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Refined Error Analysis in Second-Order ��
Modulation With Constant Inputs

C. Sinan Güntürk and Nguyen T. Thao, Member, IEEE

Abstract—Although the technique of sigma–delta (��) mod-
ulation is well established in practice for performing high-reso-
lution analog-to-digital (A/D) conversion, theoretical analysis of
the error between the input signal and the reconstructed signal
has remained partial. For modulators of order higher than 1, the
only rigorous error analysis currently available that matches prac-
tical and numerical simulation results is only applicable to a very
special configuration, namely, the standard and ideal -bit -loop
�� modulator. Moreover, the error measure involves averaging
over time as well as possibly over the input value. At the second
order, it is known in practice that the mean-squared error decays
with the oversampling ratio at the rate ( 5). In this paper,
we introduce two new fundamental results in the case of constant
input signals. We first establish a framework of analysis that is ap-
plicable to all second-order modulators provided that the built-in
quantizer has uniformly spaced output levels, and that the noise
transfer function has its two zeros at the zero frequency. In par-
ticular, this includes the one-bit case, a rigorous and deterministic
analysis of which is still not available. This generalization has been
possible thanks to the discovery of the mathematical tiling prop-
erty of the state variables of such modulators. The second aspect
of our contribution is to perform an instantaneous error analysis
that avoids infinite time averaging. Until now, only an ( 4) type
error bound was known to hold in this setting. Under our general-
ized framework, we provide two types of squared-error estimates;
one that is statistically averaged over the input and another that is
valid for almost every input (in the sense of Lebesgue measure). In
both cases, we improve the error bound to ( 4 5), up to a log-
arithmic factor, for a general class of modulators including some
specific ones that are covered in this paper in detail. In the partic-
ular case of the standard and ideal two-bit double-loop configura-
tion, our methods provide a (previously unavailable) instantaneous
error bound of ( 5), again up to a logarithmic factor.

Index Terms—Analog-to-digital (A/D) conversion, discrepancy,
exponential sums, piecewise affine transformation, quantization,
sigma–delta (��) modulation, tiling, uniform distribution.

I. INTRODUCTION

I N current state-of-the-art circuit design, high-resolution
analog-to-digital (A/D) and digital-to-analog (D/A) con-

version is achieved by oversampling the input signal and
transforming it into a sequence of coarsely quantized values
which are selected from a small alphabet consisting of as few
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Fig. 1. Block diagram of classical first-order �� modulation.

as two symbols. An approximation of the input is then obtained
by extracting the in-band content of the quantized signal via
appropriate filtering. Sigma–delta modulation is a widely
used method for this purpose (see [1], [19], [14]), owing its
success largely to its robustness against circuit imperfections
and ease of implementation.

The simplest version of modulation is the single-loop
(first-order) version originally introduced in [15], which
involves an integrator, a single-bit quantizer, and a negative
feedback from the quantizer output into the integrator input.
The system equations are

(1)

The block diagram of Fig. 1 symbolizes this system. Here,
, , denotes the sequence of samples of

the continuous-time input signal sampled at times per
time unit. We shall normalize the time unit so that the spacing
between the Nyquist-rate samples is equal to one time unit;
thus, is also equal to the oversampling rate. Throughout the
paper, will be assumed to take integer values. The signals

and denote the quantizer input and the
output, respectively. In this system, the quantizer is one-bit;
i.e., it outputs values from a discrete set consisting of two
values, although multibit quantizers are also used in practice,
especially for higher order systems. Unless otherwise specified,
the input is assumed to be in when the quantization
step size is normalized to .

It is one of the primary objectives of the theory to understand,
as a function of , the behavior of the error between the input
signal and the approximations given by

(2)

for suitable low-pass filters whose number of taps typically
grows linearly in , thus spanning a uniformly bounded duration
of real implementation time. Various norms can be considered
for measuring the error signal

(3)
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such as the supremum norm, defined by

(4)

or an (infinite) time-averaged squared norm, defined by

(5)

For continuous-time approximations of the input, one con-
siders smooth interpolations of the sequence at the
original time scale, i.e., in the sense that .
Analogous norms can be defined for the corresponding contin-
uous-time error signal . Note that in
this case one would also have .

A priori, the error decay in depends on the reconstruction
filter, the error measure, and the input signal. The effect of each
of these factors is important and interesting in its own right;
however, one may safely claim that the effect of the reconstruc-
tion filter is understood better than the other two. For the sub-
sequent discussion, the reader may assume that the filters are
ideal low-pass; what follows is usually valid for a wide range of
filters, though sometimes small modifications may also be nec-
essary.

Still in the simple case of first-order modulation, let
us consider the sup-norm first. In the case of constant inputs

, the sup-norm of the error has been
known for a long time to be bounded by (see, e.g., [6])
where does not depend on ; this bound in the same form has
been extended to the case of arbitrary band-limited functions
as well [4]. Neither of these bounds is sharp, however. For
constant inputs, one in fact has for
almost every (in the sense of Lebesgue measure) where

may be arbitrarily small [2], [8], [10]. Here, the constant
depends on some fine arithmetical properties of (in the

sense of Diophantine approximations) and is quite irregular
(for instance, it is not square integrable in on any nonzero
interval). For arbitrary band-limited functions, a corresponding
improvement in the exponent of has been found only for the
instantaneous error; for each and each time instant , one
has [8], [10].

It is clear that ; therefore, all upper bounds
for the squared sup-norm apply to the time-averaged squared
norm as well. In the first-order case with constant inputs, it turns
out that these two norms behave somewhat similarly in the sense
that time-averaging does not yield any significant gain in the ex-
ponent of and that for infinitely many
[24]. This is not the case for the higher order schemes (which
will be defined shortly) and there still remains a large discrep-
ancy—natural or artificial—between the best known exponents
of in the bounds for these two error norms.

To provide more insight on the size of the error signal, let us
now look at the effect of statistical averaging over the values of
the constant input. Various mixed-type error norms can be con-
sidered depending on how one incorporates the mathematical
expectation (taken over the input space) into the norm defini-
tion. It is known in the case of uniformly distributed constant

inputs that, the mean (expected) time-averaged squared error
(or equivalently, mean-squared time-averaged error) defined by

(6)

is bounded by both from above and from below [6].
Note that the sup-norm estimate , which is uniform for
all values of , would yield the suboptimal estimate for
this quantity; on the other hand, we also see that the constant

in the improved sup-norm estimate cannot be
square integrable with respect to for otherwise it would imply
an impossible type upper bound for (6). In fact, a more
refined analysis reveals that is a highly singular function
of which fails to be square integrable on every subinterval
of the input range. Note that this does not mean that the error
is very large when is large because the simple sup-norm
bound with the uniform constant is always valid. It
rather means that for each , the type asymptotics kicks
in at a different value of . Similar remarks can be made in the
case of the mean-squared sup-norm

(7)

as well. This norm is stronger (i.e., larger) than ,
but it turns out that it obeys the only slightly worse upper bound

[9]. These results are summarized in the “ ”
(first-order) column of Table I in terms of squared norms.

More complicated multiloop systems incorporate multiple
number of integrators and feedbacks, and achieve better system
performance as is increased [3], [12], [13]. For a th-order
system, the corresponding system equations involve a th-order
difference equation, which may be presented in the prototypical
form

(8)

where denotes the -fold composition of the standard dif-
ference operator defined by , and

again represents the quantized output signal (possibly
up to a shift in time). In the case of a th-order stable
modulator (one for which is bounded), it is proved in [4]
that where the constant is uniform over
the input. They also give the first infinite family of arbitrarily
high-order single-bit schemes that are unconditionally stable for
arbitrary bounded inputs. Since the sup-norm is the strongest
norm among all the norms we consider, an -type esti-
mate applies, in particular, to all the mean-squared norms con-
sidered above; however, similar to the first-order case, this does
not necessarily reflect the optimal behavior of error in these
norms. Indeed, it is known for the multibit multiloop configu-
ration with constant inputs that has an -type
decay [13]. However, the analysis of [13] is restricted to only a
special case of modulation with a fixed uniform -bit quan-
tizer1 for a th-order scheme. While using this multibit quan-

1By this, we mean that the quantizer has uniformly spaced 2 output values
and each threshold level is the midpoint of an interval defined by these output
values.
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TABLE I
A COMPARISON OF PREVIOUSLY KNOWN ERROR ESTIMATES FOR �� MODULATION AND CONTRIBUTION OF THIS PAPER

tizer avoids overloading and eases the analysis of the quantiza-
tion error significantly, it is clearly a nonideal setup for large ,
since one of the appeals of modulation is its capability of
working with single-bit quantizers, producing one-bit-per-input
sample.

In this paper, we allow more general quantizers, including
single-bit quantizers. As one important contribution, we analyze

schemes for which no better estimate than the one provided
by [4] could previously be given. This includes the remaining
“1-bit” columns in Table I. Under our generalized framework,
we provide two types of squared instantaneous error estimates.
The first one involves statistical averaging over the input and
is uniform in time, measured by the sup-norm (in time) of the
mean-squared instantaneous error

(9)

where is an interval of input values that may be re-
stricted by the scheme. For the convenience and simplicity
of notation, we shall use the shortcut MSE (for the generic
“mean-squared error”) for this particular error measure. Note
that this measure satisfies the “sandwich” inequality

MSE (10)

For the (single-bit) schemes that we shall consider, the best
available bound on MSE is , which is provided by

the bound in [4] for the much stronger squared sup-norm. We
will show in this paper that MSE obeys an -type
bound, up to a logarithmic factor. The second bound we shall
provide will be directly on the instantaneous error. We will show
that for almost every input , also obeys the upper
bound up to a logarithmic factor. To the best of our
knowledge, there has been no other improved estimates for these
schemes yet (however, also see [24]).

For the two-bit configuration, our methods will produce an
type bound, again up to a logarithmic factor. This result

provides us with a rate estimate that matches the estimate for
the time-averaged squared error norm; however, note that due
to (10), neither of these results imply (i.e., is stronger than) the
other one.

Due to the increased complexity of the analysis, we shall re-
strict this paper to second-order systems with constant inputs.
Our methods, however, are not limited to second-order schemes
only, but to a large class of arbitrary order modulators [24]. We
also believe that the new techniques we introduce will prove to
be very useful for time-varying inputs.

The paper is organized as follows. In Section II, we derive the
basic equations and formulas for the time evolution of signals in
second-order modulators. In particular, we express the re-
construction error in terms of the state vector of the system. At
this point, the main obstacle against pushing the derivations fur-
ther is the absence of an explicit expression of any of the node
signals of the modulator, including its output and its state
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vector, which is basically due to the nonlinear recursion em-
bedded in the modulator. A first contribution of this paper is
the introduction and the exploitation of a new remarkable prop-
erty of modulators which, in principle, enables an explicit
derivation of its output and its state-vector sequence. This prop-
erty, which we call the tiling property, refers to the fact that the
state vector remains in a set that tiles the space by transla-
tions. We give the exact definition of this property in Section III,
show experimental evidence of it, give mathematical justifica-
tions, and derive from the knowledge of an explicit expres-
sion of the state vector in terms of and . While the existence
of the tile is clearly demonstrated by experiment and proved
mathematically (up to finite multiplicity of the tile), detailed
parametrizations of these tiles are not known in general. Fur-
ther knowledge on these parameters requires explicit analyses
of given configurations. We study in Section IV three different
configurations for which a thorough analysis has been feasible.
Part of this analysis involves the study of geometric regularity
of the invariant sets as carried out in Section IV-D, which will
turn out to be important for the improved error estimates men-
tioned above that we derive in Section V. These estimates de-
pend heavily on the general machinery of the theory of uniform
distribution [5], [16]. Appendix, part A is specially dedicated to
the basic elements of this theory as utilized in this paper. We
conclude the paper with further remarks and future research di-
rections (Section VI).

II. EQUATIONS OF THE SECOND-ORDER MODULATOR

A. Feedback Equations and an Equivalent System

The generic architecture of a classical second-order mod-
ulator is shown in Fig. 2.2 It can be easily derived from the block
diagram that this system satisfies the second-order difference
equation

(11)

In the standard case of the double-loop configuration studied
in [13] where , this equation can be rewritten as a
difference equation for the quantizer error

(12)

However, in the general case, a direct signal analysis of the
system of Fig. 2 is difficult due to the complicated action of
the feedback. We shall first derive an equivalent diagram of this
system which yields simpler feedback mechanisms. Consider
the change of input variable defined by the difference equation

(13)

where is a parameter to be chosen at our disposal. Next, define
the auxiliary variables and to satisfy the difference
equations

(14)

2There are more general configurations that contain extra feedbacks from the
quantizer input as well [19].

Fig. 2. Block diagram of classical second-order �� modulation.

Then, by subsequently applying (14), (11), and (13), it follows
that

(15)

(16)

Assuming that the initial conditions for have already been
picked (arbitrarily, or by some criterion), the initial conditions
for the sequences and can now be chosen so that
(16) implies

(17)

where

(18)

Since

(19)

the signal can now be thought of resulting from
through a new dynamical system shown in Fig. 3. In this
system, the feedback loop simply carries the input–output
difference at every instant and the remainder of the
system uses this value to produce the next signal value
to be quantized.

Given the construction of this dynamical system, the com-
plete modulation process can then be equivalently described
as the transformation of into through the sequence
of (2), (13), (17), and (19). Thus, the signal processing of
modulation based on the architecture in Fig. 2 can be repre-
sented by the block diagram of Fig. 4, where the block labeled
“dynamical system” symbolizes the system of Fig. 3. The op-
erator is basically a recursive filter that transforms into

through the difference (13). Note that in this setup, the op-
erator and the signal appear by mathematical construc-
tion and do not necessarily exist physically in an actual imple-
mentation given by Fig. 2. We also deduce that the effect of
as a parameter in is cancelled out in the system of Fig. 3. For
the realizability of this equivalence, we will assume that the pa-
rameters and have been chosen such that the operator is
stable for some .

Let us note at this stage that while the modulator de-
scribed by Fig. 2 is favorable for the efficiency of its circuit
implementation, it is also a legitimate option to switch to the
slightly less efficient modulator scheme described solely



GÜNTÜRK AND THAO: REFINED ERROR ANALYSIS IN SECOND ORDER MODULATION WITH CONSTANT INPUTS 843

Fig. 3. Alternative representation of the pure feedback process of second-order �� modulation.

Fig. 4. Global signal processing chain of �� modulation: the first block is
characterized by the difference equation of (13), the second block represents the
system of Fig. 3, and the third block represents the convolution operation of (2).
The first two blocks combined together generalizes the original second-order
�� system of Fig. 2.

by Fig. 3 (i.e., without the prefilter ) when circuit implemen-
tation is not the primary concern. In this case, would be an
additional parameter of design. In fact, there would be a whole
range of flexibility in the choice of if nonlinear functions are
also allowed. We shall return to this issue in Section II-E.

B. The Quantizer

We assume in this paper that the quantizer is uniform of
step size , in the sense that its output values are of the type

where , . The quantization intervals
which satisfy are defined by

.
(20)

We call the quantizer -bit if . In the particular
one-bit case, we assume that , so that the quantizer map-
ping reduces to

if
if .

(21)

We call the quantizer infinite if and .
We say that the quantizer is overloaded if .

Note that the infinite quantizer is never overloaded.

C. State-Space Equations

At every instant, and constitute the state variables
of the system. We will use the shorthand notation

(22)

to represent the vector state of the system. The full recursive
system equations of the block diagram of Fig. 3 is then

(23)

where

and (24)

For each real number , we define a partition
of by setting . Let

denote the affine transformation defined by

(25)

and denote the piecewise affine transformation
defined by

if (26)

With this notation, the recursive equations of (23) can be
rewritten as

(27)

D. Basic Error Analysis

Suppose we use the system of Fig. 2 and we would like to
compute an approximation of the input via the convolution

. Since the overall result is equivalently described by
the signal processing chain of Fig. 4, it is natural to consider
of the form to remove the prefiltering effect of

. With this choice, all we need to satisfy is that is a suitable
reconstruction filter for the system of Fig. 3 for the input .
Indeed, if we know that is small, then

(28)

will also be small since is a (causal) final inpulse response
(FIR) filter of at most three taps as defined in (13). For the error
analysis, it therefore suffices to consider the system of Fig. 3
only.

Now the error signal for the system of Fig. 3 can
be written as

(29)

where the first error component

(30)

is a signal that does not depend on the quantization procedure
and can be made arbitrarily small (in fact, even zero) by chosing

suitably, and the second error component

(31)
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corresponds to the in-band portion of the “quantization error”
signal . It is this second error component that con-
stitutes the center of interest of error analysis since, unlike
the first one, it is highly nonlinear in the input.

In the particular case when the input is a constant signal
(as will be the case for the rest of the paper) we

do not even have to worry about the first error component
since we can eliminate it completely by restricting to filters
that satisfy . It therefore causes no ambiguity to
denote by . Substituting from
(14) and changing the order of convolution and differentiation
yields the formula

(32)

When the dynamical system associated with the map is
stable (see Section IV), a basic decay estimate immediately fol-
lows. Indeed, stability implies that is bounded, which leads
to the simple error bound

(33)

This basic estimate cannot provide any decay rate better than
. To see this, recall first that the number of taps of

was required to grow linearly in ; this implies that
for some constant . Indeed, let be an -tap filter

with for and . Define

Using , and applying summation by parts twice, one
obtains

hence, the proof of the claim.
On the other hand, the upper bound is easily achieved

by imposing some smoothness on . Let be the rectangular
filter of length given by if and only if .
Consider

(34)

where is any filter with linearly growing number of taps in
and that satisfies with for some

absolute constant . Clearly, we have as well.
Note that where denotes the sequence
defined by . This implies

and we obtain

(35)

therefore, (33) implies .
The simplest choice for would be . In this case,

is the triangular filter, i.e., the second-order discrete B-spline

more commonly known in the circuit community as the
filter due to its frequency-domain representation. It has been
found, however, that the error decays faster than with
the choice , in which case is the filter. To ex-
plain this phenomenon, we return to the exact error expression
(32) which now yields the decomposition

(36)

where is the sequence of running averages defined by

(37)

When is large, it is expected that the signal will vary
more slowly than due to the long time averaging. In fact, if
some form of “central limit theorem” could be shown to hold for

, this would force to be mostly concentrated about
a mean value. Note that is a difference oper-
ator which would bring out the residual value around this mean
when convolved with . Therefore, would at most vary as
this residual value (up to the multiplicative factor ). This ad-
ditional cancellation provides an intuitive justification for using
the filter. The quantification of this idea, which will be
essential in the derivation of our improved estimates mentioned
in Section I, is contained in much of the rest of this paper. Qual-
itatively, these results may be viewed as originating from the
ergodicity of the mappings with respect to the Lebesgue
measure on certain invariant sets. On the other hand, quantita-
tive results will depend heavily on fine analytic and algebraic
properties of these invariant sets, which will be stated in Sec-
tion IV.

It is known that the filter can be further improved by
some coefficient modifications, yielding smaller multiplicative
coefficients in the error [12]. However, in this paper, we shall
stick to the filter, as it is simple to implement, and it
captures the essence of our methods best. Let us briefly men-
tion here that nonlinear reconstruction has been demonstrated
to yield faster error decays [22], [25] but is not used in practice
for complexity reasons.

E. Nonlinear Functions

The error decay guaranteed by the inequality of (33) actually
gives us more information than just an error bound. Note that
it assumes no condition on the nature of the functions and
except that they have been designed to ensure that is bounded.
Theoretically, the constraint that be a linear function is arti-
ficial as a design criterion since the composed operator
is in any case nonlinear because of . Moreover, note that it is
globally the composed operator that differentiates the sta-
bility properties of one modulator from another. We will see in
Section III that relaxing the linearity of the function will en-
able us to uncover general properties of the dynamical systems
that are analytically unreachable with linear functions . Also,
although the feasibility of nonlinear functions with regard to
analog circuit implementation is still an unanswered question,
a prototype of one-bit second-order modulator with a quadratic
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function was numerically demonstrated in [23] to have supe-
rior performances to the one-bit linear- modulators. This pro-
totype will be introduced in Section III.

III. INVARIANT TILES UNDER CONSTANT INPUTS

The error relations (36) and (37) require a refined analysis
of the state vector . The fundamental difficulty is that the
sequence is not known explicitly in terms of . As can
be seen in (27), is only recursively determined in terms of

with as a varying parameter. The scope of this
paper is the error analysis under constant inputs , .
In this situation, recursively depends on through
the fixed mapping , i.e.,

(38)

The key to the analysis lies in the study of the map .

A. Experimental Observation of Tiling

We start with the description of a particular experiment that
led to the discovery of a remarkable property of the maps .
For various second-order modulators, we plot in black in
Fig. 5 several consecutive iterates of a fixed initial condi-
tion under the map , where is a fixed constant input.
In these plots, is chosen to be irrational; we will return to this
issue later. For each modulator, one can observe in this plot that
the state points remain in (and fill out) a certain deterministic
set . However, there is more to this set in that in every
case its integer translations appear to tile the plane. We
highlight this fact in the figure by representing the translates of
the points by and in two gray tones, respec-
tively. Formally, we say that a set is a tile when for each point

, there is a unique point such that .
This is equivalent to the fact that the family forms
a partition of .

Since the initial observation of this phenomenon [9], it has
been systematically confirmed on any stable second-order
modulator employing a quantizer with uniformly spaced output
levels as assumed in this paper. In the cases of Fig. 5(a)–(d),
the standard linear rule is used
with different versions of the quantizer. Fig. 5(a) is the case
of the nonoverloaded ideal quantizer (infinite quantizer). In
Fig. 5(b), we use the three-level quantizer introduced in [26]
which employs as the output levels and , as the
threshold values. Fig. 5(c) is the standard one-bit quantizer
case. In Fig. 5(d), we use an infinite quantizer whose threshold
at has been deviated by . Fig. 5(e) shows the case of a
different linear rule with the
regular infinite quantizer. Finally, Fig. 5(f) shows the case of
the following “semilinear” rule introduced in [23]:

(39)

Formally speaking, these experiments demonstrate the
existence of a tile that contains the forward trajectory

. Now, the recursive relation (38) implies that
. Since appears to be dense in , one is then

tempted to conjecture that . Once proved, this

result implies that if the initial initial state , then all
forward trajectories will be known to remain in . However,
the real significance of this result lies in the tiling property as
will be explained in Section III-C.

B. Mathematical Justifications of Tiling

Some mathematical justifications of the above tiling conjec-
ture have been recently provided in [24] under the assumption of
stability. We call the dynamical system defined by a map on

positively stable if there exists a bounded set satisfying
. We call such a set positively invariant. Cer-

tainly, the existence of such a set ensures stable operation of the
modulator and there has been interest in finding such sets [21].
We are interested in invariant sets that are also tiles. It turns out
that if a positively invariant set can be found for , then con-
secutive iterations of this set under converge to an attractor
set that is a tile, up to a multiplicity. In the following theorem,
we summarize the results obtained in [24] in this direction.

Theorem 3.1 ([24]): Given a finite measurable partition
of , a collection of integer vectors and an

irrational constant , consider the piecewise affine map
on defined by

if (40)

where is the lower triangular matrix of ’s and
. If there exists a bounded set of positive

measure that is positively invariant under , then the set

(41)

is invariant by (i.e., ) and is equal (up to a set
of measure zero) to the disjoint union of a finite and nonempty
collection of tiles.

A number of remarks is in order. First, note that the mapping
defined in (24)–(26) is indeed of the form of (40). Second, not
only does this theorem state the existence of an invariant set ,
but (41) shows that is an attractor of within the region of
stability . Next, note that this theorem is valid in any dimen-
sions and under general conditions on the partition as
well as the integer translations , as long as the overall map

is positively stable. However, under these general assump-
tions, the conclusion is only that is composed of one or more
tiles, all up to a set of measure zero. Indeed, an example given
in [24] shows that a map of the type (26) may yield an invariant
set composed of two tiles. (Let us note that this example re-
quired the use of a particular nonlinear thresholding function .)
The exact conditions on to yield a single tile are not currently
known. From our experience (including, for example, the exper-
iments of Fig. 5), we believe that all stable modulators using
a linear thresholding function yield a single invariant tile, at
least at the second order and including the case of rational input
constants . However, care must be taken in the definition of the
invariant set when is a rational number; the statement is on
the existence of a tile that is invariant under and it may not
necessarily be the case that can be found as an attractor as in
(41) or the closure of any trajectory. It remains a general con-
jecture that linear thresholding functions enjoy these properties.
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Fig. 5. Representation in black of several consecutive state points of various second-order �� modulators with an irrational constant input x ' 1=4. The copies
in gray are the translated versions of the state points by (1; 0) and (1;1), respectively.
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In Section IV, we will give the proof of these properties on three
particular configurations of second-order modulation. But
before performing this analysis, we would like to show why the
single-tile case is of crucial importance.

C. The Single Invariant Tile Case and its Fundamental
Consequence

From now on, we only consider modulators for which the
invariant set is a single tile for each . We shall see in this
case that it is possible to find an explicit expression for in
terms of and . To keep the discussion simple, we shall re-
strict ourselves to second-order modulators; the generalization
to higher order modulators is routine.

We first introduce some notation. Let be an arbitrary tile
in . By definition, the collection of sets form a
partition of . This implies that for each , there exists
a unique point in , denoted , such that

(42)

In other words, is the unique map from to that
satisfies

(43)

and

(44)

In the simple case where , we will use the standard
notation to denote , where

(45)

Here denotes the fractional part of a real number
, and denotes the greatest integer less than or equal to .
We return to the sequence of the state vector which

remains in for all . From (26) and (27), we can write

(46)

where . Since , we obtain via (43) and (44) that

(47)

At the same time, let us artificially build a closely related se-
quence , which we recursively define by

(48)

with the initial state . We have the following prop-
erty.

Proposition 3.2: For all , we have

(49)

Proof: Since and is a matrix with all
integer coefficients, we have
It follows from (44) that

(50)

for any . The proposition is then proved by induction.
For , we have . Suppose (49)
holds for , i.e., . Then, by
successively applying (47), (48), and (50), we obtain

The power of this result lies in the fact that there is an explicit
functional expression for , which can be obtained by simply
iterating (48) forward and backward. For all , we have

(51)

Thus, under the assumption that the tile is known, the com-
bination of (49) and (51) provides an explicit expression of
in terms of .

We define for by (49). It follows from the invari-
ance of under that this definition is consistent with (38)
for all .

Fig. 6(a) gives a graphical example of explicit determination
of the sequence from the knowledge of the tile, via the
preliminary calculation of the sequence from (51).

D. Further Developments on the Single-Tile Case

A remaining major difficulty of analysis is that the expression
(49) for depends on the knowledge of the invariant set .
Not only that this set can be complex as in some of the exam-
ples in Fig. 5, but also explicit expressions are, in general, not
easily obtainable. Nevertheless, an analysis of is still pos-
sible, thanks to a particular decomposition of into simpler
components. This is based on the following lemma.

Lemma 3.3: Let and be two sets that tile the plane with
translations. For each , let us define the set

Then

i) the family forms a partition of ;

ii) when .

Proof: Since tiles the plane with translations, for any
, there exists a unique such that . This

proves part i). Now, consider any given and any .
By definition, , and we have . Since

differs from by an element in , and itself lies in
, it must indeed be equal to , i.e., .

Lemma 3.3 actually leads to the following explicit relation:

where stands for the characteristic function of the set .
Note that always belongs to . Hence, if and only
if . We can then also write

(52)



848 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

(a) (b)

Fig. 6. Modulo operations. (a) Illustration of uuu[n] = hvvv[n]i from (49). (b) Comparison between huuui and huuui (illustration of (53)). In both figures,
two—dimensional points are marked using the symbol “�.”

Of particular interest will be the case where and
. This yields

(53)

where . This is the decomposition of
the function as mentioned earlier.

Another useful property is the following.

Proposition 3.4: Let and be two (Lebesgue) measurable
sets that tile the plane with the lattice. Then as a mapping
from to is a (Lebesgue) measure preserving bijection whose
inverse is given by . If is any -periodic
locally integrable function, then

(54)

Proof: Bijectivity is clear. On the other hand, if ,
then , since each of these mappings shifts its ar-
gument by an element of , and the resulting point lies in .
Hence, inverts . Now, for any , let us define

and It follows easily from
the tiling assumption that the families and
form partitions of and , respectively. It is also easy to see
that . Now, for a measurable set , (52)
implies that

This is a disjoint union, and it follows that

Hence preserves measure.

Since is -periodic, we have . Using
this and the measure preserving property of , we get

(55)

We conclude this section with a word on the dynamics of
on the invariant set . Consider the mapping

naturally defined by . It can be
easily checked that the mappings and are related
to each other via

It is well known that when is irrational, is ergodic with
respect to the Lebesgue measure (see, e.g., [20]). Since both

and are measure pre-
serving, it follows that (and also ) is ergodic on
with respect to the Lebesgue measure as well. This is the ergod-
icity property that was mentioned at the end of Section II-D.

IV. THOROUGH STUDY OF THREE PARTICULAR

CONFIGURATIONS

The purpose of this section is three-fold. First, we would like
to give some concrete examples of invariant tiles in some
practical configurations. Recall from Section III that a general
criterion regarding when the invariant sets reduce to single tiles
is not available yet and also that our signal analysis machinery
is dependent on this condition. Second, we will see in these ex-
amples that the tiling phenomenon is not restricted to irrational
inputs but that it applies to rational inputs as well. Third, we
would like to extract some common analytical features of these
invariant sets which will later be crucial in the error analysis of
Section V.

A. Linear and Two-Bit Quantizer: The System

The configuration for which derivations are the easiest
is the standard two-bit double-loop configuration previously
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Fig. 7. The invariant set for the dynamical systems MMM considered in
Section IV-A. The level sets of T (�) are drawn for x = 0.

studied in [12]. As explained in Section II-A, this corresponds
to the case where . We set , so that
satisfies the relation

(56)

With this choice of coefficients, the modulator satisfies a unique
property that we describe here. One can easily derive from Fig. 3
that

Because of (56), this implies that

which is the quantizer error (up to the sign). First, assume that
the quantizer is infinite as defined in Section II-B. This im-
plies that for all . Therefore, the point

belongs to regardless of the input se-
quence . Correspondingly, the couple
belongs to the image of the set under the bijection

. We depict this set in Fig. 7.
clearly remains invariant under for all , and its

translations tile the plane; the latter follows easily from the
observation that this is already true for the set and that
the matrix representing is integer-valued with determinant .

Now, if , then, as a consequence of (56),
always remains in the interval . Hence the infinite

quantizer can as well be replaced with the two-bit quantizer with
output values to produce an equivalent
system. For the corresponding threshold values and
for , the level sets of the function are also drawn in
Fig. 7. Note that there are four regions in determined by these
lines, and these are represented by the 2 bits of the quantizer
output.

B. Linear and 1-Bit Quantizer: The System

To analyze properties that are likely to be representative of
the general case of practical second-order modulators, it
is important to consider at least one configuration where is
linear, but and the quantizer is only one-bit
as defined in (21). Unfortunately, in this situation the invariant
sets of suddenly become complicated and very difficult to
identify. Until now, this identification has been possible only in
the particular case where , the quantizer

is one-bit, and is limited to the interval . In this
situation, the space is partitioned by the line into
two half-spaces denoted by and , and is an affine
transformation on each of these half-spaces. As varies, these
mappings exhibit invariant sets that depend on in a nontrivial
way. Consider the partition of the interval as

where , , and for each ,
let be the unique integer such that . We
show in the Appendix, Subsection B that the connected set
enclosed in the polygon shown in Fig. 8(a) (where the portion
of the boundary represented in mixed line is excluded) is an
invariant set for , and its translations tile the plane. The
exact definition of the vertices of is given in the Appendix,
Subsection B, Table II. Note that the total number of vertices is
equal to , which increases indefinitely as approaches .

We add that and are obtained via the limits of , as
and . Together with the symmetry ,

which is a mere consequence of the relation

(57)

we obtain the parameterization of all in the range .
We also note that the polygonal boundary of has bounded

perimeter for all .

C. A New Rule: Quadratic and One-Bit Quantizer: The
System

To extract further potential properties of the dynamical
system of Fig. 3 in the one-bit case, it is interesting to explore
the case where the linearity of is relaxed, given the limited
available results with linear . Such a question was previously
studied in [23] (see also [4] for a piecewise-linear choice of ).

It turns out that remarkably simple invariant sets are obtained
(yet still using a one-bit quantizer) by considering the quadratic
function defined by

(58)

for , where is an arbitrary function of . We present
in the Appendix, Subsection C the reasoning behind this par-
ticular choice of . For , is defined by the symmetry
relation (57). The invariant sets of the resulting dynamical sys-
tems have the property that the boundary of each of them is
a piecewise-quadratic curve with four pieces. An example of
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Fig. 8. The invariant set for the dynamical system given in Section IV-B for a generic k value (in this figure k = 5). (a) Detailed description. (b) Tiling
demonstration.

these sets is depicted in Fig. 9 for , and for a partic-
ular choice of . The invariant set is the region bounded
by the quadratic curves that connect the points , , , ,
where the piece of curve that joins to is to be excluded.

We show in the Appendix, Subsection C that is an invariant
set for , and its translations tile the plane.

Although the relevance of such a system to analog circuit im-
plementation is still to be evaluated, this quadratic function
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Fig. 9. The invariant set for the dynamical system given in Section IV-C. (x = 0:24).

is still interesting to be considered as it gives us a first situa-
tion where the invariant set of the dynamical system of Fig. 3 is
entirely available analytically. It also gives us what we believe
to be the simplest configuration of invariant sets theoretically
achievable by one-bit second-order modulators.

One remark is on the robustness of the implementation. It
was shown in the work of Yılmaz in [26] that second-order
modulation is robust against small functional perturbations of
(what we refer here as) in the sense that stability of the
state variable is ensured as long as the boundary separating the
partition stays in a particular region. It also follows
from this work that the quadratic function presented in this
paper is robust in this sense, at least in a range of inputs . This
increases the chances of the implementability of this quadratic
function in real circuitry.

D. Boundedness, Regularity, and Tiling

The invariant sets of the dynamical systems given above pos-
sess three properties which turn out to be crucial in the esti-
mates we shall prove in this paper. These properties are uniform
boundedness in , regularity of the boundary, and tiling, as sum-
marized in Proposition 4.1. Before we proceed to the statement
of the proposition, let us define the regularity class of sets
to be the collection of sets for which

and

for every , where is a monotoni-
cally increasing function such that . Here
denotes the (Lebesgue) measure of the set , and denotes
the complement of . Every Jordan measurable set (i.e., a set
whose boundary has Lebesgue measure zero) belongs to such a
class for some .

Proposition 4.1: For each of the one-parameter family of
dynamical systems given in Sec-
tions IV-A–C, there exists a subinterval of

such that for each , the map possesses an invariant set
with the following properties.

1) Uniform boundedness in : There exists a positive con-
stant such that

2) Regularity of the boundary: There exists a positive con-
stant such that for all , where

.

3) Tiling: For each , the set is a tile congruent to
modulo translations by vectors in . That is, the

translates of by the integer lattice tile the plane

and

We say that is a tiling-invariant set, or equivalently, an
invariant tile.

The proof of this proposition is given in the Appendix, part D.

V. THE MAIN THEOREM

We shall continue to use the notation , , and to de-
note the one-parameter family of dynamical systems

for the two-bit linear, one-bit linear, and the one-bit quadratic
schemes given in Sections IV-A–C, respectively. For each of
these second-order schemes, we assume that for each

, the initial condition is chosen from the invariant set
of the associated dynamical system , and the sequence

is defined for all as described in Section III-C.
Recall that the subscript in denotes the dependence
of the error on the value of the
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constant input signal , and is the filter defined in
Section II-D. For each family , we set, as in
Section I

MSE (59)

where is as defined in Proposition 4.1. The fol-
lowing theorem lists our improved estimates for these second
order schemes.

Theorem 5.1: Let be a second-order modulation
scheme that satisfies the properties listed in Proposition 4.1,
in particular any of the schemes , , or . Then the
following estimates hold.

a) The mean-square error defined by (59) satisfies

MSE (60)

for all , where is a constant that depends
only on the scheme .

b) For almost every , and all

(61)

for all , where does not depend on
, but otherwise may depend on the scheme , input ,

and the time point .

c) For , the same estimates in a) and b) hold with
replaced by .

Before we proceed onto the proof of the theorem, let us list
some further qualitative observations. Equation (36) states that

(62)

As a reminder from (37), is qualitatively the average of
the discrete sequence over the time interval of .
This expression immediately suggests that .
To see this, denote by the mapping that takes
to . When is irrational, for almost all and for all , the
ergodic theorem yields

(63)

Now, it is a simple exercise to show that

(64)

therefore, (62) and (63) together imply that .
Note that this argument does not provide us with any informa-
tion about the improvement on the exponent of . The proof of

Theorem 5.1 will heavily use techniques from the theory of uni-
form distribution. Subsection A of the Appendix contains the
definitions and the tools that we shall employ in the proof.

Proof of Theorem 5.1: Let us define a residual sequence
by

(65)

Since and differ by an absolute constant, we can
replace in (64) by . When combined with (62), this
yields

(66)

and by Cauchy–Schwarz

(67)

therefore, it suffices, for each time point , to estimate
for general .

Let us first consider the rather simple case . Note that
the invariant set given in Fig. 7 is such that the ordinate of
any point in always lies in . Also, the sequence
defined in Section III-C satisfies . Therefore,

(68)

Since in this case , (65) becomes

(69)

Let denote the discrepancy (see Subsection
A of the Appendix) of the consecutive sequence elements

. Koksma’s inequality (Appendix,
Subsection A) can be used to bound

(70)

where we have used the invariance of discrepancy under trans-
lations of the torus in the equality

The estimate (70) therefore reduces the problem for the case
to estimating the -term discrepancy of the se-

quence .
The general case for which includes is more

difficult because it is no longer possible to obtain an expression
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of as simple as in (68). Initially, the expression (65) sug-
gests the need for some two-dimensional version of Koksma’s
inequality, defined on an arbitrary set (in our case ); how-
ever, the setup for the so-called Koksma–Hlawka inequality [5,
Theorem 1.14]) is the unit cube . Using (49), the -pe-
riodicity of , and Proposition 3.4, we can transform the ex-
pression (65) into

(71)
and attempt to use the Koksma–Hlawka inequality for the se-
quence and the function . At first, this
attempt also appears to be defeated because Koksma–Hlawka
inequality holds for functions that are of bounded variation in
the sense of Hardy and Krause (see [5, p. 10] for the definition),
which is a more restrictive class than the usual functional class

when , and which does not necessarily con-
tain due to the geometry of .

We overcome this difficulty with the following procedure. By
applying (53) on both and , and by using the
linearity of , we first obtain

(72)

where

and

(Note that we have replaced with since .) It
is now possible to apply the Koksma–Hlawka inequality to the
first term . This gives

(73)

where is the variation of in the sense of
Hardy and Krause, and is the two-dimensional
discrepancy (Appendix, Subsection A) of

On the other hand, it is still true that the functions are
not necessarily of bounded variation in the sense of Hardy and
Krause. However, now the notion of discrepancy with respect
to a given subset can be invoked (Appendix, Subsection A). In-
deed, by definition, we have

(74)

We now make use of the regularity of the sets in order to
estimate these quantities. From Proposition 4.1 (Property 2) and
Theorem A.4, it follows that

(75)

for some constant , where , as defined in Proposi-
tion 4.1. Note also that as soon as , where
is some absolute constant that only depends on the system ,
and the range . We can therefore limit the summation over
in (72) to the set , whose cardinality

does not exceed . We have also for
all . With (73) and (75), we finally obtain the analogous
bound for

(76)

where we have used the fact that discrepancy is always between
and when merging the terms with different powers. There-

fore, the problem in the general case is also reduced to esti-
mating the -term discrepancy, but this time of the two-dimen-
sional point sequence . The following lemma addresses this
issue.

Lemma 5.2: The following estimates hold.

a) For all and

(77)

where is an absolute constant.

b) For almost every , all , and

(78)

where does not depend on , but otherwise
may depend on the input and the time point and is
some fixed small positive number.

c) If is replaced by , then can be replaced by
in a) and can be replaced by in b).

The proof of this lemma is independent of the rest of the proof
of Theorem 5.1 and is presented separately at the end of this
section.

Lemma 5.2 is essentially all that was needed to complete the
proof of Theorem 5.1.

a) We square and integrate both sides of the inequality (76)
and apply Cauchy–Schwarz followed by Lemma 5.2, part
a) to obtain

(79)

Note that does not depend on . Therefore, this result
together with (67) implies (60).

b) In this case, we simply apply (67), (76), and Lemma 5.2,
part b) to obtain (61).

c) For the mean-square error, we square and integrate both
sides of (70) and apply (67) and Lemma 5.2, part c). For
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the instantaneous error, we simply apply (67), (70) and
Lemma 5.2, part c) to obtain the desired estimate.

Proof of Lemma 5.2:
a) Define, for

(80)

where the dependence on becomes explicit when (51) is in-
serted in this expression. Using the periodicity of the exponen-
tial function, one can rewrite as

(81)

where

and

Note that and for all . Since is a
quadratic polynomial in , it can attain any given value at most
twice. Hence, if is rewritten as a trigonometric poly-
nomial in with distinct frequencies, the amplitude of each fre-
quency will be bounded by , since

. Also, there will be at most distinct frequencies. Thus,
using Parseval’s theorem, one easily bounds
by

(82)

uniformly in . Now, for any positive integer , Erdős–Turán–
Koksma inequality (Theorem A.5) yields the estimate

(83)

which, upon taking the square, using the (Cauchy–Schwarz) in-
equality , and integrating gives

(84)

where

(85)

This last quantity can be bounded by using
Cauchy–Schwarz inequality and (82). On the other hand, one
has

(86)

so that (84) reduces to, for and

(87)

where it suffices to choose at the last step.
b) The proof of this result may seem somewhat unexpected

since it is actually derived from the input-averaged estimate.
However, the technique we shall use in our proof is well known
in the metric theory of discrepancy [5, Sec. 1.6.1].

Let denote the discrepancy of a given sequence over
the set of indexes and denote the number of inte-
gers in . (For an arbitrary finite set , will simply denote
the cardinality of .) A crucial aspect of the method is that the
function is subadditive, i.e., for ,
we have

(88)

which follows straightforwardly from the definition of discrep-
ancy given by (A9).

Denote by the collection of all dyadic subintervals
of length . For example, . Note

that .
It is clear by considering the binary expansion of any given

that one can write as a disjoint union of
at most dyadic intervals. Let us call the collection of these
intervals . Hence, we have , , and

.
Fix . Since , we have

(89)

so that by Cauchy–Schwarz, we get

(90)

where we define to be the function

(91)

Now, note that Lemma 5.2, part a) implies

(92)

Therefore, for an arbitrary positive number , we obtain

(93)

Now, as we show next, a standard Borel–Cantelli argument
yields the bound

(94)
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for all and almost every . To see this, let

with Lebesgue measure . Since we have

(95)

it follows that . Hence, the set

(i.e., the collection of points for which
for infinitely many ) has measure zero. This means

that for almost every , one has
for all but finitely many . For each , we remove this finite
set of unwanted values of by multiplying the upper bound
by a suitable constant . This proves (94). (One can extend
this argument to show that almost ev-
erywhere; see [5, p. 154].)

Now, for each , there exists a unique such that
. Then (90) implies together with

almost everywhere that

a.e. (96)

where we have also restored the possible dependence of the con-
stant on which was fixed at the beginning of the proof.

c) These inequalities are proved exactly in the same manner as
in a) and b), however, using the one-dimensional Erdős–Turán
inequality (Theorem A.3) instead.

VI. DISCUSSION AND FURTHER REMARKS

What has fundamentally enabled our analysis of the mod-
ulators in this paper is the tiling property of the invariant sets of
the associated dynamical systems. The tiling property allowed
us to find an explicit expression of the error signal for constant
inputs. In this paper, we have concentrated on upper bounds for
the instantaneous error of the modulator in two cases: in the
mean and the almost surely, when the constant input comes from
a uniform distribution. In both cases, we have derived bounds
in the form of (modulo logarithmic factors) under the
general regularity conditions of Proposition 4.1. Apart from the

case, what kept us from achieving the experimentally ob-
served generic decay rate was the lack of a more customized
discrepancy estimate than what is implied by Theorem A.4. It
would be interesting to improve this machinery and further close
this gap.

The constants appearing in the error bounds that we have de-
rived in this paper are unfortunately only implicit. While it is
very desirable for practical implementations to know explicit
(and perhaps tight) constants, at this stage we do not know if
the functional forms of these error bounds reflect the accurate
order of magnitude of the norms we have considered. Therefore,
we have not focused on the values of constants in this paper.

It turns out [24] that some of these problems are eliminated if
the time-averaged square error measure is used instead; it then
becomes possible via the tools of ergodic theory to extract a
more refined form of the error decay rate in . This constitutes
a generalization of the work in [7], [12] to a much more general
setup of quantization schemes.

We note that the analysis of this paper can be straightfor-
wardly generalized to higher order modulators with con-
stant input once the tiling property (with single invariant tiles) is
established and these tiles satisfy the properties listed in Propo-
sition 4.1 (in fact, it is possible to relax the regularity condi-
tions stated in there via the weaker general conditions of The-
orem A.4). We leave the details of this generalized analysis to
the reader.

In parallel, a substantial topic of investigation is a better un-
derstanding of the tiling phenomenon, and in particular, how the
constant input theory can be generalized to time-varying inputs.
This is not easy, however, since there is yet no scheme apart from

in which the invariant sets do not vary with . Under-
standing this dependence will prove to be crucial in improving
the error estimates for second- and higher order modulators
for time-varying inputs.

APPENDIX

A. Tools From the Theory of Uniform Distribution

Let be a sequence of points in identified with
the -torus . The sequence is said to be uni-
formly distributed (in short, u.d.) if

(A1)

for every arc in . Define the -term discrepancy of the se-
quence as

(A2)
where denotes the set of all intervals in considered as
the -torus . It is an elementary result that is u.d.
if and only if as . Equivalent characteri-
zations of uniform distribution are given by Weyl’s criterion.

Theorem A.1 (Weyl):

is u.d. (A3)

(A4)

for every Riemann-integrable (or, equivalently, continuous)
function on .

These are “qualitative” statements. The relation between
how good the distribution of a sequence is and how fast (A3)
and (A4) converge are studied in the “quantitative” theory.
The second Weyl criterion is especially relevant to numerical
integration. Fundamental quantitative measures in the theory
are the following.
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Theorem A.2 (Koksma’s Inequality [16]): Given any func-
tion that is of bounded variation and a finite
sequence of points in

(A5)

where denotes the total variation of .

Theorem A.3 (Erdős–Turán Inequality [16]):

(A6)

for some absolute constant .

The theory of uniform distribution generalizes naturally to
higher dimensions, however, with some added complexity. Let

be a sequence in identified with . For
a measurable subset of , define

(A7)

where denotes the -dimensional Lebesgue measure of .
Let denote the set of all intervals (i.e., the set of all rectangles
whose sides are parallel to the axes) in . The discrepancy
is by definition

(A8)

The sequence is said to be u.d. if the condition
holds for every . Again, this

is equivalent to . Weyl’s criterion naturally
extends using multidimensional versions of (A3) and (A4).

If a finite index set replaces the set of indexes ,
then we shall use the notation to denote the discrepancy
of the points , , i.e.,

(A9)

A definition of discrepancy exists also for arbitrary nonneg-
ative Borel measures on . The discrepancy of with
respect to the set , denoted by , is defined
to be . Similarly, one has the definition

(A10)

for the discrepancy of . By definition,
, where the measure is defined by

for .
If the supremum in (A10) is taken instead over all convex sub-

sets of , then this quantity defines the isotropic discrepancy
. Clearly, one has ; on the other hand, an in-

equality in the reverse direction exists only in a weaker sense:
, where is a constant that depends only

on the dimension . The following theorem [18, p. 173] (see also
[17]), gives a discrepancy estimate for sets in the larger family
of Jordan-measurable sets. Let denote the class of sets de-
fined in Section IV-D.

Theorem A.4 (Niederreiter, Wills): Let
be monotonically increasing such that for all ,
and . Then, for every , one has

(A11)

A multidimensional version of Koksma’s inequality (called
the Koksma–Hlawka inequality) holds for functions of bounded
variation in the sense of Hardy and Krause. We will not go into
the details but refer to [5], [16] only. On the other hand, a gen-
eralization of Erdős–Turán inequality is simpler to state and is
given by the following.

Theorem A.5 (Erdős–Turán–Koksma Inequality [16]):

(A12)
where

for

and is a constant that only depends on the dimension .

B. Invariant Set for the System

In this subsection, we show how the set described in Sec-
tion IV-B can be shown by inspection to be invariant by .
We will not mention, however, by what process the invariant set
can be found initially, as our current method is limited to prac-
tical inspection. Consider an integer and .
Consider then the two points and of the thresholding
line , defined in the first part of Table II. Let us
define the following points:

(B1)

Then, for , let us recursively define

(B2)

Thanks to (B1), (B2), and the definition of in (26), one can
easy establish the second part of Table II. To derive the third
part of the table, one first has to note the following properties.
Because of (25), it is trivial that for
any point . It then results from (B1) that
and . Next, if two points and are such
that , it is easy to see from (26) and (25) that

. Thus, one recursively obtains from
(B2) that and . We derive these
integer difference vectors for a certain number of indexes and
show the results in the third part of the table.

Let us denote by the set enclosed into the
polygon of vertices , and by
the union of the segments for . We
define the set
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TABLE II
CHARACTERIZATION OF THE VERTICES OF THE INVARIANT SET OF SYSTEM L

where

The above sets can be recognized in Fig. 8(a). They are also
highlighted in Fig. 10(a) where and are represented by
shaded areas, and and are represented by a dashed line
and a mixed line, respectively. The set is basically formed
by removing from the upper boundary shown in mixed
line in Fig. 8(a). Note from the definition of that we are also
removing the inner segment from . However, this
inner segment still remains in because it is part of . Now,
note that and . Therefore,

(B3)

In the last equality, we have used the fact that and are
injective. Let us derive . Since is affine, is
simply the polygonal set whose vertices are obtained by trans-
forming those of through . Now, except for and ,
all the vertices of belong to . Their images by and by

are therefore the same. Their images through are then
trivially obtained from (B2). Meanwhile, the explicit transfor-
mation of and through is obtained from (B1). By ap-
plying similar reasonings to , , and
we then find

These sets can also be recognized in Fig. 8(a) and are high-
lighted in Fig. 10(b). By using (B3), one can see by inspection
that .

C. Invariant Set for the System

We briefly describe here the construction principle of the
function of (58). The basic idea is to find a change of coor-
dinates such that in the new coordinate system the dynamical
system becomes somewhat “simpler.” Denote by the bijec-
tion defining the change of coordinates, and the transfor-
mation in the new coordinate system, given by

Let the pieces of on and

be denoted by and , respectively. It turns out that it is

possible to find which reduces one of or to a pure
translation, while keeping the other one still affine. Assuming

, it is actually interesting (and more intuitive) to reduce
to a translation, since in this case the state variable

stays in more frequently than . This can be realized by
setting

(C1)

where

(C2)

and is an arbitrary constant that may depend on . We denote
also by . Then is given by

and by



858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

Fig. 10. A schematic diagram of the action of MMM on � for the L system.
(a) Before the mapping. (b) After the mapping.

where

and

Note that the description of is independent of the constant
and that is simply the translation along the -axis by

the negative constant .
The final ingredient is the specification of the partition

, or equivalently, the partition . This is done

with the help of eight characteristic points of the mappings

and , denoted by and (see
Fig. 11). These points are defined by

(C3)

(a)

(b)

Fig. 11. The invariant set for the Q system in the (~u ; ~u ) domain (x =
0:24).

and

(C4)

Consider the set where

and

It is implied in these definitions that is formed by taking the
parallelograms without the two boundary segments

and , and is formed in a similar manner.
These two sets are illustrated in Fig. 11(a). Note from the figure
that is then simply the trapezoid from which the
upper boundary segment has been removed. Now, one
can easily check that

and
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These sets are illustrated in Fig. 11(b). One can easily see that
. If we choose the straight line passing

through and as the boundary between and , i.e.,

then we ensure that and . In this situation, we

have . Back to the original
space, the set then satisfies .
Because of the quadratic nature of , it is clear that has a
boundary composed of four parabolic pieces. This is illustrated
in Fig. 9. Because the boundary segment is excluded
from , the boundary parabola passing through and is
excluded from .

To find the expression for back in the original system of co-
ordinates, we substitute the expressions for , and from
(C1) and (C2). Then the resulting function , up to a scaling
factor, is given by (58) with

(C5)

In this paper, the choice of does not matter. However,
when dealing with time-varying inputs, it is shown in [23] that it
is interesting to choose so that the centroid of is located
at regardless of . In this situation, it is indeed numerically
shown that the resulting modulator becomes superior in perfor-
mance to the one-bit linear- second-order modulators. Since

is here entirely known analytically, such a value of is
easy to derive. We show in the Appendix, Subsection E that this
is achieved when for .

D. Proof of Proposition 4.1

Property 1 can be checked in a straightforward manner using
the explicit parametric descriptions of the invariant sets given in
the respective sections and in the Appendix. Property 2 is a con-
sequence of the fact that each of the invariant sets possesses a
boundary that is composed of a finite number of smooth curves,
totaling a finite perimeter. Hence, the -neighborhood of each

cover an area that decreases as as . The unifor-
mity of the constants and are guaranteed by the choice of
the intervals . In particular, these intervals can be chosen
to be and an arbitrary closed subinterval of

, respectively. Let us prove Property 3.
The system: This was shown in Section IV-A.
The system: The invariant set is

where the points are given in (C3) and is given in (C1).
From (C3), we derive the equations of the four linear boundaries
of the parallelograms and obtain

By writing and applying (C1), we
derive the equations of the four parabolic boundaries of

and obtain

One can then easily check that the four above parabolas satisfy
the following relations:

(D1)

This can be also graphically seen in Fig. 9. This is sufficient to
prove Property 3 for the system. A graphical representation
of the tiling property is shown in the same figure.

The system: Proving the tiling property of the invariant
set described in Section IV-B is a tedious process. Here,
we will only point out boundary relations similar to (D1).
Given vertices , let us use the notation

to designate the union of the segments
for . By using Table II, one can see that

and

We illustrate these three relations by the three arrows in
Fig. 8(b).

E. On the Analysis of the Quadratic Scheme: Zero-Centroid
Setting of

Let us call the centroid point of and
write in general. We have

In the last equality, we have used the fact that since the
transformation from (C1) conserves measure. We know from
Section IV-C that is the trapezoid . From
(C2) and the explicit coordinates of its vertices given in (C3)
and (C4), we have

and

From (C1), one easily derives that
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Consequently, the first component of is

Since is clearly symmetrical with respect to the -axis,
we already have . The second component of is equal
to

The component will then be systematically equal to by
choosing . Using (C2) and (C5), this implies that

.
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