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On the Robustness of Single-Loop Sigma—Delta
Modulation

C. Sinan Gunturk, Jeffrey C. Lagarias, and Vinay A. Vaishampaymber, IEEE

Abstract—Sigma-delta modulation, a widely used method of ~ Sigma—delta modulation is a widely used method for A/D
analog-to-digital (A/D) signal conversion, is known to be robust conversion, see [3], [20], [22], [25]. It transforms a band-lim-
to hardware imperfections, i.e., bit streams generated by slightly ited signal by oversampling using a single-bit quantizer with

imprecise hardware components can be decoded comparablywell.f dback. t d W lued si | st hich
We formulate a model for robustness and give a rigorous analysis eedback, to produce a two-valued signal stream which we

for single-loop sigma—delta modulation applied to constant signals call thecoded signal This signal stream is then appropriately
(dc inputs) for N time cycles, with an arbitrary (small enough) filtered—usually with a linear filter—to produce a (vector)
initial condition o, and a quantizer that may contain an offset quantized version of the original signal. This filtering step may
error. The mean-square error (MSE) of any decoding scheme for |, regarded as a form of decoding. The simplest version of

this quantizer (with «o and the offset error known) is bounded . S . . .
below by L N—3. We also determine the asymptotically best pos- sigma—delta modulation is the single-loop version originally

sible MSE asN — oo for perfect decoding whenu, = 0 and introduced in [23], [1], [14], [8], but many more complicated

1

uo = 3. The robustness result is the upper bound that a trian- multiloop systems have since been considered.

gular linear filter decoder (with both =, and the offset error un- The sigma—delta modulator is a nonlinear system with feed-
known) achieves an MSE of"" V", These results establish the 50k and is notoriously difficult to analyze. One of the first rig-

known result that the 0(1/N%) decay of the MSE with IV is op- .
timal in the single-loop case, under weaker assumptions than pre- orous analyses of this system was performed by Gray for con-

vious analyses, and show that a suitable linear decoder is robust Stantinputs [8], where he showed that filtering the quantization
against offset error. These results are obtained using methods from output sequence with a rectangular window of lenfjtinesults

number theory and Fourier analysis. in a reconstruction error bounded &1/V), for all initial con-
Index Terms—Dynamical systems, oversampled guantization, ditions and values of the constant input. Gray [9] later used a
guantization, robustness, sigma—delta modulation. connection with ergodic theory to show that the mean-squared

error (MSE) decays asymptotically é§1/N?), asN — oo,
whereN is the number of taps of the filter used in decoding. The
notion of MSE used here is taken over a uniform distribution of
ODERN techniques of high-accuracy analog-to-digitahe valuex to be estimated, but also requires a time average
(A/D) conversion of band-limited signals is based oof the error signal. Concerning lower bounds, Hein and Zakhor
using single-bit quantization together with oversampling, as[&8] and Hein, Ibrahim, and Zakhor [17] showed that for any
practical alternative to using a multibit quantizer on a sequendecoding scheme for dc input, the quantization error must be at
sampled at the Nyquist rate. This is true for reasons relatedi¢ast as large as a constant timg®/®, where the constant de-
both the quantizer and to oversampling. Single-bit quantizgsends on the initial value, of the integrator in the sigma—delta
are preferable to multibit quantizers because they are easier ax@tiulator at the beginning of the quantization interval. In actual
cheaper to build. Also, single-bit sigma—delta modulation is r@ractice, sigma—delta modulators are used for A/D conversion of
bust against circuit imperfection, owing to the feedback whidband-limited signals and not for dc signals. Constant signals are
compensates for deviations in the quantization thresholds. Tdgparently the worst case for such modulators, and engineering
deviations in two-level feedback, which occurs in the case pfactice recommends adding a high-frequency dither signal to
single-bit quantization, only amounts to an offset error conmake the input vary, cf. Candy and Temes [4, p. 14]. Regarding
bined with an amplification error, while deviations from a multhe performance on more general classes of signals, and the use
tilevel feedback would cause irreversible harmonics. We coof nonlinear decoding methods, see [11], [21], [6], [27]-[29];
sider this robustness viewpoint further below. Oversampling fave discuss this further in the concluding section.
cilitates implementations in various ways, including making the This paper studies the robustness of sigma—delta schemes
job of analog filtering easier, see Candy and Temes [3] for a geagainst certain hardware imperfections. This seems to be one of
eral discussion. the main reasons they are used in practice [4, p. 13]. Nonideal-
ities for circuits using a single-bit quantizer can include offset

, . , guantizer threshold, offset quantization level, leakage in the
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Fig. 1. Robust encoding problem.

system has generally been studied by simulation, see [21] forassigned to a constant signalis the sequence of quantized
example. Feely and Chua[7] presentarigorous study of the effbis produced over theV time periods, which will depend
ofintegratorleakage onquantizationofdcinputs. Inthiscaseth@ «, the initial stateu, of the sigma—delta modulator, and
canbe constantsize errorswhichdonotgoto zeroasthe nivnbdhe quantizer used, allowing offset errér Our analysis for
ofoutputhitsincreases, becausethereisamode-locking éffect Single-loop sigma—delta modulation with constant input signal
this paper, we study the effects of offset quantizer thresholds ahi§ valid for any fixed small enough initial staig, for .V time
ofnonzeroinitial state of the encoder, and rigorously establish tip&f10ds, allowing offset errorin the quantlze?[. More prelclzlsely,
robustdecoders do existfor constantsignals. for offset erroré with |6 < 5 we may allow—5 < ug < 3.

The issue of robustness is one of information theory insofar\é\? give upper and lower boqnds _for th_e MSE O.f th_|s quantizer,
it concerns the design of both the encoder and decoder. From guming on_ly that the dc S|gn_al|s_ “T"fo“’“'y distributed n

. X . : 1]. In particular, no assumption is imposed on the quantizer

robustness viewpoint,an A/D conversion schemeisa(necessati

) . : se statistics within thév time periods. The lower bound of
nonlinear) encoding operation that produces an output streally;,—3 i<\ alid for the optimal quantizer, which assumes that

of bits describing a signal. One has an ideal sysfé®) used o ., ‘and the offsets are known to the decoder. The proof
for circuit design while the actual hardware produces a syst§[ges the same idea as [18] and [17] but sharpens it slightly in
E(-) that approximates the behavior BY-) but which makes gptaining a uniform bound independent«af. We also obtain
certain “systematic” errors. Whenever feedback is present, @@/mptotically exact bounds for the MSE of optimal quanti-
nonlinear nature of the system can potentially lead, after somgtion for the special caseg = 0 anduy = % asN — oo,
time, to large discrepancies between the internal states of sysiging detailed facts about Farey fractions. The resultfos 0

E(-) and systen£(-) given the same input, no matter how smal5s the constanf % — 1 ~0.06782, which sets a limit on

the “systematic” errors are. Here the “errors” which relate the,w much the lower bound can be improved. The robustness

difference of the actual systeR-) to the ideal system are highly resyit is the upper bound, which 1‘§N—3, for the MSE using
correlated, butcanleadto extreme changesinthe outputbitstreg@triangular linear filter decoder, which treats both the initial
(large Hamming distance). The robust encoding problem isiftegrator value:, and the offset as unknown to the decoder.
design anideal encodél(-) for which there exists some decodefhe proof uses Fourier series and an estimate from elementary
robust against certain types of hardware imperfectifits. number theory. These MSE bounds improve on the analysis
Given arobust encoder, the robust decoding problem is to des@jriGray [9] in that they do not do any averaging of the signal
a decoderD(-) which produces an adequate reconstruction oker input values:,, and are valid for each fixed initial value
the signal from the digital bit streams produced by any of the (et Separately. The specific constagtsand 32 obtained in the
precisely known) Systemg(.)_ The robust coding problem is analysis can be further improved, with more detailed estimates,
quite different from the classical model in information theory ofhich we do not attempt to do. A small improvement related to
the binary-symmetric channel, in which errors occur randomi?€ upper bound is indicated at the end of Appendix C.
In the classical case, error-correcting coding is introduced inCompared to a multibit quantizer which can achieve an expo-
advance of transmission over the channel, but thatis not availaBf&tially small MSE of orde0(2~"), the sigma—delta quanti-
inthis context. Here, the errors are notrandom but are systemaRlion output sequence is not efficient. However, this does not
caused by the uncertaintyinthe encoder used. mean that the quantizer is very nonuniform. It is well known,
Besides formulating a framework for the robust encodir@9-» [17], that the number of distinct codewords of length
problem in the context of sigma—delta modulators, the objegefoduced by the first-order sigma—delta modulator on constant
of this paper is to provide an analysis of robustness in tisgnals, for fixed., andé, is bounded by)(~N?). Hence, an ex-
“simplest” situation. We give a rigorous performance analysponential rate-distortion function is still achievable with further
of single-loop sigma—delta modulation in the case of a constamiding of the output bit stream. The particular se©g¢fV?) ad-
signal, which includes the effect of nonzero initial statg missible output codewords depends on the paramateend
and of possible offset in the quantizer. As indicated abovg, In our model with no random errors, a received codeword
the decay of the MSE for such signals is well known to be @bntains some information about andé. It is this extra infor-

orderO(/N—%), under various hypotheses. Here we rigorousiyation that makes robust decoding possible in this case.
demonstrate robustness by showing that a simple linear decoder

achieves MSE of orde@(N—?’) with the initial condition and Il. PROBLEM FORMULATION

dc offset in the quantizer unknown. To describe the precise _ .

results, for constant signals, the sigma—delta modulator car/Ve first formulate the robust encoding problem as the simple

be viewed as a (scalar) quantizer, in which the quantizati®fpck diagram givenin Fig. 1. We are given a family of encoders
Fao = {Ls:0 € Q} whered is a (vector) parameter. We may

2This provides a reason that constant signals are to be avoided in practice ugmé.'k of these. as represgn?ing an iqeal e.nCOder Wit.h the param-
sigma—delta modulators. eterf measuring the deviation from ideality of a particular hard-
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—~ i Proof: Sincegs(-) = ¢(- + 6), on settingu,, := u,, + 6,
¥ Z —~ q() the system (2.4) becomes equivalent to the system (2.3) with the
_ initial conditionug = 1y + 6. O

% Lemma 2.1 shows that studying robustness of a first-order
sigma—delta modulator against arbitrary initial valig and
offset error reduces to the special case of studying the ideal
system (2.3) with arbitrary (unknown) initial conditiadqg. This
reduction is special to first-order sigma—delta modulation. In

ware implementation. The paramefes not under any control, higher order schemes, the initial valug and offset parameter
except to lie in a fixed compact setrepresenting the manufac-s are independent sources of error.

turing tolerances. The decoder’s performance is to be measureflet us suppose the offset errorsatisfies|s| < Smax < 3.

inthe worst case against all the allowable encoders. We use Mk system (2.3) with the ideal quantizer maps the interval

as a performance measure. This model scheme does notincludge/a  3/2) into itself, so if the original initial conditionio
any source of random errors, just systematic encoding errgspg qs(-) satisfies

embodied in the parametérFor the sigma—delta modulator we
can take? = (ug, 6), but as we show below, the behavior of the
system really depends only on the single paramterug + §.
We study the asymptotic behavior as the numieof output
bits becomes large. The possible existence of a robust deco@&n
depends on the family of encodefg considered. For example, 1 3
Feely and Chua [7] consider encodés that include leaky in- -5t bmax < to < 5~ Omax
tegrators, and their results imply that for constant inputs and op-
timal decoding, the MSE does not go to zero with increaging (2.5) is satisfied for all allowable values [#] < é,,.x, and the
so that a robust decoder does not exist in the asymptotic seagbsequent analysis applies.
considered here. In view of the Lemma 2.1, in analyzing robustness against
We consider systems that use a single-bit quantizeiddal offset error, it suffices to treat the case of a first-order
quantizerhas a threshold &5 and reconstruction levelisand sigma—delta modulator with an ideal quantizer, and consider
0, whosequantizing magy(-) is given by robustness against the choice of initial vale and this we do
in the remainder of the paper. We tregtas given, and average
glu) = { Lo uwzxl/2 (2.1) over the input value, assumed uniformly distributed g, 1]
0, u < 1/2. and independent of the valug.
The ideal quantizer output at time is denotedY,, and is
related to inputs,, by Y, := g(u,,). From (2.3), it follows that
the quantizer output is given by

Yy, i= q(un) = q<uo + z_: zi — z_: q(Ui)) ;

1, u21/2—5 i i=
qa(u)—{()’ w<1/2— 5. (2.2) " lo . e

Fig. 2. Encoder of a single-stage sigma—delta modulator.

1 3
—5-8<d< -8 (2.5)

this condition is preserved under iteration (2.4). As long as

An offset quantizehas a threshold &5 — 6, where we as-
SUME—bmax < 6 < Omax fOr SOMEGiax (SAY, dmax = 0.125),
and reconstruction levels Aand0, hence is thguantizing map

gs(-) given by

Asmgle_ loop (orflrgt order) sigma—delta modu_lator is '"usEquation (2.6) definesam ﬁ\r('):R]\ — {0, 1}V, with input
trated in Fig. 2. The sigma—delta modulator consists of a quan- 0 S
. . . . 7o, 1, .-, £y—1) and output(Yy, Ys, ..., Yn). As thex;
tizer in a feedback loop. The behavior of the system with an . .
. S ; vary, this map changes value at points where
ideal quantizer is described by

n—1 n—1
1=0 =0

while with the nonideal quantizer it is

~ ~ ~ These points constitute the boundaries of the level sefé\gof
Un41 = T+t = s (Un), n=01.... (24 jnother words, the-bit quantization bins. Thus, a partition of

The output vector at time is denotedy,, := gs (i, ). The fol- [0, 1]_ is created. Note that implicit in (2.7}, is a nonlinear
function of the inputrg, ..., x,_1. The resulting bins are very

I(_)v_vmg simple fact, observed in [19], simplifies the robust quar?r_regularly shaped.
tizing problem.

Now suppose that we have constant input signat z, for
Lemma 2.1: Letz, be afixed input sequence. The outputbit < ¢ < N. This corresponds to looking at the intersections

sequencé, for the nonideal first-order sigma—delta modulatoof the sets in the partition with the principal diagonal@f1]®

with initial value i, and offseté is identical to the output bit given byxzy = z; = --- = 2y_;. This naturally induces a

sequence for the ideal first-order sigma—delta modulator wigartition of[0, 1], which we refer to as theffective quantizein

the modified input value:y := g + 6. order to distinguish it from the binary quantizer in the loop. The
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thresholds of the effective quantizer are obtained by determining Ill. LoweRBOUND FORMSE

values ofz in [0, 1] that solve Inthis section, we suppose that the initial valiges fixed and

known, with$ < uo < 2. The unitinterval0, 1] is partitioned
into subintervals] = J(Y'), whereY := (Y1, Ys, ..., Yy)
is the data available to the decoder. Ttytimal decoding
algorithm®  Qqpe(x; uo) assigns to the quantization da¥a
associated ta: the midpoint of the interval/(Y'). There are
at mostw quantization intervals determined by the
values given in (2.9). For, = 0, some of the values are
repeated, and the number of distinct values is asymptotic
Sn(uo) :={(G—fo)/n:j=1,...,mn=12 ..., N} 10 N2 asN — oo, using [13, Theorem 330], since the
(2.9) points of Go can be put in one-to-one correspondence with
the Farey sequenc&y. It is well known that the intervals
where 3y = (uo + 1/2), and{a) := « — |a] denotes the produced by the Farey sequenggy range in size fromﬁ
fractional part ofc. down to size+-, see [13, Theorem 35]. The intenjal 5]
contributesg—lﬁN—?’ all by itself to the MSE of the optimal
etisecoding algorithm. We now show that the same bound holds
for an arbitraryu.

n—1
uo—i—nx—{z q(ui)}:1/2, n=12 ..., N. (2.8)

=0

Lemma 2.2:For a generalyy in the range—% <wuy < %
the quantization thresholds are given by

We give the derivation in Appendix A. For the special cas
ug = 0 andug = 1, the set of thresholds is the set

Svi={(2j—-1)/2n,j=1,....n;n=1,2 ..., N} Theorem 3.1:Suppose that is fixed with —1/2 < ug <
3/2 and letz be drawn uniformly fron0, 1]. Then, single-loop
The setSy is related to théarey seriesFy of orderN, which oversampled sigma—delta modulation
is the set of fractiong/n in reduced form withD < & < n,
1 < n < N, with ged(k, n) = 1, on the interval(0, 1),
arranged in ascending order [13, Ch. 3]. To be more specifi¢ith oversampling rateV, using the optimal quantizep.:
let G-y be the subset of the Farey series of or2lat that has With «o known to the quantizer, has MSE
evendenominators. Then it follows thaty = Gapn. On the 1 1
other hand, the special casas = —1/2 andug = 1/2 have  MSE,,(Qopt) = / (Qopt (5 uo) —x)* dx > %N_?’. (3.1)
Sn(—1/2) = Sn(1/2) = Fn\{0}, the Farey series itself. The 0
connection of breakpoints far, = 0 to the Farey series was  Proof: The valueu, completely determines the quantiza-
observed in Hein and Zakhor [20, p. 24]. tion bins. The quantization bin endpoints consist of the points
Our problemis to give lower and upper bounds for the mean- j—Fo
squared quantization error for fixee, with the constant dc r==
inputz assumed drawn from the uniform distribution [6n 1].
For lower bounds, we assume optimal decoding, wherés

known to the decoder. The optimal MSE quantizer is describ eshold. This interval is of Iengtg%, and since an interval

using the mapop(z; o), which mapse to the midpoint of ¢\ 71 contributes; |7]? to the MSE, the contribution of
the intervalJ thatx lies in, the endpoints of being successive ., ._ ‘1 AT—3
this interval isgg N 7.

eI(Tments_F); the threshold.s of t.hetr(]affect;ye qluant|zt(_erW|th |(;1|t|al Case 1:0 < f < 1/2.
valuewuy. gmaonpt(a:, o) is the optimal quantizer under <j<mandl<n<N
our assumption that the quantitybeing quantized is uniformly

Ufn-l—l:x"'un_Q(un)a 0<n<N-1

1<j<n, 1<n<N  (3.2)

wheregy = (up + 1/2). We will show that at least one of the

open intervalg0, 5% ) or (1 — S, 1) contains no quantization

distributed in[0, 1] and independent af,. Our objective is to J=bPo j=Po 1=-Po_ 1
lower-bound the MSE, given by the integral n — N T N T2N
hence(0, 5% ) contains no quantization threshold.

1
Case 2:1/2 < f3p < 1.
._ _ . 2 <
MSE,,, (Qopt) .—/0 (x — Qopt(; u0))” de. (2.10) Fori<j<nandl <n<AN

. j— B — b 3 1
In the upper bound case, we suppagss fixed but unknown J=lo < n=fo <1- /NO <1- oN
to the decoder, and consider a decoding algorithm which uses 1” "

a particular linear filter of lengthV, the triangular filter. Let hence(l — 55, 1) contains no quantization threshold. [

Qy.(x; uo) denote the triangular filtered estimate farwhich e gptimal lower bound in Theorem 3.1 appears to have a
depends onr andwo. Our objective is to upper-bound constant on the order of five times larger thirbut seems hard

to determine. However, we can show the following exact result.

1
— . 2 - . . . .
MSE,, (Qr) == / (x — Qn(w; uo))” dz (2.11) 3The optimality of this algorithm is a consequence of the assumption that the
0 quantityx being quantized is uniformly distributed j&, 1]. When conditioned
. . . o . onthedat&”, the distribution of: is uniform on the quantization interva(Y").
for all uo. The choice of triangular filter for analysis is explained arpatis, the values- and 2 for anyk > 2 determine the same quantization

at the end of Section IV. threshold.
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Theorem 3.2:Suppose that,y = 0 or ug = % and letz Lemma 4.1: For fixed constang, and all positive integers
be drawn uniformly fron0, 1]. Then single-loop oversampledandm

sigma—delta modulation 1 1 1 (n, m) 2
(nz + BoY{mz + Po)dx — = | < — . (4.4)
Unp1 =T+ u, —q(uy), 0<n<N-1 0 47 12 nm
with oversampling rateV, using the optimal quantizep,,; Lemma 4.2: For all positive integersL
with 1y known to the quantizer, has MSE (n, m)
< 5L. 4.5
MSEuO (Qopt) = Qg N_3 + O(.ZV_4 10gN) s asN — oo z:: rg—: 0 ( )
(3.3)
where Proof of Theorem 4.1:SupposeV = 2M is even. We set
Qo = 3 @ _ i ~0.06782 en(z) == Qn(w; uo) — =
and 2103 16 whereQy(x; uo) is the triangular filter decoder
14(2) R
a2 =g 6 ~0.22807. Q1(x; uo) Z R, Y, (4.6)
We prove this result in Appendix B. The proof is based off filter weights (4.2), and’,, = Q(un)- We have
the explicit relation of the set of quantization thresholds in these 2M—1
two cases with the Farey series. Theorem 3.2 sets a limit on how en(z) = Z Y, — x)h,
much improvement is possible in the const%tappearing in n=1
Theorem 3.1, showing that the best constant can be no larger 2M -1
thanZ %— ==. Numerical simulations suggest that this bound = Z (Un = Ung1)Pn.
for uo 0is actually close to the minimum over all initial n=1
conditionsug, and conceivably it might give the best constantSumming this by parts and substituting (A2) from Appendix A
yields
1 1
IV. UPPERBOUND FORMSE en(z) = i (ug + - +up) — e (upr1 + -+ + uznr)
In this section, we suppose thai is viewed as fixed 1 1
with £ < ug < 2, but is unknown. The quantization values =g (Wit tw) = (W + -+ wan)-
(Y1, Yo, ..., Ynv_1) are known to the decoder. For simplicity, 4.7)

we assume thaV = 2M is even.

We consider a triangular filter decoder Then we have

M 2M
2M—1 len(2)] £ —5 an—— Z wn——
Qn(x, uo) Z hnYn 4.1) M® = 2 =41
(4.8)
in which {#,,:1<n <2M -1} are given by which, upon taking the square yields
1 _ (M-—n) 1<n<M M 2
h,, = { Af <,,,A_li4> == (42) |en(2)? < 14 Z w, — M
L M<n<2M -1 M\ &~ 2
We give a detailed analysis for the caSe= 2M only; for the 9 2M 2
caseN = 2M + 1 we may discard the valugy and use the +-— < Z Wy, — ?> (4.9)
above filter on the remaining values. n=M+1

Theorem 4.1:Suppose thaty is fixed with —3 < ug < 2, We now consider the MSE

and letz be drawn uniformly inf0, 1]. Then single-loop over- MSE,, (Q)) = /1 len (2)]? da
sampled sigma—delta modulation o \eh N ’

Substituting (A4) from Appendix A into (4.9), and integrating,

= - <n< -
Upt1 = T+ up — q(uy,), 0<n<N-1 we get
at oversampling rat&/ = 2M, using quantize€);,, has MSE 0 L M1 o 2
1 MSEU (Qh) / <Z <71.’L' + /30> - _>
40 o M4A
MSE,, (Qn) = / (@nlas wo) — 2} du < S N7°. (4.3) M = 2
0 2M—1 2
) M

The proof uses two number-theoretic lemmas, whose proofs + < Z (mr—i-ﬂo)—?) dx.

are given in Appendix C. In the followindyn, n) denotes the n=M

greatest common divisor ef. andn. (4.10)
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We expand this expression, substitgf&le(m: + Boydr = 1/2 trary fixed initial valuewg. It showed that a particular linear de-

for positiven, and rearrange to get coder is robust against such errors, and attains the optimal MSE
within a multiplicative constant. In these special circumstances,
9 1\2 anonlinear decoder can save at most a multiplicative constantin
MSE,,(Q1.) £ —5 3| Bo— 5 MSE over a linear decoder, and cannot achieve further asymp-
M 2 . .
totic improvement in MSE ad’ — oo. These results show that

ML M-L the redundancy built into oversampled sigma—delta modulation

! 1
+ Z Z </0 {na+Bo) (m+ o) dx_g) schemes is serving the useful purpose of permitting robust de-

n=1 m=1 coding by a linear decoder. It seems likely that for the first-order
2M—1 2M—-1

1 .
1 scheme, robust decoders should exist for a general class of non-
+ ;{ 2—;\4 </0 (n@+ o) (ma+/o) dx — Z)} (4.11) constant signals, but that is a more difficult question which we

have not addressed.

The methods of this paper exploited certain features specific
to first-order sigma—delta modulation (e.g., Lemma 2.1), which
do not hold for higher order sigma—delta schemes. However, the
Ml Mot ) genera} approach of. viewing higher order §cheme§ as discrgte
MSE,, (On) < 2 <1 n 1 Z Z (n,m) dynamical systems is a useful one, to which Fourier-analytic

moANTR =AM\ 4 12 nm methods can be successfully applied, as in Daubechies and De-
M —1 2M—1 ) Vore [6] and Guntirk [10], and for these number-theoretic ideas
+ 1 Z Z (n,m) ) (4.12) of a more sophisticated type may also be relevant.
12 nm It would be of great interest to extend robustness analyses to
higher order sigma—delta systems and to obtain bounds valid

Finally, we conclude our estimate of MSEQ;,) by applying for general band-limited signals rather than constant signals.
Lemma 4.2 withl, = 2M — 1 = N — 1 to (4.12) (combining FOr constant signals, it is believed thakth-order sigma—delta

Next we apply Lemma 4.1 to (4.11) and replace the te8gn—
1)? by its maximum value /4, to obtain

n=1 m=1l

n=M m=M

the double sums) to obtain modulation scheme can achieve an MSE that decays like
O(1/N?*+1) for signals of lengthV, and that this should be
40 . 16, best possible. An upper bour@(1/N?*+1) is demonstrated
MSE,,(@r) < 5 N7 = - N (4.13)  for certainkth-order sigma—delta schemes in He, Kuhlmann,

and Buzo [15, Secs. 3 and 4], [16], but their analysis treats the
which yields the desired bound. O input x asfixed,and then letsV — oo; the error estimates
obtained are not uniform i (and require that be irrational),
Remarks: hence their MSE bounds do not apply in the framewarkthis
1) The triangular filter was used in the analysis because &gper_ Is there a similar upper bourit{1/N2¥+1) for some
the identity (4.7) that it yields for the error expression.in-order sigma—delta modulation scheme, using the MSE
The *first-order” terms of siz&)(1/V) get canceled out criterion of this paper, and are there such schemes that are
due to the subtraction, and this was exploited in the esfhpyst against offset error in the quantizer, assuming perfect
mate (4.8). This is not the case for the rectangular filtefztegrators are used? For signals drawn from a wider class
indeed, a telescoping argument gives that the error exprgg-pand-limited signals, it is believed that the achievable
§ion for this filter is equal tdwy1 — w1)/N, whichis  MSE should beO(1/N?*+2), see Thao [27]. Demonstrating
in general not smaller tha@i(1/V). Other reasons basedihis rigorously, with or without robustness, is apparently an
on the Fourier transform can be given, see He, Kuhlmartl;ben problem. A rigorous lower bound 6(1/N2¥+2) for
and Buzo [15, Sec. IV.C]. band-limited signals was obtained by Thao [27]. In the case
2) Gray [9] determines the optimal linear filter (in the conk = 1, nonlinear coding schemes that experimentally achieve
text of [9]), whose general shape is similar to the triamrd(N—*) for a class of sinusoidal signals are given in [21],
gular filter, but differs from it slightly. Hein and Zakhor [28], [29].
[19] later constructed an “optimal” nonlinear decoding For general band-limited functions, it is an open problem
method. to rigorously establish whether nonlinear decoding schemes

3) The proof of Theorem 4.1 did not determine the be_gqr sigma—delta quulation schemes can offer an asymptotic
constant for MSE using the triangular filter, and soménprovement over linear decoding. If so, another issue would
improvements are possible on the constéhtoy more be whether there exists a nonlinear decoding achieving this

careful argument. The constant in Lemma 4.2 can be ifoProvement which is robust. It seems an important general
proved slightly. problem to quantify the tradeoff between efficiency and robust-

ness in such schemes, both theoretically and in practice.

V. CONCLUSION

This paper gave rigorous upper and lower bounds on the M%gtggljlrt?r%ﬁ‘g’t%g(r;’féw:rgg‘ger requires integrating their bounds eyend

for single-loop S|gma—<je|ta modulation applied to constant IN“6This MSE averages over a larger class of (bounded) signals, so the contribu-
puts, where the quantizer may have offset error and an ariin of constant signals to the MSE is reduced.
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APPENDIX A
PROOF OFLEMMA 2.1

SetJ := [—3, 3). Then, foru, € J, we haveq(u,) =

|, + 2J ThIS way, the recursion (2.3) can be rewritten as

= (o
Un+1 = Tn 2 7 2/

[0, 1]. Then from (Al)u, € J impliesu,+1 €

(A1)

Supposer,, €
J.

If x,, = x is constant, then in fact,,, €
all n. If we now define

[x — 3, 2+ 3), for

un—a:—i—% (A2)

Wy, =

then the iteration fotw,, is just rotation on the unit circle
Wyt = {wn, + ) (A3)

hence

(nx + Po)

Wp41 = (A4)

with 3y = (uo + 1/2), as was originally observed by Gray [8]. 2,2 2] has IengtH+( )

Thus, substituting this in (A2) one arrives at the formula
1
Un4l =T — o+ (nz + Bo)- (A5)

On the other hand, one also has

1741

wherel € Fy means! is an interval determined b, and
|Z| denotes its length. We will show that

0= () o) e

in which¢(q) is Euler'sg-function, which counts the number of
integersk with 1 < & < q which are relatively prime tg. The
intervals[0, +] and[£2, 1] each contrlbutq— ~z . For each
2 < ¢ £ N, there arep(q) fractionss = {1’ in lowest terms.

Any two adjacent Farey fractiors Z—: € Fyhaveg+q¢ > N,
for otherwise their mediarﬁi—{l’: € Fn andfalls betwee@ and
fq“—:, contradicting their being adjacent. Thus, if

MSE(F,

P p P

— <=
- g gt

are the two neighboring fractions iy, ¢ < % implies that

q~ > N/2andq™ > N/2. A well-known property of Farey

fractions is thafpq’ — p’'q| = 1 for adjacent fractions, hence

the intervall = = [2=, 2] has length~(s) = 1= and [t =
1+ . All these intervals are disjoint

to MSEFy). SinceN —q < g™, ¢~ < N we obtain the bounds

and they contribute

2

SEFNTqEN/2

[
St =

Upyr =up +(n+ Dz — Yo +---+Y,). (AB)
N/2
Combining the two and usingy = |uo + 1/2], it follows that 1 1 z/: #la) 2
6Ne T 12 ¢ N3
Zn =Y+ +Y, =|nx+ o] (A7)
N/2
Clearly, the sequend@’,) is uniquely determined by the se- <8 < 1 — + 1 Z <&g) 2 3)
quence(Z,), andvice versaFrom (A7), it follows thatZ,, in- 6N 25\ ¢ (N-9
crements by one atthe poirfts = (j — %) /n;5 =1, ..., n},
starting with0 atz = 0 and ending withn atz = 1. So, NOW
the N-tuple(Zy, ..., Zy) and, consequently, the quantization 1 1 3N?q—3Ng+gq

codeword(Y7, e Yn) atta_ins single and distinct values on (N —¢)® N3 N3(N — ¢)
each of the subintervals defined by the threshold p&int&.,)
given in (2.9), which completes the proof. O so that
N/2 )
APPENDIX B #(q) <; B L) _ O<10gN)
PROOF OFTHEOREM 3.2 = ¢ \(N-¢? N° N*
Lemma 2.2 shows that fary, = 0 the set of thresholds is
0 on using( )? > LN? and q(g) < . These bounds imply
27 —1 .
Gon = 1S}S7’L,1S7’LSN N
2n 11 (L)) 2
Loy ) 2
while for uy = 3 the set of thresholds is 6N® 12\ = ¢ 8
N/2

fwz{ilstmlsnSN}
"

the Farey series of ordéy.
We first treat the case, = % and estimate

1
MSE(FN) = 3° I

IeFN

MSEI/Q(QO})t) =

Since
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we obtain where

? | 6N3 N4 sery

s “even”

g=1
To estimateél -, we split it into two subsum%“’, andT]’{, where
Ty sums over all “even’ = L with 1 < ¢ < &, andT} sums
over those “even’ with & g g < N.

In the first subsum, we hawy — ¢ < ¢+, ¢~ < N, hence

Let S% denote the contribution to MEx) coming from all
the remaining intervals. Each of them has endpoﬁfnt@r with
q, ¢ > N/2, hence their length/| = % < 5. There are at
most N2 such intervals, hence

4\* 64 1 Y2 1409) 2
" 2 2
SN<N<N2> ooy |25
g odd
Combining this with (B2) establishes (B1). N2
We next consider the casg = 0 and estimate 1 L 2
o <th<| Y 2¢§Q) g | B0
~ q —q
MSEO(QO})t) = IZ E | |3 (BS) qodgd
€z Here s is “even,” so its denominatog is odd, and there are
We will show that exactly%¢(q) “even” numeratorg. We obtain
— plg)\ 1 Pp(2m+1)\ 1 log N
MS op T a /r = ey
Fol@Qept) = <§=:1 7 | 24N3 I Z @m+1)3 N3+O< N4)
= p(2m 4+ 1) 1 log N B4 in a similar fashion to the estimate (B2).
z_: (2m +1)3 | 16N3 N4 |- (B4) To bound the second suffi,, we note that the mediant
B L ip lies |n5|de[—, —] The only point of F inside this

To begin, forGsn we note that2 is a threshold and the set offfqteflval iss, SO we conclude that
thresholds is symmetric abouf2, so that N
¢ a2 q>

1 2"
MSE)(Qopt) =2 > = |II% (B5) :
rclora 12 Thus, at least one aft andg~ exceedsf, hence

_ 1 1 2 16 1
Next, we rescale the thresholdsdny 1[0, 1/2] by afactorof ()17 (5)(IF(s) +17(s)) < N2 NA G 2SN

2 to obtain themodified Farey series of orde¥ 0
whereqo = min(q™, ¢~ ). Each valuegy can occur at most

Fr = {B Pe Fn and p=1(mod 2)} . 2¢(qo) times, hence
q q N
?(qo0) log N
Thus, Ty z_: 2 N4_0< i )
1 5
MSEs(Qope) = ; MSE(FRy) (B.6)  Combining these estimates gives
where _ p2m+1)\ 1 log N
Iv =T+ 1Iv _<Z (2m + 1)° ) AN +O< N+ )
MSE(Fy) := Y E' 2. (B7) (B11)
Iery Then combining (B1), (B6), (B8), and (B11) yields the desired

- o . formula (B4).
The modified Farey seriegy, is obtained from the Farey series It remains to obtain explicit formulas for the coefficients in

lj_f;;sy rer_n(t)meg ?I:r[])omte ibg with i'p'Wh'Ch v;/etcaltlhevle]rclt the formulas (B1) and (B4) above, i.e., to determine the con-
y pomnis. Let he neig ormg arey points to the feft aiy antsa,,, . We use the fact [30, p. 6] that

right of such ans be 2= < 2 < 2 & and note that neither of

the neighboring points is “even.” The assomated Farey intervals (s — 1 </)

[q . 2land[?, i] have lengthg*(s) = -1~ andi=(s) = Z

——. In F}, these intervals are combined mto a single interval

of Iengthl+( )+ 1~ (s). The contribution to MSEF};) for this One easily calculates that

interval is-t (I*(s) +17(s))?, rather than the two contributions P(2m +1) 1—2173\ ¢(s— 1)

Li+(s)®+ 1 17 (s)?InMSE(Fy ). Using the identity z+y)*— Z @m+ 1) < o> ) RO 1

(x?’ +y%) = 3xy(x + y), we have

N 1

"The possible “even” point = contributes onlyO( %) to Ty and

MSE(Fy) = MSE(Fy) + 1IN, (B8) goes in the error term.
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sinced(2m) = ¢(m) if m is odd andp(2m) = 2¢(m) if mis
even. We take = 3 and obtain

MSE; /2(Qopt) = <%) # + O<1(}$iv>

log N
+o(MEY)

Q12
=3

APPENDIX C
PROOF OFLEMMAS 4.1 AND 4.2

Proof of Lemma 4.1:We shall prove the lemma by estab-

lishing the formula

1
/ (nz + foh(ma + o) dz = ~ + — (n, m)
0

2
1T b (CD)

where|¢,, .| < 1. Denote the expression on the left-hand side

| 1 s 1,
Z ECOSCMI Z(Q—W) -7,
d=1

the exact value o, ,, is easily found to be

However, this last expressio

Remark: Using the formula

0<6<2r (C.6)
12

3 m—n S|
=3 (20 5im) 1) 5

Proof of Lemma 4.2:We have

L L 2 L 2
Sy s oy e
n=1 m=1 nm d=1 1<n,m<L nm

(n, m)=d

L LL/d] |L/d]

1
Jk
2

]
|

Y
Il

1 j=1 k=1
LL/d]

>

j=1 -

= IlM-

2
< <1 +log g) . (C7)

=1

is bounded by

S5

L
1—|—10gL)2+/ (1 +1log(L/y))? dy = 5L — 4 —2log L
1

bY ¢, m . We substitutevz + 3, andma + 3, for = in the Fourier Which proves (4.5). O

series expansion

oo
<$>: Z akCQﬂ-zkaz

k=—oc

wherea;, = (—2rik)~! for k # 0 andag = 1/2. This Fourier

Remark: The constanb appearing in (4.5) can be improved

to 2 + 5v/2 + 7/3 = 4.1 by using the inequality

L
> 5 Sv+losl+

i=L

1

5T (C8)

series is only conditionally convergent, and is to be interpret@ghere- is the Euler—Mascheroni constant defined by

as the limit agV — oo of the sum taken from-N to V. How-
ever, its partial sums are uniformly bounded

Z ape?™*e < ¢ for all z and all V.

[k|<N

In fact, one can tak€ = % + 2 [24, Example 4, p. 22]. Hence,

N
> = —logN | =05772.... (C9)

j=1 -

(€2) Numerical experiments suggest the optimal constant te Be
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using the bounded convergence theorem, one can change the

order of integration and double sum to obtain

1
Cnom = Z Z akalCQﬂ'i(kfl),Bg/ CQﬂ'i(knflrn)ac dr. (C3)

LeZ lcZ 0

Summing up (C3) over the nonzero indexXes given by
kn = Im and straightforward manipulations result in
1 1 (n,m)?

L oridge(m—n)/(n, m)
o = — = _ widBo(m—n)/(n, m C4
“n, 4—’_47r2 nm (;) d2(3 (C4)

2

which, in turn, implies using_, ., 7z = %

1 1 (n,m)?
Cn,m = Z + E nim d)n,nl (CS)

for some|¢y, m| < 1. O
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