< Z—:, forn >0 and e < 1/2, we have,

(0 (6,2/C) < CLLY (6, 2)eVIowT/CT, (3.36)
0 (9,3€) < CUL (6,£)e Ve (3.37)

The following corollary then follows from Propositions [5] and [7}

Corollary 8 (RSW estimates for ¢5). Under the same assumptions as used in Pmposition@ we have

(0, (,e/C) < CLE) (1, )V 108 /€] (3.38)
and )
10, (4,369) < L) (1, £)eV1sl=/ €, (3.39)

We point out that the constants C' in and - are not equal to those in and - The

remaining parts of the section will only deal with approximations associated with ng so we will omit this
dependence in the various observables.
We describe below the main lines of the argument. Consider R, and R, 1/, two rectangles with respective

side lengths (a,b) and (a’, V') satisfying ¢ <1 < ‘;—,/. Suppose that we could take a conformal map F': R, —
R, v mapping the long left and right sides of R, to the short left and right sides of R,/ . (This is not in
fact possible since there are only three degrees of freedom in the choice of a conformal map, but for the sake
of illustration we will consider this idealized setting first.) Then the proof goes as follows.

Take a geodesic 7 for éo,n for the left-right crossing of R, . Then, using the coupling (3.31)), we have
T .
L7 (Ryr ) < LPon (F(7)) :/ eEP0n(FE@OD| B! (7 ()] - |7 (8)|dt < HF/HRa’b[6£(¢o,n+6¢L+6¢H)d5

0
! T

It is essential that 7 is gzgoyn measurable and ¢Zo,n is independent of d¢y. Then, we can use the following
lemma.
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Lemma 9. If T' is a continuous field and ¥ is an independent continuous centered Gaussian field with
pointwise variance bounded above by 02 > 0, then we have, as long as € is sufficiently small compared to o2,

1. 61,1(1—‘ + \II,E) S eV 202 IOgE_lélyl(F, 26),’
2. 01 (T4 W,2) < eV2o?loge™lp (T ¢).

Proof. Fix s := y/20%loge~! throughout the proof. Let 7(I") be a geodesic associated with the left-right
crossing length for the field T, and define the measure p on 7(I') by pu(ds) = Ly 1(I') " el ds, so fw(r) el'ds = 1.

Conditionally on I', using Jensen’s inequality with o = 5% = \/(loge~1)/(20?), which is greater than 1 for
small enough &, and Chebyshev’s inequality, we have

2
P (/ " Vds > e Ly 1 (T) | I‘) <P </ eV > e | F) <er¥ e o7 =, (3.40)
w(I) =(I)

To bound from above Lq 1 (I' + ¥), we take a geodesic for I' and use the moment estimate (3.40). We start
with the left tail. Still with s := y/202loge~1, we have

]P (Ll,l(I‘) S 6171(11 =+ \I/, 5)678) S ]P (Ll,l(I‘ =+ \I/) S 65L171(F), L171(F) S 61’1(F + \I’, 5)678)
+P (Ll,l(F + \I’) > GSLLl(F))

<SP(Li (T +T) <l (T +U,e) +P (/ e ds > eSLM(F)> < 2.
m(

r)
For the right tail, we have similarly that
P (L1 (D + W) > 01(T,e)e®)
S P <L171(F + \I/) Z 17171(1_‘,6)63,51,1(1_‘,6) Z L171(F)) + P (L171(F) 2 ZLl(F,&))
<SP(LigyT+¥)>e’Li1(T)) +e < 2,

which concludes the proof of the lemma. O

The previous reasoning does not apply directly to rectangle crossing lengths but provides the following
proposition. Recall that K is a compact subset of U. Let A, B be two boundary arcs of K and denote by L
the distance from A to B in K for the metric e¢?.»ds; we denote A’ := F(A), B' := F(B), K' := F(K), and
L' is the distance from A’ to B’ in K’ for e*%0.nds. Recall that we have |F’| > 1 on U. In the application
we will achieve this by scaling U to be sufficiently small.

Proposition 10. We have the following comparisons between quantiles. There exists C > 0 such that

1. if for some 1 >0 and e < 1/2, P(L <1) > ¢, then P(L' <1') > /4 with ! = |F'||;, eC Vo8 =/2C1,
2. if for somel >0 ande < 1/2, P(L <1) > 1—¢, then P (L' <1') > 1—3¢ withl' = ||[F'||  e©V 108/2C1,

Now, we want to prove a similar result for rectangle crossing lengths. We will need the three following
lemmas that were used in [I§]. The first one is a geometrical construction, the second one is a complex
analysis result and the last one comes essentially from [39] together with an approximation argument. In
these lemmas, by “crossings” we mean continuous path from marked sides to marked sides.

Lemma 11 (Lemma 4.8 of [I8]). Ifa and b are two positive real numbers with a < b, there exists j = j(b/a)
and j rectangles isometric to [0,a/2]x[0,b/2] such that if w is a left-right crossing of the rectangle [0, a] x [0, ],
at least one of the j rectangles is crossed in the thin direction by a subpath of that crossing.

16



Lemma 12 (Step 1 in the proof of Theorem 3.1 in [I8]). Ifa/b < 1 and o’/ > 1, there exists m,p > 1 and
two ellipses E,, E' with marked arcs (AB), (CD) for E, and (A'B’), (C'D") for E' such that:

1. Any left-right crossing of [0,a/2P] x [0,b/2P] is a crossing of E,,.
2. Any crossing of E' is a left-right crossing of [0,a’] x [0,b'].

3. When dividing the marked sides of E,, into m subarcs of equal length, for any pair of such subarcs (one
on each side), there exists a conformal map F : E, — E’ and the pair of subarcs is mapped to subarcs

of the marked sides of E’.

4. For each pair, the associated map F extends to a conformal equivalence U — V where E, CU, E' CV
and |F'| >1 on U.

We refer the reader to Figure [1f for an illustration.

A N\ D

\ P o .
—

q

\/ 5

B~ ¢

Eyp

Figure 1: Illustration of Lemma [T2]

Lemma 13 (Positive association and square-root-trick). If k > 2 and (Ry,..., Ri) denote a collection of k
rectangles, then, for (x1,...,zx) € (0,00), we have

P (L<">(R1) >a1,..., L (Ry) > xk) >P (L<”>(R1) > xl) P (L(”)(Rk) > xk> .
An easy consequence of this positive association is the so-called “square-root-trick”:

max P (L(”) (R) < a:,) >1- (1 _P (az <k:LMW(R,) < xi))l/k .

The main result of this section, Proposition [7] is a rephrasing of the following one.

Proposition 14. We have the following comparisons between quantiles. If a/b < 1 and o' /b > 1, there
exists C > 0 such that, for any ¢ € (0,1/2),

1P (LY) <1) 26, then P (L), < CleCVIose/Cl) > o/,
2. and if P (Lgng < l) >1—¢, thenP (Lg,l,)b, < Cle® |1°g5/cl> >1-—3e1/C,

Proof. We provide first a comparison between low quantiles and then a comparison between high quantiles.
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Step 1: Comparison of small quantiles. Suppose IP’(LE:; < l) > . By Lemma and union bound,
]P’(LE:;)QJ) , < 1) > ¢/j. Furthermore, by iterating, we have P(LELT;)QMJ/W < 1) > ¢/4P. Under this event, by
Lemma there exists a crossing of E, between two subarcs of E,, (one on each side) hence with probability
at least £/(jPm?), one of these crossings has length at most [. By the left tail estimate Proposition [10| and

Lemma [12] we obtain a C' > 0 (depending also on ||F”[|z-) such that for all €,1 > 0:
P(L0) <1) 2 e = B (1Y), < CletVIwTRTTN) > ¢ jajom?),

hence the first assertion.
Step 2: Comparison of high quantiles. Now suppose P(Lénb) <l) > 1—¢e. By Lemma (to start
with a crossing at a lower scale) and Lemma (square-root-trick), we have ]P’(L((j;)w/2 <) >1—¢ld,

Furthermore, by iterating, we have IP’(LS;)QPMQP <1)>1—¢'7". On the event {Lfl%p’b/%, < 1}, the ellipse

E, from Lemma has a crossing of length < [ between two marked arcs. Again by subdividing each its
marked arcs into m subarcs and applying the square-root trick, we see that for at least one pair of subarcs,
there is a crossing of length < [ with probability > 1 — &/ TPmT? Combining with the right-tail estimate
Proposition [I0] and Lemma [12] we get:

P(L) <1) 21 -e= P (L), < CleoVIon/Cl) > 1 - 501/C, (3.41)
which completes the proof. O

Remark 15. The importance of the Russo-Seymour-Welsh estimates comes from the following: percolation
arguments/estimates work well when taking small quantiles associated with short crossings and high quantiles
associated with long crossings. Thanks to the RSW estimates, we can instead keep track only of low and high
quantiles associated to the unit square crossing, £, (p) and £, (p).

4 Tail estimates with respect to fixed quantiles

Lower tails. This is where we take ry small enough (recall the definition (2.18))) to obtain some small
range of dependence of the field 1 so that a Fernique-type argument works.

Proposition 16 (Lower tail estimates for ¢)). We have the following lower tail estimate: for p small enough,
but fized, there is a constant C so that for all s > 0,

P (Lﬁf@(w) < e—%(w,m) < Ceme, (4.42)

Proof. The RSW estimate (3.38) gives
P (nggz@) < z) <e=P (Lgﬁg (1) < 10~ 1e=CeV/Toe CE‘) < Ce (4.43)

Now, if Léng (1) is less than [, then both [0,1] x [0,3] and [2,3] x [0,3] have a left-right crossing of length
< [ and the restrictions of the field to these two rectangles are independent (if r¢ defined in ([2.18]) is small
enough). Consequently,

P (L) <1) <P (L) <1)’ (4.44)

Take po small, such that C?py < 1 where C is the constant in (4.43)) and set 7"(()") = €én3 (¥, po). (This is not
related to rg, defined previously.) For ¢ > 0, set

pi+1 = (Cpi)Q (445)
P = M exp(=Ce/[Tog(Cpi)]) (4.46)
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By induction we get, for ¢ > 0,
PLYY () <) < pi (4.47)

Indeed, the case i = 0 follows by definition and then notice that the RSW estimate (4.43) under the
induction hypothesis implies that ]P’(Lg"g () < rfn)) <p = ]P’(Lg"g (¥) < Tz(i)l) < Cp; which gives, using

E3D, PLYS (W) < ) < PIETS (W) < i) < (Cpi) = pisa.
From (L.45) we get p; = (poC?)2'C~2 and from ([£.46) we have the lower bound, for i > 1,

rgn) > Eé@?(@b,po)(}‘ie‘cf Szt v/ log(Cpy)] > éé"ﬁ (¢7p0)e—0ie—cg\/m2i/2.
Our estimate (4.47)) then takes the form, for ¢ > 0,
—Ci_— o 2|91/2 2¢ _
P (L§30) < (530, po)eCie VT @) < (5,02)* 02

This can be rewritten, taking i = |2log, s], as

2

P (LY (W) < 63 (W, po)C7le O lomremr) < e

for s > 2 with absolute constants. We obtain the statement of the proposition by using again the RSW
estimates. O

Using the comparison result between ¢ and ¢ (Proposition [5)), we get the following corollary.

Corollary 17 (Lower tail estimates for ¢). For p small enough, but fized, for all s > 0 we have a constant
C < oo so that

P (LY}) (9) < e“%(dap)) < Ceme (4.48)

Upper tails. The proof for the upper tails is similar to the one of Proposition 5.3 in [I8]. The main
difference is that we have to switch between ¢ and 1, so that we can use the independence properties of i
together with the scaling properties of ¢. Before stating the proposition, we refer the reader to for the
definition of A, (¢, p). In constract with the lower tails estimates which are relative to ¢, (¢, p), we do not
know how to prove (at least a priori) the analogous result for the upper tails with £,,(¢,p) only. However,
we can prove it by replacing £,,(¢,p) by A, (¢, p)¢n (6, p) and this is the content of the following proposition.

Proposition 18 (Upper tail estimates for ¢). For p small enough, but fized, we have a constant C' < oo so
that for allm >0 and s > 2,

P (157(8) 2 € Au(6,0)n(61) ) < CeoFir. (4.49)

)

Proof. The proof uses percolation and scaling arguments. A percolation argument is used to build a crossing
of a larger rectangle from smaller annular circuits, and then a scaling argument is used to relate quantiles
of these annular crossings to crossing quantiles of the larger rectangle.

Step 1: Percolation argument. To each unit square P of Z2, we associate the four crossings of long
rectangles of size (3, 1) surrounding P, each comprising three squares on one side of the eight-square annulus
surrounding P, as illustrated in Figure We define S (P, ) to be the sum of the four crossing lengths, and
declare the site P to be open when the event {S(™ (¢, P) < 4@”1) (1, p)} occurs. This occurs with probability

at least 1 — e(p), where £(p) goes to zero as p goes to zero (recall that P(Lénl) () < 57:(3"1) (p)) =1—p). Using

a highly supercritical finite-range site percolation estimate to obtain exponential decay of the probability of
a left-right crossing (which is standard technique in classical percolation theory [20]; see also for example
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Figure 2: Four blue rectangles are surrounding the square P. Left-right geodesics associated to the long and

short rectangles surrounding P are drawn in green and brown respectively. Any geodesic m,, here in red,
which intersects P has to cross the green circuit and to induce a short crossing of one of the four rectangles.
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the proof of Proposition 4.2 in [I0]) together with the Russo-Seymour-Welsh estimates (to come back to
(¢, p)), we have

P (L§ () = CRu(6,p)) < Ce™*.
Therefore, using this bound together with Proposition [5|to bound X3y 1, (recalling the definition (2.25)),

P (L504(0) > eCVEC,CR T, (6,p/2)) < B (X001, (1) > SVEC, O (6,p/2))
<P (ng,k > O\/E) +P (ng?k(w) > Ckazfn(aﬁ,p/?))
< CemF 1P (LG, (0) = KL, (6,p)) < Cemh.

Note that we used the bound £, (1, p) < Cply,(¢,p/2) from (2.29) in the third inequality; here C, is defined
as in (2.29)).

Step 2: Decoupling and scaling. In this step, we give a rough bound of the coarse field ¢q ,,, to obtain
spatial independence of the remaining field between blocks of size 27™. When an event occurs on one block
with high enough probability, the percolation argument of Step 1 then provides, with very high probability,

a left-right path of such events occuring simultaneously. Since Lgnl) (¢) < ™R, ¢°’”LL§73’M (¢), the scaling

property of the field ¢, i.e. Lg’ll’”)(d)) @ 2_ngT,LQ_m77)m (¢), gives
P (LE)G) 2 VeV, (6,p)

<P <111%1ax bom = Cm + s\/TTL) +P (Q*ML%T’TZ)W (6) > Gcmgn—m(qb,p)) <O Coe".
3,1

where the first term of the second expression is bounded by taking a = C' 4+ sm~'/? in Proposition and the
second bound follows from the result obtained in Step 1 with k£ = 2™, taking a slightly larger ¢ in exp(cv/2™)
to absorb the factor e“™.

Step 3: We derive an a priori bound £, (¢, p) > 27260, (¢, p)e-CV*. (Note that the argument below
will be optimized in ) For each dyadic block of size 27% visited by m,(¢), one of the four rectangles
of size 27%(1,3) around P has to be crossed by 7, (¢). Therefore, since m,(¢) has to visit at least 2¥ dyadic
blocks of size 27%, we have

(n) > ok &inf 112 do.k ; : (k) (S
Lii(9) = 2% pep, S gD, LR (P), 9),

where (R?

7 (P))1<i<4 denote the four long rectangles of size 27%(1,3) surrounding P. Using the supremum
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tail estimate (2.10) and the left tail estimates (4.48]), we get £, (¢, p) > 2’25k€n,k(¢,p)e*0‘/§. Indeed,

P [ e 00,172 Po.k . i 2k L0 (RS (P < 272516@”7 _oVE
<e PePk,qu?n((ﬁ);é@ 121324 (R7(P),¢) < k(o,ple

: : 2/9L(k,n) RS P <l,_ , -oVk
O (R7(P),¢) < lu_k(¢,p)e

<P <[(i)rﬁ2 oo.x < —klog4 — C\/E) +P (

and each term is less than p/2 if C is large enough, depending on p. Therefore, we have

Cnm (9, D) < A (6, D)ln—m (6, 0) < 2% VN, (6, )l (6, D).

Now, by coming back to the partial result obtained in Step 2 and by taking s? = 2™ for s € [1, 2"/2], we get,

P (157(8) > eVP85e 8, (6,p)n(0,7) ) < ¢

Step 4: Now we consider large tails, so we assume s > 2% . By a direct comparison with the supremum,
we have £, (¢, p) > 2~¢27+CV7) (Jater on we will use a more precise estimate from [I3], see (5.54)). Moreover,
bounding from above the left-right distance by taking a straight path from left to right and then using a

s2
moment method analogous to the one in (3.40), we get P (Lgnl) (¢) > 653) < e 2+DTesz, Altogether,

(s—nlog 4—C\/ﬁ)2

P (L)(6) > a6, p)An(6,9)e%* ) < P (L{0(0) > £a(6,p)es*) < o7 “HRHTRET < oCoemrics,

)

where we used A, (¢,p) > 1 in the first inequality and the bound £, (¢, p) > 2-¢2+CVn) together with the
52 n
tail estimate P (Lg"} (¢) > 655) < e zmFDwe? in the second one. The last inequality follow since s > 22.

Combining the tail estimate of Step 3, valid for s € [1, 2”/2], and the one of Step 4, valid for s > 27/2,
completes the proof. O
Using again the comparison between ¢ and 1) given in Proposition [B] we get the following corollary.

Corollary 19 (Upper tail estimates for ¢). For p small enough, but fized, we have, for alln >0 and s > 2,

P (L8 W) 2 e An(,p)a(w,p)) < Cetros. (4.50)

5 Concentration

5.1 Concentration of the log of the left-right crossing length

Condition (T). Denote by m,(¢) the left-right geodesic of the unit square associated to the field g . If
there are multiple such geodesics, let 7, (1)) be chosen among them in some measurable way, for example by
taking the uppermost geodesic. By mX(v)) its K-coarse graining which we define as

K@) ={PePx : Pnr,(v) # 2}, (5.51)

recalling the definition (2.14)) of Px. Let 1o, (P) denote the value of the field 1, taken at the center of a
block P. We introduce the following condition: there exist constants & > 1, ¢ > 0 so that for K large we

have
ay 1/a

e26%0,k (P)
sup E 2 penk ()

2
n>K (ZPEﬂ'ﬁf(w) e@l’o,K(P))

The importance of Condition (T) comes from the following theorem.

e K. (Condition (T))

IN
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Theorem 20. If ¢ is such that Condition (T) above is satisfied, then (log L§"1)(¢) —log An(9))n>0 is tight,
where A, (¢) denotes the median of Lgnl)

It is not expected that the weight is approximately constant over the crossing (since there may be some
large level lines of the field that the crossing must cross). Condition (T), however, roughly requires that
the length of the crossing is supported by a number of coarse blocks that grows at least like some small but
positive power of the total number of coarse blocks. Note that the fraction in Condition (T) is the ¢2 norm
of the vector of crossing weights on each block divided by the square of the ¢! norm of the same, and thus
controlling it amounts to an anticoncentration condition for this vector.

The core of this section is the proof of Theorem[20] Before proving it, let us already jump to the important
following proposition. Here we use the assumption that £ € (0,2/ds), although the formulation of Condition
(T) is designed so that it could also hold for larger &.

Proposition 21. Ify € (0,2), then £ := % satisfies Condition (T).

Proof. Step 1: Supremum bound. Taking the supremum over all blocks of size 27 in [0, 1]2, we get

ZPEW;IL((’(b) 625w0,K(P) e§ maxpep wO,K(P) ef maxpep ¢01K(P)

7 < D (P = > €00 1 (P) et
<ZP€7TK(1/;) ef@boJ{(P)) Peﬂ»,}f(w) € ' Peﬂ'ff(w) € '

)

recalling the definition of X; below (2.25)).

Step 2: We give a lower bound of the denominator of the right-hand side. By taking the concatenation
of straight paths in each box of mX (1)), we get a left-right crossing of [0, 1]%. Denote this crossing by I'y, -
We have,

Z eﬁwo,K(P) > e—fxl Z ef¢0,K(P)
PenK(y) PernE(y)

> ¢~ exp(—€ max osep(do,x))2% LI (6, T i,p) > e X0 exp(—€ max osep(do.x)25 LYY (9), (5.52)
PEP PEP

where oscp was defined in (2.13)) and Pk was defined in (2.15).

Step 8: Combining the two previous steps, we have

2 P 3 $o,x (P
ZPEWfW’) e?évo.x(P) e reri ™ " 2£X16§ maxpepl oscp(bo,x)

<
2 = K
(Zp@ff(w ew‘)‘K(P)) 2HLIV()
Now, we take @ > 1 close to 1. Using Holder’s inequality with % + % = 1 and r close to 1, together with
Cauchy-Schwarz, we get

ay 1/«
2 P 1/«
X pensc Vo) < oK (eag maxpepy G0 (P) (206X OEMAXpep OSCP(aﬁo,K))

2 K o
(Spens iy cvox®) (LY (@)
1/2as 1/4as

< 2_KE (earf MaXpepl ¢O‘K(P))1/QTE <(L§I§) (¢))20‘5> E (68QSEX1>1/4QSE (64(13{ maxXpepl oscP(¢70)K)>

E

Therefore, using (2.11)) for the maximum, (4.48) for the left-right crossing, Proposition 5| to bound X; and
(2.17) for the maximum of oscillations, we finally get, when aré < 2 (recall that ar can be taken arbitrarily
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close to 1),
ay 1/a

e2€%0,x (P)
| |[etiy) | sreenen 553
D perk (v) ewo'K(P))

Step 4: Lower bound on quantiles. For v € (0,2), @ := % + 2 > 2. Using Proposition 3.17 from [13]

(circle average LEPP) and Proposition 3.3 from [II] (comparison between ¢s and circle average), we have,
if p is fixed and € € (0,Q — 2), for K large enough,

() (p,p) > 27 K(-€Q+¢e), (5.54)

Step 5: Conclusion. Using the results from the two previous steps, we finally get
«a 1/04

280,k (P)
o ZPEm’f(w) € . < 2—5(Q—2—5)K60\/F7

(Zpeﬂf(w) efwo,K(P))

which completes the proof. O

Now, we come back to the proof of Theorem [20] We first derive a priori estimates on the quantile ratios.

Lemma 22. Let Z be a random variable with finite variance and p € (0,1/2). If a pair (¢((Z,p),£(Z,p))

satisfies U(Z,p) > U(Z,p), P(Z > L(Z,p)) > p and P(Z < L(Z,p)) > p, then, we have:

_ 2

(U2.0) - (Z.9)? < 5 Vur 2. (5.55)
Proof. If Z' is an independent copy of Z, notice that for I’ > | we have 2Var(Z) = E((Z' — Z2)?) >
E(lzsplz<(Z' —2)?) >P(Z > U)P(Z <)l — 1) O

In the following lemma, we derive an a priori bound on the variance of log L§n1) ().

Lemma 23. For all n > 0 we have the bound
Varlog LV (¢) < €3(n + 1) log?2
Proof. Denote by L§"f (Di) the left-right distance of [0,1]2 for the length metric e$%6.nds, where GG is

piecewise constant on each dyadic block of size 27% where it is equal to the value of ¢, at the center of
this block. (We do not assign an independent meaning to the notation Dy.) Note that we have

6—027]"”V¢0m,”[011]2 L(l";bl) S L(l"?l) (Dk) S L§71)6C27k‘|v¢07n|‘[071]2’
which gives almost surely that LYLl) (¢) = limg 00 Lgnl) (D). By dominated convergence we have
Var log Lgnl) (9) = klim Var log Lgnl) (Dg).
, o ;

Now, log Lgnl) (Dy) is a &Lipschitz function of p = 4F Gaussian variables denoted by Y = (Y1, ...,Y,), where
on RP we use the supremum metric. We can write Y = AN for some symmetric positive semidefinite matrix
A and standard Gaussian vector N on R4". Then log L§"1) (Dg) = f(Y) = f(AN) which is £o-Lipschitz as a
function of N where 0 = max(|A44],...,|4,]). By the Gaussian concentration inequality of [I5, Lemma 2.1],
applied as in [I0, Lemma 5.8], since the pointwise variance of the field is (n + 1) log2 we have

Var log Lgnl) (D) < max(Var(Y3), ..., Var(Y,)) = £2(n + 1) log 2. O
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Before stating the following lemma, we refer the reader to the definition of quantile ratios in (2.27)).

Lemma 24 (A priori bound on the quantile ratios). Fiz p € (0,1/2). There exists a constant C, depending

only on p such that for alln > 1,
An(,p) < 9PV, (5.56)

Proof. By using Lemmawe get Var(log L(k) (¥)) < Ck for all 1 < k < n and an absolute constant C' > 0.
This implies the same bound for ¥ by Pr0p051t10n Using then Lemma [22( with Z; = log L( )(1/)) for k <mn,
we finally get the bound maxy<y, Z:E;ﬁig < eCrvn, O

Proof of Theorem[20, The proof is divided in five steps. K will denote a large positive number to be fixed
at the last step.

Step 1. Quantiles—variance relation / setup. We aim to get an inductive bound on A, (¢, p). We will

therefore bound T /2) in term of A’s at lower scales. p will be fixed from now on, small enough so that
we have the tail estimates from Section [4| for ¢ with p and for ¢ with p/2. The starting point is the bound

Zn(’l/),p/Q) Cpy/ Varlog L(”)(w)
2 = R 5.57
b (v, p/2) (5.57)

Step 2. Efron-Stein. Using the Efron-Stein inequality with the block decomposition of 1y , introduced
in (2.20)), defining the length with respect to the unresampled field L, () = L:(Lnl) (1), we get

Varlog L{") (1)) < E ((log L (1) — log Lu(¥))} ) + >~ E((log L (¢) —log La(¥))} ), (5.58)
PePk

where in the first term (resp. second term) we resample the field 1o x (resp. ¥k p) to get an independent
copy Yok (resp. Ui, p) and we consider the left-right distance LX (1) (resp. LF (1)) of the unit square
associated to the field ¥, — Yo Kk + wo Kk (resp. Yon — VY np+ ’lZJK’nﬁp).

Step 3. Analysis of the first term. For the first term, using Gaussian concentration as in the proof of
Lemma 23] we get

E((log Ly, () — log Ln(v)))?) = 2E(Var(log Ly (¢) 0,0 — %0,x)) < CK. (5.59)

Step 4. Analysis of the second term. For P € Pk, if LE () > L,(1), the block P is visited by the
geodesic m, (1)) associated to L, (). Define

KE.={Q e Pk : d(P,Q) < CK® 27K} (5.60)

where we recall that € is associated with the range of dependence of the resampled field J’K,n, p through
(2.18) (see also the subsection following this definition). Here, d(P, @) is the L*°-distance between the sets
P and Q.

We upper-bound L% (1) by taking the concatenation of the part of 7, (1)) outside of PX together with
four geodesics associated to long crossings in rectangles comprising a circuit around P¥ (for the field v,
which coincides with the field ¢, outside of PX). We get, introducing the rectangles (Q;(P))1<i<a of size
2K (CK?°,3) surrounding PX (P and its 3 - 27 neighborhood form an annulus, and gluing the four
crossings gives a circuit in this annulus) and using the inequality logz < x — 1,

LY () — Ly (¥)) + A1 <i<a LM (Q;(P), 1/)).
LY () L) ()

(log LE($) — log L (), < | (5.61)



e We recall the notation ¢g x (P) to denote the value of the field ¢ x at the center of P. We bound from
above each term in the maximum of (5.61) as follows:

LU(Qqi(P),¢) < X LIM(Qy(P), ¢)

< e£X 800, (P) g€ oscprc (¢o,5) I (K, n)(Qz(P) )

< 26X €0,k (P) g€ 0sc p i (bo,x) [ (Km) (QZ(P)7¢)

where the oscillation osc is defined in (2.13)) and P¥ is defined in (5.60).

For a rectangle Q of size 275 with corners in 27572, we denote by (R*(Q))1<i<4 the four long rectangles
of size 27K (3, 1) surrounding Q. We can upper-bound the rectangle crossing lengths associated to the Q;(P)’s
by gluing O(K®°) rectangle crossings of size 27 (3,1), which include an annulus around each block Q of size
27K(1,1) (with corners in 27%72) in the shaded region AX of Figure[3| We get

L(K,n) (P < CKe¢o L(K,n) RL
1%1?%(4 (Q ( )7¢) - QGAIE?iXSiSZ,L ( 7 (Q)aqj))

and we end up with the following upper bound:

QXe&bo,K(P) K L
¢ esocpr (Po) O max  LEM(RE(Q),¢).  (5.62)

P
(log Ly, (v) — 10gLn(¢))+ <e W QeAR% <4

AKX RE(Q)
N e RIQ)

o] /

)

Q1(P) pK

.

Figure 3: Illustration of the geodesics used in the upper bound of Step 4.

e We lower-bound the denominator of (5.62) as follows. If P € Pk is visited by a m,(¢) geodesic, then
there are at least two short disjoint rectangle crossings among the four surrounding P. Therefore, if we
denote by P the box containing P at its center whose size is three times that of P,

eSYonds > M (RS (P > o 8X M (RS (P
/7'rn(1/))ﬂP ds 212111114[/ (R?(P),y) > e 1212124[4 (R?(P), )

> e—EXe€¢o,K(P)e—5 oscp(Po,K) 1m12 L(K,n) (R;g(p)7 ¢)

26_2€X€£wO‘K(P)€_£Oscﬁ((bO’K) min L(Kn)(RS( ) qb),

1<i<4
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where (RS (P))1<i<4 denote the four short rectangles of size 275 (1,3) surrounding P. Summing over all P’s
and taking uniform bounds for the rectangle crossings at higher scales,

3 / Eon g
Pnmy, (¢)

n 1
=3 [ easzg
Pnmy, (¢) PcPx

PEPK

> %6—2£X < miIll E“E L(K’n)(Rf(P)aﬁb)) Z e&wo,K(P)e—goscf,(qso,K)
Pepy 1sisd PEPx P ()40

Therefore, taking a uniform bound for the oscillation, we get

1
LM () > —e=2%X €0, (P) =€ 05¢ (0,1 in  LUE(RI(P), 5.63
11 (%) = ge Pe;}{(we e PPt ics (R (P), ) (5.63)
> %eiQﬁXeigmaXPep}( oscp (¢o, k) min L(K’n)(Rf(P),(b) § e&wo,K(P)' (564)

PePL,1<i<4
K="= PenX (1)

e We recall that (RF(P))1<i<a denote the four rectangles of size 275 (3,1) surrounding P. Gathering

inequalities and , we have
> E((log L (1) ~ log Lu())?)

PePk

< CK?*°E

2
Y peni(py €S0P (maxpepy 1<icq L (RE(P), ¢) (CEmaxpepy 0serr (90.1) 86X
(ZPG () eng’K(P))Q minpep 1<ica L (R (P), 6)

e Condition (T) gives us a @ > 1 and ¢ > 0 so that for K large enough, for n > K,

ay 1/a
ZPEW{f(dJ) e28%0,x (P)

(Zpeﬂi,‘ ) ew“(”)?

Then, by using the gradient estimate (2.17) and recalling the definition of P¥ in (5.60)), we have

E < e K,

E (ec maXpepl OSCPK(%,K)) <E <60K502’K|\V¢0‘K\|[0,112) < eCK%“U' (5.65)

It is for the second inequality that in (2.18)) we take £g to be small in the definition of ¥; &g < 1/2 is sufficient.
Furthermore, using our tail estimates with regard to upper and lower quantiles for ¢ (see (4.48]) and (4.49)),
and the scaling property (2.30), for 8 > 1 so that i + % =1, we get

n 28\ B
maxpepi 1<i<a L (RF(P), ¢) <A (o p)eCK%+Eo (5.66)
minpepy1<ica L (R (P), 9) = Aol ~ .

Note that we could have a log K term instead of the K*° in (5.66). Altogether, by applying Holder inequality
and Cauchy-Schwarz, we get

2

%+a —c %+a
S (g Z0() — g L))’ ) < e ek K2 (6,p) < KK 002 (02, (567)
PePk
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where we used (2.29) in the last inequality to get A2 (¢, p) < CpA2_ (1, p/2).

Step 5. Conclusion. Gathering the bounds obtained in Step 3 (inequality (5.59))) and Step 4 (inequality
(5.67)), we get, coming back to the inequality (5.58)), for K large enough,

Varlog L") () < C1K + e~ CKA2_ (1, p/2). (5.68)

Now, we will show that this bound together with the a priori bound on the quantile ratios (Lemma is
enough to conclude first that A (¢,p/2) < oo and then that sup,-, Varlog Lgnl) (1) < oo, using the tail

estimates (4.48) and (4.50).
Coming back to Step 1 (equation (5.57))) and using (5.68]), we get the inductive inequality ([5.69)) below
p.70)

for K large enough and n > K, and ( below by the a priori bound on the quantile ratios Lemma

7n(w’p/2) < PV Varlog LY (4) < ecp\/clKJre*%KAi—K(w*p/Q); (5.69)
bn(,p/2) — -
Ak (i, p/2) < eSVE, (5.70)

From now on, we take K large enough but fixed so that

67C2K(eép‘/? + VIO < OV K. (5.71)
Set
ARee := Ax (¥, p)2) v eCrV2AE, (5.72)

so that Ak (¢,p/2) < Agrec. This is the initialization of the induction. Now, assume that A, _1(1,p/2) <
ARec. In particular, A,k (¥, p/2) < Agec and using ([5.69)

Cn(t,p/2) —

The right-hand side is smaller than e“»V2¢1K and therefore than Agec. Indeed, by (5.72)), (5.70) and (5.71)),

efczKAlz)\ec < eszK(AK(w’p/Q) +6Cp\/2C1K)2 < efczK(eép\/FjLecp\/zclK)z < O,K.

Therefore, _
(¥, p/2)
A 2)=A,_ )V T < ARee.
n(va/ ) n l(va/ ) \% gn(w,p/2) — Rec
Therefore, Ax (¥, p/2) < oo thus A (¢, p) < oo and by the tail estimates (4.48) and (4.49), the sequence
(log L") (6) — log An(9))nzo is tight. O

5.2 Weak multiplicativity of the characteristic length and error bounds

Henceforth, we will only consider the case { = 7= for v € (0,2) and the field ¢g,. All observables will be
assumed to be taken with respect to ¢ and we will drop the additional notation used to differ between ¢ and
1. In this case, we saw that there exists a fixed constant C' > 0 so that for all n > 0, Eg))nl) (p) < CEY)L?? (p),

C’lééﬁ) (p) < Eg"; (p) and with the tail estimates, E(Lg"l)) < CIE(L%)) All these characteristic lengths are
uniformly comparable. We will take A\, to denote one of them, say the median of L(lnl) .

In the next elementary lemma, we prove that a sequence satisfying a certain quantitative weak multi-
plicative property has an exponent, and we quantify the error.
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Lemma 25. Consider a sequence of positive real numbers (Ap)n>1. If there exists C > 0 such that for all
n>1,k>1 we have
eOVE A < A < eVEN A, (5.73)

then there exists p > 0 such that A, = p"TOW™)
Proof. We introduce the sequence (ay,)n>0 such that Agnt1 = ()\QH)Q e%n. By iterating, we get

2 4 n+l on n—1
)\2n+1 = ()\2n) edn — ()\Qn—l) e2a"*1+a" — ... = )\% 62 ao+2 a1+ +2an—1+an.

The condition (5.73) gives that the sequence (27"/ 2an)n20 is bounded, therefore the series ) 7, ., 5% converges
and |35, % | <2 (sups2~%/?|ag|) 27"/, In particular there exists p > 0 such that

ntl 15vn 9 nt1 1500 9K\ _on ap n/2
Agnt1 = &> (105 Atz ko Qk) =2 (105)‘1+2 2ohzo oF )e 2" 3 ka4l ok — aneO(Q" ).

Now that we have the existence of an exponent, we prove the upper bound of Lemma There exist
C1,C5 > 0 such that we have the following upper bounds:

Age < p2 eCr2% (5.74)
Aotk < AnpeC2VE, (5.75)

Take Cs large enough so that (Cy +Cq)2 4 (C1 +C2)Cs < C2 and \; < pe®s. We want to prove by induction
that for all n > 1, A, < p"e“3V™. The assumption on Cs implies that this holds for n = 1. By induction (in
a dyadic fashion), take n € [2%,2F+1). We decompose n as n = 2% + ny, with ny, € [0,2%). We have, by using

(5.75), (5.74) and the induction hypothesis,

k/2 k k/2 k/2 k/2
)\n S )\2k>\nk 6022 S (p2 6012 )(pnk603«/nk)6C22 — pne(Cl+Cg)2 +Cs3y/ng S pn603\/ﬁ7
since by the assumption on Cs we have

2
((01 +C5)2k/% + 03\/%) = (C1 + C2)%2% + (C1 + C2)C32"2 /ng + Cini < C3(2F + ny,) = Cin.
The proof of the lower bound is similar. O

In the next proposition we prove that the characteristic length A, satisfies the weak multiplicativity
property (5.73]) and we identify the exponent by using the results of [13].

Proposition 26. For ¢ satisfying Condition (T), there exists C > 0 such that for alln > 1, k > 1 we have
e OVE A < Ans < eSVEN N (5.76)
Furthermore, when v € (0,2) and £ = ~/d,, we have

\, = 2 (1-6Q)+0(/n) (5.77)

Proof. Let us assume first that (5.76)) holds. Then, by using Lemma there exists p > 0 such that we have
Ap = p"TOW) - Similarly to (5.54]), for each fixed small § > 0, for k large enough we have,

A < 27k(1-€Q=0) (5.78)

The proof of (5.78) follows the same lines as the one of (5.54). Combining (5.78]) and (5.54) we get p =

2-(1-¢Q@)  Now, we prove that the characteristic length satisfies (5.76).
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Step 1: Weak submultiplicativity. Let 7, be such that L) (1) = Lgkl) . If P € Py, is visited by 7y, consider

the concatenation S*+k)(P) of four geodesics for e€?*n++ds associated to the rectangles of size 27%(3,1)
surrounding P. Each geodesic is in the long direction of its rectangle so that this concatenation is a circuit. By

scaling, E(LFn+k) (§kntk)(p))) = 2_k+2E(L§:1)). Note that the collection 75 (¢) = {P € Py : PNy, # @}
is measurable with respect to ¢q x, which is independent of ¢y 4. Set I'y,, 1= Upeﬂ£(¢) S(k’""’k)(P). Note
that 'y ,, contains a left-right crossing of [0, 1] whose length is bounded above by

L(nJrk)(Fk,n): Z L(ﬂ+k)(s(k7n+k)(p))§ Z L(k;n‘H‘?)(S(k7”+k)(P))eﬁd’o,k(}))eg030ﬁ>(¢0,k)’
P€7r’,:(¢) P€7r’]:(¢)

where P denotes the box containing P at its center whose side length is three times that of P. Since
Lg?frk) < L*R)(Ty,.,,), by independence we have

E(Lgtll-ﬁ-’f)) < 4]E(L§71))E Z 9=k €00,k (P) E 0scp (do,x)
PG'fr,’j(d))

If P is visited, then one of the four rectangles of size 27%(1, 3) in P surrounding P contains a short crossing,
denoted by 7x(P) and we have

/ e£%0.k 17rm}5d3 > L(k)(frk(P)) > 9=k o€infp ¢o,k > 2—]€65¢0,k(P)€_503Cﬁ(¢0,k)7
Th

hence
S o Refhur(Plegoscp(un) < §7 (Rosepdon) / Pl Lds,
Pext(¢) Pexk() o
Taking the supremum of the oscillation over all blocks,
S erosep(onn) / o0l ods < 96262 M IVe o e L)
Perk (o) Tk
Altogether, by Cauchy-Schwarz,
E(Lgill-i'k)) < 36E(L§:Ll) )E((L(l/’cl))Q)l/QE(e‘lﬁ?_k IVéo.kllg 12 )1/2.
When ¢ satisfies Condition (T), by using the uniform bounds for quantile ratios together with the upper tail

estimates (4.49)) and the gradient estimate (2.17)) we get Apii < eC\/E)\n/\k.
Step 2: Weak supermultiplicativity. We argue here that

Atk > e VEX . (5.79)
Using a slightly easier argument than (5.64]) (since we just have the field ¢ here), we have

k) 5 TEmaXpep) oscp(¢o,k) min kR (RS(P)) Z e£%0.5(P)

L1 = PePL,1<i<4 ! ’

P€7T,]Z+k

where 7% denotes the k-coarse grained approximation of 4, the left-right geodesic of [0, 1]? for the field

$0.n+k, and where we recall that (R (P));1<;<4 denote the four rectangles of size 27%(1,3) surrounding P.
Furthermore, by using a similar argument to (5.52)), we have

S S 5 s een L]

k
bPerny
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Altogether, we get the following weak supermultiplicativity,

(n+k) (k) : k7 (kk+n)pS —2¢ maxpep, oscp(do,k)
L >L 2°L R> (P k : 5.80
s (i (rE(P)) (5.50)
When ¢ satisfies Condition (T), by scaling and the tail estimates (4.48),, P(minpep; 1<i<a 2k [ (k:k+n) (RS (P)) >
AneCVF) > 1 — ¢~k Furthermore, using the gradient estimates (2.16), we get P(27* ||V¢0)k||[o 2 =
CVk) > 1 — e for C large enough. Therefore, with probability > 1/2, Lg”f < e~ CVE), A\, hence the
bound Aix > e~ CVEAN,. O

5.3 Tightness of the log of the diameter

Proposition 27. Ify € (0,2) and £ = v/dy then (log Diam ([O, 1]2,)\;165¢0="ds))n>0 is tight.

Proof. Step 1: Chaining. By a standard chaining argument, (see (6.1) in [I8] for more details), we have

Diam ([0, 1]?, e£¢°”'bds2) <C Z max LM (P) 4 C x 27" P2 #o.n (5.81)
k=0

where C}, is a collection of no more than C4* long rectangles of side length 27%(3,1).

Using the bound for the maximum (2.11)), when & < 2, we have E(277¢**"Po.112 %) < 9-n92%8nCVn,
Fix 0 < k < nand P € C,. We can bound L™ (P) by taking a left-right geodesic Tk,n for ¢ . Therefore,

L(n) (P) < L(n) (Wk,n) < 65 max, ;)2 ¢0’kL(k’n)(P),

and consequently,

max L™ (P) < ™02 ?0.k max [0 (P), (5.82)
PeCy PeCy

Using independence, the maximum bound (2.11)), scaling of the field ¢ and the tail estimates (4.49)), we
get

E (65 max, 412 ¢0,k IIpneaéX I,(km) (P)) < 27k22§k60\/g/\n_k60k%+5 (5.83)
k

for some fixed small € > 0 (again, the term k¢ could in fact be log k). Taking the expectation in (5.81)), using
(5.82) and ([5.83)), we obtain the following bound for the expected value of the diameter,

n 1,
E(Diam([0, 1]2, e%0mds)) < 0y 27722k ), eh® ™ (5.84)
k=0

ec\/E

Step 2: Right tail. By Proposition Ak < Ay 5 S )\n2k(1_5Q)eC\/E. Together with (5.84)), this
implies that

n 1, 0 1.,
E(Diam([0, 1%, e¥%0nds)) < Y 27%92k ), eCRF ™ < 3,03 2 k@D 02T
k=0 k=0

Since Q > 2, Markov’s inequality gives P (Diam([0,1]%, A, 'es%0nds) > e®) < Ce™*.

Step 3: Left tail. Finally, since the diameter of the square [0, 1]? is larger than the left-right distance, by
our tail estimates ([£.48), we get P (Diam([0, 1]%, A tet?0nds) < e7*) <P (Lﬁ”l) < /\ne_s) < Cees’, O
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5.4 Tightness of the metrics

Proposition 28. If v € (0,2) and § = v/d., then the sequence of metrics (A;lewﬂ’"ds)nzo is tight. More-
over, if we define
x—a|* don(x, 2’
Cl':= sup Jz =2 |, and Cf:= sup don(2,) - ﬁ)
z,x'€[0,1]2 do,n(ﬂfaﬂﬂ ) z,z'€[0,1]? |z — /|

then, for a > &(Q +2) and B < (Q — 2), the sequence (Cy, Cy)n>o is tight.
Henceforth, we use the notation dy,, for the renormalized metric A, et%0nds restricted to [0, 1]2.

Proof. The proof has two parts. In the first part we show the tightness of the metrics in the space of
continuous function from [0, 1]? x [0,1]> — R* and in the second part we show that subsequential limits are
metrics. A byproduct result of the argument is explicit bi-Holder bounds.

Part 1. Upper bound on the modulus of continuity. We suppose v € (0,2). We start by proving that
for every 0 < 8 < &(Q — 2), if € > 0, there exists a large C. > 0 so that for every n >0

P (3z,2' € 0,1 : don(z,2') > Cclz —2'|%) <e, (5.85)

ie. (Hdo’"”Cﬁ([O,lPx[0,1]2))n>0 is tight, where the C”-norm is defined for f :[0,1)? x [0,1]> — R as

|f(x,y) — f(xla y/)|
f =|f + sup .
[ ||C[3([O,1]2><[0,1]2) | ||[0,1]2x[0,1]2 (e etz x o 1@ ) — (@ )P

By a union bound it suffices to estimate P(3x, 2" : |z — 2’| < 27", dg (2, 2') > €|z — 2'|?) and

n
ZIP’ (Fz,2’:27F < |z — 2| <27F g, (3,2) > ef|x — x'|ﬁ) .
k=0

Step 1: We start with the term P(3z, 2" : 27% < |x — 2/| < 27F+1 dy . (w,2") > e®|z — 2'|P). We use the
chaining argument (5.81]) at scale & which gives

n § sup do,n
sup don(z,2') < CA! E max L™ (P) + CA;! x 27" 10072
2=k < |p—a’ | <2 k+1 i—n PEC

Taking the expected value and using the same bounds as those obtained in the proof of Proposition we
get

n
" it don(z,2') | < Z 9-iE(Q=2) (i3 < (9 kE(Q-2) ChEHe
2-h<|o—a!|<2-RH1 i=k

Therefore, using Markov’s inequality we get the bound

n
Z}P’ (Fz,2’ :27F < |z —2!| < 27K dy (2, 2") > €|z — 2'|P)
k=0

n n
< ZP < sup don(z,2") > 682_k6> <e”® Z ko —he(@=2)
k=0

2k <[a—al <2k =

The series is convergent since £(Q —2) — 8 > 0.

31



Step 2: We bound from above P(3z,2’ |z — 2/| < 27", dy ,(2,2') > e*|x — 2'|?) using a bound on the
supremum of the field. Indeed, for such x and z’, note that

ez — 2P < don(z,2') < AgeE PR b0l g
Writing 8 = £(Q—2)—¢€ for some € > 0, it follows that 1—5 = (1—-£Q+2¢)+¢e€ > 0 since the LFPP exponent
1—£Q > —2¢ by a simple uniform bound. Therefore, |z —/[#~1 > 27(1=8) and X\ 12n(1=F) = gn(2&+etto(l)),
Altogether, this probability is bounded from above by P(supg 12 ¢o,n > nlog4 +enlog2+o(n) + ¢ 1s) and
using (2.10) gives a uniform tail estimate.

Therefore, we obtain the tightness of (do,,), <, as a random element of C([0,1]? x [0,1]2,R") and every
subsequential limit is (by Skorohod’s representation theorem) a pseudo-metric.

Part 2. Lower bound on the modulus of continuity. We prove that if o > £(Q +2) and € > 0 then there
exists a small constant c¢. > 0 such that for every n > 0,

P (3z,2" € [0,1 : don(z,2') < celz —2'|*) <e. (5.86)
Similarly as before, by union bound it is enough to estimate the term
P(3z,2" € 0,12 : |z — 2| < 27", do.n(z,2') < e 5|z — 2'|%) (5.87)
and the term
iP Jz, 2’ 27F <o — 2| <277 dp (2, 2)) < e —a!|* ] . (5.88)
k=0 .

Step 1: We give an upper bound for (5.88)). Fix z,2’ € [0,1]? such that 27% < |z — 2/| < 2%+ Note
that any path from x to 2’ crosses one of the rectangles in the collection {R¥(P) : P € P} ,,1 <i < 4}.
Hence, under the event Ej , s, there exists x, 2’ such that

27k > dy o (z, 2) > A 127 Reb itz Po min  2°LEP(R(P)) | . (5.89)
PeP],,,1<i<4

Since @ = £(Q + 2) + &0 for a small 6 > 0, by using Proposition 26| we get
g—ka) ok < 271@04)\]{)\”_]{60\/% < 27k(a7§Q)>\n_keC\/E _ 27k(2+6)£(/\n_k27§5k60\/g) (5.90)

Now, using (5.89)), (5.90) and scaling, we get

P (Egns) <P | et Mo don min  2LBM(RY(P)) | < 27Fo), 2k 88
PePL, ,,1<i<4

<P (sup |po.x| > klogd + kdlog2 + s/2> +P < min  L"M(RI(P)) < )\nk2—k6560\/§e—§s/2>
[0,1] PePL, ,1<i<4
S Cve—cke—cs7
where we used in the last inequality the supremum bounds and the left tail estimate .
Step 2: Finally, we control . We write

d ,x
P(3z,2' : |x — 2| < 27", don(2,2") < e |z —2/|*) <P inf don(@,2') <e &
’ lz—z’|<2—n |.23 — J)/|a

IN

P (A S Moz ®on inf |z — 2|l < e 8,
lz—ar|<27n



We recall that a > £Q + 2¢, and in particular a > 1: indeed, 1 — £Q < 2¢ follows from a comparison with
the infimum of the field. In this case, inf|, _,/|<o-n |2 — 2/|'7* = 2-7(1=) "and by Proposition ,

g n(1=a) \~1 > g=n(l=a)gn(1=6Q) = CVn _ gn(a=£Q)=CVn

Therefore, since o — £Q = 2 + 0& for some § > 0, we have for n large that

; 5
P <)\nle§ infloazdon gpf |z —g/|' 0 < (355) <P (sup |po.n| > nlogd + ng log2 + s)
[0,1]

jo—a'j<2-n

Using (2.10) completes the proof. O

6 Appendix

6.1 Comparison with the GFF mollified by the heat kernel

Let h be a GFF with Dirichlet boundary condition on a domain D and U CC D be a subdomain of D. We

z 2
recall that we denote by p; the two-dimensional heat kernel at time ¢ i.e. pi(x) = %ﬂe*%. The goal of this
section is to obtain a uniform estimate to conclude on the tightness of the renormalized metric associated to
Pt * h assuming the one associated to ¢, ;. In particular, the second assertion of Theorem I is a corollary of

the following proposition.

Proposition 29. There exist constants C,c > 0 such that for all t € (0,1/2), there is a coupling of h and
o @ ¢, /7 such that for all z > 0, we have

i

Mollification of the GFF by the heat kernel. The covariance of the Gaussian field pex h is given for
z, 2" € U by

2
—CIT
AL EDEE.

E(p%*h()pt*h //pt z—y)Gp(y,y)p %(yfx)dydy,

where Gp is the Green function associated to the Laplacian operator on D. For an open set A, we denote
by p{(x,y) the transition probability density of a Brownian motion killed upon exiting A.

White noise representation. Take a space-time white noise W and define the field 1, on U by

() ::/ /p%*pg(x,y)W(dy,dS) where pg *p? (z,y) ::/ pe(e =y IpE (W y)dy',  (6.91)
0 D D

so that (n:(x))zev @ ( + * h(z))scv. Indeed, by Fubini, we have

oo
E(n(x / py * % (x,y) py *pE (¢, y)dyds
0

/ / / / pi(z =y LY y) pe(a’ —y") pE (" y)dydy'dy"ds

0

= / / ( / / )P (y y")dyd5> py (2 —y")dy'dy"
D JD

=/ /p% y)Go(y' y")py (v — 2")dy'dy".

o)

)
)
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Coupling. Note that for ¢ € (0,1/2) ¢ 4(z) ft Jpe Pz (x — (dy,ds) @ oi(x), where we set

1—t
/ / pr+s x —y)W(dy,ds).
R2

Furthermore, we can decompose () = o () + ¢7(z), where

/1 t/ pt+§ x —y)W(dy,ds); (6.92)

/1 t/(pws (z — y)W(dy, ds). (6.93)

Recalling the definition of 1 in (6.91), we introduce 7} and n? so that

1—t [e)
r) = /O /Dp% *pg(x,y)W(dy,ds) + /14 /Dp% *pg(x,y)W(dy,ds) =: Utl(x) + 77t2($) (6.94)

Therefore, under this coupling (viz. using the same white noise W), we have
1—t
a@)=nt@) = [ [ (poelo =)=y #0Pw)) Wi, do). (6.95)

Comparison between kernels. We will consider z,y € U, subdomain of D. Set d := d(U, D¢) > 0.
py *pf(2,y) = /ng(w LY y)dy = /ng(x s (v — )l (v y)dy',

where ¢ (z,2') is the probability that a Brownian bridge between z and 2’ with lifetime ¢ stays in D.
Therefore, using Chapman-Kolmogorov,

@) == [ pyle =9 os =y’ + [ pye =1 ps 0 = )(aP 6 9) = iy

py *p¥ (2,y) —

Note that the first term can be bounded by using that |y — y/| > d for y € U and y’' € D°. For the second
term, we can split the integral over D in two parts: one over the e-neighborhood of D (within D), denoted
by (0D)¢, and one over its complement. To give an upper bound on the first, we use that for y € U and
y € (D)%, ly — y'| > d(U, (0D)%). Finally, we bound the second part by using a uniform estimate on the
probability that a Brownian bridge between a point in U and a point D \ (0D)¢ exits D in time less than
s/2. (Note that 1 — qg (y,y') is the probability that a Brownian bridge between y and y’ with time length

s/2 exits D.) Therefore, we get that uniformly in z,y € U and ¢,

Py *pE (2,y) = pogs (2,y)| < Ce™ 5. (6.96)
Comparison between ¢; and pex h. By the triangle inequality,

[ee=py x|, <llot =nilly + N2l + 2l - (6.97)
We look for a uniform right tail estimate (in t) of each term in the right-hand side of . In order to do so,

we will use the Kolmogorov continuity criterion. Therefore, we derive below some pointwise and difference
estimates.

34



First term. We derive first a pointwise estimate. For x € U, using the kernel comparison , there
exists some C’ > 0 such that, uniformly in ¢,

L ) 9 1—t IS 2 1—t . ,
Var ((m (z) — i (x)) ) :/ / (p% *ps (2,y) = prgs (x,y)) dyds < O/ e sds <.
0 D 0

We now give a difference estimate: introducing A;(z) := ¢} (z) — 0} (z), for x,2" € U,

B (@) - 2) = [ [ (g =0 =g #rP@) = (e @ =) =y +2860) ) s,

which is uniformly bounded in ¢ € (0,1/2) by a quantity of size O(Jz — z’|). (By splitting the integral at
|z — 2’|, one can use for the small values of s and gradient estimates for both kernels for larger
values of s.)

Second term. We recall here that p?(x) is defined for z € U by

1—t @
/ / pr+s x —y)W(dy,ds) / / W(dy,ds).

We have, for x,2’ € U, with d := d(U, D°),

E((@f(%) / /
</\;W/R2 (Pé(x—y)—Pz(x/—y))zddeJr/om/C (ps(z —y) — ps(a’ — )" dyds

<2/ (ps(0) — pa(z — 2')) d +4/\/m
B = 0 )

2
—ps(’ —y)) dyds

l\)\rn

(d)ds < Clx — 2],

where we use 1 —e™* < z in the last inequality. Similarly, we can prove that there exists C' > 0 independent
of t such that E(¢:(2)?) < C.

Third term. We recall here that n7(z) is defined for z € U by n¢(z) = [;~, pot *pg( y)W (dy, ds).
Similarly, there exists C' > 0 such that for ¢ € (0,1/2), z,2’ € U, we have

0 2
B (@) - 2@)’) < [ [ (g #0200 = py #0P @ 0) duds < Clo — o',
1/2JD

Furthermore, the pointwise variance is uniformly bounded.

Result. Altogether, coming back to (6.97) and combining Kolmogorov continuity criterion with Fer-
nique’s theorem (see Section 1.3 in [22]), we get the following tail estimate on the above coupling: there exist
C,c > 0 such that for all t € (0,1/2), 2 > 0, we have

—01)2
#(Joc-rg o1, 2) <

6.2 Approximations for § € (0,1)

We explain here how results obtained along the sequence {27™ : n > 0} can be extended to § € (0,1). For
each 6 € (0,1), let n > 0 and 7 € [0,1] such that § = 2=(»*"). Then by decoupling the field ¢, using a
uniform estimate for r € [0,1] and a scaling argument, we generalize our previous results obtained along the
sequence 27" to ¢ € (0,1).
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Decoupling low frequency noise. Note that there exists C' > 0 such that for n > 0 and r € [0,1] we

have
e N < Ay < Ane©. (6.98)

Indeed, note that a.s. e ™02 ¢°'TL§7)"1"+T) < L(l?l'”) < €SP0 ¢°*’"Lg77"1"+7'). Furthermore, with high

probability sup(g qj2 [¢0,-| < C < C. Then, note that Lgf’lnM) @ 2*’“L§??27\ and a.s. L§n2) < Lg??w < L(in)
By the tightness result, there exists a constant C' > 0 such that uniformly in n, with high probability,
LY‘; >e Y\, and Lg’? < e\, therefore, with high probability, e ¢\, < Lﬁ’lnﬂ) < e\, hence (6.95).

Weak multiplicativity. In this paragraph, we will use the notation A\s from the introduction. We recall
that writing A, instead of A\y—» was an abuse of notation. Now we prove that there exists C' > 0 such that
for 6,¢" € (0,1) we have

C e CVIoBVIIN NS, < sy < CeCV I8V NN, (6.99)
Similarly as (6.98)), there exists C' > 0 such that for r,+" € [0,1], n,n’ >0,
e Ngnn < Agonrnr ot < AgonwreC (6.100)

For 6,0’ € (0,1), let n,n/ > 0 and 7, € [0,1] such that § = 2= (+7) §" = 2=("+) Note that n = [—log, d].
Using the weak multiplicativity for powers of 2, we have

e OV N A g S Ay < Agon Mg €CVIA (6.101)

Without loss of generality, we consider just the upper bound in . The lower bound follows along the
same lines. By using first (6.100)) and then (6.101)) we get

>\6§/ - >\27n—r7n’77" S A2771,77/ ec S >\2*" Az—n’ ec n/\n/ec~
Now, the result follows by using (6.98)):
)\zin)\z_wlernAn’ < /\277%7“)\2_”/_#eC\/nJrr/\nurr/eQC — /\5)\5/60 log |6\/5/‘62C'
Tail estimates and tightness of metrics. Using the same argument as in the two previous paragraphs
and the tail estimates obtained along the sequence {27™ : n > 1}, we have the following tail estimates for

crossing lengths of the rectangles [0, a] x [0,b]: there exists ¢,C' > 0 (depending only on a, b and ) such
that for s > 2, uniformly in § € (0, 1), we have

52
P (AglLffl), > es) < Ce “Toss (6.102)
P(NL <) <o (6.103)

Furthermore, the sequence of metrics ()\6_165% ds)se(0,1) on [0, 1)? is tight.
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