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Abstract—This paper analyzes mathematically the effect of
quantizer threshold imperfection commonly encountered in the
circuit implementation of analog-to-digital (A/D) converters such
as pulse code modulation (PCM) and sigma–delta (��) mod-
ulation. �� modulation, which is based on coarse quantization
of oversampled (redundant) samples of a signal, enjoys a type
of self-correction property for quantizer threshold errors (bias)
that is not shared by PCM. Although “classical” �� modulation
is inferior to PCM in the rate-distortion sense, this robustness
feature is believed to be one of the reasons why �� modulation is
preferred over PCM in A/D converters with imperfect quantizers.
Motivated by these facts, other encoders are constructed in this
paper that use redundancy to obtain a similar self-correction
property, but that achieve higher order accuracy relative to bit
rate compared to classical ��. More precisely, two different
types of encoders are introduced that exhibit exponential accuracy
in the bit rate (in contrast to the polynomial-type accuracy of
classical ��) while possessing the self-correction property.

Index Terms—Analog-to-digital (A/D) conversion, beta expan-
sion, quantization, robustness, sigma–delta modulation.

I. INTRODUCTION

ANALOG-to-digital (A/D) conversion is a dynamic area
of research that is driven by the need for circuits that

are faster, and have higher resolution, lower power needs, and
smaller area. Major applications are speech, high-quality audio,
images, video, and software radio.

This paper concerns the mathematical virtues and shortcom-
ings of various encoding strategies in A/D conversion. While
the information theory community has focused on algorithm de-
sign and analysis within a rate-distortion framework, circuit de-
signers have also had to wrestle with problems related to robust-
ness of A/D circuits to component variations, since the manu-
facturing cost increases dramatically as component tolerances
are reduced. In this paper, we discuss a generalized rate-distor-
tion framework that incorporates robustness related to compo-
nent variability. Within this framework, certain classes of A/D
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converters are studied, allowing us to establish upper bounds on
what is ultimately achievable.

A/D converters can be divided into two broad classes:
i) Nyquist-rate converters and ii) oversampled converters.
Nyquist-rate converters use an analog front-end filter with
suitably sharp cutoff characteristics to limit the bandwidth
of the signal to less than hertz, after which the signal is
sampled at a rate of hertz. These real-valued samples are
then converted into binary words using an A/D converter, the
most popular algorithm being the Successive Approximation
algorithm (see, e.g., [12]). On the other hand, sigma–delta A/D
converters overcome some of the problems associated with
building sharp analog bandlimiting filters through the use of
oversampling. Perhaps more importantly, sigma–delta conver-
sion has the benefit of being robust to circuit imperfections [1],
[4], [7], a quality that is not shared by Nyquist-rate converters
based on the successive approximation method. In some sense,
sigma–delta converters are able to effectively use redundancy
in order to gain robustness to component variations. We will
see that a similar principle also applies to a certain class of
Nyquist-rate converters that is not so well known within the
information theoretic community.

We begin with an analysis of Nyquist-rate converters based
on the successive approximation algorithm. As is customary
in audio applications, we model these signals by bandlimited
functions, i.e., functions with compactly supported Fourier
transforms. Any bandlimited function can be recovered per-
fectly from its samples on a sufficiently close-spaced grid; this
is known as the “sampling theorem.” Let denote the class
of real-valued functions whose Fourier transforms
are supported on . The Shannon–Whittaker formula
allows us to reconstruct a function from its samples

taken on the integer grid via

(1)

where is the sinc-kernel

(2)

The functions , form a complete orthonormal
system for . Clearly, the formula above can be extended
through dilation to functions in for arbitrary . Then

for (3)

Let us note that the formulas (1) and (3) should be treated with
care if the samples or have to be replaced by ap-
proximate values. There is no guarantee of convergence of the
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series under arbitrary bounded perturbations of the samples, re-
gardless of how small these may be, because

for all

This instability problem is caused by the slow decay of as
; it can easily be fixed by oversampling, since one can

then employ reconstruction kernels that have faster decay than
the sinc-kernel (see Section II). For simplicity of the discussion
in this Introduction, we shall not worry about this problem here.

In practice, one observes signals that are bounded in ampli-
tude and takes samples only on a finite portion of the real line.
For a positive number and an interval , we denote by

the class of functions that are restrictions to of
functions that satisfy for all . It
will be sufficient in all that follows to consider the case where

and ; the more general case can easily be de-
rived from this particular case. We shall use the shorthand
for , and for .

Modulo the stability issue mentioned above, the sampling
theorem (in the form (1)) can be employed to reduce the problem
of A/D conversion of a signal to the quantization of a fi-
nite number of , all of which are moreover bounded
by . (In fact, one really needs to quantize the with ,
where is an “enlarged” version of , starting earlier and ending
later; more details will be given in Section II-B. In practice,
is very large compared to the duration of one Nyquist interval,
and these extra margins do not contribute to the average bit rate
as .) This method is known as pulse code modulation
(PCM). Here quantization means replacing each by a good
(digital) approximation , such as the truncated version of its
binary expansion.

Let us consider the successive approximation algorithm. The
binary expansion of a real number has the form

where is the sign bit, and
, are the binary digits of . The sign bit is given by

, where the quantizer is simply the sign-function

(4)

For simplicity of notation, we define a second quantizer function
by

(5)

and can be simply derived from each other via the rela-
tion . The can be computed in the
following algorithm. Let ; the first bit is then given
by . The remaining bits are computed recursively;
if and have been defined, we let

(6)

and

(7)

Fig. 1. With input z = jrj; z = 0; i � 1, and “initial conditions” u =
0; b = 0, the output (b ) gives the binary representation for jrj 2 [0; 1].

It is easy to see that for all , and

satisfies .
The resulting PCM encoding of the signal

lists, for each in , its bits , thus yielding
an approxiation of with precision . (Here we have
again ignored the instability of the expansion (1).) As explained
in Section II-B, this representation is optimal in a certain de-
terministic rate-distortion sense based on Kolmogorov entropy.
Yet in the practice of A/D conversion this representation is not as
popular as its optimality might suggest. This is mainly because
the PCM algorithm given above is not robust in an important
and very practical sense. Up to the point where the signal is truly
digitized, it “lives” in the analog world, and all operations in the
circuit that implement the A/D conversion have to be made with
analog components. Fig. 1 shows a block diagram for the deter-
mination of the bits , given , corresponding
to (6), (7). The output of in this figure is “digital” in the sense
that it can take only two values, and . However, the input to

is analog, so must be, at least in part, an analog compo-
nent. This means that there is no guarantee that “toggles”
exactly at . Of course, the same can be said for as well.
For instance, could deviate from the sign-function by a shift,
yielding an imprecise quantizer

(8)

where the shift is not known precisely, except that it lies within
a certain known tolerance

(9)

where is fixed; moreover, its value may differ from one
application to the next. More generally, could be replaced
by a “flaky” version for which we know only that

or
(10)

This notation means that for each , the flaky quantizer
will assign a value in , but that for we
just do not know what that value will be; moreover, if acts
on the same in in two different instances, it need not
assign the same value both times. We could model this by a
(possibly input-dependent) probability distribution on ,
but since our results will hold for any such distribution, however
ill-behaved, it is easier to stick to (10). The imprecise versions
of are, in the first case

(11)
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where is constrained only by (9), and in the “flaky” case

or
(12)

We define and .
The debilitating effect of the quantization error can make

itself felt in every bit, even as early as or . Assume,
for example, that we are working with , with . If

, then will be computed to be , which is
incorrect since . No matter how the remaining bits are
assigned, the difference between and the number represented
by the computed bits will be at least , which can be
as large as , and effectively as large as by (9). This could
easily translate to a uniform error of magnitude , as it would
happen for the constant function and for the scaled
sinc-function . A similar anomaly can, of course,
occur with the sign bit too, if it is determined via rather
than : for , the sign bit will be incorrectly
assigned, causing an error that may be as large as .

In this paper, we present a study of different encoding
schemes, and see how they trade off accuracy for robustness.
In Section II, we define a framework for the discussion of our
different coders, and we carry out a more systematic analysis
of PCM, its optimality, and its lack of robustness. Next, we
discuss two other schemes: the first one, in Section III, is the
sigma–delta modulation; the second, in Section IV, replaces
the binary expansion in PCM by an expansion in a fractional
base . We will show that both schemes are robust,
in the sense that even if the quantizer used to derive the digital
representations is imperfect, it is possible to reconstruct the
signals with arbitrarily small error by taking more and more bits
from their digital representations; neither of them is optimal in
the bit rate, however. Sigma–delta modulation is well known
and popular in A/D conversion [1], [2], [8]; fractional base
expansions are less common, but also have been considered
before, e.g., in [9]. In both cases, robustness is linked to the fact
that there is a certain amount of redundancy in the codewords
produced by these algorithms. It is this interplay between
redundancy and robustness that constitutes the major theme of
this paper.

II. ENCODING–DECODING, KOLMOGOROV -ENTROPY, AND

ROBUSTNESS

A. The Average Kolmogorov -Entropy of

Let be the space of our signals, as defined in Section I. By
an encoder for we mean a mapping

where the elements in are finite bit streams. The result of the
encoding is to take the analog signal to the digital domain. We
also have a decoder that maps bit streams to signals

where denotes the space of continuous functions on . Note
that we may consider many decoders associated to a given ,
and vice versa.

In general, . We can measure the distortion in the
encoding–decoding by

where is a norm defined on the signals of interest. We shall
restrict our attention to the norm

One way of assessing the performance of an encoder–decoder
pair is to measure the worst case distortion for the class

, defined by

In order to have fair competition between various encoding–de-
coding schemes, we can look at the performance as a function
of the bit cost. We define the bit cost of an encoder on the
space by

#

where # is the number of bits in the bit stream . Given
a distortion tolerance , we let denote the class
of encoders for which there exists a decoder

such that . The smallest number
of bits that can realize the distortion for is then given by

(13)

It is well known that is determined by the Kol-
mogorov -entropy of the class as a subset
of . Here where
is the smallest number of functions in forming
an -net for , i.e., for each there exists an element

in this collection such that . (In other words,
is the smallest number of balls in , with radius in the

-norm, that can cover .) The number is finite
because the space is a compact subset of . It is
then easy to see that

(14)

with denoting the smallest integer . Indeed, an en-
coder–decoder pair with bit cost can easily be
given: use the bits to label the functions

and assign each function to the label
of the nearest . On the other hand, cannot get any
smaller because otherwise one could construct an -net via the
same method with fewer elements than .

In many applications in signal processing, the interval on
which one wishes to recover the signals is varying, and

is large relative to the Nyquist sample spacing. In the case of
audio signals, sampling at 44 000 times per second corresponds
to high-quality audio, and sampling at 8000 times per second
corresponds to wireless voice applications. Recovering min-
utes of such a signal means that the interval corresponds to
a number of 2 640 000 or 480 000 consecutive samples, re-
spectively. So, the interval , while finite, is typically very large.
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Given a family of encoders , defined for all inter-
vals , we define the average bit cost (i.e., bit rate) of this family
to be

(15)

The optimal encoding efficiency for the space can be mea-
sured by the optimal average bit rate that can be achieved within
distortion . More formally, we define the quantity

(16)

There is a corresponding concept of average -entropy (per unit
interval) of , given by

(17)

It easily follows from (14) that

(18)

The average -entropy of the class can be derived from re-
sults of Kolmogorov and Tikhomirov [10], on the average -en-
tropy of certain classes of analytic functions. These results yield

(19)

B. PCM Encoders Achieve the Kolmogorov -Entropy

The Kolmogorov -entropy can be defined for any pair
, where is a compact subset of the metric space .

Even when can be computed explicitly, we may
not know of any constructive example of an encoder–decoder
pair that achieves (or near-achieves) the Kolmogorov entropy.
However, in the present case, where , and we
are interested in when is large (or equivalently,

defined by the limit (17)), the PCM encoding scheme
does achieve (arbitrarily nearly) the optimal bit rate .
This is shown by the following argument, which uses methods
that are similar to those used in [10], with more generality.

The first issue to be taken care of is the instability of the
expansion (1), as stated in Section I. We can circumvent this
problem easily in the following way. We choose a real number

and sample at the points , thereby
obtaining the sequence . When we recon-
struct from these sample values, we have more flexibility since
the sample values are redundant. If is any function such that
its Fourier transform satisfies

(20)

and is sufficiently smooth for , then we have the
uniformly convergent reconstruction formula (see, e.g., [13, p.
10] when is a Schwartz function, or [4])

(21)

Let the sequence of numbers be defined by

(22)

Note that since is compactly supported, is infinitely differ-
entiable. If, moreover, is chosen to be twice differentiable,
then ; therefore, we have

(23)

For each , let be the class of reconstruction kernels
such that (20) and (23) hold. We restrict ourselves to the class

Next, we define a family of PCM encoding–decoding pairs.
For each real number , we select an arbitrary reconstruc-
tion filter . We set and

. For any interval , let
where is chosen so that

(24)

We define the encoder by its output

for . On the other hand, we define the output of the
decoder to be

(25)

where we use the shorthand

We can easily bound the distortion for this encoding–de-
coding. Decompose the error signal into two components
as

where

and

For the first error component, we use the sample error bound
together with the bound to obtain
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Similarly, for the second component, we note that and
implies so that

Putting these two estimates together we obtain

(26)

uniformly for all . The number of bits used in this en-
coding, denoted , satisfies the bound

Apart from , note that these encoders have two parameters,
and . Given any , we now choose and

as follows: We first define the set

here, the function can be replaced by any other func-
tion that is but still diverges to as . Note that

if and

In particular, is nonempty for all sufficiently small . We can
therefore select such that as ; in other
words, we have

(27)

and

(28)

We next define to be

(29)

The definition of and the bound (26) imply that
belongs to the class of encoders

that achieve maximum distortion for all . Denoting the
family by , we have

(30)

By definition of , we know that

hence,

This implies, together with (27) and (30), that

thus, PCM encoders achieve the Kolmogorov -entropy given
by (19).

C. Robustness

As explained in Section I, circuit implementation of A/D con-
version, regardless of what encoding scheme is used, necessarily
incorporates at least one encoding step that makes a transition
from analog values to a discrete range, and that is accompanied
by some “uncertainty.” In other words, the encoder used by the
A/D converter is not known exactly; rather, it can be any element
of a restricted class of encoders (corresponding to the different
values of the parameters within the uncertainty interval). We
therefore have an additional distortion in the encoding/decoding
procedure that is due to our inability to know precisely which
encoder in was used for the encoding. For the decoding, we
use the same decoder for the whole class . In analogy with the
analysis in Section II-A, we introduce then

The bit cost for is now defined by

#

To generalize (13), we must minimize the bit cost for over
the choices . This requires that we have several possible

at our disposal. Suppose that for each encoding algorithm for
we can identify the components that have to be analog, and

the realistic tolerances on their parameters, within, e.g., a fixed
budget for the construction of the corresponding circuit. Then
each combination (algorithm and parameter tolerances) defines
a family . Define to be the set of all these families, where
the shorthand stands for the tolerance limits imposed by the
analog components. Then the minimum bit cost that can achieve
distortion for a given parameter tolerance level is

and

with

By definition, we have .
There is a fundamental difference between and

in the following sense. The encoders over which
the infimum is taken to obtain can be viewed as just
abstract maps from to . On the other hand, in order to
define the classes over which we have to optimize to define

, we have to consider a concrete implementation for
each encoder and consider the class of its variations within
realistic constraints on the analog components. For this reason,
unlike which was closely related to Kolmogorov
-entropy, it is not straightforward how to relate to a

more geometric quantity. Even so, it continues to make sense
to define an average bit cost

and to consider its behavior as a function of .
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In what follows, we shall consider the special class in
which every is constructed as follows. We start from an en-
coder along with an algorithmic implementation of it. We de-
note this pair together by , where stands for the “block
diagram,” i.e., the algorithm that is used to implement . We
assume that contains one or more quantizers of type (4) or (5)
but no other types of quantizers (all other operations are con-
tinuous). We then consider all the encoders that have the same
block diagram , but with or replaced by a or
(see (8), (11)) with , or by or (see (10), (12)).
We call this class , and we define to be the set of
all for which the encoder maps to , and has
an implementation with a block diagram that satisfies the cri-
teria above. We can then define and to be

and , respectively, for the choice .
For the PCM encoder defined above in (6), (7), the

substitution of for , with and , leads to
(see the examples given at the end of the Introduction)

for every decoder , regardless of how many bits we allow
in the encoding. Consequently, for , it is impossible to
achieve . It follows that considering

does not lead to a finite upper bound for
or the average when ; hence, the PCM encoder
is not “robust.”

In the next two sections, we discuss two pairs that are
robust, in the sense that they can achieve
for arbitrarily small , regardless of the value of , provided
an extra number of bits is spent, compared to what is dictated
by the Kolmogorov entropy. Both constructions will provide us
with finite upper bounds for and . Our pur-
pose next is to study how small these quantities can be made.

III. THE ERROR CORRECTION OF SIGMA–DELTA MODULATION

In this section, we shall consider encoders given by
sigma–delta modulation; these behave differently
from PCM when imprecise quantization is used. We start by
describing the simplest case of a first-order encoder ,
i.e., the case where the quantizer is given by the unperturbed
(4). Then we show that this encoder is robust, in contrast to
the PCM encoder: if we replace the precise quantizer of (4) by
a quantizer of type (8), then the encoding can nevertheless be
made arbitrarily accurate. This leads to a discussion of what
we can conclude from this example, and from others in [4], [6],
about and .

A. First-Order Modulation With a Precise Quantizer

We again choose (although now we are interested in the
limit rather than ). We continue with the notation

as above. Given , the algorithm creates a
bit stream , where , whose running sums
track those of . There is an auxiliary sequence which
evaluates the error between these two running sums. Given the
interval of interest , we take for ,

Fig. 2. Block diagram for the simplest, first-order �� converter, im-
plementing the algorithm u =u +x �sign(u ). (Note that this is nearly
the same diagram as in Fig. 1; the only difference is that the multiplier by 2
has been removed.)

where is to be specified later. For
, we define

(31)

where

(32)

and is the quantizer defined by (4). The encoder
maps to the bit stream . We see that

appropriates one bit for each sample, which corresponds to
bits per Nyquist interval, therefore resulting in bits for the
whole signal . Fig. 2 shows a block diagram for .

To decode the bit stream, we use the recovery formula
(25) applied to the bit sequence , but now with a fixed kernel

. (As in the PCM case, we shall make depend on , but
as , we shall have , so that a fixed can satisfy
constraint (20) for all ; see below.) This gives

(33)

An easy derivation allows us to bound the approximation error.
We first note that for all . (This is a special case of
Theorem 3.1 below; see also [4].) Next, we decompose the error
signal into two components and exactly as it was
done in Section II-B. Given this decomposition, we have

(34)

Note that in the preceding calculation, the term is a
boundary term that appears after the summation by parts,
and depends only on the maximum value of . Based on this
estimate, we choose to have a derivative with finite integral.

We have not yet specified how we choose . It suffices to
choose so that
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(see Section II-B for the definition of ); then we guar-
antee that

and thus

(35)

with the constant depending only on the choice of . By
choosing it follows that

(36)

where denotes the family of encoders .
One may wonder if a better bit rate can be given by improving

the error estimate (35). It is possible to improve the exponent of
when the signal is fixed, but not uniformly in . In fact,

it follows from the analysis in [7] that there exists an absolute
constant such that

(37)

for every decoder , linear or nonlinear.
We see in (35) that for an average bit rate , first-order

modulation results in an accuracy that is much worse (only in-
versely proportional to ) than what would be achieved if PCM
was used (exponential decay in ). In other words, the bit rate
changes from logarithmic to linear in the reciprocal of the max-
imum allowable distortion. However, encoders have the re-
markable property to be impervious to imprecision in the quan-
tizer used in the circuit implementation; we shall see this next.

B. First-Order Modulation With an Imprecise Quantizer

Suppose that in place of the quantizer of (4), we use the
imprecise quantizer of (10) in the first-order sigma–delta
algorithm; i.e., we have the same block diagram as in Fig. 2, but

is replaced by . (Note that this includes the case where
is replaced by a where can conceivably vary with

within the range .) Using these quantizers will result in
a different bit stream than would be produced by using . In
place of the auxiliary sequence of (31), which would be the
result of exact quantization, we obtain the sequence , which
satisfies for and

(38)

where

Theorem 3.1, below, shows that if we are given any , then
the error of at most , in each implementation of flaky quantiza-
tion in the encoder, will not affect the distortion bound (35)
save for the constant .

Theorem 3.1: Suppose that modulation is implemented
by using, at each occurence, a quantizer , with ,
in place of . If the sequence is used in place of

in the decoder (33), the result is a function which
satisfies

(39)

with and the constant in (35).
Proof: This theorem was proved in [4]. We do not repeat

its simple proof in detail, but give a sketch here. The main idea
is to establish the following bound:

(40)

this can be proved by induction on by the following argument.
It is clear for . Assume that (40) has been shown
for . If , then . Consequently,

and hence,

A similar argument applies if . Finally, if , then
implies . Therefore, we

have advanced the induction hypothesis. This proves (40) for all
. The remainder of the proof uses summation by parts again to

obtain (39) (see [4]).

Hence, despite the use of a quantizer that is inherently inaccu-
rate, we nevertheless obtain an arbitrarily precise approximation
to the original signal. The average bit rate of this algorithm
can be computed exactly as in Subsection III-A, leading to
the estimate

where is the infimum of over all admissible reconstruc-
tion filters .

We shall see next that this bound can be reduced significantly
by using higher order modulators.

C. Higher Order Modulators

Higher order modulators provide faster decay of the re-
construction error as . In [4], an explicit family of
arbitrary order single-bit modulators is constructed with
the property that the reconstruction error is bounded above by

for a th-order modulator. (The th-order modulator
in this context corresponds to replacing the first-order recursion
(31) by a th-order recursion , where the es-
timates follow from a choice of that ensures that the are
uniformly bounded.)

Note that because of the single-bit quantization, the average
bit rate is still equal to the sampling rate . The error bound

involves a hidden constant (for a fixed, admissible
filter ). Following the same steps as in the first-order case we
can bound the average bit rate in terms of the error tolerance as

One can still optimize this over by adapting to . For this, one
uses the quantitative bound for some (see
[4]), to conclude that

(41)
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where . Although this is an improvement
over the bound we obtained from the first-order scheme, it
is still a long way from the optimal average bit rate, which, as
we saw in Section II, is proportional to . In the next
subsection, we shall examine a different type of modula-
tors constructed in [6] which employ filters that are more gen-
eral than pure integration. These modulators achieve exponen-
tial accuracy in the bit rate while being robust with respect to
small quantization errors, hence yielding much better bounds
on the average bit rate .

D. Exponentially Accurate Modulator With an Imprecise
Quantizer

The following result can be thought of as a generalization of
the robustness result for the first-order algorithm.

Theorem 3.2: Let and consider the nonlinear differ-
ence equation

(42)

where

(43)

and for . If ,
then .

Proof: The proof is by induction. Let the coefficients
and the input satisfy

and assume that for all . Let

so that . First, it is clear that

Without loss of generality, let . Three cases appear as
follows.

1. If , then , so that
.

2. If , then , so that
.

3. If , then ,
regardless of the value is assigned by the
flaky quantizer.

The case is similar except the last case does not exist.

We note that for the one-tap filter defined by , the
above scheme is slightly different from the first-order mod-
ulator described earlier. However, it can be shown easily via the
auxiliary sequence that the difference only
amounts to a unit time shift of the input sequence .

In [6], a two-parameter family of -filters
was designed that achieves exponential accu-

racy in the bit-rate. More specifically, the following results are
shown.

• uniformly in .
• Let . Given any interval and for each , if we set

as before, and if satisfies (42)
with , then

In this error bound, corresponds to the approximation
order of the scheme, which can also be characterized
by the highest order of vanishing moments for the auxil-
iary filter defined by

and

The filter has a finite support with nonzero coef-
ficients spread over a range of taps. The
values alternate in sign, but decay rapidly in .

• The exponential accuracy in obtained by this family of
schemes follows from choosing, for each , the op-

timal order . This optimization results in the error bound

where .
Theorem 3.2 allows us now to achieve the same result with

flaky quantizers. Let us say that a -filter is -tol-
erant for if the stability condition of Theorem 3.2 is
satisfied, i.e., if . Given and

, let be the smallest positive integer such
that

It is easy to check that exists if and only if and

Hence, we deduce that the -filters are all
-tolerant for . If for each reconstruction error toler-

ance we choose such that , then we
find that

In this estimate, the smallest value of is found in the limit
and . A simple calculation reveals this value to

be , and remains valid for . The corre-
sponding minimum increase factor in the average bit rate (when
this algorithm is used) is .

The question arises whether there exist other redundant en-
coders which can achieve self-correction for quantization error
and exponential accuracy in terms of the bit rate (with possibly a
better constant) by means of other approaches than heavy over-
sampling. In the next section, we show that this is indeed the
case. Not only will we obtain such encoders; we will also show
that they are asymptotically optimal in the limit as .
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IV. BETA-ENCODERS WITH ERROR CORRECTION

We shall now show that it is possible to obtain exponential
bit rate performance while retaining quantization error correc-
tion by using what we shall call beta-encoders.1 These encoders
will introduce redundancy in the representation of the signals,
but will, contrary to modulation, start from samples at the
Nyquist rate (or rather slightly over the Nyquist rate to ensure
stability). The essential idea is to replace the binary representa-
tion of a real number by a representation
of type , where , and where each of the

can still take only the values or . Introducing , it
is more convenient to write

(44)

In fact, there are many such representations; this redundancy
will be essential to us.

A. Redundancy in Beta-Encoding

We start by showing one strategy that gives, for each
, an assignment of bits, i.e., values ,

such that (44) is satisfied. Given , we define , and we
set if if , i.e., , with

as defined in (5). We then proceed recursively for ,
defining and . It is easy to
see that always lies in . By the definition of the

so that from the preceding equation

which implies, since

The successive approximations to thus achieve an
accuracy that decays exponentially in , albeit slower than the
usual binary successive approximations. In fact, the algorithm is
very similar to the binary successive approximation algorithm in
Subsection II-B; the only difference is the substitution of mul-
tiplication by for the doubling operation we had there.

Although we will be ultimately interested in applying this
algorithm to numbers in only, it is useful to note that it
works just as well for numbers in the larger interval

. In this case, one finds that the corresponding lie in
, resulting in the bound

We can exploit this observation to define a different beta-expan-
sion of , by the following argument: If ,
then we know, by the observation just made, that there exists
a bit sequence so that , yielding a
beta-expansion of whose first bit is equal to zero. Motivated

by this, let us set if , and

1This name is motivated by the term beta-expansion (�-expansion) in [14].

Fig. 3. For the choice � = 1:8, this picture shows the ranges for y (when
i = 1) or 
u (when i � 2) that lead to the different values of b (top) and

b (bottom).

if . In either case, one checks easily that
. (In the first case, there is nothing to prove; in

the second case, we have .)

Since , we can repeat the argument

with replaced by to define , and so on.
If we extend the definition of by setting

for

then we can write the above iteration explicitly as

for

(45)

Because the resulting are all in the range , we
still have the error bound

We can understand the difference between the two algorithms

given so far by visualizing the definitions of and
as increases from to , as shown in Fig. 3. As long as is
smaller than , both algorithms keep the first bit equal to zero.
However, if is greater than or equal to , then the first algo-
rithm seizes its chance and allocates , and starts over
again with . We call this algorithm “greedy” because the
bits are assigned greedily; in every iteration, given the first
bits , the algorithm will set equal to as long as

is less than . The second algorithm does the

opposite: if it can get away with keeping , i.e., if

it is content with ; only when exceeds this value, and

hence the for would not be able to catch up on their

own, does this algorithm set . This approach is then con-
tinued in the assignment of all the remaining bits. Because it
only sets a bit equal to when forced to do so, we call this al-
gorithm the “lazy” algorithm.2 Laziness has its price: in the lazy
algorithm the upper bound on the is larger than in the greedy
algorithm. The difference between the two algorithms becomes
more marked as decreases and gets close to ; on the other
hand, their difference becomes less marked when increases
and gets close to ; for they coincide with each other and
the base- expansion.

2For some of the recent mathematical accounts of greedy and lazy expansions,
see, e.g., [11], [3].
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Fig. 4. With input z = y 2 [0; 1); z = 0 for i > 0 and “initial
conditions” u = b = 0 the output (b ) of this block diagram gives the
beta-representation for y defined by the quantizer Q := [1 +Q (� � �)]=2,
with � 2 [1; (� � 1) ]. For � = 1, this is the “greedy” scheme, for
� = (� � 1) , it is the “lazy” scheme.

For , there is a range for or where we
can choose whether to set the next bit equal to or : both op-
tions are viable. The greedy and lazy algorithms gave us the
two extreme possibilities, but we could also decide to take a
“cautious” algorithm, using the quantizer with between
the two extremes used in the greedy and lazy algorithms, i.e.,

. Let us denote the resulting bit sequence by
, where we have added a superscript to indicate the de-

pendence of the bits on . Fig. 4 shows a block diagram for this
algorithm, which is again very similar to the one in Fig. 1: the
two differences are the substitution of for in the multiplier,
and the freedom in the choice of the quantizer. An easy induc-
tive argument shows that the in this algorithm are uniformly
bounded by , so that the approximation error satisfies

for all . In the next subsection we shall see how this
type of redundancy benefits us for the construction of robust
encoders.

B. Beta-Encoding With an Imprecise Quantizer

The approaches of the last subsection can be reduced to the
observation that, given , no matter what bits

have been assigned, then, as long as

(46)

there is a bit assignment , which, when used with the
previously assigned bits, will exactly recover .

We used this observation to show that greedy, lazy, and
cautious algorithms, with quantizers that “toggle” at different
points, all give bit sequences that can be used in a beta-expan-
sion for . We shall use it here even more generally, to prove
the following theorem.

Theorem 4.1: Let , and
. Define

i.e., is a flaky quantizer such that

if
if

or if

Define by the following algorithm:

for

(47)

Then, for all

Proof: The definition of the implies that

(48)

Next, we use an induction argument to show that
for all . Clearly, , since . Suppose
now that . If , then , and

If , then , and

where we have used and in the first
and last inequality, respectively. If , then can be
either or ; in either case we have

implying . This concludes the proof.

In practice, we are given the tolerance on the quantizer, and
we then have to determine from , rather than the reverse.
The precise statement is given in the following easy corollary to
Theorem 4.1:

Corollary 4.2: Given , define .
Let be arbitrary. Let be the bit sequence de-
fined by the iteration (47), with , i.e.,

. Then

We have thus achieved the goal we set ourselves at the start
of this section: we have an algorithm that starts from samples
at (slightly above) the Nyquist rate, and that has sufficient re-
dundancy to allow the use of an imprecise quantizer, without
significantly affecting the exponential accuracy in the number
of bits that is achieved by using a precise quantizer in the same
algorithm. In the next subsection, we look at the corresponding
average bit rate.
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C. Bit-Rate for Beta-Encoding With an Imprecise Quantizer

As in the PCM case, we start from (21). We want to have an
accurate representation of a signal , with ,
starting from an imprecise beta-quantization of its samples. We
assume that is given, and we define .
For given sampling rate and number of bits per sample , the
encoder takes samples , from the
enlarged interval , where is
chosen such that (24) holds (with replaced by ). For
each , we compute the first bits,
of the flaky beta-quantization, described in Corollary 4.2, of the
numbers , and we define

Then we obtain, analogously to the analysis in Section II-B, and
using Corollary 4.2, the error estimate

(49)

As before, the total number of bits used to obtain this accuracy
is bounded by . For each , we choose

and exactly in the same way as it was done
in Section II-B (again replacing by wherever appropriate).
This selection results in the average bit rate bound

or, in other words, noting that

(50)

This estimate is a significant improvement over the result of
Section III-D in that first, it is valid for all , and second, it
recovers the optimal bit rate in the limit as .

V. DISCUSSION

The two examples of robust encoders presented here exhibit
a large amount of redundancy in the representation of the signal

: many different bit sequences can in fact correspond to the
same signal. It is this feature that makes it possible to still ob-
tain good approximations even though the imprecise quantizers
produce other bit sequences than the precise ones. This suggests
that in order to develop other schemes that may improve on the
average bitrate under imprecise A/D conversion, one has to build
in redundancy from the start.

Although (50) is a significant improvement over (41), it
would be suprising if it were already optimal (for each ). One
could argue that, in some sense, “imprecise” quantizers are
similar to a noisy channel; one would then expect, by analogy
with Shannon’s result, that , even for
arbitrary (as opposed to only in the limit for , as

in (50)). We do not know whether this analogy is valid, and/or
whether this equality holds.

It should be emphasized that all our results are asymptotic.
The limit for is fairly realistic, given the enormous
difference in scale between the sampling period and the duration
in time of the signals of interest. The limits for very large (for

modulation), or very close to (for -encoders) are less
realistic.

Finally, although the -encoders give such a startling im-
provement in the average bit rate, it is clear that many other as-
pects have to be taken into account as well before this promise
can be realized in practice. In particular, analog implementa-
tions of the coder described in Section IV-C are bound to have
imprecise values of as well as imprecise quantizers. (The same
also holds for the filter coefficients of the schemes described
in Section III-D.) In [5] it is shown how imprecise values of

can be taken into account. Moreover, any realistic approach
should also take into account upper bounds, that are imposed a
priori, on all internal variables, such as the ; this is in contrast
with the upper bounds on the that follow from the theoretical
analysis, which may be too large to be possible in reality. The
analysis in this paper has not addressed any of these questions.

VI. SUMMARY

Nyquist rate A/D converters based on the successive approx-
imation method are known to be susceptible to component mis-
match error, whereas modulators are not. An analysis of the
robustness of the modulator to component mismatch leads
to the construction of two alternate algorithms that achieve ex-
ponential bit rate (as opposed to a much slower rate for simple

) yet are still robust under component mismatch. One of
these algorithms is a “filtered modulator,” with an appro-
priate filter; the other is a successive approximation algorithm,
based on the -expansion of a number. Both are robust to circuit
mismatch error. The Kolmogorov rate-distortion framework is
extended to incorporate component mismatch error and the al-
gorithms described provide upper bounds on what is ultimately
achievable within this framework.
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