
Understanding Languages and Making
Dictionaries.

Misha Gromov

January 25, 2015

Contents
1 Idea of Learning. 1

1.1 Signals and Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Discretization, Classification, Interaction. . . . . . . . . . . . . . . 4
1.3 Learning a Language. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Teaching and Grading. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Linguistic Flows and their Structures. 8
2.1 Features of Linguistic Signals. . . . . . . . . . . . . . . . . . . . . . 8
2.2 Grammars and Dictionaries. . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Categories and Diagrams of Presyntactic and Syntactic Insertions . 10
2.4 Fragmentation, Segmentation and Formation of Units. . . . . . . 13
2.5 Similarity, Coclustering, Classification and Coordinatization. . . 16

3 Combinatorics of Libraries and Dictionaries. 19
3.1 Library Colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Abstract

We discuss possible designs of algorithms for learning to understand
"texts" in a given library L where these "texts" may be rather general
arrays of "signals". We want to represent such an understanding by a
certain combinatorial structure, called (ergo)-dictionary D, that, in par-
ticular, encodes algorithms for building this very D out of L as well as
for using D for facilitating/speeding-up understanding of "texts" in other
libraries.

1 Idea of Learning.
We want to understand human "understanding" up to a point where we shall
be able, for instance, to design a simple computer program for evaluation of
plausibility of phrases, e.g. such as the following two.

1. Most cats like to eat grass.
2. Some cats like to eat mice.
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Understandably, 1 is more plausible than 2;1 yet, it is not apparent how to for-
mally derive this "understand" from the observed distribution of the constituents
of these and related phrases in the body of the language.

What should a program ask Google to figure out Who Talks.
For instance dogs "talk" on thousands Google pages but "do dogs ever tell"

is not found there; yet, "do boys ever tell" does appear on 10 pages.2

1.1 Signals and Learning.
Our study of linguistic structures will follow the guidelines of what we call ergo-
logic that is based on the following premises.3

● Flows of signals coming from the external world carry certain structures
"diluted" in them.

Learning is a process of extracting these structures and incorporating them
into learner’s own internal structure.

● The essential learning algorithms are universal and they indiscriminately
apply to all kind of signals.4

● Universality is incompatible with any a priori idea of "reality" – there is
no mental picture of what we call "real world" in the"mind" of the learner.

The only meaning the learner assigns to "messages" coming from outside is
what can be expressed in terms of (essentially combinatorial) structures that
are recognised and/or constructed by the learner in the process of incorporating
these "messages" in learner’s internal structure.

● Universality also implies that the actions of the learner – building internal
structures and generating signals, both within itself and/or released outside,5

are not governed by goals expressible in terms of the external world.
The learning is driven by learner’s "curiosity" and "interest" in structural

patterns the learner recognises in the incoming flows of signals and in the
learner’s delight in the logical/combinatorial beauty of the structures the learner
extracts from these flows and the structures the learner builds.

Essential ingredients of the learning process are as follows.
● The learner discriminates between familiar signals and novelties and tries

to match new signals with those recorded in its memory.
● The learner tries to structurally extrapolate the signals already recorded in

its memory in order to predict the signals that are expected to come.
● Besides the signals coming from the external world, the learner perceives,

records and treats some signals internally generates by the learner itself.
● The learner tends to repeatedly imitate signals being received, including

some signals that come from within itself.
1It is 7:0 on Google
2It took me a while to find this example and it is not very convincing.
3 The "ergo-prnciples" you see below summarize what is written in our articles Structures,

Learning and Ergosystems and Ergostructures, Ergologic and the Universal Learning Problem
on www.ihes.fr/∼gromov.

4The learner’s behaviour, that is learner’s interaction/conversation with incoming signals,
also depends on the learner’s internal structure that has been already built at a given point in
time. In particular, a prolonged exposure to a particular class of signals makes learner’s be-
haviour more specialised (more efficient?) while learner’s ability to absorb and digest different
kinds if signals declines.

5These are the "actions" the human brain is engaged in.
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(The repetitiveness of their basic operations allows a description of learning
processes as orbits under some transformation in the space of internal structures
of a learner. The learning program that implements this transformation must
be quite simple and the learning process must be robust. Eventually, "orbits of
learning" stabilise as they approach approximately fixed points.)

● The learner tends to simplify signals it tries to imitate.
● The learner systematically makes guesses and "jumps to conclusions" by

making general rules on the basis of regularities it sees in signals.
● When the learner finds out that a rule is sometimes violated, the learner

does not reject the rule but rather adds an exception.
● The learner tends to use statistically significant signals for building its

internal structure as well as for making predictions. But sometimes, the learner
assigns significance to certain exceptionally rare signals and use them as essential
structural units within itself.6

● The learner probabilistic reasoning in uncertain environment is yes-maybe-
no logic.

We impose the following restrictions on the abilities of our intended learner
programs that are similar to those the human brain has.

● The learner does not accept unstructured sets with more than four-five
items in them; upon encountering such a set the learner invariably assigns a
certain structure to it.7

● The learner has no built-in ability of sequential counting beyond 4 (maybe
3); we postulate that 5 = ∞ for the learner.

In particular, the learner is not able to produce or perceive five consecutive
iteration of the same process, unless this becomes a routine delegated from
cerebral cortex to spinal cord.8

Our main conjecture is that universal learning algorithms exist and, more-
over, their formalised descriptions are quite simple.

The time complexity of such an algorithms must be at most log-linear (with
no large constant attached) and the performance of an "educated/competent
program" must be no worse than logarithmic.

In fact, the essential features of (ergo)learning as we know it, make sense
only on a roughly "human" time/space scale: such a learning may apply to flows
of signals that carry 109 − 1015 bits of information all-together and one hardly
can go much beyond this.9

Ergo-logic, Universality and Doublethink. If one expects an analysis of a flow
of signals, e.g. of a collection of texts in some language L to be anywhere close
to the truth, and if one wants to design an algorithm for learning L, one must,

6It is the rare words in texts that are significant, not the most frequent ones.
7Partition of stars in the sky into constellations is an instance of this.
8 Never mind the kid that fought his dad that bought the car that struck the bike that hit

the truck that brought the horse that kicked the dog that chased the cat that caught the rat
that ate the bread.

9The universal learning systems themselves, e.g. those residing behind our skulls, have
no built-in ideas of meaning, of time, of space, of numbers. But any speculation on natural
or artificially designed "intelligent" systems strikes one as meaningless, if spacial and tempo-
ral parameters of possible implementations of such systems are not specified and set within
realistic numerical bounds.
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following ergo-logic, disregard all one a priori knows about this L, forget this is
a language, reject the idea of meaning associated to it

But the only way to evaluate the soundness of your design prior to a com-
puter simulation of it, is to compare its performance to that of the corresponding
algorithms in a human head.

1.2 Discretization, Classification, Interaction.
The process of learning mainly consists in structuralizing the incoming flows of
signals by identifying redundancies in these flows and representing "compressed
flows" of these signals in a structurally efficient way.

It is a fundamentally unresolved problem in psychology to identify mathe-
matical classes of structures that would model mental structures built by human
brains that assimilate incoming "flows of signals".

We do not know what, specifically, these structures are but their three in-
gredients are visible.

1. Discretization and Formation of Units. The structures built in the course
of learning are assumed to be discrete, i.e. composed of distinct units.

There are several mechanisms, call them discretizers, responsible for forma-
tion of these units.

Initially, such units are obtained by "meaningful segmentation" of incoming
flows of signals, such, for instance, as division of texts into words and phrases.

Eventually, everything deserving a name becomes a unit.
2. Classification and Reduction of Units. This is called categorisation by

linguists, it is often implemented by clusterization algorithms and depicted by
arrows

u↦ v = class(u)
called reductions. There are several distinct mechanisms/algorithms of classifi-
cations, call them classifiers, that run in parallel.

Some classifiers find and/or establish similarity relations between different
units. For instance, words are divided according to their grammatical functions,
such as the traditional (and contraversial) division into eight "parts of speech".

Classes, as they are being formed, are incorporated as units in the learner’s
structure.

3. Connections between Units. Some units, be they incoming or internal,
have non-trivial connections between them, also regarded as relations and/or
interactions. These are found, identified and enregistered by several algorithms,
called connectors.

Predominant number of connections link pairs of units – these are depicted
by coloured edges between units where the colors represent (the names of) the
corresponding connectors.

A significant part of connectors search for similarities between different units.
A quite different groups of connectors is occupied with finding pairs (also

triples and possibly, quadruples) of units that perform together certain func-
tions. This "togetherness" is manifested by systematic co-appearance of the
corresponding units.

Another instance of a connection/relation is that between a unit and the
class assigned to it by some classifier.
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After singling out these three different, yet mutually interdependent, pro-
cesses, we must design algorithms implementing them where these algorithm
must be universal as well as simple.

Then, granted these algorithms perform as they should, we shall be able(?)
to decide if there is some unknown "else" within human mind crucially involved
in the "learning to understand" process that is fundamentally different from
formation of units, their classification and their combinatorial organisation ac-
cording to their connections and interactions.

The fundamental difficulty we face here appears when we attempt to struc-
turalize not only incoming flows of signals, but also those created and circulating
within learning system itself, where these "internal flows" are not, at least not
apparently, grounded on any structure similar to what underlies "true flows":
the linear (temporal or spacial) order between signals.

The data obtained in this regard by neurophysiologists and psychologists do
not tell us, at least not directly, how to proceed – we take our cues from what
mathematics has to offer.

But when selecting mathematically natural algorithms, we keep in mind
possibilities and limitations of their (potential) realisation by the brain: such
an algorithms can not have many (say, more than 5) consecutive operations
on each round (unit) of computation (that, roughly, corresponds to what we
routinely do on 1 second time scale); yet, allowing several thousand operations
running in parallel.10

1.3 Learning a Language.
We want to implement the process of learning a language L by an orbit of
the universal learning program PRO that acts on the linguistic space of L and
where this orbit must eventually converge to "I understand L" state/program.

The principle existence of such a program PRO is demonstrated by the
linguistic performance of the brain of (almost) every child born on Earth that
receives flows of electro-chemical signals some of which come from linguistic
sources and the "meaning" of which the child’s brain learns to "understand".11

Another, closer to our experience scenario is that of a visitor from another
Universe12 who attempts to "understand" what is written in some human "li-
brary", e.g. on the English pages of internet.

In either case, the process of what we call "understanding" is interpreted
as assembling an (ergo)dictionary D – a kind of "concentrated extract" of the
combinatorial structure(s) that are present (but not immediately visible) in
flows/arrays of linguistic signals.

The grammar of a language makes a part of D where the structural position
of this grammar in D is supposed to imitate how it is (conjecturally) organised
in the human mind.

10This parallelism is the "technical reason" why our basic mental (ergo)processes are inac-
cessible to our sequentially structured conscious minds.

11Bridging linguistic signals to non non-linguistic ones is an essential but not indispensable
ingredient of "understanding Language" as it is witnessed by the linguistic proficiency of
deafblind people.

12No imaginable Universe appears as dissimilar to ours as what the brain "sees" in the
electrochemical world where the brain lives.
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A particular dictionary D = D(L) = DPRO(L) is obtained from a collection
of texts in some language, called a library L, according to some universal (func-
torial?) process/program PRO that drastically reduces the size of L and, at
the same time, endows what remains with a combinatorial structure – a kind of
"network of ideas", that is similar to but more elaborated than the structure of
a (partially directed) graph.

This D can be thought of as (a record of) understanding of the underlying
language by the learner behind PRO. This understanding, call it Ut, is time
dependent, with D being an approximate fixed point of the learning process

Ut1 ↝
PRO

Ut2 , t2 > t1,

where, a priori, PRO can be applied to "understandings" U that were not
necessarily built by this PRO.

The essential problem here is finding a uniform/universal representation
that can be implemented as a coordinatization of "the space of understandings"
U where a simple minded program PRO could act by consecutively adjusting
"coordinates" u1, u2, ... of Uand where this space would accommodate incoming
loosely structured flows of signals encoded by libraries as well as rigidly organised
dictionary structures.13

Among relevant concepts and building blocks of an "understanding dictio-
nary" and processes for assembling them we envisage the following.

Short range correlations,14 segmentation and identification/formation of units
in flows of linguistic signals.
Memory, information and prediction on different levels of structure.
Similarities, equalities, contextual classification, cofunctionality and
coclustering.
Local and non-local, links and hyperlinks.
Tags, annotations, reduction, classification, coordinatization.
Structuralization and compression of redundancies.15

Ability and tendency for repetition and imitation.
Fast recognition of known, unknown, frequent, significant, improbable,
nonsensical.
Evaluation of degree of "playfulness" or "metaphoricity" of words, phrases
and sentences.16

Recognition of self-referentiality.17

Evaluation of parameters of ability/quality of predictions:
speed, precision, specificity, rate of success, the volume of the memory and
the numbers of parallel and sequential "elementary operations" employed,
etc.

13We know that such programs are fully operational in the brains of 2-4 year old children.
14Relative frequencies of "events" are essential for learning a language but such concepts as

"probability", "corellation", "entropy", can not be applied to languages, without reservation.
15The essence of understanding is not so much extracting "useful information" but rather

understanding the structure of redundancies in texts. Non redundant texts, such telephone
directories, for instance, do not offer much of what is worth understanding.

16Playfulness is the first manifestation of what we call "ergo" in humans and certain animals.
17Omnipresent self-referentiality, along with "playfulness", distinguishes languages from

other flows of signals. The simplest instance of this is seen in noun↔pronoun linkages.
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Using a Dictionary. The essential role of a dictionary D of a language L ,
be it fully or partially assembled, is for reading and understanding texts in this
language. From some moment on, the process of learning becomes an elaborate
interaction of D with texts in L that is guided by the simple core program in
PRO.

1.4 Teaching and Grading.
A universal language learning problem PRO is supposed to models a mind of
child and it needs only a minimal help from a "teacher", such as ordering texts
according to their complexity18 and allowing PRO a flexible access to texts.

On the other hand, evaluation of the quality of understanding by PRO is
harder (albeit much easier than designing a learning program itself), since no
one has a clear idea what understanding is.

Our formal approach is guided, in part, by how it goes in physics, where
an unimaginably high level of understanding is reflected in the predictive power
of mathematically formulated natural laws that encapsulate enormously com-
pressed data.

This lies in a category quite different from what we call "knowledge".
For instance, ancient hunters knew more of how planets wander in skies

than most modern people do. But understanding of this wandering depends on
"compression" of this knowledge by setting it into the slender frame of mathe-
matically formulated laws of motion.19

Similarly, understanding languages depends on compression of structural
redundancies20 in flows of linguistic signals. albeit this compression is not as
substantial as in physics.

Besides "sheer knowledge", understanding should be separated from adap-
tation. For instance, an experienced rodent (or a human for this matter) com-
petently navigates in its social environment. But only metaphorically, one may
say that the rodent (or human) "understands" this environment.

With the above in mind, we indicate the following two mutually linked at-
tributes of what we accept as "understanding".

[1] Structural compression of "information".
[2] Power of prediction.
These [1] and [2] can be quantified in a variety of ways. For example, one

may speak of the degree of compression versus the "percentage" of structure lost
in the course of compression, while the essential characteristics of a prediction
is specificity versus frequency of success .

Later on, we shall use this kind of quantification for partially ordering "levels
of understandings" and shall suggest tests for evaluating progress achieved by
a learning program PRO in these terms.

18One may also equip PRO with an ability, similar to that possessed by children up to the
age 2-3, to resist a "bad teacher" by rejecting environmental signals that are detrimental for
the learning. (This ability deteriorates with age as one has to adapt to the environment in
order to survive.)

19 Ancients astronomers came to understand periodicity of planetary motions and were able
to make rather accurate predictions.

20One can not much compress the "useful information" without loosing this "information"
but if we can "decode" the structure of redundancy it can be encoded more efficiently.
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Another attribute of "understanding" that is easy to test but hard to quan-
tify is as follows.

[3] Ability to acquire knowledge.
For instance, a program PROminimally proficient in English, would "know",

upon browsing through Encyclopedia Britannica, that cows eat grass and cats
eat mice.21

Also, the following can be seen as a hallmark of understanding.
[4] Ability to ask questions.
(Those whose business is understanding – scientists and young children –

excel in asking questions.)

Besides the ability to understand, learning programs PRO may be graded
according to their "internal characteristics", such as the volume of the memory
a PRO has to use, the number of elementary operations and the time needed
for it to make, for instance, a particular prediction.

At some point letter on , we shall comprise a list of specific criteria a learn-
ing/understanding program must satisfy.

2 Linguistic Flows and their Structures.

2.1 Features of Linguistic Signals.
The essential attributes of "verbal signals" be they transmitted and/or per-
ceived auditory, visually (sign languages) or via tactile channels (in deaf-blind
communication) are as follows.

(1) Fast Language Specific Clustering. Formally/physically different signals,
e.g. sounds, are perceived/recognised as identical verbal units, e.g. phonemes,
words, phrases, where this is achieved within half-second time intervals.

The clusterization of phonemes (and, probably, of other, including non-
auditory, basic verbal units) depends on a particular language and the mecha-
nism of learning these clusters by children (that deteriorates with age) is poorly
(if at all) understood.

Yet, abstractly speaking, this is the easiest of our problems as it is witnessed
by the efficiency of (non-contextual?) speech recognition algorithms.

(2) Formalized Division into Units. Flows of speech are systematically di-
vided (albeit non-perfectly) into (semi) autonomous units, where the basic ones
are what we call "words".

This division, that is sharper than that of signals coming from "natural
sources", is based in a significant extent on universal principles of segmenta-
tion that are applicable to all kind of signals where the markers separating
"segments" are associated with pronounced minima of the stochastic prediction
profiles (see section ???) of signal flows, where determination of such a profile
depends on structural patterns characteristic for a particular flow.

(3) Medium and Long Range Structure Correlations. There are more "levels
of structure" in languages than in other flows of signals. This is seen, in part,

21 Properly responding to "Do black cats eat fresh mice?" instead of plain "Do cats eat
mice?" would need a study of a more representative corpus of English than Encyclopedia
Britannica by PRO.
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in a presence of non-local "correlations" between different fragments in texts.
For instance, if a sentence starts with "There are more ... in ... " one may

rightly expect "than in " coming next with abnormally high probability.22

And if "Jack" appears on every second page in a book and "his eyes sparkled
again" than, you bet, "Jack’s eyes sparkled" on the previous page.

(4) Verbal Reduction of non-Linguistic Signals. Many different non-verbal
signals, corresponding to objects, events, features or actions may be encoded
by the same word.23 For instance, hundreds small furry felines that have ever
crossed your field of vision reduce to a single "cat".

Non-verbal signals are many while their word-names are few. The use of
a language replaces the bulk of the "raw memory" in the brain by a network
of "understand" links between individual items in this memory. This is why
small children visibly enjoy the process of the verbal classification/unification
of "natural signals" from the "external world" as they learn to identically name
different objects.24

(5) Imitation, Repetition and Generation of Lingustic Signals. Humans, es-
pecially children, have the ability to reproduce linguistic signals σ they receive,
including those emitted by themselves, where, to be exact, not signals σ them-
selves are generated but members σ′ of the same class/cluster as σ and where
the choice of a particular classification rule is a most essential matter. (We shall
return to this later on.)

One can hardly analyse languages without being able to generate them25,
where the language generative mechanisms – called generative grammars – result
from the repetitive nature of imprecise imitation.

(6) Many Levels of Self-Referentiality. No other flow of signals, and/or
human medium of communications have the propensity of self-reference that is
characteristic of Language. The ergo-structures of languages contain multiple
reflections of their own "selves", their internals "egos", such as

noun-pronouns pairs, allusions to previously said/written items,
summaries of texts, titles of books, tables of content, etc.
Understanding a language is unthinkable without ability of generation and

interpretation of self-referential patterns in this language.
(7) Pervasive Usage of Metaphors. Metaphors you find in dictionaries are

kind of frozen reflections of their precursors in multiple coloured mirrors of
Language (where such a precursor may not exit anymore). But many metaphors
are ephemeral; they appear once and never come again.

2.2 Grammars and Dictionaries.
Making a dictionary involves several interlinked tasks where a starting point is

22Try: there are more * in on Google.
23This may be contrasted with the existence of synonymous words, but the multiplicities

and significance of the latter are incomparable to the power of the verbal reduction.
24Children of this age are close to being ideal ergo-learners – the strive to lean and to

understand is the main drive of ergo-systems.
25 Neuronal signal generation mechanisms play an essential role also in vision: much of what

you "really see" is conjured by your own brain, but the details of this process are inaccessible
to us.
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Annotation &Parsing, that is identification and classification of textual
units that are persistent and/or significant fragments in short strings s (say,
up to 50-100 letter-signs) as well as attaching tags or names to some of these
fragments.

Tagging may be visualised as colouring certain fragments in texts, where
these fragments and the corresponding colours may overlap. Or, one may rep-
resent an annotation by several texts written in parallel with the original one,
where the number of different color-words is supposed to be small, a few hun-
dred (thousand?) at most, with a primitive "grammar" that is a combinatorial
structure organising them.26

One may think of such annotations as being written in strings positioned
on several levels27 over the original strings s, where the new tug-strings on the
level l are written in the tug-words specific to this level and where the number
of such l-tugs (at least) exponentially fast decays with l.

An ergo-dictionary is obtained by several consecutive reductions or factoriza-
tions applied to a library of annotated texts where the resulting combinatorial
structure of the dictionary is quite different from that of (annontated or not)
texts.

We describe below the basic combinatorial/categorical structure of texts and
libraries and briefly indicate how parsing is performed.

2.3 Categories and Diagrams of Presyntactic and Syntac-
tic Insertions .

Deep linguistic structures display some approximate category theoretic features,
e.g. abridgements may be seen as semantic epimorphisms, or as functors of a
kind rather than mere "morphisms".

Then translations from one language to another come as functors between
categories (2-categories if abridgements are regarded as functors) of languages,
where the category theoretic formalism should be relaxed to accommodate im-
precision and ambiguity of linguistic transformations.

But we shall be concerned at this point with the following more apparent
combinatorial category-like structure that is universally seen in all kind of "flows
of signals".

Let a library L in, say English, language L be represented by a collection of
tapes with strings s of symbols, e.g. letters or words, written on them, where
many different tapes may carry "identical" or better to say isomorphic strings
with the notation s1 ≃ s2, with the equality notation s1 = s2 reserved to same
strings in the same location on the same tape.

Let arrows s1 ↪ s2 correspond to presyntactic insertions between strings,
i.e. where such an arrow associates a substring s′1 ⊂ s2 to s1, where s′1 ≃ s1.

We assume our strings are relatively short, no more than 10-20 words of
length: this is sufficient for describing any "library" since every 10 words long

26An annotation may include references to non-linguistic signals but this would contribute
to one’s knowledge rather than to one’s understanding.

27These levels l can be regarded as numbers 0,1,2,3, ... with l = 0 corresponding to strings
in the original text, where the number of level is small, something between 3 and 5. But,
as we shall see letter on, these levels are organised according to a structure that is not quite
linear order.
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string uniquely (with negligibly rare exceptions) extends (if at all) to longer
strings, since the total number of strings in any language is well below 10010 <<
n10 for n being the number of symbol-words in a language.28 As for L one might
thing of something with the number N of words in it in the range 106-1012.

The resulting category C↪ = C↪(L) carries the full information about L.

Discussion.

[+] Invariance. C↪ is invariant under the changes of "alphabets" – names of
the symbols.

[++] Universality and Robustness The categorical description of languages
satisfies the most essential ergo-requirement that is universality.

For instance, spoken languages can be similarly described in categorical
terms, whire, unlike written languages the arrows must correspond to approxi-
mate insertion relations between auditory or visual patterns.

In fact, allowing approximate presyntactic insertions with sequence align-
ments (with a margin of error 5-10%) in place of syntactic isomorphisms between
strings would enhance the robustness of categorical descriptions of written lan-
guages as well.

[∗] Non-locality. The C↪-description of libraries depends on comparison
between strings that may be positioned mutually far away from each other in
texts.

[∗∗] Long Term Memory. This comparison between strings, depends on the
presence of a structurally organised, albeit in a simple way, memory within the
learning program.29

Redundancy and excessive local complexity of C↪.

[−] The full category C↪(L) contains many "insignificant" arrows, e.g. in-
sertions of single letters into ten word sentences and arrows between "non-
linguistic" strings, such as "tic stri".

This can be corrected by
allowing only textual units for objects in C↪.

and by
selecting a representative subdiagram D↪ ⊂ C↪.

Such a diagramD↪ (that is a network of directed arrow-edges between strings
for vertices) must generate (most of?) C↪ as a monoid, and also it must be
"small", e.g. being a minimal subdiagram generating C↪.

(There is no apparent natural or canonical choice of D↪ ⊂ C↪, but it may
depend on the order in which the learner encounters texts in the library.)

[−+] Pruning and Structuralizing D↪. No matter how you choose D↪ it
has too many arrows issuing from certain (relatively short) strings s, where the
number of such arrows grows with the size of a library. Thus, in order to comply
with the principles of ergo-logic, our learning algorithms must automatically
reorganise D↪ in order to correct for this excessive branching. This may be

28Never mind the saying: "there are infinitely many possible sentences in a natural lan-
guage".

29Conceivably, this organisation corresponds to how languages are perceived by their prin-
cipal learners – 1- 4 year old children, where the C↪-categorical organisation of memory is the
"ground level" of what we call "understanding" of L.
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achieved, as we shall see later on, by operations of reduction30 applied to (the
sets of) strings and arrows.

Categories C↪↓ and Diagrams D↪↓ of Annotated Texts.

If the texts in a library are annotated with tug-strings s′ that are written on
several level over original strings s, then the category with "horizontal" arrows
s′1 → s′2 is augmented by the "vertical" position arrows s′′ ↓ s′ saying that s′′ lies
over s′, where such "mixed categories" and their representative subdiagrams are
denoted by C↪↓ and D↪↓.

The presence of vertical arrows serves two purposes.
[1] Vertical arrows significantly increase the connectivity of diagrams since

a bound on the number of tug-words on the high levels of annotations yields
the existence of many horizontal (syntactic insertion) arrows between strings on
these levels that were not present on the lower levels.

[2] And
the notion of a representative diagram D↪↓
is modified in the presence of vertical arrows

by replacing many horizontal arrows issuing from lower levels strings in an an-
notated text by the corresponding arrows on the higher levels where the "low
level information" is encoded by (inverted) vertical arrows. Thus one (partly)
compensates for the excessive branching of D↪.

Remarks. (a) Reconstructing Arrow of Time. Linguistic strings are di-
rected by the Arrow of Time. The category C↪ is unaware of this arrow but,
probably, the time direction in strings can be reconstructed by some rule univer-
sally applicable to all human languages. Possibly, a predominantly backward
orientations of self-references in texts may serve for such a rule.

(b) Structures in Symbols. In our categorical description (the alphabet of)
the basic symbols, say letters, carry no internal structure of their own. But in
reality letters in alphabets are non-trivially structured in agreement with one
of the ergo-logic principles that allows no unstructured set of objects with more
than three-four members in it. I am not certain what one should do about it.

(c) Dimension of Vision. Visual signals31 For instance the visual are cus-
tomary recorded on 2-dimensional backgrounds such as on photographs and/or
eye retina, where the extra dimensions of depth and of time (in moving pictures)
carry only auxiliary information. The morphisms s1 ↪ s2 here correspond to
similarities between visual patterns s1 and subpatterns in s2.

But, probably, a significant part of visual perception is 1-dimensional being
implemented/encoded by the neurobiology of saccadic eye movements. This
suggests unified algorithms for learning to see and for learning to speak.

30 This is also may be called clusterization, classification,categorisation, factorization.
31There is a demarcation line separating visual structures of Life – plants, animals, humans,

human artefacts, from those of non-Life – stretches of water, rocks, mountains. These two
classes of images are, possibly, treated differently by the visual system.
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2.4 Fragmentation, Segmentation and Formation of Units.
Certain fragments of incoming signals32 e.g. particular strings of letters such
as "words",33 or some distinguished regions in visual fields, such as "perceived
objects or "things"34 qualify as textual units.

One can hardly give a comprehensive definition of such a unit, or a signal-
unit in general, but one may indicate the following essential feature common to
most units.

Probability of encountering a unit u among a multitude of other signals in
the same category as u (here "category" means class) is significantly greater
than the product of probabilities of "disjoint parts of u".

For instance the word "probability" that has 11 letters in it may, a priori,
appear only once or twice in a library with billion books (<< 2611 letters) in
it,35; but in reality it appears millon-fold more often than that.

This does not work quite so nicely for short words: scrabble dictionaries
offer ≈1000 three-letter English words and ≈4000 four-letter words where many
of them, e.g. qat (an African plant) or (to) scry (to practice crystal gazing) come
rarely, but the improbable frequency of such a word may be seen in appearance
of several copies of it in a single volume, or even on the same page.

The abnormal frequency alone, however, does not define units: the string
"obabili" appears at least as often as the full "probability"; thus, one has to
augment the "definition" of a unit by the following

completeness/maximality condition: If a string s is a unit, then larger strings
s′ ⫌ s are significantly less probable than s.

Segments and Boundaries. Fragmenting texts into units is naturally coupled
with the process of segmentation that is introduction of division points that
make boundaries of string-units in texts.36

Determination when the position d in a string S between two letters may
be taken for a division point depends on the strings s "to the left" and "to the
right" from d in S, where such a string, say sleft, being a unit is an essential
indication for d being a division point.

But it may also happen that there is no such clear cut units next to d in
S but there is a 20 letter string S′ somewhere else in the library that contains

32We temporarily ignore overlaps between fragments such as "hard to see" and "to see it"
in the unit-phrase "hard to see it". ( "Hard to" makes a perfect "unitary uttering"; yet this
is a weaker unit than "hard to see".)

33 A textual unit may be "disconnected", e.g. it may consist of two (more?) strings
separated by other strings in a text. This happens, for instance, to separable prefixes in
German that are moved to the end of the sentences. Also this is not exceptionally rarely
seen in English.

34 The rigid concept of object-unit will be later combined with classification/reduction and
applied to "things" that come in many shapes such as words with flexible morphological
forms, the human body, or to something inherently random such as an image of a tree with
multiple small branches. When out eye looks at such a tree, our mind, conjecturally, sees
(something like) a branch/shape distribution law rather than the sample of such a distribution
implemented by an individual tree.

35The number of different books in the world is estimated at about 100 million. This seems
to imply 5-50 million authors, half of whom must be among 7 billion people who live today
on Earth – lots of writers around us!

36Boundaries of the so called "words" are marked in most written languages by white spaces
while phrases and sentences are pinched between division punctuation signs. But we pretend
being oblivious to this for the moment.
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isomorphic copies of five letter strings to the left and to the right from d and
such that the corresponding d′ is recognisable as a division point in S′. Then we
may accept d as a division point in S and to use this for identifying previously
unseen units in S.

The coupled Fragmentation + Segmentation is a multistage process each step
of which is a part of the learning transformation PRO on a certain space of pairs
(Frag,Seg) that will be incorporated into the full "understanding space" later
on.

This process must comply with "please, no numbers" principle: the program
PRO we want to implement must function similarly to an infant’s brain that,
unlike an extraterrestrial scientist, has very limited ability of counting and of
manipulating large numbers (e.g. frequencies) as well as small ones such (e.g.
probabilities).

This is achieved, as we shall explain later on, by consecutive "internal
fragmentation" of the process PRO itself into a network of simple proces-
sors/directories where, they all, individually, perform (almost identical) "baby
operations" with the global result emerging via communication between these
processors.

Syntatactic from Presyntactic. Eventually, we isolate strings (sometimes
pairs of strings) that are serve as textual units and also we identify significant
insertions between them that we call syntactic insertions.

Linguistic 2-Spaces P↪ = P↪(L) and P↪↓.
Let us represent strings from a given library L by line segments of lengths

equal the numbers of letters in them. Attach rectangular 2-cells to the disjoint
union of all these strings, where these "rectangles" are Cartesian products s ×
[0,1], with s being some strings/segments of length ≥ 5 letters each and where
the attachment maps are syntactic insertions from the segments s × 0 and s × 1
to some string segments S0 and S1 such that the images are maximal mutually
isomorphic (i.e. composed of the same letters) substrings in S0 and S1.37

In fact, it is more instructive to use the maps corresponding not to all syn-
tactic insertions in the category C↪ = C↪(L) but only to those from a minimal
diagram D↪ ⊂ C↪, that generates all morphisms from C↪ on strings of length≥ 5.

Then the resulting 2-dimensional cubical (rectangular) polyhedron P↪ =
P↪(L) adequately encodes the library L and if L is sufficiently large, this P↪
carries all structure knowledge of the corresponding language L with segmenta-
tion into basic units – words and short phrases made visible.

If one deals with the category C↪↓ corresponding to an annotated library,
or with a subdiagram D↪↓ ⊂ C↪↓, then one attaches "vertical" rectangles along
with "horizontal" ones, where the horizontal rectanglers are associated to the
arrows s′1 ↪ s′2 and the vertical ones to the arrows s′′ ↓ s′.

Branching Entropy

Extensions of a string-unit, s, e.g. of a word, by short units t following next
37Our ad hoc bound length ≥ 5 serves to eliminate/minimise the role of "meaninglessly iso-

morphic" substrings, (e.g. of individual letters) where the same purpose may be implemented
by a natural constrain on strings and gluing maps as we shall see later on.
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after s in a library L define a probability measure on these t for

p→
s
(t) = p

L,
→

s
(t) = NL(st)/NL(s),

where NL(s) and NL(st) denote the numbers of occurrences of the strings s
and of st respectively in L.

The collection of numbers {ps(t)} indexed by t serves as an indicator of
variability of usage of s in the texts in the library L, where it seem reasonable
to use not all t but only a collection T of unit-strings (words) t corresponding
to roughly 10 (it may be something between 3 and 50, I guess, that need be
determined experimentally) largest numbers among p→

s
(t).

The standard invariant of the probability space {p→
s
(t)} that reflects vari-

ability of p and regarded as an invariant of s is the (one step forward) entropy
→

ent(s;L) = −∑
t∈T

p→
s
(t) log p→

s
(t).

Similarly, one defines
←

ent(s;L) via left extensions ts of s as well the cor-
responding invariants reflecting relative frequencies of "double extensions" of s
that are t1t2s, t1st2 and st1t2.

Probably, such entropies (this is definitely true for more elaborate invariants
of this kind) will be quite different for the strings "birds-fly" and "pigs-fly38

while "bats-fly" will be close to "birds-fly" in this respect.

Classification of Words and Partitions into Sentences. Segmentation of texts
into strings with more than 2-3 words in them is impossible without preliminary
syntactic classification of basic units – words and short phrases. But when
such classification is performed and the number n of basic units u – this n is
about 105-106 in English – is reduced to much smaller number n of classes u,
realistically with 10 ≤ n ≤ 30. Then a library with N basic units in it would allow
one to reconstruct the rule of formation of strings of length about lognN . For
instance, if we classify with n = 20, then a modest library with 109-1010 basic
units in it39 gives an access to 6-8 basic unit long strings, for log20 1.3 ⋅ 109 ≈ 7
that may allow an automatic discrimination between admissible and nonsensical
strings up to, maybe, 12 words in length. Then generation of meaningful strings
becomes a purely mathematical problem.

Gross Contextual Segmentation. In the spoken language, utterings are di-
vided according to when, where and who is speaking to whom, while texts in
written languages are organised into paragraphs, pages, books, topics, libraries
with a similar arrangement of pages on the web.

These partition structure are essential for making a statistical analysis of
languages; conversely, texts can be classified/partitioned according to relative
frequencies of short range structural patterns. e.g. basic units, present in them.
vspace 2mm

Non-Textual Syntatctic40 Units.41 Languages, unlike non-linguistic arrays
38The two strings have comparable frequencies on Goggle
39There are about 100 basic units on a page, 104-105 of such units make a book, a 10 000

book library comprises ≈ 3 ⋅109 units, while the world wide web may contains up to 1012 basic
units of the English language.

40 The word "syntactic" is understood in the present article as "characteristic of languages".
41"Unit" can be "defined" as "everything worth giving it a name"; it remans, in order to

implement this "definition", to design a program that would understand what "worth" is.
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of signals, "contains" units that are not fragments of texts. For instance, the
groups of words, such as
{yes, no, maybe }, {we, us, our}, {big, large, huge}, {smelly, tasty, crunchy}.
are kind of "outlines" of such units. We shall explain later on automatic pro-
cesses for locating of these and other "higher order" units, in texts and properly
incorporating them into dictionaries.

2.5 Similarity, Coclustering, Classification and Coordina-
tization.

Organizing multi-branched (hierarchical) classifications of units is essential for
developing "understanding dictionaries". where the resulting classes become
"higher order" units.

Even the basic units – the words come up as equivalence classes of strings
containing these words, rather than as the mere "spell-strings". For instance,
the two collections of strings
[bats-eat]: bat-with-flapping-..., bats-from-..., bats-are-present-...,

vampire-bat, bats-catch-..., innoculation-of-bats,
bat-captured...

[bat-hits]: training-bat, used-bats-on-sale, made their own bats,
increase-your-bat-..., throws-his-bat, ...-bats-per-game,
raised-a-bat...

represent two different "bat" class-words.42

Our goal is formulating a universal classification rule(s) a priori, applicable to
all kinds of strings (and, desirably to differently structured signals) that would
essentially agree with the above division of "bats" into two classes.43

Classifications are often (but not always) achieved by means of similarity
and/or equivalence relations R that, besides similarity and equivalence, reflect
the ideas of

"sameness", "identity", "equality", isomorphism", "analogy", "closeness",
"resemblance",

where such relations R are regarded as higher order units and are themselves
subjects to further classification.

And not all similarities lead to what we call "classification", essentially,
because the "equivalence axiom" A ∼ A is unacceptable in ergo-logic. (If the
space in your head is filled with such staff you are brain-dead.)

In fact, similarity concepts S that are applicable only to small groups of
objects, such as what brings together

{sweet, bitter, salty, sower, tangy},
and that do not meaningfully44 extend to majority of words, unite their respec-
tive S-similar members rather than divide non-similar ones into classes.

42Non-existence of the string "bats eat and hit" shows how far apart the two classes are
but ambiguous strings such as "hit by a flying bat" effectuate "linguistic bridges" between
the two classes.

43There are more – about a dozen – different class-words spelled "bat", that are, essentially,
subclasses of [bat-hits].

44The common idea of "meaning" is inapplicable within ergo logic but ergo-meaningless
formalism, such as A = A, is non-acceptable either.
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Another kind of groups of words having much in common that may or may
not be regarded as true classes are those of morphological word forms such as

{works, worked, working}
or

{white, whiteness, whiten.}
On the other hand, traditional parts of speech: verb, noun, adjective,..., etc.

represent typical classes of words; also division of words into "common" and
"rare" is essential despite being ambiguous.

Certain type of classes (categories, as they are called by linguists) are often
hard to extract from the depth of a language, but interesting and often unex-
pected results may be achieved by applying universal classification schemes to
languages.

Basic Example: Coclusterization principle.45 Two units u1 and u2 are re-
garded as similar and/or brought to the same class/cluster if they similarly
interact with units v1 and v2 in-so-far as v1 is similar to v2.

To see how this seemingly circular "definition" works let, for instance, u and
v be words that are regarded as "interacting" if v often46 goes next after u. If we
have about 100 000 words to work with and "often" means "at least ten times",
then such an "interaction" is described by a U × V matrix R with {yes, no}
entries of size 105×105, and a reliable evaluation of these entries needs a library
of about 1011 = 10 ⋅ 1010 words in it.47

But it may happen, and it does often (albeit approximately) happen in "real
life", that this huge matrix is (approximately) determined by something mach
smaller, say by a 300 × 300 matrix, where you need only 90 000< 105 entries to
fill in and for which a a 106-107-word checking would be sufficient.

Namely, think of R as a {yes, no} valued function in two variables, R =
R(u, v), and conjecture that

● there are reduction maps f ∶ U → U and g ∶ V → V where the cardinalities
of the sets U and V are ≤ 300;

● there exists a {yes, no} valued reduced relation (function) R = R(u, v),
such that

R(u, v) = R(u, v) for u = f(u) and v = g(v).
Observe, that the existence of R, f and g, a priori, is extremely unlikely even

if R(u, v) is only approximately equal R(u, v) and if such (even approximate)
R, f and g are found they would be unique with a overwhelming probability.

Also notice that description of R by means of R needs only
90 000 +(2 log2 300) ⋅ 105 < 2 ⋅ 106 bits

instead of the original 1010 bits.
The above may be generalised and developed in a variety of directions, made

more precise, more detailed, more specific (we shall do this later on). But the
following question remains:

45It is hard to trace the origin of this idea without knowing how it was christened at birth.
46This is, purposefully, formulated ambiguisly. But within the range of possible "often"

there is a "coclusterization stability region" that allows a resolution of this ambiguity.
47If you check one word per second - eight hours a day - five days a week, it will take more

than 10 000 years to go through such a library.
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What can one do, say, with functions R(u1, u2, u3), where each u-variables
may take ≈ 106 values (that makes 1018 u-triples) and where no kind of R-
reduction is available?

Our pessimistic answer is "In general, nothing": the human mind will be
unable to understand the structure of such an R, unless... a miracle happens:
somebody discovers a hidden regularity in such an R something like what we
call "a law" in physics.

Biclustering for Words ×Contexts. We reserve the word "biclustering" to the
case of functions R in two variables as in the above U ×V , where we want to look
now at another kind of example where u ∈ U are words while v ∈ V are books
and the function R encodes presence/absence of a u in v. Here biclusterization
serves to classify books by topics according to their "key words" while the words
themselves become classified by configurations of subjects, such as: chemistry
of plants, animal foods, etc.

Such a clusterization may be also applied, besides R(u, v), to the entropy
function

→

ent(u; v) defined in the previous section and it may go along with that
for pairs of words (u,u′) according to their systematic appearance in the same
book and/or with tri-clusterizatuion for R(u,u′, v) encoding the insertions of
words u and u′ in the book v. The resulting three classifications may be differ-
ent and they must be incorporated into different facets of the "I understand"
program/structure.

Iterative Clustering. Coclusterization may be computationally hard in gen-
eral, but the following simple algorithm for biclustering words illustrates a pos-
sible resolution of this problem.

Evaluate the above R(u, v) for v taken from the set of 100 most common
words in English. Observe that this will need a modest library only with 108

words (≈ 1000 books) in it.
Represent the function R(u, v) by a map, say R∗ from words u to {yes, no}

functions r(v) for

u
R∗↦ r(v) = R(u, v).

Now, let us endow our space of 2-valued functions on the 100-element set by
some metric, where the simplest one is the Hamming metric and clusterize words
u using the induced metric on them. (Assume, some unambiguous clusterization
exists.) Take this for the preliminary classification/reduction of words u.

Suppose, you thus divided words into 3000 classes u. Select 300 most com-
mon v among u and apply the above procedure to u (that would need less than
100 books), Then, after possibly doing it yet another time, you will arrive at
the desired classification.

Trees and Coordinates. These are two most common classification structures
in life , and, typically classifies contain both trees and coordinate in them that
are presented as 1 and 2 below.

1: Classification as a Tree. This is may be seen as a sequence of partitions
of units u into smaller and smaller classes, where the rule defining the Parti-
class of a unit u depends Parti−1 of u.

A linguistically rather artificial instance of that, is classification/positioning
of words in alphabetically organised dictionaries.

More significant example is where Part1 divides words into the two classes:
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A. Class of content words: {nouns, (most) verbs, adjectives, adverbs.}
B. Class of function words: {articles, pronouns, prepositions, etc.}
And Part2-classes are obtained by further subdividing words into "parts of

speech".

2: Classifications by Coordinates. These are given by several coordi-
nate functions ci(u), where determination of ci0(u) is essentially independent
of ci≠i0(u) and where the set I ∋ i is not necessarily ordered. Different classes
are formed by assigning particular values to some coordinates.

For instance, one may have the following functions c1,c2, c3,c4 on phrase-
units u.

c1(u) takes values long, medium, short depending on whether u has at most
4, between 5 and 8 or more than 8 word-units in it.

c2(u) takes values yes or no depending if u contains a content verb in it.
c3(u) assigns the key word w in u to u.
c4(u) is the expected minimal age (in years) of a child able to understand

the phrase u.

We expect our program PRO will be automatically generating this kind of
functions c(u) in the course of learning a language.

3 Combinatorics of Libraries and Dictionaries.
We want to represent languages and dictionaries by multicolored networks U as
follows.

● Linguistic units u are represented by nodes or vertices in such a network.
● Connections between units are depicted by connective edges between these

nodes. We do not exclude a possibility of several (or none) connectives joining
some nodes.

● Besides connectives, there are directed edges between certain nodes; these
are depicted by arrows, such, for instance, as syntactic insertions between strings
and reductions u↦ v = class(u). A relevant feature of such arrows is that some
of them are composable as in u↦ v ↦ w.

● Nodes and edges carry certain colours where such a colour depicts "essential
properties" of the node or edge it is assigned to. For instance a colour on a
node u may say: "short string", a colour on a connective may say among
other things, "similarity" and a colour on a reduction arrow may refer to a
particular classifier algorithm defining/producing this arrow.48

From another perspective, colours appear as descriptors of structural/logical
units involved in organisation/construction networks U . The ensembles D of
such descriptors are smaller than U :

a dictionary may have 105-108 nodes (libraries are even larger) while the
number of colours is in U , that is the number of units in D, is somewhere
between 50 and 500.

But multicoloured network-like structures carried by these D are more sophis-
ticated than the structures in U . (We shall explain this later on.)

48One should think of a colour as a simple combinatorial entity, e.g. a little tree, rather
than a word or phrase.
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Collections, Ensembles, Sets.

We do not regard collections/ensembles of nodes, and even less so of edges,
as mathematical sets for the following reasons.

1. The presence of a particular node in a network, e.g. of a particular phrase,
in the long term memory of a learner is often ambiguous.

2. Basic set theoretic constructions, such as the union X1 ∪ X2 and the
Cartesian productX1×X2, can not (and should not) be unrestrictedly performed
in our networks.

The set theoretic language may lead you astray;49 yet, we use fragments of
this language whenever necessary.

Colouring Descriptors. A conceptually most difficult problem in building
network models of learning50 is assigning colours to descriptors and connectives
between them. We think of these colours as formalised expressions of (simple
combinations of)

fundamental/universal principles of learning.
Identification and formalisation of these principles is our main task.

3.1 Library Colours.
What we call a library L is a a collection of string-units, where such a string
may be, a priori, anything starting from a fragment of a word to a paragraph
with a few dozen words in it.

These strings are "colored" according to their size, say into three basic51

"colours": short, median, long, where each of these colors may be "subdi-
vided" into three "subcolors":

shortshort, shortmedian, shortlong, medianshort, ...., longlong
52.

(Later on, this structure will be parsed by identifying "significant strings" ,
such as words, phrases, etc. and disregarding insignificant ones, with possible
subcolors such as wordrare, for instance.53)

There are several facets to a learner’s perception of geometric structure(s)
that underlines L and that is involved in formation of string-units and which is
also needed for defining connectives between strings.

Simple Linear Order. A mathematician may be conditioned to think of a
library as a string of symbols indexed by integers i ∈ Z with all of geometry of
L derived from what he/she knows of Z :

... ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ...

But the "naive concepts" in the mind of our learner – think of a baby learning
to talk – are more general, more powerful and more flexible, something like:

49 Bringing forth random sets and/or fuzzy set may only aggravate the problem.
50Possibly, our kind of networks have little to do with "true learning", but one can not rule

them out at the present stage.
51Digital number bases two or four are also possible(?) but three is preferable.
52 These can be depicted as nine leaves of a rooted (and ordered) triadic tree with 12 edges

and with a single colour length spread all over it.
53An essential (but not the only) intrinsic motivation for doing this by an ergo-learner is

economising the memory space.
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close-one-to-another, far-one-from-another, next-to-each-other,
in-between, begins-with, etc., where these "colourful concepts" come in sev-
eral subcolor-flavours similarly to (yet, differently from) how it is with lengths
of strings.

Notice that all of these are binary relations except for the ternary in-
between.54

Besides these relations the large scale geometry in L is reflected in the pres-
ence of (relatively large) contextual units such as pages and books, for in-
stance.55

Then closeness between two strings can be seen as simultaneous containment
of these string-units in the same context-unit.

This is essential for enlisting and keeping in memory (pre)syntactic insertions
between strings, in particular all pairs of identical words w in L. The number
of such pairs is uncomfortably large being quadratic56 But identifying identical
words say on a single page goes linearly in time.

Among colours carried by insertions of string-units into context-units we in-
dicated here only the two: frequent and/or rare. These are used, both for
identification of (statistically homogeneous) context units as well as for classifi-
cation units with a use of biclusterization.

It is not difficult to complete the above combinatorial description of our
library L – one needs a few dozen more colours, about 50 of them all-to-gether,
that represent basic types of units and of connectors between them in L.

But the principal issue is not so much L per se but a construction of the
corresponding descriptor network D on the basis of few, probably 4-8, "general
rules", where, recall, the colours-descriptors of L are taken for nodes in D and
"general rules" are used as colours assigned to nodes and connective edges in
D.

54 "begins-with" formally defines simple linear order that implies all other relations. But
our baby-like learner is unaware of formal logic, for him/her these "colorful-relations", albeit
interconnected, do not "logically imply" one another. If a human baby were born with a
logical mode of thinking in his/her head, he/she would learn preciously little of essence in this
world.

55Originally, these units are classified/coloured by their size, where different classes must
roughly fit into the corresponding frames of the short-term, medium-term and long-term
memory. Then the concept of "context" is modified and refined in the course of learning
(not quite) similarly to how it happens to strings, where the true pages and books must
be either sufficiently statistically homogeneous, or structurally unified or to have pronounced
boundaries.

56Squares are unacceptable except of small quantities. We happily live through million
seconds that make less than 12 days of our lives. But trillion seconds, that is million squared,
stretch over more than 31 000 years.
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