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Abstract

We study the volume of metric balls in Liouville quantum gravity (LQG). For γ ∈ (0, 2), it has been
known since the early work of Kahane (1985) and Molchan (1996) that the LQG volume of Euclidean
balls has finite moments exactly for p ∈ (−∞, 4/γ2). Here, we prove that the LQG volume of LQG
metric balls admits all finite moments. This answers a question of Gwynne and Miller and generalizes
a result obtained by Le Gall for the Brownian map, namely, the γ =

√
8/3 case. We use this moment

bound to show that on a compact set the volume of metric balls of size r is given by rdγ+or(1), where
dγ is the dimension of the LQG metric space. Using similar techniques, we prove analogous results for
the first exit time of Liouville Brownian motion from a metric ball. Our result implies that the metric
measure space structure of γ-LQG determines its conformal structure.
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1 Introduction

Liouville quantum gravity (LQG) was introduced in the physics literature by Polyakov [45] as a canonical
model of two-dimensional random geometry, and has also been shown to be the scaling limit of random
planar maps in various topologies (see e.g. [17, 19] and references therein). Let h be an instance of the
Gaussian free field (GFF) on the plane C, and fix γ ∈ (0, 2). Formally, the γ-LQG surface described
by (C, h) is the Riemannian manifold with metric tensor given by “eγh(dx2 + dy2)”. The conformal
factor eγh only makes sense formally since the GFF h does not admit pointwise values. Nevertheless,
one can make rigorous sense of the γ-LQG volume measure µh through the following regularization and
renormalization procedure by Duplantier and Sheffield [14]

µh = lim
ε→0

εγ
2/2eγhε(z)dz,

where hε(z) is the average of h on the radius ε circle centered at z. This falls into the framework of
Gaussian multiplicative chaos, see [27, 46, 48, 5]. The circle average mollification can be replaced by
other alternatives.

We now explain the recent construction of the LQG metric. For ε > 0, let

Dε
h(z, w) = inf

P :z→w

∫ 1

0

e(γ/dγ)h
∗
ε(P (t))|P ′(t)| dt,

where h∗ε is a particular mollified version of h obtained by integrating against the heat kernel, dγ is
the dimension of γ-LQG [10, 25], and the infimum is taken over all piecewise continuously differentiable
paths from z to w. Ding, Dubédat, Dunlap and Falconet [7] proved that for all γ ∈ (0, 2) the laws of
the suitably rescaled metrics Dε

h are tight, so subsequential limits exist as ε → 0 (see also the earlier
tightness results [9, 12, 8]). Building on this and several other works [13, 20, 22], Gwynne and Miller [21]
showed that all subsequential limits agree and satisfy a natural list of axioms uniquely characterizing the
LQG metric. So it makes sense to speak of the LQG metric Dh.

Now, we have the metric-measure space corresponding to γ-LQG. The main result of our paper is the
following theorem concerning the volume of metric balls, which answers a question of [21] and generalizes
estimates obtained by Le Gall [31] for the Brownian map.

Theorem 1.1. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average zero1 on the
unit circle. Let Bs(z;Dh) be the Dh-ball of radius s centered at z. Then

E [µh(B1(0;Dh))p] <∞ for all p ∈ R.

Moreover, for any compact set K ⊂ C and ε > 0, we have almost surely that

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0. (1.1)

Consequently, the Minkowski dimension of γ-LQG is dγ almost surely.

This result is in stark contrast to the LQG volume of a deterministic bounded open set, which only
has finite moments for p ∈ (−∞, 4/γ2). Roughly speaking, µh(B1(0;Dh)) has finite positive moments
because the metric ball B1(0;Dh) in some sense avoids regions where h (and thus µh) is large.

Similar arguments allow us to prove an analogous result for the first exit time of the Liouville Brownian
motion (LBM) from quantum balls. Classically, Brownian motion is well defined on smooth manifolds
and on some random fractals. Formally, LBM is Brownian motion associated to the metric tensor
“eγh(dx2 + dy2)”, and can be rigorously constructed via regularization and renormalization [16, 3]. For
a set X ⊂ C and z ∈ C, denote by τh(z;X) the first exit time of the Liouville Brownian motion started
at z from the set X. When X is a deterministic bounded open set, τh(z;X) has finite moments for
p ∈ (−∞, 4/γ2). Here, we study the case where X is given by a quantum ball.

Theorem 1.2. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average zero on the
unit circle. Then

E [τh(0;B1(0;Dh))p] <∞ for all p ∈ R.
Moreover, for any compact set K ⊂ C and ε > 0, we have at a rate uniform in z ∈ K that

lim
s→0

P[τh(z;Bs(z;Dh)) ∈ (sdγ+ε, sdγ−ε)] = 1.

1Throughout the paper we focus on this particular variant of GFF only for concreteness.
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As an application of Theorem 1.1, we can extend results of [23] to the case of general γ ∈ (0, 2). The
following theorem resolves another question of [21].

Theorem 1.3. Let γ ∈ (0, 2) and h be a whole-plane GFF h normalized to have average zero on the
unit circle. Then the field h up to rotation and scaling of the complex plane is almost surely determined
by (i.e. measurable with respect to) the random pointed metric measure space (C, 0, Dh, µh).

We emphasize that the input is (C, 0, Dh, µh) as a pointed metric measure space, so in particular we
forget the exact parametrization in the complex plane of Dh and µh. For the special case γ =

√
8/3,

[23] proves an analogous theorem for the quantum disk2. Their results depend on the correspondence
between the Brownian map and

√
8/3-LQG [37, 38, 40, 41], and rely on the estimates obtained by Le

Gall [31] for the Brownian map. Theorem 1.1 provides the estimates needed to generalize the results of
[23] to all γ ∈ (0, 2), yielding Theorem 1.3 and a statement of the convergence of the simple random
walk on a Poisson-Voronoi tessellation of γ-LQG to Brownian motion (viewed as curves modulo time-
parametrization) in the quenched sense; see Section 5.3.

Paper outline. In Section 2, we discuss preliminary material about LQG. We prove the finiteness of
moments statement of Theorem 1.1 in Sections 3 and 4, which bound the positive and negative moments of
the unit LQG ball volume respectively. In Section 5.1, we complete the proof of Theorem 1.1. Section 5.2
addresses Theorem 1.2. Finally Section 5.3 discusses Theorem 1.3. In the appendix, we recollect some
ingredients of the proof by Le Gall for the Brownian map case as a comparison.

Acknowledgements. We thank Julien Dubédat, Ewain Gwynne and Scott Sheffield for helpful dis-
cussions. We thank also the organizers of the “Probability and quantum field theory” conference in
Porquerolles, France; this is where the work was initiated. M.A. was partially supported by NSF grant
DMS-1712862. The research of X.S. is supported by the Simons Foundation as a Junior Fellow at the
Simons Society of Fellows, by NSF grant DMS-1811092, and by Minerva fund at the Department of
Mathematics at Columbia University.

2 Background and preliminaries

2.1 Notation

For each γ ∈ (0, 2), we write dγ for the Hausdorff dimension of γ-LQG [25] (this was originally introduced
in the literature as the “fractal dimension” of γ-LQG, a scaling exponent associated with models expected
to converge to γ-LQG; see [10, 11, 18]). We also write set the γ-dependent constants

Q =
γ

2
+

2

γ
and ξ =

γ

dγ
. (2.2)

We write N = {1, 2, 3 . . . } and N0 = N ∪ {0}. For x ∈ R, bxc and dxe denote the floor and ceiling
functions evaluated at x. We write |E| for the cardinality of a finite set E. If f is a function from a set
X to Rn for some n ≥ 1, we denote the supremum norm of f by ‖f‖X := supx∈X |f(x)|.

We will denote by S(C) the space of space of Schwartz functions and by L2(C) the space of square
integrable functions, on C. For f, g ∈ L2(C), let 〈f, g〉 stands for the L2(C) inner product. Furthermore,
∗ denotes the convolution operator.

In our arguments, it is natural to consider both Euclidean balls and quantum balls. We use the
notation Br(z) to denote the Euclidean ball of radius r centered at z, and Br(z;Dh) to denote the
quantum ball of radius r centered at z (i.e. the ball with respect to the metric Dh). We also distinguish
the unit disk D := B1(0). We denote by X the closure of a set X. For any r > 0 and z ∈ C, let Ar(z)
stand for the annulus Br(z) \Br/2(z). Furthermore, for 0 < s < r, we set As,r(z) := Br(z) \Bs(z).

We recall that a length metric is a metric such that the distance between two points is given by the
infimum over the arc lengths of paths connecting the two points. The LQG metric Dh is almost surely
a length metric; we write DU

h for the internal metric on an open set U ⊂ C, where the set of admissible
paths in the variational problems are subset of U .

2In the Brownian map case the first measurability result is due to [39]. However, the proof is non-constructive.
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We write −
∫
C
f for the average of f over the circle C. For a GFF h, we write hr(z) for the average of

h on the circle ∂Br(z).
We write X ∼ N (m,σ2) to express that the random variable X is distributed according to a Gaussian

probability measure with mean m and variance σ2.
We say that an event Eε, depending on ε, occurs with superpolynomially high probability if for

every fixed p > 0, for all ε small enough, P[Eε] ≥ 1 − εp. We similarly define events which occur with
superpolynomially high probability as a parameter tends to ∞.

2.2 The whole-plane Gaussian free field

We give here a brief introduction to the whole-plane GFF. For more details see [42].
Let Hs,0 be the Hilbert space closure of smooth compactly supported functions f on C, equipped

with the Dirichlet inner product

(f, g)∇ = (2π)−1

∫
C
∇f(z) · ∇g(z) dz.

Let {fn} be any orthonormal basis of Hs,0. The whole-plane GFF modulo additive constant h is a random
equivalence class of distributions, a representative of which is given by

∑
αnfn where {αn} is a sequence

of i.i.d. N (0, 1) random variables. The law of h does not depend on the choice of {fn}.
For any affine transformation of the complex plane A, it is easy to verify that (f ◦A, g◦A)∇ = (f, g)∇.

Consequently, h has a law that is invariant under affine transformations: for each r, z ∈ C we have

h
d
= h(r ·+z).

Write H̃s,0 ⊂ Hs,0 for the subspace of functions f with
∫
C f = 0. Although we cannot define 〈h, f〉

for general f ∈ Hs,0, the distributional pairing makes sense for f ∈ H̃s,0 (the choice of additive constant

does not matter). Explicitly, for f ∈ H̃s,0 the pairing 〈h, f〉 is a centered Gaussian with variance

Var(〈h, f〉) =

∫∫
C2

f(w)f(z) log |w − z|−1 dwdz. (2.3)

It is easy to check that (2.3) in fact defines the whole-plane GFF modulo additive constant.
We will often fix the additive constant of h, i.e. choose an equivalence class representative. This can

be done by specifying the value of 〈h, f〉 for some f ∈ Hs,0 with
∫
C f 6= 0, or the average of h on a circle3.

Recalling that hr(z) means the circle average of h on ∂Br(z), we will typically work with a whole-plane
GFF h normalized so h1(0) = 0 (this is a distribution not modulo additive constant).

Let H1 ⊂ Hs,0 (resp. H2 ⊂ Hs,0) be the Hilbert space completion of compactly supported functions
which are constant (resp. have mean zero) on circles ∂Br(0). It is easy to verify the orthogonal decom-
position Hs,0 = H1 ⊕ H2. This allows us to write the whole-plane GFF h with h1(0) = 0 as the sum
of independent fields h1 and h2; these are respectively the projections of h to H1 and H2. Moreover,
we can explicitly describe the law of h1: Writing Xt = he−t(0), the processes (Xt)t≥0 and (X−t)t≥0

are independent Brownian motions started at zero. The strong Markov property tells us that for any
stopping time T of (Xt)t≥0, the random process (Xs+T −XT )s≥0 is independent from XT . Also, by the
scale invariance of the whole-plane GFF, the law of h2 is scale invariant. These observations (with the
independence of h1, h2) give us the following.

Lemma 2.1. Let h be a whole-plane GFF with h1(0) = 0, and let T ≥ 0 be a stopping time of the circle
average process (he−t(0))t≥0. Then we have, as fields on D,

h(e−T ·)|D − he−T (0)
d
= h|D.

Moreover, h(e−T ·)|D − he−T (0) is independent of he−T (0).

We note that there exist variants of the GFF on bounded domains D ⊂ C, such as the zero boundary
GFF and the Neumann GFF; we do not go into further detail, but remark that their LQG measures
(Section 2.3) are well defined.

Finally, we present a version of the Markov property for the whole-plane GFF, taken from [24, Lemma
2.2]. It essentially follows from the orthogonal decomposition Hs,0 = HD⊕Hharm whereHD (resp. Hharm)
is the Hilbert space completion of functions which are compactly supported (resp. harmonic) in D.

3See [14, Section 3] for the construction and properties of the circle averages of h.
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Lemma 2.2 (Markov property of GFF). Let h be a whole-plane GFF normalized so h1(0) = 0. For each
open set U ⊂ C with harmonically non-trivial boundary and U ∩ ∂D = ∅, we have the decomposition

h = h + h̊

where h is a random distribution which is harmonic on U , and h̊ is independent from h and has the law
of a zero-boundary GFF on U (in particular, h̊|Uc ≡ 0).

2.3 Liouville quantum gravity and Gaussian multiplicative chaos

Fix γ ∈ (0, 2) and let h be a GFF plus a random continuous function on a domain D ⊂ C. We can define
the γ-LQG volume measure or quantum volume measure via the almost sure limit in the vague topology

µh(dz) = lim
ε→0

εγ
2/2eγhε(z) dz

where the limit ε → 0 is taken along powers of two [14]. (The limit was shown to hold in probability
without the dyadic constraint [48, 5].) Two properties are clear from the form of the above limit. Firstly,
µh is locally defined by h, i.e. for any open set U , the volume µh(A) is a.s. determined by h|U . Secondly,
we have µh+C(·) = eγCµh(·) for any C ∈ R, and slightly more generally, for any random continuous
function f on a compact set D, we have almost surely eγ infD fµh(D) ≤ µh+f (D) ≤ eγ supD fµh(D).

Liouville quantum gravity is a special case of Gaussian multiplicative chaos (GMC) introduced by
Kahane [27], which considers more general log-correlated fields. More precisely, if D ⊂ C is a bounded
domain and g a continuous function on D×D such that K(x, y) = log |x−y|−1 +g(x, y) is a nonnegative
definite kernel, then one can consider the log-correlated Gaussian field φ with covariance kernel K.

Consider then the approximating measures µφε(dz) = eγφε(z)−
γ2

2
Varφε(z)σ(dz) where σ is a Radon

measure on D of dimension at least two and φε(x) denotes the circle average approximation of φ. Then,
µφε converges in probability towards a Borel measure µ on D for the topology of weak convergence
of measures on D and the limit is the same for different approximation schemes e.g. when replacing
the circle average approximation by an other mollification ([5, 48]). The renormalizations for LQG and
GMC are different. We will work with the LQG one when we use the GFF h and the GMC one when
we consider another log-correlated Gaussian field φ.

We refer the reader to [2, 4, 46] for excellent introductions to the domain.

2.4 LQG volume of Euclidean balls

Tails estimates for the LQG volume of Euclidean balls are quite well understood. It has been known
since the work of Kahane [27] and Molchan [44] that it admits finite moments for p ∈ (−∞, 4/γ2). This
result contrasts a very different behavior between the right tails and the left tails.

Negative moments. The finiteness of all negative moments goes back to Molchan [44]; moreover it
is more generally true that for any base measure of the GMC, the total GMC mass has negative moments
of all order [15]. Duplantier and Sheffield obtained the following more explicit tail behavior [14, Lemma
4.5]: writing µh for the LQG measure corresponding to a zero boundary GFF h on D, they showed that
if U ⊂⊂ D is an open set, then there exists C, c > 0 such that for all s > 0,

P
[
µh(U) ≤ e−s

]
≤ Ce−cs

2

. (2.4)

We note that this result is sharp in the sense that

P
[
µh(U) ≤ e−s

]
≥ ce−Cs

2

.

by a simple application of the Cameron-Martin formula. When h is replaced by h − −
∫
U
hdz, a sharper

tail estimate is obtained in [28].
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Positive moments. Recently, Rhodes and Vargas [47] obtained a precise asymptotic result about
the upper tails of GMC when γ ∈ (0, 2). They obtained a power law and identified the constant. This
result has been generalized to a more general family of Gaussian fields in [50], and extended to the critical
case γ = 2 in [49].

As already mentioned, the LQG volume of Euclidean balls has finite p moments for p < 4/γ2. This can
be easily seen for integers moments k < 4/γ2, which we explain below for pedagogical purpose. Indeed,
due to the logarithmic correlations of the field, the problem is essentially equivalent to the finiteness of

uk :=

∫
Dk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 .

By introducing

uk(r) :=

∫
rDk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 and vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk, (2.5)

we note that when uk < ∞ then uk(r) = r2k−γ
2 k(k−1)

2 uk. Furthermore, the vk’s provide the following
inductive inequality, obtained by splitting the points {z1, . . . , zk} into two well-separated clusters (see
Lemma 6.1 in the Appendix for details):

vk(r) ≤ Ckr−2
k−1∑
i=1

r−γ
2i(k−i)ui(4r)uk−i(4r) ≤ CkrkγQ−

1
2
γ2k2−2

k−1∑
i=1

uiuk−i.

Finally, we note that

kγQ− 1

2
γ2k2 − 2 = k(2 +

γ2

2
)− 1

2
γ2k2 − 2 = 2(k − 1)− γ2

2
k(k − 1) > 0 if 1 < k < 4/γ2,

and the conclusion follows from uk =
∑
p≥−1 vk(2−p) and an induction on k.

Our later arguments in Section 3.1 follow a similar structure to the above, but also have to account
for the random geometry of the quantum ball B1(0;Dh).

2.5 LQG metric

Recently, a metric for LQG was constructed and characterized in [7, 21], relying on [10, 13, 22, 20, 36].
It is also the limit of an approximation scheme similar to the one of the LQG measure. A Euclidean
metric is one that is continuous with respect to the Euclidean topology on C. For γ ∈ (0, 2), the γ-LQG
metric is the unique4 Euclidean metric Dh determined by a field h (a whole-plane GFF plus a possibly
random bounded continuous function) such that the following holds.

I. Length space. (C, Dh) is almost surely a length space. That is, the Dh-distance between any two
points in C is the infimum of the Dh-lengths of continuous paths between the two points.

II. Locality. Let U ⊂ C be a deterministic open set. Then the internal metric DU
h is almost surely

determined by h|U .

III. Weyl scaling. Recall ξ in (2.2). For each continuous function f : C→ R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0

eξf(P (t))dt, for all z, w ∈ C, (2.6)

where we take the infimum over all continuous paths from z to w parametrized by Dh-length. Then
almost surely eξf ·Dh = Dh+f for every continuous f : C→ R.

IV. Coordinate change for translation and scaling. Recall Q in (2.2). For fixed deterministic
z ∈ C and r > 0 we have almost surely

Dh(ru+ z, rv + z) = Dh(r·+z)+Q log r(u, v) for all u, v ∈ C.

We emphasize that the metric Dh depends on the parameter γ ∈ (0, 2); to follow previous works and
avoid clutter we will omit γ in the notation.

4To be precise, there exists a one-parameter family of such metrics, which differ by a global multiplicative constant. We may
fix this multiplicative constant in some way, e.g. requiring the median of Dh(0, 1) to be 1 for h a whole-plane GFF normalized
so h1(0) = 0.
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Basic estimates for distances. The main quantitative input we need when working with the LQG
metric is the following estimate relating the Dh-distance between compact sets to circle averages of h.

Proposition 2.3 (Concentration of side-to-side crossing distance [13, Proposition 3.1]). Let U ⊂ C
be an open set (possibly U = C) and let K1,K2 ⊂ U be disjoint connected compact sets which are not
singletons. Then for r > 0, it holds with superpolynomially high probability as A→∞ (at a rate uniform
in r) that

A−1rξQeξhr(0) ≤ DrU
h (rK1, rK2) ≤ ArξQeξhr(0).

This formulation is slightly different from that of [13, Proposition 3.1], but by [13, Remark 3.16] they
are equivalent. Note that by taking r = 1, this includes the superpolynomial tails of side-to-side crossing
distances.

Euclidean balls within LQG balls. The next lemma is an important input in the proof of the
finiteness of the negative moments.

Proposition 2.4 (LQG balls contain Euclidean balls of comparable diameter [23, Proposition 4.5]).
Fix ζ ∈ (0, 1) and compact K ⊂ C. Let h be a whole-plane GFF normalized so h1(0) = 0. With
superpolynomially high probability as δ → 0, each Dh-metric ball B ⊂ K with diam(B) ≤ δ contains a
Euclidean ball of radius at least diam(B)1+ζ .

Proof. [23, Proposition 4.5] gives this result with K replaced by D and with the specific choice γ =
√

8/3.
To get the result for K, we simply note that the whole-plane GFF (viewed modulo additive constant) is
scale-invariant, and that the set of all Dh-metric balls (viewed as subsets of C) does not depend on the
choice of additive constant. To generalize to γ ∈ (0, 2), we remark that the proof of [23, Proposition 4.5]
uses only the following few inputs for the

√
8/3 LQG metric, which we ascertain hold for general γ:

• The scaling relation [23, Lemma 2.3]. In our setting, this is Axiom III (Weyl scaling), plus the
following easy consequence of Weyl scaling: for h a whole-plane GFF plus a bounded continuous
function and f : C→ R a (possibly random) bounded continuous function, then a.s.

exp
(
ξ inf

C
f
)
Dh(z, w) ≤ Dh+f (z, w) ≤ exp

(
ξ sup

C
f

)
Dh(z, w) for all z, w ∈ C.

• With probability tending to 1 as C → ∞, the Dh-distance from S = [0, 1]2 to ∂B1/2(S) is at
least 1/C (here, B1/2(S) is the Euclidean 1/2-neighborhood of S). This follows immediately from
Proposition 2.3.

• Fix n ≥ 1. With probability tending to 1 as C → ∞, each Euclidean ball of radius e−Cn
2/3

which intersects [0, 1]2 has Dh-diameter at most e−n
2/3

. This follows from the fact that Dh is a.s.

bi-Hölder with respect to the Euclidean metric, and that e−Cn
2/3

→ 0 as C →∞.

We point out that this is possible to obtain a more quantative version of this Proposition, with
essentially the same arguments as in [23], which can then be used to obtain more precise lower tail
estimates for the volume of LQG metric balls.

3 Positive moments

The main result of this section is the following.

Proposition 3.1. Let h be a whole-plane GFF such that h1(0) = 0. Then, µh(B1(0;Dh)) has finite kth
moments for all k ≥ 1. Furthermore, this result still holds if we add to the field h an α-log singularity at
the origin for α < Q, i.e. replace h with h+ α log | · |−1.

In the following paragraphs, we present heuristic arguments and an outline of the proof. Recall the
definition of the annulus A1 = B1(0)\B1/2(0). The key difficulty to prove this result is in arguing that
E[µh(B1(0;Dh) ∩A1)k] <∞. Heuristically (since h does not admit pointwise values), we want to prove

E

[∫
(A1)k

k∏
i=1

eγh(zi)1Dh(0,zi)<1dz1 . . . dzk

]
<∞,
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and the starting point is to rewrite it via a Cameron-Martin shift, as∫
(A1)k

exp

(
γ2
∑
i<j

Cov(h(zi), h(zj))

)
P
[
Dh+γ∑

j Cov(h(zj),h(·))(0, zi) < 1 for all i
]
dz1 . . . dzk <∞.

(3.7)

A first heuristic. We present a heuristic explaining why E
[
µh(B1(0;Dh) ∩A1)k

]
<∞. As remarked

above and since h is log-correlated, this is bounded from above by∫
Ak1

Pz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk where Pz1,...,zk = P
[
Dh+γ∑

j Cov(h(zj),h(·))(zi, ∂B1/2(zi)) < 1 for all i
]
.

The blows up of moments for Euclidean ball volume comes from the contribution of clusters at mutual

distance r. Indeed, for such clusters {z1, . . . , zk}, the singularities contributes as
∏
i<j |zi − zj |

−γ2 ≈
r−(k2)γ

2

, on a macroscopic domain, we have r−2 possibilities for placing this cluster and the volume

associated is r2k. The total contribution is then r−2+2k−(k2)γ
2

and the sum over dyadic r is finite if and
only if k < 4/γ2. Now, we explain how this is counterbalanced by the Pz1,...,zk term when k ≥ 4/γ2. By
the annulus crossing distance bound from Proposition 2.3, for any z ∈ K = {z1, . . . , zk}, the following
lower bound holds

1 ≥ Dh+γ∑
i≤k log |·−zi|−1(z, ∂B1/2(z)) & rξQeξhr(z)r−ξkγ .

By a Gaussian tail estimate, introducing the term ck = kγ −Q ≥ 4
γ2
γ −Q = 2/γ − γ/2 > 0, we have

Pz1,...,zk . P
[
hr(z) ≤ −ck log r−1] ≈ r 1

2
c2k .

An elementary computation, namely −2+2k−
(
k
2

)
γ2 + 1

2
c2k = 1

2
Q2−2, gives then that for such a cluster,

the scale r contribution is r
1
2
Q2−2, which is summable for all k since Q = γ

2
+ 2

γ
> 2 for γ ∈ (0, 2) and

this is essentially the reason of the finiteness of all moment.

Outline of the proof. To turn this argument into a proof requires us to take care of all configurations
of clusters K = {z1, . . . , zk}. Similarly to the one presented in Section 2.4, our proof works by induction
on k. We will partition K = {z1, . . . , zk} into two clusters I and J such that the pairwise distance of

points between I and J is ≥ r, since both
∏
i<j |zi − zj |

γ2 and Pz1,...,zk have a nice hierarchical clusters
structure (see (3.13) for the exact splitting procedure partitioning K = I ∪ J and the definition of r).
Indeed, for such a cluster, we can bound from above∏

i<j

|zi − zj |−γ
2

. r−|I||J|γ
2 ∏

I

|za − zb|−γ
2 ∏
J

|za − zb|−γ
2

. (3.8)

Now, we discuss Pz1,...,zk . The aforementioned annuli crossing distance bounds imply that for all z ∈ K,
ε ∈ (0, 1/2),

hε(z) + γ
∑
za∈K

−
∫
∂Bε(z)

log | · −za|−1 + x ≤ Q log ε−1, (3.9)

for x = 0. From now, denote by P̂ xz1,...,zk the circle average variant of Pz1,...,zk , where the conditions on
distances defining Pz1,...,zk are replaced by the conditions (3.9) with this extra parameter x ∈ R, which
is necessary when deriving an inductive inequality. Note that when I and J are at distance at least r
and the diameters of both I and J are smaller than O(r), for ε ∈ (0, r), then

∀z, za ∈ K, −
∫
∂Br(z)

log | · −za|−1 ≈ log r−1 and ∀zi ∈ I, zj ∈ J, −
∫
∂Bε(zi)

log | · −zj |−1 ≈ log r−1.

Therefore, we can rewrite the condition (3.9) for z ∈ I as follows

(hε(z)− hr(z)) +

γ∑
zi∈I

−
∫
∂Bε(z)

log | · −zi|−1 + |J |γ log r−1

− kγ log r−1

+
(
x+ hr(z) + kγ log r−1 −Q log r−1) ≤ Q log(ε/r)−1.
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Hence, after simplification, for z ∈ I, we have

(hε(z)− hr(z)) + γ
∑
zi∈I

−
∫
∂Bε(z)

log | · /r − zi/r|−1 +
(
x+ hr(z) + ck log r−1) ≤ Q log(ε/r)−1,

which is a variant of (3.9). Furthermore, note that the processes ((hε(z)−hr(z))ε∈(0,r))z∈I and ((hε(z)−
hr(z))ε∈(0,r))z∈J are approximately independent and hr(z) ≈ hr(w) for all z, w ∈ K, which we then
denote by Xr. By the properties of the circle average processes, we get

P̂ 0
K . E

[
1Xr+ck log r−1≤0P̂

x+Xr+ck log r−1

I/r P̂
x+Xr+ck log r−1

J/r

]
, (3.10)

which is the hierarchical structure we were looking for. Altogether, (3.8) and (3.10) allow to inductively
bound from above the term ∫

Ak1

P xz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk,

by a quantitative estimate in term of x. This provides not only E[µh(B1(0;Dh) ∩ A1)k] < ∞ but
also a quantitative estimate which allows to get E[µh(B1(0;Dh) ∩ Aks ] < sαk for some αk > 0 and
all s ∈ (0, 1), via a standard scaling/decoupling argument. An application of Hölder’s inequality shows
E[µh(B1(0;Dh)∩D)k] <∞ and similar techniques concludes that E[µh(B1(0;Dh)∩C\D)k] <∞, yielding
the proof of Proposition 3.1.

In our implementation of these ideas, because we have to carry the Euclidean domains, we use ?-scale
invariant fields. The short-range correlation of the fine field gives independence between well-separated
clusters, and invariance properties of the ?-scale invariant field simplifies our multiscale analysis.

In Section 3.1, we prove a quantitative variant of (3.7) where the field h is replaced by a ?-scale
invariant field plus some constant, and the probability in the integrand is replaced by the probability
of coarse-field distance approximations being less than 1. In Section 3.2, we use these estimates to first
bound E[µh(B1(0;Dh)∩A1)k], by using a truncated moment estimate, then extend our arguments to all
annuli to deduce the finiteness of the kth moment Mk := E[µh(B1(0;Dh)k] for all k ≥ 1. By keeping

track of the k dependence, it turns out that it is possible to bound Mk by Ckck
2

for some constants C, c
depending only on γ. To simplify the presentation of our arguments, we omit these precise estimates.

3.1 Inductive estimate for the ?-scale invariant field

We derive a key estimate for the positive moments (Proposition 3.8), which is like a quantitative version
of (3.7) where we add a constant to the field. We will use ?-scale invariant fields, which satisfy properties
convenient for multiscale analysis. Relevant references are [1, 12, 26].

Proposition 3.2 (?-scale decomposition of h). The whole plane GFF h normalized so h1(0) = 0 can
be written as

h = g + φ = g + φ1 + φ2 + . . .

where the fields g, φ1, φ2, . . . satisfy the following properties:

1. g and the φn’s are continuous centered Gaussian fields.

2. The law of φn is invariant under Euclidean isometries.

3. φn has finite range dependence with range of dependence e−n, i.e. the restrictions of φn to regions
with pairwise distance at least e−n are mutually independent.

4. (φn(z))z∈R2 has the law of
(
φ1(zen−1)

)
z∈R2 .

5. The φn’s are mutually independent fields.

6. The covariance kernel of φ is C0,∞(z, z′) = − log |z − z′|+ q(z − z′) for some smooth function q.

7. We have E[φn(z)2] = 1 for all n, z.

Proof. Lemma 6.3 gives the coupling h = g+φ with g continuous. The fields φn are defined in Appendix
6.2, and are shown to satisfy these properties there.
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Define also the field φa,b from scales a to b via

φa,b :=

{
φa+1 + · · ·+ φb if a < b
0 if a ≥ b (3.11)

so that φ = φ0,∞ and set, for z, z′ ∈ C,

Ca,b(z, z
′) := E

(
φa,b(z)φa,b(z

′)
)
. (3.12)

We will construct a hierarchical representation of a set of points K = {z1, . . . , zk} ⊂ C. Roughly
speaking, starting with K, we will iteratively split each cluster into smaller clusters that are well sepa-
rated. We formalize the splitting procedure below.

Splitting procedure. Define for any finite set S of points in the plane (with |S| ≥ 2) the separation
distance s(S) to be the largest t ≥ 0 for which we can partition S = I ∪ J such that d(I, J) ≥ t, i.e.

s(S) := max
S=I∪J,|I|,|J|≥1

d(I, J). (3.13)

Define IS , JS ⊂ S to be any partition of S with d(I, J) = s(S). Note that if diamS denote the diameter
of the set S, we have the following inequality

diamS

|S| ≤ s(S) ≤ diamS. (3.14)

For the edge case where |S| = 1 define s(S) = 0.

Lemma 3.3. For |S| ≥ 2, we have s(IS), s(JS) ≤ s(S).

Proof. It suffices to prove the lemma for S such that all pairwise distances in S are distinct, then
continuity yields the result for general S. Suppose for the sake of contradiction that s(J) > s(S), then
there is a partition J = J1∪J2 satisfying d(J1, J2) > s(S). Since distances are pairwise distinct, we must
have d(I, Ji) = s(S) and d(I, J3−i) > s(S) for some i. Then d(I∪Ji, J3−i) = min(d(I, J3−i), d(Ji, J3−i)) >
s(S). This contradicts the definition of s(S).

Hierarchical structure of K = {z1, . . . , zk} and definition of T a
K({φ}). By iterating the

splitting procedure above, we can decompose a set K = {z1, . . . , zk} ⊂ C into a binary tree of clusters.
This decomposition into hierarchical clusters is unique for Lebesgue typical points {z1, . . . , zk}. Two
vertices in this tree are separated by the separation distance of their first common ancestor. See Figure 1
for an illustration.

A labeled (binary) tree is a rooted binary tree with k leaves. For each K = {z1, . . . , zk} ⊂ C, collection
of fields {φ} = (φn)n≥0, and nonnegative integer a ≤ dlog s(K)−1e we will define a labeled binary tree
denoted by T aK({φ}). Each internal vertex of this tree is labeled with a quadruple (S,m,ψ, η) with S ⊂ K
and |S| ≥ 2, an integer m, and ψ, η ∈ R, whereas each leaf is labeled with just a singleton {z} ⊂ K. The
truncated labels (S,m) depend only on the recursive splitting procedure described above: S is one of the
clusters associated with this hierarchical cluster decomposition, and m = dlog s(S)−1e.

For such a labeled tree T we write T + (ψ0, η0) to be the tree obtained by replacing each internal
vertex label (S,m,ψ, η) with (S,m,ψ + ψ0, η + η0). We also write Left(S) to denote the leftmost point
of S, viz. arg minz∈S <(z), where <(z) denotes the real part of the complex number z.

We explain how the remaining parts (ψ, η) of the labels are obtained. For (K, {φ}, a) as above,
we proceed as follows to complete the definition of the labeled tree T aK({φ}). For |K| = 1, we simply
set T aK({φ}) to be the tree with one vertex, labeled with the singleton K. For k > 1, setting m :=
dlog s(K)−1e ≥ a, the root vertex of T aK({φ}) is labeled (K,m, φa,m(Left(K)), (m − a)kγ), and its two
child subtrees are given by TmIK ({φ})+(φa,m(Left(K)), (m−a)kγ) and TmJK ({φ})+(φa,m(Left(K)), (m−
a)kγ). Essentially, after making the split K = I ∪ J , we add up the contribution of the coarse field φa,m
and the contribution of the γ-log singularities to get the scale m field approximation for the clusters I
and J .

We note that the tree structure of T aK({φ}) is deterministic, and for each internal vertex with label
(S,m,ψ, η), only ψ = ψ({φ}) is random; the other components are deterministic. Roughly speaking, S
is a cluster in our hierarchical decomposition, m is the scale of the cluster (i.e. s(S) ≈ e−m), ψ (resp.
η) approximates a radius e−m circle average of the field φa,m (resp. γ

∑
z∈K log |z − ·|−1 − γka) at the

cluster.

10



Figure 1: Left: The set of points K is iteratively divided into smaller and smaller clusters. Right: From this clus-
tering algorithm we obtain a hierarchical binary tree T aK({φ}) (labels not shown), where internal vertices correspond
to clusters S ⊂ K and leaves correspond to points z ∈ K.

Remark 3.4. For the labeled tree T aK({φ}), at each internal vertex the field approximation ψ can be
explicitly described in terms of the fields {φ} as follows. Let (Si,mi, ψi, ηi) for i = 1, . . . , n be a path
from the root (S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn). Then, writing m0 = a, we have

ψn =
n∑
i=1

φmi−1,mi(Left(Si)). (3.15)

The γ-singularity approximation η can likewise be stated non-recursively, as

ηn = γ

n∑
i=1

(mi −mi−1)|Si|. (3.16)

Remark 3.5. The choice Left(Si) is arbitrary; any other deterministic choice of point in Si works. Re-
placing φmi−1,mi(Left(Si)) with the average |Si|−1∑

z∈Si φmi−1,mi(z) would also work without affecting
our proofs much.

Definitions of key observables. In this paragraph, we provide analogous definitions of the quan-
tities appearing in (3.7). The first one corresponds to a variant of P[Dh+γ∑

j Cov(h(zj),h(·))(0, zi) <

1 for all i], with an extra parameter x. For x ∈ R, let P a,xK be the probability that the tree with random
labels T aK({φ}) satisfies

ψ + η + x ≤ Q(m− a) for each internal vertex labeled (S,m,ψ, η). (3.17)

Note that this probability is taken over the randomness of the fields {φ}, and that this definition yields
for |K| = 1 that P a,xK = 1. Let us comment a bit on this definition and its relation with the conditions
Dh+γ∑

j Cov(h(zj),h(·))(0, zi) < 1. These distances being less than one implies upper bounds for annuli
crossing distances for annuli separating the origin from the singularities. The ψ term corresponds to
field average over these annuli, η is an approximation for the γ-singularities and the Q term stands
for the scaling of the metric. Altogether, roughly speaking, P 0,x

K is the probability that for the field
φ0,∞ +

∑
z∈K γ log |z − ·|−1 + x, for all clusters S of K the field-average approximation of annulus-

crossing distances near S is less than 1.
The following observable stands for a variant of the integral in (3.7). Writing K = {z1, . . . , zk} and

dzK = dz1 . . . dzk, we define

unk (x) :=

∫
B(0,n)k

P 0,x
K∏

i<j |zi − zj |γ
2 1s(K)≤edzK . (3.18)

In Proposition 3.8, we show that unk (x) < ∞, and bound it in terms of x. Note that the statement

unk (x) <∞ is comparable to (3.7) by the fact that exp(γ Cov(h(zi), h(zj))) � |zi − zj |−γ
2

.

The next lemma establishes basic properties of P a,xK . To state it, we first define

ck := kγ −Q. (3.19)

Lemma 3.6. The P a,xK ’s satisfy the following properties:
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1. Monotonicity: P 0,x
K is decreasing in x.

2. Markov decomposition: for the partition IK ∪ JK = K with separation distance satisfying e−m ≤
s(K) < e−m+1 (i.e. for r = e−m, we have r ≤ s(K) < er) we have

P 0,x
K = E

[
1Xr+x+ck log r−1≤0P

log r−1,Xr+x+ck log r−1

IK
P

log r−1,Xr+x+ck log r−1

JK

]
,

where Xr = φ0,m (Left(K)) is a centered Gaussian with variance log r−1.

3. Scaling: P log r−1,x
rz1,...rzk = P 0,x

z1,...zk for any r = e−m with m ∈ Z.

4. Invariance by translation: P 0,x
z1+w,...,zk+w

= P 0,x
z1,...,zk .

The first condition corresponds to a shift of the field. The second condition is an identity with three
terms in the right-hand side: the term Xr represents the coarse field, the indicator says that the “coarse
field approximation of quantum distances” at Euclidean scale r are less than 1, and the product of the
two other terms represent a Markovian decomposition conditional on the coarse field. Properties 3 and
4 are clear from the translation invariance and scaling properties of φn.

Proof. The monotonicity Property 1 is clear from the definition.
Property 2 follows from the inductive definition of P 0,x

K , by looking at the first split K = I∪J . Indeed,
we can take Xr = φ0,m (Left(K)). The event {Xr + x+ ck log r−1 ≤ 0} corresponds to inequality (3.17)
for the root vertex (K,m, φ0,m(Left(K)),mkγ).

Then, if the set K is decomposed as K = I ∪ J , note that the trees TmI ({φ}) and TmJ ({φ}) are
independent. Indeed, d(I, J) ≥ e−m, so the restrictions of the field φm (and each finer field) to I and
J are independent. Therefore, since (φ0,m(Left(K)), TmI ({φ}), TmJ ({φ})) are independent, conditionally
on φ0,m(Left(K)), the trees TmI ({φ}) + (φ0,m(Left(K)),mkγ) and TmJ ({φ}) + (φ0,m(Left(K)),mkγ) are
independent. Thus, all conditions in the definition of P 0,x

K associated to the child subtrees are condition-

ally independent. To conclude, we just have to explain that this is indeed the term P
m,Xr+x+ckm
I which

appears. For a non-root vertex (S, b, ψ, η) of T 0,x
K belonging to the genealogy of I, the condition (3.17)

can be rewritten,

ψ + η + x = (Xr + ψ′) + (mkγ + η′) + x ≤ Qb = Q(b−m) +Qm,

hence ψ′ + η′ + (Xr + x + ckm) ≤ Q(a −m), which is exactly the condition we were looking for at the
vertex (S, b, ψ′, η′) in the tree TmI ({φ}).

The scaling Property 3 follows from the scaling property of the φm and the observation that s(rK) =
rs(K) (and hence dlog s(rK)−1e = log r−1 + dlog s(K)−1e).

The invariance by translation Property 4 follows from the translation invariance of the fields φm.

Using these properties, we derive the following inductive inequality.

Lemma 3.7. For each n, k > 0, there exists a constant Cn,k such that the following inductive inequality
holds, for all x ∈ R, where Xr ∼ N (0, log r−1).

unk (x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6k

k−i(Xr + x+ ck log r−1)
]
.

We now turn to the proof of the inductive relation. The argument is close to that of Lemma 6.1, the
difference being that we have to take care of the decoupling of P 0,x

K .

Proof. We first introduce some notation. In what follows we will be integrating over k-tuples of points

z1, . . . , zk; write K for this collection of points and dzK = dz1 . . . dzk. Write f(K) :=
∏
|z − z′|−γ

2/2

where the product is taken over all pairs z, z′ ∈ K with z 6= z′.
We first split the integral as

unk (x) =
∑

r=e−m,m≥0

vnk (x, r)

where for r ∈ (0, 1], vnk (x, r) is defined by

vnk (x, r) :=

∫
B(0,n)k

P 0,x
K f(K)1r≤s(K)≤erdzK . (3.20)
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Notice that s(K) ≤ er implies diamK ≤ ekr, so any K contributing to the integral in (3.20) is contained
in a ball of radius 6kr centered in rZ2 ∩ B(0, n). Taking a sum over the O(n2r−2) such balls and by
translation invariance, we get the bound

vnk (x, r) ≤ O(n2r−2)

∫
B(0,6kr)k

P 0,x
K f(K)1r≤s(K)≤erdzK .

Write K = IK ∪ JK for the partition described before Lemma 3.3. For z ∈ IK and z′ ∈ JK we have

|z − z′|−γ
2

≤ s(K)−γ
2

≤ r−γ
2

, and s(IK), s(JK) ≤ s(K) ≤ er by Lemma 3.3, so

vnk (x, r) ≤ O(n2r−2)

∫
B(0,6kr)6k

r−γ
2|IK ||JK |P 0,x

K f(IK)1s(IK)≤erf(JK)1s(JK)≤er dzK .

The Markov property decomposition 2 Lemma 3.6 allows us to split P 0,x
K into an expectation over a

product of terms, yielding an upper bound of vnk (x, r) as an integral of terms which ‘split’ into zIK and
zJK parts. This expression is in terms of the partition IK ∪JK = K; we can upper bound it by summing
over all I, J ⊂ K. To be precise, for each i = 1, . . . , k−1 we sum over all pairs I, J ⊂ K with |I| = i and
|J | = k − i. Absorbing combinatorial terms like

(
k
i

)
and the prefactor n2 into the constant Cn,k, we get

vnk (x, r) ≤ Cn,kr−2
k−1∑
i=1

r−γ
2i(k−i)EXr

[
1Xr+x+ck log r−1≤0

(∫
B(0,6kr)i

P
log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdz1 . . . dzi

)
(∫

B(0,6kr)k−i

P
log r−1,Xr+x+ck log r−1

w1,...,wk−i∏
a<b |wa − wb|γ

2 1s(w1,...,wk−i)≤erdw1 . . . dwk−i

)]
.

We analyze the first integral. Changing the domain of integration from B6kr(0)i to B6k(0)i, we get∫
B6kr(0)

i

P
log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdz1 . . . dzi = r2i−γ
2(i2)

∫
B6k(0)

i

P
log r−1,Xr+x+ck log r−1

rz1,...,rzi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi,

and then applying the scaling property 3 of P , the integral on the right hand side is equal to∫
B6k(0)

i

P
0,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi = u6k
i (Xr + x+ ck log r−1).

By gathering the previous bounds and identities, and noting that the power of r is

r−2−γ2i(k−i)+2k−γ2(i2)−γ
2(k−i2 ) = rγkQ−

1
2
γ2k2−2,

we have

vnk (x, r) ≤ Cn,krγkQ−
1
2
γ2k2−2

k−1∑
i=1

EXr
[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6k

j (Xr + x+ ck log r−1)
]
.

This completes the proof of the inductive inequality.

Using the inductive relation and the base case, we derive the following proposition, which provides a
bound on the quantity (3.18) introduced at the beginning of the section.

Proposition 3.8. Recall that ck = kγ −Q. For x ∈ R we have

unk (x) ≤ Cn,ke−ckx when k ≥ 4/γ2,

and
unk (x) ≤ Cn,k when k < 4/γ2,

where Cn,k is a constant depending only on n, k.
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Proof. We first address the case where k < 4/γ2. In this setting, by the trivial bound P 0,x
K ≤ 1 we have

unk (x) ≤
∫
Bn(0)k

∏
i<j

|zi − zj |−γ
2

dz1 . . . dzk,

and the right-hand side is finite by the discussion in Section 2.4.
Now consider k ≥ 4/γ2. We proceed inductively, assuming that Proposition 3.8 has been shown for

all k′ < k. Lemma 3.7 gives us the bound

unk (x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6k

k−i(Xr + x+ ck log r−1)
]
,

(3.21)
where Xr ∼ N (0, log r−1). We bound each term u6k

i u
6k
k−i using the inductive hypothesis. We need to

split into cases based on which bound of Proposition 3.8 is applicable (i.e. based on the sizes of i, k− i),
but the different cases are almost identical, so we present the first case in detail and simply record the
computation for the remaining cases.

Case 1: i, k− i ≥ 4/γ2. By the inductive hypothesis we can bound the ith term of (3.21) by a constant
times ∑

r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
e−(ci+ck−i)(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+ck(ck−Q)e(Q−ck)xE

[
e−(ck−Q)Xr1Xr+x+ck log r−1≤0

]
, (3.22)

where we have used the identity ci + ck−i = ck − Q. For each r we can write the expectation in the
equation (3.22) by a Cameron-Martin shift as

E[e−(ck−Q)Xr ]P[Xr+x+ck log r−1−(ck−Q) Var(Xr) ≤ 0] = r−
1
2
(ck−Q)2P[Xr ≤ −(Q log r−1+x)]. (3.23)

We claim that
P[Xr ≤ −(Q log r−1 + x)] ≤ r

1
2
Q2

e−Qx. (3.24)

Indeed, in the case where Q log r−1 + x ≥ 0, we have by a standard Gaussian tail bound that

P[Xr ≤ −(Q log r−1 + x)] ≤ e−
(Q log r−1+x)2

2 log r−1 = r
1
2
Q2

e−Qxe
− x2

2 log r−1 ≤ r
1
2
Q2

e−Qx,

and in the cases where Q log r−1 + x < 0 we have

P[Xr ≤ −(Q log r−1 + x)] ≤ 1 ≤ e−Q(Q log r−1+x) = rQ
2

e−Qx ≤ r
1
2
Q2

e−Qx.

Finally, we combine (3.22), (3.23) and (3.24) to upper bound the ith term of (3.21). This upper bound
is a sum over r of terms of the form rpowere−ckx where the power is

kγQ− 1

2
γ2k2 − 2 + ck(ck −Q)− 1

2
(ck −Q)2 +

1

2
Q2 =

1

2
Q2 − 2 > 0.

So we can bound the ith term of (3.21) by a constant times∑
r=e−m,m≥0

r
Q2

2
−2e−ckx = O(e−ckx).

14



Case 2: i ≥ 4/γ2 and k − i < 4/γ2. By the inductive hypothesis we can bound the ith term of (3.21)
by a constant times∑

r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
e−ci(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cicke−cixE

[
e−ciXr1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cick− 1

2
c2i e−cixP

[
Xr ≤ −((ck − ci) log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cick− 1

2
c2i+

1
2
(ck−ci)2e−ckx

=
∑

r=e−m,m≥0

r
1
2
Q2−2e−ckx = O(e−ckx).

Note that by symmetry Case 2 also settles the case where i < 4/γ2 and k − i ≥ 4/γ2.

Case 3: i, k− i < 4/γ2. By the inductive hypothesis we can bound the ith term of (3.21) by a constant
times ∑

r=e−m,m≥0

rkγQ−
1
2
γ2k2−2P

[
Xr ≤ −(ck log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+ 1

2
c2ke−ckx

=
∑

r=e−m,m≥0

r
1
2
Q2−2e−ckx = O(e−ckx).

This completes the proof.

The proof of Proposition 3.8 depends on the exponent 1
2
Q2 − 2 = 1

2
( 2
γ
− γ

2
)2 being positive. If we

make a slight perturbation to our definitions, so long as the resulting exponent is still positive, we get a
variant of Proposition 3.8. In particular, for δ > 0, we define P a,x,δK similarly to P a,xK by replacing the
inequality (3.17) with ψ + η + x ≤ (Q + δ)(m − a), and define un,δk analogously to (3.18) with P 0,x,δ

K .
We record the following result as a corollary since the proof follows the same steps as in the proof of
Proposition 3.8.

Corollary 3.9. For k ≥ 1, δ ∈ (0, 1/2) and n ≥ 1, there exist constants Cn,k,δ and ck,δ such that,

un,δk (x) ≤ Cn,k,δe−ck,δx for all x ∈ R when k ≥ 4/γ2,

and
un,δk (x) ≤ Cn,k,δ for all x ∈ R when k < 4/γ2.

Furthermore, limδ→0 ck,δ = kγ −Q for fixed k.

Remark 3.10. Alternatively, one could modify the definition of unk (x) in 3.18 to have a different de-

nominator |zi − zj |γ
2+δ.

3.2 Moment bounds for the whole-plane GFF

In this section, we use our previous estimate to obtain the moment bounds for a whole-plane GFF h such
normalized such that h1(0) = 0 and therefore prove Proposition 3.1. For the reader’s convenience, we
have broken the proof in several steps. Additionally, in this section we write C or Ck,δ to represent large
constants depending only on k and δ, and may not necessarily represent the same constant in different
contexts or equations.
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Proxy estimate for whole-plane GFF

Recall the notation As,r := Br(0) \Bs(0) for 0 < s < r. We introduce the following proxy

P r,dh := {z ∈ C : Dh(z, ∂Br/4(z)) ≤ d}. (3.25)

The set P r,dh contains points whose “local distances” are small. We work with P r,dh because the event

z ∈ P r,dh depends only on the field h|Br/4(z), and is thus more tractable than the event z ∈ B1(0;Dh)

(which depends on the field in a more “global” way). Moreover we have B1(0;Dh) ∩Ar ⊂ P r,1h ∩Ar, so
to bound from above µh(B1(0;Dh)) it suffices to bound from above the volume of the proxy set.

Proposition 3.11. Let h be a whole-plane GFF such that h1(0) = 0. For k ≥ 4/γ2, δ ∈ (0, 1/2), there
exists a constant Ck,δ such that for all x ∈ R,

E
[
µh
(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δe−ck,δx,

where we recall that ck = kγ −Q and ck,δ → ck as δ → 0.

In fact, for x > 0 it is possible, by using tail estimates for side-to-side distances, to show that the
decay is Gaussian in x. We do not need this result so we omit it.

Proof. In order to keep the key ideas of the proof transparent, we postpone the proofs of some interme-
diate elementary lemmas to the end of this section. Consider the collection of balls

B =
{
Be−`(z) : ` ∈ N0, z ∈ e−`−2Z2, Be−`(z) ∩B10(0) 6= ∅

}
. (3.26)

We will work with three events in the proof: Eδ,M is a global regularity event, FK,δ,M is a field average

approximation of the event {K ⊂ P 1,e−ξx

h }, and F ′K,δ,M is a variant of FK,δ,M where γ-log singularities

are added to the field at the points z ∈ K (this is related to P 0,x
K ). The integer k is fixed throughout the

proof, so the events are allowed to depend on k and we omit it in the notation.

Step 1: truncating over a global regularity event E. The event Eδ,M is given by the following
criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is at least M−ξe−ξ`
1
2
+δ

e−ξQ`eξ−
∫
∂B h for all

B ∈ B with radius e−`.

2. For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have e−` sup6kB |∇φ`′,`| ≤ `
1
2
+δ+logM .

3. For all ` ≥ 0 and all B ∈ B of radius e−`−2, −
∫
∂B

φ`,∞ ≤ `
1
2
+δ + logM .

4. ‖φ− h‖D = ‖g‖D ≤ logM .

As we see later in Lemma 3.15, for fixed δ the event Eδ,M occurs with superpolynomially high probability
in M as M →∞. Therefore, when looking at moments of µh(B1(0;Dh)∩D), one can restrict to moments
truncated on Eδ,M .

By using Property 4 of Eδ,M and the definition of µφ as a Gaussian multiplicative chaos (see Section
2.3), we get

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγkE

[
1Eδ,Mµφ

(
B10(0) ∩ P 1,e−ξx

h

)k]
= CkM

γkE

[∫
B10(0)k

1Eδ,M1{zi ∈ P
1,e−ξx

h for all i}µφ(dz1) . . . µφ(dzk)

]

≤ CkMγkE

[∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk)

]
,

where the event FK,δ,M is defined in the following lemma. In the first inequality above, the constant Ck
appears from the difference of definition between Gaussian multiplicative chaos measures and the Liouville
quantum gravity measure; the former one is defined by renormalizing by a pointwise expectation whereas

the latter one by ε
γ2

2 .
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Lemma 3.12. For k ≥ 2, there exists a constant C so that for any k-tuple of points K = {z1, . . . , zk} ⊂ D
we have the inclusion of events

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k} ⊂ FK,δ,M

where FK,δ,M is the event that for all vertices (S,m,ψ, η) of T 0
K({φ}) we have

ψ + x < Qm+ Cm
1
2
+δ + C logM. (3.27)

Essentially, Lemma 3.12 holds because K ⊂ P 1,e−ξx

h implies that distances near each cluster are
small. Then for each cluster, Property 1 of Eδ,M lets us convert bounds on distances to bounds on circle
averages of h, Property 2 lets us replace the coarse field circle average with the coarse field evaluated at
any nearby point, and Properties 3 and 4 allow us to neglect the fine field and the random continuous
function h− φ; this gives (3.27).

Step 2: shifting LQG mass as γ-singularties. We then use the following lemma to replace the terms
µφ(dzi)’s by dzi and γ-singularities.

Lemma 3.13. If f is a bounded nonnegative measurable function, and Ca,b are the covariances of φa,b
(defined as in (3.12)), we have

E

[∫
B10(0)k

f(φ, z1, . . . , zk, φ1, . . . , φk, . . . )µφ(dz1) . . . µφ(dzk)

]

≤
∫
B10(0)k

E

f(φ+ γ
∑
i≤k

C0,∞(·, zi), z1, . . . , zk, φ1 + γ
∑
i≤k

C0,1(·, zi), . . . )

 exp(
γ2

2

∑
i 6=j

C0,∞(zi, zj))dz1, . . . dzk.

This allows us to perform a Cameron-Martin shift by setting f = 1FK,δ,M to get

E

[∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk)

]
≤
∫
B10(0)k

P[F ′K,δ,M ] exp(
γ2

2

∑
i 6=j

C0,∞(zi, zj))dz1 . . . dzk,

where F ′K,δ,M is the event that in the labeled tree T 0
K({φ}), for any path from the root (S1,m1, ψ1, η1)

to (Sn,mn, ψn, ηn), we have

ψn + γ

n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si)) + x ≤ Qmn + Cm
1
2
+δ

n + C logM. (3.28)

Note that by Lemma 3.14 below, (3.28) implies that for each vertex (Sn,mn, ψn, ηn) we have

ψn + ηn + x ≤ (Q+ δ)mn + C logM + 2C. (3.29)

(The term 2C comes from Lemma 3.14 and the bound Cm
1
2
+δ

n ≤ δmn+C, using that δ ∈ (0, 1/2).) Now,
the probability that (3.29) occurs for each vertex is precisely P 0,x−C logM−2C,δ

K , defined in just before the
Corollary 3.9, so we conclude that P[F ′K,δ,M ] ≤ P 0,x−C logM−2C,δ

K .

Lemma 3.14. For k ≥ 2, there exists Ck such that for K ∈ B10(0)k, for any path from the root
(S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn) in the labeled tree T 0

K({φ}) we have, writing m0 = 0,∣∣∣∣∣ηn − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣ =

∣∣∣∣∣γ
n∑
i=1

(mi −mi−1)|Si| − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣ < C.

By Proposition 3.2, for K ⊂ B10(0) we have exp( γ
2

2

∑
i 6=j C0,∞(zi, zj)) ≤ C

∏
i<j |zi − zj |

−γ2 . Com-
bining all of the above bounds yields

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγk

∫
B10(0)k

P 0,x−C logM−2C,δ
z1,...,zk∏
|zi − zj |γ2

dz1 . . . dzk.
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Finally, by Corollary 3.9 we conclude that for all x ∈ R we have

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx. (3.30)

Step 3: concluding the proof. By Markov’s inequality, we get,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ P[Ecδ,M ] + P[Eδ,M , µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t]

≤ P[Ecδ,M ] + t−kE[1Eδ,Mµh(B10(0) ∩ P 1,e−ξx

h )k].

The second term is bounded by (3.30). To control the first term, we use the following lemma.

Lemma 3.15. For fixed δ ∈ (0, 1/2), the regularity event Eδ,M occurs with superpolynomially high
probability as M →∞.

Combining these bounds we get, for all δ, k, p, a constant Cδ,k,p such that for all x ∈ R and for all
M, t > 0,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ Ck,δ,p
(
M−p + t−kMCe−ck,δx

)
.

By takingM = tk/(p+C)eck,δx/(p+C) and choosing p large, we get E[µh(B10(0)∩P 1,e−ξx

h )k−δ] ≤ Ce−(ck,δ−δ)x.
Then, by (3.30) and the Cauchy-Schwartz inequality, we get

E
[
µh
(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx + P[Ecδ,M ]1/2E

[
µh
(
B10(0) ∩ P 1,e−ξx

h

)2k]1/2
,

and we conclude by taking M = eε|x| for some small ε > 0 (indeed, for this choice of M we have
P[Ecδ,M ] . e−a|x| for any a > 0, and our earlier bound says that the 2kth moment is at most exponential
in x).

Annuli contributions and α-singularities.

Here, we use the proxy estimate to study moments of metric balls when the field has singularities.
The link is made with the following deterministic remark. Recall that Ar/2 := Br/2(0)\Br/4(0). If

z ∈ B1(0;Dh)∩Ar/2 then Dh(0, ∂Br/4(0)) ≤ 1 and z ∈ P r,1−Dh(0,∂Br/4(0))h (recall (3.25) for the definition

of P r,1h ).

Lemma 3.16 (Small annuli). Let h be a whole-plane GFF such that h1(0) = 0. Then for α < Q,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D)k)

]
<∞.

Proof. Note that B1(0;Dh) ∩ Ar/2 ⊂ P r,1h ∩ Ar/2 and that the latter one is measurable with respect to
the field h|Br(0). We use a decoupling/scaling argument as follows. We write,

µh(B1(0;Dh) ∩Ar/2) ≤ 1Dh(0,∂Br/4(0))≤1µh(P r,1h ∩Ar/2)

= 1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e
γhr(0)µh−hr(0)

(
Ar/2 ∩ P r,e

−ξhr(0)

h−hr(0)

)
,

and set h̃ := h(r·) − hr(0). By Lemma 2.1 we have the equality in law h̃|D
(d)
= h|D, and also h̃|D is

independent of hr(0). Using the scaling of the metric and of the measure, we get

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ E

[
1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e

γkhr(0)µh−hr(0)

(
Ar/2 ∩ P r,e

−ξhr(0)

h−hr(0)

)k]
≤ rkγQE

[
1eξhr(0)rξQD

h̃
(0,∂B1/4(0))≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
.

In what follows, we will forget about the term Dh̃(0, ∂B1/4(0)). Indeed, one can split the expectation
with 1D

h̃
(0,∂B1/4)≤rδ and 1D

h̃
(0,∂B1/4)≥rδ . Note first that for p > 1, by Proposition 3.11 and a moment

computation for the exponential of a Gaussian variable with variance constant times log r−1,

E
[
eγpkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)kp]
≤ Crpower,
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for some power whose value does not matter. Indeed, because of the superpolynomial decay of the event
{Dh̃(0, ∂B1/4) ≤ rδ}, the quantity

E
[
1D

h̃
(0,∂B1/4)≤rδe

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
≤ P[Dh̃(0, ∂B1/4) ≤ rδ]1/qE

[
eγpkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)kp]1/p
decays superpolynomially fast in r, by using Hölder’s inequality with 1

p
+ 1

q
= 1. From now, we truncate

on the event {Dh̃(0, ∂B1/4) ≥ rδ} and we bound from above

rkγQE
[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
.

By Proposition 3.11, since A1/2 ⊂ B10(0) and hr(0) is independent of h̃|D, by writing ck,δ = kγ−Q+αδ
for some small αδ, we get

rkγQE
[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
≤ CkrkγQr−ck,δQE

[
1eξhr(0)rξQ+δ≤1e

γkhr(0)e−ck,δhr(0)
]

= Ckr
Q2−QαδE

[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
.

Furthermore, by the Cameron-Martin formula for a Gaussian variable,

E
[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
≤ E

[
e(Q−αδ)hr(0)

]
,

so, altogether, we get the bound

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ Ckr

1
2
Q2+βδ ,

for some arbitrarily small βδ. Furthermore, note (details are left to the reader) that when one replaces h
by h+ α log | · |−1 for α < Q (this additional term is easily bounded from above and from below on Ar),
we get

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩Ar/2)k

]
≤ Ckr

1
2
(Q−α)2+βδ . (3.31)

We can conclude as follows. Set V γ,αr := µh+α log |·|−1(B1(0;Dh+α log |·|−1 ∩ Ar). By monotone conver-
gence,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D)k

]
= lim
n→∞

E

( n∑
i=0

V γ,α
2−i

)k .
We introduce some deterministic Λ > 1 to be chosen. By Hölder’s inequality we get(

n∑
i=0

V γ,α
2−i

)k
=

(
n∑
i=0

ΛiV γ,α
2−i

Λ−i
)k
≤

(
n∑
i=0

Λki(V γ,α
2−i

)k
)(

n∑
i=0

Λ−i
k
k−1

)k−1

.

Taking expectations, and using the bound (3.31), we get, uniformly in n,

E

( n∑
i=0

V γ,α
2−i

)k ≤ ( 1

1− Λ−
k
k−1

)k−1 ∞∑
i=0

Λki2−i(
1
2
(Q−α)2+βδ).

Taking Λ close enough to one such that Λk2−
1
2
(Q−α)2+βδ < 1, this series is absolutely convergent, as

desired.

Lemma 3.17 (Large annuli). Let h be a whole-plane GFF such that h1(0) = 0. Then, for α < Q,
E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \ D)k

]
<∞.
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Proof. The proof follows the same approach as before by using the proxy estimate and a decomposition
over annuli with a scaling argument. We point out here only the main differences with the previous
proof.

Write Dh(0, ∂BR/4(0)) =: RξQeξhR/4(0)XR. By using the remark at the beginning of this subsection,

E[µh(B1(0;Dh) ∩AR)k] ≤ E[1Dh(0,∂BR/4(0))≤1µh(PR,1h ∩AR)k]

= E[1
RξQe

ξhR/4(0)
XR≤1

ekγhR/4(0)µh−hR/4(0)(P
R,e
−ξhR/4(0)

h−hR/4(0)
∩AR)k]

Again because of the superpolynomial decay of P(XR ≤ R−δ) and the room at the level of exponent
(and a Hölder inequality) we will continue the computation without XR as follows. By using that
h − hR/4(0))|AR/4,2R(0) is independent of hR/4(0) and that the proxy PR,xh ∩ Ar is measurable with

respect to h|AR/4,2R , we get by scaling,

E(1
RQe

hR/4(0)≤1
µh−hR/4(0)(P

R,e
−ξhR/4(0)

h−hR/4(0)
∩AR)k) = RkγQE(1

RQe
hR/4(0)≤1

ekγhR/4(0)µh̃(P 1,e
−ξhR/4(0)

R−ξQ

h̃
∩A1)k)

At this stage we use the estimate from Proposition 3.11. Since we will have some room at the level of
exponent, we don’t carry on the δ in the computation. Therefore, we compute

RkγQE(1hR/4(0)≤−Q logRe
kγhR/4(0)e−ck(hR/4(0)+Q logR)) = RkγQe−ckQ logRE

(
1hR/4(0)≤−Q logRe

QhR/4(0)
)

and by using the Cameron-Martin formula we get

RkγQe−ckQ logRE
(

1hR/4(0)≤−Q logRe
QhR/4(0)

)
≈ RQ

2

R
Q2

2 E
(

1hR/4(0)≤−Q logRe
QhR/4(0)− 1

2
Q2 logR/4

)
≈ R

3
2
Q2

P
(
hR/4(0) ≤ −2Q logR

)
≈ R−

Q2

2 .

The rest of the proof follows the same lines.

Proof of Proposition 3.1. Let h be a whole-plane GFF such that h1(0) = 0 and fix α < Q. The proof
follows easily by writing

µh+α log |·|−1(B1(0;Dh+α log |·|−1))

= µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D) + µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \ D)

and using the inequality (x+ y)k ≤ 2k−1(xk + yk) together with Lemma 3.16 and Lemma 3.17.

Lemma 3.18 (Upper bound for small metric balls). For ε ∈ (0, 1), k ≥ 1, there exists a constant Ck,ε
such that for all s ∈ (0, 1),

E[µh(Bs(0;Dh))k] ≤ Ck,εskdγ−ε

Proof. The proof is very similar to the one of Lemma 3.16, therefore we omit the details and just provide

the differences. By replacing 1 by s in the proof, we get E[µh(Bsh ∩ Ar)k] ≤ Cks
kdγ−cγ r

Q2

2 where

cγ =
dγ
γ
Q. By using Hölder’s inequality, we get E[µh(Bsh ∩ Ar)k] ≤ C

1/p
kp s

kdγ−
cγ
p r

Q2

2p . We then take p
such that cγ/p < ε and the rest of the proof follows the same line as those of Lemma 3.16.

Proofs of the intermediate lemmas for Proposition 3.11

We recall here the definition of the event Eδ,M (recall the definition of B in (3.26)). It is given by the
following criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is at least M−ξe−ξ`
1
2
+δ

e−ξQ`eξ−
∫
∂B h for all

B ∈ B with radius e−`,

2. for all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have e−` sup6kB |∇φ`′,`| ≤ `
1
2
+δ+logM ,

3. for all ` ≥ 0 and for all B ∈ B of radius e−`−2, −
∫
∂B

φ`,∞ ≤ `
1
2
+δ + logM ,
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4. and ‖φ− h‖D = ‖g‖D ≤ logM .

Proof of Lemma 3.12. We prove here that for any k-tuple of points K = {z1, . . . , zk} ⊂ D we have

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k}

⊂ {ψ + x ≤ Qm+ 8k2(m
1
2
+δ + logM) for each vertex (S,m,ψ, η) of T 0

K({φ})}.

Fix K and consider any vertex (S,m,ψ, η) of T 0
K({φ}). Recall first that by (3.15),

ψ = ψn =

n∑
i=1

φmi−1,mi(Left(Si)), (3.32)

where we write (Si,mi, ψi, ηi) for the path from the root (S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn) = (S,m,ψ, η).

The proof is to compare a circle average around z ∈ S (which can be bounded since z ∈ P 1,e−ξx

h ) with

the right-hand side above. Pick any point z ∈ S. Since z ∈ P 1,e−ξx

h ,

Dh(z, ∂Be−m−1(z)) ≤ Dh(z, ∂B1/4(z)) ≤ e−ξx,

and we can find a ball B ∈ B, centered at a point in e−m−4Z2 with radius e−m−2 whose boundary
separates z from ∂Be−m−1(z). Hence its crossing distance is at most e−ξx. By Property 1, we have,

M−ξe−ξ(m+2)
1
2
+δ

e−ξQ(m+2)eξ
−
∫
∂B h ≤ e−ξx,

or equivalently

−
∫
∂B

h+ x ≤ Q(m+ 2) + (m+ 2)
1
2
+δ + logM. (3.33)

Now we lower bound −
∫
∂B

h in term of (3.32) by using properties 2, 3 and 4 of Eδ,M .

• By Property 4 we have

−
∫
∂B

h ≥
n∑
i=1

−
∫
∂B

φmi−1,mi +−
∫
∂B

φm,∞ − logM.

• For each i, notice that z ∈ Si, and so d(z,Left(Si)) ≤ eke−mi by (3.14). Consequently, by Property 2
we have for each i = 1, . . . , n

−
∫
∂B

φmi−1,mi ≥ φmi−1,mi(Left(Si))− 4km
1
2
+δ

i − 4k logM.

• By Property 3 we have

−
∫
∂B

φm,∞ ≥ −m
1
2
+δ − logM.

Combining these yields (see Remark 3.4)

−
∫
∂B

h ≥
n∑
i=1

φmi−1,mi(Left(Si))− 6k2m
1
2
+δ − 6k2 logM = ψ − 6k2m

1
2
+δ − 6k2 logM.

Together with (3.33), this gives ψ + x ≤ Qm+ 8k2(m
1
2
+δ + logM) and concludes the proof.

Proof of Lemma 3.13. This is an application of the Cameron-Martin theorem. We outline here the main
idea, assuming for notational simplicity that the function f depends only on φ, z1, . . . , zk. The argument
works the same way for f depending also on (φn)n≥0.
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Assume first that f is continuous. Fix k ≥ 2, δ > 0 and set Cδ := {(z1, . . . , zk) ∈ B10(0)k :
mini<j |zi − zj | ≥ δ}. Then, by using Fatou’s lemma and the Cameron-Martin formula, we have

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤ lim inf
ε→0

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)
eγφε(z1)

E[eγφε(z1)]
. . .

eγφε(zk)

E[eγφε(zk)]
dz1 . . . dzk

]

= lim inf
ε→0

∫
B10(0)k∩Cδ

e
γ2

2

∑
i6=j Cov(φε(zi),φε(zj))E

[
eγ

∑
i≤k φε(zi)−

γ2

2
Var(

∑
i≤k φε(zi))f(φ, z1, . . . , zk)

]
dz1 . . . dzk

= lim inf
ε→0

∫
B10(0)k∩Cδ

e
γ2

2

∑
i6=j Cov(φε(zi),φε(zj))E

f(φ+ γ
∑
i≤k

Cov(φ(·), φε(zi)), z1, . . . , zk)

 dz1 . . . dzk
=

∫
B10(0)k∩Cδ

e
γ2

2

∑
i6=j Cov(φ(zi),φ(zj))E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 dz1 . . . dzk.
where we used the dominated convergence theorem in the last equality (indeed,

∑
i 6=j Cov(φ(zi), φ(zj))

is uniformly bounded for (z1, . . . , zn) ∈ Cδ). The Cameron-Martin formula is used by writing

γ
∑
i≤k

φε(zi) = 〈φ, γ
∑
i≤k

ρε,zi〉

where ρε,zi denote the uniform probability measure on the circle ∂Bε(zi). Note that the above inequality
was only shown for continuous f , but we can approximate general bounded nonnegative measurable f
by a sequence of continuous fn which converge pointwise to f , and apply the dominated convergence
theorem. Thus the above inequality holds for general f .

Finally, letting δ going to zero and using the monotone convergence theorem, we get

E

[∫
B10(0)k

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤
∫
B10(0)k

e
γ2

2

∑
i6=j Cov(φ(zi),φ(zj))E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 dz1 . . . dzk.
This concludes the proof.

Proof of Lemma 3.14. It suffices to show that for some constant C, for each z ∈ K and each i = 1, . . . , n,
writing w = Left(Si) we have ∣∣Cmi−1,mi(z, w)− (mi −mi−1)1z∈Si

∣∣ < C.

If z 6∈ Si, then by definition d(z, w) ≥ d(z, Si) ≥ e−mi−1 . This is larger than the range of dependence of
φmi−1,mi , so Cmi−1,mi(z, w) = 0 as desired.

Now suppose z ∈ Si. By (3.14), we know that Si is contained in a ball of radius 6ke−mi ; by translation
invariance we may assume this ball is centered at the origin. On B6k(0)×B6k(0), the correlation of φ0,∞
is C0,∞(·, ·) = log | · − · |−1 + q(· − ·) for some bounded continuous q. Thus, by scale invariance, we can
write

Cmi−1,mi(z, w) = C0,mi−mi−1(emi−1z, emi−1w) = log |emi−1(z − w)|−1 − Cmi−mi−1,∞(emi−1z, emi−1w) +O(1).

But again by scale invariance we have

Cmi−mi−1,∞(emi−1z, emi−1w) = C0,∞(emiz, emiw) = log |emi(z − w)|−1 +O(1).

Comparing these two equations we conclude that Cmi−1,mi(z, w) = mi −mi−1 +O(1), as needed.

Finally we check the bound on the regularity event E.
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Proof of Lemma 3.15. We prove here the estimate of the occurence of the event Eδ,M .

For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, the probability that e−` sup6kB |∇φ`′,`| >
`

1
2
+δ + logM is ≤ Ce−c(logM)2e−c`

1+2δ

by Lemma 6.2. Therefore, the probability that Condition 2 does

not hold is ≤ Ce−c(logM)2 ∑
`≥0 `e

2`e−c`
1+2δ

.

For Condition 3, for a B ∈ B of size e−`−2, by scaling −
∫
∂B

φ`,∞ is distributed as −
∫
∂B0

φ0,∞ where B0

is of size e−2 and this is a centered Gaussian variable with bounded variance. Therefore, the probability

it is at least `
1
2
+δ + logM is less than Ce−c(`

1
2
+δ

+logM)2 ≤ Ce−c`
1+2δ

e−c(logM)2 . For each `, there
are O(e2`) balls of size e−`−2 in B, hence the probability that Condition 3 does not hold is less than

Ce−c(logM)2 ∑
`≥0 e

2`e−c`
1+2δ

.

For Condition 4, since φ− h is continuous by Proposition 3.2, and applying Fernique’s theorem, the

probability that ‖φ− h‖D ≤ logM occurs is ≥ 1−Ce−c(logM)2 . For Condition 1, we use Proposition 2.3
and again a union bound.

4 Negative moments

In this section, we prove the following lower bound on the LQG volume of the unit quantum ball.

Proposition 4.1 (Negative moments of LQG ball volume). Let h be a whole-plane GFF normalized so
h1(0) = 0. Then

E
[
µh(B1(0;Dh))−p

]
<∞ for all p ≥ 0.

This result also holds if we instead consider the LQG measure and metric associated with the field h̃ =
h− α log | · | for α < Q.

In Section 4.1, we prove the finiteness of negative moments of µh(B1(0;DD
h)), the unit ball with respect

to the D-internal metric DD
h. This immediately implies Proposition 4.1 since B1(0;DD

h) ⊂ B1(0;Dh). In
Section 4.2 we bootstrap our results to obtain lower bounds on µh(Bs(0;Dh)) for s ∈ (0, 1); these lower
bounds will be useful in our applications in Section 5.

4.1 Lower tail of the unit quantum ball volume

The goal of this section is the following result.

Proposition 4.2 (Superpolynomial decay of internal metric ball volume lower tail). Let h be a whole-
plane GFF normalized so h1(0) = 0. Let DD

h : D × D → R be the internal metric in D induced by Dh,
and B1(0;DD

h) ⊂ D the DD
h-metric ball. Then for any p > 0, for all sufficiently large C > 0 we have

P
[
µh(B1(0;DD

h)) ≥ C−1
]
≥ 1− C−p.

This result also holds if we instead consider the LQG measure and metric associated with the field h̃ =
h− α log | · | for α < Q.

Let N > 1 be a parameter which we keep fixed as C →∞ (taking N large yields p large in Proposi-
tion 4.2) and define

k0 =

⌊
1

N
logC

⌋
, k1 = bN logCc.

Let P be the Dh̃-geodesic from 0 to ∂Be−k0 (0). See Figure 2 (left) for the setup.
Proof sketch of Proposition 4.2. The proof follows several steps. Each step below holds with high

probability.

• We find an annulus Be−k+1(0)\Be−k (0) with k > k0 not too large, such that the annulus-crossing
length of P is not too small. This is possible because the Dh̃-length of P between ∂Be−k1 (0) and

∂Be−k0 (0) is at least C−β for some fixed β > 0. We conclude that the circle average h̃e−k (0) is not

small (h̃e−k & − logC).
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• We find a Dh-metric ball which is “tangent” to ∂Be−k (0) and ∂Be−k−1(0). Then, by Proposition 2.4,
this metric ball (and hence B1(0;DD

h̃
)) contains a Euclidean ball B with Euclidean radius not too

small (say e−(1+ζ)k for small ζ > 0). Since h̃e−k (0) is not small, neither is the average of h̃ on ∂B

(i.e. −
∫
∂B

h̃ & − logC).

• Finally, we have a good lower bound on µh̃(B) in terms of the average of h̃ on ∂B, so we find that B
has not-too-small LQG volume. Since B lies in B1(0;DD

h̃
), we obtain a lower bound µh̃(B1(0;DD

h̃
)) &

C−power. This last exponent does not depend on N , so we may take N →∞ to conclude the proof
of Proposition 4.2.

We now turn to the details of the proof. Let Lk be the Dh̃-length of the subpath of P from 0 until
the first time one hits ∂Be−k (0). We emphasize that Lk is not the Dh̃ distance from 0 to ∂Be−k (0).

Lemma 4.3 (Length bounds along P ). There exist positive constants c = c(γ, α) and β = β(γ, α)
independent of N such that for sufficiently large C, with probability 1−O(C−cN ) the following all hold:

Lk0 > C−β , (4.34)

Lk1 < C−β−1, (4.35)

Lk−1 − Lk < C exp (−kξ(Q− α) + ξhe−k (0)) for all k ∈ [k0 + 1, k1]. (4.36)

Proof. We focus first on (4.34). Using Proposition 2.3 to bound the crossing distance ofBe−k0 (0)\Be−k0−1(0),
we see that with superpolynomially high probability as C →∞ we have

Lk0 ≥ C
−1
(
e−k0

)ξ(Q−α)
exp(ξhe−k0 (0)). (4.37)

Note that since Var(he−k0 (0)) = k0 ≤ N−1 logC, we have

P [ξhe−k0 (0) < − logC] ≤ exp

(
− (logC)2

2ξ2N−1 logC

)
= C−cN

for c = 1/(2ξ2). Notice that when we have both (4.37) and {ξhe−k0 ≥ − logC}, then

Lk0 ≥ C
−1 · C−ξ(Q−α)/N · C−1 ≥ C−β

for the choice β = 2 + ξ(Q− α). Thus (4.34) holds with probability 1−O(C−cN ).
To prove the upper bound (4.36), we glue paths to bound Lk−1−Lk. By Proposition 2.3 and a union

bound, with superpolynomially high probability as C →∞ the following event EC holds:

• For each k ∈ [k0+1, k1], there exists a path from ∂Be−k+1(0) to ∂Be−k−1(0) and paths in the annuli
Be−k (0)\Be−k−1(0) and Be−k+2(0)\Be−k+1(0) which separate the circular boundaries of the annuli,
such that each path has Dh̃-length at most 1

3
C exp (−kξ(Q− α) + ξhe−k (0)). Since the segment

on P measured by Lk−1 − Lk is the restriction of a geodesic which crosses a larger annulus, by
triangular equality, (4.36) holds on EC .

Finally, we check that for our choice of β, the inequality (4.35) holds with probability 1 − C−cN

(possibly by choosing a smaller value of c > 0). By the triangle inequality, Lk1 is bounded from above
by the sum of the Dh̃-distance from the origin to ∂Be−k1+1(0) plus the Dh̃-length of any circuit in the

annulus Be−k1+1(0)\Be−k1 (0). Hence, using the circuit bound on EC , we have

Lk1 ≤ Dh̃(0, ∂Be−k1+1(0)) + Ce−k1ξ(Q−α)eξhe−k1 (0).

By scaling of the metric, Dh̃(0, ∂Be−k1+1(0)) is bounded from above by eξhe−k1+1 (0)e(−k1+1)ξ(Q−α)Y
where Y is distributed as Dh̃(0, ∂B1(0)). Now, since k1 = bN logCc and he−k1 (0) has variance N logC,
by a Gaussian tail estimate we get

P
[
he−k1 (0) >

1

4
k1(Q− α)

]
≤ C−cN .

Furthermore, since Y has some finite small moments for α < Q (by [13, Theorem 1.10]), the Markov’s
inequality provides

P
[
Y e−

1
4
k1ξ(Q−α) > 1

]
≤ C−cN .

Altogether, we obtain (4.35) with probability 1−O(C−cN ).
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As an immediate consequence of the above lemma, we can find a scale k ∈ (k0, k1] such that B1(0;DD
h̃
)

intersects ∂Be−k (0), and the field average at scale k is large. We introduce here a small parameter ζ > 0
which does not depend on C, whose value we fix at the end.

Lemma 4.4 (Existence of large field average near B1(0;DD
h̃
)). Consider c and β as in Lemma 4.3. With

probability 1−O(C−cN ), there exists k ∈ [k0, k1] such that Dh̃(0, ∂Be−k (0)) < 1 and

− k(Q− α) + he−k (0) ≥ −ξ−1(β + 2) logC; (4.38)

moreover, there exists a Euclidean ball Br(z) with r = e−k(1+ζ) and z ∈ rZ2 such that Br(z) ⊂
Be−k (0)\Be−k−1(0) and Br(z) ⊂ B1(0;DD

h̃
).

Proof. To prove (4.38), we first claim that when the event of Lemma 4.3 holds, there exists k ∈ [k0+1, k1]
such that Lk < 1 and Lk−1 − Lk ≥ C−β−1. Let k? be the smallest k ∈ (k0, k1] such that Lk? < C−β ,
then

k1∑
k=k?

Lk−1 − Lk = Lk?−1 − Lk1 ≥ C
−β − C−β−1.

Since the LHS is a sum over at most N logC terms, we indeed find some index k ∈ [k?, k1] such that

Lk−1 − Lk ≥
C−β − C−β−1

N logC
> C−β−1.

For this choice of k, we have Dh̃(0, ∂Be−k (0)) ≤ Lk ≤ Lk? < C−β < 1, and by (4.36) we have (4.38) also.

∂Be−k(0)

Be−k−1(0)

B1(0;D
D
h̃
)

p
U

P ′

Br(z)

∂Be−k1(0)

∂Be−k(0)

∂Be−k0(0)

P

Figure 2: Left: Setup of Lemma 4.3. Given C that we eventually sent to ∞, we take the circles with radii
e−k0 ≈ C−1/N and e−k1 = C−N , and draw all circles with radii e−k with k0 ≤ k ≤ k1. In Lemma 4.4 we follow
the geodesic P from the outer circle to the inner until we find an annulus on which the geodesic segment is long.
Right: Illustration of the second assertion of Lemma 4.4. We find a Dh-quantum ball U ⊂ B1(0;DD

h̃
) such that U is

“tangent” to ∂Be−k and ∂Be−k−1 , then apply Proposition 2.4 to find a Euclidean ball Br(z) ⊂ U .

Now we turn to the second assertion of the lemma; see Figure 2 (right). Let P ′ be a Dh̃-geodesic from

0 to ∂Be−k (0). By the continuity of Dh̃, we can find a point p ∈ P ′ in the annulus Be−k (0)\Be−k−1(0)
such that Dh+(k+1)α(p, ∂Be−k (0)) = Dh+(k+1)α(p, ∂Be−k−1(0)); let U be the Dh+(k+1)α-ball with this
radius centered at p.

We claim that U ⊂ B1(0;DD
h̃
). We assume that α ≥ 0 (the other case is similar). Since (k + 1)α ≥

α log | · |−1 ≥ kα on Be−k (0)\Be−k−1(0), we have for all w ∈ U that

DD
h̃
(p, w) ≤ eξαDD

h+αk(p, w) ≤ eξαDD
h+αk(p, ∂Be−k (0)) ≤ eξαDD

h̃
(p, ∂Be−k (0)),

and consequently

DD
h̃
(0, w) ≤ DD

h̃
(0, p) +DD

h̃
(p, w) ≤ DD

h̃
(0, p) + eξαDD

h̃
(p, ∂Be−k (0)) ≤ eξαDD

h̃
(0, ∂Be−k (0));
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this last inequality follows from the fact that p lies on P ′ soDD
h̃
(0, p)+DD

h̃
(p, ∂Be−k (0)) = DD

h̃
(0, ∂Be−k (0)).

Since DD
h̃
(0, ∂Be−k (0)) ≤ Lk? < C−β , we conclude that DD

h̃
(0, w) < eξαC−β ≤ 1, and hence U ⊂

B1(0;DD
h̃
).

Since U is a Dh+(k+1)α metric ball, it is also a Dh metric ball. Furthermore, since diam(U) ∈
( 1
2
e−k, 2e−k), Proposition 2.4 gives us a Euclidean ball of radius e−k(1+ζ/2) in U , and hence a Euclidean

ball Br(z) ⊂ U with z ∈ rZ2. Since U lies in Be−k (0)\Be−k−1(0) and in B1(0;DD
h̃
), so does Br(z), so we

have shown Lemma 4.4.

Finally, we need a regularity event to say that the µh̃-volumes of Euclidean balls are close to their
field average approximations, and that the field does not fluctuate too much on each scale. The bounds
in the following lemma are standard in the literature. We introduce a large parameter q > 0 that does
not depend on C, and fix its value at the end.

Lemma 4.5 (Regularity of field averages and ball volumes). Fix ζ ∈ (0, 1) and q > 0. Then for

sufficiently large C, with probability 1 − C−ζ(
q2

2N
−2N−1) the following is true. For each k ∈ [k0, k1],

writing r = e−k(1+ζ), for all z ∈ rZ2 such that Br(z) ⊂ Be−k (0)\Be−k−1(0) we have

|hr(z)− he−k (0)| < kqζ (4.39)

and
µh̃(Br(z)) ≥ C−1rγQ exp(γh̃r(z)). (4.40)

Proof. By standard GFF estimates, we have Cov (hr(z), he−k (0)) = k+O(1), Varhr(z) = − log r+O(1) =
k(1 + ζ) +O(1) and Varhe−k (0) = k +O(1). Consequently,

Var (hr(z)− he−k (0)) = ζk +O(1),

and hence by the Gaussian tail bound,

P [|hr(z)− he−k (0)| < kqζ] ≥ 1−O(e−
q2ζk

2 ).

Taking a union bound over all O(e2kζ) points in rZ2 ∩ Be−k (0), then summing over all k ∈ [k0, k1], we
see that the probability (4.39) holds for all k and all suitable z is at least

1−O

 k1∑
k=k0

e2kζe−q
2ζk/2

 ≥ 1−O
(
N logC · e2k1ζe−q

2ζk0/2
)
≥ 1− C−ζ(

q2

2N
−2N−1).

Now, we establish that for each fixed choice of k, z, the inequality (4.40) holds with superpolynomially
high probability as C →∞ (then we are done by a union bound over a collection of polynomially many

k, z); since −α log | · |−αk is bounded on the annulus, it suffices to show (4.40) with h̃ replaced by h+αk
(or equivalently by h, since both sides of the equation (4.40) scale the same way under adding a constant

to the field). By the Markov property of the GFF (Lemma 2.2) we can decompose h = h + ĥ, where

h is a distribution which is harmonic in B2r(z), and ĥ is a zero boundary GFF in the domain B2r(z);

moreover h and ĥ are independent. We can then write

µh(Br(z)) ≥ eγ infBr(z) hµĥ(Br(z))

= (2r)γQeγhr(z)e−γĥr(z)eγ infBr(z) h−γh(z)µg(B 1
2
(0)),

where g := ĥ(2r ·+z) has the law of a zero boundary GFF on D. (This follows from an affine change of
coordinates mappingB2r(z) 7→ D; then by the coordinate change formula µĥ(Br(z)) = (2r)γQµg(B 1

2
(0)).)

Since ĥr(z) is a mean zero Gaussian with fixed variance, and by the quantum volume lower bound (2.4),

we have e−γĥr(z) ≥ C−1/3 and µg(B 1
2
(0)) ≥ C−1/3 with superpolynomially high probability in C. Com-

bining these bounds with the above estimate, with superpolynomially high probability in C we have

µh(Br(z)) ≥ (2r)γQC−2/3eγ infBr(z) h−γh(z).
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Hence we are done once we check that with superpolynomially high probability in C,

eγ infBr(z) h−γh(z) ≥ C−1/3. (4.41)

Since h = h + ĥ and h, ĥ are independent, for x, x′ ∈ Br(z) we have

Var
(
h(x)− h(x′)

)
≤ Var

(
hr(x)− hr(x′)

)
= O(1).

Moreover, by the scale and translation invariance of the GFF modulo additive constant and the fact that
h is continuous in B 3

2
r(z), we know that h(z)− infBr(z) h > −∞ and has a law independent of r, z, so by

the Borell-TIS inequality we see that for some absolute constants m, c, we have

P
[
h(z)− inf

Br(z)
h > u+m

]
≤ e−cu

2

for all u > 0.

This immediately implies (4.41). Thus, for each fixed choice of k, z, the inequality (4.40) holds with
superpolynomially high probability as C →∞. Taking a union bound, we obtain (4.40).

Proof of Proposition 4.2. Let c, β be as in Lemma 4.3. We will work with parameters N, ζ, q, and choose
their values at the end. Assume that the events of Lemmas 4.4 and 4.5 hold; this occurs with probability

at least 1− C−cN − C−ζ(
q2

2N
−2N−1). Let k, r, and Br(z) be as in Lemma 4.4.

We now lower bound the quantum volume of Br(z). By (4.38) and (4.39), we see that

rγQ exp
(
γh̃r(z)

)
≥ exp (−γkQ(1 + ζ) + γhr(z) + γαk)

≥ exp(−γζk(Q+ q)− γk(Q− α) + γhe−k (0))

≥ exp(−γζk(Q+ q))C
− γ
ξ
(β+2)

≥ C−γζN(Q+q)C
− γ
ξ
(β+2)

.

The last inequality follows from k ≤ k1 = bN logCc. Choose q = N3 and ζ = N−4. Then by the above
inequality, (4.40), and Br(z) ⊂ B1(0;DD

h̃
), we see that for a constant β′ = β′(γ) > 0 we have

µh̃(B1(0;DD
h̃
)) ≥ µh̃(Br(z)) ≥ C−β

′
.

Since this occurs with probability 1 − C−cN − C−ζ(
q2

2N
−2N−1) = 1 − O(C−cN ), and N can be made

arbitrarily large, we have proved Proposition 4.2.

4.2 Lower tail of small quantum balls

Using Proposition 4.2 and the scaling properties of the LQG metric and measure, we can easily prove a
similar result for quantum balls centered at the origin of all radii s ∈ (0, 1). We emphasize that in the
following proposition, we are considering the Dh-metric balls, rather than DD

h-metric balls.

Lemma 4.6. Let h be a whole-plane GFF normalized so h1(0) = 0. For any p > 0, there exists Cp such
that for all C > Cp and s ∈ (0, 1), we have

P
[
µh(Bs(0;Dh)) ≥ C−1sdγ

]
≥ 1− C−p.

Proof. The process t 7→ he−t(0) for t ≥ 0 evolves as standard Brownian motion started at 0. Fix s ∈ (0, 1)
and let T > 0 be the first time t > 0 that −Qt+ he−t(0) = ξ−1 log s. Notice that

h(e−T ·) +Q log e−T =
(
h(e−T ·)− he−T (0)

)
−QT + he−T (0) =

(
h(e−T ·)− he−T (0)

)
+ ξ−1 log s.

By Lemma 2.1, conditioned on T , we have (h(e−T ·)+Q log e−T )
∣∣
D
d
= (ĥ+ξ−1 log s)

∣∣
D where ĥ is a whole-

plane GFF normalized to have mean zero on ∂D. Couple these fields to agree. By the Weyl scaling
relations and the change of coordinates formula for quantum volume and distances, and the locality
property of the internal metric (Axiom II), we have the internal metric relation

De−T D
h (e−T z, e−Tw) = DD

ĥ+ξ−1 log s
(z, w) = sDD

ĥ
(z, w)
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and the volume measure relation

µh(e−T ·) = µĥ+ξ−1 log s(·) = sdγµĥ(·).

Thus we can relate the quantum volume of the internal metric balls Bs(0;De−T D
h ) ⊂ e−TD and B1(0;DD

ĥ
):

µh
(
Bs(0;De−T D

h )
)

= sdγµĥ(B1(0;DD
ĥ+ξ−1 log s

)),

and consequently we have{
µh(Bs(0;De−T D

h )) ≥ C−1sdγ
}

=
{
µĥ(B1(0;DD

ĥ
)) ≥ C−1

}
.

Since µh(Bs(0;Dh)) ≥ µh(Bs(0;De−T D
h )), our claim follows from Proposition 4.2.

5 Applications and other results

5.1 Uniform volume estimates and Minkowski dimension

In this section, we prove the remaining assertions of Theorem 1.1. Namely, the Minkowski dimension of
a bounded open set S is almost surely equal to dγ and for any compact set K ⊂ C and ε > 0, we have,
almost surely

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0.

Since the whole-plane GFF modulo additive constants has a translation invariant law, we can deduce
a similar result as the one in the previous section for quantum balls centered at z 6= 0.

Proposition 5.1 (Uniform lower tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF normalized so
h1(0) = 0, and K ⊂ C be any compact set. For any p > 0, there exists Cp,K > 0 such that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≥ C−1sdγ

]
≥ 1− C−p for each C > Cp,ε,K .

Proof. Fix z ∈ K. We can write h = ĥ+X where ĥ is a whole-plane GFF normalized so ĥ1(z) = 0, and
X = h1(z) is a random real number. On the event {|X| ≤ γ−1 logC} we have C−1 ≤ eγX ≤ C, so

{µh(Bs(z;Dh)) < C−3sdγ} = {eγXµĥ(Be−ξXs(z;Dĥ)) < C−3sdγ}

⊂ {C−1µĥ(B
C−1/dγ s

(z;Dĥ)) < C−3sdγ} ∪ {|X| > γ−1 logC}

= {µĥ(B
C−1/dγ s

(z;Dĥ)) < C−1(C−1/dγ s)dγ} ∪ {|X| > γ−1 logC}.

In the last line, the first event is superpolynomially rare in C by Lemma 4.6, and the second because X
is a centered Gaussian. Note that VarX = Varh1(z) is uniformly bounded for all z ∈ K, so the decay of
the second event is uniform for z ∈ K. This completes the proof.

Similarly, we can bootstrap Lemma 3.18 to a statement uniform for Dh-balls centered in a compact
set.

Proposition 5.2 (Uniform upper tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF normalized so
h1(0) = 0. For any compact set K ⊂ C, p > 0, ε ∈ (0, 1), there exists a constant Cp,ε,K > 0 such that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≤ Csdγ−ε

]
≥ 1− C−p for each C > Cp,ε,K .

Proof. We note that Lemma 3.18 implies an upper bound version of Lemma 4.6 (with an exponent of
dγ − ε instead of dγ), and we deduce Proposition 5.2 in the same way that we obtain Proposition 5.1
from Lemma 4.6.

Before moving to the proof of the almost sure uniform estimate, we first prove volume bounds on a
countable collection of quantum balls.
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Lemma 5.3. For any ε > 0 and bounded open set 2D, the following is true almost surely. For all
sufficiently large m, for all z ∈ 2−mZ2 ∩ 2D, and for all dyadic s = 2−k ∈ (0, 1] we have

sdγ−ε2εm > µh(Bs(z;Dh)) > sdγ+ε2−εm.

Proof. The proof is a straightforward application of Propositions 5.2 and 5.1 and the Borel-Cantelli
lemma. We prove the lower bound; the upper bound follows the same argument.

Pick any large p > 0, and let Cp,2D be the constant from Proposition 5.1. Consider any m such that
2εm > Cp,2D, then for any z ∈ 2D we have

P
[
µh(Bs(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1]

]
> 1− 2−εpm

∑
dyadic s

sεp.

Taking a union bound over all the O(22m) points in 2−mZ2 ∩ 2D yields

P
[
µh(Br(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1] and z ∈ 2−mZ2 ∩ 2D

]
> 1−O(2−(εp−2)m)

∑
dyadic s

sεp.

For p large enough we have εp − 2 > 0, so by the Borel-Cantelli lemma, a.s. at most finitely many
of the above events fail, i.e. the lower bound of Lemma 5.3 holds. The upper bound follows the same
argument.

With this lemma and the bi-Hölder continuity of Dh with respect to Euclidean distance, we can prove
the second part of Theorem 1.1.

Proof of Theorem 1.1 part 2. We first prove that a.s. for some random r ∈ (0, 1), we have

inf
s∈(0,r]

inf
z∈D

µh(Bs(z;Dh))

sdγ+ζ
> 0. (5.42)

We use the bi-Hölder continuity of Dh with respect to Euclidean distance (see e.g. [13, Theorem 1.7])
and the Borel-Cantelli lemma to obtain the following. There exist deterministic constants χ, χ′ > 0 and
random constant c, C such that, almost surely,

c|u− v|χ
′
≤ Dh(u, v) ≤ C|u− v|χ for all u, v ∈ 2D.

Moreover, Proposition 2.4 and Borell-Cantelli yield that a.s. every quantum ball B contained in 2D and
having sufficiently small Euclidean diameter contains a Euclidean ball of radius at least diam(B)2.

Consequently, for all sufficiently small s and any z ∈ D, we have

s

2
≤ C diam(Bs/2(z;Dh))χ,

and since any two points in Bs/2(w;Dh) have Dh-distance at most s, the bi-Hölder lower bound gives

cdiam(Bs/2(z;Dh))χ
′
≤ s.

Since the ball Bs/2(z;Dh) has a small diameter, it a.s. contains a Euclidean ball of radius at least

diam(Bs/2(z;Dh))2 ≥ (s/2C)2/χ hence contains a w ∈ 2−mZ2 withm = d− 2
χ

log2(s/2C)e < − 3
χ

log2(s/2C).

Thus, for a random constant c′, for sufficiently small s, applying Lemma 5.3 to m as above and dyadic
s1 ∈ ( s

4
, s
2
], we have

µh(Bs/2(w;Dh)) ≥ µh(Bs1(w;Dh)) ≥ sdγ+ε1 · 2−εm ≥
( s

4

)dγ+ε ( s

2C

) 3ε
χ

= c′s
dγ+ε+

3ε
χ .

Since w ∈ Bs/2(z;Dh), by the triangle inequality we have Bs/2(w;Dh) ⊂ Bs(z;Dh), so

µh(Bs(z;Dh)) > c′s
dγ+3ε+ 3ε

χ .

Almost surely, this holds for all sufficiently small s > 0 and all z ∈ D. Choosing ε > 0 so that ε+ 3ε
χ
< ζ,

we obtain (5.42).
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The supremum analog of (5.42) follows almost exactly the same proof, except that instead of finding a

“dyadic” quantum ball inside each radius s quantum ball, we find a dyadic quantum ball B̃ (with dyadic

radius s1 ∈ [2s, 4s)) around each quantum ball B, then apply Lemma 5.3 to upper bound µh(B̃) (and
hence µh(B)).

Now, we extend (5.42) to a supremum/infimum over all s ∈ (0, 1]. For any s ∈ (r, 1] and z ∈ D, we
have

µh(Bs(z;Dh))

sdγ+ζ
≥ µh(Bs(z;Dh)) ≥ rdγ+ζ µh(Br(z;Dh))

rdγ+ζ
,

and noting that a.s. for sufficiently large R we have Dh(D, ∂BR(0)) > 1,

µh(Bs(z;Dh))

sdγ−ζ
≤ r−dγ+ζµh(BR(0)) <∞.

This concludes the proof of the uniform volume estimates.

Finally, we prove the statement from Theorem 1.1 about the Minkowski dimension of a set.

Proof of Theorem 1.1, part 3. Consider any bounded measurable set S containing an open set and fix
δ ∈ (0, 1). Let NS

ε be the minimal number of LQG metric balls with radius ε needed to cover the set S
and denote by Cε the set of centers associated to such a covering. Then, since

µh(S) ≤
∑
z∈Cε

µh(Bε(z;Dh)) ≤ NS
ε max
z∈Cε

µh(Bε(z;Dh)),

the uniform volume estimate and the fact that µh(S) > 0 a.s. imply that for every δ > 0, we have the a.s.

lower bound lim infε→0
logNSε
log ε−1 ≥ dγ − δ. Now, denote by MS

ε the maximal number of pairwise disjoint
LQG metric balls with radius ε whose union is included in S. Denote by Dε the set of centers associated
to such a collection of metric balls. Note that MS

ε ≥ NS
2ε. Therefore,

µh(S) ≥
∑
z∈Dε

µh(Bε(z;Dh)) ≥MS
ε min
z∈Dε

µh(Bε(z;Dh)) ≥ NS
2ε min
z∈Dε

µh(Bε(z;Dh))

from which we get the a.s. upper bound lim supε→0
logNSε
log ε−1 ≤ dγ + δ by the uniform volume estimate and

the fact that µh(S) <∞ almost surely. Letting δ → 0 completes the proof.

5.2 Estimates for Liouville Brownian motion metric ball exit times

Liouville Brownian motion is, roughly speaking, Brownian motion associated to the LQG metric tensor
“eγh(dx2 + dy2)”, and was rigorously constructed independently in the works [16] and [3]. These papers
consider fields different from our field h (a whole-plane GFF normalized so h1(0) = 0), but their results
are applicable in our setting5.

Liouville Brownian motion was defined in [16, 3] by applying an h-dependent time-change to standard
planar Brownian motion. Letting Bt be standard planar Brownian motion from the origin sampled
independently from h, we can define Liouville Brownian motion as Xt = BF−1(t) for t ≥ 0, where F is a
random time-change defined h-almost surely. The function F (t) should be understood as the quantum
time elapsed at Euclidean time t, and has the following explicit description. Defining the approximation

F ε(t) =

∫ t

0

εγ
2/2eγhε(Bs)ds, (5.43)

and writing TR for the Euclidean time that Bt exits the ball BR(0), the sequence F ε|[0,TR] converges
almost surely as ε→ 0 to F |[0,TR] in the uniform metric [3, Theorem 1.2].

For a set X ⊂ C and z ∈ C, denote by τh(z;X) the first exit time of the Liouville Brownian motion
started at z from the set X. We discuss now the results of [16] on the moments of τh(z;B1(z)) and of
F (t), i.e. the moments of the elapsed quantum time at some Euclidean time. These results are analogous
to the moments of the LQG volume of a Euclidean ball (Section 2.4).

5[3] considers a GFF in a bounded planar domain, and [16] discusses a whole-plane massive free field but explains how to
adapt their framework to the setting of a GFF in a bounded planar domain. Since h is locally absolutely continuous with
respect to a zero boundary GFF in a bounded planar domain (modulo additive constant), the results of [16, 3] hold in our
setting.
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Proposition 5.4 (Moments of quantum time [16, Theorem 2.10, Corollary 2.12, Corollary 2.13]). For
all q ∈ (−∞, 4/γ2), t > 0, the following holds,

E[τh(0;B1(0))q] + E[F (t)q] <∞.

Heuristically, the nonexistence of large moments is due to the Brownian motion hitting regions of
small Euclidean size but large quantum size. On the other hand, the random set B1(0;Dh) in some sense
avoids such regions.

In this section we prove the finiteness of all moments of the LBM first exit time of B1(0;Dh), which
we abbreviate as τ , and discuss the moments of τh(0;Bs(0;Dh)) for small s ∈ (0, 1).

Upper bound for LBM exit time of quantum balls

Theorem 5.5 (Positive moments for quantum exit time of quantum ball). Let h be a whole-plane GFF
normalized so h1(0) = 0, and consider Liouville Brownian motion associated to h. Let τ be the first exit
time of the Liouville Brownian motion started at the origin from the ball B1(0;Dh), i.e.

τ = inf{t ≥ 0 : Xt 6∈ B1(0;Dh)}.

Then
E[τk] <∞ for all k ≥ 0.

Proof sketch: In computing E[τk], by first averaging out the randomness of (Bt)t≥0, we obtain an
expectation in h of an integral over k-tuples of points in B1(0;Dh); this is similar to the integral in Step
1 of the proof of Proposition 3.11, but with additional log-singularities between these points. Because
the arguments of Proposition 3.11 had some room in the exponents, the log-singularities pose no issue
for us, and we can carry out the same arguments from Section 3. We will be succinct when adapting
these arguments.

Let τn be the quantum time LBM spends in the annulus A2n := B2n(0)\B2n−1(0) before exiting
B1(0;Dh). As in [16, (B.2)], we have the following representation of E[τkn ] for k a positive integer, which
follows from taking an expectation over the standard Brownian motion (Bt)t≥0 used to define (Xt)t≥0

(see (5.43)),

E[τkn ] = E

[∫
(A2n )k

f(z1, . . . , zk, h)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
, (5.44)

and where, writing t0 = 0 and z0 = 0 for notational convenience, f is given by

f(z1, . . . , zk, h) :=

∫
0≤t1≤···≤tk<∞

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
(5.45)

× P
[
B|[0,tk] stays in B1(0;Dh) | h,Bti = zi for i = 1, . . . , k

]
dt1 . . . dtk.

The function f(z1, . . . , zk) is an integral of the Brownian motion transition density at times t1, . . . , tk
times the conditional probability that the Brownian motion does not escape B1(0;Dh). We will need the
following bound on f , whose proof is postponed to the end of the section.

Lemma 5.6. There exists a constant C > 0 such that for all sufficiently large R > 0, on the event
{B1(0;Dh) ⊂ BR(0)} we have

f(z1, . . . , zk, h) ≤ C (logR)k g(z1, . . . , zk) for all z1, . . . , zk ∈ RD,

where, recalling z0 = 0,

g(z1, . . . , zk) =

k∏
i=1

max (− log |zi − zi−1|, 1) .

Proof of Theorem 5.5. Our strategy is to fix some large R > 0 then truncate on the event E′R :=
{B1(0;Dh) ⊂ BR(0)}. Subsequently, we show an analog of Proposition 3.11, and use it to bound
E[τkn1E′

R
] for all n. Combining these, we obtain a bound on E[τk1E′

R
]. Finally, we verify that P[E′R]

decays sufficiently quickly in R, and we are done.
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Step 1: Proving an analog of Proposition 3.11. The argument there bounded

E

[∫
(A1)k

1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]

by using a Cameron-Martin shift (placing γ-log singularities at each zi and replacing
∏
µh(dzi) by∏

i<j |zi − zj |−γ
2 ∏

dzi), then using Proposition 3.8 to bound the integral. Recalling Remark 3.10,

Proposition 3.11 can be proved even if the exponent γ2 is made slightly larger. Any such exponent increase
will upper bound the log-singularities of g, hence we have the following analog of Proposition 3.11:

E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]
. e−ck,δx.

Step 2: Bounding E[τkn1E′
R

] for each n. We start with n = 0. Using Lemma 5.6 and (5.44) (and noting

that B1(0;Dh) ∩A1 ⊂ A1 ∩ P 1,1
h ), we obtain

E[τk0 1E′
R

] . (logR)k E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
. (logR)k ,

(5.46)
where the last inequality follows from Step 1. Likewise, building off of Step 1, similar arguments as in
Lemmas 3.16 and 3.17 yield

E
[
τkn1E′

R

]
.

 (logR)k 2−
Q2

2
|n|2αδ|n| if n < 0,

(logR)k 2−
Q2

2
n if n > 0.

for some arbitrarily small αδ > 0.

Step 3: Bounding the upper tail of τ . By Hölder’s inequality (see end of proof of Lemma 3.16), the above

bounds on E
[
τkn1E′

R

]
yield

E
[
τk1E′

R

]
. (logR)k .

By Lemma 5.7 (see end of section) we also have for some fixed a > 0 that

P[(E′R)c] ≤ R−a

Combining these assertions, we have

P [τ > t] . P
[
(E′R)c

]
+ E

[
τk1E′

R

]
t−k . R−a + (logR)k t−k.

Taking R equal to some large power of t, we conclude that for all p < k we have E[τp] < ∞. Taking
k →∞, we obtain Theorem 5.5.

Proof of Lemma 5.6. We instead prove the stronger statement

f(z1, . . . , zk, h) ≤ C
k∏
i=1

(logR− log |zi − zi−1|) for all z1, . . . , zk ∈ A1.

We split the integral (5.45) into two parts (integrating over tk < R2 and tk ≥ R2 respectively), and
bound each part separately.

There exists p > 0 such that the following is true: Let t ≥ 1/k and consider a Brownian bridge of
duration t with endpoints B0, Bt specified in D. Then this Brownian bridge stays in D with probability
at most e−pt. If tk ≥ R2, then there exists some i ∈ {1, . . . , k} such that ti − ti−1 ≥ tk/k ≥ R2/k, and
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so B|[ti−1,ti] conditioned on Bti−1 = zi−1 and Bti = zi stays in RD with probability at most e−ptk/kR
2

.

This allows us to upper bound the integral (5.45) on the restricted domain with tk ≥ R2:∫
0≤t1≤···≤tk<∞

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)
− p

kR2
(ti − ti−1)

)
dt1 . . . dtk

=
k!

(2π)k/2

k∏
i=1

∫ ∞
0

1

t
exp

(
−|zi − zi−1|2

2t
− p

kR2
t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

by using the bound
∫∞
0
e−t/xe−1/t dt

t
≤
∫ 1

0
e−1/t dt

t
+
∫∞
x
e−t/x dt

t
+
∫ x
1
dt
t
≤ C + log x for x ≥ 1 and a

change of variable.
Now we upper bound the integral (5.45) on the restricted domain 0 ≤ t1 ≤ · · · ≤ tk < R2:∫

0≤t1≤···≤tk<R2

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
dt1 . . . dtk

≤ k!

(2π)k/2

k∏
i=1

∫ R2

0

1

t
exp

(
−|zi − zi−1|2

2t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

where the final inequality follows from
∫ R2

0
e−a/2t dt

t
=
∫ 1

0
e−1/2u du

u
+
∫ R2a−2

1
e−1/2u du

u
≤ C + logR2a−2.

Combining these two upper bounds, we are done.

Lemma 5.7 (Polynomial tail for Euclidean diameter of B1(0;Dh)). Let h be a whole-plane GFF with
h1(0) = 0. Then for all a ∈ (0, Q2/2), for all sufficiently large R we have

P [B1(0;Dh) ⊂ BR(0)] ≥ 1−R−a.

Proof. Fix ε > 0 small. By Proposition 2.3 we have with superpolynomially high probability as R→∞
that

Dh(0, ∂BR(0)) ≥ Dh(∂BR/2(0), ∂BR(0)) ≥ Rξ(Q−ε)eξhR(0).

By a standard Gaussian tail bound we also have

P[hR(0) > −(Q− ε) logR] ≤ exp

(
− (Q− ε)2 logR

2

)
= R−(Q−ε)2/2.

Combining these two bounds, we see that with probability 1−O(R−(Q−ε)2/2) we have Dh(0, ∂BR(0)) > 1,
as desired.

Lower bound for LBM exit time of quantum balls

Theorem 5.8. Recall that τ is the first exit time of the Liouville Brownian motion (Xt)t≥0 from the
LQG metric ball B1(0;Dh). For all k ≥ 1, we have

E[τ−k] <∞.

Consider standard Brownian motion (Bt)t≥0 started at the origin, and recall that Liouville Brownian
motion is given by a random time-change: Xt = BF−t(t), where the quantum clock F is formally given

by F (t) =
∫ t
0
eγh(Bs)ds (see (5.43)). Consider an annulus Ar/e,r(z) with 0 6∈ Ar/e,r(z). Define τr(z) to

be the quantum passage time of the annulus. That is, for the case where the annulus encircles the origin,
writing t1 for the first time Bt hits ∂Br(z), and t0 for the last time before t1 that Bt hits ∂Br/e(z), we
set τr(z) = F (t1) − F (t0), and define it analogously in the case that the annulus does not encircle the
origin.

We need the following input, which can be seen as a variant of [16, Proposition 2.12] combined with
the scaling relation [16, Equation (2.25)] and which can be obtained by using the same techniques.

Proposition 5.9. For any compact set K ⊂ C, there exists a random variable X ≥ 0 having all negative
moments such that the following is true. For fixed r ∈ (0, 1) and z ∈ K such that 0 6∈ Ar/e,r(z), the

quantum passage time τr(z) is stochastically dominated by rγQeγhr(z)X.
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As an immediate consequence of the r = 1 case of this proposition, we have the following.

Corollary 5.10. The event {Xτ 6∈ D and τ < C−1} is superpolynomially unlikely as C →∞.

Similarly to Section 4.1, we set
k1 = bN logCc.

Lemma 5.11. There exist γ-dependent constants χ, c > 0 so that the following holds. Consider the event
EC that each ball Be−k1 (z) included in 2D has quantum diameter at most 2e−χk1 . Then, EC occurs with
probability at least 1− e−cN .

Proof. This is an application of the Hölder estimate [13, Proposition 3.18] which implies that there exist
positive constants χ, α such that, as ε→ 0, with probability at least 1− εα,

Dh(u, v) ≤ |u− v|χ, ∀u, v ∈ 2D with |u− v| ≤ ε.

Therefore, taking ε = e−k1 , for z such that Be−k1 (z) ⊂ 2D, for all w ∈ Be−k1 (z), Dh(z, w) ≤ e−χk1 and
the quantum diameter of that ball is bounded from above by twice this upper bound.

We consider the grid ZC := 1
100

e−k1Z2.

Lemma 5.12. Consider the event FC that for every point z ∈ ZC ∩ 2D, for all k ∈ [0, k1], the
following conditions hold. There is a circuit of Dh-length at most e−kξQeξhe−k (z)C in the annulus
Ae−k−1,e−k (z), the crossing length Dh(∂Be−k−1(z), ∂Be−k+1(z)) is at most e−kξQeξhe−k (z)C, τe−k (z) ≥
e−kγQeγhe−k (z)C−1 and, finally, |he−k (z)− he−k+1(z)| ≤ ξ−1 logC. Then, FC occurs with superpolyno-
mially high probability as C →∞.

Proof. This follows from Proposition 5.9 and Proposition 2.3 together with a union bound.

Proof of Theorem 5.8. We will show that P [τ > C−1] occurs with superpolynomially high probability.
By Corollary 5.10 and Lemmas 5.11 and 5.12, we see that the probability of {τ < C−1 and Xτ 6∈
D} ∪ EcC ∪ F cC is at most C−cN for some fixed c.

Now restrict to the event {Xτ ∈ D}∩EC∩FC ; we show that for some constant α not depending on C,N
we have τ > C−α for sufficiently large C, then we are done sinceN is arbitrary. On this event the distances
Dh(0, ∂Be−k1 (0)) and Dh(Xτ , ∂Be−k1 (Xτ )) are small, so we have Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≥ 1

2
. Let

w ∈ ZC be the closest point to Xτ , denoted by w, and grow the annuli centered at 0 and w until they
first hit; let k∗ ∈ [0, k1] satisfy 2e−k∗ ≤ |w| < 2e−k∗+1. By Lemma 5.12 we get

τ ≥
∑

k∈[k∗,k1]

τe−k (0) + τe−k (w) ≥ C−1
∑

k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w)

and, by taking an additional annulus crossing and circuit, using the circle average regularity between
two annuli,

1

2
≤ Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≤ 10C2

∑
k∈[k∗,k1]

e−kξQeξhe−k (0) + e−kξQeξhe−k (w).

Therefore, by raising the inequality above to the power dγ and using Jensen’s inequality for the right-hand
side, as well as the lower bound for τ , we get

1

2dγ
≤ (10C2)dγk

dγ−1
1

∑
k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w) ≤ (10C2)dγk
dγ−1
1 Cτ.

hence τ ≥ C−α for some fixed power α and C large enough. Since N is arbitrary (α does not depend on
N), we conclude the proof of Theorem 5.8.
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Scaling relations for small balls. Finally we explain the behavior of small ball exit times. Recall
that τh(z;Bs(z;Dh)) is the first time that Liouville Brownian motion started at z exits the ball Bs(z;Dh).

Theorem 5.13. Let h be a whole-plane GFF normalized so h1(0) = 0, and let K ⊂ C be any compact
set. For any ε ∈ (0, 1), there exists a constant Cp,ε,K so that for C > Cp,ε,K , for all s ∈ (0, 1) and z ∈ K
we have

P[τh(z;Bs(z;Dh)) ≤ Csdγ−ε] ≥ 1− Cp, (5.47)

and
P[τh(z;Bs(z;Dh)) ≥ C−1sdγ ] ≥ 1− Cp. (5.48)

Proof. We first discuss the proofs of (5.47) and (5.48) for the specific case z = 0. For the upper bound,
recall that we proved the finiteness of positive moments of τ by slightly modifying the arguments of
Section 3. An extension of these arguments (see Lemma 3.18) yields (5.47) for z = 0. For the lower
bound, though the proof of Theorem 5.8 is quite different from that of the finiteness of negative moments
of µh(B1(0;DD

h)), the exact same rescaling argument in Section 4.2 is applicable here, yielding (5.48) for
z = 0. Finally, the arguments of Section 5.1 allow us to extend the z = 0 case to obtain (5.47) and (5.48)
for all z ∈ K.

5.3 Recovering the conformal structure from the metric measure space
structure of γ-LQG

The Brownian map is constructed as a random metric measure space (see [32, 33]) and has been proved
to be the Gromov-Hausdorff limit of uniform triangulations and 2p-angulations in [30, 31, 32, 35]. The
Brownian map was later endowed with a canonical conformal structure via identification with

√
8/3-LQG

[37, 38, 40, 41], but this construction was non-explicit. The work of [23] gives an explicit way to recover
the conformal structure of a Brownian map from its metric measure space structure, and their proof
mostly carries over directly to the general setting γ ∈ (0, 2), except for certain Brownian map metric ball
volume estimates of Le Gall [31]. The missing ingredient for general γ was exactly the uniform volume
estimates (1.1)(cf. [23, Lemma 4.9]).

As an immediate consequence of (1.1) and the arguments of [23] (see discussion before [23, Remark
1.3]), we obtain the following generalization of [23, Theorem 1.1] to all γ ∈ (0, 2). Let h be a whole-plane
GFF normalized so h1(0) = 0, and write B•R(0;Dh) for the filled Dh-ball centered at 0 with radius R
(i.e. the union of BR(0;Dh) and all µh-finite complementary regions). Let Pλ be a sample from the
intensity λ Poisson point process associated to µh. We can obtain a Dh-Voronoi tessellation of C into
cells {Hλ

z }z∈Pλ by defining Hλ
z = {w ∈ C : Dh(w, z) ≤ Dh(w, z′) ∀ z′ ∈ Pλ}. We define a graph

structure on Pλ by saying that z, z′ ∈ Pλ are adjacent if their Voronoi cells Hλ
z , H

λ
z′ intersect along their

boundaries. Let Y λ be a simple random walk on Pλ started from the point whose Voronoi cell contains
0, extend Y λ from the integers to [0,∞) by interpolating along Dh-geodesics, and finally stop Y λ when
it hits ∂B•R(0;Dh).

Theorem 5.14 (Generalization of [23, Theorem 1.1]). As λ → ∞, the conditional law of Y λ given
(C, 0, Dh, µh) converges in probability as λ → 0 to standard Brownian motion in C started at 0 and
stopped when it hits ∂B•R(0;Dh) (viewed as curves modulo time parametrization6).

We remark that in fact this convergence holds uniformly for the random walk and Brownian motion
started in a compact set, and moreover holds for a range of quantum surfaces such as quantum spheres,
quantum cones, quantum wedges, and quantum disks; see [23, Theorem 3.3]. Consequently, the Tutte
embedding of the Poisson-Voronoi tessellation of the quantum disk converges to the quantum disk as
λ→∞ (see the proof of [23, Theorem 1.2]).

Proof. Since we have the estimates (1.1), the general γ ∈ (0, 2) version of [23, Theorem 3.3] holds. In
particular, Theorem 5.14 holds if we replace the field h with that of a 0-quantum cone. By comparing h to
the field of a 0-quantum cone and using local absolute continuity arguments, we obtain Theorem 5.14.

6The metric on curves modulo time parametrization is given as follows. For curves ηj : [0, Tj ]→ C (j = 1, 2), we set

d(η1, η2) = inf
φ

sup
t∈0,T1

|η1(t)− η2(φ(t))|

where the infimum is over increasing homeomorphisms φ : [0, T1]→ [0, T2].
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Notice that the construction of Y λ involves only the pointed metric measure space structure of
(C, 0, Dh, µh), so Theorem 5.14 roughly tells us that we can recover the conformal structure of (C, 0, Dh, µh)
from its metric measure space structure. The following variant of [23, Theorem 1.2] makes this observa-
tion explicit, resolving a question of [21].

Theorem 5.15 (Pointed metric measure space (C, 0, Dh, µh) determines conformal structure). Let h
be a whole-plane GFF normalized so h1(0) = 0. Almost surely, given the pointed metric measure space
(C, 0, Dh, µh), we can recover its conformal embedding into C and hence recover h (both modulo rotation
and scaling).

Proof. To simplify notation, assume that we are given the two-pointed metric measure space (C, 0, 1, Dh, µh),
then we show we can recover exactly the embedding of µh in C (otherwise, one can arbitrarily pick any
other point from the pointed metric measure space and use that in place of 1, and only recover the
embedded measure modulo rotation and scaling). Since µh (with its embedding in C) determines h [6]
and hence Dh, it suffices to recover µh.

Consider R large so 1 ∈ B•R(0;Dh). In the same way7 that [23, Theorem 1.1] is used to prove [23,
Theorem 1.2], using Theorem 5.14 we can obtain an embedding of the two-pointed metric measure space
(B•R(0;Dh), 0, 1, Dh, µh) into the unit disk D with the correct conformal structure and sending 0 to 0.
Rotate and rescale this embedding (and forget the metric) to obtain an equivalent two-pointed space
(cRD, 0, 1, µR) with the LQG measure and conformal structure. That is, there exists a conformal map
ϕR : B•R(0;Dh) → cRD such that ϕR(0) = 0, ϕR(1) = 1, and the pushforward (ϕR)∗µh equals µR. We
emphasize that since we are only given (C, 0, 1, Dh, µh) as a two-pointed metric measure space, we know
neither the embedding B•R(0;Dh) ⊂ C nor the conformal map ϕR, but we do know cR and µR.

Now, by a simple estimate8 on the distortion of conformal maps [43, Lemma 2.4], we see that for
any compact K ⊂ C we have limR→∞ supz∈K |ϕR(z)− z| = 0 and limR→∞ supz∈K |(ϕR)−1(z)− z| = 0.
Thus, for any fixed rectangle A, the measure of the symmetric difference µh

(
A4(ϕR)−1(A)

)
converges

to zero as R→∞; this implies limR→∞ |µR(A)− µh(A)| = 0. Since µR is a function of the two-pointed
metric measure space (C, 0, 1, Dh, µh), we conclude that µh(A) is also. Therefore the two-pointed metric
measure space (C, 0, 1, Dh, µh) determines µh and hence h.

6 Appendix

6.1 Proof of the inductive relation for small moments

Lemma 6.1. Recall vk(r) and uk(r) from (2.5). The following relation holds.

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r). (6.49)

Proof. Set fk(z1, . . . zk) :=
∏
i<j |zi − zj |

−γ2 . Note that when maxi<j |zi − zj | ≤ r, the k points are

included in B(z1, r) which itself is included in a ball of radius 4r centered at at point of rZ2 ∩ D. Since
fk is a function of the pairwise distance, which is translation invariant, we get

vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk ≤ Cr−2

∫
4rDk

1r/2≤maxi<j |zi−zj |fk(z1, . . . , zk)dz1 . . . dzk

Then, take two points at distance r/2 in 4rD, say z and w among {z1, . . . , zk}. We cut k+ 1 orthogonal
sections of same width to the segment [z, w]. At least one should be empty and this separates two clusters
of points, I = {zp1 , . . . , zpi} and J = {zq1 , . . . , zqk−i} for some 1 ≤ i ≤ k− 1. All points between the two
clusters I and J are separated by |z − w|/(k + 1) ≥ r/4k. We decouple fk(z1, . . . , zk) for two clusters I

7Roughly speaking, one obtains a conformal embedding of the metric measure space (B•R(0;Dh), 0, 1, Dh, µh) by taking a
λ-intensity Poisson-Voronoi tessellation and harmonically embedding it in the disk. Taking λ → ∞, the counting measure on
the vertices of the embedded graph normalized by λ−1 converges weakly in probability to the desired conformally embedded
measure. See [23, Section 3.3] for details.

8[43, Lemma 2.4] is stated for domains in the cylinder R× [0, 2π]; we need to map to C via z 7→ e−z . This distortion estimate
is an easy consequence of the area theorem.
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and J of size i and k − i by fk(z1, . . . , zk) ≤ (4k)γ
2i(k−i)r−γ

2i(k−i)fi(I)fk−i(J). In particular, splitting
over the possibles cases we get

vk(r) ≤ Cr−2
k−1∑
i=1

∑
I

(4k)γ
2i(k−i)r−γ

2i(k−i)
∫
4rDk

fi(I)fk−i(J)dz1 . . . dzk,

where for each i, I ranges over all subsets of {z1 . . . , zk} with i elements. This gives

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r).

6.2 Whole-plane GFF and ?-scale invariant field

In this section we recall some properties of ?-scale invariant fields and explain that the whole-plane GFF
modulo constants can be seen as a ?-scale invariant field.

?-scale invariant field φ. We introduce here the field φ =
∑
k≥1 φk we work with in Section 3.1.

The notation and definition are close to the one in [12, Section 2.1] and we refer the reader to this Section
for more details.

Consider k, a smooth, radially symmetric and nonnegative bump function supported in B1/(2e)(0),
such that k is normalized in L2(C). We set c = k ∗ k which has therefore compact support included in
B1/e(0) and satisfies c(0) = 1. We consider a space-time white noise ξ(dx, dt) on C × [0,∞) and define
the random Schwartz distribution

φ(x) :=

∫ 1

0

∫
C
k
(x− y

t

)
t−3/2ξ(dy, dt).

The covariance kernel of φ is given by E(φ(x)φ(x′)) =
∫ 1

0
c(x−x

′

t
) dt
t

. We decompose φ =
∑
k≥1 φk

where φk(x) :=
∫ e−(k−1)

e−k

∫
C k
(
x−y
t

)
t−3/2ξ(dy, dt) and whose covariance kernel is given by Ck(x, x′) :=∫ e−(k−1)

e−k c(x−x
′

t
) dt
t

. Note that Ck(x, x′) = C1(e(k−1)x, e(k−1)x′) and that if |x− x′| ≥ e−1, C1(x, x′) = 0

hence φk has finite range dependence with range of dependence e−k. Note also that the pointwise variance
of φ0,n :=

∑
1≤k≤n φk is equal to n.

Lemma 6.2. There exists C, c > 0 such that for all k ≥ 0, x > 0, P(e−k ‖∇φ0,k‖e−kS ≥ x) ≤ Ce−cx
2

,
where S denotes the unit square [0, 1]× [0, 1].

Proof. This is essentially the argument as in the proof of Lemma 10.1 in [12] which we recall. By

Fernique’s theorem, P(‖∇φ1‖S ≥ x) ≤ Ce−cx
2

. Therefore, by scaling, P(e−` ‖∇φ`‖e−`S ≥ x) ≤ Ce−cx
2

for ` ≥ 1. By setting X` := e−` ‖∇φ`‖e−`S , by the triangle inequality and since e−kS ⊂ e−`S for ` ≤ k,

e−k ‖∇φ0,k‖e−kS ≤
∑

0≤`≤k e
−(k−`)X`. By inspecting the Laplace functional, and using that the X`’s

are independent and identically distributed, we conclude the proof of the Lemma.

Whole-plane GFF. We explain here why
∫∞
0
k(x−y

t
)t−3/2ξ(dy, dt) is a whole-plane GFF modulo

constants. Set φε(x) =
∫ ε−1

ε

∫
C k
(
x−y
t

)
t−3/2ξ(dy, dt) and take f ∈ S(C) such that

∫
C fdx = 0. We look

for the convergence of

E
(
〈φε, f〉2

)
=

∫
C×C

f(x)Cε(x− y)f(y)dxdy =
1

(2π)2

∫
R2

Ĉε(ξ)|f̂(ξ)|2dξ

where our convention for the Fourier transform is ĝ(ξ) :=
∫
C g(x)e−iξ·x.

The kernel of φε is given by Cε(x) =
∫ ε−1

ε
c
(
x
t

)
dt
t

=
∫ ε−1

ε
ct(x) dt

t
with ct(·) = c(·/t) thus its

Fourier transform satisfies Ĉε(ξ) =
∫ ε−1

ε
ĉt(ξ)

dt
t

=
∫ ε−1

ε
tĉ(tξ)dt and since c = k ∗ k, ĉ = k̂2, then
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Ĉε(ξ) =
∫ ε−1

ε
tk̂(tξ)2dt = ‖ξ‖−2 ∫ ε−1‖ξ‖

ε‖ξ‖ uk̂(u)2du. By monotone convergence, we get,

E
(
〈φε, f〉2

)
=

1

(2π)2

∫
R2

‖ξ‖−2

∫ ε−1‖ξ‖

ε‖ξ‖
uk̂(u)2du|f̂(ξ)|2dξ →

ε→0

(∫ ∞
0

uk̂(u)2du

)
× 1

(2π)2

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Since k̂ is radially symmetric and k is normalized in L2, by Parseval
∫∞
0
uk̂(u)2du = 2π. Furthermore,

by setting g(x) =
∫
C log |x − y|f(y)dy we get ∆g = 2πf and in Fourier modes, −‖ξ‖2 ĝ(ξ) = 2πf̂(ξ)

hence, by Parseval,∫
C2

f(x)(− log |x− y|)f(y)dxdy = −
∫
C
f(x)g(x)dx =

−1

(2π)2

∫
R2

f̂(ξ)ĝ(ξ)dξ =
1

2π

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Note that this term is finite because under the assumption
∫
C fdx = 0, we have f̂(0) = 0 so the above

singularity at the origin is compensated by the first term in the development of f̂ . Altogether, we get

E
(
〈φε, f〉2

)
→
ε→0

∫
C2

f(x)(− log |x− y|)f(y)dxdy

Hence the convergence of the characteristic functionals: E(ei〈φε,f〉) = e−
1
2
E(〈φε,f〉2) →

ε→0
e−

1
2
E(〈h,f〉2).

The following lemma will be useful when working with the whole plane GFF not modulo additive
constant.

Lemma 6.3. There exists a coupling of the whole-plane GFF h normalized such that h1(0) = 0 and the
?-scale invariant field φ such that the difference h− φ is a continuous field.

Proof. Recall the notation φk,` =
∫ e−k
e−` k(x−y

t
)t−3/2ξ(dy, dt). We know φ−∞,∞ is a whole-plane GFF

modulo constant. The fine field φ = φ0,∞ is a well-defined Schwartz distribution. Also, the gradient field
∇φ−∞,0 is a well-defined continuous Gaussian vector (this can be checked by inspecting the covariance
kernel). Therefore, φL := “φ−∞,0 − −

∫
∂B1(0)

φ−∞,0” is a well-defined continuous Gaussian field, indepen-

dent of φ. By setting g := φL − −
∫
∂B1(0)

φ, we get that h := φ+ g is a whole-plane GFF normalized such

that h1(0) = 0.

6.3 Volume of small balls in the Brownian map

We do not use any material in this section in our proofs, but include it to facilitate an easier comparison
between our argument in Section 3 and the analogous result for the Brownian map case. Le Gall obtained
the following uniform estimate on the volume of small balls in the Brownian map. For β ∈ (0, 1), there
exists a random Kβ > 0 such that for every r > 0, the volume of any ball of radius r in the Brownian map
is bounded from above by Kβr

4−β . Our proof of the finiteness of LQG ball volume positive moments
(Section 3) shares some similarities with his only at a very high level; no explicit formulas are available
in our framework, and the techniques are very different. We discuss some of the arguments used in the
Brownian map setting and we refer the reader to [29, 34, 30, 31] for details. This estimate was used in
the proofs of the uniqueness of the Brownian map [35, 32].

Tree of Brownian paths. A binary marked tree is a pair θ = (τ, (hv)v∈τ ) where τ is a binary
plane tree and where for v ∈ τ , hv is the length of the branch associated to v. We denote by Λk(dθ)
the uniform measure on the set of binary marked trees with k leaves (uniform measure over binary plane
trees and Lebesgue measures for the length of the branches). I(θ) and L(θ) will denote respectively the
internal nodes and leaves of θ. One can define a Brownian motion on such a tree: the process is a stan-
dard Brownian motion over a branch, and after an intersection, the two processes evolve independently
conditioning on the value at the node. We will denote by P θx this process, started from the root of the
tree with initial value x. Similarly, instead of using a Brownian motion, one can consider a 9-dimensional
Bessel process and we will denote it by Qθx.

Similarly, for trees given by a contour function (h(s))s≤σ with lifetime σ, one can associate the so-
called Brownian snake given by the process (Ws)s≤σ of Brownian type path (for each s, Ws is a Brownian

type path with lifetime h(s), its last value is denoted by Ŵs and corresponds to the Brownian label above
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the point of the tree corresponding to s). We can add another level of randomness by taking h given by
a Brownian type excursion: N0 is the measure associated to the unconditioned lifetime Itô excursion, N0

is also associated to the unconditioned lifetime Ito excursion but the Brownian labels are conditioned to
stay positive.

Explicit formulas. The following explicit formula (see [29], Proposition IV.2), relates the objects of
the previous paragraph. For p ≥ 1, x ∈ R and F a symmetric nonnegative measurable function on W p,
where W denotes the space of finite continuous paths,

Nx

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]
= 2p−1p!

∫
Λp(dθ)P

θ
x

[
F ((w(a))a∈L(θ))

]
. (6.50)

Here, w is the tree-indexed Brownian motion with law P θx and w(a) the restriction of w to the path joining
a to the root, and Nx is the measure N0 where each Brownian snake has its labels incremented by x. This
formula involves combining the branching structure of certain discrete trees with spatial displacements.
It relies on nice Markovian properties, in particular on specific properties of the Itô measure. The proof
of the uniform volume bound for metric ball is based on an explicit formula obtained in [34] for the
finite-dimensional marginal distributions of the Brownian tree under N0,

N0

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]
= 2p−1p!

∫
Λp(dθ)Q

θ
0

F ((w(a))a∈L(θ)

∏
b∈I(θ)

V
4
b

∏
c∈L(θ)

V
−4
c

 .
(6.51)

Here, we write w and w(a) for the nine-dimensional Bessel process counterparts of w and w(a), and
V v for the value of the Bessel process at the vertex v. Because of the conditioning of N0, the spatial
displacements are given by nine-dimensional Bessel processes rather than linear Brownian motions. To
derive such a formula, in [34] the authors generalize (6.50) to functionals including the range of labels
and lifetime σ and then use results on absolute continuity relations between Bessel processes, which are
consequences of the Girsanov theorem (note that integrals over time of Brownian motions are integral
over branches of trees of Brownian motion).

Positive moment estimates. In the proof of the upper bound on small ball volumes of the Brow-
nian map in [31], a key estimate is to show that, for k ≥ 1, ck <∞ where

ck := N0

[(∫ σ

0

1{Ŵs≤1}ds

)k]
= 2k−1k!

∫
Qθ0

(
∏

a∈I(θ)

V
4
a)(

∏
b∈L(θ)

V
−4
b 1V b≤1)

Λk(dθ) =: 2k−1k!d̃k.

(6.52)
Note that the second inequality is obtained by using (6.51) with F (Ws1 , . . . ,Wsk ) = 1Ŵs1≤1, . . . , 1Ŵsk≤1.

The proof works by induction, introducing an additional parameter to take care of the value of the label
at the splitting node in the branching structure, by setting

d̃k(r) :=

∫
Qθr

 ∏
a∈I(θ)

V
4
a

 ∏
b∈L(θ)

V
−4
b 1V b≤1

Λk(dθ).

In this framework, the base case and inductive relation are quite straightforward because of the exact
underlying branching structure. Let R denote a 9-dimensional Bessel process that starts from r. The
base case corresponds to

d̃1(r) = E
[∫ ∞

0

R−4
t 1{Rt≤1}dt

]
= c

∫
R9

|r − z|−7|z|−41{|z|≤1}dz (6.53)

and the inductive relation states

d̃`(r) = E

[∫ ∞
0

R4
t

(
`−1∑
j=1

d̃j(Rt)d̃`−j(Rt)

)]
. (6.54)

Now, one can easily derive the bounds d̃1(r) ≤ Mr−2 ∧ r−7 and for j ≥ 2 d̃j(r) ≤ Mj1 ∧ r−7. We
underline that the exact branching structure of the framework is expressed through the equality (6.54).
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Comparison. Let us compare our proof of the finiteness of positive moments with the one in the
Brownian map setting. In our setup, no nice branching structure for distances is known. Furthermore,
by working with a given embedding or a restriction to a specific domain, we have to carry in the analysis
information about the Euclidean domain, including an additional layer of difficulty.

In the case of the Brownian map, when one considers the “volume” associated with (6.52) thanks to
the explicit formulas (6.50) and (6.51), one ends up with branching Bessel processes on uniform trees.
In our framework, analogous observables of “distances” are not well understood so far. Instead, circle
averages processes are tractable. They evolve as correlated Brownian motions. These are a good proxy for
the metric because of the superconcentration of side-to-side crossing distances. Furthermore, when one
weights the distribution with singularities (after a Cameron-Martin argument), these Brownian motions
are shifted by drifts. (Note that the passage from (6.50) to (6.51) uses Girsanov.)

Similarities can be seen as the level of induction where the value of the Bessel process at the first
node can be compared with the value of the circle average of the field in at the first branching as well in
our hierarchical decomposition. Therefore, Lemma 3.7 is similar to (6.54) and Proposition 3.8 to (6.52).
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[12] J. Dubédat and H. Falconet. Liouville metric of star-scale invariant fields: tails and Weyl scaling.
Probab. Theory Related Fields, 176(1-2):293–352, 2020.
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