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Abstract

This thesis is composed of two inpendendent parts:
Part I is on one-bit quantization of bandlimited functions, i.e., functions on the

real line with compactly supported Fourier transforms. In such a scheme, a given
bandlimited function x taking values in [0, 1] is represented for each sampling density
λ, by a {0, 1}-sequence qλ such that convolving this sequence with an appropriately
chosen filter kernel produces an approximation of the original function x̃λ which, as
λ → ∞, is required to converge to x in a given functional sense. A popular example
of such a scheme is sigma-delta quantization, in which representative bitstreams are
produced via a symbolic dynamics associated with a nonlinear discrete dynamical sys-
tem forced by the input sample sequences. This thesis presents a new framework and
improved techniques for the error analysis of sigma-delta quantization. A combina-
tion of tools from analytic number theory, harmonic analysis and dynamical systems
are used to sharpen the existing error estimates.

Part II is on the functional space approach in the mathematical study of image
compression. This approach, inspired by various toy models for natural images and
the characterizations of linear and nonlinear approximation in wavelet bases through
norm equivalences, treats images as functions in suitable Besov spaces. This thesis
analyzes the validity and accuracy of this approach to a further extent, and demon-
strates that while this is in general a fruitful approach, it can fail or be misleading in
a variety of cases.
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share in our joint efforts in exploring a new problem. I also thank Zoran Cvetković,
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Chapter 1

Introduction

The first part of this thesis is on the approximation theory of oversampled quanti-
zation methods for bandlimited functions, with a particular emphasis on sigma-delta
schemes. Our treatment of this subject will employ ideas and tools from a number
of areas in pure and applied mathematics, ranging from harmonic analysis and ap-
proximation theory to dynamical systems, analytic number theory and information
theory. Our aim is to give an integrated account of the various formulations of the
problem as well as to separate and isolate some of its abstract ingredients, which turn
out to lead to very interesting problems that can be studied on their own. We shall
present many improvements to the previously known estimates of the performance of
existing as well as new schemes.

***
Audio signals are modeled as bandlimited functions, i.e., real valued functions on

the real line with compactly supported Fourier transforms. More formally, we define
the class BΩ of bandlimited functions by

BΩ = {x : R → R | x̂ is a finite Borel measure supported on [−Ω,Ω]} . (1.1)

Here, x̂ denotes the Fourier transform of x. A bandlimited function is completely
determined by its sample values on a sufficiently dense uniform grid: Any x ∈ BΩ

can be recovered from its samples {x(n
λ
)}n∈Z for λ > Ω/π, as a weighted sum of

translates of a single kernel:

x(t) =
∑

n∈Z

x(n
λ
)ϕ(t− n

λ
), (1.2)

where ϕ is an appropriate function in L1(R). This is the classical sampling theorem
whose precise statement we shall give in the next chapter.

Sampling is the first step of analog to digital conversion. The next step is quanti-
zation, which is the reduction of the sample values from their continuous range to a
discrete set. The final step is coding, after which a digital bitstream is generated as
the final representation of the continuous time signal. Quantization sometimes con-
tains some of the ingredients of coding as well, as we shall see in the case of one-bit
quantization.
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In the simplest setting, the discrete set of quantization levels is an arithmetic
progression Aδ with spacing δ. Then, the approximate signal takes the form

x̃δ,λ(t) =
∑

n∈Z

qδ,λ(n)ϕ(t− n
λ
), (1.3)

where each qδ,λ(n) is selected from the set Aδ. The selection procedure is usually
“memoryless”, meaning that there is a mappingQδ : R → Aδ for “rounding” such that
qδ,λ(n) = Qδ(x(

n
λ
)). Classically, the trade-off between the size of the representation

and the error of the approximation is controlled by the quantization step, while the
sampling rate λ is fixed at a value λ0 slightly above the critical Nyquist density Ω/π.
Closer approximations are then obtained by letting δ → 0, to result in

lim
δ→0

x̃δ,λ0 = x (1.4)

in some functional sense.
The situation is reversed in an oversampled quantization scheme in which the

quantization procedure is fixed and is coarse, and approximations are improved by
increasing the sampling density only. For instance, Aδ is fixed at say δ = δ0, and the
qδ0,λ(n) are appropriately chosen so that instead one now aims at achieving

lim
λ→∞

x̃δ0,λ = x. (1.5)

In the case when there is an a priori bound M for the maximum amplitude of
the signals in consideration, the set Aδ0 can be truncated to consist of the two values
{−M,M} only. This is what we shall assume from here on. Thus, we shall be
interested only in one-bit schemes. It is by no means immediate that it is possible
to construct such schemes. Indeed, the quantization procedure needs to be designed
carefully; for instance, it can easily be checked that the simplest procedure of rounding
every sample to the closest value in Aδ0 is not capable of producing arbitrarily fine
approximations to bandlimited functions as λ→ ∞. Schemes used in practice, called
sigma-delta modulators (quantizers) are smart ways of circumventing this problem.

A sigma-delta modulator runs a nonlinear discrete dynamical system forced by
the sample sequence {x(n

λ
)}n∈Z of the function; an associated symbolic dynamics

(the quantization) produces the bitstream of representation. The dynamical system
typically takes the form of a difference equation

∆ku(n) + qδ0,λ(n) = x(n
λ
), (1.6)

where ∆ is the difference operator defined by ∆u(n) = u(n) − u(n− 1), and

qδ0,λ(n) = Q(u(n− 1), u(n− 2), . . . , x(n
λ
), x(n−1

λ
), . . .) (1.7)

for some appropriate quantizer function Q(·). There are various sigma-delta mod-
ulators of different orders and different rules of quantization given by k and Q(·),
respectively; in some cases the ∆ku(n) term is replaced by (a ∗ ∆ku)(n), where a
is a fixed finite sequence and ∗ stands for the convolution of sequences. A common
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crucial property of all the schemes is that an approximation to the original function
is obtained via a convolutional operator acting on the quantized representative se-
quence, as given in (1.3). Although the dynamical systems are defined to fit such a
reconstruction procedure, very little had been established, until recently, about the
mathematical approximation theory for these schemes.

A sigma-delta scheme is called stable when the associated sequence u is bounded.
Certainly, stability depends crucially on the function Q(·). Major problems start to
arise for orders greater than one. Even for second order schemes, proving stability is a
non-trivial task for most of the popular quantization rules used in practice. For orders
of three and higher, ad hoc schemes have been designed in practice, but without any
proof of stability [1, 2]. The first construction of a family of arbitrary order stable
sigma-delta schemes is due to Daubechies and DeVore [3]; they also gave the first
rigorous proof that the error of approximation for a stable k-th order sigma-delta
scheme is bounded by O(λ−k) in the L∞ norm. We shall briefly describe their scheme
in Chapter 4.

In the special case of first order schemes, the approximation estimate of [3] re-
duces to O(λ−1). This falls short of the experimentally observed decay rate, which
is O(λ−3/2). (This estimate has always been stated in the folklore in an “averaged”
sense.) One of the main results we shall present in this thesis is an improvement
of the rigorous O(λ−1) estimate towards this empirical decay rate. By employing
various ideas and techniques from analytic number theory and harmonic analysis, we
improve the pointwise estimate by raising the exponent from 1 to 4/3. This is the
best result so far for first order schemes and for arbitrary bandlimited functions. We
shall give a proof of this result in Chapter 3. For second order schemes, which have
better approximation potential, more variety in the rules of quantization is possible.
We fix on two particular choices, and analyze the corresponding dynamical systems
for constant inputs. By applying techniques analogous to those for the first order
scheme, we improve the error estimate both in the pointwise and the mean square
sense.

One feature of the sigma-delta schemes is that the bits in the representation se-
quences play a “democratic” role in the convolutional reconstruction procedure. We
analyze this aspect of the problem in an information theoretical framework in Chap-
ter 4. A related problem in this context is the robustness of the symbolic dynamics
arising from sigma-delta modulation under certain perturbations and with respect to
the convolutional reconstruction procedure (1.3). This is of great practical impor-
tance as well as of theoretical interest. We provide tight upper and lower bounds
on the mean square error of the optimal reconstruction for a uniformly distributed
random constant input, and we prove its robustness under certain small systematic
perturbations of the dynamical system. This result was obtained in collaboration
with J. C. Lagarias and V. Vaishampayan [4]. This is a first step towards a theory
of robust quantization, which will be complementary to the well-understood classical
theory. Another interesting problem in sigma-delta quantization is connected to the
approximation in a general Lp-norm; this will also be explored in Chapter 4.
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Chapter 2

One-Bit Quantization: A General
View

In the Introduction, we stated the problem of one-bit quantization in terms of general
bandlimited functions. The problem remains interesting and still far from trivial when
one considers only constant functions, which are, of course, an extreme special case of
bandlimited functions. Indeed, a whole new set of problems, most of which strongly
connect to number theory, arise in the study of this special case. Insight in these
problems may shed more light on the general case, and certainly provides limits on
what can be expected for more general bandlimited functions. In this chapter, we
shall give a general account of one-bit quantization for both constant and arbitrary
bandlimited functions.

2.1 On a Representation of Real Numbers

Consider the problem of representing real numbers in [0, 1] by binary sequences in
the following translation invariant manner: Each x ∈ [0, 1] is mapped to a sequence
q := qx ∈ {0, 1}Z such that for some appropriate sequence h ∈ ℓ1(Z), called the
reconstruction filter, one has

q ∗ h = x, (2.1)

where ∗ denotes convolution of two sequences, and the symbol x also denotes the
constant sequence (. . . , x, x, . . .). A natural normalization for h is the condition
∑
h(n) = 1, which means that for each x, the “density” of 1’s in the corresponding

sequence q has to equal x. This also implies that the number 1 is necessarily rep-
resented by the sequence (. . . , 1, 1, . . .) and the number 0 is necessarily represented
by the sequence (. . . , 0, 0, . . .). While these two sequences are the unique represen-
tations of these two numbers, there can be many possibilities for other values of
x. For instance, the number 1/2 may be represented by (. . . , 0, 1, 0, 1, . . .), or by
(. . . , 0, 0, 1, 1, 0, 0, 1, 1, . . .), since for both cases, there are appropriate (and in fact,
plenty of) choices for the reconstruction filter h so that (2.1) is satisfed.

On the other hand, as we shall show in §2.1.1, this problem is too strict in terms
of the reconstruction formula (2.1) to be solvable for all x; we will see that a solution
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exists if and only if x is rational, and the solution q is necessarily a periodic sequence.
An alternative approach is to ask for a sequence of filters (hλ)λ>0 such that

q ∗ hλ → x, (2.2)

uniformly, or at least pointwise, as λ → ∞. The normalization condition can be
relaxed to the weaker form

∑
hλ(n) → 1 as λ→ ∞. Clearly, there would not be any

gain in introducing this alternative for a choice of sequence (hλ) that converges in ℓ1,
since the problem would then be immediately reduced to the case (2.1). Indeed, a
typical choice is hλ(n) = 1

λ
χ

[0,1)
(n
λ
), which converges to 0 uniformly as λ → ∞, but

not in ℓ1. (We shall call this filter the rectangular filter or the rectangular window of
length λ.) It turns out that in this new formulation, the problem has many solutions
valid for all x; moreover, it is possible to employ “universal” filter sequences (hλ) that
remain the same for all values of x.

Yet another possibility is to let the binary representation vary with λ as well; that
is, we require

qλ ∗ hλ → x (2.3)

as λ → ∞. We shall give examples of constructions in the case of this more general
formulation later, when we discuss more general results in Chapter 4.

The last two settings are quite flexible and the main question consists in finding
efficient representations in the sense that (2.2) or (2.3) converges rapidly in λ. We
shall restrict ourselves to filters hλ that are scaled versions of an averaging window,
as in the example of rectangular filter we have just given. It is also desirable to
determine the exact rate of convergence for particular schemes that have other features
of interest.

2.1.1 General Considerations

Let us start with the problem (2.1). We claimed that a solution exists if and only if
x is rational. This claim will follow simply as a corollary to a theorem of Szegö. We
first recall the definition of spectral set for bounded sequences.

Definition 2.1. Let a be a sequence in ℓ∞. Then the spectral set σ(a) is the set of
all ξ ∈ T such that b ∗ a = 0 (b ∈ ℓ1) implies

∑

n b(n)e−inξ = 0.

The spectral set of a sequence a in ℓ1 is precisely the closed support of its Fourier
transform â(ξ) :=

∑

n a(n)e−inξ. Definition 2.1 extends this notion to arbitrary se-
quences in ℓ∞, whose Fourier transforms are in general not functions. It is always
true that σ(a) is a closed subset of T.

Szegö’s theorem, as stated in the following form in [5, 6] by Helson, deals with
spectral sets of sequences whose terms come from finite sets:

Theorem 2.2 (Szegö-Helson). Let a be a sequence whose terms are all drawn from
a finite set S of complex numbers. Unless the sequence is periodic, its spectral set fills
T.
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Let us apply this powerful theorem to the sequence q − x. Certainly, the terms
of this sequence come from the finite set {−x, 1 − x}. On the other hand, h ∗ x = x,
since

∑
h(n) = 1. Thus, (2.1) is a restatement of (q − x) ∗ h = 0. According to the

conclusion of the theorem, a nonperiodic q (hence a nonperiodic q − x) would mean
σ(q − x) = T. This implies ĥ(ξ) =

∑
h(n)e−inξ = 0 for all ξ ∈ T, and hence h ≡ 0, a

contradiction. Hence, only periodic solutions of (2.1) may exist.
Now, consider a periodic solution q, whose period is N . Then q ∗h is also periodic

and its period divides N . It is a simple calculation to show that

N∑

n=1

(q ∗ h)(n) =

N∑

n=1

q(n). (2.4)

Since the left hand side is equal to Nx and the right hand side is an integer M such
that 0 ≤ M ≤ N , it follows that x = M/N , i.e., x is rational. This proves the “only
if” part of our assertion. The “if” part follows from a trivial construction. Consider
a rational number x = M/N and let h be the rectangular averaging window of length
N . Let q be a periodic sequence in {0, 1}Z with period N and set exactly M elements
of the set {q(k) : 1 ≤ k ≤ N} to 1. Then, it is clear that q ∗ h = x. In summary, we
have proved the following:

Theorem 2.3. There is a solution to (2.1) if and only if x is rational. The solution
q is necessarily periodic and its period is a multiple of the denominator of x in its
reduced form.

The rectangular filter of length N is an admissible reconstruction filter for all
the rational numbers in the set {P/Q : 0 ≤ P ≤ Q, and Q divides N}. So, all the
numbers in the Farey series1 FN can be decoded using a rectangular filter of length
l.c.m.(1, . . . , N). Now, let us consider the implications of (2.4) on the filter h, that
is, we would like to know under which conditions on the filter h, the formula (2.4) is
satisfied for a given x. If a rational number x = r/s (in its reduced form) is represented
by a sequence q of period N , then s must divide N and precisely M = Nr/s elements
of the set {q(k) : k = 1, . . . , N} must be equal to 1. Let the corresponding indices be
l1, . . . , lM and define P (ξ) =

∑M
j=1 e

−iljξ. Then, a straightforward calculation shows

that q ∗ h = x implies P (ξ)ĥ(ξ) = 0 for all ξ = 2πp/N , p = 1, . . . , N − 1. If M 6= N
(i.e., x 6= 1), then ĥ(ξ) must vanish at least at one of these points. Indeed, for almost
any choice of {l1, . . . , lM}, almost all of these roots would have to belong to ĥ. Since
ĥ can not admit a dense set of zeros in T when h ∈ ℓ1, this leads us to conjecture the
following:

Conjecture 2.4. It is impossible to construct a “universal” filter that can decode all
rationals simultaneously. That is, there is no collection of sequences in {0, 1}Z such
that for every x ∈ Q∩ [0, 1], there is a sequence q in this collection for which q∗h = x,
where h is fixed.

1The Farey series FN of order N is the ascending series of irreducible fractions between 0 and 1
whose denominators do not exceed N [7].
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Remark: One may weaken this conjecture by considering only filters h ∈ ℓ1 with
exponential decay (which would require ĥ to be analytic). On the other hand, an
independent (trivial) argument easily rules out all finitely supported filters.

We now consider the alternative formulation (2.2). We have already stated in the
introduction that in this more flexible approach it is possible to find solutions for
all x ∈ [0, 1]; even stronger, universal filter sequences (hλ) can be employed. Before
looking at sigma-delta quantization more closely as a scheme that generates such
solutions, let us state the following result, which is merely an extension of Theorem
2.3.

Theorem 2.5. A solution q to (2.2) for an irrational x is necessarily non-periodic.

Proof. Suppose (2.2) is satisfied for some x and a periodic q ∈ {0, 1}Z. Let N be the
period of q. Then, similar to (2.4), we have

N∑

n=1

(q ∗ hλ)(n) →
N∑

n=1

q(n), as λ→ ∞. (2.5)

Combined with (2.2), this implies x = 1
N

N∑

n=1

q(n), i.e. x ∈ Q.

2.1.2 Sigma-Delta (Σ∆) Quantization

We briefly described a typical Σ∆ scheme in the Introduction. In this chapter, we
shall be interested only in the basic properties of the first order Σ∆ scheme, which
given a sequence (x(n))n∈Z taking values in [0, 1], constructs a binary sequence q such
that

n2∑

n1

x(n) ∼
n2∑

n1

q(n) (2.6)

for all n1 and n2. Here, we have used the symbol ∼ to mean that the two running
sums differ from each other at most by a fixed amount that is uniform for all n1 and
n2. This is done by the following procedure: Define the sequences X, Q and q by

X(n) :=
n∑

m=1

x(m), (2.7)

Q(n) := ⌊X(n)⌋, and (2.8)

q(n) := Q(n) −Q(n− 1). (2.9)

Since x takes values in [0, 1], we have q(n) ∈ {0, 1}; and at the same time (2.6) is
satisfied, up to an error less than 1. X can be defined naturally for negative indices
as well, by integrating backwards. Note that the equations (2.7), (2.8) and (2.9)
correspond to “Σ”, “quantization” and “∆”, respectively; hence giving the name of
the scheme.

Define the auxiliary variable u(n) := X(n) − Q(n). From (2.8), u(n) is equal to
the fractional part of X(n), which we denote by 〈X(n)〉. In practice, neither X(n)
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nor Q(n) are computed in an electronic circuit, since these variables are in general
unbounded. However, the sequence u is bounded and satisfies the recursion relation

u(n) − u(n− 1) = x(n) − q(n), u(0) = 0. (2.10)

In fact, this recursion is taken as the starting point in practice. One asks for a
bounded solution u of (2.10) such that q ∈ {0, 1}Z. The particular construction of q
we have considered in (2.7)-(2.9) is just one of the solutions of (2.10). This solution
can also be constructed by requiring u(n) to satisy (2.10) and to lie in the interval
[0, 1) for all n. Then, q(n) is automatically given by

q(n) =

{
1 if u(n− 1) + x(n) ≥ 1,
0 if u(n− 1) + x(n) < 1.

(2.11)

We shall now restrict the Σ∆ algorithm to the case in which x is a constant
sequence. Our setting is (2.2), i.e., we shall reconstruct each x ∈ [0, 1] from its
representative binary sequence q as the limit lim

λ→∞
q ∗ hλ where the family (hλ) of

filters obey the scaling relation hλ(n) := 1
λ
ϕ(n

λ
) for an appropriate function ϕ ∈ L1.

For a given filter hλ, let us derive an estimate for the error eλ := x− q ∗ hλ. The
error may be bounded by a sum of two contributions:

|eλ(n)| ≤ |x(1 −
∑

n

hλ(n))| +
∣
∣
∣

∑

k

(x− q(k))hλ(n− k)
∣
∣
∣. (2.12)

Let us call these two terms e1λ and e2λ. It is possible to choose ϕ such that the first
error term is zero for all λ. For instance, ϕ = χ[0,1] has this property for all integer λ;
on the other hand, ϕ ∈ BV ∩ Bπ with ϕ̂(0) = 1 has it for all real λ > 1 (which may
easily be seen using Poisson’s summation formula). Assume a choice of ϕ with this
property, which leaves us with e2λ = (x− q) ∗ hλ.

Theorem 2.6. For all λ, ‖eλ‖ℓ∞ ≤ 1
λ
Var(ϕ).

Proof. Let ∆ denote the difference operator acting on sequences, defined by ∆u(n) :=
u(n) − u(n− 1). Using the recursion relation (2.10), and that u is bounded by 1, it
follows that

‖eλ‖ℓ∞ = ‖∆u ∗ hλ‖ℓ∞,
= ‖u ∗ ∆hλ‖ℓ∞, (2.13)

≤ ‖u‖ℓ∞‖∆hλ‖ℓ1 ,

≤ 1

λ
Var(ϕ). (2.14)

We call this the “basic estimate”, in the sense that only boundedness of u was
used in the derivation. In the next chapter, we shall improve the exponent of λ by
examining the expression (2.13) more closely.
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It is natural to ask how much information about x is “stored” in the first N
bits of the binary sequence q, instead of checking the error of reconstruction for the
specific convolution formulas considered above. So, let us consider the bit sequence
(q(1), . . . , q(N)). It is clear that the integer-valued N -tuple (Q(1), . . . , Q(N)) contains
the same amount of information as the N -tuple (q(1), . . . , q(N)), since each can be
recovered from the other. It is also clear that

Qx(N) := (Q(1), . . . , Q(N)) = (⌊x⌋, . . . , ⌊Nx⌋) (2.15)

is a monotonic function of x in the sense that if x1 ≥ x2, then Qx1(N) ≥ Qx2(N)
(meaning the inequality holds for all coordinates). It is easy to check that the number
of distinct vectors in the set {Qx(N) : 0 ≤ x ≤ 1} is exactly given by the number
of distinct couples (n, r) such that there is a value of x ∈ [0, 1] for which ⌊nx⌋ = r,
where n ranges between 1 and N . This number is the same as the number of lattice
points inside the triangle defined by {(n, r) : 1 ≤ n ≤ N ; 0 ≤ r ≤ n}, which is equal
to N(N + 1)/2. Thus, there are only O(N2) possible distinct values for Qx(N). In
fact, each of these values correspond to an interval in [0, 1] defined by the Farey series
FN . This is the scalar quantizer2 corresponding to the first N bits produced by a
first order Σ∆ scheme.

It is well known that the lengths of intervals produced by the Farey series vary
between 1/N2 and 1/N . This means that for each N , the smallest possible error
interval cannot be smaller than 1/N2: even for the most favorable (q(1), . . . , q(N)),
the value of x giving rise to these q(k) cannot be determined with accuracy better
than O(1/N2). In the next chapter, when we improve the basic estimate for the error
of convolutional reconstruction, we shall see that this lower bound can in fact be
achieved (up to a logarithmic factor) as N → ∞.

2.2 Arbitrary Bandlimited Functions

2.2.1 General Setup

The general formulations given by (2.2) and (2.3) lead to an extension of the problem
of one-bit quantization to more general functions than constants. Let x(·) be a func-
tion on R, taking values in [0, 1]. Given a sequence u, we define the measure µλ(u)
by

µλ(u) :=
1

λ

∑

n∈Z

u(n)δn/λ, (2.16)

where δa denotes the Dirac mass at the point a. Then, for each function x in some
appropriate class C, the problem is to find a family (qλ) of binary representations such
that, for a fixed, pre-chosen filter ϕ in L1(R), we have

(µλ(qλ) ∗ ϕ)(·) =
1

λ

∑

n∈Z

qλ(n)ϕ(· − n
λ
) −→ x(·) (2.17)

2A scalar quantizer is a partition of an interval [a, b] into subintervals and an associated sequence
of representative points for each subinterval in this partition.
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in a given functional sense, as λ→ ∞. (More generally, we can replace ϕ by a sequence
(ϕλ) of filters.) Note that (2.3) is already contained in (2.17) if we define the discrete
filter hλ by hλ(n) = 1

λ
ϕ(n

λ
), and restrict our attention to constant functions.

Functions for which there exist solutions to the above problem include bandlimited
functions, which was defined in Chapter 1 as

BΩ = {x : R → R | x̂ is a finite Borel measure supported on [−Ω,Ω]} , (2.18)

where x̂ denotes the Fourier transform of x. Below, we list some of the important
properties of bandlimited functions to which we shall frequently refer in this thesis.

1. A bandlimited function x ∈ BΩ is the restriction to R of an entire function of
exponential type Ω. That is, the function defined by

x(z) =
1

2π

∫

e−iξzdx̂(ξ), z = x+ iy, (2.19)

is entire and satisfies the growth bound x(z) = O(eΩ|y|).

2. The sampling theorem. In the literature, this theorem is more often stated
for L2 bandlimited functions, and not necessarily for the more general class
BΩ defined above. Below, we provide a statement and proof of the sampling
theorem in this more general setting. (In our discussion here and all the rest of
this thesis, we will work with the space Bπ to ease the notation. The analyses
we present can always be transposed to arbitrary Ω by rescaling.)

Theorem 2.7. Let x be in Bπ, λ > 1, and ϕ a function in L1(R) such that ϕ̂
satisfies

ϕ̂(ξ) =

{
1 if |ξ| ≤ π, and
0 if |ξ| ≥ λπ.

(2.20)

Then, the following equality holds in the Cesàro mean for all t:

x(t) =
1

λ

∑

n∈Z

x(n
λ
)ϕ(t− n

λ
), (2.21)

Proof. Let B be the space of continuous functions on [−λπ, λπ] identified with
the 1-torus. Its dual B∗ is then the space of finite Borel measures on [−λπ, λπ].
B is a homogeneous Banach space on [−λπ, λπ] (see [8] for a definition), so that
for any f ∈ B and µ ∈ B∗, Parseval’s theorem holds in the Cesàro mean [8, p.
35], i.e.,

〈f, µ〉 = lim
N→∞

N∑

n=−N

(

1 − |n|
N + 1

)

f̂(n)µ̂(n) , (2.22)

where f̂(n) and µ̂(n) denote the nth Fourier coefficient of f and µ, defined by

µ̂(n) := 〈ein·/λ, µ〉, and 〈f, µ〉 := 1
2πλ

∫ λπ

−λπ fdµ. For each t ∈ R, set f(ξ) =

ϕ̂(ξ)eiξt and µ = x̂. Then 〈f, µ〉 = 1
λ
x(t), f̂(n) = 1

λ
ϕ(t− n

λ
) and µ̂(n) = 1

λ
x(n

λ
),

so that (2.21) (in the Cesàro mean) follows from (2.22).
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Remark: The formula (2.21) holds pointwise everywhere for the Cesàro mean,
and hence for all values of t for which the right hand side converges. Typically,
ϕ̂ is chosen to be smooth so that the corresponding fast decay of ϕ enables an
almost “local” reconstruction of x from the samples {x(n

λ
)}n∈Z, which removes

any concern about the method of summation. (The formula (2.21) holds also
in the L2 sense when x ∈ L2(R), including the case λ = 1. However, in this
critical sampling case, a smooth ϕ̂ cannot be chosen; ϕ̂ = χ[−π,π] is the only
candidate.)

3. Bernstein’s inequality [8]: If f ∈ BΩ, then ‖f (s)‖L∞ ≤ Ωs‖f‖L∞. An Lp version
also exists ([9, p. 14]).

We shall study solutions of (2.17) for the class

Bπ(R, [0, 1]) := {x : R → [0, 1] | x ∈ Bπ}. (2.23)

In contrast to the constant function case, all known methods for generating solutions
for this more general class fall under Σ∆ schemes. (A brief definition for a general
k-th order Σ∆ scheme was given in the Introduction.) Next, we give a basic analysis
of the first order scheme. Improvements will be presented in Chapter 3.

2.2.2 Σ∆ Quantization: Basic Estimates

First Order

We described the first order Σ∆ algorithm in (2.7)-(2.9) for an input sequence x.
The notation x will now refer to a function in Bπ(R, [0, 1]), and xλ to the sequence of
samples defined by xλ(n) = x(n

λ
). Similarly, we use the notations Xλ, Qλ and qλ to

denote the quantities defined by

Xλ(n) :=

n∑

m=1

xλ(m), (2.24)

Qλ(n) := ⌊Xλ(n)⌋, and (2.25)

qλ(n) := Qλ(n) −Qλ(n− 1). (2.26)

Again, we assume that by integrating backwards, Xλ is defined for the negative indices
as well.

In this section, we generalize the results of the previous section to arbitrary band-
limited functions. The difference equation now reads as

uλ(n) − uλ(n− 1) = xλ(n) − qλ(n), u(0) = 0; (2.27)

where uλ(n) is defined to be Xλ(n) − Qλ(n) = 〈Xλ(n)〉. Clearly, uλ takes its values
in [0, 1]. Our setting is (2.17), and in general we will allow ϕ to depend on λ, which
will then be denoted by ϕλ. We start with the corresponding “basic estimate” given
in [3], where it is possible to use a fixed filter ϕ for all λ.
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Theorem 2.8 ([3]). Let x ∈ Bπ with 0 ≤ x(t) ≤ 1 for all t, and ϕ ∈ BV (R)
satisfying (2.20) for some fixed λ0 > 1. Then for all λ ≥ λ0, one has

‖x− µλ(qλ) ∗ ϕ‖L∞ ≤ 1

λ
Var(ϕ). (2.28)

Proof. The sampling theorem states that x = µλ(xλ)∗ϕ for all λ ≥ λ0. Let ∆η be the
difference operator whose action on a measure is given by ∆ηµ(·) = µ(·) − µ(· − η),
and let 1 denote the constant sequence of 1’s. Then

x− µλ(qλ) ∗ ϕ = µλ(xλ − qλ) ∗ ϕ,
= µλ(∆uλ) ∗ ϕ,
= ∆1/λµλ(uλ) ∗ ϕ,
= µλ(uλ) ∗ ∆1/λϕ, (2.29)

so that

‖x− µλ(qλ) ∗ ϕ‖L∞ ≤ ‖µλ(1) ∗ |∆1/λϕ| ‖L∞,

≤ 1

λ
Var(ϕ). (2.30)

In the last step, we made use of the identity µλ(1) ∗ f = 1
λ

∑
f(· − n

λ
).

Basic estimate for stable k-th order schemes

A stable k-th order Σ∆ scheme outputs a bit sequence qλ that satisfies the difference
equation

∆kuλ(n) = xλ(n) − qλ(n) (2.31)

for a bounded sequence uλ. The first construction of stable Σ∆ schemes for all orders
is due to Daubechies and DeVore [3]. We shall return to their construction later in
Chapter 4. The following is the corresponding basic estimate for a stable k-th order
scheme:

Theorem 2.9 ([3]). Let x ∈ Bπ with 0 ≤ x(t) ≤ 1 for all t, and suppose ϕ ∈ BV (R)
satisfies (2.20) for some fixed λ0 > 1. Then, for any sequence qλ that satisfies (2.31)
for some sequence uλ ∈ ℓ∞, the following estimate holds:

‖x− µλ(qλ) ∗ ϕ‖L∞ ≤ 1

λk
‖uλ‖ℓ∞‖ϕ(k)‖L1 . (2.32)

Proof. The proof follows the same ideas as in the first order case. The identity in
(2.29) now becomes

x− µλ(qλ) ∗ ϕ = µλ(uλ) ∗ ∆k
1/λϕ. (2.33)

This implies

‖x− µλ(qλ) ∗ ϕ‖L∞ ≤ ‖uλ‖ℓ∞‖µλ(1) ∗ |∆k
1/λϕ| ‖L∞,
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≤ 1

λ
‖uλ‖ℓ∞Var(∆k−1

1/λ ϕ),

≤ 1

λ
‖uλ‖ℓ∞‖∆k−1

1/λ ϕ
′‖L1,

≤ 1

λk
‖uλ‖ℓ∞‖ϕ(k)‖L1. (2.34)

In the last step, we have made use of the fact that

‖∆k−1
1/λ ϕ

′‖L1 ≤ ωk−1(ϕ
′, λ−1)L1

≤ λ−(k−1)|ϕ′|W k−1
1

, (2.35)

where ωr(f, ·)Lp denotes the r-th modulus of smoothness of f in Lp (see, [10, p. 44]
for a definition) and the final step is due to the well-known inequality:

ωr(f, t)Lp ≤ tr|f |W r
p
, (2.36)

which can be found in [10, p. 46].
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Chapter 3

Improving Error Estimates for
Sigma-Delta Systems

This chapter presents some of the main results of the first part of this thesis; namely,
improvements on the basic error estimates for Σ∆ systems that were given in Chapter
2. These improvements will heavily utilize the theory of uniform distribution for point
sequences and stationary phase methods for exponential sums. Below, we summarize
the basic definitions and theorems that we shall use in the proofs.

3.1 Preliminaries From The Theory of Uniform

Distribution and Exponential Sums

Let {un}∞n=1 be a sequence of points in [0, 1) identified with the 1-torus T = R/Z.
The sequence {un} is said to be uniformly distributed (in short, u.d.) if

lim
N→∞

#{1 ≤ n ≤ N : un ∈ I}
N

= |I| (3.1)

for every arc I in T. Define the N -term discrepancy of the sequence {un} as

DN := DN ({un}) := sup
I⊂T

∣
∣
∣
∣

#{1 ≤ n ≤ N : un ∈ I}
N

− |I|
∣
∣
∣
∣
. (3.2)

It is an elementary result that {un} is u.d. if and only if DN ({un}) → 0 as N → ∞.
Equivalent characterizations of uniform distribution are given by Weyl’s criterion:

Theorem 3.1 (Weyl).

{un} is u.d. ⇐⇒ 1

N

N∑

n=1

e2πikun → 0 for each nonzero k ∈ Z, (3.3)

⇐⇒ 1

N

N∑

n=1

f(un) →
∫

T

f(u) du for every Riemann-integrable

(or, equivalently, continuous) f on T. (3.4)
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These are “qualitative” statements. The relation between how good the distri-
bution of a sequence is and how fast (3.3) and (3.4) converge are studied in the
“quantitative” theory. The second Weyl criterion is especially relevant to numerical
integration. The following two results are fundamental quantitative measures in the
theory:

Theorem 3.2 (Koksma’s inequality). For any function f ∈ BV ([0, 1]) and a
finite sequence of points u1, . . . , uN in [0, 1],

∣
∣
∣
1

N

N∑

n=1

f(un) −
∫ 1

0

f(u)du
∣
∣
∣ ≤ Var(f)DN , (3.5)

where DN denotes the discrepancy of the sequence u1, . . . , uN and Var(f) is the total
variation of f .

Theorem 3.3 (Erdős-Turán inequality). The discrepancy DN of any real numbers
u1, . . . , uN is bounded by

DN ≤ C inf
K≥1

(

1

K
+

K∑

k=1

1

k

∣
∣
∣
1

N

N∑

n=1

e2πikun

∣
∣
∣

)

, (3.6)

for some absolute constant C.

Multidimensional discrepancy

The theory of uniform distribution generalizes naturally to higher dimensions, how-
ever with some added complexity. For our analysis of higher order sigma-delta
schemes, we shall need the multidimensional versions of the theorems listed above.
We will be working mostly in two dimensions.

Let {un} be a sequence in [0, 1)d identified with Td = Rd/Zd. For a measurable
subset H of [0, 1)d, define

DN(H) :=

∣
∣
∣
∣

#{1 ≤ n ≤ N : un ∈ H}
N

− |H|
∣
∣
∣
∣
, (3.7)

where |H| denotes the d-dimensional Lebesgue measure of H . Let Id denote the set
of all intervals (i.e., the set of all rectangles whose sides are parallel to the axes) in
Td. The discrepancy DN is by definition

DN = sup
H∈Id

DN(H). (3.8)

The sequence {un} is said to be u.d. if the condition limN→∞DN (H) = 0 holds
for every H ∈ Id. Again, this is equivalent to limN→∞DN = 0. Weyl’s criterion
naturally extends using multidimensional versions of (3.3) and (3.4).
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A definition of discrepancy exists also for arbitrary non-negative Borel measures
µ on [0, 1)d. The discrepancy of µ with respect to the set H ∈ [0, 1)d, denoted by
D(µ;H), is defined to be |µ(H) − |H||. Similarly, one has the definition

D(µ) := sup
H∈Id

D(µ;H) (3.9)

for the discrepancy of µ. Clearly, DN ({un}) = D(µN), where µN is defined by
µN(A) := 1

N

∑N
n=1 χA(un) for A ⊂ Td.

If the supremum in (3.9) is taken instead over all convex subsets of Td, then this
quantity defines the isotropic discrepancy J(µ). Clearly, one has D(µ) ≤ J(µ); on
the other hand, an inequality in the reverse direction exists only in a weaker sense:
J(µ) ≤ CdD(µ)1/d, where Cd is a constant that depends only on the dimension d.

While the family of convex sets is much larger than the family of intervals, we will
need to be able to work with an even larger class of sets to prove our results in Section
3.3. The family of sets whose topological boundaries have zero Lebesgue measure (i.e.
Jordan measurable sets) will suit our purposes. Every such set in this family belongs
to a sub-family Mb of sets H ⊂ [0, 1)d for which |{u ∈ Hc : dist(u, H) < ǫ}| ≤ b(ǫ)
and |{u ∈ H : dist(u, Hc) < ǫ}| ≤ b(ǫ) for every ǫ > 0, where b : (0,∞) → (0,∞) is a
monotonically increasing function such that limǫ→0+ b(ǫ) = 0. The following theorem,
found in [11, pp. 173] and also in [12], gives a discrepancy estimate for sets in such a
family:

Theorem 3.4 (Niederreiter, Wills). Let b : (0,∞) → (0,∞) be monotonically
increasing such that b(ǫ) ≥ ǫ for all ǫ > 0, and limǫ→0+ b(ǫ) = 0. Then, for every
H ∈ Mb, one has

D(µ;H) ≤ 4 b(2
√
dD(µ)1/d). (3.10)

A multidimensional version of Koksma’s inequality (called the Koksma-Hlawka
inequality) holds for functions of bounded variation in the sense of Hardy and Krause.
We will not go into the details but refer to [13, 14] only. (However, a “baby” version
of this theorem will be employed later in Section 3.3.) On the other hand, a general-
ization of Erdős-Turán inequality is simpler to state and is given by the following:

Theorem 3.5 (Erdős-Turán-Koksma’s inequality). The discrepancy DN of any
real numbers u1, . . . ,uN in Td is bounded by

DN ≤ Cd inf
K≥1




1

K
+

∑

0<‖k‖∞≤K

1

r(k)

∣
∣
∣
1

N

N∑

n=1

e2πik·un

∣
∣
∣



 (3.11)

for some absolute constant Cd, where r(k) :=
d∏

i=1

max{1, |ki|} for k = (k1, . . . , kd) ∈
Zd.
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Exponential sums of a single variable: two theorems

It is clear from the Erdős-Turán inequality that the problem of estimating the discrep-
ancy can be turned precisely into the problem of estimating certain exponential sums.
In proving our results, we shall actually make use of only a relatively tiny section of
the theory of exponential sums. With regards to sigma-delta quantization, two types
of exponential sums will be relevant for us. The first type is the well-studied class of
Weyl sums

S =

N∑

n=1

e2πif(n), (3.12)

where, by definition, f is a polynomial (with real coefficients). This type of sums
will arise in Σ∆ schemes with constant input. The second type of sums are given
by more general functions in the exponent, that are not necessarily polynomials, yet
still have a certain amount of smoothness. These sums will arise when the input is
an arbitrary bandlimited function. For both types of sums, extremely sophisticated
tools are available in the mathematical literature to estimate their sizes. We shall
require here only outcomes of more “general purpose” tools, for they already lead to
substantial improvements of the basic estimates. We shall make use of the truncated
Poisson formula and van der Corput’s Lemma, which we give below; we shall have
no need of more sophisticated tools, such as the method of exponent pairs (e.g. see
[15]).

Theorem 3.6 (Truncated Poisson, [15]). Let f be a real-valued function and
suppose that f ′ is continuous and increasing on [a, b]. Put α = f ′(a), β = f ′(b).
Then

∑

a≤m≤b
e2πif(m) =

∑

α−1≤ν≤β+1

∫ b

a

e2πi(f(τ)−ντ)dτ + O(log(2 + β − α)). (3.13)

(If f ′ is decreasing, taking the complex conjugate of the above expression applied to
−f leads to the same expression with α and β switched.)

Theorem 3.7 (van der Corput, [16]). Suppose φ is real-valued and smooth in the
interval (a, b), and that |φ(r)(t)| ≥ µ for all t ∈ (a, b) and for a positive integer r.
If r = 1, suppose additionally that φ′ is monotonic. Then there exists an absolute
constant cr such that

∣
∣
∣

∫ b

a

eiφ(t) dt
∣
∣
∣ ≤ crµ

−1/r. (3.14)

Discrepancy of arithmetic progressions modulo 1:

Maybe the most important examples of uniformly distributed sequences are arithmetic
progressions modulo 1, defined by un = 〈nα〉, with α ∈ R\Q. These sequences
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arise in the first order Σ∆ quantization with constant input and the corresponding
discrepancy estimates will directly relate to the error estimates.

There will be two different types of statements for us: metric results which are valid
for almost every α (with respect to the Lebesgue measure), and results that depend
on the finer Diophantine properties of α. Below, we give a few basic definitions and
important theorems that will be relevant for our purposes.

Denote by ‖u‖ the metric dist(u,Z). Let ψ : Z+ → R+ be a given function. The
irrational number α is said to be of type <ψ if the inequality n‖nα‖ ≥ 1/ψ(n) holds
for all positive integers n. If α is of type <ψ for a constant function ψ, then one says
α is of constant type. A related concept is the following: Let η ∈ R+ ∪ {∞}. The
number α is said to be of type η if η = sup{γ : lim infn→∞ nγ‖nα‖ = 0}.

Let us use the notation DN(α) for the N -term discrepancy of the sequence 〈nα〉.
It follows from the Erdős-Turán inequality that

DN(α) ≤ C

(

1

K
+

1

N

K∑

k=1

1

k‖kα‖

)

, (3.15)

for any positive integer K. The sum term
∑K

k=1
1

k‖kα‖ can be estimated in terms of

the type of α [13, Lemma 3.3]. Then it follows, for instance, that if α is of finite
type η, then for every ǫ > 0, the discrepancy satisfies DN (α) = O(N−1/η+ǫ) [13, pp.
123, Theorem 3.2]. This says that the sequence 〈nα〉 shows a better distribution
behaviour for α that are badly approximable by rationals. The celebrated theorem
of Thue-Siegel-Roth1 implies that every irrational algebraic number is of type η = 1,
the smallest possible type attainable. Yet, better estimates are possible for irrationals
of constant type (for instance, all quadratic irrationals). For these, the discrepancy
satisfies DN (α) = O(N−1 logN). This is the smallest possible order of discrepancy for
any infinite sequence {un} due to the following lower bound: DN({un}) ≥ cN−1 logN
for infinitely many N , where c is an absolute constant.

An important metric result for us (due to Khinchine) is the following: Let ǫ > 0
be given. Then, almost all α are of type <Cα log1+ǫ 2q, where Cα is a constant that
may depend on α. This result may be used to prove the following theorem which will
be used in the next section:

Theorem 3.8 ([13]). For any ǫ > 0, the discrepancy DN (α) = O(N−1 log2+ǫN) for
almost all α.

Remark: It is easy to check that the same estimate holds uniformly (with the same
constant) for any translate of the sequence (〈nα〉). This strengthens the qualitative
result that for irrational α, (〈nα〉) is not only u.d. but also well distributed [13].

1For every irrational algebraic number α and for every ǫ > 0, there exists a positive constant
c = c(α, ǫ) such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c

q2+ǫ

for all integers q > 0 and p.
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3.2 Improved Estimates for First Order Systems

Improving the Basic Estimate for Constants

The basic estimate for first order Σ∆ quantization with constant inputs was given in
Theorem 2.6. Below is an improvement of this estimate:

Theorem 3.9. Let ǫ > 0 be given. Set hλ(n) = 1
λ
ϕ(n

λ
), where ϕ is the triangular

filter defined by ϕ(t) = (1 − |t|)χ[−1,1](t). Then for almost every x ∈ [0, 1], the error
eλ = x− q ∗ hλ satisfies the estimate

‖eλ‖ℓ∞ ≤ Cxλ
−2 log2+ǫ λ. (3.16)

Proof. We start with the error expression given in (2.13). First, note that for any
constant c, one has u ∗ ∆hλ = (u − c) ∗ ∆hλ. For the triangular filter, and choosing
c = 1/2, this expression can be rewritten as

((u− 1

2
) ∗ ∆hλ)(n) =

1

λ2

λ−1∑

k=0

(u(n+ k) − 1

2
) − 1

λ2

λ∑

k=1

(u(n− k) − 1

2
). (3.17)

The choice c = 1/2 was made in order to exploit that the state variable u(n) =
〈X(n)〉 = 〈nx〉 forms a uniformly distributed sequence in [0, 1] for all irrational val-
ues of x and its average value is 1/2. Koksma’s inequality reduces the problem to
considering the discrepancy values for the two sequences u(n− λ), . . . , u(n− 1) and
u(n), . . . , u(n + λ − 1). The discrepancy can be bounded using the Erdős-Turán
inequality, which gives

∣
∣
∣
1

λ

a+λ∑

k=a+1

u(k) − 1

2

∣
∣
∣ ≤ inf

K
C

(

1

K
+

K∑

k=1

1

k

∣
∣
∣
1

λ

λ∑

m=1

e2πikmx
∣
∣
∣

)

. (3.18)

Note that the bound obtained in this way is uniform in a. This observation, together
with (3.17) and Theorem 3.8 yields the desired result.

A Mean Square Error Estimate for Constants

Let us use the notation eλ,x to denote the dependence of the error eλ on the input
value x. We assume that ϕ is the triangular filter, so that (3.17) and (3.18) hold. The
precise behaviour of eλ,x can be described only by means of the continued fraction
expansion of x (see, e.g. [13, 17, 14]). However, the mean behavior is simpler. Let us
consider the mean squared error (MSE)

MSE(eλ) :=

∫ 1

0

‖eλ,x‖2
ℓ∞dx. (3.19)

A straightforward bound for MSE(eλ) follows directly from (3.18):
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Theorem 3.10. MSE(eλ) ≤ Cλ−3 log2 λ, for some absolute constant C.

Proof. Let Pλ,k(x) denote the trigonometric polynomial λ−1
∑λ

m=1 e
2πikmx. Note that

‖Pλ,k‖L2([0,1]) = λ−1/2. Then,

MSE(eλ) ≤ C

λ2

∫ 1

0

inf
K

( 1

K
+

K∑

k=1

k−1|Pλ,k(x)|
)2

dx

≤ C ′

λ2
inf
K

∫ 1

0

(

1

K2
+
( K∑

k=1

k−1|Pλ,k(x)|
)2
)

dx

≤ C ′

λ2
inf
K

(

1

K2
+

K∑

k=1

K∑

l=1

1

kl

∫ 1

0

|Pλ,k(x)||Pλ,l(x)|dx
)

≤ C ′

λ2
inf
K

(
1

K2
+

1

λ
log2K

)

,

where we have used the Cauchy-Schwarz inequality in the last step. Finally, by
choosing K ∼ λ1/2, we arrive at the desired bound.

Remark: The exponent of λ in this estimate is optimal. Indeed, using number
theoretical tools, it is shown in [4] that

C1λ
−3 ≤

∫ 1

0

|eλ,x(0)|2dx ≤ C2λ
−3. (3.20)

We will give a proof of this result in Chapter 4, where we’ll discuss in more detail
several related results. It is natural to conjecture that the quantity defined by

MSE′(eλ) :=

∥
∥
∥
∥

∫ 1

0

|eλ,x(·)|2dx
∥
∥
∥
∥
l∞

(3.21)

satisfies a similar estimate. (Note that MSE′(eλ) ≤ MSE(eλ).) On the other hand, it
is shown in [18] that the quantity

∫ 1

0

1

2N + 1

N∑

n=−N
|eλ,x(n)|2dx (3.22)

(which is even smaller) also behaves as O(λ−3) as N → ∞.

Improving the Basic Estimate for Bandlimited Functions

We shall apply the ideas of the previous section to prove the following theorem, which
is an improvement of the basic estimate that was given in Theorem 2.8:

Theorem 3.11. For all η > 0, there exists a family {ϕλ}λ≥1 of filters such that, for
all x in Theorem 2.8, and all t for which x′(t) does not vanish, we have

|x(t) − (µλ(qλ) ∗ ϕλ)(t)| ≤ Cλ−4/3+η (3.23)

for some constant C = C(η, x′(t)).
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Note that bandlimited functions are analytic, so that the derivative x′ of a non-
constant bandlimited function x has at most countably many zeros, with no accumu-
lation point. It is also possible to carry out a higher order analysis at the zeros of x′,
but we shall not go into this here.

As is customary, we shall use the notations C,C ′, C1, C2, ... for generic constants
that may change value from one proof to another; constants of different values occur-
ring in the same argument will be distinguished by different indices.

Proof. We divide the proof into a number of steps.
1. Fix t (for which x′(t) 6= 0). For each λ, let Nλ = ⌊λt⌋, and define the sequence Uλ
by

Uλ(n) − Uλ(n− 1) = uλ(n) − 1

2
, Uλ(Nλ) = 0. (3.24)

Let also tλ = Nλ/λ and δλ = t− tλ. Note that |δλ| ≤ 1/λ. Now, (2.29) can be written
as

x(t) − (µλ(qλ) ∗ ϕλ))(t) =
1

λ

∑

n

∆Uλ(n)∆1/λϕ(t− n
λ
),

=
1

λ

∑

n

Uλ(n)∆2
1/λϕ(t− n

λ
), (3.25)

=
1

λ

∑

n

Uλ(Nλ + n)∆2
1/λϕ(−n

λ
+ δλ), (3.26)

for any ϕ that decays sufficiently fast. Denote the error expression by eλ(t).
2. Our purpose is to find non-trivial bounds for Uλ(Nλ + n) by accounting for the
cancellations in

Uλ(Nλ + n) =

n∑

m=1

(

uλ(Nλ +m) − 1

2

)

, (3.27)

where we have assumed n > 0, the other case being essentially the same. Note that
the trivial bound is |n|/2. We shall prove the following estimate:

|Uλ(Nλ + n)| ≤ C1

(

λ2/3 +
λ1/2

|x′(t)|1/2
)

, (3.28)

for all n ≤ C2|x′(t)|λ and λ > C3|x′(t)|−1.
The inequalities of Koksma and Erdős-Turán result in the bound

|Uλ(Nλ + n)| ≤ inf
K

C

(

n

K
+

K∑

k=1

1

k

∣
∣
∣

n∑

m=1

e2πikuλ(Nλ+m)
∣
∣
∣

)

, (3.29)

which reduces our task to analyzing the behaviour of the exponential sums

Sλ,k(n) :=

n∑

m=1

e2πikXλ(Nλ+m), (3.30)
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since uλ(n) = 〈Xλ(n)〉.
3. We will use the stationary phase methods of van der Corput to estimate the
exponential sums given in (3.30).

In our case, Xλ is initially defined only on the integers; however, (2.7) immediately
yields an (analytic) interpolation of Xλ:

Lemma 3.12. The sequence Xλ can be extended to an analytic function, which we
shall denote by Xλ as well. Moreover, for λ ≥ C|x′(t)|−1, and all real τ in the range
0 ≤ τ ≤ C3|x′(t)|λ, one has

C1
|x′(t)|
λ

≤ |X ′′
λ(Nλ + τ)| ≤ C2

|x′(t)|
λ

, (3.31)

where C,C1, C2, and C3 are absolute numerical constants.

Proof. Using the Taylor expansion of x about the point tλ, we proceed as follows:

Xλ(Nλ +m) = Xλ(Nλ) +

m∑

l=1

x(tλ + l
λ
)

= Xλ(Nλ) +

∞∑

s=0

x(s)(tλ)

λss!

m∑

l=1

ls. (3.32)

Note that the sum Ps(m) :=
∑m

l=1 l
s can be written as a polynomial

∑s+1
j=1 Ps,jm

j of

degree s + 1 in m.2 Then,

Xλ(Nλ +m) = Xλ(Nλ) +
∞∑

s=0

x(s)(tλ)

λss!

s+1∑

j=1

Ps,jm
j (3.33)

= Xλ(Nλ) +

∞∑

j=1

mj

∞∑

s=j−1

x(s)(tλ)

λss!
Ps,j. (3.34)

2This elementary result can easily be seen from the identity

m∑

l=1

ls =

∫ m

0

xsdx +

m∑

l=1

∫ 0

−1

[ls − (x + l)s]dx,

by expanding (x + l)s in powers of l and evaluating the integrals. This results in the recursion
relation

Ps(m) =
ms

s + 1
−

s∑

j=1

(−1)j

j + 1

(
s

j

)

Ps−j(m),

which proves that Ps(m) is a polynomial in m of degree s + 1, and further leads to a recursion
relation in terms of the coefficients Ps,j :

Ps,s+1 =
1

s + 1
, Ps,k =

s−1∑

j=k−1

(−1)s−j+1

s − j + 1

(
s

j

)

Pj,k, k = 1, . . . , s.

It then follows by a straightforward inductive argument that |Ps,j | ≤ s!/j!. The numbers Ps,j have
explicit representations in terms of the Bernoulli numbers. Note that Ps,s = 1/2 for all s ≥ 1.
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We use this last expression to define

Xλ(Nλ + τ) = Xλ(Nλ) +

∞∑

j=1

ajτ
j (3.35)

for all τ ≥ 0, where aj is the sum term appearing in (3.34). The simple bound
|Ps,j| ≤ s!/j! and Bernstein’s inequality easily yield

|aj| <
2

j!

(π

λ

)j−1

(3.36)

for λ > 2π. Let us show that

X ′
λ(Nλ + τ) = x(tλ + τ

λ
) +Rλ(τ), (3.37)

where Rλ(τ) is small compared to x(tλ + τ
λ
) for τ = O(λ). We start with noting that

Ps,s+1 = 1/(s+ 1) for all s. Then, starting from (3.32),

X ′
λ(Nλ + τ) =

∞∑

s=0

x(s)(tλ)

λss!

s+1∑

j=1

Ps,jjτ
j−1

=

∞∑

s=0

x(s)(tλ)

λss!

(

τ s +

s∑

j=1

Ps,jjτ
j−1
)

= x(tλ + τ
λ
) +Rλ(τ), (3.38)

where

Rλ(τ) =
∞∑

s=0

x(s)(tλ)

λss!

s∑

j=1

Ps,jjτ
j−1

=

∞∑

j=1

jτ j−1
∞∑

s=j

x(s)(tλ)

λss!
Ps,j

=:

∞∑

j=1

jτ j−1bj . (3.39)

A similar estimate for bj is

|bj| <
2

j!

(π

λ

)j

, (3.40)

which, through (3.38) and (3.39), provides us with the estimate

|X ′′
λ(Nλ + τ) − 1

λ
x′(tλ + τ

λ
)| ≤ 2(π

λ
)2eτπ/λ. (3.41)

Now,

|x′(tλ + τ
λ
) − x′(t)| ≤ (τ + 1)

λ
π2, (3.42)
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so that
1

2
|x′(t)| ≤ |x′(tλ + τ

λ
)| ≤ 3

2
|x′(t)|, (3.43)

for all 0 ≤ τ ≤ Cλ|x′(t)|, where C is a sufficiently small absolute constant. Hence,
from (3.41) and (3.43), it follows that

|X ′′
λ(Nλ + τ)| ≥ 1

λ
|x′(tλ + τ

λ
)| − 2eπτ/λ(π

λ
)2

≥ C1
|x′(t)|
λ

(3.44)

if λ ≥ C ′|x′(t)|−1. It follows similarly that

|X ′′
λ(Nλ + τ)| ≤ C2

|x′(t)|
λ

(3.45)

for the same range of λ and τ .

Let us now apply Theorem 3.6 with f = kXλ, a = Nλ + 1, and b = Nλ + n, and
assume n ≤ C3|x′(t)|λ. It follows from (3.31) that the number of integral terms in
the right hand side of (3.13) is bounded by

|β − α + 3| ≤ 3 + k(n− 1) sup
1≤τ≤n

|X ′′
λ(Nλ + τ)|

≤ 3 + k(n− 1)C2
|x′(t)|
λ

. (3.46)

On the other hand, using Theorem 3.7 (for r = 2) together with (3.31), each expo-
nential integral term in (3.13) is bounded by C(k|x′(t)|/λ)−1/2. Combining this with
the bound on the number of terms that we have just found, we get

|Sλ,k(n)| ≤ C1n
(k

λ

)1/2

+ C2

(k

λ

)−1/2

|x′(t)|−1/2 + O(log(2 + k)), (3.47)

where in the first term we have made use of ‖x′‖L∞ ≤ π (which follows from Bern-
stein’s inequality), and in the logarithmic term, of |β − α| ≤ k for the given range of
n. Note that, for small k, this bound significantly improves the trivial bound n. Now,
if in (3.29), one chooses K ∼ λ1/3, then (3.47) yields our desired estimate (3.28).
4. We finish the proof of Theorem 3.23 by bounding (3.26) for a particular family
of filters which we construct next. For this, we fix a filter ϕ such that ϕ̂ is C∞,
supp(ϕ̂) ⊂ [−c0π, c0π] for some small fixed c0 > 1, and ϕ̂(ξ) = 1 on [−π, π]. Then ϕ
is a Schwartz function, i.e., ϕ has rapidly decreasing derivatives: there are constants
C

(l)
N for all N ≥ 0 and l ≥ 0 such that

|ϕ(l)(t)| ≤ C
(l)
N

(1 + |t|)N . (3.48)

For a small η > 0, we set Ωλ = λη/2 and define ϕλ by

ϕλ(t) = Ωλϕ(Ωλt) (3.49)
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for λ ≥ 1. Then ϕ̂λ(ξ) = ϕ̂(ξ/Ωλ) and hence {ϕλ} is an admissible family of
reconstruction filters. We return to the expression (3.26). For small n (i.e., for
|n| ≤ c|x′(t)|λ for a sufficiently small constant c), we will use the estimate (3.28) in
the form O(|x′(t)|−1/2λ2/3), and for large n, the trivial estimate |n|/2. Thus,

|eλ(t)| ≤ O(|x′(t)|−1/2λ2/3)
1

λ

∑

|n|≤c|x′(t)|λ
|∆2

1/λϕλ(−n
λ

+ δλ)|

+
1

λ

∑

|n|>|x′(t)|cλ

|n|
2
|∆2

1/λϕλ(−n
λ

+ δλ)|. (3.50)

The sum in the first term can easily be bounded by

2λ−1‖ϕ′′
λ‖L1 = 2λ−1+η‖ϕ′′‖L1 , (3.51)

and the sum in the second term by

∑

|n|>c|x′(t)|λ

|n|
2

· 2

λ2
· Ω3

λC
(2)
N

(1 + Ωλ|n|λ−1)N
≤ C(N, |x′(t)|)Ω−N+3

λ , (3.52)

for all N . We choose N such that (N − 3)η/2 > 1/3. Combining (3.50), (3.51), and
(3.52) results in the estimate

|eλ(t)| ≤ C ′(η, |x′(t)|)λ−4/3+η, (3.53)

concluding the proof.

Remarks and an experiment: The key estimate in obtaining the error bound
in this theorem was the estimate (3.47) for the exponential sums Sλ,k(n). Therefore
better estimates for these exponential sums can potentially yield improvements of the
exponent of λ we have obtained to be −4/3 + η. To test this, we can examine the
growth of these exponential sums numerically. Noting that the dependence on n for
these estimates did not really matter much in our analysis, we smooth out the role
of n by looking at the behavior of

sup
1≤n≤c|x′(t)|λ

|Sλ,k(n)|

as we fix λ and vary k. However, this quantity still has a wild behavior in k. Recon-
sidering the role of k in the Erdős-Turán inequality (3.29), we look at the maximal
value

Mλ(K0) := sup
1≤k≤K0

sup
1≤n≤c|x′(t)|λ

|Sλ,k(n)| (3.54)

for a fixed K0, whose value is to be set depending on λ. We must then consider the
quantity λ/K0 + Mλ(K0) log(K0) in (3.29). Clearly, the behavior of this quantity
is determined by the asymptotic behavior of Mλ(K0) for large K0; in order to lead
to any improvement in the estimate (3.28), the “optimal” K0 should be larger than
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Figure 3.1: Plot of Mλ(λ
1/2) vs. λ for x(t) = sin(t) and around t = 1. The solid

curve is 1.5 λ1/2. The exponential sums Sλ,k(n) were computed for n ≤ 0.3λ.

λ1/3. On the other hand, certainly we would not want to set it too large. Since the
empirical estimates for |eλ| (which are usually computed in various average senses)
are of the order λ−3/2, let’s set K0 ∼ λ1/2. For K0 this large, the bound (3.47) cer-
tainly gets worse, giving only the naive O(λ3/4). However, if the true behavior of the
exponential sums is better than indicated by (3.47), we may do better. A numerical
behavior of Mλ(λ

1/2) of smaller order than O(λ3/4) would be an indicator of possible
improvement. However, we would still need to beat O(λ2/3) for an improvement.

To test this approach, we employ the function x(t) = sin(t) and consider the
point t = 1, at which the derivative x′(1) = cos(1) ≈ 0.5403 is nonvanishing and
not too small. For λ in the range [1, 10000], we compute Mλ(λ

1/2). The result
is an O(λ1/2) behaviour, as plotted in Figure 3.1. If true, this would imply that
|eλ(1)| = O(λ−3/2) for this function. This is a good sign that with a more refined
analysis of the exponential sums Sλ,k(n), it may be possible to achieve a similar bound
for arbitrary bandlimited functions. In fact, further numerical experiments indicate
that Mλ(K0) does not depend significantly on K0. One can conjecture the bound

Mλ(K0) = O(λ1/2 logγK0) (3.55)

for some γ > 0.

Let us point out a possible strategy to improve our bound towards this conjecture.
In Figure 3.2, we have plotted the sums {Sλ,k(n) : n = 1, . . . , c|x′(t)|λ} in the complex
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Figure 3.2: Plot of {Sλ,k(n) : n = 1, . . . , 0.3λ} for x(t) = sin(t), around t = 1.
λ = 10000, k = 30.

plane for the same sinusoidal function given above, and for a fixed λ and k. We have
set t = 1, λ = 10000, c|x′(t)| = 0.3, and k = 30. Remember that our method for
estimating these sums had two ingredients: The truncated Poisson formula (3.13),
and van der Corput estimate (3.14). The first one basically decomposes the graph
into its “arms” where each arm starts from the center of a spiral and ends at the next
center. (There are 3 arms in Figure 3.2.) Then the length of each arm is estimated
using (3.14). However, this method does not really take into account the phase
cancellations due to the relative orientations of these arms. This can be important
when the number of arms is large. In Figure 3.3, we have k = 350, leading to many
arms; their orientation changes sufficiently from one part to the other to contain the
whole figure in a small square.

The estimates using the truncated Poisson summation formula can be refined by
computing the phase of each integral. The resulting method is called the “Process
B” of van der Corput [15, p. 54]. This method amounts to solving the roots of the
equation f ′(x) = ν, for integers ν ∈ [f ′(a), f ′(b)], where f is the phase function for

the exponential sum S =
b∑

a

e2πif(n). This method is certainly powerful for functions

that have explicit analytic forms. But given the generality assumed for the functions
we consider, it becomes much more challenging to apply this method to our case.
However, we believe that further analysis in this direction will improve the bounds.
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Figure 3.3: The same plot as in Figure 3.2, but for k = 350.

3.3 Second Order Systems

A second order scheme satisfies the difference equation

∆2u(n) = x(n) − q(n), (3.56)

where x is a sequence in [0, 1] and q is the output bit sequence in {0, 1}Z. The value
of each q(n) is computed by applying some nonlinear rule Q(·) to finite collections of
previous values {u(n− 1), u(n− 2), . . .} of the state variable u, and previous values
{x(n), x(n−1), . . .} of the input x, so that the difference equation (3.56) can be solved
by recursion. In our discussion, we shall consider schemes in which q(n) depends on
u(n− 1), u(n− 2), and x(n) only. By defining

v(n) = ∆u(n), (3.57)

(3.56) can be rewritten in the following canonical form:

(
v(n)
u(n)

)

=

(
1 0
1 1

)(
v(n− 1)
u(n− 1)

)

+ (x(n) − q(n))

(
1
1

)

. (3.58)

We will use the short-hand notation

u =

(
v
u

)

, A =

(
1 0
1 1

)

, and e =

(
1
1

)

(3.59)

so that (3.58) reads

u(n) = Au(n− 1) + (x(n) − q(n))e. (3.60)

We set q(n) = Q(u(n), x(n)) and define a partition {Ω0
x,Ω

1
x} of the plane by

setting Ω0
x = {u : Q(u, x) = 0}, and Ω1

x = {u : Q(u, x) = 1}. Hence, defining the
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piecewise affine transformation Tx : R2 → R2 by

Txu =

{
Au + xe, if u ∈ Ω0

x,
Au + (x− 1)e, if u ∈ Ω1

x,
(3.61)

the recursion (3.60) can be rewritten once again as

u(n) = Tx(n)u(n− 1). (3.62)

In this setup, the whole variability of the second order schemes is reduced to the
selection of the sets Ω0

x and Ω1
x. In schemes used in engineering practice, these sets

have been chosen to be half-spaces in R2, for then the computation of q(n) in an
electronic circuit is relatively easy since q(n) = H(a1u(n−1)+a2u(n−2)+a3x(n)+a4),
where H = χ[0,∞) is the Heaviside step function. We shall be interested in such half-
space partitions as well as in schemes with more general partitions of the plane.

There are two types of questions regarding the transformation Tx and the as-
sociated dynamical system. The first is the question of stability; once stability is
established, one can then immediately derive the basic decay estimate in λ, as we saw
in Chapter 2. The second type of questions have to do with further properties of these
dynamical systems, such as investigation of finer analytic and algebraic properties of
the invariant sets of Tx. As we shall see, improved estimates will depend on results
in this direction.

3.3.1 Stable Schemes and Tiling Invariant Sets

We shall give two examples of stable second order sigma-delta schemes corresponding
to two different types of “quantization rules”. The first one will be a linear rule. For
us, a general linear rule is given by

Q(u, x) =

{
0, if γv + u+ κ(x) < 0,
1, if γv + u+ κ(x) ≥ 0,

(3.63)

where γ is a real number and κ(·) is a real-valued function that controls the positioning
of the line separating the corresponding half-spaces Ω0

x and Ω1
x. Denote by Vy the

vertical translation defined by Vy(v, u) = (v, u+ y). Let T̊x be the transformation for
which κ ≡ 0. It is easy to check that

Tx = V −1
κ(x)T̊xVκ(x). (3.64)

Hence, for constant inputs (i.e., x(m) = x for all m), there is no loss of generality if
we assume κ ≡ 0, since then one has

T(n)
x = V −1

κ(x)T̊
(n)
x Vκ(x). (3.65)

On the other hand, for variable input, there may be significant gains by employing
a rule with nonzero κ. For instance, it is conjectured [19] that if κ is adjusted to fix
the centroids of the invariant sets of Tx at the same point for all x, then this leads
to a better decay of the approximation error.
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#1. A particular linear rule (γ = 2)

In this example, we shall analyze the following particular rule in which γ = 2, and
κ ≡ 0. That is,

Tx(v, u) =

{
(v + x, v + u+ x), if 2v + u < 0,
(v + x− 1, v + u+ x− 1), if 2v + u ≥ 0.

(3.66)

By the global stability of Tx, we mean that all initial points in R2 eventually get
trapped by a fixed bounded set (independent of x), in which they stay forever. This
is actually stronger than what is sufficient to ensure that (u(n)) is bounded for an
arbitrary sequence (x(n)) in [0, 1]. For the latter, it is enough to have some bounded
set Γ that is positively invariant under all Tx, i.e. Tx(Γ) ⊂ Γ, for all x. For constant
inputs, the uniformity condition over x can be relaxed and these questions can be
asked for individual values of x only.

We shall not analyze in detail the issue of global stability, but only note that the
following Lyapunov function can be used to prove this property for the linear rule we
have described (and actually, for all γ > 1/2):

Lx(v, u) =

{
x(−2u+ v) + v2, if 2v + u < 0,

(1 − x)(2u− v) + v2, if 2v + u ≥ 0.
(3.67)

In the following discussion, we give an explicit parametrization of polygons Px
that stay invariant under the transformation Tx, for x in the range [1

3
, 2

3
]. Note that

for all u /∈ ∂Ω0
x, one has T1−x(u) = −Tx(−u), so that it suffices3 to consider only

the range [1
2
, 2

3
].

For each x ∈ (1
2
, 2

3
], we define

kx =

⌈

1

2

√

1 +
1

2x− 1

⌉

, (3.68)

and for k = 1, 2, . . .,

αk =
1

2
+

1

2
· 1

4k2 − 1
. (3.69)

One easily checks that kx = 1 for x = α1 = 2/3, and kx = k for x ∈ [αk, αk−1),
where k ≥ 2. We also note that (αk)

∞
k=1 is a monotonically decreasing sequence that

converges to 1/2.

Given x ∈ [αk, αk−1), we define the polygon Px with the following set of vertices
listed in the counter-clockwise direction (see Figure 3.4):

{O1, Pk, . . . , P1, Qk, . . . , Q1, R3, R2, R1, S1, . . . , Sk, Sa, T1, . . . , Tk+1}, (3.70)

where these points are parametrically defined as in the following list:

3The small exception for the points u on the line 2v + u = 0 does not affect the discussion.
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Figure 3.4: The invariant set for the dynamical system given in (3.66) for an arbitrary
k value. (In this figure, k = 5 and x ∈ [α5, α4).)
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O1 =

(
1 − 0.5x
−1 + 2.5x

)

Pk =

(
1
4

+ 1
4(2k−1)

+ (x− 0.5)(k − 2)
3
4
− 1

4(2k−1)
− (x− 0.5)(k − 4)

)

Pj =

(
1
4

+ (x− 0.5)(2j − 1.5)
1
2

+ (x− 0.5)(2j2 − 2j + 3)

)

, j = 1, . . . , k − 1

Qk =

( −1
4

+ 1
4(2k−1)

+ (x− 0.5)(k − 1)

3x− 1

)

Qj =

(
−1

4
+ (x− 0.5)(2j − 0.5)

1
4

+ (x− 0.5)(2j2 + 2.5)

)

, j = 1, . . . , k − 1

Qa =

(

−1
4

+ 1
4(2k−1)

+ (x− 0.5)(k − 3)
1
2
− 1

2(2k−1)
− (2x− 1)(k − 3)

)

,

R3 =

(

−3
4

+ 1
4(2k−1)

+ (x− 0.5)k

−1
4

+ 1
4(2k−1)

+ (x− 0.5)(k + 3)

)

R2 =

(
−3

4
+ (x− 0.5)(2k − 1.5)

−1
2

+ (x− 0.5)(2k2 − 2k + 3)

)

R1 =

(

−3
4

+ 1
4(2k−1)

+ (x− 0.5)(k − 2)

−1
4
− 1

4(2k−1)
− (x− 0.5)(k − 4)

)

Sj+1 =

(
−1

4
+ (x− 0.5)(2j − 0.5)

−3
4

+ (x− 0.5)(2j2 + 2.5)

)

, j = 0, . . . , k − 1

Sa =

( −1
4

+ 1
4(2k−1)

+ (x− 0.5)(k − 1)

3x− 2

)

Qb =

(
−1.5x+ 1
3x− 2

)

Tj =

(
1
4

+ (x− 0.5)(2j − 1.5)
−1

2
+ (x− 0.5)(2j2 − 2j + 3)

)

, j = 1, . . . , k

Tk+1 =

(
1
4

+ 1
4(2k−1)

+ (x− 0.5)k

−1
4

+ 1
4(2k−1)

+ (x− 0.5)(k + 3)

)

.

It is straightforward (albeit lengthy) to verify that, under the action of Tx, these
vertices are mapped onto each other as follows: The first group is given by

Qb 7−→ S1

Tj 7−→ Sj+1, j = 1, . . . , k + 1,

O1 7−→ P1

Pj 7−→ Qj , j = 1, . . . , k,

Qk 7−→ R3
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Figure 3.5: A schematic diagram of the action of Tx on Γx.

Qk−1 7−→ R2

Qa 7−→ R1,

which corresponds, in Figure 3.5, to the mapping of the shaded polygon on the left
to the shaded polygon on the right.
The second group is given similarly by

Qa 7−→ Pk

Qj 7−→ Pj+1, j = 1, . . . , k − 2,

R3 7−→ Sk+2

R2 7−→ Sk+1

R1 7−→ Sa

Sj 7−→ Tj , j = 1, . . . , k,

Sa 7−→ Tk+1

Qb 7−→ O1,

where for Qa and Qb, the mapping is understood in the sense that

lim
P→Qa

P∈Ω0
x

Tx(P ) = Pk, and lim
P→Qb

P∈Ω0
x

Tx(P ) = O1. (3.71)

Hence, it follows, due to the affinity of Tx on each half-space Ω0
x and Ω1

x, that the
set Γx, defined to be the interior of the polygon Px, is mapped onto itself under the
action of Tx.

#2. The quadratic rule of N. Thao

We saw above that although a linear quantization rule is simple, it leads to compli-
cated invariant sets which are somewhat cumbersome to analyze. On the other hand,
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the following scheme designed by N. Thao leads to much simpler invariant sets. From
a topological view point, these invariant sets are equivalent to a square: each of them
is a simply-connected set with a piecewise quadratic boundary that is composed of
four pieces. This follows from a clever choice of the partition {Ω0

x,Ω
1
x} where the

boundaries of these sets are particular parabolas. To construct the scheme, we shall
first make a change of coordinates:

ũ = Φx(u), (3.72)

where Φx is a bijection to be specified soon. Let T̃x denote the transformation in the
new coordinate system, i.e.,

T̃xΦx = ΦxTx. (3.73)

We shall seek to define the transformation Φx so that

Φx(Txu) = Φx(u) + (x− 1)f , for all u ∈ Ω1
x, (3.74)

for some fixed f , ensuring that the transformation T̃x would reduce to a translation
by (x− 1)f on Ω̃1

x := Φx(Ω
1
x). This can be achieved by a shift of the ordinate u by an

amount quadratic in v, given by

(ṽ, ũ) := Φx(v, u)

:= (v, u− α(v + β)2), (3.75)

where α and β are appropriately chosen. The simple choice of a horizontal translation
(for which f = (1 0)T ) yields the values α = 1

2(x−1)
and β = x−1

2
.

The transformation T̃x is still affine on Ω̃0
x := Φx(Ω

0
x). A straightforward compu-

tation gives
T̃xũ = Axũ + xgx, for all ũ ∈ Ω̃0

x, (3.76)

where

Ax =

(
1 0

− 1
x−1

1

)

, and gx =

(
1

− 1
2(x−1)

)

. (3.77)

The final ingredient is the specification of the partition {Ω0
x,Ω

1
x}, or equivalently

the partition {Ω̃0
x, Ω̃

1
x}. This is given, for 1/2 ≤ x < 1, by

Ω̃1
x = {(ṽ, ũ) : ũ ≥ ṽ

x− 1
+ Cx} (3.78)

for a suitable constant Cx. (This constant can be arbitrary, but we shall choose its
value to be (1.5x−1)/(x−1) for normalization purposes.) To summarize, T̃x is given
by

T̃x(ṽ, ũ) =

{
(ṽ + x,−ṽ/(x− 1) + ũ− x/2(x− 1)), if ũ− ṽ/(x− 1) < Cx,
(ṽ + x− 1, ũ), if ũ− ṽ/(x− 1) ≥ Cx.

(3.79)
For 1/2 ≤ x < 1 and the given choice of Cx, the invariant set Γ̃x of T̃x turns

out to be a trapezoid whose vertices {P̃1, P̃2, P̃3, P̃4} are given by P̃1 = (1 − 0.5x, 1),
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Figure 3.6: The invariant set in the transformed domain. (x ∼ 0.7357)

P̃2 = (−1+0.5x, 1), P̃3 = (−0.5x, 0), P̃4 = (0.5x, 0). Let us also define Q̃1 = (0.5x, 1),
Q̃2 = (−0.5x, 1), Q̃3 = (−1.5x + 1, 0), Q̃4 = (1.5x − 1, 0). The invariance of Γ̃x
under T̃x is easily verified by checking that the trapezoid P̃1Q̃2Q̃3P̃4 is mapped to the
trapezoid Q̃1P̃2P̃3Q̃4 and the parallelogram Q̃2P̃2P̃3Q̃3 is mapped to the parallelogram
Q̃1Q̃4P̃4P̃1. (Note that while the first mapping is a pure translation in the horizontal
direction, the second is a shear followed by a translation in both directions. See
Figure 3.6.)

Let Γx be the corresponding invariant set of the original transformation Tx. Then,
it is clear that Γx will have a boundary that is composed of four parabolic pieces.
This is illustrated in Figure 3.7.

For 0 ≤ x < 1/2, on the other hand, one simply defines Tx as Tx(u) = −T1−x(−u)
by setting Ω0

x := −Ω1
1−x, and Ω1

x := −Ω0
1−x.

3.3.2 Improved Estimates for Constant Inputs

The following proposition summarizes some of the properties of the dynamical systems
given in §3.3.1. These properties will be used in this section to prove the error
estimates regarding second order Σ∆ systems.

Proposition 3.13. For each of the dynamical systems #1 and #2 given in §3.3.1,
there exists a subinterval I of [0, 1] such that for each x ∈ I, the map Tx possesses
an invariant set Γx with the following properties:
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Figure 3.7: The invariant set in the original domain. (x ∼ 0.7357)

1. Tx(Γx) = Γx,

2. There exists a positive constant M0 such that

sup
x∈I

sup
u∈Γx

|u| ≤M0, (3.80)

3. There exists an absolute positive constant C0 such that Γx ∈ Mb for all x ∈ I,
where b(ǫ) = C0ǫ. (see 3.1 for the definition of the family Mb.)

4. For each x ∈ I, the set Γx is congruent to T2 modulo translations by vectors in
Z2, up to possibly a set of measure zero. I.e., the translates of Γx by the integer
lattice tile the plane:

Γx + Z2 = R2, (3.81)

where the equality is (possibly) up to a null subset of R2.

Proof. All of these properties can be checked in a straightforward manner using the
explicit descriptions of the invariant sets given in §3.3.1.

We continue with the definition of a particular filter that we shall employ to
improve the basic estimate we gave in Chapter 2. While this filter is not the only
possibility for this purpose, its simplicity will suit our purposes. Given the positive
integer λ, let the discrete filter gλ be defined by gλ(n) = 1

λ
χ[0,1)(

n
λ
) and set

hλ = gλ ∗ gλ ∗ gλ, (3.82)
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and eλ := eλ,x := x− q ∗ hλ, as before. As in (3.21), we define

MSE′(eλ, I) =

∥
∥
∥
∥

∫

I

|eλ,x(·)|2 dx
∥
∥
∥
∥
ℓ∞

(3.83)

for a subinterval I of [0, 1].
For each of the second order sigma-delta schemes given by the dynamical systems

#1 and #2, we assume that for each x ∈ I, the initial condition u(0) is chosen from
Γx and the sequence u(n) is defined for n < 0 by running the recursion backwards.
(Note that this is possible since the transformation Tx is a bijection on the invariant
set Γx.) We also assume that the output bit sequences are filtered by the family {hλ}
given in (3.82). The following theorem is our improved estimate for second order
schemes:

Theorem 3.14. Under the assumptions listed above, the mean square error defined
by (3.83) satisfies the estimate

MSE ′(eλ, I) ≤ Cλ−9/2 log2 λ. (3.84)

Proof. We will divide the proof into several steps.
1. The filter hλ is piecewise quadratic in n, and supported on {0, . . . , 3λ− 1}. Fur-
thermore,

∑
gλ(n) = 1 implies that

∑
hλ(n) = 1 as well. Since we assume that x is

constant, this reduces the error eλ to (x− q) ∗ hλ as before. Substituting (3.56) into
this expression yields

eλ = ∆2u ∗ hλ
= u ∗ ∆2hλ

= u ∗ gλ ∗ (∆gλ) ∗ (∆gλ)

= u ∗ gλ ∗
1

λ2
(δ0 − 2δλ + δ2λ). (3.85)

In the last step we have made use of the fact that ∆gλ = 1
λ
(δ0 − δλ), where δa denotes

the sequence δa(n) = 1 if n = a, and δa(n) = 0 if n 6= a. Thus, (3.85) reads

eλ(n) =
1

λ3

(
λ−1∑

m=0

u(n−m) − 2
2λ−1∑

m=λ

u(n−m) +
3λ−1∑

m=2λ

u(n−m)

)

. (3.86)

Define F : R2 → R by F (w) := F (w1, w2) := w2, and for integers a < b, let

E(a, b) :=

∣
∣
∣
∣
∣

1

b− a

∑

a<n≤b
F (u(n)) −

∫

Γx

F (w) dw

∣
∣
∣
∣
∣
, (3.87)

where Γx is the attracting invariant set of Tx defined in §3.3.1. Thus, (3.86) leads to
the following inequality:

|eλ(n)| ≤ 1

λ2
(E(n− λ, n) + 2E(n− 2λ, n− λ) + E(n− 3λ, n− 2λ)) . (3.88)
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2. Our next objective is to find a good bound for E(a, b). The definition given
in (3.87) suggests using Koksma’s inequality in two dimensions (or more precisely
the Koksma-Hlawka inequality). However, the domain of integration is Γx which,
at the moment, does not seem to fit the set-up for this inequality. We also do not
have a closed form expression for the sequence {u(n)}. We shall overcome these
two difficulties by using the properties listed in Proposition 3.13 and the auxiliary
sequence 〈u〉 whose elements are the fractional parts of (u(n))n∈Z.

For v = (v1, v2) ∈ Z2, define Γx(v) = Γx ∩ [v1, v1 + 1) × [v2, v2 + 1). This results
in a partition of Γx as

Γx =
⋃

v∈V
Γx(v) (3.89)

for some finite subset V of Z2, and (including the possibility of having empty sets in
the partition) uniformly in x, due to property 2 listed in Proposition 3.13. The tiling
property of Γx results in the equality

⋃

v∈V
[Γx(v) − v] = [0, 1)2. (3.90)

(One may also write 〈Γx(v)〉 for Γx(v) − v.) Since F is linear, one has
∫

Γx(v)

F (w) dw =

∫

Γx(v)−v

F (w) dw + F (v)

∫

Γx(v)−v

dw, (3.91)

which, after summing over all v ∈ V, results in
∫

Γx

F (w) dw =

∫

[0,1)2
F (w) dw +

∑

v∈V
F (v)

∫

Γx(v)−v

dw. (3.92)

Because of the tiling property, u(n) ∈ Γx(v) if and only if 〈u(n)〉 ∈ Γx(v)−v. Hence

〈u(n)〉 = u(n) −
∑

v∈V
v χ

Γx(v)
(u(n))

= u(n) −
∑

v∈V
v χ

Γx(v)−v

(〈u(n)〉), (3.93)

so that
∑

a<n≤b
F (u(n)) =

∑

a<n≤b
F (〈u(n)〉) +

∑

v∈V
F (v)

∑

a<n≤b
χ

Γx(v)−v

(〈u(n)〉) (3.94)

Hence, it follows from (3.92) and (3.94) that

E(a, b) ≤
∣
∣
∣
∣
∣

1

b− a

∑

a<n≤b
F (〈u(n)〉) −

∫

[0,1)2
F (w) dw

∣
∣
∣
∣
∣

+
∑

v∈V
|F (v)|

∣
∣
∣
∣
∣

1

b− a

∑

a<n≤b
χ

Γx(v)−v

(〈u(n)〉) −
∫

Γx(v)−v

dw

∣
∣
∣
∣
∣

(3.95)
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Denote by D(a,b](〈u〉), the discrepancy of the sequence of points {〈u(n)〉}a<n≤b, and
by D(a,b](〈u〉, H), the discrepancy of the same set of points with respect to the set
H . (Note that, through u, these quantities implicitly depend also on x.) Using the
Koksma-Hlawka inequality [14, Theorem 1.14], we have

∣
∣
∣
∣
∣

1

b− a

∑

a<n≤b
F (〈u(n)〉) −

∫

[0,1)2
F (u) du

∣
∣
∣
∣
∣
≤ CD(a,b](〈u〉) (3.96)

for some absolute constant C. (Note that in general C = C(F ), but F is fixed in
our whole discussion.) Now, from Proposition 3.13 and the definition of F , we have
|F (v)| ≤ |v| ≤M0, so that

E(a, b) ≤ C D(a,b](〈u〉) +M0

∑

v∈V
D(a,b](〈u〉,Γx(v) − v). (3.97)

The cardinality #V is bounded by M2
0 so that Proposition 3.13 (Property 3) and

Theorem 3.4 lead us to the estimate

E(a, b) ≤ C D(a,b](〈u〉) + C2M
3
0 D(a,b](〈u〉)1/2

≤ (C + C2M
3
0 )D(a,b](〈u〉)1/2. (3.98)

Considering (3.88), any non-trivial bound for the discrepancy D(a,b](〈u〉) will thus
lead to an improved bound for the error eλ.
3. Next, we derive a closed form analytical formula for the sequence 〈u〉 and use
this formula to estimate the discrepancy D(a,b](〈u〉) via the Erdős-Turán-Koksma
inequality. On T2, the recursion relation (3.60) turns into the bijective transformation

〈Txu〉 = 〈Au + xe〉, (3.99)

which can be iterated forwards and backwards to write a solution for 〈u(n)〉:

〈u(n)〉 =







〈An u(0) + x(
n−1∑

i=0

Ai)e〉 if n ≥ 0,

〈An u(0) − x(
−1∑

i=n

Ai)e〉 if n < 0.
(3.100)

On the other hand, after evaluating these two expressions, one finds a single analytical
formula for all n ∈ Z:

〈u(n)〉 =

(
〈v(n)〉
〈u(n)〉

)

=

(
〈v(0) + nx〉
〈nv(0) + u(0) + 1

2
n(n+ 1)x〉

)

. (3.101)

Define, for k = (k1, k2) ∈ Z2,

S(a,b](k, x) :=
1

b− a

∑

a<n≤b
e2πik·〈u(n)〉, (3.102)
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where the dependence on x becomes explicit if the formula (3.101) is inserted in this
expression. Using the periodicity of the exponential function, one can rewrite S(a,b]

as

S(a,b](k, x) =
1

b− a

∑

a<n≤b
cne

2πidnx, (3.103)

where cn = e2πi[v(0)k1+(u(0)+nv(0))k2 ] and dn = nk1 + 1
2
n(n + 1)k2. This quantity is

initially defined only for x ∈ I, where I is one of the intervals defined by Proposition
3.13, since we have evaluated u only for this interval. Using (3.103), we extend the
definition of S(a,b](k, x) to all x ∈ T.

Note that |cn| = 1 and dn ∈ Z for all n. Since dn is a quadratic polynomial
in n, it can attain any given value at most twice. Hence, if S(a,b](k, x) is rewritten
as a trigonometric polynomial in x with distinct frequencies, the amplitude of each
frequency will be bounded by 2/(b−a), since maxn,m |cn+cm| ≤ 2. Also, there will be
at most b− a distinct frequencies. Thus, using Parseval’s theorem, one easily bounds
‖S(a,b](k, ·)‖L2(T) by

‖S(a,b](k, ·)‖L2(T) ≤
2√
b− a

. (3.104)

Now, for any positive integer K, Theorem 3.5 yields the estimate

D(a,b](〈u〉) ≤ C




1

K
+

∑

0<‖k‖∞≤K

1

r(k)

∣
∣S(a,b](k, x)

∣
∣



 , (3.105)

so that

∫

I

D(a,b](〈u〉) dx ≤ C inf
K≥1




1

K
+

∑

0<‖k‖∞≤K

1

r(k)

∥
∥S(a,b](k, x)

∥
∥
L1(T)



 .(3.106)

Using the inequality ‖ · ‖L1(T) ≤ ‖ · ‖L2(T), the bound (3.104), and

∑

0<‖k‖∞≤K

1

r(k)
= 4

(
K∑

k1=1

K∑

k2=1

1

k1k2

+
K∑

k1=1

1

k1

)

= O(log2K), (3.107)

one concludes that
∫

I

D(a,b](〈u〉) dx ≤ C ′ inf
K≥1

(
1

K
+ (b− a)−1/2 log2K

)

≤ C ′′(b− a)−1/2 log2(b− a). (3.108)

4. The final step is to combine the results of steps 1, 2, and 3. We first combine the
bounds (3.98) and (3.108) to obtain

∫

I

E(n− λ, n)2 dx ≤ Cλ−1/2 log2 λ (3.109)
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uniformly in n. It next follows from (3.88) and the Schwarz’s inequality that

|eλ,x(n)|2 ≤ 6λ−4
(
E(n− λ, n)2 + E(n− 2λ, n− λ)2 + E(n− 3λ, n− 2λ)2

)
.

(3.110)
Finally, we combine (3.109) and (3.110) to get

∥
∥
∥
∥

∫

I

|eλ,x(·)|2 dx
∥
∥
∥
∥
ℓ∞

≤ Cλ−9/2 log2 λ, (3.111)

proving our assertion (3.84).
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Chapter 4

Other Results and Considerations

4.1 More on First Order Σ∆ Quantization

4.1.1 Optimal MSE Estimates for Constants

Consider the first order Σ∆ scheme given by (2.7)-(2.9), or equivalently by (2.10) and
(2.11). We would also like to consider an arbitrary initial condition u(0) = u0 ∈ [0, 1).
Then, for constant input x, the output bits q(n) will be such that

Q(n) = q(1) + . . .+ q(n) = ⌊u0 + nx⌋. (4.1)

As x varies in [0, 1], the collection of outcomes qx(N) := (q(1), . . . , q(N)) define a
scalar quantizer whose threshold points (other than the points 0 and 1) are given by
a “modified” Farey series SN (u0), where

SN (u0) := {(j − u0)/n : j = 1, . . . , n; n = 1, 2, . . . , N}. (4.2)

We leave out the proof of this statement since it uses the same argument as in the
case u0 = 0. (see Chapter 2, page 10.)

In this section, we study how to give lower and upper bounds for the mean squared
quantization error if u0 is kept fixed while the constant input x is drawn uniformly
from [0, 1]. For lower bounds we assume optimal decoding, where u0 is known to
the decoder. The optimal MSE quantizer is described using the map Qopt(x; u0),
which maps x to the midpoint of the interval J containing x, the endpoints of J
being successive elements of the threshold points in SN(u0). The map Qopt(x; u0) is
the optimal quantizer under our assumption that the quantity x being quantized is
uniformly distributed in [0, 1] and is independent of u0. Our objective is to lower
bound the mean squared-error, given by the integral

MSEu0(Qopt) :=

∫ 1

0

(x−Qopt(x; u0))
2dx, (4.3)

uniformly in u0. In the upper bound case, we suppose u0 is fixed but unknown to
the decoder, and we consider a specific decoding algorithm that uses the triangular
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filter of length N . Let Qh(x; u0) denote the estimate of x, using the filter h =
(h(1), . . . , h(N)). It is given by

Qh(x; u0) =

N∑

n=1

h(n)q(n). (4.4)

Our objective is to upper bound

MSEu0(Qh) :=

∫ 1

0

(x−Qh(x; u0))
2dx (4.5)

for all u0.

Lower Bound

We suppose that the initial value u0 is fixed and known, with 0 ≤ u0 < 1. The unit
interval [0, 1] is partitioned into subintervals J = J(qx(N)). The optimal decoding
algorithm1 Qopt(x; u0) maps the quantization data qx(N) that are associated with x

to the midpoint of the interval J(qx(N)). There are at most (N+1)(N+2)
2

quantization
intervals determined by the values given in (4.2). For u0 = 1/2, SN (u0) is the subset
of F2N formed by the fractions with even denominators. Hence, some of the values
are repeated, similarly to the case SN(0) = FN discussed earlier. In this case, the
number of distinct values is asymptotic to 3

π2N
2 as N → ∞, using [7, Theorem 330],

since the points in this set can be put in one-to-one correspondence with the Farey
sequence FN . The intervals produced by the Farey sequence F2N range in size from
1

2N
down to size 1

4N2 , and the interval [0, 1
2N

] contributes 1
96
N−3 all by itself to the

MSE of the optimal decoding algorithm. We now show that the same bound holds
for an arbitrary u0.

Theorem 4.1. For the mean square error of the optimal decoding algorithm, one has
the lower bound

MSEu0(Qopt) ≥
1

96
N−3, (4.6)

for all u0 ∈ [0, 1).

Proof. We will show that at least one of the open intervals (0, 1
2N

) or (1 − 1
2N
, 1)

contains no quantization threshold. This interval is of length 1
2N

, and since an interval
of length |I| contributes 1

12
|I|3 to the MSE, the contribution of this interval is 1

96
N−3.

• Case 1: 0 ≤ u0 < 1/2.

For 1 ≤ j ≤ n, and 1 ≤ n ≤ N ,

j − u0

n
≥ j − u0

N
≥ 1 − u0

N
≥ 1

2N
,

hence (0, 1
2N

) contains no quantization threshold.
1The optimality of this algorithm is a consequence of the assumption that x is uniformly dis-

tributed in [0, 1]. When conditioned on the data qx(N) the distribution of x is uniform on the
quantization interval J(qx(N)).
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• Case 2: 1/2 ≤ u0 < 1.

For 1 ≤ j ≤ n, and 1 ≤ n ≤ N ,

j − u0

n
≤ n− u0

n
≤ 1 − u0

N
≤ 1 − 1

2N
,

hence (1 − 1
2N
, 1) contains no quantization threshold.

The lower bound in Theorem 4.1 is not optimal; the optimal constant seems hard
to determine, but we believe it to be about five times larger than 1

96
. We show in [4]

the following exact result:

Theorem 4.2. Suppose that u0 = 0 or u0 = 1
2
. Then, one has

MSEu0(Qopt) = αu0N
−3 +O(N−4 logN) as N → ∞, (4.7)

where

α0 :=
1

6

ζ(2)

ζ(3)
= 0.22807,

and

α1/2 :=
2

21

ζ(2)

ζ(3)
− 1

16
= 0.06782,

where ζ(·) is the Riemann zeta function.

The proof is based on the explicit relation of the set of quantization thresholds
in these two cases with the Farey series. Theorem 4.2 sets a limit on how much the
constant 1

96
in Theorem 4.1 can be improved, since the best constant can be no larger

than 2
21
ζ(2)
ζ(3)

− 1
16

. Numerical simulations suggest that this bound for u0 = 1/2 is
actually close to the minimum over all initial conditions u0, and conceivably it might
give the best constant.

Upper Bound

We view u0 as fixed with 0 ≤ u0 < 1, but otherwise unknown. The quantization
values (q(1), q(2), . . . , q(N)) are known to the decoder. For simplicity we assume that
N = 2M − 1 is odd. The triangular filter {h(n) : 1 ≤ n ≤ 2M − 1} of mass 1 is given
by

h(n) =







1
M

− (M−n)
M2 1 ≤ n ≤M ,

1
M

− (n−M)
M2 M ≤ n ≤ 2M − 1 .

(4.8)

We give a detailed analysis for the case N = 2M − 1 only; for the case N = 2M we
may discard the value q(N) and use the above filter on the remaining values.
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Theorem 4.3. For the mean square error of the triangular filter decoder, one has
the upper bound

MSEu0(Qh) ≤
40

3
N−3 (4.9)

for all u0 ∈ [0, 1).

The proof uses two number-theoretic lemmas, whose statements and proofs are
given next. In the following, (m,n) denotes the greatest common divisor of m and n.

Lemma 4.4. For fixed constant u0 and all positive integers n and m,

∣
∣
∣
∣

∫ 1

0

〈nx+ u0〉〈mx+ u0〉dx−
1

4

∣
∣
∣
∣
≤ 1

12

(n,m)

nm

2

. (4.10)

Proof. We shall prove the lemma by establishing the formula

∫ 1

0

〈nx+ u0〉〈mx+ u0〉dx =
1

4
+

1

12

(n,m)

nm

2

φn,m , (4.11)

where |φn,m| ≤ 1. Denote the expression on the left hand side by cn,m. We substitute
nx+ u0 and mx+ u0 for x in the Fourier series expansion

〈x〉 =

∞∑

k=−∞
ake

2πikx,

where ak = (−2πik)−1 for k 6= 0 and a0 = 1/2. This Fourier series is only conditionally
convergent, and is to be interpreted as the limit as N → ∞ of the sum taken from
−N to N . However, its partial sums are uniformly bounded [8, Ex. 4, p. 22]:

∣
∣
∣
∣
∣
∣

∑

|k|≤N
ake

2πikx

∣
∣
∣
∣
∣
∣

≤ C, for all x and all N. (4.12)

Hence, using the bounded convergence theorem, one can change the order of integra-
tion and double sum to obtain

cn,m =
∑

k∈Z

∑

l∈Z

akal e
2πi(k−l)u0

∫ 1

0

e2πi(kn−lm)xdx. (4.13)

Summing up (4.13) over the nonzero indices k, l given by kn = lm and straightforward
manipulations result in

cn,m =
1

4
+

1

4π2

(n,m)

nm

2∑

d6=0

1

d2
e2πidu0(m−n)/(n,m) (4.14)

=
1

4
+

1

12

(n,m)

nm

2

φn,m, (4.15)
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for some |φn,m| ≤ 1,2 upon using
∑

d6=0
1
d2

= π2

3
.

Lemma 4.5. For all positive integers L,

L∑

n=1

L∑

m=1

(n,m)

nm

2

≤ 5L. (4.16)

Proof. We have

L∑

n=1

L∑

m=1

(n,m)

nm

2

=
L∑

d=1

∑

1≤n,m≤L
(n,m)=d

(n,m)

nm

2

≤
L∑

d=1

⌊L/d⌋
∑

j=1

⌊L/d⌋
∑

k=1

1

jk

=

L∑

d=1





⌊L/d⌋
∑

j=1

1

j





2

≤
L∑

d=1

(1 + log
L

d
)2 (4.17)

However, this last expression is bounded by

(1 + logL)2 +

∫ L

1

(1 + log(L/y))2dy = 5L− 4 − 2 logL,

which proves (4.16). 3

2Using the formula

∞∑

d=1

1

d2
cos dθ =

1

4
(θ − π)2 − 1

12
π2, 0 ≤ θ ≤ 2π,

the exact value of φn,m is easily found to be

φn,m =
3

2
(2〈u0

m − n

(n, m)
〉 − 1)2 − 1

2
.

3The constant 5 appearing in (4.16) can be improved to γ2 + 5γ/2 + 7/3 ∼= 4.1 by using the
inequality

L∑

j=1

1

j
≤ γ + log L +

1

2L
,

where γ is the Euler-Mascheroni constant defined by

γ = lim
N→∞





N∑

j=1

1

j
− log N



 = 0.5772 . . .

Numerical experiments suggest the optimal constant to be ∼ 3.
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Proof of Theorem 4.3. Suppose N = 2M − 1 is odd. We set

ǫN (x) := x−Qh(x; u0)

where Qh(x; u0) is the triangular filter decoder

Qh(x; u0) :=
2M−1∑

n=1

h(n)q(n) , (4.18)

with filter weights (4.8). We have

ǫN(x) =
2M−1∑

n=1

(x− q(n))hn

=

2M−1∑

n=1

(u(n) − u(n− 1))h(n).

Summing this by parts yields

ǫN (x) = − 1

M2
(u(0) + ... + u(M − 1)) +

1

M2
(u(M) + ...+ u(2M − 1)) (4.19)

Then we have

|ǫN (x)| ≤ 1

M2

∣
∣
∣
∣
∣

M−1∑

n=0

u(n) − M

2

∣
∣
∣
∣
∣
+

1

M2

∣
∣
∣
∣
∣

2M−1∑

n=M

u(n) − M

2

∣
∣
∣
∣
∣
, (4.20)

which, upon taking the square yields

|ǫN(x)|2 ≤ 2

M4

(M−1∑

n=0

u(n) − M

2

)2

+
2

M4

( 2M−1∑

n=M

u(n) − M

2

)2

. (4.21)

We now consider the mean square error,

MSEu0(Qh) =

∫ 1

0

|ǫN(x)|2dx.

Substituting the value of u(n) into into (4.21), and integrating, we get

MSEu0(Qh) ≤
2

M4

∫ 1

0

{
(M−1∑

n=0

〈nx+ u0〉 −
M

2

)2

+
( 2M−1∑

n=M

〈nx+ u0〉 −
M

2

)2
}

dx.

(4.22)

We expand this expression, substitute
∫ 1

0
〈nx + u0〉 dx = 1/2 for positive n, and

rearrange to get

MSEu0(Qh) ≤ 2

M4

{

(u0 −
1

2
)2 +

M−1∑

n=1

M−1∑

m=1

(∫ 1

0

〈nx+ u0〉〈mx+ u0〉 dx− 1

4

)

+

2M−1∑

n=M

2M−1∑

m=M

(∫ 1

0

〈nx+ u0〉〈mx+ u0〉 dx− 1

4

)}

. (4.23)
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Next we apply Lemma 4.4 to (4.23) and replace the term (u0 − 1
2
)2 by its maximum

value 1/4, to obtain

MSEu0(Qh) ≤
2

M4

(

1

4
+

1

12

M−1∑

n=1

M−1∑

m=1

(n,m)

nm

2

+
1

12

2M−1∑

n=M

2M−1∑

m=M

(n,m)

nm

2
)

. (4.24)

Finally, we conclude our estimate of MSEu0(Qh) by applying Lemma 4.5 with L =
2M − 1 = N − 1 to (4.24) (combining the double sums) to obtain

MSEu0(Qh) ≤
40

3
N−3 − 16

3
N−4, (4.25)

which yields the desired bound.
Remark: The proof of Theorem 4.3 did not determine the best constant for MSE
using the triangular filter, and some improvements are possible on the constant 40

3
by

more careful argument, since the constant in Lemma 4.5 can be improved slightly.

4.1.2 Approximation in Lp

In Chapters 2 and 3, we have considered pointwise and L∞ approximation rates of
general bandlimited functions using first order Σ∆ quantization. A natural question
is whether it is possible to approximate functions in the Lp metric. In this case, we
consider functions in the class

B p
π (R, [0, 1]) := {x : R → [0, 1] : x ∈ Bπ ∩ Lp}, (4.26)

for 1 ≤ p < ∞. In the L∞ setting, the range [0, 1] of functions under consideration
was arbitrary (however, in agreement with the choice {0, 1} of quantization levels);
by selecting q(n) from {a, b} instead, we would be able to handle functions taking
their values in [a, b] and essentially everything would be the same. In the Lp setting,
however, there is an additional integrability requirement on the functions and this
seems to ruin the transposibility. If instead of B p

π (R, [0, 1]), we wanted to approximate
the class B p

π (R, [−1, 1]) := {x : R → [−1, 1] : x ∈ Bπ ∩ Lp} in Lp using functions of
the form

∑

n q(n)ϕ(t − n
λ
) with q(n) ∈ {−1, 1}, this would correspond to a different

setting.4 We shall discuss the setting corresponding to the class (4.26) with q(n) ∈
{0, 1} in detail, and then outline the results for the setting with range [−1, 1]. It
turns out that there exists a non-trivial correspondence between the two settings
which makes them behave similarly regarding our problem.

We would first like to make an asymptotical analysis of the output bit sequence
qλ produced by the first order Σ∆ quantization algorithm given in (2.24)-(2.26) for
functions in B p

π (R, [0, 1]). The cases p = 1 and 1 < p <∞ lead to two different types
of behavior, and this becomes important for the approximation problem.

4This new setting would be equivalent to approximating functions in {x : R → [0, 1] : x ∈
Bπ and

∫
|x(t) − 1

2
|pdt < ∞} with q(n) drawn from {0, 1}. We would still be measuring the error

in the Lp norm, although neither the target function nor the approximant would lie in Lp! (This
seemingly odd situation, however, would not cause a problem, since both target and approximant
would have the same “dc component” equal to 1/2.)
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Case 1: p = 1.

Let x ∈ B 1
π (R, [0, 1]). The Poisson summation formula5 gives

1

λ

∑

n

x(n
λ
) =

∑

n

x̂(2πλn) = x̂(0) (4.27)

for all λ > 1. Since |x̂(0)| ≤ ‖x‖L1 , we get that
∑

n x(
n
λ
) < ∞. (In fact, in our

case, x̂(0) =
∫
x(t)dt = ‖x‖L1 , since x(t) ≥ 0 for all t.) Clearly, this implies that

|Xλ(n)| ≤ λ‖x‖L1 for all n, and thus there is a positive integer nλ such that qλ(n) = 0
for all |n| ≥ nλ. Without loss of generality, we assume nλ to be the smallest such
number, i.e., nλ := min{n : qλ(m) = 0, for all |m| ≥ n}.

Clearly, the definition of nλ implies
∑

|n|>nλ

x(n
λ
) < 2, so that (4.27) yields

λ‖x‖L1 < 2 +
∑

|n|≤nλ

x(n
λ
) ≤ 2nλ + 3. (4.28)

This gives the lower bound nλ >
1
2
(λ‖x‖L1 − 3). On the other hand, an upper bound

may be obtained using

uλ(nλ) +
∑

n>nλ

x(n
λ
) < 1. (4.29)

However, it is hard to give a precise estimate because of the variability of uλ(nλ).
For a function x that obeys the decay estimate |x(t)| ≤ |t|−β0, it can at least be said
that for every λ, there is an initial condition uλ(0) for which nλ ≤ C λβ0/(β0−1). The
following theorem states that whenever nλ = o(λ2), one has approximation in L1.

Theorem 4.6. Let x ∈ B 1
π (R, [0, 1]), and qλ be the output of the first order Σ∆

quantizer with input (x(n
λ
)). Assume ϕ satisfies, together with (2.20), the decay rate

|ϕ(t)| ≤ C |t|−γ0 for some γ0 > 2. Then

‖x− x̃λ‖L1 = O
(nλ
λ2

)

+ o(1), (4.30)

where x̃λ = 1
λ

∑

n∈Z

qλ(n)ϕ(· − n
λ
).

Proof. For all |t| > nλ/λ, the approximant x̃λ(t) can easily be bounded as

∣
∣
∣
1

λ

∑

n∈Z

qλ(n)ϕ(t− n
λ
)
∣
∣
∣ ≤ 1

λ

∑

|n|<nλ

|ϕ(t− n
λ
)| (4.31)

≤ C
∣
∣
∣t− nλ

λ

∣
∣
∣

−γ0+1

. (4.32)

5Note that the Poisson summation formula is valid since x is necessarily continuous (in fact
analytic) and is also of bounded variation (which can be seen from Bernstein’s inequality for L1-
bandlimited functions [9, p. 14]).
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On the other hand the basic estimate gives |x(t) − x̃λ(t)| ≤ C/λ for all t. So, for
Tλ > nλ/λ, one has

‖x− x̃λ‖L1 ≤
∫

|t|≤Tλ

|x(t) − x̃λ(t)| dt+
∫

|t|>Tλ

(|x(t)| + |x̃λ(t)|) dt (4.33)

≤ C
Tλ
λ

+

∫

|t|>Tλ

|x(t)| dt+ C
∣
∣
∣Tλ −

nλ
λ

∣
∣
∣

−γ0+2

. (4.34)

The theorem follows by choosing Tλ = nλ

λ
+ λǫ for some 0 < ǫ < 1.

Case 2: 1 < p <∞.

We would like to consider functions x ∈ B p
π (R, [0, 1]) with

∑∞
n=1 x(

n
λ
) = ∞ for all

λ > 1. Such a function can be constructed very simply. Start with any function y
defined on R̂ with the properties

• supp(y) ⊂ [−π
2
, π

2
],

• y ∈ L(2p)′\L2, where (2p)′ = 2p
2p−1

is the conjugate index of 2p (note that 1 <

(2p)′ < 2),

• ‖y‖L1 ≤ 2π,

• y is even and real,

and set x := (y∨)2 = (y ∗ y)∨, where y∨(t) = 1
2π

∫
y(ξ)eitξdξ. Clearly, x is in Bπ

since y ∗ y is supported on [−π, π], is everywhere positive since y∨ is real, is in Lp

since y∨ ∈ L2p. Moreover ‖x‖L∞ = ‖y∨‖2
L∞ ≤ ( 1

2π
‖y‖L1)2 ≤ 1. Finally, x /∈ L1,

for otherwise this would imply y∨ ∈ L2, which is impossible since y /∈ L2. Thus,
x ∈ B p

π (R, [0, 1])\L1. We claim that
∑

n x(
n
λ
) = ∞. To see this, define cλn(y) to

be the nth Fourier coefficient of y, given by cλn(y) := 1
2πλ

∫ λπ

−λπ y(ξ)e
−inξ/λdξ. Then,

cλn(y) = 1
λ
y∨(−n

λ
), so that x(n

λ
) = λ2(cλ−n(y))

2. But y /∈ L2, so
∑

n |cλn(y)|2 = ∞. Note
that x is an even function, so that

∑∞
n=1 x(

n
λ
) = ∞ as well, proving our claim.

We now look at the asymptotics of qλ(n) as |n| → ∞. First, observe that x(t) → 0
as |t| → ∞ by the Riemann-Lebesgue lemma, since y ∗y ∈ L1. This has the following
implication: For given positive integer M , let tM be such that x(t) < 1/M for all
|t| > tM . Then, for all n > λtM , at most one among M consecutive output bits
qλ(n+ 1), . . . , qλ(n+M) can be equal to 1. To see this, just note that

n+M∑

m=n+1

qλ(m) = −[uλ(n +M) − uλ(n)] +

n+M∑

m=n+1

x(m
λ
) < 2. (4.35)

A similar statement can be made for negative indices as well. Let (nλk)k∈Z be the
increasing sequence of indices at which the output bit is equal to 1. (This is an
infinite sequence since

∑

n x(
n
λ
) = ∞ implies |Qλ(n)| → ∞ as |n| → ∞.) For a large

52



positive integer M , let k be such that nλk > λtM . Then,

2 =

nλ
k+1∑

m=nλ
k

qλ(m) = −[uλ(n
λ
k+1) − uλ(n

λ
k − 1)] +

nλ
k+1∑

m=nλ
k

x(m
λ
) (4.36)

< 1 +
1

M
(nλk+1 − nλk + 1), (4.37)

so that (nλk+1 − nλk) ≥M . In other words, the sequence (nλk+1 − nλk) → ∞ as k → ∞.
Similarly, (nλk−1 − nλk) → −∞ as k → −∞. One can express x̃λ in terms of the
sequence (nλk) as

x̃λ =
1

λ

∑

k∈Z

ϕ(· − nλk
λ

). (4.38)

In general this function is not in any Lp space, for p <∞.6 Thus, one can not expect
any convergence in Lp, for p <∞.

Remark: If instead we look at functions in the class B p
π (R, [−1, 1]) using the first

order Σ∆ quantization algorithm with q(n) ∈ {−1, 1}, then similar results are still
valid. For instance, in the case p = 1, the output bit sequence eventually converges
to the alternating sequence (−1)n and it is possible to have convergence in L1 using
slightly more specific filters. On the other hand, for 1 < p <∞, we can consider the
same subclass of functions x = (y ∗ y)∨ constructed above. For these functions, the
output sequence now behaves asymptotically like (−1)n, except that at each nλk , the
phase of the sequence (−1)n is flipped, i.e., the sequence of indices nλk corresponds
to two consecutive +1 values. It can again be shown that approximants constructed
from such bit sequences in general do not belong to any Lp space.

4.2 Other Schemes, Lower Bounds and Other In-

formation Theoretical Considerations

4.2.1 The Family of Daubechies and DeVore

In Chapter 2, we mentioned higher order Σ∆ schemes and gave the derivation of the
basic error estimate for a stable k-th order scheme, borrowed from Daubechies and
DeVore [3]. We also mentioned explicit construction of a family of stable schemes for
all orders by Daubechies and DeVore; as far as we are aware, this is the first such
construction. Below is their scheme and the statement of their stability result. The
proof may be found in [3]. It is assumed that the output bits are drawn from {−1, 1}
instead of {0, 1}.

Theorem 4.7 (Daubechies-DeVore [3]). Suppose |xn| ≤ a < 1 for all n ∈ N.
For a positive integer k, let L1 = ⌊(5 + 4a)/(1 − a)⌋ + 2, M1 = 2(1 + a), and

6This is trivial to see when ϕ is compactly supported, since (nλ
k+1

− nλ
k) → ∞ as k → ∞.
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Mj = (3L1)
j−14(j−1)(j−2)M1 for j = 2, . . . , k − 1. Let the sequences (qn)n∈N and

(u
(j)
n )n∈N, j = 1, . . . , k be defined by

u(1)
n = u

(1)
n−1 + xn − qn

u(j)
n = u

(j)
n−1 + u(j−1)

n j = 2, . . . , k

qn = sign{u(1)
n−1 +M1sign[u

(2)
n−1 + . . .+Mk−1sign(u

(k)
n−1) · · ·]}, (4.39)

where u
(j)
−1 = 0 for j = 1, . . . , k as initial conditions and the recursion is started at

n = 0. Then,

|u(k)
n | ≤ 1

2
(3L1)

k−14(k−1)(k−2)M1 (4.40)

for all n.

For a given order k, this result, combined with Theorem 2.9, implies that it is
possible to achieve an error estimate of the form Ckλ

−k, where Ck ∼ ck
2

for some
constant c > 1. By selecting a suitable order modulator for each λ, it is possible to
beat any power law decay. The choice k ∼ γ log λ for an appropriate γ would yield
an O(λ−β log λ) type decay.

4.2.2 Kolmogorov Entropy and Lower Bounds

Various questions can be formulated regarding the approximation properties of one-bit
quantization schemes. The first is: what is the best possible accuracy? A bound can
be given using the notion of Kolmogorov ǫ-entropy.7 Since the space Bπ(R, [0, 1]) is not
compact with respect to the norm ‖·‖∞, one works with restrictions to finite intervals.
Let Bπ,T (R, [0, 1]) be the class formed by restrictions of functions x ∈ Bπ(R, [0, 1]) to
the interval [−T, T ]. Then the average entropy per unit length Hǫ(Bπ(R, [0, 1])) is
defined to be

Hǫ(Bπ(R, [0, 1])) := lim
T→∞

1

2T
Hǫ(Bπ,T (R, [0, 1]), C[−T, T ]). (4.41)

It is known due to a result by Kolmogorov and Tikhomirov [20], [21, p. 514] that

Hǫ(Bπ(R, [0, 1])) ∼ log
1

ǫ
, (4.42)

which implies that for sufficiently large values of T , the minimal cardinality of an
ǫ-net for the class Bπ,T (R, [0, 1]) is asymptotic to (1/ǫ)2T . In other words, with λ
bits per unit interval, one can construct an ǫ-net for Bπ,T (R, [0, 1]), consisting of 22λT

functions, where ǫ ∼ 2−λ. We have seen that the best performance that has been
proved so far for existing Σ∆ families is of the type λ−β log λ = e−β(log λ)2 , which falls
far short of any exponential accuracy. This inefficiency could be due to different
reasons:

7The Kolmogorov ǫ-entropy of a compact set A in a metric space X is defined as follows: For a
given ǫ > 0, let Nǫ(A) be the minimal cardinality of an ǫ-net of the set A in X . That is, there is
a discrete subset Aǫ of X with cardinality Nǫ(A) such that the ǫ-neighborhood of Aǫ contains A.
Then, the quantity Hǫ(A) := Hǫ(A, X) := log Nǫ(A) is called the ǫ-entropy of the set A in X .
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1. For a given λ, let Cλ,T ⊂ {0, 1}[−λT,λT ] be the collection of all possible bitstreams
output by the Σ∆ modulator of optimal order, with inputs from Bπ,T (R, [0, 1]).
The cardinality #Cλ,T of this set may be too small to achieve any exponential
accuracy. (For instance, a first order Σ∆ quantizer with constant input can
produce only O(N2) distinct bitstreams of length N .)

2. Consider the set of functions
{

1

λ

∑

n

q(n)ϕ(· − n
λ
) : q ∈ Cλ,T

}

(4.43)

for a given reconstruction filter ϕ. Even if the cardinality of Cλ,T is sufficiently
large, the restrictions to the interval [−T, T ] of functions in the set (4.43) may
not have a sufficiently “uniform” spread in Bπ,T to achieve exponential accuracy.
More importantly, for q ∈ Cλ,T , let Sq be the class of functions in Bπ,T whose
output is the bit sequence q. The partition {Sq}q∈Cλ,T

may itself be “non-
uniform”. (Note, for instance, that the effective quantizer corresponding to N
bits of the output of a first order Σ∆ quantizer with constant input contains
intervals that are as long as 1/N .)

3. Alternatively, even the larger class of functions
{

1

λ

∑

n

q(n)ϕ(· − n
λ
) : q ∈ {0, 1}[−λT,λT ]

}

(4.44)

may be suffering from the same problem as in item 2.

It is an unsolved problem to determine whether exponential decay of error can be
achieved using approximants of the form (4.44). For the constant input case, a step
towards this lower bound is taken by Konyagin [22], who showed by means of a purely

number theoretical construction that it is possible to achieve an O(c−
√
λ) type of error

decay. Next, we present this construction which was kindly communicated to us by
him.

4.2.3 Konyagin’s construction

Theorem 4.8 (Konyagin [22]). For each x ∈ [1
3
, 2

3
], and for each λ > 2, there

exists a sequence qλ,x ∈ {0, 1}Z such that

‖x− 1

λ

∑

n

qλ,x(n)ϕ(· − n
λ
)‖∞ ≤ c1e

−c2
√
λ log λ, (4.45)

where ϕ is such that ϕ̂ is smooth, supported on [−2π, 2π], and equal to 1 on [−π, π].

Proof. For a positive integer, let Sa,m := {n ∈ Z : n ≡ a (mod m)}. It follows
straightforwardly from Poisson’s summation formula that if m ≤ λ

2
, then

1

λ

∑

n∈Sa,m

ϕ(t− n
λ
) =

1

m
(4.46)
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for all t, and all integers a. The construction of qλ,x will be done by finding a disjoint
collection of arithmetic progressions {Sai,mi

} such that mi ≤ λ
2

for all i, and

∣
∣
∣x−

∑

i

1

mi

∣
∣
∣ ≤ c1e

−c2
√
λ log λ. (4.47)

The following is the construction of this collection:
1. Given λ (large), pick a prime number l such that l ≍

√

λ/ log λ. Let r ∼ l/3,
r ≤ l/3, and p1, p2, . . . , pr be the first r primes, where the prime l is excluded. The
prime number theorem gives pr ∼ l

3
log l.

2. Let k, k1, . . . , kr be integers such that ki ≤ pi for every i = 1, . . . , r and r + k ≤ l,
and consider the collection of the following arithmetic progressions:

Si,j,l,pi
:= {n ∈ Z : n ≡ i (mod l), n ≡ j (mod pi)}, (4.48)

for i = 1, . . . , r and j = 1, . . . , ki, and

Sr+i,l = {n ∈ Z : n ≡ r + i (mod l)}, (4.49)

for i = 1, . . . , k. The Chinese remainder theorem implies that Si,j,l,pi
is an arithmetic

progression with difference lpi and also that any two progressions from the union of
the above two collections are disjoint. It is easy to check that lpr ≤ λ/2. Hence, if
qλ,x ∈ {0, 1}Z is such that qλ,x(n) = 1 if and only if n is an element of any of these
progressions, then

1

λ

∑

n

qλ,x(n) =
r∑

i=1

ki
lpi

+
k

l
. (4.50)

3. Any integer A such that
1

3
≤ A

lp1 . . . pr
≤ 2

3
(4.51)

determines k, k1, . . . , kr that satisfy the requirements in item 2 and such that

A

p1 . . . pr
= k +

r∑

i=1

ki
pi
. (4.52)

This is shown as follows. First, define Pi =
∏

j 6=i pj. Note that gcd(P1, . . . , Pr) = 1,
so that there exist integers P ′

1, . . . , P
′
r with P1P

′
1 + . . .+ PrP

′
r = 1. Let ki be defined

by ki = AP ′
i (mod pi) for each i. Hence,

A ≡
r∑

i=1

kiPi (mod p1 . . . pr). (4.53)

Then, k = (A−∑r
i=1 kiPi)/(p1 . . . pr). Now,

r∑

i=1

kiPi ≤
r∑

i=1

p1 . . . pr ≤ rp1 . . . pr ≤
1

3
lp1 . . . pr (4.54)

56



so that k ≥ 0. On the other hand, trivially k ≤ A/(p1 . . . pr) ≤ 2l/3. This ensures
that r + k ≤ l.
4. This reduces the problem to choosing the numbers k, k1, . . . , kr for a given x. We
have just seen that it suffices to choose A while satisfying (4.51). Pick A such that

∣
∣
∣x− A

lp1 . . . pr

∣
∣
∣ ≤ 1

lp1 . . . pr
. (4.55)

Now, using the prime number theorem once again, log(lp1 . . . pr) ∼ pr ≍ l log l ≍√
λ log λ. This concludes the proof.

Remarks:
1. Note that the constants are independent of the value of x.
2. A similar scheme for arbitrary bandlimited functions (instead of constant functions)
is not known.

4.2.4 Democratic Encoding-Decoding

Despite its non-optimal performance of approximation, Σ∆ quantization is being
widely used in applications. One reason for this is the error-robustness of Σ∆ codes
that we shall discuss in this section. There is a built-in redundancy in the collection
of output bitstreams, enabling one to decode corrupted bitstreams with reasonable
errors. For instance, consider N consecutive output bits of the first order Σ∆ modu-
lator with constant input, and assume the value of one of the bits is flipped. Then, for
the simple rectangular averaging, the magnitude of the error will be 1/N , regardless
of which bit is flipped. Note that this error is already comparable to the uncertainty
of the value of input when all N bits are correct. On the other hand, the situation
could be much worse in ordinary binary expansion. If the most significant bit is lost,
this would create an uncertainty of magnitude 1/2. The fact that all bits are treated
equally in the decoding of Σ∆ bitstreams is the basis of the “democracy” concept,
which was first introduced by Calderbank and Daubechies in [23]. They prove that
a “democratic” representation in this sense cannot achieve the optimal exponential
accuracy in the case of encoding numbers in [0, 1]. However, their definition is not
very tight and there are democratic codes which, from other points of view, do not
seem to put equal weight on the bits of representation. In this section, we shall make
an analysis of democracy with a wider set of definitions.

The abstract problem

Let (X, d) be a compact metric space. By an encoder, we mean a mapping

E : X → {0, 1}Z (4.56)

of X to infinite binary sequences8, or more generally, a family {EI}I∈Λ
of mappings,

where
EI : X → {0, 1}I for I ∈ Λ. (4.57)

8Sometimes, the natural domain of the binary sequences will not be Z, but N.
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Here, Λ is a collection of finite intervals in Z and we call any such EI a finite encoder.
We also require Λ to contain a nested infinite collection of intervals whose union is
the whole of Z.

Similarly, a decoder is a mapping

D : {0, 1}Z → X, (4.58)

or more generally a family {DI}I∈Λ
of mappings, where

DI : {0, 1}I → X for I ∈ Λ. (4.59)

For a given encoder EI , it initially suffices to define a decoder only on the range of
EI . However, in order to be able to decode (possibly) corrupted codewords, it may
be desirable that the decoder be defined on larger domains.

Let PI : {0, 1}Z → {0, 1}I be the projection operator defined by restriction to
the index set I. This way, every encoder E : X → {0, 1}Z gives rise to a family of
finite encoders by EI = PIE. For instance, Σ∆ encoders with constant input are of
this type. When only E is given, we will always assume that the finite encoders EI
are obtained in this fashion. Also, when I = {1, . . . , N}, we shall use the shorthand
notations EN and DN .

The accuracy A(EI , DI) of the encoder-decoder pair (EI , DI) is defined to be

A(EI , DI) := sup
x∈X

d(x,DIEI(x)). (4.60)

A natural requirement for an encoder-decoder family {(EI , DI) : I ∈ Λ} is to approx-
imate the points of X with arbitrarily fine accuracy, i.e.,

lim
|I|→∞, I∈Λ

A(EI , DI) = 0. (4.61)

For x ∈ X, its encoding neighborhood VI(x) is defined as

VI(x) := E−1
I EI(x), (4.62)

and for a codeword b ∈ RanEI , we call E−1
I (b) the decoding set of b. Then, to a given

encoder EI , there corresponds an optimal decoder DI,opt : Ran EI → X defined as
follows: DI,opt(b) := x̂ such that

sup
y∈E−1

I
(b)

d(x̂, y) ≤ sup
y∈E−1

I
(b)

d(z, y) for all z ∈ X. (4.63)

Such a point always exists (though it may not be unique) and satisfies

d(x, x̂) ≤ diam(VI(x)) for all x ∈ E−1
I (b). (4.64)

In general, the bound (4.64) cannot be improved. However, if X is a centered space,9

then one can improve on this estimate:

d(x, x̂) ≤ 1

2
diam(VI(x)). (4.65)

9A centered space is a metric space (X, d) such that for every subset A of X , there is a point in
c ∈ X with the property that d(x, c) ≤ 1

2
diam(A) for all x ∈ A (see [20]).
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Note that with our definitions, it is possible that DI,optEI(x) /∈ VI(x), or equivalently,
EIDI,opt(b) 6= b. That is, the optimal reconstruction in the sense of (4.63) may not
be “consistent”. If necessary, one can avoid this inconsistency by forcing x̂ to be in
E−1
I (b), and replacing z ∈ X by z ∈ E−1

I (b) in the minimization condition (4.63).
However, it then becomes possible that no minimizer exists.

For a given decoder DI , it is also possible to define the optimal encoder EI,opt via
Voronoi regions. That is,

E−1
I,opt(b) := {x ∈ X : d(x,DI(b)) ≤ d(x,DI(c)) for all c ∈ {0, 1}I}. (4.66)

Note that the pair (EI,opt, DI) is always consistent, i.e., EI,optDI(b) = b for all b.
If X is also equipped with a probability measure µ, then one can define a µ-

optimum decoder Dµ
I,opt by requiring

∫

X

d(x,Dµ
I,optEI(x)) dµ(x) ≤

∫

X

d(x,DEI(x)) dµ(x) (4.67)

for all D : Ran EI → X. The solution is given by

Dµ
I,opt(b) = arg min

z∈X

∫

E−1
I

(b)

d(y, z) dµ(y). (4.68)

In general Dµ
I,opt 6= DI,opt. However, for the analogous definition of Eµ

I,opt given by

∫

X

d(x,DIE
µ
I,opt(x)) dµ(x) ≤

∫

X

d(x,DIE(x)) dµ(x) (4.69)

for all E : X → {0, 1}I , it is always true that Eµ
I,opt = EI,opt.

Various notions of democracy

The first definition will be that of Calderbank and Daubechies [23]. Their definition
is based on the decoder, and is motivated by the following observation [23] about the
minimal requirements for the possibility of “equally important bits”. For any encoder
EI , one has

sup
dH(b,c)=1

d(DI(b), DI(c)) ≥
1

|I|(diam(X) − 2A(EI , DI)), (4.70)

where dH denotes the Hamming metric on binary sequences and |I| denotes the
cardinality of I. This claim is proved by choosing two points x and y in X with
distance diam(X), and noting that by flipping one bit at most |I| times, one can
transform EI(x) into EI(y). Since d(DIEI(x), DIEI(y)) ≥ diam(X) − 2A(EI , DI),
at least one of the bit flips should correspond to a jump that is bigger than the right
hand side of (4.70). The upper bound for the maximum amount of error that can be
made by flipping one bit can therefore, at best, be C/|I|. This leads to the following
definition:
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Definition 4.9 (Calderbank-Daubechies [23]). A family of maps {DN : {0, 1}N
→ [0, 1]; N = 1, 2, . . .} is called democratic if there exists a constant C, independent
of N , such that

sup
dH(b,c)=1

|DN(b) −DN(c)| ≤ C/N. (4.71)

The following theorem states the impossibility of having democracy and optimal
accuracy simultaneously.

Theorem 4.10 (Calderbank-Daubechies [23]). Suppose {DN : {0, 1}N → [0, 1];
N = 1, 2, . . .} is an optimally accurate family of maps, i.e., for a constant C, inde-
pendent of N , one has

A(EN,opt, DN) ≤ C2−(N+1). (4.72)

Then this family cannot be democratic.

Let us analyze decoders of the type

DN(b1, . . . , bN) =

N∑

n=1

wnbn, bn ∈ {0, 1}. (4.73)

Here, we allow for different weights wn = wNn for each N , but for convenience we
dropped the dependence on N in the notation. For such decoders, it is easy to assess
whether they are democratic. Indeed, a decoder of the type (4.73) is democratic
if and only if the weights wn satisfy |wn| ≤ C/N for all n = 1, . . . , N . The two
decoders that we analyzed for first order Σ∆ quantization with constant input, namely
the rectangular filter decoder and the triangular filter decoder, are thus democratic.
On the other hand, the decoder with wn = 2−n, which corresponds to truncated
binary expansion, is clearly non-democratic since w1 > C/N . However, it is optimally
accurate (with accuracy 2−N). Now, we shall see that it is possible to build democratic
decoders DN : {0, 1}N → [0, 1] with accuracy A(EN,opt, DN) ≤ C2−γN . An example
for γ = 1/2 is the following: Let N = 2M and define DN by

w1 = . . . = wM−1 =
1

M
, and wn =

2−(n−M)

2M
, for n = M, . . . , 2M. (4.74)

It is easy to check that the accuracy of this pair is bounded by 2−M = 2−N/2. On
the other hand, it is democratic according to Definition 4.9, since |wn| ≤ 2/N for all
n = 1, . . . , N . This example can easily be modified to achieve any γ < 1 by choosing
approximately (1−γ)N−1 of the weights to be equal to 1/(1−γ)N and the remaining
γN+1 weights to decrease exponentially from 1/(1−γ)N to 2−γN−1/(1−γ)N . Despite
democracy, these two groups of bits have very different powers of representation.
Clearly, Definition 4.9 is too weak to exclude such anomalies; this suggests we look
for alternative definitions. The definition of democracy that we give below excludes
these possibilities. In order to distinguish this definition from Definition 4.9, we shall
use the terms strong democracy and strongly democratic.

We shall distinguish two problems: First; we have to find a general way of mea-
suring the importance of a given bit that would lead to the definition of a stronger
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notion of democracy. Second; we have to decide whether this should be a property of
the encoder only, of the decoder only, or of the encoder and the decoder combined.

For the first problem, we start with the same intuitive idea as before: If any of the
bits in a codeword is flipped in a democratic encoding scheme, then the error made
by decoding the changed codeword should be the same order of magnitude for all
locations of the bit flips. (It is clear that one can not have exact equality except for
trivial cases.) However, this definition is not complete, for one also has to measure
and compare the effect of changing two, three and more bits at a time.

We define the uncertainty associated to a codeword to be

UI(b) := diam(E−1
I (b)). (4.75)

In the probabilistic model, an average uncertainty may be defined as

Uµ
I (b) := sup

z∈E−1
I

(b)

1

µ(E−1
I (b))

∫

E−1
I

(b)

d(y, z) dµ(y). (4.76)

Let the joint uncertainty associated with a pair of codewords (b, c) be measured by

UI(b, c) := diam(E−1
I (b) ∪ E−1

I (c)). (4.77)

This quantity measures the maximum distance between two points x and y in X such
that EI(x) = b and EI(y) = c. Define for k = 0, 1, . . . , |I|,

M
(k)
I (b) := max {UI(b, c) : c ∈ Ran EI , dH(b, c) = k} (4.78)

and
m

(k)
I (b) := min {UI(b, c) : c ∈ Ran EI , dH(b, c) = k}. (4.79)

In the above definitions, if the set {c ∈ Ran EI : dH(b, c) = k} is empty, then we set

M
(k)
I (b) := m

(k)
I (b) := UI(b). Note that M

(0)
I (b) = m

(0)
I (b) = UI(b).

Definition 4.11. A family {EI}I∈Λ of encoders is said to be strongly democratic if

i) M
(1)
I (b) ≤ c1 m

(1)
I (b), and

ii) M
(k)
I (b) ≤ c2 k M

(1)
I (b),

for all I ∈ Λ and for all b ∈ Ran EI , where all constants involved are independent of
b and I.

We shall also work with the following weaker definition of democracy:

Definition 4.12. For 0 < γ ≤ 1, we say that a family {EI}I∈Λ of encoders is γ-strong
democratic if it satisfies

i′) M
(1)
I (b) ≤ c1 [m

(1)
I (b)]γ

together with property (ii) in Definition 4.11.
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Remarks:
1. Note that 1-strong democracy is strong democracy.
2. The definition of strong (or γ-strong democracy) is entirely based on the encoder.
We say that a family {DI}I∈Λ of decoders is strongly (or γ-strongly) democratic if
the corresponding family {EI,opt}I∈Λ of optimal encoders has this property.

Now, we shall prove the following “near-characterization” of γ-strong democracy
for decoders of the type (4.73):

Theorem 4.13. Let {DN : {0, 1}N → [0, 1]; N = 1, 2, . . .} be a family of decoders
defined by

DN (b) =
N∑

n=1

wN(n)b(n), (4.80)

where we assume that all weights are positive, and

0 ≤ 1 −
N∑

n=1

wN(n) ≤ max
1≤n≤N

wN(n) (4.81)

for all N . Let w∗
N denote the increasing rearrangement of wN , i.e.,

w∗
N(1) ≤ w∗

N(2) ≤ · · · ≤ w∗
N(N). (4.82)

Then,

a) If w∗
N(N) ≤ c [w∗

N(1)]γ, then the family {DN}N≥1 is γ-strong democratic.

b) If the family {DN}N≥1 is γ-strong democratic, then w∗
N(N) ≤ c [w∗

N(2)]γ.

Proof. a) Consider the set of points QN := DN ({0, 1}N). Since

{

w∗
N(1), w∗

N(1) + w∗
N(2), . . . , w∗

N(1) + . . .+ w∗
N(N)

}

⊂ QN , (4.83)

and because of (4.81), the size of the largest interval defined by QN∪{0, 1} is bounded
by w∗

N(N). This implies that

A(EN,opt, DN) ≤ w∗
N(N). (4.84)

Given b ∈ {0, 1}N , let x and y be two points in [0, 1] such that EN,opt(x) = b and
EN,opt(y) = c, where dH(b, c) = 1. Clearly, |DN(b) −DN(c)| ≤ w∗

N(N). Thus,

|x− y| ≤ |x−DN (b)| + |DN(b) −DN(c)| + |DN(c) − y| ≤ 3w∗
N(N), (4.85)

so that M
(1)
N (b) ≤ 3w∗

N(N). On the other hand, it is clear that m
(1)
N (b) ≥ |DN(b) −

DN(c)| ≥ w∗
N(1). Hence M

(1)
N (b) ≤ 3c [m

(1)
N (b)]γ .

For the second property, note that M
(1)
N (b) ≥ w∗

N(N), since one can flip the bit
with the largest weight. On the other hand, for any codeword c with dH(b, c) = k,

one has |DN(b) −DN (c)| ≤ k w∗
N(N), so that M

(k)
N (b) ≤ (k + 2)w∗

N(N) ≤ 3k w∗
N(N).

This proves that {DN}N≥1 is γ-strong democratic.
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b) We take b = (0, . . . , 0), and construct c by flipping only the bit that corresponds to
the weight w∗

N(1). Then, it is easy to see that E−1
N,opt(0) = [0, 1

2
w∗
N(1)], and E−1

N,opt(c) =

[1
2
w∗
N(1), 1

2
w∗
N(1) + 1

2
w∗
N(2)]. Hence m

(1)
N (0) = 1

2
w∗
N(1) + 1

2
w∗
N(2) ≤ w∗

N(2). Since

M
(1)
N (0) ≥ w∗

N(N), our assumption that M
(1)
N (0) ≤ c [m

(1)
N (0)]γ implies w∗

N(N) ≤
c [w∗

N(2)]γ .

Remarks:
1. The binary expansion is not γ-strong democratic for any γ, since w∗

N(N) = 1
2
, and

w∗
N(2) = 2−N+1.

2. The example in (4.74) is not γ-strong democratic for any γ, since w∗
N(N) = 2N−1,

and w∗
N(2) = N−12−N/2+1.

3. More generally, it is easy to show that for a γ-strong democratic family of decoders
as in the above theorem, w∗

N(N) and w∗
N(2) should satisfy the following properties:

(N + 1)−1 ≤ w∗
N(N) ≤ cN−γ, and (4.86)

cN−1/γ ≤ w∗
N(2) ≤ (N − 1)−1. (4.87)

Hence, for this family of decoders, 1-strong democracy implies democracy in the sense
of Definition 4.9.
4. For symmetric weights, the above theorem turns into an “exact characterization”
since then w∗

N(1) = w∗
N(2). An example is the triangular filter decoder defined in

(4.8).
Let us show that first order Σ∆ quantization with constant input is not 1-strong

democratic as a family of mappings {EN : [0, 1] → {0, 1}N ; N = 1, 2, . . .}. This claim
follows from the following observation: Given N , consider the codewords

b = ( 0, . . . , 0
︸ ︷︷ ︸

N times

, 1, 0, . . . , 0
︸ ︷︷ ︸

N − 1

, 1),

c1 = (0, . . . , 0
︸ ︷︷ ︸

N

, 1, 0, . . . , 0
︸ ︷︷ ︸

N − 1

, 0), and

c2 = (0, . . . , 0
︸ ︷︷ ︸

N

, 0, 0, . . . , 0
︸ ︷︷ ︸

N − 1

, 1),

which, from (4.1), are easily seen to be associated to the Farey intervals E−1
N (b) =

[
2

2N+1
, 1
N

)
, E−1

N (c1) =
[

1
N+1

, 2
2N+1

)
, and E−1

N (c2) =
[

1
2N+1

, 1
2N

)
. But then

U2N+1(b, c1) = diam
([ 1

N + 1
,

1

N

))

≍ 1

N2
,

whereas

U2N+1(b, c2) = diam
([ 1

2N + 1
,

1

N

))

≍ 1

N
,

although dH(b, c1) = dH(b, c2) = 1. Thus, the property (i) of Definition 4.11 fails to
hold. However, if we take instead the weaker condition (i′) for γ-strong democracy
with γ = 0.5, then there is no longer any obstruction. To see this, let x and y be in
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[0, 1] such that EN (x) = b, EN(y) = c, where dH(b, c) = 1. Let DN be the rectangular
filter decoder. Then

|x− y| ≤ |x−DN(b)| + |DN(b) −DN(c)| + |DN(b) − y| ≤ 3/N (4.88)

so that M
(1)
N (b) ≤ 3/N . On the other hand, we know that m

(1)
N (b) ≥ 1/N2 since

the shortest Farey interval is of this length. Hence, M
(1)
N (b) ≤ 3 [m

(1)
N (b)]0.5. It

is much harder to check property (ii) required for strong or γ-strong democracy. A

straightforward upper bound forM
(k)
N (b) is 3k/N . However, a lower bound forM

(1)
N (b)

of the order 1/N , which would yield property (ii), is not immediate (if it is valid at
all). The main problem is the lack of a good understanding of the “small” collection
of bitstreams output by the Σ∆ quantizer.

Finally, we would like to give a definition of democracy for a family of encoder-
decoder pairs. We assume that the decoders DI are defined on the whole domain
{0, 1}I . Note that the joint uncertainty for two codewords b, c ∈ Ran EI , as defined
in (4.77), means

UI(b, c) = max
x∈E−1

I
(b)

max
y∈E−1

I
(c)

d(x, y), (4.89)

and is a symmetric function of its arguments. This quantity does not necessarily
measure the error made by confusing the codewords b and c, since a decoder is not
specified and hence the erroneous reconstruction is not known. When both the en-
coder and the decoder are given, we define the quantity ŨI(b 7→ c) to measure the
maximum error that is made by decoding the codeword c instead of b:

ŨI(b 7→ c) := max
x∈E−1

I
(b)

d(x,DI(c)). (4.90)

Then the analogous definitions for the extremal values of this quantity are:

M̃
(k)
I (b) := max

dH(b,c)=k
ŨI(b 7→ c), (4.91)

and
m̃

(k)
I (b) := min

dH(b,c)=k
ŨI(b 7→ c). (4.92)

Definition 4.14. A family {(EI , DI)}I∈Λ of encoder-decoder pairs is said to be jointly
γ-strong democratic if

i) M̃
(1)
I (b) ≤ c1 [m̃

(1)
I (b)]γ, and

ii) M̃
(k)
I (b) ≤ c2 k M̃

(1)
I (b),

for all I ∈ Λ and for all b ∈ Ran EI , where all constants involved are independent of
b and I.

Remarks:
1. It is easy to see that Theorem 4.13 continues to hold in terms of the joint γ-strong
democracy for the family {(EN,opt, DN) : N = 1, 2, . . .} defined by (4.80).
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2. Let EN be the encoder of the first order Σ∆ quantizer, and DN,rect be the rect-
angular filter decoder. Let us show that the family (EN , DN,rect) is jointly 0.5-strong
democratic. First, it easily follows that

M̃
(k)
N (b) ≤ max

x∈E−1
N

(b)
|x−DN,rect(b)| + max

dH(b,c)=k
|DN,rect(b) −DN,rect(c)|

≤ k + 1

N
. (4.93)

On the other hand, clearly m̃
(1)
N (b) ≥ 1

2N2 , since ŨI(b 7→ c) ≥ 1
2
diam(E−1

N (b)) for all

c. This proves property (i) for γ = 0.5. Next, let us see that M̃
(1)
N (b) ≥ 1/N . This is

clear for b = (0, . . . , 0), and b = (1, . . . , 1), so assume b has at least an entry 1 and an
entry 0. Let the two codewords c+ and c− be constructed by flipping any of the 0’s
to 1 and any of the 1’s to 0, respectively. Clearly

DN,rect(c+) − 1

N
= DN,rect(b) = DN,rect(c−) +

1

N
,

so that for any x, at least one of the two quantities |x−DN,rect(c+)| and |x−DN,rect(c−)|
is larger than 1/N . Hence it follows that M̃

(1)
N (b) ≥ 1/N . This implies property (ii).

Let DN,tri be the triangular filter decoder defined by (4.8), where N = 2M − 1.
Let us see that the family (EN , DN,tri) is also jointly 0.5-strong democratic. The proof
that property (i) holds is the same as in the previous case. For the second property,
let us again assume b has at least an entry 1 and an entry 0. Let c1 be the codeword
constructed by flipping the middle bit b(M), and c2 be the codewords constructed by
flipping any of the bits that has the opposite sign of b(M). Since the weight of the
middle bit is 1/M , one has

|DN,tri(c1) −DN,tri(c2)| ≥
1

M
+

1

M2
≥ 2

N
,

so that it is again true that M̃
(1)
N (b) ≥ 1/N .

4.2.5 Robustness

We saw that individual bits of Σ∆ codes share roles that are distributed more evenly
compared to the bits of binary expansion. We analyzed this property within the
framework of “democratic” encoding, but one can also view this property as a certain
type of “robustness” against bitwise errors. In this respect, the problem of democratic
encoding of signals can be viewed as a natural extension of error correcting coding in
which the amount of error in reconstruction (in terms of the metric in the signal space)
is controlled by the amount of error in the codes (in terms of the Hamming distance).
In this section, we shall look at the general problem of “robust encoding” from a
different point of view, and in particular, point out robustness of Σ∆ quantization.
This point of view requires robustness against other sources of error, which are usually
introduced by flawed circuitry in real hardware implementations.
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Figure 4.1: Robust encoding problem.

An analog-to-digital conversion scheme is a (necessarily nonlinear) encoding op-
eration that produces an output stream of bits describing a signal. One has an ideal
system (the encoder) E(·) used to design the circuit, while the actual hardware cir-
cuit can be flawed, resulting in the system Ẽ(·) that approximates the behavior of
E(·) but which makes certain errors. These errors are most of the time “systematic”,
but they can occasionally be random as well. Given the same input, the nonlinear
nature of the system, combined with feedback, can potentially lead, after some time,
to large discrepancies between the internal states of the two systems E(·) and Ẽ(·),
no matter how small the systematic or random errors are. Hence, the circuit produces
extremely “erroneous” bitstreams in Hamming distance. Yet, it is possible that these
erroneous codes are “highly correlated” with the correct codes in certain other senses,
still leading to close approximations. The robust encoding problem is to design an
ideal encoder E(·) for which there exists some decoder robust against certain pertur-
bations of the encoder. Given a robust encoder, the robust decoding problem is to
design a decoder D(·) which produces an adequate reconstruction of the signal from
the digital bitstreams produced by any of the (not precisely known) systems Ẽ(·).
Let us note that in contrast to the problem of democratic encoding, the problem of
robust encoding is now quite different from error correcting coding.

One can formulate the robust encoding problem as the simple block diagram
given in Fig 4.1. We are given a family of encoders FΩ = {Eθ : θ ∈ Ω} where
θ is a (vector) parameter. We may think of these as representing an ideal encoder
with the parameter θ measuring the deviation from ideality of a particular hardware
implementation. The parameter θ is not under any control, except to lie in a fixed
compact set Ω representing the manufacturing tolerances. The decoder’s performance
is to be measured in the worst case against all the allowable encoders. This model
scheme does not include any source of random errors encountered during the execution
of the encoding, just systematic encoding errors embodied in the parameter θ.

Consider the quantization step in first order Σ∆ modulation given by (2.11), but
instead using a quantizer with offset δ. That is,

q(n) = Qδ(u(n− 1) + x(n)), where Qδ(v) =

{
1 if v ≥ 1 − δ,
0 if v < 1 − δ.

(4.94)

Assume also that the initial condition u0 := u(0) is not necessarily 0. In this case, we
can take θ = (u0, δ), but as we show below, the behavior of the system really depends
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only on the single parameter θ̃ = u0 + δ. The behavior of the system with an ideal
quantizer is described by

u(n) − u(n− 1) = x(n) −Q(u(n− 1) + x(n)), n = 0, 1, . . . (4.95)

whereas with the non-ideal quantizer it is

ũ(n) − ũ(n− 1) = x(n) −Qδ(ũ(n− 1) + x(n)), n = 0, 1, . . . (4.96)

The following simple fact, observed in [24], simplifies the robust quantization problem
for this case.

Lemma 4.15. Let x be a fixed input sequence. The output bit sequence q for the non-
ideal first order Σ∆ modulator with initial value ũ(0) = ũ0 and offset δ is identical to
the output bit sequence for the ideal first order Σ∆ modulator with the modified input
value u(0) := ũ0 + δ.

Proof. Since Qδ(·) = Q(·+ δ), on setting u(n) := ũ(n)+ δ, the system (4.96) becomes
equivalent to the system (4.95) with the initial condition u(0) = ũ0 + δ.

Lemma 4.15 shows that studying robustness of a first order Σ∆ modulator against
arbitrary initial value ũ0 and offset error reduces to the special case of studying the
ideal system (4.95) with arbitrary (unknown) initial condition u0. Hence, all of the
uniform, pointwise and mean square error estimates that we gave in Chapters 2, 3, and
4 for the first order Σ∆ modulation are robust against offset error in the quantizer,
since all these estimates are uniform in the initial condition. Let us note that this
reduction is special to first-order Σ∆ modulation. In higher-order schemes the initial
value u0 and offset parameter δ are independent sources of error.

As a comparison, let us look at the effect of quantization offset error in the case
of binary expansion of numbers x ∈ [0, 1]. The recursion is via the doubling map on
the torus, given by

u(n) = 〈2 u(n− 1)〉, n = 1, 2, . . . (4.97)

where u(0) = x, and the bits (b(n))∞n=1 are computed by

b(n) = Q(2 u(n− 1)), (4.98)

where Q(·) is the quantizer Qδ(·) defined in (4.94) for δ = 0. Then clearly, one can
rewrite (4.97) as

u(n) = 2 u(n− 1) − b(n), (4.99)

since b(n) = ⌊2 u(n − 1)⌋. Note that the N -term approximation to x, given by
xN :=

∑N
n=1 2−nb(n), is at most at a distance 2−N from x. Suppose now, that the

offset of the quantizer Qδ is nonzero, producing erroneous bits b̃(n), and erroneous
N -term approximations x̃N :=

∑N
n=1 2−nb̃(n). It is easy to see that for 1/2 − δ ≤

x ≤ 1/2 − δ/2, the first bit b̃(1) is equal to 1, so that x̃N ≥ 1/2, resulting in an
error that is bounded below by δ/2. So, the standard decoder is not robust in the
asymptotic sense. Let us note that regarding quantizer offset error, robust encoding
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and decoding is possible in the case of β-expansions, expansions with respect to a
base β < 2, due to a construction by R. DeVore [25]. The construction achieves its
robustness by exploiting the redundancy in representing numbers in such bases. The
accuracy of this construction is still exponential in the number of bits N , of the form
2−γN for suitable γ > 0.

Certainly, the possible existence of a robust decoder depends on the family of
encoders FΩ considered. For example, in the case of first-order Σ∆ modulation,
Feely and Chua [26] consider encoders FΩ that employ leaky integrators, meaning

u(n) = β u(n− 1) + x(n) − q(n), n = 0, 1, . . . (4.100)

for some β < 1. Their results imply that for constant inputs and optimal decoding,
the mean square error does not go to zero with increasing the number of output bits,
so that a robust decoder does not exist in the asymptotic sense considered here.
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Part II

Functional Space Approach to
Image Compression

69





Chapter 5

Introduction

The second part of this thesis is on the “functional space approach” in the mathemat-
ical modeling of image compression. Only naturally occuring images are of concern
here; compression of cartoons or other man-made graphics is done more efficiently
with methods that will not be discussed here. A natural image is a function with
a continuous domain and a (bounded) continuous range, where the function’s value
at a particular point corresponds to the color (or a color component) of that point.
However, digital images are discrete valued functions defined on rectangular arrays
of picture elements called pixels. The distinction is often suppressed in the mathe-
matical theory, assuming that the discretization, both in space and in amplitude, is
sufficiently fine so that the theory and practice resemble each other well. The mathe-
matical theory of the discrete (digital) setting, as well as the mathematical theory of
the discrepancy between the continuous and discrete descriptions are quite interesting
to study, and involve algebraic elements as well as analysis; concepts like continuity
have to be replaced by more cumbersome and less elegant notions, however. We shall
not concern ourselves with these aspects here.

Certainly, not every function is an image, at least equally likely; otherwise com-
pression would be impossible. For this reason, understanding the space of images is
one of the most important problems of image compression. A typical approach in
this direction is to replace the space of images with a simpler mathematical model
and study the model instead. When the model fails, one tries to fix it by introducing
more complexity. The failure may occur because the simple model space is either too
small or too large. Assuming a large class (such as all square integrable functions) has
the advantage of guaranteeing that algorithms will always work, though suboptimally.
On the other hand, by studying smaller classes (such as the space of piecewise smooth
functions) one may devise more efficient algorithms that would work well most of the
time but that may sometimes fail badly. The trade-offs are not always clear.

Many image models that have been developed have a stochastic content. In such
a model, images are assumed to be the realizations of a random process, where the
source of randomness stems from the very way images are viewed as the combinations
of several objects each of which has a probabilistic description of location, shape, color
and texture. One can add further randomness through environment illumination and
perturbative noise introduced by the capturing devices. Ideally, one should then
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attempt to derive a probability distribution from such a complex model, but this is
too enourmous a task. Instead, one usually performs a leap of faith and assumes one
of the standard probability distributions of statistics. Although modeling images via
this path is not our purpose here, probabilistic models are occasionally helpful, and
we will use them whenever it seems appropriate.

One can also choose to capture the variety and the intrinsic properties of images
by using an entirely deterministic model, provided that it is sufficiently rich. The
model becomes an appropriate subset I of a normed space (X, ‖ · ‖X), where the
norm ‖ · ‖X is used to measure distortion; the set I itself may be described using
much stronger norms, or more complex characterizations. To what extent the norm
‖ · ‖X approximates the distortion in images as perceived by the human visual system
is a separate question that needs to be taken into consideration in practice, but upon
which we will not touch. Rather, we will choose to use the standard Lp norms,
1 ≤ p ≤ ∞, to measure errors. ([27] has a discussion of which Lp norm in particular
is closest to the human visual system’s measure of distorion.)

Note that most existing compression algorithms correspond to a “truncated” basis
expansion; expansions like these are a classical theme of approximation theory, where
the approximant is a linear combination of a finite number of basis functions. In
practice, one solves the approximation problem in two steps which are:

1. the choice of a basis, which may well depend on the target function f to ap-
proximate, and

2. the selection of a finite subset among those basis functions, together with their
coefficients; these will depend on f .

The terms linear approximation and nonlinear approximation are related to how one
makes the choices in 1 and 2 above, and will be explained in Chapter 6. Note that
in the above, one may replace the notion “basis” with a much more general family
of (not necessarily linearly independent) functions that still span I. We will restrict
ourselves to bases here.

From a data compression point of view, the size of the representation is the min-
imum number of bits needed to encode the approximant. This quantity is called the
rate. (This point of view requires that the selection of the coefficients must be made
from a discrete set so that encoding them requires only finitely many bits. This is
referred to as quantization.) Rate is a quantity that is not easy to compute, or even
to estimate. Instead we shall concentrate on estimating a closely related quantity, the
number of parameters of the approximant, to measure the size of the representation;
this is customary in approximation theory and also often done in engineering practice
as a first indication of the true rate. In a basis expansion, this corresponds to the
number of functions employed, without any concern for quantization.

The question of how rate depends on the distortion is the fundamental problem
of information theory, whereas how distortion depends on the number of parameters
is that of approximation theory. Contrary to the first one, the second problem can
often be answered by relating the rate of decay of the approximation error to a
“smoothness” condition. In this respect, the classical smoothness spaces in analysis,
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such as Hölder, Sobolev and more generally Besov spaces arise naturally in the theory.
The correspondence between smoothness and the decay rate of the approximation
error is established most completely using wavelet bases. Apart from being part of
the most successful practical algorithms for image compression, wavelet bases are also
very powerful mathematical tools for precisely the smoothness spaces listed above. A
suitable wavelet basis is an unconditional basis for all these Banach spaces and there
exist corresponding equivalent discrete norms defined on the wavelet coefficients. It
is these norm equivalences that serve as the characterizations of functional spaces in
terms of the decay rates of the approximation errors in Lp norms. Additionally, most
of the simpler toy models for images are already embedded in various Besov spaces.
All of these have formed the basis of the analysis and classification of images in these
spaces. This is studied in more detail in Chapter 6.

The purpose of this part of the thesis is to study the appropriateness of these
spaces and the methods of modeling image compression in this setting. We find that
while this is in general a fruitful approach, it can fail or be misleading in a variety of
cases. We discuss these in Chapter 7, together with a more refined approach.
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Chapter 6

Nonlinear Approximation and
Mathematical Modeling of Image
Compression

In this chapter, we present the theoretical foundations of the functional space ap-
proach to the mathematical modeling of image compression. Along with these, we
review the spaces involved in this approach, which are also fundamental spaces in
approximation theory. Then we present the connections between natural images and
these function spaces.

6.1 Review of Approximation in Wavelet Bases

6.1.1 Linear and Nonlinear Approximation

Basic Definitions

The problems we shall consider in this section lie in the setting of a Banach space
(X, ‖ · ‖X), in which approximations will take place. Assume that X possesses a
(Schauder) basis, and denote it by {xi}∞i=1. The natural projections {Pn}∞n=1 associ-
ated to {xi}∞i=1 are defined by

Pn

( ∞∑

i=1

aixi

)

=
n∑

i=1

aixi. (6.1)

Denote by Xn the linear span of {x1, . . . , xn} (which is also the range of Pn),
and consider the problem of finding the best approximation from Xn to a given
element f of X. Because the Xn are linear spaces, this defines the setting of linear
approximation. Define the corresponding approximation error by

En(f) := dist(f,Xn)X = inf
g∈Xn

‖f − g‖X. (6.2)

This problem is trivial to solve in the case X is a Hilbert space and {xi}∞i=1 is an
orthonormal basis of X, due to Parseval’s formula: Pn(f) is the best linear approx-
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imant. In the case of a Banach space, it is also easy if one is interested only in
near-best approximants fn, 1 ≤ n ≤ ∞, defined by

‖f − fn‖ ≤ C En(f), (6.3)

for some constant C. In this case, the natural choice fn := Pn(f) would suffice.
Indeed, for any g ∈ Xn, Pn(g) = g and thus

‖f − Pn(f)‖X ≤ ‖f − g‖X + ‖Pn(g − f)‖X , (6.4)

which, upon taking the infimum over g ∈ Xn yields (6.3) with

C = 1 + sup
n

‖Pn‖. (6.5)

(supn ‖Pn‖ is always finite and is called the basis constant of {xi}∞i=1.) Similarly, any
sequence of uniformly bounded projection operators Qn : X → Xn would result in
near-best linear approximation operators.

In contrast to approximations from Xn, an arbitrary n-term approximation comes
from the nonlinear set Σn defined by

Σn :=

{
∑

λ∈Λ

aλxλ : #Λ ≤ n

}

; (6.6)

hence the name nonlinear approximation follows. The error of the best n-term ap-
proximation is given similarly by

σn(f) := inf
g∈Σn

‖f − g‖X . (6.7)

When X is a Hilbert space and {xi}∞i=1 is an orthonormal basis of X, the so-
lution of the best nonlinear approximation in the above sense is again easy. Given
f =

∑

i aixi, it suffices to order {ai} in decreasing magnitude, forming a rearranged

sequence {aµ(i)}, and set the n-term approximant to be simply
n∑

i=1

aµ(i)xµ(i). However,

in arbitrary Banach spaces, even near-best solutions are not easy to find. (The def-
inition of a near-best nonlinear approximant is the same as in (6.3) except that Xn

and En(f) are replaced by Σn and σn(f), respectively.)

Although the usage of the terms “linear” and “non-linear” gives a first impression
that these two methods of approximation are mutually exclusive, it is clear from the
definitions that nonlinear approximation is truly a superset of linear approximation.
The solutions to both problems are trivial in a Hilbert space, and a practician in data
compression would immediately consider the nonlinear approximation approach for
its generality. The price paid is that given a function f in X, all the coefficients of its
expansion in the orthonormal basis {xi}∞i=1 have to be computed to find the n largest
contributions. This is a task that can be carried out when X is finite dimensional, as
in the case of digitized images.
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The generality of nonlinear approximation does not come for free; the necessity
of having to specify which basis elements are chosen for a given function introduces
an indexing overhead. For arbitrary functions in X, the indices of the selected ba-
sis elements (or at least their statistical distributions) can be quite general. When
the functions of interest come from a smaller subspace Y of X, there may be more
structure in the typical selected index set, and thus it may be thought that a natural
ordering of basis elements may lead to near-best solutions of the nonlinear approxi-
mation problem. As we will point out later, this assumption is not justified in many
cases; nevertheless, this approach is taken in the practical image compression algo-
rithm JPEG, where a particular ordering is employed for the discrete cosine basis.

Approximation Spaces

Our aim is not only to find the best (or near-best) approximants fn for a given element
f in X, but also to know the rate of approximation as n goes to infinity. Before we
move on to more concrete examples in the following subsections, let us continue with
the abstract definition of an approximation space.

Suppose (Sn) is an increasing sequence of subspaces of X such that
⋃
Sn is dense

in X (as in the case of (Xn) or (Σn)). Then, it is natural to consider the class of
elements in X that have a given rate of error of approximation from (Sn). For any
α > 0, let

Aα := Aα(X, (Sn)) := {f ∈ X : dist(f, Sn)X = O(n−α)}. (6.8)

Under some technical (but essential) conditions1 on the spaces (Sn), which are already
satisfied by both of the families (Xn) and (Σn), it is easy to show that Aα is a linear
subspace of X and the quantity

|f |Aα := sup
n≥1

nα dist(f, Sn)X (6.9)

defines a semi-norm on Aα.
Although the definition of Aα has the generality we looked for in the beginning,

a finer scale of intermediate spaces Aα
q is employed for a more complete description.

This is done with the addition of the secondary parameter 1 ≤ q ≤ ∞ and via the
semi-norm defined by

|f |Aα
q

:= ‖(2nαdist(f, S2n)X)n≥0‖lq . (6.10)

(Note that Aα
q ⊂ Aβ

p if α > β, regardless of q and p, and Aα
q ⊂ Aα

p if q < p. Note
also that Aα = Aα

∞.) The exact characterizations of these spaces in some concrete
settings will be given in the next subsection, when we discuss Besov spaces and wavelet
approximations.

1Two important conditions are: (i) aSn = Sn for all a 6= 0, (ii) Sn + Sn ⊂ Scn for some integer
constant c ≥ 1. See [10, pp. 234] for the details.
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An important feature of the Aα
q family is that these spaces can be realized as

interpolation spaces between X and a continuously embedded dense subspace (Y, |·|Y )
whenever the so-called Jackson and Bernstein inequalities are valid for the pair (X, Y )
with respect to the family (Sn). A Jackson type inequality (or a direct estimate) is
said to hold if for some r > 0,

dist(f, Sn)X ≤ C n−r|f |Y , (6.11)

for all f ∈ Y and n ≥ 1. (Note that this holds automatically for the Aα
q spaces

with r = α.) A Bernstein inequality (or an inverse estimate) controls how fast the
semi-norms of elements of Sn grow in Y ; it states that

|g|Y ≤ C nr‖g‖X , (6.12)

for all n ≥ 1 and g ∈ Sn. For such a pair (X, Y ), it turns out that the real method
of interpolation produces precisely the Aα

q spaces:

[X, Y ]α/r,q = Aα
q , for 0 < α < r, and all q. (6.13)

(See [10, pp. 235] for a proof of this result.)

6.1.2 Approximation in Lp: Wavelet Bases, Unconditionality
and Besov Spaces

In this subsection, we review the approximation theory of functional spaces in wavelet
bases, considering both linear and nonlinear approximations. The underlying space
X is a space of functions with domain either Rd or [0, 1]d. We measure errors in Lp

norms. Thus, we will be concerned with subspaces of Lp(Rd) or Lp([0, 1]d).
A short summary of the main results of multiresolution analysis and wavelet de-

compositions is given in the Appendix. We set ourselves in the biorthogonal case and
employ biorthogonal, compactly supported wavelets with arbitrary smoothness and
vanishing moments. We shall establish the Jackson and Bernstein inequalities with
respect to the multiresolution analysis generated by the associated scaling function.
This will lead to a characterization of the corresponding linear and nonlinear approx-
imation spaces in terms of the classical smoothness spaces. Our exposition will follow
DeVore [28] and Cohen [29] closely.

Linear Approximation in Wavelet Bases

Here we study the linear approximation spaces with respect to the family {Vj}j≥0.
The first ingredient is an Lp-stability result for the projection operators PVj

, stating

‖PVj
f‖Lp ≤ C ‖f‖Lp, (6.14)

uniformly in j. With the same reasoning used in (6.4), this implies that

‖f −PVj
f‖Lp ≍ dist(f, Vj)Lp. (6.15)
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(Here the notation F ≍ G denotes equivalance of the quantities F and G: there
are two absolute constants C1 and C2 such that C1F ≤ G ≤ C2F , uniformly in all
the variables in consideration, unless stated otherwise.) The second ingredient is a
result from approximation theory stating that, for any function f in the Sobolev space
W r,p(I), where I is a cube of sidelength h, there is a polynomial p of degree at most
r − 1 such that

‖f − p‖Lp(I) ≤ C hr |f |W r,p(I) (6.16)

for a constant C = C(r, p, d). The spaces Vj contain polynomials up to degree r − 1
when the mother wavelet ψ has vanishing moments up to order r− 1. This, together
with the above approximation result, the locality of the basis functions and the Lp-
stability of the projectors PVj

results in the following Jackson inequality:

‖f − PVj
f‖Lp ≤ C 2−jr |f |W r,p. (6.17)

The corresponding Bernstein inequality, on the other hand, is merely a conse-
quence of the locality and the Lp-stability of the decompositions.2 With ϕ ∈ W r,p,
the inverse estimate is

|f |W r,p ≤ C 2jr ‖f‖Lp, (6.18)

for all f ∈ Vj.
It remains to apply the characterization result stated in §6.1.1 for Aα

q spaces. By
setting X = Lp, Y = W r,p, and S2j = Vj, it follows that

Aα
q (L

p, (Sn)) = [Lp,W r,p]α/r,q. (6.19)

This result characterizes the approximation spaces with respect to the family {Vj}j≥0

in terms of interpolation spaces between some of the classical spaces in analysis. It
is also a classical result in interpolation theory that [Lp,W r,p]α/r,q = Bα

p,q, namely the
Besov space with α order of smoothness in Lp with “fine adjustment parameter” q.
Hence, (6.19) turns into the following characterization:

{f ∈ Lp : (2jαdist(f, Vj)Lp)j≥0 ∈ lq} = Bα
p,q. (6.20)

Besov spaces have originally been defined in terms of Lp-moduli of smoothness, as
we will describe in the next section when we discuss other properties of these spaces
relevant to natural images. Let us mention also that by using the discrete Hardy
inequalities (see, e.g. [10]), it follows that

‖f‖Lp + ‖(2jα‖f − PVj
f‖Lp)j≥0‖lq ≍ ‖f‖Lp + ‖(2jα‖PWj

f‖Lp)j≥0‖lq , (6.21)

which yields a characterization of ‖f‖Bα
p,q

in terms of the wavelet coefficients: If

f =
∑

λ∈Γ0

cλϕλ +
∑

j≥0

∑

λ∈Λj

dλψλ, (6.22)

2For any f =
∑

cλϕλ ∈ Vj , this means ‖f‖Lp ≍ ‖(cλ)‖lp , assuming ϕλ are normalized in Lp.
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is the wavelet decomposition of f , then

‖f‖Bα
p,q

≍ ‖f‖Aα
q (Lp) (6.23)

≍ ‖(cλ)λ∈Γ0‖lp + ‖(2jα‖(dλ)λ∈Λj
‖lp)j≥0‖lq , (6.24)

where we have assumed that the wavelets and the scaling functions were normalized
in Lp. If an L2-normalization is employed, then (6.24) becomes

‖f‖Bα
p,q

≍ ‖(cλ)λ∈Γ0‖lp + ‖(2jα2jd(1/2−1/p)‖(dλ)λ∈Λj
‖lp)j≥0‖lq . (6.25)

This norm equivalence has another important implication: it states that the
wavelet bases that we considered are unconditional bases for these Besov spaces.
An unconditional basis in a Banach space X is a Schauder basis {xi} such that for
every x ∈ X, the series expansion x =

∑

i

aixi converges unconditionally, that is,
∑

i

aσ(i)xσ(i) converges for every permutation σ of the indices. This is also equivalent

to the convergence of
∑

i

ǫiaixi for every choice of signs ǫi = ±1. The unconditional-

ity of wavelet bases just follows from the fact that the right hand side of the norm
equivalence (6.24) is a function of the absolute values of the coefficients only.

Nonlinear Approximation in Wavelet Bases

The above norm equivalences also serve to characterize the nonlinear approximation
spaces in wavelet bases. Perhaps the most important case is approximation in L2.
We first derive the Jackson and Bernstein inequalities for this case. We also assume
that the wavelet basis is orthonormal.

The specific Besov spaces Br
τ,τ where 1/τ = 1/2 + r/d arise naturally in this

setting. For this index combination, the norm equivalence (6.25) reduces to

‖f‖Br
τ,τ

≍ ‖(cλ)λ∈Λ‖lτ , (6.26)

where Λ denotes the set of indices of all the coefficients in the expansion.
As we pointed out in §6.1.1, the best n− term nonlinear approximant fn ∈ Σn in

the L2-norm is given by

fn =
∑

γ∈Υn

cγψγ =
n∑

k=1

cγk
ψγk

, (6.27)

where Υn = {γ1, . . . , γn} is defined to be the set of the indices of the n largest
coefficients. The sequence (cλ)λ∈Λ is in lτ , hence in weak-lτ .3 Thus,

k1/τ |cγk
| = #{λ : |cλ| ≥ |cγk

|}1/τ |cγk
| (6.28)

≤ ‖(cλ)λ∈Λ‖lτ ; (6.29)
3The weak-lq space is defined to be the space of all sequences (xn) satisfying:

sup
M>0

#{n : |xn| ≥ M}1/qM < ∞.

The space lq is trivially embedded in weak-lq, with the lq norm bounding the above quantity.
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which implies, together with (6.26), the estimate

|cγk
| ≤ C k−1/τ‖f‖Br

τ,τ
. (6.30)

Thus, the accuracy of n-term nonlinear approximation is estimated by

‖f − fn‖L2 =

( ∞∑

k=n+1

|cγk
|2
)1/2

(6.31)

≤ C n−1/τ+1/2‖f‖Br
τ,τ
, (6.32)

resulting in the Jackson inequality with respect to the family {Σn}:

dist(f,Σn)L2 ≤ C n−r/d‖f‖Br
τ,τ
. (6.33)

The inverse estimate is also easily obtained from (6.26). Let f =
∑

λ∈Λ cλψλ be
in Σn. Then, since there are only n non-zero elements in (cλ)λ∈Λ, we have ‖(cλ)‖lτ ≤
n1/τ−1/2‖(cλ)‖l2, by Hölder’s inequality. Hence, it follows that

‖f‖Br
τ,τ

≤ C nr/d‖f‖L2 for all f ∈ Σn. (6.34)

As a result, the nonlinear approximation spaces Aα
q (L

2, (Σn)) are given by

Aα
q (L

2, (Σn)) = [L2, Br
τ,τ ]αd/r,q. (6.35)

The norm equivalence (6.26) indicates that the space Br
τ,τ for 1/τ = 1/2 + r/d is

isometric to lτ . Hence, the interpolation space given in the right hand side of (6.35)
is just [l2, lτ ]αd/r,q = ls,q, a Lorentz space. Here, 1

s
= 1

2
(1 − αd/r) + 1

τ
(αd/r). If we

restrict ourselves to the case q = s, then ls,s = ls ∼ Bαd
s,s, since then the relation

1/s = 1/2 + α holds. Hence, the approximation space is again a Besov space and
(6.35) turns into

{f ∈ L2 : (2nαdist(f,Σ2n))n≥0 ∈ ls, 1/s = 1/2 + α} = Bαd
s,s. (6.36)

Characterization of the nonlinear approximation spaces in Lp is somewhat harder.
Interestingly, it turns out that (see [30]), a near-best n-term nonlinear approximant
for f =

∑

λ∈Λ

cλψλ can be found by selecting the indices with the n largest contributions

of ‖cλψλ‖Lp. The approximation spaces are then given by

Aα
q (L

p, (Σn)) = [Lp, Br
τ,τ ]αd/r,q. (6.37)

Similar to the L2 case, there is a particular value of q (satisfying 1/q = 1/p + α) for
which the interpolation space on the right hand side of (6.37) is a Besov space.

Let us now make an efficiency comparison of linear and nonlinear approximation.
Here, by efficiency, we understand the amount of smoothness required for a given
rate of approximation. For simplicity, let us place ourselves in the setting of X =
L2([0, 1]d). In this case, a linear approximant from Vj employs N = dim(Vj) ≍ 2jd

80



L NL

Br
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1/p

1/q = 1/p + r/d

Figure 6.1: Graphical interpretation of linear and nonlinear approximation.

basis functions. Then, (6.20) says that for the linear approximant to achieve an
accuracy of N−α/d, the target function should (roughly4) have α derivatives in L2. On
the other hand, (6.35) states that anN -term nonlinear approximant achieves the same
accuracy when the target function has α derivatives in Ls, where 1/s = 1/2 + α/d,
which is a weaker condition. The situation is usually illustrated with the functional
space plot of Figure 6.1, in which spaces correspond to points in the the plane. The
generic condition of “r derivatives in Lp” (including the spaces W r,p and Br

p,q with
arbitrary q) is represented by the point with the coordinates (1/p, r). Then, the two
lines denoted by L and NL mark the spaces characterized by the same rate of linear
and nonlinear approximation, respectively.

6.2 Embedding Images into Function Spaces

In this section, we look more closely at the various function spaces that have occured
as approximation spaces in the previous section and study other properties of these
spaces that make them relevant in modeling natural images. We also consider the
space BV of functions of bounded variation and a stochastic function space proposed
by Cohen and d’Ales as a toy model.

4Here, we shall ignore the third parameter of Besov spaces, which is insignificant for the purpose
of discussion.
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6.2.1 Piecewise Smooth Functions

The whole motivation of this model is the existence of edges in images, which separate
objects of different colors. By smooth, we mean Cα for some α > 1. More precisely,
consider a partition Ω1 ∪ . . . ∪ΩM of the unit square into domains with smooth (say
C2) boundaries and finite perimeters such that the image f : [0, 1]2 → [0, 1] is Cα on
every Ωi.

Note that this model immediately neglects the texture in an image, which would
not fit in a Cα setting. Similarly, noisy images are not considered, either. Images
that contain objects with very jaggy boundaries are also excluded from this model.

Two approaches can be taken in the analysis of the rate of approximation in this
space. The first approach considers the smallest Besov space that contains the class
of piecewise smooth functions with the given regularity and then directly borrows the
approximation result for this space. We will do this in §6.2.2. A second approach
is more direct, which involves estimating the size of the wavelet coefficients at each
level and position, depending on whether the support of the wavelet hits an edge or
not. Let us sketch this second analysis:

Let the support of the compactly supported mother wavelet ψ be I. Then the
support Ij,k of a given wavelet ψj,k is the set 2−j(I + k). If Ij,k intersects an edge, let
us call this a “type-I” coefficient. For the size |cj,k| of a type-I coefficient, one cannot
hope to get an estimate that is better than the trivial estimate:

|cj,k| = |〈f, ψj,k〉| ≤ ‖f‖L∞‖ψj,k‖L1 ≤ C 2−j. (6.38)

For any level j, there can be at most O(2j) type-I coefficients, since the 2−jdiam(I)-
neighborhood of the set of domain boundaries contains only this many dyadic squares
at this level. Thus, the total L2 contribution of these coefficients is bounded by
C 2−j/2.

Each of the remaining wavelets will be supported fully in the interior of some
domain Ωi. These define the “type-II” coefficients. We assume that ψ has vanishing
moments up to order ⌊α⌋. On each Ij,k, consider a polynomial P of degree ≤ ⌊α⌋
such that |f(x) − P (x)| ≤ ‖f‖Cα|x− x0|α for some x0 ∈ Ij,k. Since 〈ψj,k, P 〉 = 0, the
size |cj,k| of a type-II coefficient is easily estimated by

|cj,k| ≤ ‖(f − P )χ
Ij,k

‖L∞‖ψj,k‖L1 ≤ C 2−j(α+1). (6.39)

Hence, at level j, these coefficients contribute at most 2−jα to the L2 norm. Then it
follows that

‖f − PVj
f‖L2 ≤ C

(
∑

l>j

(2−l + 2−2lα)

)1/2

≤ C 2−j/2, (6.40)

where we have assumed that α ≥ 1/2. This is the error decay of linear approximation.
Noting that 22j coefficients have been used in this representation, it follows that the
linear approximation error EN(f) decays as N−1/4 in the number of basis functions
employed in the representation.
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Estimates (6.38) and (6.39) also serve to bound the nonlinear approximation error
through a weak-type estimate as follows: Given an ǫ > 0 threshold, let Nǫ be the
number of coefficients of absolute value larger than ǫ. Hence,

Nǫ ≤ #{(j, k) : cj,k is type-I and ǫ ≤ C 2−j}
+ #{(j, k) : cj,k is type-II and ǫ ≤ C 2−j(α+1)}

≤
∑

2l≤Cǫ−1

C 2l +
∑

2l(α+1)≤Cǫ−1

22l

≤ C (ǫ−1 + ǫ−2/(α+1)). (6.41)

which is dominated by C ǫ−1 if α ≥ 1. On the other hand,

σNǫ
(f) ≤ C




∑

2l>Cǫ−1

2−l +
∑

2l(α+1)>Cǫ−1

2−2lα





1/2

≤ C (ǫ+ ǫ2α/(α+1))1/2

≤ C N−1/2
ǫ . (6.42)

This shows that nonlinear approximation is superior to linear approximation, im-
proving the exponent by 1/4. Clearly, this was due to the sparse distribution of the
large coefficients in the wavelet expansion. Note that the smoothness of f did not
really matter much, as long as α was greater than 1. This is really the nature of the
things with this space; it is possible to improve the exponent 1/2 to 1 by more general
approximation schemes, such as adaptive triangulations of the domains Ωi.

5 Note also
that this kind of limitation for the rate of approximation in a wavelet basis is typical
for two dimensions. In one dimension, the situation is much different. We can repeat
the same calculation we did above, however with the fundamental difference that the
number of type-I coefficients is now bounded by a uniform constant C for all levels. It
would then follow that En(f) is still limited (however to O(n−1/2) this time), whereas
σn(f) can be bounded by O(n−α). Hence, for one dimensional piecewise smooth tar-
get functions, the performances of linear and nonlinear approximation diverge further
apart.

6.2.2 Besov Spaces and BV

There are a number of equivalent ways of defining Besov spaces. The original defini-
tion is via moduli of smoothness; however, equivalent characterizations by means of
interpolation theory, Littlewood-Paley decompositions, or approximation spaces also
exist. We already borrowed some of these characterizations without really worrying
about the original definition of Besov spaces.

In terms of their definitions, Besov spaces are closest to the generalized Lipschitz
spaces Lip∗(α, Lp), but with an extra parameter q to refine these spaces further. Let

5But not more, based on the Kolmogorov entropy of the unit ball of this space. Recently, Candès
and Donoho showed that their curvelet expansion gets very close this asymptotic lower bound, losing
only a logarithmic factor [31].
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us recall the definition of the Lp modulus of smoothness of a multivariate function
defined on a domain Ω ⊂ Rd. Let ∆h be the forward difference operator with step
h ∈ Rd, i.e., ∆hf(x) = f(x+ h) − f(x) and ∆r

h be the rth power of this operator for
integers r ≥ 1.6 The rth order Lp modulus of smoothness of a function f is defined
by

ωr(f, t)p := sup
|h|≤t

‖∆r
hf‖Lp. (6.43)

Note that for r = 1 and p = ∞, this definition reduces to the standard definition
of modulus of continuity, except that in addition, one also assumes f is uniformly
continuous. Let r = ⌊α⌋+1. Then, the space Lip∗(α, Lp) is defined to be all functions
f ∈ Lp satistying ωr(f, t)p ≤Mtα, and with its seminorm being the smallest such M .
In similarity with this definition, the Besov space Bα

p,q is defined to be the space of
all functions f ∈ Lp such that

|f |Bα
p,q

:=

(∫ ∞

0

[t−αωr(f, t)p]
q dt

t

)1/q

<∞. (6.44)

The Besov norm is given by ‖f‖Lp + |f |Bα
p,q

. By definition, Bα
p,∞ := Lip∗(α, Lp). Let

us note that when α is not an integer, Bα
p,p turns out to be identical to the fractional

Sobolev space W α,p.
Besov spaces may easily contain discontinuous functions even for large values of

the smoothness parameter α. A classical example is a piecewise smooth function.
Consider a function f defined on [−1, 1] having a single jump discontinuity at the
origin and being Cα otherwise. Then for small t, ωr(f, t)p can be estimated by

(|O(tα)|p +O(r)t)1/p = O(tmin(α,1/p)). This implies that f ∈ Bα
1/α,∞ and f ∈ Bα′

p,q for

all α′ < min(α, 1/p) and all q; that is, f preserves its α order of smoothness provided
that the smoothness is measured in a sufficiently large Lp space. (Besov spaces are
defined by the same expression also for p < 1, except that they are only quasi-normed
spaces for this range.) In particular, f is in Bα′

τ,τ , with 1/τ = α′ + 1/2, for all α′ < α,

implying that sup{α′ : σn(f)L2 = O(n−α′

)} = α. While these arguments do not
immediately say that σn(f)L2 = O(n−α), we know that this error estimate holds for
the class of piecewise smooth functions, as we discussed in §6.2.1. Let us also note that
the space Aα

∞(L2, (Σn)), which is characterized by the property σn(f)L2 = O(n−α),
fails to be a Besov space.

We had seen in §6.2.1 that in two dimension, things were not as impressive. Let f
be piecewise smooth on a domain in R2. Then, one still has ωr(f, t)p = O(tmin(α,1/p)),
however, for f to belong to the Besov space Bµ

τ,τ with 1/τ = µ/2+1/2, the condition
τ < 1/µ immediately implies that µ < 1. Hence, it follows that σn(f)L2 can only be
bounded by O(n−1/2), and not better, again verifying the result that was found in
§6.2.1 directly by arguments on the size of the coefficients.

Another important space in connection with these classes is the space BV of
functions of bounded variation. Apart from its classical definition on the real line,
the space BV has a number of different but coinciding definitions on a general domain

6A technical assumption regarding bounded domains is the following: ∆r
hf(x) := 0 whenever any

of x, x + h, . . . , x + rh is not in Ω.
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in Rd. We are interested in two of these definitions. The first definition identifies BV
with the space Lip(1, L1), that is, the class of functions whose L1 moduli of continuity
ω1(f, t)1 behave as O(t). It immediately follows from this definition that piecewise
smooth functions belong to BV. On the other hand, Lip(1, L1) does not belong to the
family of Besov spaces. However, the following holds:

B1
1,1 ⊂ BV = Lip(1, L1) ⊂ Lip∗(1, L1) = B1

1,∞. (6.45)

This already leads to comparative error decays for linear and nonlinear approximation
of functions in BV. In the special case of BV([0, 1]2), it is shown in [32] that actually
BV ⊂ B1,w

1,1 , where the latter space is by definition characterized by requiring wavelet
coefficients to be in weak-l1. (For B1

1,1, wavelet coefficients are precisely in l1, as we
stated in 6.1.2.) This result is stronger than (6.45).

The second (and more familiar) definition sets BV to be the class of functions in
L1 whose distributional derivatives are Radon measures. (It is known that these two
definitions are equivalent for a wide class of domains Ω ⊂ Rd.) The relevance of this
definition to images may be explained using the co-area formula for BV functions
[33]. The co-area formula, when stated for Lipschitz functions, is the following: If
f : Rd → R is a Lipschitz mapping, then

∫

Rd

|Df | dx =

∫ ∞

−∞
Hd−1({x : f(x) = t}) dt, (6.46)

where Hd−1 denotes the d−1 dimensional Hausdorff measure on Rd. For BV functions,
a similar result holds with the modifications thatDf is now a Radon measure and thus
the left hand side is replaced by |f |BV , and {x : f(x) = t} is replaced by the (measure
theoretic) boundary of {x : f(x) > t} (see [33] for a precise statement of this.) Thus,
it follows that a BV image will have contours of finite length. In particular, for the
piecewise smooth model, the edges must have finite lengths. Quoting [33, pp. 209],
a BV function is “measure theoretically piecewise continuous” with “jumps along a
measure theoretically C1 surface (curve for d = 2)”. This approximation can be used
to justify a BV model for images. However, due to the above corollary of the co-area
formula, this model would exclude the possibility of fractal objects in an image such
as clouds, which are occasionally modeled as having fractal boundaries. We leave
further discussion of this to the next chapter.

6.2.3 Stochastic Setting: Model of Cohen and d’Ales

As we mentioned in the Introduction, it is customary to view images as realizations of
a random process. Many models have been proposed in the image processing literature
to model the statistics of image pixel intensities and the expansion coefficients in
wavelet as well as trigonometric bases. In contrast to these traditional approaches, a
stochastic function space model was proposed recently by Cohen and d’Ales in [34].
The model is a one dimensional process f(t) defined on [0, 1], and is described by the
following ingredients: 0 = d0 < d1 < . . . < dL < dL+1 = 1 are a random number of
points obtained by a Poisson process (of intensity µ), at which discontinuities are to
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be placed. On each interval [di, di+1], f(t) is the realization of a zero mean stationary
process X(t) whose autocorrelation function rX(t) is assumed to be Cα for α > 3/2.
The following are proved in their paper regarding the performances of linear and
nonlinear approximation in trigonometric and wavelet bases:

• For linear approximation, the performances of both the trigonometric basis and
a sufficiently regular wavelet basis are equivalent to the optimal performance
given by the Karhunen-Loeve basis. All of these methods result in

E[En(f)2
L2 ] ≍ n−1. (6.47)

The poor performance of the Karhunen-Loeve basis follows mainly as a con-
sequence of the low regularity of the global autocorrelation function rf(t) =
e−µ|t|rX(t).

• On the other hand, the wavelet basis outperforms the trigonometric basis by
a large margin in nonlinear approximation. For the trigonometric basis, one
still has E[σn(f)2

L2] ≍ n−1, whereas nonlinear approximation in a wavelet basis
results in an O(n−α) bound for this quantity.

In this section, we would like to point out a few facts regarding the almost sure
regularity implied by this model; we shall provide the deterministic function spaces
in which almost every realization of this process lies. In particular, this leads to
estimates for the error decay rate that hold almost surely.

We consider the stationary stochastic process X(t) defined on [0, 1] whose auto-
correlation function rX(t) is Cα. Then, in particular, there exists a polynomial of
degree ⌊α⌋ such that

|rX(t) − P (t)| ≤ C|t|α (6.48)

for all t. It follows that, for any integer k > α,

E[|∆k
hX(t)|2] =

k∑

i=0

k∑

j=0

(−1)i+j
(
k

i

)(
k

j

)

E[X(t+ ih)X(t+ jh)]

=

k∑

i=0

k∑

j=0

(−1)i+j
(
k

i

)(
k

j

)

(rX(ih− jh) − P (ih− jh))

≤ C|h|α (6.49)

for all t. We have here made use of the fact that
∑k

j=0(−1)j
(
k
j

)
P (ih − jh) =

∆k
−hP (ih) = 0 for every i. By integrating (6.49) with respect to t, and applying

Fubini’s theorem, we get
E[‖∆k

hX(·)‖2
L2] ≤ C|h|α. (6.50)

Yet another application of Fubini leads to

E

[∫ 1

−1

[|h|−θ‖∆k
hX(·)‖L2]2

dh

|h|

]

<∞ (6.51)
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for every θ < α/2. At this point we note the following equivalence for Besov norms

∫ 1

−1

[|h|−θ‖∆k
hX(·)‖L2]2

dh

|h| ≍
∫ 1

0

[h−θωk(X, h)2]
2dh

h
, (6.52)

which is a consequence of ωr(f, t)p ≍ 1
t

∫ t

0
‖∆r

sf‖Lpds (where the latter quantity is
called an averaged modulus of smoothness), and Hardy’s inequalities [10]. Thus,

E[‖X‖2
Bθ

2,2
] <∞ (6.53)

for every θ < α/2. Certainly, this implies that ‖X‖Bθ
2,2

< ∞ except maybe for a

measure zero event Eθ. Choose any sequence {θi}∞i=1 that converges to α/2 from
below. It is true that X ∈

⋂
Bθi

2,2, except maybe for the event
⋃
Eθi

, which is still
measure zero. Because of the nestedness of Besov spaces in the smoothness index, it
follows that

X ∈
⋂

θ<α
2

Bθ
2,2 almost surely. (6.54)

Let us note that our approach to derive (6.53) was direct in the sense that we used
Besov norms only in their original definitions. However, by estimating the expected
value of the squares of the wavelet coefficients (E[|cj,k|2] ≤ C 2−(α+1)j as given in [34]),
and using the wavelet characterization of Besov norms, the same result can also be
derived indirectly.

We now know that almost surely, the realizations of the piecewise smooth model
of Cohen and d’Ales are functions that are piecewise Bθ

2,2 for any θ < α/2. The error
decay rate of the wavelet expansion for such a function can be estimated similar to the
way it was done in §6.2.1 and §6.2.2 for piecewise Cα functions. For instance, it easily
follows that for p ≤ 2, one has ωr(f, t)p = O(tmin(θ,1/p)). Thus, σn(f)L2 = O(n−θ),
which means that almost surely, realizations can be approximated at a rate arbitrary
close to the rate of the expected error.
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Chapter 7

Studying Images in Besov Spaces:
How reliable?

In Chapter 6 we showed, using various characterization results for linear and nonlinear
approximation by wavelet bases, that smoothness spaces, in particular the family
of Besov spaces, form a potentially convenient setting for studying the accuracy of
image compression algorithms and for modeling and classifying natural images; this
approach was originally proposed in [27]. In this chapter, we shall carry out a “case
study” to test the reliability of this approach. We will start with a discussion of
measuring the (Besov) smoothness of images, and then analyze some instances in
which this analysis leads to wrong, misleading, or unreliable conclusions. Next we
describe an experiment illustrating another source of mismatch that stems from the
ortho-symmetry of Besov spaces in wavelet bases. Connected with this aspect of our
discussion, we prove a theorem on the asymptotic sign structure of wavelet coefficients
for the piecewise smooth image model. Finally, we will present a more refined analysis
of smoothness through the multifractal formalism and some of its consequences for
images.

7.1 Measuring the Smoothness of an Image

We are primarily interested in measuring the Besov smoothness of images. More
formally, given an image f , we would like to know the set of smoothness parameters
(α, p, q) for which f ∈ Bα

p,q. Often, one restricts oneself to the “worst” value of q,
computing, for each p > 0, the smoothness index αf(p), which we define by

αf (p) := sup{α : f ∈ Bα
p,∞}. (7.1)

It was proposed in [27] to estimate Besov smoothness of images via the decay rate
of approximation errors in wavelet bases. The norm equivalences that were stated in
Chapter 6 serve as the main tool for this purpose. Let us first consider the equivalence
given by (6.25). For computational purposes, it is reasonable at the first glimpse to
interpret this as

‖(dλ)λ∈Λj
‖lp ∼ C 2−jαf (p)2−jd(1/2−1/p), (7.2)
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Figure 7.1: Linear approximation error for the Lena image. The logarithm of the
energy in each scale and the approximation error at that scale is plotted.

where we have assumed an L2-normalization for the wavelets and the scaling functions
in the decomposition

f =
∑

λ∈Γ0

cλϕλ +
∑

j≥0

∑

λ∈Λj

dλψλ. (7.3)

This suggests to estimate αf(p) by mj −mj+1 − d(1/2 − 1/p), where we define

mj := log2(‖(dλ)λ∈Λj
‖lp). (7.4)

In practice, a typical digitized image contains no more than 6 to 8 dyadic scales
available for numerical computation and it is usually hard to observe a steady expo-
nential decay of the approximation error across these scales. We shall give examples
illustrating this situation in the next section. Among the most popularly used refer-
ence images, the numerically best-behaved example is the Lena image. We plot in Fig-
ure 7.1 the graphs of two quantities: On the left is log2(‖(dλ)λ∈Λj

‖l2), j = 1, 2, . . . , 7,
for the first three wavelets in the Daubechies family (which have 1, 2, and 3 van-
ishing moments, respectively). On the right is the quantity log2(dist(f, Vj)L2) for
j = 1, 2, . . . , 7. If ‖(dλ)λ∈Λj

‖l2 had a truly exponential decay (which would appear
as a linear behaviour in the graph), the same would hold for the second quantity as
well. Based on the slopes of these graphs where the behaviour is close to linear, it
may be argued that αf(2) is around 0.4. That is, the image Lena has “ 0.4 order of
smoothness in L2 ”.

Let us note that in these computations, wavelet coefficients have been computed
by applying the pyramidal algorithm to the pixel values directly. This implicitly
assumes, in fact, that

f =
∑

λ∈ΓJ

pλϕλ, (7.5)
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Figure 7.2: Log-log plot of σn(f) in L2 for the Lena image.

where (pλ)λ∈ΓJ
is the array of pixels in the image - an assumption which is not correct

but nevertheless reasonably approximate.
Let us next consider the characterization (6.36) of nonlinear approximation in L2.

In this case, one looks for a power-law for the decay of approximation error (σn(f))Nn=1,
where N is the number of pixels in the image. Following a similar approximate
argument as in the linear approximation case leads to

σn(f) ∼ C n−αf (s)/2, where
1

s
=

1

2
+ α. (7.6)

Figure 7.2 is a log-log plot of σn(f) in L2 for the Lena image, where the wavelet has
two vanishing moments. The slope is approximately 0.3 so that s ≈ (0.5 + 0.3)−1 =
5/4, and hence αf(5/4) ≈ 0.6. That is, the image has “ 0.6 order of smoothness in
L5/4 ”.

We have thus identified two Besov spaces in which the Lena image lies minimally.
Note that none of these spaces is embedded into the other through a Sobolev-type
embedding. (This can be seen by checking the index combinations in the character-
izations, or perhaps noting in Figure 6.1 that all Sobolev-type embeddings occur on
lines parallel to the line marked as “NL”.) Consequently, there are two different ways
of estimating the function αf(·): for each p, one can use the characterization of linear
approximation or nonlinear approximation in Lp. In Figure 7.3, we marked with a
circle the two spaces that we had found earlier. We also computed αf (p) for a range
of p using the formula (7.2), i.e., within the framework of linear approximation, and
plotted the result as a dotted curve in the same figure. This curve is our numerical
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Figure 7.3: An estimate of αf(·) for the Lena image using the characterization of
linear approximation. The two points marked by question marks correspond to two
different estimates using nonlinear approximation in L2 and linear approximation in
L5/4.

estimate of the best possible smoothness index as a function of 1/p. We could also
have used nonlinear approximation (i.e., apply formula (6.37)) to estimate this curve
numerically; this is harder and except for the one point (1/p = 0.8, αf (p) = 0.6)
which we found earlier, we did not carry out these computations. Note that this
point lies some distance from the smoothness curve estimated by linear approxima-
tion, illustrating the inaccurateness of our estimates.

7.2 Problems Caused by Ambiguity in the Mea-

surements

At what scale does the asymptotic regime start?

There is not always a definite slope: In the previous section, we worked with the
Lena image to illustrate how smoothness is “measured” by inspecting the asymptotical
behavior of linear and nonlinear approximation error in wavelet bases. Although
there were only a limited number of scales in the Lena image, it was still possible
to observe consistent exponential and inverse polynomial decays. However, this is
only occasionally the case. We tested this procedure on various images with different
characteristics and there seemed to be no generally consistent decay profile. One of
the major problems was the lack of a definite slope in the logarithmic plots. We have
picked the Window image (see Figure 7.9) to illustrate this example. Figures 7.4 and
7.5 plot the same graphs of Figures 7.1 and 7.2, but for the Window image instead
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Figure 7.4: Linear approximation error for the Window image. The logarithm of the
energy in each scale and the approximation error at that scale is plotted.
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Figure 7.5: Log-log plot of σn(f) in L2 for the Window image.
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Figure 7.6: Noisy sinusoidal signal on the left and wavelet coefficients in decreasing
order of magnitude corresponding to the noiseless and noisy signals.

of Lena. As it can be seen, asymptotics can start “too late” or may not at all!

Noise

One reason to study the smoothness of images is to understand how smooth a noise-
free image really is. The term “noise-free” is not well defined; sometimes, irregular
behavior that resembles noise in an image may very well be due to texture. In this
next example case, we study a situation that leads to misleading conclusions about the
intrinsic smoothness of images. We carry out a one dimensional simple experiment in
which we look at f = fs+fn, where fs and fn are the smooth and noisy components.
The smooth component fs is assumed to be Cα for a sufficiently large α (determined
by the number of vanishing moments of the wavelet used in the expansion). In
order to carry out the numerical experiment, we select a sufficiently fine sampling
resolution for fs and draw each noise sample from a Gaussian random variable of
variance σ ≪ ‖f‖∞. In Figure 7.6, we plot a realization of this experiment for which
fs is a pure sinusoid. The noisy signal is on the left. On the right, we have the log-log
graphs of the wavelet coefficients of fs and f , ordered in decreasing magnitude. The
fast decaying curve corresponds to fs and the slope of its envelope is determined by
the number of vanishing moments of the mother wavelet. The curve that lies above
it corresponds to f . It can be seen that the asymptotics of the noise has kicked in at
a very early stage, and no indication of the smoothness of fs can be read from this
plot, although the actual data on the left is still very “smooth” when considered as
a scan line of an image. We thus conclude that the decay can be very slow in the
presence of noise, even if the noise level is very small.

Mixtures

Consider a piecewise smooth function f whose “components” have different degrees
of smoothness; i.e., f is Cαi (and not better) on the domain Ωi, and not all αi are the
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Figure 7.7: A function which is composed of two pieces with different Hölder smooth-
ness.

same. An example would be an image with textured regions. The smoothness of tex-
ture would be very small, whereas object with smooth color shades would correspond
to a much higher Hölder index. We know from the theory presented in the previous
chapter that the asymptotical behavior of the sorted coefficients will be determined by
the edges and/or the region of smallest Hölder index. (In one dimension, there would
not be any contribution of the singular points.) However, the finite range of indices in
a digitized image may easily distort the asymptotical behavior in such a mixture case.
As a toy example to illustrate this, let us consider a one dimensional signal composed
of two components with exact Cα1 and Cα2 Hölder smoothness.1 We plot in Figure
7.7 such a function that was created using lacunary Fourier series. We have sampled
this function and expanded in a suitable wavelet basis and plotted the coefficients in
decreasing order of magnitude in Figure 7.8. If we had all the scales in the sampled
data, the coefficient decay would be determined by the region of smaller smoothness
index, but in the finite setting, we eventually run out of the big coefficients, and start
seeing coefficients of the more regular region. However, the curve is then shifted, and
the slope of the tail in the log-log plot does not give the actual smoothness index of
that region. One can approximate the situation as in the following example: Suppose
we would like to sort the union of two finite sequences {n−α1}Nn=1 and {n−α2}Nn=1,
where α1 < α2. Let this new sequence be cn. For n > N +M , where M := Nα1/α2 ,
one has cn = (n−N)−α2 . However, on a log-log plot, the slope

log cn+1 − log cn
log(n+ 1) − log n

(7.7)

of this portion of the curve would no longer be constant, and it changes from −α2(1+
N/M) to −2α2 on the interval [N +M, 2N ]. Even the minimum value of the slope,
being 2α2, is twice what one would expect. This is why the measurement becomes
misleading: there is no way to accurately estimate the smoothness by looking at the
asymptotic decay. Note that this is independent of the size of the data, and sampling
at a finer density would not improve the situation!

1This can easily be achieved using Fourier series of the type
∑

2−nα cos 2nx.
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Figure 7.8: The wavelet coefficients of the function in Figure 7.7, in decreasing order
of magnitude.

7.3 Problems Caused by the Choice of Spaces

What Does Unconditionality Cost?

We shall see in this section that images are sparse in Besov spaces. The norm equiv-
alences between Besov norms and coefficients of wavelet expansions state that the
unit ball B of a Besov space (in the equivalent norm in terms of the wavelet coef-
ficients) is orthosymmetric [35] with respect to the axes given by the wavelet basis;
that is, if

∑
cj,kψj,k ∈ B, then

∑
ǫj,kcj,kψj,k ∈ B for all ǫj,k ∈ {−1,+1}. Perhaps

more interestingly, there is more than just orthosymmetry: for any collection (σj) of
permutations,

∑
cj,σj(k)ψj,k ∈ B as well. That is, if we shuffle the positions of the

coefficients randomly within every detail space, and build a new function out of that,
this function is also in B.

It is natural to test to what extent the “class of images” shares these two proper-
ties. In Figure 7.9, we have the original Window image. We perform two operations
on this image. The first is to change the sign of every coefficient in a random way.
The resulting function for an outcome of this random change is shown in Figure 7.10.
Note that the sharp edges are completely destroyed. The pointwise Hölder smooth-
ness of each point should remain the same,2 since it only depends on the sizes of
coefficients. However, an edge (or even a jump discontinuity in one-dimension) is
a particular C0 singularity and is not invariant under a generic sign flip operation.
Indeed, later in this section we prove a theorem on the asymptotic distribution of
signs of wavelet coefficients that are in the cone of influence of a point at which there
is a jump discontinuity, confirming this non-invariance.

The second operation involves a random shuffling of the wavelet coefficients within

2This is an approximate statement, see [36] for a more accurate characterization of local regularity
in wavelet bases.
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Figure 7.9: The Window image.

Figure 7.10: Window image after a random sign change.
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Figure 7.11: Window image after a random shuffling within every band.

each detail space. The result is shown in Figure 7.11. Note that this time the resulting
image is not recognizable as a natural image (with the exception of modern art!). It is
however interesting to note that this new image has the same equivalent Besov norm.

As a result of this experiment, we conclude that the class of images is “sparse”
in any Besov space ball. By sparsity, we understand the lack of orthosymmetry
and invariance of certain axes. Thus, a classification of images using only sizes of
coefficients is apparently incomplete.

An Asymptotic Distribution Theorem for the Signs of Wavelet
Coefficients

Let f : R → R be a Cα function for some α > 0, except at the point x0, where it has
a jump singularity. Without loss of generality, we assume that α ≤ 1. Consider a
wavelet basis (ψj,k) generated from a compactly supported mother wavelet ψ whose
support is [0, m] for some integer m. We also make the technical and not strict
assumption that on its support, ψ vanishes only on a set of zero measure. Let the
wavelet expansion of f be

∑
cj,kψj,k and denote by Λ(x0) the indices of wavelets that

are in the cone of influence of x0, defined by

Λ(x0) = {(j, k) : x0 ∈ supp(ψj,k)}. (7.8)

We will prove the following “structure theorem” regarding the asymptotic distribution
of the signs of the wavelet coefficients (cλ)λ∈Λ(x0) :

Theorem 7.1. For almost every x0, the signs of the wavelet coefficients (cλ)λ∈Λ(x0)

of a function f that is Cα away from x0 have a unique asymptotic distribution that
depends only on the mother wavelet ψ and on σ(x0) := sgn(f(x0−) − f(x0+)), i.e.,
the sign of the jump at x0. More precisely, for each σ ∈ {−1,+1}, there exist p1,
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p−1 ∈ [0, 1], depending only on ψ and on σ(x0), such that p−1 + p1 = 1, and

#{(j, k) ∈ Λ(x0) : j ≤ J, sgn(cj,k) = σ}
#{(j, k) ∈ Λ(x0) : j ≤ J} −→ pσ. (7.9)

In other words, the frequency of the occurence of the sign σ in the first J levels of
the cone of influence of x0 converges to an asymptotic value pσ as J → ∞. We use
the convention sgn(0) = 1.

Proof. Without loss of generality, and to simplify some of the notation, we first assume
that α ≤ 1. If α > 1, then one simply replaces α by 1 in the analysis below.

We can safely assume that x0 is not a dyadic rational number, so that 2jx0 is
never an integer. Then, Λ(x0) has the simple characterization

(j, k) ∈ Λ(x0) ⇐⇒ 0 < 2jx0 − k < m

⇐⇒ k ∈ {⌊2jx0⌋, . . . , ⌊2jx0⌋ − (m− 1)}. (7.10)

This motivates us to define kj,l = ⌊2jx0⌋ − l, for l = 0, . . . , m − 1. Let [j, l] be a
shorthand notation for (j, kj,l). Thus,

Λ(x0) = {[j, l] : 1 ≤ j ≤ ∞, 0 ≤ l ≤ m− 1}. (7.11)

For convenience, we write f as f1χ(−∞,x0] + f2χ(x0,∞), where f1 and f2 are Cα

everywhere, and where the choice for the value of f at x0 is arbitrary. Let
∑
c̃j,kψj,k

be the wavelet expansion of the piecewise constant function f̃x0 = f1(x0)χ(−∞,x0] +
f2(x0)χ(x0,∞). We first calculate c̃j,k explicitly as follows:

c̃j,k = 〈f1(x0)χ(−∞,x0] + f2(x0)χ(x0,∞), ψj,k〉

= f1(x0)

∫ x0

−∞
ψj,k dx+ f2(x0)

∫ ∞

x0

ψj,k dx

= [f1(x0) − f2(x0)]Ψj,k(x0), (7.12)

where Ψj,k is defined to be the primitive of ψj,k, and we have made use of the fact

that
∫
ψ dx = 0. It is clear that Ψj,k = 2−j/2Ψ(2j · −k), where Ψ(x) :=

x∫

−∞
ψ(y) dy.

Note that supp(Ψ) = supp(ψ) = [0, m]. Now, by direct substitution,

c̃[j,l] = 2−j/2[f1(x0) − f2(x0)]Ψ(〈2jx0〉 + l), (7.13)

where 〈u〉 := u (mod 1) = u − ⌊u⌋ is a notation for the fractional part. We shall
first prove that for each l, the sequence (sgn(c̃[j,l]))

∞
j=1 has an asymptotic distribution.

To prove this, we shall use the following lemma of Weyl, whose origin goes back to
Hardy and Littlewood.

Lemma 7.2 (Weyl). (〈2ju〉)∞j=1 is uniformly distributed for almost every u.3

3Actually, a stronger result holds, due to Weyl [13, pp. 32]: For every distinct sequence of integers
aj , the sequence (〈aju〉)∞j=1 is uniformly distributed for almost every u.
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For a proof of this lemma, see [13], page 32.
Now, let x0 be such that (〈2jx0〉)∞j=1 is uniformly distributed. Note that σ(x0) =

sgn(f1(x0)− f2(x0)). Then, since sgn(c̃[j,l]) = σ(x0) · sgn(Ψ(〈2jx0〉+ l), it follows that

1

J
#{1 ≤ j ≤ J : sgn(c̃[j,l]) = σ} −→ mes{sgn(Ψ · χ[l,l+1]) = σ · σ(x0)} (7.14)

as J → ∞, where mes(A) denotes the Lebesgue measure of a (measurable) set A. It
immediately follows by summing through l = 0, . . . , m−1 that for (c̃j,k), the quantity
on the left hand side of (7.9) exists and is equal to

1

m
mes{sgn(Ψ) = σ · σ(x0)}. (7.15)

We conclude the proof by showing that the same asymptotic distribution holds for
the signs of the actual coefficients (cj,k). We shall do this by estimating the frequency
of the event that c[j,l] and c̃[j,l] have opposite signs. Let

nJ,l :=
1

J
#{1 ≤ j ≤ J : sgn(c[j,l]) 6= sgn(c̃[j,l])}. (7.16)

It is clear that sgn(c[j,l]) 6= sgn(c̃[j,l]) implies |c[j,l] − c̃[j,l]| ≥ |c̃[j,l]|. On the other hand,
|c[j,l] − c̃[j,l]| can be estimated by

|c[j,l] − c̃[j,l]| = |〈f − f̃x0, ψ[j,l]〉|
≤ ‖(f − f̃x0) · χsupp(ψ[j,l])‖L∞‖ψ[j,l]‖L1

≤ max(|f1|Cα, |f2|Cα) · (m2−j)α · (m2−j)1/2

≤ C 2−j(α+1/2), (7.17)

for a constant C that does not depend on j or l. Fix a positive integer J0 and consider
J ≥ J0. Then, by (7.12),

nJ,l ≤ 1

J
#{1 ≤ j ≤ J : 2−j/2|f1(x0) − f2(x0)| · |Ψ(〈2jx0〉 + l)| ≤ C 2−j(α+1/2)}

=
1

J
#{1 ≤ j ≤ J : |Ψ(〈2jx0〉 + l)| ≤ C ′ 2−jα}

≤ 1

J

(
J0 + #{J0 < j ≤ J : |Ψ(〈2jx0〉 + l)| ≤ C ′ 2−J0α}

)
. (7.18)

Here, C ′ = C/|f1(x0) − f2(x0)|. Finally, by first taking the lim sup of both sides as
J → ∞ and then the infimum over all J0,

lim sup
J→∞

nJ,l ≤ inf
J0

mes{x ∈ [l, l + 1] : |Ψ(x)| ≤ C ′ 2−J0α}

= mes{x ∈ [l, l + 1] : Ψ(x) = 0}
= 0, (7.19)

due to our assumption that ψ (and a fortiori Ψ) vanishes on [0, m] only on a set of
zero measure. This indeed implies that

lim
J→∞

m−1∑

l=0

nJ,l = 0, (7.20)

concluding the proof.
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Generalization to higher dimensions

We can generalize Theorem 7.1 to arbitrary dimensions. The setting is the following:
f is a Cα function on Rd except on the surface M , which is a C(1) manifold of
codimension 1. We assume that for each point x0 on M , the two limits of f at x0

obtained as one approaches in the direction of the unit normal n0 at x0 and in the
opposite direction are distinct. Let these numbers be f1(x0) and f2(x0). Similar to
the analysis above, we define an auxiliary function f̃x0 by

f̃x0 = f1(x0)χΩ̃1
+ f2(x0)χΩ̃2

, (7.21)

where we set Ω̃1 = {x : n0 · (x − x0) ≥ 0}, and Ω̃2 = Ω̃c
1.

Let ψ be one of the 2d − 1 tensor product wavelets constructed from a univariate
scaling function and the associated wavelet supported on [0, m]. For each j, the cone
of influence Λ(x0) at x0 will now contain a d-dimensional cubic array of indices with
md elements. More precisely,

(j,k) ∈ Λ(x0) ⇐⇒ k = kj,l = ⌊2jx0⌋ − l for some l ∈ {0, . . . , m− 1}d, (7.22)

where ⌊·⌋ is defined coordinatewise on a vector. We use the same shorthand notation
[j, l] to denote (j,kj,l).

Let (cj,k) and (c̃j,k) be the wavelet coefficients of f and f̃x0 with respect to ψ. It
follows by a straightforward calculation that

c̃[j,l] = 2−jd/2[f1(x0) − f2(x0)] Ψn0(〈2jx0〉 + l), (7.23)

where Ψn0 is defined by

Ψn0(s) =

∫

(x−s)·n0≥0

ψ(x)dx. (7.24)

We define the “jump” at x0 to be f1(x0) − f2(x0).
The rest of the proof consists of two ingredients. The first is the metric result

stating that for almost all u ∈ Rd, the sequence (〈2ju〉)∞j=1 is uniformly distributed
mod 1 in Rd [13, pp. 52, Ex. 6.12]. As in the proof of Theorem 7.1, this immedi-
ately results in an asymptotic distribution property for (sgn(c̃λ))λ∈Λ(x0) that holds for
almost every x0 and depends only on ψ, n0 and sgn(f1(x0) − f2(x0)). The second
ingredient is a size estimate for |c[j,l] − c̃[j,l]|. Let us see that

|c[j,l] − c̃[j,l]| ≤ C 2−j(d/2+α), (7.25)

where we have again assumed that α ≤ 1. To prove this inequality, we first describe
the manifoldM around x0 by an associated C(1) function φ defined on a neighborhood
U of x0: M ∩ U = {x ∈ U : φ(x) = 0}, and ∇φ is nonvanishing on U . Then
n0 = ∇φ(x0)/|∇φ(x0)| and the tangent plane at x0 is given by Tp(x0) = ∂Ω̃1 = {x :
∇φ(x0) · (x − x0) = 0}. Consider a sufficiently small ball B0 around x0 on which

φ(x) = ∇φ(x0) · (x − x0) +O(|x− x0|2) (7.26)
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(note that φ(x0) = 0), and assume j is large enough to ensure that I := supp(ψ[j,l])
is contained in B0. Set Ω1 := {x : φ(x) > 0}, Ω2 := {x : φ(x) < 0}, and decompose
I\M as

I\M = (I ∩ Ω1 ∩ Ω̃1) ∪ (I ∩ Ω1 ∩ Ω̃c
1) ∪ (I ∩ Ω2 ∩ Ω̃2) ∪ (I ∩ Ω2 ∩ Ω̃c

2). (7.27)

Now, f is Cα on Ω1 and Ω2 so that

∫

I∩Ω1∩Ω̃1

|f − f̃ |.|ψ[j,l]|dx +

∫

I∩Ω2∩Ω̃2

|f − f̃ |.|ψ[j,l]|dx ≤ 2 δ(I)α|f |Cα‖ψ[j,l]‖L1

≤ C 2−j(d/2+α), (7.28)

where δ(I) = 2−jd1/2 is the diameter of I.

Next, we estimate the measures of the remaining sets. Let us do this for I∩Ω1∩Ω̃c
1.

If x is in Ω1∩ Ω̃c
1, then φ(x) > 0 but ∇φ(x0) · (x − x0) < 0. This, together with (7.26)

implies that each of these numbers is bounded by O(2−2j) in magnitude. Hence,
dist(x, Tp(x0)) = |∇φ(x0) · (x − x0)| ≤ C 2−2j . This yields to

mes(I ∩ Ω1 ∩ Ω̃c
1) ≤ 2 · Area(Tp(x0) ∩ I) · sup

x∈I∩Ω1∩Ω̃c
1

dist(x, Tp(x0))

≤ C 2−j(d−1)2−2j , (7.29)

which leads to the estimate

∫

I∩Ω1∩Ω̃c
1

|f − f̃ |.|ψ[j,l]|dx ≤ C 2−j(d+1)‖f‖L∞‖ψ[j,l]‖L∞

≤ C 2−j(d/2+1). (7.30)

One applies exactly the same argument to I ∩ Ω2 ∩ Ω̃c
2 and this finishes the proof of

the estimate (7.25).

Following the same steps in the proof in the one dimensional case, these two
ingredients would yield the same asymptotic distribution for (sgn(cλ))λ∈Λ(x0) provided

that mes{s ∈ [0, m]d : Ψn0(s) = 0} = 0. We have thus proved:

Theorem 7.3. For all n0 such that mes{s ∈ [0, m]d : Ψn0(s) = 0} = 0, and for
almost every x0, the signs of the wavelet coefficients (cλ)λ∈Λ(x0) of a function f that
is Cα except on a C(1) surface M ∋ x0 with the unit normal n0 at x0 have a unique
asymptotic distribution that depends only on the mother wavelet ψ, n0 and the sign
of the jump at x0.

Remark: While it is true that Ψn0 may vanish identically for some n0, such as
for some of the coordinate axis directions depending on which wavelet is considered
among the possible 2d − 1, we conjecture that the set of directions n0 for which this
is the case has measure zero.
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7.4 A More Refined Approach: The Multifractal

Formalism

We saw before that although global smoothness spaces are the fundamental spaces
to study the (asymptotic) performance of approximation error, they may not provide
a complete picture for classifying images in terms of their smoothness. A natural
approach is to study the role of local regularity in this respect. In this section, we shall
attempt to apply the multifractal formalism for functions to images. Our treatment
will not always be fully rigorous and we shall often be satisfied with approximate
quantities. We follow some of the notation and the definitions in [37].

We start with the definition of pointwise Hölder spaces. A function f : Rd → R

belongs to the class Cα(x0) if there exists a polynomial Px0 whose degree is at most
α, such that

|f(x) − Px0(x)| ≤ C|x− x0|α (7.31)

on a neighborhood of x0. Px0 is usually the Taylor polynomial of f at x0, although
this may not always be the case. One defines the pointwise Hölder exponent α(x0) of
f at x0 to be

α(x0) := sup{α : f ∈ Cα(x0)}. (7.32)

A related space is Γα(x0), which is defined to be

Γα(x0) =
⋂

β<α

Cβ(x0)\
⋃

η>α

Cη(x0), (7.33)

i.e. f ∈ Γα(x0) if and only if α(x0) = α. Then the singularity spectrum (or the Hölder
spectrum) of f is defined to be the function

D(α) := dimHaus{x0 : f ∈ Γα(x0)}, (7.34)

i.e., the Hausdorff dimension of the set of points where the pointwise Hölder exponent
is α. The Hausdorff dimension is sometimes replaced with the packing dimension or
the box dimension (in computations). The following is the heuristics of the structure
function method which is used to compute the singularity spectrum.

We start with the structure function defined as:

Sq(h) =

∫

|f(x+ h) − f(x)|qdx. (7.35)

Then, |f(x0 + h)− f(x0)| ∼ |h|α if f ∈ Γα(x0). For each α, one approximates the set
{x0 : f ∈ Γα(x0)} by a union of |h|−D(α) cubes of size |h|d, so that for small h,

Sq(h) ∼
∑

α

|h|qα|h|−D(α)|h|d. (7.36)

So, if Sq(h) behaves as |h|ζ(q) as h→ 0, then

ζ(q) = inf
α

(αq + d−D(α)), (7.37)
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Figure 7.12: A sample line from the Lena image.

since this would be the dominant term in (7.36). One recognizes from (7.37) that ζ
is the Legendre transform of D.

It is possible to invert the formula (7.37) when the function D(·) is concave. Then,
the inverse Legendre transform has the same form:

D(α) = inf
q

(αq + d− ζ(q)). (7.38)

The multifractal formalism consists of the formulas (7.37) and (7.38). If D(·) is not
concave, then the formula (7.38) recovers the concave majorant of D(·) only. Jaffard
showed that under fairly general conditions, the singularity spectrum can be any

function, so that (7.38) can easily fail. Thus, none of the two parts of the multifractal
formalism has to hold in general. (See [37, 38] for an extensive treatment.)

Through the function Sq(·), it is possible to relate the singularity spectrum D(·)
with the Besov spaces that contain f . Let αf (p) := sup{α : f ∈ Bα

p,∞}, as we defined

in (7.1). If Sq(h) ∼ |h|ζ(q), then this means ω1(f, h)q ∼ |h|ζ(q)/q, so that f ∈ B
ζ(q)/q
q,∞ .

That is, αf(q) is approximately equal to ζ(q)/q.
To demonstrate this, we compute the singularity spectrum of a sample line taken

from a natural image, shown in Figure 7.12. The corresponding singularity spectrum
is plotted in Figure 7.13, and the “smoothness curve” in Figure 7.14.

Note that the structure function method, as given by (7.35), can work only for
α < 1. For the analysis of higher smoothness, one has to use higher order differences.
An elegant way to do this, while at the same time introducing a stabilizing averaging
process, is the Wavelet Transform Integral method, which computes

Zq(a) =

∫

|(Wf)(a, b)|qdb, (7.39)

where (Wf)(a, b) = a−d
∫
f(t)ψ( t−b

a
)dt is the continuous wavelet transform of f ,

for a wavelet ψ with sufficient smoothness and number of vanishing moments. The
quantity Zq(a) is meant to replace Sq(h): if Zq(a) ∼ aη(q), then D(α) is computed
using the formula (7.38), with ζ(q) replaced by η(q). For negative q, one clearly
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Figure 7.13: The singularity spectrum of the function in Figure 7.12, computed using
the structure function method. The horizontal axis is α, and the vertical axis is D(α).
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Figure 7.14: The smoothness curve for the function in Figure 7.12. The dotted curve
plots αf(q) as a function of the abscissa 1/q.

104



has problems due to the zeros of the wavelet transform; a numerical ad-hoc method
seeking to circumvent this is to use the Wavelet Transform Modulus Maxima method,
which computes (7.39) not by integrating over the whole of the domain, but only as
a summation over the lines of local maxima of the wavelet transform.

Note that although this multifractal formalism has been proposed with the goal
of understanding local behavior, it still does so “on average” only, leading again to
global estimates. The “equality” αf(q) ≈ ζ(q)/q expresses this: even if we accept all
the assumptions made by the multifractal formalism (which are very hard to verify
in practice), then the structure function estimates, whether via (7.35) or the more
refined (7.39), only give us an intersection of Besov spaces to which our signal or
image belongs. It follows apart from all the natural reservations about unverifiable
assumptions in this method, we still have not overcome the shortcomings of the Besov
classes as a natural framework for images.
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Chapter 8

Appendix: Multiresolution
Approximation and Wavelets

The building block of a multiresolution analysis of L2(R) is a principal shift invariant
space V0, defined to be the closed L2-span of the integer translates of a function
ϕ. One also requires that this family {ϕ(· − k)}k∈Z constitutes a Riesz basis of
V0, i.e., ‖

∑

k ckϕ(· − k)‖L2 ≍ ‖c‖l2 for all c = (ck)k∈Z ∈ l2. Then, the associated
multiresolution analysis is a sequence Vj of subspaces, all generated from V0 by scaling:

Vj := {f(2j·) : f ∈ V0}. (8.1)

Hence ϕ is called the scaling function. A key requirement is that this family be nested,
i.e., Vj ⊂ Vj+1 for all j, which reduces to V0 ⊂ V1 from the definition. In terms of ϕ,
this means

ϕ(x) =
∑

k

hkϕ(2x− k); (8.2)

this equation is called the refinement equation. The function ϕ is then said to be
refinable, and the sequence of coefficients (hk) is called the refinement mask. The final
requirement is that L2(R) is approximable from Vj, that is, for all f , dist(f, Vj) → 0
as j → ∞.

If, for another refinable function ϕ̃, the family {ϕ̃(·−k)}k∈Z is biorthogonal to the
family {ϕ(· − k)}k∈Z, i.e., 〈ϕ(· − k), ϕ̃(· − l)〉 = δk,l for all k, l ∈ Z, then the operator
PV0 : L2(R) → V0 defined by

PV0f :=
∑

k

〈f, ϕ̃(· − k)〉ϕ(· − k) (8.3)

is a projection. ϕ̃ is called a dual scaling function for ϕ.
By scaling, {ϕ(2j ·−k)}k∈Z constitutes a Riesz basis for Vj. We normalize in L2 and

set ϕj,k(·) := 2j/2ϕ(2j · −k), and define ϕ̃j,k similarly. The corresponding projection
operator is defined by PVj

f :=
∑

k〈f, ϕ̃j,k〉ϕj,k. It is natural to express PVj
f as

PVj
f = PV0f +

j−1
∑

l=0

(PVl+1
f − PVl

f) (8.4)
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which results in the definition of the detail space Wj := Ran (PVj+1
−PVj

). Similarly,
Wj is a scaled version of W0. An important result is that W0 is also a principal shift
invariant space, spanned by {ψ(· − k)}k∈Z for a function ψ ∈ V1, called the mother
wavelet. The inclusion W0 ⊂ V1 yields

ψ(x) =
∑

k

gkϕ(2x− k), (8.5)

for some sequence of coefficients g = (gk). Similarly, there exists a dual wavelet ψ̃
such that the projector PWj

:= PVj+1
− PVj

can be expressed as

PWj
f =

∑

k

〈f, ψ̃j,k〉ψj,k, (8.6)

where ψ̃j,k and ψj,k are defined analogously. The decomposition f = PV0f +
∞∑

j=0

PWj
f

leads to an expansion of f in wavelets:

f =
∑

k

〈f, ϕ̃0,k〉ϕ0,k +
∞∑

j=0

∑

k

〈f, ψ̃j,k〉ψj,k. (8.7)

If a scaling function is dual to itself, it is called orthogonal. In this case, PV0 is an
orthogonal projection and the mother wavelet is also dual to itself. On the other hand,
there is always a particular choice for ϕ̃ that makes PV0 an orthogonal projection. We
do not necessarily require PV0 to be orthogonal, but restrict to compactly supported
scaling functions and wavelets [39, 40]. In this case, there are only finitely many
nonzero coefficients in the refinement mask.

In the multidimensional setting, the multiresolution analysis of L2(Rd) is con-
structed using the tensor product strategy in the following sense: Denote the scaling
function ϕ by ψ0, and the mother wavelet ψ by ψ1. For each i = (i1, . . . , id) ∈ {0, 1}d,
define

ψi(x1, . . . , xd) := ψi1(x1) · · ·ψid(xd). (8.8)

Then ψ0 is the multivariate version of the scaling function ϕ, and the remaining 2d−1
functions {ψi : i ∈ {0, 1}d\{0}} are the wavelet functions in Rd. We sometimes use
the compact notations {ϕλ}λ∈Γj

, and {ψλ}λ∈Λj
to denote the collections {ψ0(2j ·−k) :

k ∈ Zd} and {ψi(2j · −k) : k ∈ Zd, i ∈ {0, 1}d\{0}} of translated scaling functions
and wavelets at scale 2j (see [29]).

For an exquisite treatment of wavelet analysis and wavelet constructions, we refer
to the book [41].
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