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Euclidean, Spherical, Hyperbolic
In geodesic polar coordinates for the three model spaces of constant curvature:

Space Metric Radial factor f(r)
Euclidean Rn dr2 + r2 dΩ2

n−1 r
Sphere Sn (radius 1) dr2 + sin2 r dΩ2

n−1 sin r

Hyperbolic Hn dr2 + sinh2 r dΩ2
n−1 sinh r

sinhx = e
x − e−x

2

Variation of the Metrics and Volumes in Families
of Equidistant Hypersurfaces
(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannian metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A∗(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.
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Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) = ∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A∗) = ∑
i

A∗(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Sign Convention. The first derivative of h changes sign under reversion

of the t-direction. Accordingly the sign of the quadratic form A∗(Y ) of a hyper-
surface Y ⊂X depends on the coorientation of Y in X, where our convention is
such that

the boundaries of convex domains have positive (semi)definite second funda-
mental forms A∗, also denoted IIY , hence, positive mean curvatures, with respect
to the outward normal vector fields.1

(2.1.B) First Variation Formula. This concerns the t-derivatives of the
(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) = dht
dt
voln−1(Ut) = ∫

Ut

mean.curv(Ut)dyt2

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for C1-smooth

functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt

ψ(y)mean.curv(Yt)dyt3

Now comes the first formula with the Riemannian curvature in it.

0.1 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ ⊂ Ty(Y ) ⊂ T )y(X)
y ∈ Y , satisfy

κ(Y, τ) = κ(X,τ) + ∧2A∗(τ ),
1At some point, I found out to my dismay, that this is opposite to the standard convention

in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

2This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].

3This remains true for Lipschitz functions but if ψ is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U ⊂ Y , then the derivative ∂ψνvoln−1(Yt)
may become (much) larger than this integral.
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where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧2A∗(τ) = α∗1(τ) ⋅ α∗2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α∗j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a

unit (defined up to ±-sign) normal vector to Y ;
● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)
2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2 −Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2

for ∣∣A∗(Y )∣∣2 = ∑i(α∗i )2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))2−∣∣A∗(Y )∣∣2+(n−1)(n−2) ≥ (n−1)(n−2)−nmax
i

(c∗i )2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =
0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape that is the symmetric on T (Y ) associated
with A∗ via the Riemannian scalar product g restricted from T (X) to T (Y ),

A∗(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).
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0.2 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry.4 Let Yt be a
family of hypersurfaces t-equidistant to a given Y = Y0 ⊂ X. Then the shape
operators At = A(Yt) satisfy:

∂νA = dAt
dt

= −A2(Yt) −Bt,

where Bt is the symmetric associated with the quadratic differential form B∗ on
Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannian geometry. 5

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(dAt
dt

) = −∣∣A∗∣∣2 −Riccig (
d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗∣∣2 −Ricci(ν, ν),

where
∣∣A∗∣∣2 = ∣∣A∣∣2 = trace(A2),

where, observe,

trace(A) = trace(A∗) =mean.curv = ∑
i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the B) on
the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α∗i α∗j − ∑i κν,i can be
rewritten as

Ricci(ν, ν) = 1

2

⎛
⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α∗j

⎞
⎠
=

4The first main formula is Gauss’ Theorema Egregium.
5Thibault Damur pointed out to me that this formula, along with the rest displayed on

the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.
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= 1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))2 + ∣∣A∗∣∣2)

where, recall, α∗i = α∗i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of
Y ⊂X, where mean.curv(Y ) = ∑i α∗i and where ∣∣A∗∣∣2 = ∑i(α∗i )2.

0.3 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let Y = (Y,h) be a smooth Riemannian (n-1)-manifold

and ϕ = ϕ(t) > 0, t ∈ [0, ε] be a smooth positive function. Let g = ht + dt2 =
ϕ2h + dt2 be the corresponding metric on X = Y × [0, ε].

Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal
curvatures of Yt equal to α∗i (t) =

ϕ′(t)
ϕ(t) , i = 1, ..., n − 1 for

A∗
t =

ϕ′(t)
ϕ(t) ht for ϕ

′ = dϕ(t)
dt

and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(ϕ
′

ϕ
)
′
= −(n − 1)2 (ϕ

′

ϕ
)

2

− 1

2

⎛
⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(ϕ

′

ϕ
)

2⎞
⎠
.

Therefore,

Sc(g) = 1

ϕ2
Sc(h) − 2(n − 1)(ϕ

′

ϕ
)
′
− n(n − 1)(ϕ

′

ϕ
)

2

=

(⋆) = 1

ϕ2
Sc(h) − 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)ϕ
′(t)
ϕ(t)

.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.
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(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

(c) What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
,

then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation6

Cylindrical Extension Exercise. Let Y be a smooth manifold, X = Y ×R+, let
g0 be a Riemannian metric in a neighbourhood of the boundary Y = Y × {0} =
∂X, let h denote the Riemannian metric in Y induced from g0 and let Y has
constant mean curvature in X with respect to g0.

Let X ′ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension
n as X, let Y ′ = ∂X ′ be its boundary sphere, let, let Sc(h) > 0 and let the mean
and the scalar curvatures of Y and Y ′ are related by the following (comparison)
inequality.

[<]
∣mean.curvg0(Y )∣2

Sc(h, y)
< ∣mean.curv(Y ′)∣2

Sc(Y ′)
for all y ∈ Y.

Show that
if Y is compact, there exists a smooth positive function ϕ(t), 0 ≤ t < ∞, which

is constant at infinity and such that the the warped product metric g = ϕ2h+dt2
has

the same Bartnik data as g0, i.e.

g∣Y = h0 and mean.curvg(Y ) =mean.curvg0(Y ),

Then show that
one can’t make Sc(g) ≥ Sc(X ′) in general, if [<] is relaxed to the corresponding

non-strict inequality, where an example is provided by the Bartnik data of Y ′ ∈X ′

itself.7

Vague Question. What are "simple natural" Riemannian metrics g on X =
Y ×R+ with given Bartnik data (Sc(Y ),mean, curv(Y )), where Y ⊂X is allowed
variable mean curvature, and what are possibilities for lower bound on the scalar
curvatures of such g granted ∣mean.curv(Y, y)∣2/Sc(Y, y) < C, e..g. for C =
∣mean.curv(Y ′)∣2/Sc(Y ′) for Y ′ being a sphere in a space of constant curvature.

6See §12 in [GL(complete) 1983].
7It follows from [Brendle-Marques(balls in Sn)N 2011] that the the cylinder Sn−1 × R+

admits a complete Riemannian metric g cylindrical at infinity which has Sc(g) > n(n−1), and
which has the same Bartnik data as the boundary sphere X′

0 in the hemisphere X′ in the unit
n-sphere. But the non-deformation result from [Brendle-Marques(balls in Sn) 2011], suggests
that this might be impossible for the Bartnik data of small balls in the round sphere.
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0.3.1 Higher Warped Products

Let Y and S be Riemannian manifolds with the metrics denoted dy2 (which
now play the role of the above dt2) and ds2 (instead of h), let ϕ > 0 be a smooth
function on Y , and let

g = ϕ2(y)ds2 + dy2

be the corresponding warped metric on Y × S,
Then

(⋆⋆)

Sc(g)(y, s) = Sc(Y )(y) + 1

ϕ(y)2
Sc(S)(s) − m(m − 1)

ϕ2(y)
∣∣∇ϕ(y)∣∣2 − 2m

ϕ(y)
∆ϕ(y),

where m = dim(S) and ∆ = ∑∇i,i is the Laplace on Y .
To prove this, apply the above c (⋆) to l × S for naturally parametrised

geodesics l ⊂ Y passing trough y and then average over the space of these l, that
is the unit tangent sphere of Y at y.

The most relevant example here is where S is the real line R or the circle S1

also denoted T1 and where (⋆) reduces to

(⋆⋆)1 Sc(g)(y, s) = Sc(Y )(y) − 2

ϕ
∆ϕ(y).8

For instance, if the L = −∆ + 1
2
Sc on Y is strictly positive, that is the

lowest eigenvalue λ is strictly positive and if ϕ equals to the corresponding
eigenfunction of L, then

−∆ϕ = λ ⋅ ϕ − 1

2
Sc ⋅ ϕ

and
Sc(g) = 2λ > 0,

The basic feature of the metrics ϕ2(y)ds2 + dy2 on Y × R is that they are
R-invariant, where the quotients (Y × R)/Z = Y × T1 carry the corresponding
T1-invariant metrics, while the R-quotients are isometric to Y .

Besides R-invariance, a characteristic feature of warped product metrics is
integrability of the tangent hyperplane field normal to the R-orbits, where Y ×
{0} ⊂ Y ×R, being normal to these orbits, serves as an integral variety for this
field.

Also notice that Y = Y × {0} ⊂ Y × R is totally geodesic with respect to
the metric ϕ2(y)ds2+dy2, while the (R-invariant) curvature (vector field) of the
R-orbits is equal to the gradient field ∇ϕ extended from Y to Y ×R. coordinates

In what follows, we emphasize R-invariance and interchangeably speak of
R-invariant metrics on Y ×R and metrics warped with factors ϕ2 over Y .

Gauss-Bonnet g⋊-Exercise. Let the above S be the Euclidean space RN
(make it Tn if you wish to keep compactness) with coordinates t1, ..., tN , let

Φ(y) = (ϕ1(y), ..., ϕi(y), ..., ϕN(y))

be anN -tuple of smooth positive function on a Riemannian mnanifold Y = (Y, g)
and define the (iterated t warped product) metric g⋊ = g⋊Φ on Y × S as follows:

g⋊ = g(y) + ϕ2
1(y)dt21 + ϕ2

2(y)dt22 + ... + ϕ2
N(y)dt2N

8The roles of Y and S = R and notationally reversed here with respect to those in (⋆)
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Show that the scalar curvature of this metric, which, being RN -invariant, is
regarded as a function on Y , satisfies:

Sc(g⋊, y) = Sc(g) − 2
N

∑
i=1

∆g logϕi −
N

∑
i=1

(∇g logϕi)2 − (
N

∑
i=1

∇g logϕi)
2

,

thus
∫
Y
Sc(g⋊, y)dy ≤ ∫

Y
Sc(g, y)dy,

and, following [Zhu(rigidity) 2019], obtain the following
"Warped" Gauss-Bonnet Inequality for Closed Surfaces Y :

∫
Y
Sc(g⋊, y)dy ≤ 4πχ(Y )

for the (iterated) warped product metrics g⋊ = g⋊φ for all positive N -tuples of Φ of
positive functions on Y . 9

0.4 Second Variation Formula
The Weyl formula also yields the following formula for the second derivative of
the (n − 1)-volume of a cooriented hypersurface Y ⊂ X under a normal defor-
mation of Y in X, where the scalar curvature of X plays an essential role.

The deformations we have in mind are by vector fields directed by geodesic
normal to Y , where in the simplest case the norm of his field equals one.

In this case we have an equidistant motion Y ↦ Yt as earlier and the second
derivative of voln−1(Yt), denoted here V ol = V olt, is expressed in terms of
of the shape At = A(Yt) of Yt and the Ricci curvature of X, where, recall
trace(At) =mean.curv(Yt) and

∂νV ol = ∫
Y
mean.curv(Y )dy

by the first variation formula.
Then, by Leibniz’ rule,

∂2
νV ol = ∂ν ∫

Y
trace(A(y))dy = ∫

Y
trace2(A(y))dy + ∫

Y
trace(∂νA(y))dy,

and where, by Weyl’s formula,

trace(∂νA) = −trace(A2) −Ricci(ν, ν)

for the normal unit field ν.
Thus,

∂2
νV ol = ∫

Y
(mean.curv)2 − trace(A2) −Ricci(ν, ν),

which, combining this with the above expression

Ricci(ν) = 1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))2 + ∣∣A∗∣∣2) ,

9See [Zhu() 2019] and sections ??, ?? for applications and generalizations.
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shows that

∂2
νV ol = ∫

1

2
(Sc(Y ) − Sc(X) +mean.curv2 − ∣∣A∗∣∣2) .

In particular, if Sc(X) ≥ 0 and Y is minimal, then,

(∫ Sc ≥ 2∂2Vol) ∫
Y
Sc(Y, y)dy ≥ 2∂2

νV ol

(compare with the (Sc ≥ −2Ric) in 2.2).
Warning. Unless Y is minimal and despite the notation ∂2

ν , this derivative
depends on how the normal filed on Y ⊂ X is extended to a vector filed on (a
neighbourhood of Y in) X.

Illuminative Exercise. Check up this formula for concentric spheres of radii
t in the spaces with constant sectional curvatures that are Sn, Rn and Hn.

Now, let us allow a non-constant geodesic field normal to Y , call it ψν, where
ψ(y) is a smooth function on Y and write down the full second variation formula
as follows:

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R(y)ψ2(y)dy

for

[○○] R(y) = 1

2
(Sc(Y, y) − Sc(X,y) +M2(y) − ∣∣A∗(Y )∣∣2) ,

where M(y) stands for the mean curvature of Y at y ∈ Y and ∣∣A∗(Y )∣∣2 =
∑i(α∗)2, i = 1, ..., n − 1.

Notice, that the "new" term ∫Y ∣∣dψ(y)∣∣2dy depends only on the normal field
itself, while the R-term depends on the extension of ψν to X, unless

Y is minimal, where [○○] reduces to

[∗∗] ∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ∣∣2 + 1

2
(Sc(Y ) − Sc(X) − ∣∣A∗∣∣2)ψ2.

Furthermore, if Y is volume minimizing in its neighbourhood, then ∂2
ψνvoln−1(Y ) ≥

0; therefore,

[⋆⋆] ∫
Y
(∣∣dψ∣∣2 + 1

2
(Sc(Y ))ψ2 ≥ 1

2
∫
Y
(Sc(X,y) + ∣∣A∗(Y )∣∣2)ψ2dy

for all non-zero functions ψ = ψ(y).
Then, if we recall that

∫
Y
∣∣dψ∣∣2dy = ∫

Y
⟨−∆ψ,ψ⟩dy,

we will see that [⋆⋆] says that

the ψ ↦ −∆ψ + 1
2
Sc(Y )ψ is greater than10 ψ ↦ 1

2
(Sc(X,y) + ∣∣A∗(Y )∣∣2)ψ.

Consequently,
if Sc(X) > 0, then the −∆ + 1

2
Sc(Y ) on Y is positive.

10A ≥ B for selfadjoint operators signifies that A −B is positive semidefinite.
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Justification of the ∣∣dψ∣∣2 Term. Let X = Y ×R with the product metric and
let Y = Y0 = Y × {0} and Yεψ ⊂X be the graph of the function εψ on Y . Then

voln−1(Yεψ) = ∫
Y

√
1 + ε2∣∣dψ∣∣2dy = voln−1(Y ) + 1

2
∫
Y
ε2∣∣dψ∣∣2 + o(ε2)

by the Pythagorean theorem
and

d2voln−1(Yεψ)
d2ε

= ∣∣dψ∣∣2 + o(1).

by the binomial formula.
This proves [○○] for product manifolds and the general case follows by

linearity/naturality/functoriality of the formula [○○].
Naturality Problem. All "true formulas" in the Riemannian geometry

should be derived with minimal, if any, amount of calculation – only on the
basis of their "naturality" and/or of their validity in simple examples, where
these formulas are obvious.

Unfortunately, this "naturality principle" is absent from the textbooks on
differential geometry, but, I guess, it may be found in some algebraic articles
(books?).

Exercise. Derive the second main formula 2.3.A by pure thought from its
manifestations in the examples in the above illuminative exercise.11

0.5 Conformal Laplacian and the Scalar Curvature of Con-
formally and non-Conformally Scaled Riemannian Met-
rics

Let (X0, g0) be a compact Riemannian manifold of dimension n ≥ 3 and let
ϕ = ϕ(x) be a smooth positive function on X.

Then, by a straightforward calculation,12

G# Sc(ϕ2g0) = γ−1
n ϕ−

n+2
2 L(ϕ

n−2
2 ),

where L is the conformal Laplace on (X0, g0)

L(f(x)) = −∆f(x) + γnSc(g0, x)f(x)

for the ordinary Laplace (Beltrami) ∆f = ∆g0f = ∑i ∂iif and γn = n−2
4(n−1) .

Thus, we conclude to the following.
Kazdan-Warner Conformal Change Theorem. 13 Let X = (X,g0) be

a closed Riemannian manifold, such the the conformal Laplace L is positive.
Then X admits a Riemannian metric g (conformal to g0) for which Sc(g) >

0.
Proof. Since L is positive, its first eigenfunction, say f(x) is positive14 and

since L(f) = λf, λ > 0,
11I haven’t myself solved this exercise.
12There must be a better argument.
13[Kazdan-Warner(conformal) 1975]: Scalar curvature and conformal deformation of Rie-

mannian structure.
14We explain this in section ??.
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Sc(f
4

n−2 g0) = γ−1
n L(f)f−

n+2
n−2 = γ−1

n f
2n
n−2 > 0.

Example: Schwarzschild metric. If (X0, g0) is the Euclidean 3-space,
and f = f(x) is positive function, then

the sign of Sc(f4g0) is equal to that of −∆f .

In particular, since the function 1
r
= (x2

1 + x2
2 + x2

3)−
1
2 , is harmonic, the

Schwarzschild metric gSw = (1 + m
2r

)4
g0 has zero scalar curvature.

If m > 0, then this metric is defined for all r > 0 and it is invariant under the
involution r ↦ m2

r
.

If m = 0, this the flat Euclidian metric.
If m < 0, then this metric is defined only for r >m with a singularity ar r =m.

S[g] = 1

16πG
∫
M
R

√
−g d4x + ∫

M
Lmatter

√
−g d4x

δS = 0

δSg =
1

16πG
∫
M

(Rµν − 1
2
Rgµν)δgµν

√
−g d4x

δSmatter = − 1
2 ∫

M
Tµν δg

µν √−g d4x

Rµν − 1
2
Rgµν = 8πGTµν

========================
Einstein–Hilbert action principle.

S[g] = 1

16πG
∫
M
R

√
−g d4x + ∫

M
Lmatter

√
−g d4x

δS = 0

The variation is taken with respect to the metric gµν .
Result of the Variation:

δSg =
1

16πG
∫
M

(Rµν − 1
2
Rgµν)δgµν

√
−g d4x

and from the matter part,

δSmatter = − 1
2 ∫

M
Tµν δg

µν √−g d4x

Setting the total variation δS = 0 for arbitrary δgµν gives

Rµν − 1
2
Rgµν = 8πGTµν

Notes:
- R: scalar curvature - Rµν : Ricci tensor - gµν : spacetime metric - Tµν :

stress–energy tensor - g = det(gµν)
If the manifold has a boundary, one adds the Gibbons–Hawking–York term

to make the variation well-defined:
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SGHY = 1

8πG
∫
∂M

K
√

∣h∣d3x

where K is the trace of the extrinsic curvature of the boundary and h is the
determinant of the induced metric on ∂M .
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