Riemann Curvature, Ricci, and Scalar Curvature in
Geodesic Coordinates

Geodesic (Normal) Coordinates

Let (z',...,2™) be normal coordinates centered at a point p in a Riemannian manifold (M, g)
with Levi-Civita connection V. By construction,

9i(p) = dij, Ikgij(p) =0, I.(p) = 0.

Christoffel Symbols

The Christoffel symbols (connection coefficients) of the Levi-Civita connection are defined
by
iy = 59" (059ke + Ongje — Ouginc)-
They determine the covariant derivative:
(V;V) = 0Vi+ T VE, (Viw)i = Ojw; - T wy.

At the origin p of normal coordinates,

I (p) =0, 9L (p) = ~3(R jre + R o).

Deriving F?k from Metric-Compatibility and Torsion-Free
Conditions

The Levi-Civita connection is the unique connection V that is (i) torsion-free and (ii) metric-
compatible. These two axioms determine the Christoffel symbols.

Axioms
e Torsion-free: Fijk = Fikj.
e Metric-compatibility: Vg;; =0, i.e.
Ogij = Gmj Ul + Gim I
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Algebraic Derivation

Write the metric-compatibility equation for the three index permutations (i, j, k), (4, k,1),
and (i,k,7):

(1) OkGij = Gmj Ul + Gim L.,
(2) azgjk: = Gmk Iwﬁ + gjim Frknza
(3)  0i9ik = G 1'% + gim L'

Using torsion-free symmetry (I'?% = I and I = F’;.Lk), form
(1)+(2)=(3):  Okgij + 0igjr — 0;Gir = 2 gm; '}y

Contract with g% to solve for I':

2%, = Y (0kgi; + Oigj — Oi9un),
which yields the standard formula

I = 29" (Okgij + 0:95% — 0;9in)-
Koszul Formula (Coordinate-Free)
For vector fields X,Y, Z,
29(VxY,2) = X g(Y, Z2)+Y g(Z,X) - Z g(X,Y) +g([X,Y], 2)-g([Y, Z], X) -g([X, Z]. ).

In a coordinate frame {0;} where [0;,0;] = 0, this reduces to the coordinate expression above.

Riemann Curvature Tensor

Using the convention A A _ A A
R i = Okl — O + T, = 10,17

km= jl Im~ jk>»

we obtain at the origin p:

Rijia(p) = 2(0:0kgj1 + 0;019i1, — 0,019 — ;01941 )| -

p

Ricci and Scalar Curvature
The Ricci tensor and scalar curvature at p follow by contraction:
Ricju(p) = R’ ju(p) = ¢ (p) Rijia(p) = 0" Rijra(p),

S(p) = ¢’'(p) Ricj(p) = 67' Rici(p).



Metric Expansions Near p
The Taylor expansions of the metric and its inverse are
9ij(x) = 0ij = 3 Rirje(p)2* 2" = § Rigjem (p)x*aa™ + O(|a]*),

g7 (x) = 07 + gR W o(p)aa’ + g R g (p)aaa™ + O([]*).

Christoffel Symbols Expansion

Lip(2) = =5 (R jee + R gje) ()2 = §(R jroam + R gjem) ()™ + O(|a]).

Volume Density

Vdet g(z) = 1 - 2 Ricg(p)aFa’ — L Ricggm (p)zhzz™ + O(|z[*).

Laplacian on Scalars

1 . . .
Af= m@( detgyg Jajf) =0"0;0;f - %Rlcke(p)$kazf + O(|$|28f7 || 82]”).

Curvature Symmetries

Rijkl = _Rjikl = _Rijlk = Rklij7 Rijkl + Riklj + Riljk = 0.

Einstein Summation Convention

Definition

In tensor calculus, the Einstein summation convention (or summation over repeated
indices) states that whenever an index variable appears once as an upper (contravariant)
index and once as a lower (covariant) index in a single term, it is implicitly summed over all
its possible values.

ma=§m& (1)

Key Rules

e Free indices: appear only once in an expression and remain as indices of the resulting
tensor.

e Dummy (summed) indices: appear twice (once upper, once lower) and are summed
over; they disappear from the result.



e Summation occurs only when an index appears once up and once down.

e If an index appears twice both up or both down, it is not summed unless explicitly
indicated.

Examples

1. Dot Product

2. Matrix-Vector Multiplication

Y= Aljad = ZAijxj (3)

3. Metric Contraction

Remarks

The position of an index (up or down) reflects whether the component is covariant or con-
travariant. The FEinstein convention greatly simplifies tensor notation by omitting explicit
summation signs.



Consider a 4-form @ on R",
D = D(x,Xx,,X3,Xy), x;eR,i=1,...,4,
which is symmetric under the following permutations of the entries
XXy, Xz3e>Xx, and  (x,Xx;) > (x3,Xx4)

This means @ is a symmetric bilinear form on the symmetric square (R")%, and so

n(n + 1)
)
There is a canonical splitting of @ into the sum @ = &* + &, where @ is the
symmetric 4-form on R” obtained by the complete symmetrization of @, and where
& =P — O satisfies

1
the dimension of the space of all such forms @ equals n(n:— )<1 +

D (xy,X5,X3,X4) = P(Xy,X5,X3,X4) — DP(Xy,X4,X3,X3)
The form @~ has the symmetry type of curvature tensors. These constitute a space
of dimension
n(n + 1) 14+ n(n + 1) nn+ )(n+2)(n+3) n*(n*—1)
4 2 24 12

Now, let f: V — W be an isometric C*>-immersion between Riemannian C*-
manifolds V = (V, g) and (W, h) of dimension n and q respectively. The map f then
induces the form @ of the above type on every tangent space T,(V), ve V. Namely,
take local coordinates u; in ¥V which are geodesic at ve V and define @ = @, by

P(J;, (7,-, O, 0) = <Vijf? Viaf s

for 0; = df(v)/du; and for the covariant derivatives ¥;; and their scalar products in
W. The part @~ of @ = @, depends only on the curvature tensor R of the induced
metric g = f*(h) by the Gauss theorema egregium

R(g) = &, .

The remarkable feature of this formula is the absence of third derivatives of fin the
expression for R(f*(h)), where h+— f*(h) is a first order differential operator and
g— R(g) is a second order operator. However, the composition of the two is a
second (not third!) order operator.

The symmetric part @/ also has a simple geometric interpretation. Let y be
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a geodesic in V in the direction of some unit vector de€ T,(V). Then the value
&/ (0,0,0,0) equals the (curvature)® of the curve f(y) = Watw = f(v)e W.
Observe that the form @, can be identified with the quadratic form on the
symmetric square (T(V))? which is induced from h by the second differential D}. This
D} maps (T(V))? to the normal bundle N, — V by sending 6; ® J; to Py(V;;f), for all
bivectors 9; ® d;€(T(V))? and for the normal projection Py: T(W)|V — N;.



C*-Immersions with Given Curvature. The 1sometric immersion relation for maps
f:(V,g) = RY prescribes the scalar products

(1) (011,051 = g(01,0,)
for all vectorfields d, and d, in V. This implies
0,0, 1,0, > = 30,9(02,0,)
and so
(') 03£,0,f> = 0,9(91,0,) — 30,9(0,,0,).

Since commuting fields satisfy
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(*) 0,05 = 5[(0, + 05)* — (0, — 05)*],

the Egs. (1) express via (1) the scalar products

(2) (0,031,0, 1

by combinations of derivatives of g. Next, for commuting fields ¢,,i = 1,..., 4,
(3) 64((3253f, alf) - 62((3364f, 51f> = ((3263f,6154f> - (6152f,6364f),

and so we express (3) by combinations of second derivatives of g. This amounts to
Ganss’ formula @7 = R(a).



