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Unlike manifolds with controlled sectional and Ricci curvatures, those with
their scalar curvatures bounded from below are not configured in specific rigid
forms but display an uncertain variety of flexible shapes similar to what one
sees in geometric topology.

Yet, there are definite limits to this flexibility, where determination of such
limits crucially depends, at least in the known cases, on two seemingly unrelated
analytic means: index theory of Dirac operators and the geometric measure
theory,1

The emergent picture of spaces with Sc.curv ≥ 0, where topology and geom-
etry are intimately intertwined, is reminiscent of the symplectic geometry,2 but
the former has not reached yet the maturity of the latter.

The mystery of the scalar curvature remains unsolved.
What follows is an extended account of my lectures, delivered during the

Spring 2019 at IHES.
In §1, we give an outline of results, techniques and problems in scalar cur-

vature.
In §2, we spend a few dozen pages on background Riemannian geometry,

with another dozen in section 3.3.3 on Clifford algebras and Dirac operators.
In §3, we overview main topics in geometry and topology of manifolds with

their scalar curvatures bounded from below, state theorems, explain the ideas
of their proofs and formulate a variety of problems and conjectures.

In §§4 and 5, we reformulate, in a more precise and general form, what was
stated in the earlier sections and expose technical aspects of the proofs.

In §6, we describe connective links between different facets of the scalar
curvature presented in the earlier sections with an emphasis on open problems.

Finally, in §7 we overview metric invariants that are influenced by and/or
going along with the scalar curvature.

I have made a maximal effort to lighten the burden on the reader of locating
the place where a certain notation or definition was introduced.

Our terminology is displayed in the table of contents.
When returning to the same topic – this happens again and again – we,

besides recalling definitions and formulas, explain what is needed for the matter
1Spaces of metrics with Sc ≥ σ on 3-manifolds are amenable to the global study with the

Hamilton’s Ricci flow, which also applies, at the present moment only C0-locally, in higher
dimensions. Also, much topological and geometrical information on 4-manifolds with Sc ≥ σ,
for positive as well as negative σ, is obtained, exclusively, with the Seiberg-Witten equations.

2Geometric invariants associated with the scalar curvature, such as the K-area, are
linked with the symplectic invariants (see [G(positive) 1996], [Polterovich(rigidity) 1996], [En-
tov(Hofer metric) 2001], [Savelyev(jumping) 2012[), but this link is still poorly understood.
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at hand, rather than referring to earlier sections in the text. Everything needed
for understanding a statement on page "x" can be found on a couple of preceding
pages.
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1 Preliminaries

1.1 Geometrically Deceptive Definition
The scalar curvature of a C2-smooth Riemannian manifold X = (X,g), denoted

Sc = Sc(X,x) = Sc(X,g) = Sc(g) = Scg(x)

is a continuous function on X, which is traditionally defined as
the sum of the values of the sectional curvatures at the n(n − 1) ordered

bivectors of an orthonormal frame in X,

Sc(X,x) = Sc(X)(x) = ∑
i,j

κij(x), i ≠ j = 1, ..., n,

where this sum doesn’t depend on the choice of this frame by the Pythagorean
theorem.

Algebraically, this formula defines a second order differential

g ↦ Sc(g)

from the space G+ of positive definite quadratic differential forms on X to the
space S of functions onX, that is characterised uniquely, up to a scalar multiple,
by two properties.
⋆ the g ↦ Sc(g) is equivariant under the natural actions of diffeomorphisms of

X in the spaces G+ and S.
⋆ the g ↦ Sc(g) is linear in the second derivatives of g.
To make geometric sense of this, let us summarize basic properties of Sc(X).
●1 Additivity under Cartesian-Riemannian Products.

Sc(X1 ×X2, g1 + g2) = Sc(X1, g1) + Sc(X2, g2).

●2 Quadratic Scaling.

Sc(λ ⋅X) = λ−2Sc(X), for all λ > 0,

where

λ ⋅X = λ ⋅ (X,distX) =def (X,distλ⋅X) for distλ⋅X = λ ⋅ dist(X)

for all metric spaces X = (X,distX) and where dist ↦ λ ⋅ dist(X) corresponds
to g ↦ λ2 ⋅ g for the Riemannian quadratic form g.
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Example. The Euclidean spaces are scalar-flat, Sc(Rn) = 0, since λ ⋅ Rn is
isometric to Rn.

●3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds
X and X ′ at some points x ∈X and x′ ∈X ′ are related by the strict inequality

Sc(X)(x) < Sc(X ′
)(x′),

then the Riemannian volumes of the ε-balls around these points satisfy

vol(Bx(X,ε)) > vol(Bx′(X
′, ε))

for all sufficiently small ε > 0.
Observe that this volume inequality is additive under Riemannian products:

if

vol(Bxi(X,ε)) > vol(Bx′i(X
′
i, ε)), for ε ≤ ε0,

and for all points xi ∈Xi and x′l ∈X
′
i, i = 1,2, then

voln(B(x1,x2)(X1 ×X2, ε0)) > voln(B(x′1,x′2)(X
′
1 ×X

′
2, ε0)

for all (x1, x2) ∈Xi ×X2 and (x′1, x
′
2) ∈X

′
1 ×X

′
2.

This follows from the Pythagorean formula

distX1×X2 =
√
dist2X1

+ dist2X2
.

and the Fubini theorem applied to the "fibrations" of balls over balls:

B(x1,x2)(X1×X2, ε0)) → Bx1(X1, ε0) and B(x′1,x′2)(X
′
1×X

′
2, ε0)) → Bx1(X

′
1, ε0),

where the fibers are balls of radii ε ∈ [0, ε0] in X2 and X ′
2.

●4 Normalisation/Convention for Surfaces with Constant Sectional Curva-
tures. The unit spheres S2(1) have constant scalar curvature 2 and the hyper-
bolic plane H2(−1) with the sectional curvature −1 has scalar curvature −2 3

It is an elementary exercise to prove the following.
⋆1 The function Sc(X,g)(x) which satisfies ●1-●4 exists and unique;
⋆2 The unit spheres d the hyperbolic spaces with sect.curv = −1 satisfy

Sc(Sn(1)) = n(n − 1) and Sc(Hn
(−1)) = −n(n − 1).

Thus,
Sc(Sn(1) ×Hn

(−1)) = 0 = Sc(R2n
),

which implies that
the volumes of the small ε-balls in Sn(1) ×Hn(−1) are "very close" to the
volumes of the ε-balls in the Euclidean space R2n.
Also it is elementary to show that the definition of the scalar curvature via

volumes of balls agrees with the traditional Sc = ∑κij , where the definition via
volumes seem to have an advantage of being geometrically more usable.

3The equality Sc(H2) = −2 follows from Sc(S2) = 2 by comparing the volumes of small
balls in S2 ×H2 and in R4.

7



But this is an illusion:
there is no single known (are there unknown?)

geometric argument, which would make use of this definition.
The immediate reason for this is the infinitesimal nature of the volume com-

parison property: it doesn’t integrate to the corresponding property of balls of
specified, let them be small, radii r ≤ ε > 0. 4

The following alternative, let it be also only infinitesimal, property of the
scalar curvature seems more promising:
⊛ the inequality Sc(X,x) < Sc(X ′, x′) is equivalent to the following relation

between the average mean curvatures of the (very) small ε-spheres Sn−1
x (ε) ⊂ X

and Sn−1
x′ (ε) ⊂X ′:

∫Sn−1x (ε)mean.curv(S
n−1
x (ε), s)ds

voln−1(Sn−1
x (ε))

>
∫Sn−1

x′
(ε)mean.curv(S

n−1
x′ (ε), s′)ds′

voln−1(Sn−1
x′ (ε))

.

There are also several non-local inequalities for the mean curvatures of mani-
folds B with boundaries S, in terms of the scalar curvatures of B (and sometimes
of sizes of B) that we shall see in these lectures, e.g. c and ∎ in section 3.1,
but we are still far from the ultimate inequality of this kind.

[∗] Exercise: Spherical Suspension. Compute the scalar curvature of the
spherical join of two Riemannian manifolds X1 and X2, that is the unit sphere
in the product of the Euclidean cones over these manifolds:

X1 ∗X2 ⊂ CX1 × CX2,

where CX = (X ×R×
+, r

2dx2 + dr2), accordingly

CX1 × CX2 = (X1 ×X2 ×R×
+ ×R×

+, r
2
1dx

2
1 + r

2
2dx

2
2 + dr

2
1 + dr

2
2)

and where the hypersurface X1 ∗X2 ⊂ CX1 × CX2 is defined by the equation

r2
1 + r

2
2 = 1.

(The manifold X1 ∗ X2 with this metric, which is defined for r1, r2 > 0, is
incomplete; if completed, it becomes singular, unless X1 and X2 are isometric
to the unit spheres Sn1 and Sn2 .)

Show, in particular, that if Sc(Xi) ≥ ni(ni − 1) = Sc(Sni), ni = dim(Xi),
i = 1,2, then

Sc(X1 ∗X2) ≥ (n1 + n2)(n1 + n2 − 1).

Hint. Use the formula for the curvature of warped products from section
2.4.

1.2 Fundamental Examples of Manifolds with Sc ≥ 0

Symmetric and homogeneous spaces. Since compact symmetric spaces X have
non-negative sectional curvatures κ, they satisfy Sc(X) ≥ 0, where the equality
holds only for flat tori.

4An attractive conjecture to the contrary appears in [Guth(volumes of balls-large) 2011],
also see [Guth(volumes of balls-width)) 2011].
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Since the bi-variant metrics on Lie groups have κ ≥ 0 and since the inequal-
ity κ ≥ 0 is preserved under dividing spaces by isometry groups, all compact
homogeneous spaces G/H carry such metrics, .5

Furthermore,
quotients of compact homogeneous spaces by compact freely acting isometry

groups carry metrics with Sc ≥ 0,
where prominent examples of these are

spheres divided by finite free isometry groups.
Thus, in particular,
all homology classes in the classifying spaces B(G) of finite cyclic groups G

are representable by compact manifolds with Sc > 0 mapped to these spaces.
But, at the present moment, it is unknown if this remains true for all finite

groups G.6

On the other extreme, there are no known examples of ”Sc > 0 representable”
non-torsion homology classes in the classifying spaces of infinite countable groups
or of (possibly torsion) homology classes in the classifying spaces of groups with-
out torsion.

(We shall see in the following sections that majority of known topological
obstructions to metrics with Sc ≥ 0 come from the rational homology and K-
theory of classifying spaces of infinite groups.

Also we shall meet examples – we call these Schoen-Yau-Schick -manifolds
– where non-trivial obstructions to Sc ≥ 0, which reside in the integer homology
classes in B(Zn ×Z/pZ), vanish for non-zero multiples of these classes.)

Fibrations. Since the scalar curvature is additive, fibered spaces X → Y with
compact non-flat homogeneous fiberes carry metrics with Sc > 0.

(This is seen by scaling metrics in Y by large constants.)
Convex Hypersurfaces. Since convex hypersurfaces in Rn as well as in general

spaces with sectional curvatures κ ≥ 0, their scalar curvatures are also non-
negative.

Fano, Uniruled and Calabi-Yau Manifolds. Smooth Fano varieties7 e.g. com-
plex projective hypersurfaces X ⊂ CPn of degree ≤ n admit Kähler metrics g
with Sc > 0.

In fact, by Yau’s solution of the Calabi conjecture, Fano varieties carry Kähler
metrics with positive Ricci curvatures, while hypersurfaces of if degree n+1 carry
Calabi-Yau Kähler metrics, i.e. with zero Ricci curvature.

A distinctive geometric feature of Fano varieties is that they are uniruled,
i.e. covered by rational curves8 and it is conjectured that, in general,

Uniruled Varieties admit Kähler metrics with Sc > 0.9

5This is also true for non-compact homogeneous spaces the isometry groups of which con-
tain compact semisimple factors.

6This was pointed out to me by Bernhard Hanke.
7A smooth algebraic variety X is Fano if the anticanonical line bundle L, that is the top

exterior power of the tangent bundle, L = ∧nT (X), n = dimX, is ample, that is the subset
Zx of sections in the space S of all sections of some power L⊗m that vanish at x ∈ X has
codimension n for all x ∈ X and the resulting map x ↦ Zx from X to the the space of
codimension n subspaces in the space S is a smooth embedding.

8The proof of this relies on Mori’s argument of reduction of the general case to that of
varieties over finite fields.

9See [Debarre(lectures] 2003), [Ballmann(lectures) 2006], [Yang-complex(2017)] and refer-
ences therein.
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Conversely, one knows that
(⋆) compact Kähler manifolds with Sc > 0 are uniruled.
In fact, this is proven in [Heier-Wong(uniruled) 2012] under the weaker as-

sumption of positivity of the integral of the scalar curvature, where, observe, this
integral depends only on the first Chern class of X and the cohomology class of
(the symplectic part ω of) the Kähler metric: ∫X Sc(X,x)dx = 4π/(n − 1)!(c1 ⌣
[ωn−1](X)), for n = dimC(X).

There is also a non-trivial geometric constraint on ∫X Sc(X,x)dx for general
compact Riemannian manifolds X:

this integral can be bounded from above in terms of dimension dim(X), di-
ameter, and a lower bound on the sectional curvature of X, see [Petrunin(upper
bound) 2008)].

Yet, it is unclear if there is a true Riemannian counterpart of (⋆):
the literal topological translation of (⋆) may be deceptive: the connected sum

X = S2 × S2#S2 × S2, which, as we explain below, carries metrics with Sc > 0,
admits, however, no map of non-zero degree from the total space of any 2-sphere
bundle over a surface.

But if one allows
multiparametric families of maps S2 →X and/or suitably controlled
discontinuities/singularities,

then this X, and apparently all known manifolds X which admits metrics with
Sc > 0, start looking "topologically unirational".

1.3 Thin Surgery with Sc > σ

Assumptions. Let an n-dimensional manifolds X bounds a Riemannian manifold
X+, i.e. X+ is an (n + 1)-manifold with boundary ∂X+ = X and let Z ⊂ X+ be
a submanifold, which meets X transversally along its boundary denoted Y = ∂Z =

Z ∩X = ∂X+.10

If U ⊂ X+ is a tubular neighbourhood of Z, then the boundary X ′ = ∂(X ∪

U) ⊂ X+ is a smooth (never mind the corner along ∂U ∩ X) manifold that
implements surgery of X along Y = ∂Z ⊂X.

Connected Sum Example. If X consists of two connected components, X =

X1 ⊔X2 and Z is a smooth segments with the ends y1 ∈ X1 and y2 ∈ X2, then
X ′ is topological connected sum of X1 and X2 that is performed by the "tube"
T = ∂U ⊂X+ joining X1 and X2.

Observe that the connected sums and all surgeries performed over X in
general can be realized as above by embedding X as a boundary in a larger
(non-compact) manifold X+, where one may assume, if one wishes so, that X+
metrically splits near the boundary ∂X+ =X, i.e. it is isometric to X ×R+ near
X and that Z ⊂X+ agrees with this splitting by being equal to Y ×R+ near X.

If Z is compact and δ > 0 is small, then the δ-neighbourhood Uδ(Z) ⊂ X+
can be taken for U . It is also clear that if the codimension of Z in X+ satisfies
k = codim(Y ) ≥ 3, e.g. if Y is a curve in a Riemannian 4-manifold, then

10Here "boundary" and the equality Y = ∂Z mean that Z is a manifold-with-boundary,
where this boundary is equal to the intersection of Z with X; this is different from the
boundary of Z as a subset in X+, which is in our examples, where codim(Z) > 0, coincides
with all of Z.
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Tδ with the Riemannian metric induced from X+ has large positive scalar
curvature δ-away from X. Namely, by Gauss’ Theorema Egregium,

Sc(Tδ) ∼
(k−1)(k−2)

δ2
for small δ → 0.

.
What is more interesting is that the submanifold X ′

δ = ∂(X ∪Uδ(Y )) can be
smoothed by slightly perturbing it in the ε-neighbourhood of Y = X ∩ Tδ, for
ε = ε(δ) → 0 for δ → 0, such that

the scalar curvature of the resulting submanifold, call it X ′
δ,ε = ∂(X ∪ T ′δ),

where T ′δ denotes the smoothed Tδ, becomes almost as positive as that of X.
This is achieved by a local "staircase" construction,11 that makes Uδ thinner

and thinner as you move away from X in the ε-vicinity of Y .
Here is a precise statement.
 – Proposition: Thin Surgery by Controlled Thickening. Let

σ(x+), x+ ∈ X+, be a continuous function, such that its restriction to X satisfies
σ(x+) < Sc(X,x+), for all x+ ∈ X, where the scalar curvature of X is evaluated
ted with the Riemannian metric on X induced from X+.

Let δ(z) > 0 and ε(y) > 0 be continuous positive function on Z and on Y .
Then there exists a family of tubular neighbourhoods Uδ,ε(Y ),⊂X with the

following four properties.
●1 the boundary Tδ,ε = ∂Uδ,ε(Y ) meets X = ∂X+ tangentially (rather than

transversally) and such that the submanifold

X ′
δ,ε = ∂(X ∪Uδ,ε) ⊂X+,

which is, a priori, C1-smooth, actually is C∞-smooth.12

●2 The scalar curvature of X ′
δ,ε with the metric induced from X+ ⊃X

′
δ,ε satisfies

Sc(X ′
δ,ε, x+) ≥ σ(x+) for all x+ ∈X ′

δ,ε.

Furthermore,
●3 Uδ,ε is contained in the δ-neighbourhood Uδ(Z) ⊂X+ of Z ⊂X+, that is the

union of all δ(z)-balls,
Uδ,ε ⊂ ⋃

z∈
Bz(δ(z)).

●4 There exists a positive continuous function 0 < δ′(z) = δ′δ,ε(z) < δ(z),
such that the neighbourhood Uδ,ε within distance > ε from Y is equal to the δ′-
neighbourhood of Z, that is

Uδ,ε ∖Uε(Y ) = Uδ′(Z).

11See [GL(classification) 1980] and [BaDoSo(sewing Riemannian manifolds) 2018]. This
construction also applies to hypersurfaces with mean.curv > µ, see [G(mean) 2019] and it
extends to families of metrics, see [Ebert-Williams(infinite loop spaces) 2017] and references
therein.

Besides there is a non-local construction with a similar effect on the scalar curvature that
was suggested by Schoen and Yao in [SY(structure) 1979].

12Unless stated otherwise, all our manifolds, submanifolds etc. are assumed smoothmeaning
C∞-smooth.
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The domain Uδ,ε ⊂ X+ admits a more concrete description if the X+ and Z
metrically split near X, that is (X+, Z) = (X,Y )×R+ near X. Namely, one can
take

the δ′′-neighbourhood of Z for Uδ,ε, where δ′′(z) = δ′′δ,ε(z) is a smooth func-
tion on Z.

The most transparent case here is where Y is compact; here one can take
δ′′(z) = ρ(dist(z,X)) for a suitable function ρ(d) = ρδ,ε(d), where the nature of
this ρ is well represented by the following.

Halfspace Example/Exercise. Let X+ = Rn × R+, where X = ∂(X+ × R+) =
Rn × {0} and let Z be the half line {0} ×R+ ⊂ Rn ×R+.

Find the above mentioned function ρ for this pair (X+, Z) and then derive
the general case from this example.

Hint. The scalar curvature of the tube can be calculated either with Gauss’
Theorema Egregium (section 2.2) or with the Second Main Formula 2.3.A. (A
more general statement is formulated in the Cylindrical Extension Exercise in
2.4.)

Why not "≥" instead of ">"? One can’t replace the strict inequalities
Sc(X) > σ and Sc(X ′′

δ,ε) > σ by Sc(X) ≥ σ and Sc(X ′′
δ,ε) ≥ σ, not even in

the case of (X+, Z) = (Rn ×R+,R+).
In fact the flat metric on Rn minus a ball B ⊂ Rn admits no extension to a

complete metric with Sc ≥ 0 as it follows from the solution of the positive mass
conjecture (section 3.11) and/or from non-existence of a complete metric with
Sc ≥ 0 on the punctured torus (sections 4.7, 5.10).

Exercise: Extension of Families of Metrics with Sc ≥ σ. Let X be a smooth
manifold, σ(x) a continuous function on X and let S>σ = )S>σ(X) be the space
of Riemannian metrics g on X with Sc(g, x) > σ(x).

Given an open subset U ⊂ X, let S>σ(U) denote the space metrics on U
with Sc(g, x) > σ(x) and, if Y ⊂ X is a closed subset, let S>σ(op(Y )) be the
the space of germs of metrics with Sc(g, x) > σ(x) defined in (arbitrarily small)
neighbourhoods U ⊃ Y .

Show that if codim(Y ) ≥ 3, then the natural (restriction) map

S>σ → S>σ(op(Y ))

is a Serre fibration. (Compare with Chernysh’s theorem as stated in 2.2.3 in
[Ebert-Williams(cobordism category) 2019].)

Exercise+Question. generalize the above to the case where Z is a piecewise
smooth polyhedral subset of codimension ≥ 3 in X+.

Then try to generalize this to more general closed subsets Z. (See [G(mean)
2019] for discussion on the corresponding problem for hypersurfaces withmean.curv >
µ.)

Discouraging Remark. Despite impressive applications of the above  – 
and its variations to the topology of manifolds with Sc > 0, e.g.

the existence of metrics with positive scalar curvatures on simply connected
manifolds of dimension n ≠ 0,1,2,4 mod 8,

and of spaces of metrics with Sc > 0, e.g.
infiniteness of the kth homotopy groups of the spaces of such metrics on
the spheres S4m−k−1 for m >> k,
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the actual geometry behind "thin construction(s)" is skin-deep: positivity of
the scalar curvatures of the n-spheres for n ≥ 2 and nothing else.

In fact, besides homogeneous spaces, the only known general source of "thick-
ness" with Sc > 0 comes from solutions of Monge-Ampere equations on Kähler
manifolds.

1.4 Scalar Curvature and Mean Curvature
A simple link between the two notions is provided by the following observation.13

Let X = (X,g) be a Riemannian n-manifold with boundary represented by a
domain in a slightly larger manifold X+ ⊃X and then embedded to the cylinder
X+ ×R for

X =X0 =X × {0} ⊂X ×R ⊂X+ ×R

and let Uε = Uε(X0) ⊂X+ ×R be the ε-neighbourhood of X0 ⊂X+ ×R.
The boundary ∂Uε consists of two parts: two "ε-copies"

X±ε =X × {±ε} ⊂ ∂Uε

of X and the complementary semicircular band,

∂X0 × S
1
+(ε) ⊂ ∂X0 × S

1
+(ε),

that is one half of the boundary of the ε-neighbourhood of the boundary ∂X0 ⊂

X+ ×R.
Both parts of the hypersurface ∂Uε are C∞-smooth,14 and ∂Uε is also C1-

smooth at the common boundary of these parts. But the curvature of the band
∂X0 ×S

1
+(ε) ⊂ ∂Uε along the semicircles {x}×S1

+(ε), x ∈ ∂X0, jumps down from
ε−1 to 0, where this band meats the "flat horizontal" part of ∂Uε. that is the
union of the two "ε-copies" of X,

X−ε ∪X−ε ⊂ ∂Uε.

,
The scalar curvature of this band, computed with the Gauss formula (the-

orema egregium), interpolates between, roughly, ε−1 ×mean.curv(∂X0) at the
points not too close to the flat part of ∂Uε, where it becomes equal to the scalar
curvature of X.

if Sc(g) > σ and the boundary ∂X ⊂X is strictly mean convex, i.e.
mean.curv(Y ) > 0,15 then the boundary ∂Uε can be C∞-smoothed by interpolating
the curvatures on the two sides of the jump between ε−1 and 0, such that

the scalar curvature of the smoothed boundary becomes bounded from below
by the scalar curvature of the original metric g on X.
(To see this, look at the (n − 2)-ball in the n-space, X0 = B

n−2 ⊂ Rn, where
the boundary of its ε-neighbourhood can be O(n − 2)-invariantly smoothed by
C∞-flattening the semicircle S1

+(ε) at the ends, while keeping it convex.)
13Look at fig 8 in [GL(spin) 1980].
14Our Riemannian manifolds are C∞-smooth unless stated otherwise.
15Our coorientation convention is such that convex domains are mean convex according to

it.
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Since the boundary ∂Uε is naturally diffeomorphic to the double DD(X) ob-
tained by gluing two copies of X along ∂X, this delivers the following

Proposition: Smoothing DD-Corner. There exists an approximation of
the natural continuous metric G0 on the double DD(X) = X ∪∂X X by smooth
metrics Gε with scalar curvatures bounded from below by Sc(Gε) ≥ Sc(X).

Moreover,
strictness of positivity of the mean curvature, can be propagated16 by a small

C∞-perturbation to such a "strictness" for the scalar curvature all over DD(X), thus
making

Sc(Gε) everywhere strictly greater than Sc(X).
For instance,

the doubles of compact mean convex bounded Euclidean domains carry
metrics with positive scalar curvatures,
where the necessary strictness of mean convexity is achieved by small per-

turbations of the boundaries of these domains.
If you think about this (excessively geometric) construction in intrinsic terms

of X, you will realize that the metric Gε was actually obtained by stretching the
original Riemannian metric g of X near the boundary ∂X ⊂ X along geodesic
segments normal to ∂X. Then you write down everything in the normal coordi-
nates in a neighbourhood of the boundary ∂X ⊂X 17 and arrive at the following
proposition.

Miao’s Gluing Lemma. Let X↺ be obtained by identifying pairs of points
in the boundary of a Riemannian manifold X = (X,g) by an isometric involution
I ∶ ∂(X) → ∂X without fixed points.18

If the sums of the mean curvatures at the identified points satisfy

mean.curv(∂X,x) +mean.curv(∂X, I(x))) > 0 for all x ∈ ∂X,

then the natural continuous Riemannian metric G on X↺ can be approximated
by smooth metrics Gε with their scalar curvatures strictly bounded from below
by the scalar curvature of g.19

The main step of the poof is stretching g normally to ∂X in a small neigh-
bourhood of ∂X with no decrease of the scalar curvature and without changing
the restriction g∣∂X , such that the second fundamental form A for the new metric
gnew on X will match one another at the I-corresponding points, i.e.

Ax +AI(x) = 0 for all x ∈ ∂X.

We implement such a stretching by extending X with the ε-cylinder ∂X ×

[0, ε] attached to X by the tautological map ∂X ×{0} → ∂X and we endow this
cylinder with a family of metrics gε defined with the following metrics hε(t) on
∂X.

16See section 11.2 in [G(inequalities) 2018].
17[Almeida(minimal) 1985], [Miao(corners) 2002], [Bre-Mar-Nev(hemisphere) 2011],

[G(billiards) 2014].
18This I may be more interesting than interchanging two isometric components of the

boundary, such as the involution on the boundary of a centrally symmetric X ⊂ Rn.
19This is similar to preservation of lower bounds on (Alexandrov’s) sectional curvature under

gluing, where the second fundamental form II of the boundary satisfies IIx+III(x) ≥ 0.
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Let Aold,Anew be quadratic differential forms on ∂X, where Aold is equal to
the second fundamental form of ∂0 = ∂X × {0} = ∂X in X and Anew is another
(desired) quadratic differential form on ∂X = ∂ε = ∂X × {ε}.

Let

(++) hε(t) = h + tAold +
t2

2ε
(Anew −Aold), 0 ≤ t ≤ ε.

and let
gε = hε(t) + dt

2.

Then:
(i) the second fundamental forms of the two boundary parts ∂0 and ∂ε for the

metric gε are equal to Aold and Anew correspondingly by the Riemann variation
formula in 2.1; 20

(ii) the scalar curvature of gε satisfies,

Sc(gε) =
1

ε
trace(Aold −Anew) +O(1)

by Hermann Weyl’s tube formula and Gauss’s formula (see 2.3, 2.2).
It is also clear that (gε)∣∂0 = h and (gε)∣∂ε = h + o(ε), which allows a small

perturbation of gε that makes it equal to h on ∂ε, while keeping (i) and (ii).21

Second Step. Because of the match of the second quadratic forms, the metric
Gnew on X↺ is now C1-smooth, which allows its painless smoothing, while
metric keeping the scalar curvature almost as as positive as that of g, and, due
to the strictness condition, even more positive than Sc(g).22

Besides the above "infinitesimal realtions", there is an amusing similarity
between global geometries of n-dimensional Riemannian manifolds X with pos-
itive scalar curvatures and mean convex convex hypersurfaces in the Euclidean
space Rn and in similar spaces.

Although, in many respects mean convex hypersurfaces Y ⊂ Rn are better
understood then manifolds X with Sc(X) > 0, essential geometric properties of
Y with mean.curv ≥ µ can be proved at the present moment only in the light
of the scalar curvature by means of twisted Dirac operators or minimal hyper-
surfaces and where the transition from mean curvature to the scalar curvature
is most clearly seen in the doubling construction. 23

Exercises. Let X be a Riemannian n-manifold with a non-empty mean
convex boundary. Show the following.

(a) If X has non-negative scalar curvature, then the double of X admits a
metric with Sc > 0, unless X is Riemannian flat with flat boundary.

For instance, doubles of mean convex domains in Rn carry metrics with
positive scalar curvatures.

(b) If X has non-negative Ricci curvature then either it is diffeomorphic to to
a regular neighbourhood of a (n−2)-dimensional curve-linear polyhedral subset
Pn−2 ⊂X, or it is Riemannian flat with flat boundary.

20These forms are evaluated on the (same unit) vector field d
dt
.

21Details can be found in section 11.5 in [G(inequalities 2018].
22 This trivially follows from a general "local h-principle", see section 11.1 in [G(inequalities

2018] and [Baer-Hanke(local flexibility) 2020].
23See [G(mean) 2019], [Lott(boundary) 2020], [Cecchini-Zeidler(scalar&mean) 2021 and sec-

tion 3.5 for more about it.
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For instance, if X is connected orientable of dimension n = 3, then it is either
diffeomorphic to a handle body, or it is isometric to a flat torus times a segment
[−d, d], or to a flat bundle over a flat Klein bottle with the fiber [−d, d].

(c) IfX admits an equidimensional isometric immersion to a complete simply
connected manifold X̂n with non-positive sectional curvature, then it is also
diffeomorphic to to a regular neighbourhood of an Pn−2 ⊂X.

Moreover, if X̂n is equal to the hyperbolic spaceHn with the sectional curva-
ture −1, then the conditionmean.curv(∂X) ≥ 0 can be relaxed tomean.curv(∂X) ≥

−(n − 1) and if X̂n = Rn then one needs only the following integral bound on
the negative part M− of the mean curvature of Y = ∂X,

∫
Y
∣M−(y)∣

n−1dy ≤ (n − 1)(n−1)γn−1,

where
M−(y) = min(0,mean.curv(Y, y))

and γn−1 denotes the volume of the unit sphere Sn−1.
Remark/Question. The above integral inequality is sharp, where the equality

holds for bands between concentric spheres.
But it is unclear what is the sharp inequality for domains X ⊂ Rn with

connected boundaries Y .
For instance
what is the infimum of ∫Y ∣M−(y)∣

2dy for torical Y = ∂X ⊂ R3, where X is not
diffeomorphic to the solid torus?

Is there a lower bound on ∫Y ∣M−(y)∣
2dy by the topology of X, e.g. by positive

constn times the simplicial volume of X? (Compare with the simplicial volume
conjecture in section 3.13.)

1.5 Topological and Geometric Domination by Compact
and non-Compact Manifolds with positive Scalar Cur-
vatures

The global effect of positivity of the curvature of a Riemannian manifold X
is a bound on the overall size of X. This, in the case the sectional and Ricci
curvatures, can be expressed in terms of simple geometric characteristics of X,
e.g. the diameter and the volume, which are defined in purely metric terms with
no direct reference to the topology of X.

Positivity of scalar curvature also limits the size of X, geometrically as well
as topologically, but here the bounds on geometry in terms of inf Sc(X) can’t
be even properly formulated without explicit use of the underlying topology of
X.

1. Prelude to Example. Let g be a Riemannian metric on the Euclidean space
Rn with uniformly positive scalar curvature, i.e. Sc(g) ≥ σ > 0. Then

this g can’t be greater than the Euclidean metric in two respects.
(a) For all D > 0, there exist points y1, y2 ∈ Rn with distEucl ≥D,
such that

distg(y1, y2) ≤ const = constn,σ, to be specific, say, for const =
2π

√
n(n − 1)

n
√
σ

.

16



(Recall that n(n − 1) is the scalar curvature of the unit sphere Sn.)
(b) For all ε > 0, there exists a smooth surface S ⊂ Rn, such that

areag(S) ≤ ε ⋅ areaEucl(S).

On the surface of things, there is nothing particularly topological about
these (a) and (b), but the true comparison relations between metrics with Sc >
0 and the Euclidean ones, which are expressed by means of, in general non-
diffeomorphic, maps from X to Rn are inherently topological.

2. Example: Euclidean non-Domination with Sc(X) ≥ σ > 0. Let X be
an orientable Riemannian manifold of dimension n with uniformly positive scalar
curvature, Sc(X) ≥ σ > 0, and let f ∶ X → Rn be a smooth proper map 24 with
non-zero degree.25 Then,

this f can’t be uniformly Lipschitz on the large scale, nor can it be uniformly
area non-expanding.
This means the following.
(a*) For all D > 0, there exist points y1, y2 ∈ Rn with distEucl ≥D,
such that the distance between their pullbacks f−1(y1) ⊂ X and f−1(y2) ⊂ X

is uniformly bounded,

distX(f−1
(x1), f

−1
(x2)) < const.

26

(b*) If X is spin,27 then for all ε > 0, there exist smooth surfaces S ⊂ X,
and S ⊂ Rn, such that

areaX(S) ≤ ε ⋅ areaRn(S)

and such that the map f sends S diffeomorphically onto S.
Remarks and Corollaries. (i) The above 1 follows from 2 applied to the

identity map id ∶ (Rn, g) → (Rn, gEucl).
(ii) It follows from 2 that
no compact orientable n-manifold X with Sc(X) > 0 admits a map f with

non-zero degree to the n-torus Tn, 28 while 1 yields this (only) for diffeomor-
phisms X → Tn.

24A map is proper if "infinity goes to to infinity". Formally: the pullbacks of compact subsets
are compact.

25A sufficient geometric condition for this "non-zero" reads: there is a non empty open subset
U ⊂ Rn, such that the pullbacks f−1(u) ⊂ X, u ∈ U , are finite and contain odd numbers of points.

26If n = dim(X) ≤ 9, a Schoen-Yau kind of argument with minimal hypersurfaces reduces
the problem to an auxiliary spin manifold with Sc ≥ σ to which the Dirac theoretic argument
applies, see section 5.3 in [G(billiards) 2014]. But if X is non-spin of dimension n ≥ 10, I can’t
vouch for the proof, since it depends on "desingularization" of minimal varieties from the
papers [SY(singularities) 2017] and/or [Lohkamp(smoothing) 2018], which I have not studied
in depth.

27This a somewhat tricky topological condition, which we shall explain later on. It suffices
to say at this point that manifolds homeomorphic to Rn, and more generally, those with
vanishing cohomology group H2(X;Z2) are spin.

But, for instance, the connected sum of R4 with the complex projective plane CP 2 is non-
spin.

28This was proved in [SY(structure 1979] for n ≤ 7 and in [GL(spin) 1980] for spin man-
ifolds X and all n. Nowadays, (yet unpublished in an academic journal) analysis of singu-
larities of minimal hypersurfaces in dimensions n ≥ 8 in [Lohkamp(smoothing) 2018] and in
[SY(singularities) 2017] yields this result for all, not necessarily spin, compact manifolds X
and all n.
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Proof. Given a smooth map f ∶ X → Tn, let f̃ ∶ X̃ → Rn be its lift to the
Zn-coverings of both manifolds and apply either (a*) or (b*) to the ε-scaled
map εf̃ ∶ X̃ → Rn for ε→ 0.

(iii) The proof of (a*), mainly depends the geometric measure theory, (see
sections 1.6.2, 1.6.5 while (b*) relies on an index theorem for "twisted" Dirac
s (see sections 1.6.1, 1.6.3). At the present day, there is no alternative proof
of (b*) (not even of (b)) and (b*) remains unknown for general (non-spin)
manifolds Xof dimension n ≥ 4.29

Motivated by the above example we make the following definition.
Domination by Sc > 0. Let X be a "nice", say locally contractible topo-

logical space, e.g. a cellular or polyhedral one, and let h ∈Hn(X) be a homology
class. Say that a, possibly open, oriented connected n-manifold X dominates
h, if there exists a continuous map f ∶X →X locally constant at infinity, called
h-dominating map, which sends the fundamental homology class [X] to h.

Quasi-Proper Maps. Similarly, if X is a locally compact and countably
compact, one defines domination of homology classes with infinite supports in
X, where the relevant maps f ∶ X → X are quasi-proper, i.e. they extends to
continuous maps between the compactified spaces, from X+ends ⊃X to X+ends

⊃

X, obtained by a attaching the sets of ends to these spaces.
In simple words, f is quasi-proper if
for all proper maps φ ∶ R+ → X (i.e. φ(t) → ∞ for t →∞), the composed map

f ○ φ ∶ R+ →X is either proper or converges to a point in X for t→∞.
Domination of Manifolds. For instance, if X is an oriented n-manifold or

a pseudomanifold,30 and h = [X], then these "dominations" also called domi-
nations with degree 1 are just quasi-proper maps X →X of degree 1.

More generally, domination with degree ≠ 0 – we shall meet these many
time in these lectures — refers to equividimensional maps of non-zero degrees
between orientable manifolds or pseudomanifolds.

Next, if X and X are a metric spaces, say that h is λ-Lipschitz dom-
inated or distance-wise λ-dominated by X if the map f is λ-Lipschitz, i.e.
distX(f(x1), f(x2) ≤ λ ⋅ distX(x1, x2).

Similarly, define area-wise λ-domination, by the inequality

areaX(f(S)) ≤ λ ⋅ areaX(S),

provided that areas of (suitable) surfaces S ⊂ X and of their images f(S) ⊂ X
their are suitably defined in X and X, e.g. where these are smooth surfaces in
Riemannian manifolds.

3. Positive Scalar Curvature Domination Problems. What are spaces
X and classes h ∈Hn(X), which can and which can’t be dominated by complete
Riemannian manifolds X with Sc(X) > 0?

How much does the answer depend on additional conditions on topology and
geometry of a dominating manifold X?

When can such a domination be implemented with λ-Lipschitz or with area
λ-contracting maps?

29All 3-manifolds are spin.
30An n-pseudomanifold is a triangulated space, where the singular locus, where this space

is not locally Rn, has codimension (at least) 2.
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Notice that (a*) says in this regard that
for no λ > 0, a non-zero multiple of the fundamental homology class [Rn] can

be (large scale) distance-wise λ-dominated by a manifold X with Sc(X) ≥ λ > 0,
Similarly, (b*) can be stated as non-existence of area-wise spin λ-domination.
4. From Algebraic Topology to Asymptotic Geometry: Topologi-

cal versus Lipschitz Domination. However trivial, it should be emphasized
that the existence of

a positive scalar curvature domination of a compact orientable manifold X
(or a pseudomanifold) with degree d

implies
positive scalar curvature 1-Lipschitz domination of all covering of X,
X, in particular, of the universal covering X̃, with degrees d.
(Continous maps f ∶ X → X can be approximated by λ-Lipschitz maps;

these lift to the coverings and can be made 1-Lipschitz by scaling X = (X,g) ↦
λ ⋅X = (X,λ2 ⋅ g).)

Also it must be noted that the Lipschitz domination between open mani-
folds is more general and versatile relation than the topological domination for
compact manifolds.31

For instance, only exceptional compact aspherical n-manifolds X dominate
the n-torus Tn, but

there is no single example (so far), where the universal covering X̃ of a compact
aspherical X wouldn’t 1-Lipschitz dominate Rn = T̃n.
In view of this, the topological Sc>0-domination problem is shifted to a

more fruitful geometric one of the (non)existence of
a 1-Lipschitz domination of an open X by Riemannian manifolds X with
Sc(X) ≥ σ > 0, or – this is most relevant if X is complete – by X with

Sc(X) > 0.
5. Domination Equivalence Conjecture. If a homology class h in X

(here it is an ordinary one, with compact supports) is dominated by a complete
manifold X with Sc > 0, then it also admits a compact spin domination, i.e. by a
compact spin manifold Xo with Sc(Xo) > 0.

(It may be safer to assume n ≠ 4; also, to avoid irrelevant purely topological
obstructions to dominability, one should replace "domination of h" by "domina-
tion of a non-zero multiple of h" in some cases.)

Let us stress out that the most essential cases of this conjecture concern
homology classes in aspherical spaces that are classifying spaces of of discrete
groups,

X = B(Π) =K(Π,1) for Π = π1(X),

and that the main (topological and naive) Sc ≯ 0-conjecture – the scalar curvature
counterpart of Novikov’s higher signatures conjecture – formulated in the present
terms reads:

[Sc ≯ 0] No non-torsion homology class in the classifying space
of a countable group can be dominated by a compact manifold with
Sc > 0.

31This is well demonstrated by aspherical 4- and 5-dimensional manifolds in section 3.10.3.
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6. From Sc ≯ 0 to Sc ¿ 0. As far as the topology of a complete manifold
X is concerned, there is little difference between the conditions Sc(X) ≯ 0 and
Sc(X) ¿ 0,
where, observe, the former corresponds to the bound inf Sc ≤ 0 and the latter
to inf Sc < 0.

Indeed, according to Kazdan’s deformation theorem,
non-existence of a deformation of metric on a complete Riemannian manifold

X with Sc ≥ 0 to a complete metric with Sc > 0 implies that X is Ricci flat,
[Kazdan(complete) 1982].

If dim(X) = 3 then then "Ricci flat" implies Riemannian flat; and if n ≥ 4,
the Cheeger-Gromoll splitting theorem shows in most (all?) of our cases
that X is Riemannian flat, i.e. isometric to the Euclidean space divided by a
discrete isometry group.

Thus, as we shall see in several examples later on,
non-existence theorems for Sc > 0 yield rigidity results for Sc ≥ 0.

Spin Domination Problem. Non-domination result proven with a use of Dirac
operators (these are many, require the dominating manifolds to be spin32

This could be removed in majority of cases if the following were true.
Unrealistic Conjecture. Compact Riemannian orientable manifolds X with pos-

itive scalar curvatures can be dominated with degree ≠ 0 by compact Riemannin
manifolds X with Sc ≥ 0 and with universal coverings spin.

Exercise. Prove these conjecture for manifolds X of dimensions n ≥ 5 with
finite fundamental groups.

Hint. Use Thom’s theorem on domination of multiples of homology classes
by stably parallelizable manifolds and classification of simply connected mani-
folds with Sc > 0 of dimension ≥ 5 as in �of 3.2.

Remark. Proving (maybe disproving?) this conjecture seems possible by the
present day tecnniqies for manifolds with Abelian fundamental groups.

1.6 Analytic Techniques
The logic of most (all?) arguments concerning the global geometry of manifolds
X with scalar curvatures bounded from below is, in general terms, as follows.

Firstly, one uses (or proves) the existence theorems for solutions Φ of certain
partial differential equations, where the existence of these Φ and their properties
depend on global, topological and/or geometric assumptions A on X, which are,
a priori, unrelated to the scalar curvature.

Secondly, one concocts some algebraic-differential expressions E(Φ, Sc(X)),
where the crucial role is played by certain algebraic formulae and issuing in-
equalities satisfied by E(Φ, Sc(X)) under assumptions A.

Then one arrives at a contradiction, by showing that
if Sc(X) ≥ σ, then the implied properties, e.g. the sign, of E(Φ, Sc(X))

are
opposite to those satisfied under assumption(s) A.

32See section 3.2 for the definition of spin and recall that manifolds with w2 = 0, e.g. stably
parallelizable ones, are spin.
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1.6.1 Spin Manifolds, Dirac Operators D, Atiyah-Singer Index The-
orem and S-L-W-(B) Formula

[I] Historically the first Φ in this story were harmonic spinors on a Riemannian
manifold X = (X,g), that are solutions s of D(s) = 0, where D = Dg is the
(Atiyah-Singer)-Dirac on X.33

[Iyes]. The existence of non-zero harmonic spinors s on certain smooth man-
ifolds X follows from non-vanishing of the index of D, where this index, which
is independent of g, identifies, by the the Atiyah-Singer theorem of 1963 , with
a certain (smooth) topological invariant, denoted α̂(X) (see section 3.2).

Then the relevant formula involving Sc(X) is the following algebraic identity
between the squared Dirac operator and the (coarse) Bochner-Laplace operator
∇∗∇ also denoted ∇2,

[Ino]. Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner) Formula34

D
2
= ∇

2
+

1

4
Sc,

shows that if Sc > 0, then D2s = 0 implies that s = 0, since

0 = ∫ ⟨D
2s, s⟩ = ∫ ⟨∇

2s, s⟩ +
Sc

4
∣∣s∣∣2 = ∫ ∣∣∇s∣∣2 +

Sc

4
∣∣s∣∣2,

where the latter identity follows by integration by parts (Green’s formula).
By confronting these yes and no, André Lichnerowicz35 showed in 1963 that

Sc(g) > 0 ⇒ α̂(X) = 0.
and proved the following.

Non-Existence Theorem Number One: Topological Obstruction to
Sc > 0 for n = 4k. There exists smooth closed 4k-dimensional manifolds X, for
all k = 1,2, ..., which admit no metrics with Sc > 0.

A decade later, empowered by a general Atiyah-Singer index theorem, Nigel
Hitchin extended Lichnerowitz’ result to manifolds of dimensions n = 8k+1 and
8k + 2 and showed, in particular, that

the class of manifolds X with α̂(X) ≠ 0, that support non-zero g-harmonic
spinors all metrics g on X by the Atiyah-Singer theorem, hence no g with Sc(g) > 0
by S-L-W-B formula, includes certain homotopy spheres. 36 37

33 All you have to know at this stage about D is that D is a certain first order differential
on sections of some bundle over X associated with the tangent bundle T (X). Basics on D
are presented in [Min-Oo(K-Area) 2002] and, comprehensively, in [Lawson&Michelsohn(spin
geometry) 1989]. Also see sections 3.3.3,4.

34 All natural selfadjoint geometric second order operators differ from the Bochner Lapla-
cians by zero order terms, i.e. (curvature related) endomorphisms of the corresponding vector
bundles, but it is remarkable that this in the case of D2 reduces to multiplication by a scalar
function, which happens to be equal to 1

4
ScX(x). From a certain perspective, the existence

of such an with a wonderful combination of properties is the most amazing aspect of the
Atiyah-Singer index theory.

35See [Lichnerowitz(spineurs harmoniques) 1963]
36See [AS(index) 1971], [Hitchin(spinors)1974].
37Prior to 1963, one didn’t even know if therere were simply connected manifold that would

admit no metric with positive sectional curvature was known. But Lichnerowicz’ theorem,
saying, in fact, that

if X is spin, then Sc(X) > 0⇒ Â[X] = 0
delivered lots of simply connected manifolds X that admitted no metrics with positive scalar
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1.6.2 Inductive Descent with Minimal Hypersurfaces and Conformal
Metrics

[II] Another class of solutions Φ of geometric PDE, that are essential for under-
standing scalar curvature and that are quite different from harmonic spinors,
are solutions to the Plateau problem.

More specifically, these are smooth stable minimal hypersurfaces Y ⊂ X that
represent non-zero integer homology classes from Hn−1(X), n = dim(X).

The existence of minimal Y, possibly singular ones, was established by Her-
bert Federer and Wendell Fleming in 1960, while the smoothness of these Y ,
that is crucial for our applications, was proven by Federer in 1970 who relied on
regularity of volume minimizing cones of dimensions ≤ 6 proved by Jim Simons
in 1968.

The relevance of these minimal Y of codimension 1 to the scalar curvature
problems was discovered by Schoen and Yau who proved in 1979 that

☀codim1
mini if Sc(X) > 0 and Y ⊂ X is a smooth stable minimal hypersurface,

then Y admits a Riemannian metric h with Sc(h) > 0.38

In fact, if dim(Y ) = n − 1 = 2, the stability of Y , that is positivity of the
second variation of the area of Y , implies that (see sections 2.5, 2.4.1)

∫
Y
(Sc(Y, y) − Sc(X,y))dy ≥ 0

where the scalar curvature Sc(Y ) refers to the metric h0 in Y induced from the
Riemannian metric g of X.

Therefore, positivity of Sc(X) implies positivity of the Euler characteristic
of Y , for

4πχ(Y ) = ∫
Y
Sc(Y, y)dy ≥ ∫

Y
Sc(X,y)dy > 0.

If m = n−1 ≥ 3, then h is obtained by a conformal modification of the metric
h0 on Y ,

h0 ↦ h = (f2
)

2
m−2h0,

where, as in the 1975 "conformal paper" by Jerry Kazdan and Frank Warner
f = f(y) is the first eigenfunction of the conformal Laplacian L on
Y = (Y,h0), that is

Lconf(f) = −∆(f) +
m − 2

4(m − 1)
f,

where derivation of positivity of the L from positivity of the second variation
of voln−1(Y ) relies on the Gauss formula suitably rewritten for this purpose
by Schoen and Yau and where the issuing positivity of Sc(f

4
m−2h0) follows, as

in [Kazdan-Warner(conformal)],39 by a simple (for those who knows how to do

curvatures, (see section 3.2).
Most of these X have large Betti numbers, that, as we know nowadays, is incompatible with

sect.curv(X) ≥ 0, but one still doesn’t know if there are homotopy spheres not covered by
Hitchin’s theorem which admit no metrics with positive sectional curvatures.

38See [SY(structure) 1979]: On the structure of manifolds with positive scalar curvature.
39There is more to this paper, than the implication Lconf > 0 ; ∃g with Sc(g) > 0 on X.

For instance, Kazdan and Warner prove
the existence of metrics g on connected manifolds X, dim(X) ≥ 3, with prescribed scalar

curvatures Sc(g, x) = σ(x), for smooth functions σ(x), which are negative somewhere on X
and
the existence of metrics with Sc = 0 on manifolds X, which admits metrics with Sc ≥ 0.
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this kind of things) computation. 40

Consecutively applied implication Sc(X,g) > 0 ⇒ Sc(Y,h) > 0 delivers a
descending chain of closed oriented submanifolds

X ⊃ Y = Y1 ⊃ Y2 ⊃ ... ⊃ Yi... ⊃ Yn−2

of dimensions n− i which support Riemannian metrics hi with Sc(hi) > 0; thus,
all connected components of Yn−2 must be a spherical.

Thus, Schoen and Yau inductively define a topological class of manifolds (C
in their terms) and prove, in particular, the following.

Non-Existence Theorem Number Two Accompanied by Rigidity The-
orem. Let a compact oriented manifold X of dimension n dominate (a non-zero
multiple of the fundamental class of) the n-torus, i.e, X admits a map of non-
zero degree to the n-torus Tn,

f ∶X → Tn.

If n ≤ 7,41 X admits no metric with Sc > 0. then X support no metric g with
Sc(g) > 0.

Moreover, the inequality Sc(g) ≥ 0 for a metric g on X, implies that g is Rie-
mannian flat and the universal covering of (X,g) is isometric to the Euclidean
space Rn.

(The submanifolds Yi in this case are taken in the homology classes of
transversal f -pullbacks of subtori in Tn ⊃ Tn−1 ⊃ ... ⊃ Tn−i ⊃ ... ⊃ T2.)

Remark. The authors of [SY(structure) 1979] say in their paper that it was
motivated by problems in general relativity communicated to one of the authors
by Stephen Hawking, 42 but I as haven’t studied this field I can’t judge how
much of the current development in geometry of the scalar curvature is rooted
in ideas originated in physics.

1.6.3 Twisted Dirac Operators, Large Manifolds and Dirac with Po-
tentials

The index theorem also applies to Dirac operators D⊗L that act on spinors
with values in Hermitian vector bundles L→X, called L-twisted spinors, where
non-vanishing of the index of D⊗L and, thus the existence of non-zero L-twisted
harmonic spinors, is ensured for bundles L with sufficiently large top dimensional
Chern numbers, essentially regardless of the topology of the underlying manifold
X itself.

On the other hand, the twisted S-L-W-(B) formula, which now reads

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

40This computation, probably, going back at least hundred years, was brought from the field
of infinitesimal geometry to the context of non-linear PDE and global analysis by Hidehiko
Yamabe in his 1960-paper On a deformation of Riemannian structures on compact manifolds.

41The dimension restriction was removed in [Lohkamp(smoothing) 2018] and in
[SY(singularities) 2017].

42It is shown in [Hawking (black holes) 1972], by an argument elaborating on ideas from
[Penrose(gravitational collapse) 1965] and resembling those in [SY(structure) 1979], that sur-
face of the event horizon has spherical topology. (See [Bengtsson(trapped surfaces) 2011] for
more about it.)
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shows that such spinors don’t exist if the g-norm of the curvature of L is small
compare with the scalar curvature of X = (X,g). Since this norm is inverse
proportional to the size of g, large Riemannian manifolds admit topologically
complicated bundles L with small curvatures, which, by the above, shows, as it
was observed in [GL(spin) 1980], that, similarly how it is with the sectional and
Ricci curvatures,

scalar curvatures of large manifolds must be small.
This delivers confirmation of the main [Sc ≯ 0] conjecture from the previous
section for certain compact manifolds X, with large fundamental groups, e.g.
for X, which support metrics with non-positive sectional curvatures:

Spin-non-Domination theorem of κ ≤ 0 by Sc > 0. Non-torsion homology
classes of complete manifolds X, with non-positive sectional curvatures can’t be
dominated by compact (and also by complete) orientable spin manifolds with Sc > 0.
43

In standard terms,
If a compact orientable spin Riemannian manifold X has Sc > 0 and X is

complete with sect.curv(X) ≤ 0, and if

f ∶X →X

is a continuous map, then the image of the fundamental class [X] ∈ Hn(X) is
torsion: some non-zero multiple i ⋅ f∗[X] ∈Hn(X) vanishes.44

For instance,
if X is compact of dimension n = dim(X), then all continuous maps f ∶X →X
have zero degrees.

Homotopy Invariance of Obstructions to Sc > 0 that Issues from ⊗ in D.
Non-vanishing of topological invariants delivered by the twist inD⊗L that prevent
the existence of metrics with Sc > 0 are stable under toplogical domination that
is, recall, a map X →X of degree ±1 between orientable manifolds, such that
if such an invariant doesn’t vanish for X, then it doesn’t vanish for X either.
(An instance of such an invariant is the ⌣-product homomorphism⋀nH1(X) →

Hn(X), n = dim(X) behind the Schoen-Yau [Sc > 0]-non-existence theorem in
section 1.6.2 for manifolds mapped to the n-tori)

This is similar to what happens to invariants issuing by the geometric mea-
sure theory but very much unlike to those coming from the untwisted index
theorem, namely to non-vanishing of α̂(X): the connected sum of two copies of
an X with opposite orientations satisfies: α̂(X#(−X)) = 0.

In fact, if X is simply connected of dimension n ≥ 5, then α̂(X#(−X)) does
admit a metric with Sc > 0. 45

Dirac with Potentials. The contribution of the connection of L to the Dirac
operator can be seen as a vector potential added to D twisted with a the trivial
bundle of rank = rank(L).

Besides, this there are other kinds of – zero order terms – that can signifi-
cantly influence geometric effects of D.

As far as the scalar curvature is concerned, the first (to the best of my knowl-
edge) potential of this kind (Cartan connection) was introduced by Min-Oo in his

43See [GL(spin) 1980] and sections 3.2 and 4.7 for more specific statements and proofs.
44It’s unclear if f∗[X] ∈ Hn(X can be non-zero, yet (odd?) torsion.
45I am uncertain about n = 4.

24



proof of the positive mass theorem for hyperbolic spaces, [Min-Oo(hyperbolic)
1989], and, recently, applications of Callias-type potentials in the work by Chec-
cini, Zeidler and Zhang have significantly extended the range of the Dirac-
theoretic applications to the scalar curvature problems.46 ¯ ¯

1.6.4 Stable µ-Bubbles

In general, µ-bubbles Y ⊂ X, are solutions of the "non-homogeneous Plateau
equation"

mean.curv(Y, y) = µ(y)

for a given function µ(x) on X.
What we deal with in this paper are stable µ-bubbles that are local minima

of the functional
Y ↦ voln−1(Y ) − µ(Y<)

where µ is a Borel measure on X and Y< ⊂ X is a region in X with boundary
∂Y< = Y (see section 5).

Often our measure is "continuous", i.e. representable as µ(x)dx, for a con-
tinuous function µ(x) on X,and all basic existence and regularity properties of
minimal hypersurfaces automatically extend to µ-bubbles in this case.

And what is especially useful for our purposes, is that the Schoen-Yau form
of the the second variation formula neatly extends to µ-bubbles with continuous
(and some discontinuous) µ ≠ 0.

Example/non-Example. The unit sphere Sn−1 ⊂ Rn (with the mean curva-
ture n − 1) around the origin is a stable µ-bubble for the measure µ(x) = (n −
1)∣∣x∣∣−1dx in Rn and the same sphere also is the µ-bubble for µ(x) = (n− 1)dx;
but this µ-bubble is an unstable one.

A significant gain achieved with µ-bubbles compared with the "plain" min-
imal hypersurfaces is due to the flexibility in the choice of µ, which can be
adapted to the geometry of X, similarly to how one uses twisted Dirac operators
D⊗L on X with " adaptable" unitary bundles L→X.

For example, one obtains this way the following version of Schoen-Yau the-
orem ☀ from section 1.6.2.

@codim1
bbl Let X be a complete Riemannian n-manifold with uniformly positive

scalar curvature, i.e, Sc(X) ≥ σ > 0. If n ≤ 7, then
X can be exhausted by compact domains with smooth boundaries,

V1 ⊂ V2 ⊂ ... ⊂ Vi ⊂ ...X, ⋃
i

Vi =X,

where the boundaries ∂Vi, for all i = 1,2, ..., admit metrics with positive scalar
curvatures.

(Here, as in section 1.6.2, this needs additional analytical work to be ex-
tended to n ≥ 7.)

46Exposition of Dirac operators with potentials, especially of their recent applications to
manifolds with boundaries, are, regretfully, missing from our lectures. The reader has to
turn to the original papers by Checcini, Zeidler, Zhang and [Guo-Xie-Yu(quantitative K-
theory) 2020]. Also we say very little about the mass/energy theorems for hyperbolic spaces
extending that in [Min-Oo(hyperbolic) 1989]; we refer for this subject matter to [Chrusciel-
Herzlich [asymptotically hyperbolic) 2003], [Chrusciel-Delay(hyperbolic positive energy) 2019],
[Huang-Jang-Martin(hyperbolic mass rigidity) 2019] and [Jang-Miao(hyperbolic mass) 2021]
where one can find further references.
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1.6.5 Warped FCS-Symmetrization of Stable Minimal Hypersur-
faces and µ-Bubbles.

Positivity of the conformal Laplacian −∆ + m−2
4(m−1)Sc doesn’t fully reflect the

positivity of the second variation of the volume voln−1(Y ), where the former
actually yields positivity of the −∆ + 1

2
Sc, which is, a priori, smaller then −∆ +

m−2
4(m−1)Sc, since −∆ ≥ 0 and 1

2
> m−2

4(m−1) .

Remarkably, positivity of the −∆+ 1
2
Sc on Y = (Y,h0) neatly implies positivity

of the scalar curvature of the (warped product) metric h⋊ = h0(y) + φ
2(y)dt2

for the first eigenfunction φ of −∆ + 1
2
Sc, where this metric is defined on the

products of Y with the real line R and with the unit circle S1(1) = T = R)/Z,
and where the resulting Riemannian manifolds are denoted

Ȳ ⋊
= Y ⋊R = (Y ×R, h⋊) and Y ⋊

= Y ⋊T = Ȳ ⋊
/Z.

In fact, if (−∆ + 1
2
Sc)(φ) = λφ with λ ≥ 0, then

Sc(h⋊(y, t)) = Sc(h0, y) −
2

φ
∆φ(y) =

2

φ
(−∆ +

1

2
Sc(h0, )) (φ) = λ > 0m

see sections 5.
The operation

Y ; Y ⋊

is applied in the present case to stable minimal hypersurfaces Y ⊂X, where the
resulting passage X ; Y ⋊ can be regarded as symmetrisation of X (or rather
of infinitesimal neighbourhood of Y ⊂X), because

the metric h⋊ is invariant under the natural action of T on Y ⋊ and

Y ⋊
/R = Y ⊂X

.
This h⋊ = h0(y) + φ

2(y)dt2 defined with the first eigenfunction φ of the
−∆ + 1

2
Sc on Y was introduced by Doris Fischer-Colbrie and Rick Schoen47

who used it for
classification of complete stable minimal surfaces in 3-manifolds X with
Sc(X) ≥ 0, including X = R3.
Then h⋊ was used in [GL(complete) 1983], where, with an incorporation of

Schoen-Yau’s inductive descent, this allowed higher dimensional applications of
the following kind.

Given a Riemannian metric g on a product manifold X =X0×Tk, a consecutive
symmetrization

X =X0 ;X1 = Y
⋊
1 /Z;X2 = Y2

⋊
/Z; ...

delivers a Tk-invariant metric ḡ on X̄k = Y−k×Tk, where Y−k ⊂X is a submanifold
of codimension k which is homologous to X0 = X0 × t0 ⊂ X and such that the
(Tk-invariant) scalar curvature Sc(ḡ) on X̄k is bounded from below by Sc(g) on
Y−k = X̄k/Tk ⊂X.

47The structure of complete stable minimal surfaces Y in 3-manifolds of non-negative scalar
curvature.
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Thus, for instance, one obtains a somewhat different proof of the Schoen-Yau
theorem for n ≤ 7:

no metric g on X = Tn can have Sc(g) > 0, because all Tn-invariant metrics
on Tn are Riemannian flat.

Non-Compact Case. An apparent bonus of this argument is its applicability
to non-compact complete manifolds.

Example: Non-domination of Tn by Sc > 0. The n-torus admits no
domination by complete manifolds X with Sc(X) > 0.48

For instance, if a closed subset in the torus Y ⊂ Tn is contained in a topological
ball B ⊂ Tn, then

the complement Tn ∖ Y admits no complete metric with Sc > 0.

The main role of the above Tk-symmetrization, however, is not for the proof
of topological non-existence theorems of metrics with Sc > 0 on closed or non-
compact complete manifolds, but for the geometric study of such metrics on,
possibly non-compact and non-complete, manifolds X.

In fact, this symmetrization applies to stable minimal hypersurfaces Y ⊂ X
with prescribed as well as free boundaries, say with ∂Y ⊂ ∂X and also to stable
µ-bubbles. 49

1.6.6 Averaged Curvature of Levels of Harmonic Maps

Recently, Daniel Stern [Stern(harmonic) 2019] found a version of the 3d Schoen-
Yau argument for the levels of non-constant harmonic maps f ∶X → T1, where,
instead of the second variation formula for area(Y ), one uses

the Bochner identity, which expresses the Laplace of the norm of the
gradient of f in terms of the Hessian of f and the Ricci curvature,

1

2
∆∣∇f ∣2) = ∣Hess(f)∣2 +RicciX(∇f,∇f).

Thus, Stern proved that the average Euler characteristics of these levels
Yt = f

−1(t), t ∈ T1 satisfies:
Harmonic Map Inequality.

4π∫
T1
χ(Yt)dt ≥ ∫

T1
dt∫

Yt
(∣df(y, t)∣−2

∣Hessf(y, t)∣2 + Sc(X, (y, t)))dy.

This shows that

4π∫
T1
χ(Yt)dt ≥ ∫

T1
dt∫

Yt
Sc(X, (y, t))dy.

48Here, as at other similar occasions, singularities of minimal hypersurfaces and of µ-bubbles
create complications for n = dim(X) ≥ 8.

In the present case, if X is spin, this non-domination property follows by a Dirac operator
argument from section 6 in [GL(complete) 1983].
If n = 8 the perturbation argument from [Smale(generic regularity) 2003] takes care of

things.
If n = 9 one can still apply Dirac operators to non-spin manifolds, exploiting the fact that

singularities of hypersurfaces are at most 1-dimensional, while the obstruction to spin (the
second Stiefel-Whitney class) is 2-dimensional, see section 5.3 in [G(billiards) 2014].
If n ≥ 8 the recent desingularization results presented in [Lohkamp(smoothing) 2018] and

in [SY(singularities) 2017] apply to all X.
49See section 12 in [GL(complete) 1983], [G(inequalities) 2018] and sections 3.7, ??).
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and implies, among other things, that
if the universal covering of a compact 3-manifolds with positive scalar curva-

tures is connected at infinity, then the one-dimensional cohomology H1(X;Z)

vanishes.50

Indeed, if H1(X;Z) ≠ 0, then X admits a non-constant harmonic map to the
circle T1, where non-singular levels Yt ⊂ X can’t contain spherical components,
because lifts of such a component to the universal covering of X would bound
balls on which (the lift of) f would be constant by the maximum principle for
harmonic functions. 51

Vague Questions. Is there an algebraic link between S-L-W-(B) and the above
Bochner formula that would connected Dirac operators with harmonic maps?

Do Dirac harmonic and/or similar maps bear a relevance to the scalar curvature
problem?

1.6.7 Seiberg-Witten Equation

The third kind of Φ are solutions to the 4-dimensional Seiberg-Witten equation
of 1994, that is the Dirac equation coupled with a certain non-linear equation
and where the relevant formula is essentially the same as in [I].

Using these, Claude LeBrun52 established a non-trivial (as well as sharp)
Fundamental 4D lower bound on ∫X Sc(X,x)

2dx for Riemannian man-
ifolds X diffeomorphic to algebraic surfaces of general type.

1.6.8 Hamilton-Ricci Flow

Hamilton1
The Hamilton Ricci flow Φ = g(t) of Riemannian metrics on a manifold

X, that is defined by a parabolic system of equations, also delivers a geomet-
ric information on the scalar curvature, where the main algebraic identity for
Sc(t) = Sc(g(t)) reads

dSc(t)

dt
= ∆g(t)Sc(t) + 2Ricci(t)2

≥ ∆g(t)Sc(t) +
2

3
Sc(t)2,

which implies by the maximum principle that the minimum of the scalar cur-
vature grows with time as follows:

Scmin(t) ≥
Scmin(0)

1 − 2tScmin(0)
3

.

If X = (X,g) is a closed 3-manifold of constant sectional curvature −1, then,
using the Ricci flow, Grisha Pereleman proved

Sharp 3D Hyperbolic Lower Volume Bound. All Riemannian metrics
g on X with Sc(g) ≥ −6 = Sc(g) satisfy

V ol(X,g) ≥ V ol(X,g).

50It is known that compact 3-dimensional manifolds with Sc > 0 are connected sums of
space forms and S2 × S1, see [GL(complete) 1983] and [Genoux(3d classification) 2013].

51In this respect, the surfaces Yt are radically different from minimal surfaces and µ-bubbles
which tend to localize around narrow necks in X, e.g. in "thin" connected sums T3#S3

described in section 1.3.
52[LeBrun(Yamabe) 1999]: Kodaira Dimension and the Yamabe Problem.
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(See Proposition 93.9 in [Kleiner-Lott(on Perelman’s) 2008].)
And, more recently, Richard Balmer, Paula Burkhardt-Guim and Man-Chun

Lee, Aaron Naber and Robin Neumayer applied the Ricci flow for regularization
of of (limits of) metrics with Sc ≥ σ.53

(The logic of the Ricci flow, at least on the surface of things, is quite different
from how it goes in the above three cases that rely on elliptic equations:

the quantities Φ in the former result from geometric or topological complexities
of underlying manifolds X, that is necessary for the very existence of these Φ, while
the Ricci flow, as a road roller, leaves a uniform terrain behind itself as it crawls
along erasing complexity.)

Question. Do 3D-results obtained with the Ricci flow generalize to n-
manifolds which have Sc ≥ σ and which come with free isometric actions of
the tori Tn−3?

For instance, let X3 be a 3-dimensional Riemannin manifold which admits
a hyperbolic metric g with sectional curvature −1 and let X = X3 ⋊ T1 be a
warped product (with T1-invariant metric), such that Sc(X) ≥ −6.

Is the volume of X3 =X/T1 is bounded from below by that of (X3, g)?
(It is not even clear if the inequality Sc(X3 ⋊ T1) ≥ −6 imposes any lower

bound on the Riemannin metric g of X3. Namely,
Can such a g = gε satisfy g ≤ εg for a given ε > 0?54)

1.6.9 Modifications of Riemannian Metrics by a Single Function

Riemannian metrics g on an n-manifold X are given locally by n(n−1
2

functions
gij(x), where the scalar curvature Sc(g) is a (messy) non-linear function of
these gij and their first and second derivatives.

There are several constructions of Riemannian metrics on X and of modi-
fications of a given metric g0 on X by means of a single function φ(x), where
the the scalar curvature of the resulting metric g(φ) = g(φ, g0) is expressed by
a "nice" non-linear second order differential applied to φ.

The simplest and most studied case of this is the conformal transformation
g ↦ ϕ2g, where for n ≥ 3 the scalar curvature of this metric is given by the
(Yamabe?) equation

Sc(ϕ2g0) = −
4(n − 1)

n − 2
ϕ
n+2
2 ∆ϕ

n−2
2 + ϕ2Sc(g0),

where ∆ = ∆g0 is the Laplace on functions φ = φ(x) on the Riemannian manifold
(X,g0).

We present some properties of this equation, due to Jerry Kazdan and Frank
Warner, in section 2.6, which are used in the proof of Schoen-Yau’s non-existence
theorem for metrics with Sc > 0 on tori in sections 1.6.2, 2.7.

Also we briefly discuss in 2.6 similar transformations of metrics, where the
scaling takes place only in some preferred directions, e.g. in a single direction,
where the scalar curvature satisfies a non-linear parabolic (Bartnik-Shi-Tamm)
equation, special solutions of which used for the proofs of non-extension theo-
rems for metrics with Sc > 0, see section 3.12.

53See [Bamler(Ricci flow proof) 2016], [Burkhart-Guim(regularizing Ricci flow) 2019], [Lee-
Naber-Neumayer](convergence) 2019] and section 3.1.3.

54An elementary proof of such a bound on g is suggested in [G(foliated) 1991].
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Finally, recall Kähler metrics defined with single functions via the ∂∂̄ , where,
as we mention in section 1.2, Yau’s solution of the Calabi conjecture delivers
"interestingly thick" metrics with Sc > 0 on complex algebraic manifolds.

2 Curvature Formulas for Manifolds and Sub-
manifolds.

We enlist in this section several classical formulas of Riemannian geometry and
indicate their (more or less) immediate applications.

2.1 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannian metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A

∗
(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) = ∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A
∗
) = ∑

i

A∗
(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
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Sign Convention. The first derivative of h changes sign under reversion
of the t-direction. Accordingly the sign of the quadratic form A∗(Y ) of a hyper-
surface Y ⊂X depends on the coorientation of Y in X, where our convention is
such that

the boundaries of convex domains have positive (semi)definite second funda-
mental forms A∗, also denoted IIY , hence, positive mean curvatures, with respect
to the outward normal vector fields.55

(2.1.B) First Variation Formula. This concerns the t-derivatives of the
(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) =
dht
dt
voln−1(Ut) = ∫

Ut
mean.curv(Ut)dyt

56

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for C1-smooth

functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt
ψ(y)mean.curv(Yt)dyt

57

Now comes the first formula with the Riemannian curvature in it.

2.2 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ ⊂ Ty(Y ) ⊂ T )y(X)

y ∈ Y , satisfy
κ(Y, τ) = κ(X,τ) + ∧2A∗

(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧
2A∗

(τ) = α∗1(τ) ⋅ α
∗
2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α

∗
j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;

55At some point, I found out to my dismay, that this is opposite to the standard convention
in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

56This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].

57This remains true for Lipschitz functions but if ψ is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U ⊂ Y , then the derivative ∂ψνvoln−1(Yt)
may become (much) larger than this integral.
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● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a
unit (defined up to ±-sign) normal vector to Y ;

● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)

2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2

for ∣∣A∗(Y )∣∣2 = ∑i(α
∗
i )

2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))
2
−∣∣A∗

(Y )∣∣
2
+(n−1)(n−2) ≥ (n−1)(n−2)−nmax

i
(c∗i )

2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =

0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape that is the symmetric on T (Y ) associated
with A∗ via the Riemannian scalar product g restricted from T (X) to T (Y ),

A∗
(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).

2.3 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry.58 Let Yt be a
family of hypersurfaces t-equidistant to a given Y = Y0 ⊂ X. Then the shape
operators At = A(Yt) satisfy:

∂νA =
dAt
dt

= −A2
(Yt) −Bt,

58The first main formula is Gauss’ Theorema Egregium.
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where Bt is the symmetric associated with the quadratic differential form B∗ on
Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannian geometry. 59

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(
dAt
dt

) = −∣∣A∗
∣∣
2
−Riccig (

d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗

∣∣
2
−Ricci(ν, ν),

where
∣∣A∗

∣∣
2
= ∣∣A∣∣

2
= trace(A2

),

where, observe,

trace(A) = trace(A∗
) =mean.curv = ∑

i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the B) on
the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α
∗
i α

∗
j − ∑i κν,i can be

rewritten as

Ricci(ν, ν) =
1

2

⎛

⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α

∗
j

⎞

⎠
=

=
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2)

where, recall, α∗i = α
∗
i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of

Y ⊂X, where mean.curv(Y ) = ∑i α
∗
i and where ∣∣A∗∣∣2 = ∑i(α

∗
i )

2.

59 Thibault Damur pointed out to me that this formula, along with the rest displayed on
the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.
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2.4 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let Y = (Y,h) be a smooth Riemannian (n-1)-manifold

and ϕ = ϕ(t) > 0, t ∈ [0, ε] be a smooth positive function. Let g = ht + dt
2 =

ϕ2h + dt2 be the corresponding metric on X = Y × [0, ε].
Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal

curvatures of Yt equal to α∗i (t) =
ϕ′(t)
ϕ(t) , i = 1, ..., n − 1 for

A∗
t =

ϕ′(t)
ϕ(t) ht for ϕ

′ = dϕ(t)
dt

and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(
ϕ′

ϕ
)

′

= −(n − 1)2
(
ϕ′

ϕ
)

2

−
1

2

⎛

⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(

ϕ′

ϕ
)

2
⎞

⎠
.

Therefore,

Sc(g) =
1

ϕ2
Sc(h) − 2(n − 1)(

ϕ′

ϕ
)

′

− n(n − 1)(
ϕ′

ϕ
)

2

=

(⋆) =
1

ϕ2
Sc(h) − 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)
ϕ′(t)

ϕ(t)
.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.

(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

(c) What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,
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then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation60

Cylindrical Extension Exercise. Let Y be a smooth manifold, X = Y ×R+, let
g0 be a Riemannian metric in a neighbourhood of the boundary Y = Y × {0} =
∂X, let h denote the Riemannian metric in Y induced from g0 and let Y has
constant mean curvature in X with respect to g0.

Let X ′ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension
n as X, let Y ′ = ∂X ′ be its boundary sphere, let, let Sc(h) > 0 and let the mean
and the scalar curvatures of Y and Y ′ are related by the following (comparison)
inequality.

[<]
∣mean.curvg0(Y )∣2

Sc(h, y)
<

∣mean.curv(Y ′)∣2

Sc(Y ′)
for all y ∈ Y.

Show that
if Y is compact, there exists a smooth positive function ϕ(t), 0 ≤ t < ∞, which

is constant at infinity and such that the the warped product metric g = ϕ2h+dt2

has
the same Bartnik data as g0, i.e.

g∣Y = h0 and mean.curvg(Y ) =mean.curvg0(Y ),

Then show that
one can’t make Sc(g) ≥ Sc(X ′) in general, if [<] is relaxed to the corresponding

non-strict inequality, where an example is provided by the Bartnik data of Y ′ ∈X ′

itself.61

Vague Question. What are "simple natural" Riemannian metrics g on X =

Y ×R+ with given Bartnik data (Sc(Y ),mean, curv(Y )), where Y ⊂X is allowed
variable mean curvature, and what are possibilities for lower bound on the scalar
curvatures of such g granted ∣mean.curv(Y, y)∣2/Sc(Y, y) < C, e..g. for C =

∣mean.curv(Y ′)∣2/Sc(Y ′) for Y ′ being a sphere in a space of constant curvature.

2.4.1 Higher Warped Products

Let Y and S be Riemannian manifolds with the metrics denoted dy2 (which
now play the role of the above dt2) and ds2 (instead of h), let ϕ > 0 be a smooth
function on Y , and let

g = ϕ2
(y)ds2

+ dy2

be the corresponding warped metric on Y × S,
Then

(⋆⋆)

Sc(g)(y, s) = Sc(Y )(y) +
1

ϕ(y)2
Sc(S)(s) −

m(m − 1)

ϕ2(y)
∣∣∇ϕ(y)∣∣2 −

2m

ϕ(y)
∆ϕ(y),

60See §12 in [GL(complete) 1983].
61 It follows from [Brendle-Marques(balls in Sn)N 2011] that the the cylinder Sn−1 × R+

admits a complete Riemannian metric g cylindrical at infinity which has Sc(g) > n(n−1), and
which has the same Bartnik data as the boundary sphere X′

0 in the hemisphere X′ in the unit
n-sphere. But the non-deformation result from [Brendle-Marques(balls in Sn) 2011], suggests
that this might be impossible for the Bartnik data of small balls in the round sphere.
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where m = dim(S) and ∆ = ∑∇i,i is the Laplace on Y .
To prove this, apply the above c (⋆) to l × S for naturally parametrised

geodesics l ⊂ Y passing trough y and then average over the space of these l, that
is the unit tangent sphere of Y at y.

The most relevant example here is where S is the real line R or the circle S1

also denoted T1 and where (⋆) reduces to

(⋆⋆)1 Sc(g)(y, s) = Sc(Y )(y) −
2

ϕ
∆ϕ(y).62

For instance, if the L = −∆ + 1
2
Sc on Y is strictly positive, that is the

lowest eigenvalue λ is strictly positive and if ϕ equals to the corresponding
eigenfunction of L, then

−∆ϕ = λ ⋅ ϕ −
1

2
Sc ⋅ ϕ

and
Sc(g) = 2λ > 0,

The basic feature of the metrics ϕ2(y)ds2 + dy2 on Y × R is that they are
R-invariant, where the quotients (Y × R)/Z = Y × T1 carry the corresponding
T1-invariant metrics, while the R-quotients are isometric to Y .

Besides R-invariance, a characteristic feature of warped product metrics is
integrability of the tangent hyperplane field normal to the R-orbits, where Y ×

{0} ⊂ Y ×R, being normal to these orbits, serves as an integral variety for this
field.

Also notice that Y = Y × {0} ⊂ Y × R is totally geodesic with respect to
the metric ϕ2(y)ds2+dy2, while the (R-invariant) curvature (vector field) of the
R-orbits is equal to the gradient field ∇ϕ extended from Y to Y ×R. coordinates

In what follows, we emphasize R-invariance and interchangeably speak of
R-invariant metrics on Y ×R and metrics warped with factors ϕ2 over Y .

Gauss-Bonnet g⋊-Exercise. Let the above S be the Euclidean space RN
(make it Tn if you wish to keep compactness) with coordinates t1, ..., tN , let

Φ(y) = (ϕ1(y), ..., ϕi(y), ..., ϕN(y))

be anN -tuple of smooth positive function on a Riemannian mnanifold Y = (Y, g)
and define the (iterated t warped product) metric g⋊ = g⋊Φ on Y × S as follows:

g⋊ = g(y) + ϕ2
1(y)dt

2
1 + ϕ

2
2(y)dt

2
2 + ... + ϕ

2
N(y)dt2N

Show that the scalar curvature of this metric, which, being RN -invariant, is
regarded as a function on Y , satisfies:

Sc(g⋊, y) = Sc(g) − 2
N

∑
i=1

∆g logϕi −
N

∑
i=1

(∇g logϕi)
2
− (

N

∑
i=1

∇g logϕi)

2

,

thus
∫
Y
Sc(g⋊, y)dy ≤ ∫

Y
Sc(g, y)dy,

and, following [Zhu(rigidity) 2019], obtain the following

62The roles of Y and S = R and notationally reversed here with respect to those in (⋆)
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"Warped" Gauss-Bonnet Inequality for Closed Surfaces Y :

∫
Y
Sc(g⋊, y)dy ≤ 4πχ(Y )

for the (iterated) warped product metrics g⋊ = g⋊φ for all positive N -tuples of Φ of
positive functions on Y . 63

2.5 Second Variation Formula
The Weyl formula also yields the following formula for the second derivative of
the (n − 1)-volume of a cooriented hypersurface Y ⊂ X under a normal defor-
mation of Y in X, where the scalar curvature of X plays an essential role.

The deformations we have in mind are by vector fields directed by geodesic
normal to Y , where in the simplest case the norm of his field equals one.

In this case we have an equidistant motion Y ↦ Yt as earlier and the second
derivative of voln−1(Yt), denoted here V ol = V olt, is expressed in terms of
of the shape At = A(Yt) of Yt and the Ricci curvature of X, where, recall
trace(At) =mean.curv(Yt) and

∂νV ol = ∫
Y
mean.curv(Y )dy

by the first variation formula.
Then, by Leibniz’ rule,

∂2
νV ol = ∂ν ∫

Y
trace(A(y))dy = ∫

Y
trace2

(A(y))dy + ∫
Y
trace(∂νA(y))dy,

and where, by Weyl’s formula,

trace(∂νA) = −trace(A2
) −Ricci(ν, ν)

for the normal unit field ν.
Thus,

∂2
νV ol = ∫

Y
(mean.curv)2

− trace(A2
) −Ricci(ν, ν),

which, combining this with the above expression

Ricci(ν) =
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2) ,

shows that

∂2
νV ol = ∫

1

2
(Sc(Y ) − Sc(X) +mean.curv2

− ∣∣A∗
∣∣
2) .

In particular, if Sc(X) ≥ 0 and Y is minimal, then,

(∫ Sc ≥ 2∂2Vol) ∫
Y
Sc(Y, y)dy ≥ 2∂2

νV ol

(compare with the (Sc ≥ −2Ric) in 2.2).

63See [Zhu() 2019] and sections 5.9, 7.2 for applications and generalizations.

37



Warning. Unless Y is minimal and despite the notation ∂2
ν , this derivative

depends on how the normal filed on Y ⊂ X is extended to a vector filed on (a
neighbourhood of Y in) X.

Illuminative Exercise. Check up this formula for concentric spheres of radii
t in the spaces with constant sectional curvatures that are Sn, Rn and Hn.

Now, let us allow a non-constant geodesic field normal to Y , call it ψν, where
ψ(y) is a smooth function on Y and write down the full second variation formula
as follows:

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R(y)ψ2

(y)dy

for

[○○] R(y) =
1

2
(Sc(Y, y) − Sc(X,y) +M2

(y) − ∣∣A∗
(Y )∣∣

2) ,

where M(y) stands for the mean curvature of Y at y ∈ Y and ∣∣A∗(Y )∣∣2 =

∑i(α
∗)2, i = 1, ..., n − 1.

Notice, that the "new" term ∫Y ∣∣dψ(y)∣∣2dy depends only on the normal field
itself, while the R-term depends on the extension of ψν to X, unless

Y is minimal, where [○○] reduces to

[∗∗] ∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ∣∣2 +

1

2
(Sc(Y ) − Sc(X) − ∣∣A∗

∣∣
2)ψ2.

Furthermore, if Y is volume minimizing in its neighbourhood, then ∂2
ψνvoln−1(Y ) ≥

0; therefore,

[⋆⋆] ∫
Y
(∣∣dψ∣∣2 +

1

2
(Sc(Y ))ψ2

≥
1

2
∫
Y
(Sc(X,y) + ∣∣A∗

(Y )∣∣
2
)ψ2dy

for all non-zero functions ψ = ψ(y).
Then, if we recall that

∫
Y
∣∣dψ∣∣2dy = ∫

Y
⟨−∆ψ,ψ⟩dy,

we will see that [⋆⋆] says that

the ψ ↦ −∆ψ + 1
2
Sc(Y )ψ is greater than64 ψ ↦ 1

2
(Sc(X,y) + ∣∣A∗(Y )∣∣2)ψ.

Consequently,
if Sc(X) > 0, then the −∆ + 1

2
Sc(Y ) on Y is positive.

Justification of the ∣∣dψ∣∣2 Term. Let X = Y ×R with the product metric and
let Y = Y0 = Y × {0} and Yεψ ⊂X be the graph of the function εψ on Y . Then

voln−1(Yεψ) = ∫
Y

√
1 + ε2∣∣dψ∣∣2dy = voln−1(Y ) +

1

2
∫
Y
ε2

∣∣dψ∣∣2 + o(ε2
)

by the Pythagorean theorem
and

d2voln−1(Yεψ)

d2ε
= ∣∣dψ∣∣2 + o(1).

64A ≥ B for selfadjoint operators signifies that A −B is positive semidefinite.
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by the binomial formula.
This proves [○○] for product manifolds and the general case follows by

linearity/naturality/functoriality of the formula [○○].
Naturality Problem. All "true formulas" in the Riemannian geometry

should be derived with minimal, if any, amount of calculation – only on the
basis of their "naturality" and/or of their validity in simple examples, where
these formulas are obvious.

Unfortunately, this "naturality principle" is absent from the textbooks on
differential geometry, but, I guess, it may be found in some algebraic articles
(books?).

Exercise. Derive the second main formula 2.3.A by pure thought from its
manifestations in the examples in the above illuminative exercise.65

2.6 Conformal Laplacian and the Scalar Curvature of Con-
formally and non-Conformally Scaled Riemannian Met-
rics

Let (X0, g0) be a compact Riemannian manifold of dimension n ≥ 3 and let
ϕ = ϕ(x) be a smooth positive function on X.

Then, by a straightforward calculation,66

G# Sc(ϕ2g0) = γ
−1
n ϕ−

n+2
2 L(ϕ

n−2
2 ),

where L is the conformal Laplace on (X0, g0)

L(f(x)) = −∆f(x) + γnSc(g0, x)f(x)

for the ordinary Laplace (Beltrami) ∆f = ∆g0f = ∑i ∂iif and γn = n−2
4(n−1) .

Thus, we conclude to the following.
Kazdan-Warner Conformal Change Theorem. 67 Let X = (X,g0) be

a closed Riemannian manifold, such the the conformal Laplace L is positive.
Then X admits a Riemannian metric g (conformal to g0) for which Sc(g) >

0.
Proof. Since L is positive, its first eigenfunction, say f(x) is positive68 and

since L(f) = λf, λ > 0,

Sc(f
4
n−2 g0) = γ

−1
n L(f)f−

n+2
n−2 = γ−1

n f
2n
n−2 > 0.

Example: Schwarzschild metric. If (X0, g0) is the Euclidean 3-space,
and f = f(x) is positive function, then

the sign of Sc(f4g0) is equal to that of −∆f .

In particular, since the function 1
r
= (x2

1 + x
2
2 + x

2
3)
− 1

2 , is harmonic, the

Schwarzschild metric gSw = (1 + m
2r

)
4
g0 has zero scalar curvature.

65I haven’t myself solved this exercise.
66There must be a better argument.
67[Kazdan-Warner(conformal) 1975]: Scalar curvature and conformal deformation of Rie-

mannian structure.
68We explain this in section 2.9.
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If m > 0, then this metric is defined for all r > 0 and it is invariant under the
involution r ↦ m2

r
.

If m = 0, this the flat Euclidian metric.
If m < 0, then this metric is defined only for r >m with a singularity ar r =m.

Non-Conformal Scaling. Let X = (X,g) be a smooth n-manifold, and
let R×

x ⊂ GLx(n), x ∈ X, be a smooth family of diagnosable (semisimple) 1-
parameter subgroups in the linear groups GLx(n) = GLn that act in the tangent
spaces Tx(X).

Then the the multiplicative group of functions φ ∶ X → R× acts on the
tangent bundle T (X) by

τ ↦= φ(x)(τ) for φ(x) ∈ R×
= R×

x ⊂ GLx = GL(Tx(X))

and, thus on the space of Riemannin metrics g on X.
The main instance of such an action is where the tangent bundle is orthog-

onally split, T (X) = T1 ⊕ T2, and φ acts by scaling on the subbundle T2.
It is an not hard to write down a formula for the scalar curvature of g1+φ

2g2,
but it is unclear what, in general, would be a workable criterion for solvability
of the inequality Sc(gϕ) > 0 in ϕ, e.g. in the case where X = X1 × X2 and
the subbundles T1 and T2 are equal to the tangent bundles of submanifolds
X1 × x2 ⊂X, x2 ∈X2, and x1 ×X2 ⊂X, x1 ∈X1.

Yet, in the case of rank(T2) = 1, this equation introduced, I believe, by
Robert Bartnik in [Bartnik(prescribed scalar) 1993] was successfully applied to
extension of metrics with Sc > 0 (see section 3.12)69

2.7 Schoen-Yau’s Non-Existence Results for Sc > 0 on SYS
Manifolds via Minimal (Hyper)Surfaces and Quasisym-
plectic [Sc ≯ 0]−Theorem

Let X be a three dimensional Riemannian manifold with Sc(X) > 0 and Y ⊂X be
an orientable cooriented surface with minimal area in its integer homology class.

Then the inequality (∫ Sc ≥ 2∂2V ) from section 2.5, which says in the present
case that

∫
Y
Sc(Y, y)dy > 2∂2

νarea(Y ),

implies that
Y must be a topological sphere.

In fact, minimality of Y makes ∂2
νarea(Y ) ≥ 0, hence ∫Y Sc(Y, y)dy > 0, and

the sphericity of Y follows by the Gauss-Bonnet theorem.
And since all integer homology classes in closed orientable Riemannian 3-

manifolds admit area minimizing representatives by the geometric measure the-
ory developed by Federer, Fleming and Almgren, we arrive at the following
conclusion.

☀3 Schoen-Yau 3d-Theorem. All integer 2D homology classes in closed
Riemannian 3-manifolds with Sc > 0 are spherical.

For instance, the 3-torus admits no metric with Sc > 0.
69Other special cases of this are (implicitly) present in the geometry of Riemannin warped

product, in the process of smoothing corners with Sc ≥ σ and in the transversal blow up of
foliations with Sc > 0.
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The above argument appears in Schoen-Yau’s 15-page paper [SY(incompressible)
1979], most of which is occupied by an independent proof of the existence and
regularity of minimal Y .

In fact, the existence of minimal surfaces and their regularity needed for
the above argument has been known since late (early?) 60s70 but, what was,
probably, missing prior to the Schoen-Yau paper was the innocuously looking
corollary of Gauss’ formula in 2.2,

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν)

and the issuing inequality

Sc(Y ) > −2Ricci(ν, ν)

for minimal Y in manifolds X with Sc(X) > 0.
For example, Burago and Toponogov, come close to the above argument,

where, they bound from below the injectivity radius of Riemannian 3-manifolds
X with sect.curv(X) ≤ 1 and Ricci(X) ≥ ρ > 0 by

inj.rad(X) ≥ 6e−
6
ρ ,

where this is done by carefully analysing minimal surfaces Y ⊂X bounded by, a
priori very short, closed geodesics in X, and where an essential step in the proof
is the lower bound on the first eigenvalue of the Laplace on Y by

√
Ricci(X).71

Area Exercises. Let X be homeomorphic to Y × S1, where Y is a closed
orientable surface with the Euler number χ.

(a) Let χ > 0, Sc(X) ≥ 2 and show that there exists a surface Yo ⊂ X
homologous to Y × {s0}, such that area(Yo) ≤ 4π.72

(b) Let χ < 0, Sc(X) ≥ −2 and show that all surfaces Y∗ ∈ X homologous to
Y × {s0} have area(Y∗) ≥ −2πχ.

(c) Show that (a) remains valid for complete manifolds X homeomorphic to
Y ×R.73

☀codim1 Schoen-Yau Codimension 1 Descent Theorem, [SY(structure)
1979]. Let X be a compact orientable n-manifold with Sc > 0.

If n ≤ 7, then all integer homology classes h ∈ Hn−1(X) are representable
by compact oriented (n − 1)-submanifolds Y in X, which admit metrics with
Sc > 0.

Proof. Let Y be a volume minimizing hypersurface representing h, the ex-
istence and regularity of which is guaranteed by a Federer 1970-theorem74 and
recall that by [⋆⋆] in 2.5 the −∆ + 1

2
Sc(Y ) is positive. Hence, the conformal

Laplace −∆ + γnSc(Y ) is also positive for γn = n−2
4n−1

≤ 1
2
and the proof follows

by Kazdan-Warner conformal change theorem.
70Regularity of volume minimizing hypersurfaces in manifolds X of dimension n ≤ 7, as we

mentioned earlier, was proved by Herbert Federer in [Fed(singular) 1970], by reducing the gen-
eral case of the problem to that of minimal cones resolved by Jim Simons in [Simons(minimal)
1968].

71[BurTop(curvature bounded above)1973],On 3-dimensional Riemannian spaces with cur-
vature bounded above.

72See [Zhu(rigidity) 2019] for a higher dimensional version of this inequality.
73I haven’t solved this exercise.
74[Federer(singular) 1970]: The singular sets of area minimizing rectifiable currents with

codimension one and of area minimizing flat chains modulo two with arbitrary codimension.
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☀Tn Mapping to the Torus Corollary. If a closed orientable n-manifold
X admits a map to the torus Tn with non-zero degree, then X admits no metric
with Sc > 0.

Indeed, if a closed submanifold Y n−1 is non-homologous to zero in this X
then it (obviously) admits a map to Tn−1 with non-zero degree. Thus, the
above allows an inductive reduction of the problem to the case of n = 2, where
the Gauss-Bonnet theorem applies.

SYS-Manifolds. Schoen and Yau say in [SY(structure) 1979] that their
codimension 1 descent theorem delivers a topological obstruction to Sc > 0 on
a class of manifolds, which is, even in the spin case, 75 is not covered by the
twisted Dirac operators methods.

This claim was confirmed by Thomas Schick, who defined, in homotopy
theoretic terms, integer homology classes in aspherical spaces, say h ∈ Hn(X)

and who proved using the codimension one descent theorem that these h for
n ≤ 7 can’t be dominated by compact orientable n-manifolds with Sc > 0.

In more geometric terms, the n-manifolds X, to which Schick’s argument
applies, we call them Schoen-Yau-Schick, can be described d as follows.

A closed orientable n-manifold is Schoen-Yau-Schick if it admits a smooth map
f ∶X → Tn−2, such that the homology class of the pullback of a generic point,

h = [f−1
(t)] ∈H2(X)

is non-spherical, i.e. it is not in the image of the Hurewicz homomorphism
π2(X) →H2(X).

Then Schick’s corollary to Schoen-Yau’s theorem reads.
☀SY S Non-existence Theorem for SYSManifolds. Schoen-Yau-Schick

manifolds of dimensions n ≤ 7 admit no metrics with Sc > 0.
(b) Exercises. (b1) Construct examples of SYS manifolds of dimension n ≥ 4,

where all maps X → Tn have zero degrees.
Hint: apply surgery to Tn.
(b2) Show that if the first homology group H1(X) of a SYS-manifold has no

torsion, then a finite covering of X admits a map with degree one to the torus
Tn.

(c) The limitation n ≤ 7 of the above argument is due a presence of singu-
larities of minimal subvarieties in X for dim(X) ≥ 8.

If n = 8, these singularities were proven to be unstable by Nathan Smale;
this improves n ≤ 7 to n ≤ 8 in ☀SY S

More recently, as we mentioned earlier, the dimension restriction was re-
moved for all n by Lohkamp and by Schoen-Yau; the arguments in both papers
are difficult and I have not mastered them.76

Although the Dirac operator arguments don’t apply to SYS-manifolds, they
do deliver topological obstructions to Sc > 0, which, according to the present

75 A smooth connected n-manifolds X is spin if the frame bundle over X admits a double
cover extending the natural double cover of a fiber, where such a fiber is equal to the linear
group, (each of the two connected components of) which admits a a unique non-trivial double
cover G̃L(n) → GL(n).

76See [Smale(generic regularity) 2003], SY(singularities) 2017], [Lohkamp(smoothing) 2018]
and section 3.7.1.
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state of knowledge, lie beyond the range of the minimal surface techniques. Here
is an instance of this.
⊗∧kω̃ Quasisymplectic Non-Existence Theorem. Let X be a compact

⊗∧kω̃-manifold of dimension n = 2k, i.e. X is orientable and it carries a closed
2-form ω (e.g. a symplectic one), such that ∫X ω

k ≠ 0, and such that the lift ω̃ of
ω to the universal covering X̃ is exact, e.g. X̃ is contractible.77

Then X admits no metric with Sc > 0.
This applies, for instance, to even dimensional tori, to aspherical 4-manifolds

with H2(X,R) ≠ 0 and to products of such manifolds78 but not to general SYS-
manifolds.

Idea of the Proof. Assume without loss of generality that ω serves as the
curvature form of a complex line bundleL→Xand let L̃→ X̃ be the lift of L to
the universal covering X̃ →X.

Since the curvature ω̃ of L̃, is exact the bundle L̃is topologically trivial,
hence it can be represented by k-th tensorial power of another line bundle,

L = (L
1
k )

⊗k,

where the curvature of L
1
k is 1

k
ω̃. By Atiyah’s L2-index theorem, there are non-

zero harmonic L2-spinors on X̃ twisted with L
1
k for infinitely many k, but the

twisted Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner) formula applied to
large k doesn’t allow such spinors for Sc(X̃ ≥ σ > 0.79

Exercise. Show that if X is ⊗∧kω̃, then the classifying map X → B(Π),
where B(Π) = K(Π,1) is the classifying space for the group Π = π1(X), sends
the fundamental homology class [X] to a non-torsion class in Hn(B(Π)).

Problem. Is there a unified approach that would apply to SY S-manifolds
and to the above ⊗∧kω̃-manifolds X, e.g. symplectic ones with contractible
universal coverings?

For instance,
do products of SY S and ⊗∧kω̃-manifolds ever carry metrics with positive
scalar curvatures?

2.8 Warped T⋊-Stabilization and Sc-Normalization
Many geometric properties of Riemannian manifolds X = (X,g) implied by the
inequality Sc(g) ≥ σ follow (possibly in a weaker form) from the same inequality
for a larger manifold, say X∗, that, topologically, is the product of X with the
a torus, X∗ =X ×TN for some N = 1,2, ..., where the Riemannian metric g∗ on
X∗ is invariant under the action of TN and where X∗/TN is isometric to X.

77 It’s enough to have X̃ spin.
78Recently, Chodosh and Li proved that
compact aspherical manifolds of dimensions 4 and 5 admit no metrics with positive scalar

curvatures. (See [Chodosh-Li(bubbles) 2020], [G(aspherical) 2020] and section3.10.3)
But this remains problematic for products of pairs of aspherical 4-manifolds.
79Atiyah’s theorem from [Atiyah(L2) 1976] needs a slight adjustment here, since the action

of the fundamental group Γ = π1(X) on X̃ doesn’t lift to L
1
k ; yet the fundamental group of the

(total space) of the unit circle bundle of L does naturally act on L
1
k . Also, there is no difficulty

in extending Lichnerowicz’ vanishing argument to the L2 case, see §9 1
8
in [G(positive) 1996].
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Surface Examples. Let X = (X,g) be a closed surface and g∗ be a TN -
invariant metric on X ×TN , such that

(X ×TN , g∗)/TN = (X,g).

(a) Sharp Equivariant Area Inequality. If Sc(g∗) ≥ σ > 0, then a special
case a theorem by Jintian Zhu,80 says that

the area of X is bounded the same way as it is for Sc(g) ≥ σ,

area(X) ≤
8π

σ
.

Moreover,
the equality holds only if X∗ is the isometric product X ×TN .

(b) (Weakened) T∗-Stable 2d Bonnet-Myers Diameter Inequality. If
Sc(g∗) ≥ σ, then

[BMD] diam(X) ≤ 2π

√
N + 1

(N + 2)σ
<

2π
√
σ
.

Proof. Given two points x1, x2 ∈ X, take two small ε-circles Y−1 and Y+1

around them, let Xε ⊂ X be the band between them and and apply (the rela-
tively elementary TN -invariant case of) the 2π

n
-Inequality from section 3.6.81

Non Trivial Torus Bundles. The inequality [BMD] is valid for (all) Rieman-
nian (N + 2)-manifolds X∗ with free isometric TN -actions:

if Sc(X∗) ≥ σ > 0, then diam(X∗/TN) ≤ 2π
√

(N + 1)/(N + 2)σ.
In fact, the above proof applies, since, topologically, the part of X∗ that lies

over the band Xε ⊂X is the product, Xε ×TN .
It is unclear, however, if the areas of X∗/TN are bounded in terms of Sc(X∗)

for all such X∗.
And, as we shall see later, possible non-triviality of torus bundles create

complications for other problems with scalar curvature.
General Question. The above examples suggests that quotients X of man-

ifolds X∗ with Sc(X∗) ≥ σ under free isometric actions of tori have similar
geometric properties to those of manifolds which have Sc ≥ σ themselves. But
it is unclear how far this similarity goes.

Example. let X be a closed surface and X⋊ = X ⋊ T1 be a warped product
as described below.

Does the inequality Sc(X⋊) ≥ 2 yield an upper bound on all of geometry of X?
For instance,

is there a bound on the number of unit discs needed to cover X?
(If Sc(X) ≥ 2, then X admits a distance decreasing homeomorphism from

the unit sphere S2, that can be constructed using the family of boundary curves
of concentric discs with center at some point in X.)

Warped Products. As far as geometric applications are concerned, the rel-
evant X∗ are (iterated) warped products, we denote them X⋊ and call warped

80See [Zhu(rigidity) 2019] and 5.9, 7.2 for related inequalities.
81Also see §2 in [G(inequalities) 2018] and the proof of theorem 10.2 in [GL(complete) 1983].
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TN -extensions of X, that are characterized by the existence of isometric sections
X →X⋊ for X⋊ →X =X⋊/TN .

Clearly, metrics g⋊ on these X⋊ are

g⋊ = g + ϕ2
1(x)dt

2
1 + ϕ

2
2(x)dt

2
2 + ... + ϕ

2
N(x)dt2N

for some positive functions ϕi on X.
Among these we distinguish O(N)-invariant warped extensions, where the

ZN covering manifolds X̃⋊ =X ×RN , where

X̃⋊
/ZN =X⋊,

are invariant under the action of the orthogonal group O(N). Thus, X̃⋊ are
acted upon by the full isometry group of RN , that is RN ⋊O(N).

Equivalently, the metric in such an X⋊ is a "simple" warped product: g⋊ =
g +ϕ2d∣∣t̄∣∣2 for t̄ = (t1, t2, ..., tN), the scalar curvature of which, as we know, 2.4
is

Sc(g⋊)(x, t̄) = Sc(X)(x) −
2N

ϕ(x)
∆gϕ(x) −

N(N − 1)

ϕ2(x)

and which is most simple (and useful) for N = 1, where

[⋊ϕ] Sc(g⋊)(x, t̄) = Sc(X)(x) −
2

ϕ(x)
∆gϕ(x).

for the Laplace (Beltrami) ∆g on X = (X,g).

[⋊ϕ]
N -Symmetrization Theorem. Let X = (X,g) be a closed oriented

Riemannian manifold of dimension n =m +N and let

X ⊃X−1 ⊃ ... ⊃X−i ⊃ ... ⊃X−N ,

be a descending chain of closed oriented submanifolds, where each X−i ⊂X is equal
to a transversal intersection of X−(i−1) with a smooth closed oriented hypersurface
Hi ⊂X,

Hi ∩X−(i−1) =X−i.

If n ≤ 7, then
there exists a closed oriented m-dimensional submanifold Y ⊂X homologous

to X−N and a warped product TN -extension Y ⋊ of Y = (Y,h) for the Riemannian
metric h on Y induced from g on X, such that the scalar curvature of Y ⋊, that
is, being TN -invariant, is represented by a function on Y , is bounded from below
by the Scalar curvature of X on Y ⊂X,

Sc(Y ⋊, y) ≥ Sc(X,y), y ∈ Y.

Proof. Proceed by induction on codimension i = 1,2, , ....N and construct
submanifolds

X ⊃ Y1 ⊃ ... ⊃ Yi ⊃ ... ⊃ YN = Y ⊂X

as follows.
At the first step, let Y1 ⊂ X be a volume minimizing, hence stable, hyper-

surface homologous to X−1 where, the positivity of the second variation implies
the positivity of the

−∆ +
1

2
(Sc(Y1) − Sc(X)∣Y1 ,

45



for the Laplace ∆ = ∆h1 on Y1 with the metric h1 induced from X and let ψ1 > 0
be the first eigenfunction of this with the positive eigenvalue λ1, thus

−∆ψ = (λ −
1

2
(Sc(Y,h1) − Sc(X))) ⋅ ψ1.

Here, let h⋊1(y) = h1(y)+ψ
2dt2 be the warped product metric on Y1×T1 and

observe
Sc(h⋊1 , y) = Sc(h1, y) −

2

ψ
∆ψ1 = Sc(X,y) + 2λ1.

Then, at the second step, let Y2 ⊂ Y1 be a hypersurface, such that Y2 ×T1 ⊂

Y1 ×T1 is volume minimizing for the metric h⋊1 , which is equivalent for Y2 to be
volume minimizing in Y1 with respect to the metric ψl11 h1 for l1 = 2

n−1
.

Thus we obtain Y ′
2 , where the corresponding metric on Y ′

2 ×T2 is

h′2 + ψ
2
1dt

2
1 + ψ

2
2dt

2
2.

Repeating this N − 2 more times, we arrive at Y ′
N and an (iterated) warped

product metric

h′N +
N

∑
i=1

ψ2
i dt

2
i on Y ′

N ×TN ,

which can be symmetrised further to the required h⋊ by applying the above
infinitely many times to hypersurfaces Y ′

N × TN−1 ⊂ Y ′
N × TN for all subtori

TN−1 ⊂ Y ′
N × TN .82 (The luxury of the extra O(N)-symmetry is unneeded for

most purposes.)
Exercise. Apply [⋊ϕ]

N -symmetrization to n-manifolds with isometric Tn−2-
actions and prove the above equivariant area inequality by reducing it to the
warped product case that was already settled in section 2.4.1.

Symmetrization by Reflections and Convergence Problem. Let Y be a closed
minimal co-orientable (i.e. two sided) hypersurface in a Riemannian manifold. If
Y is locally volume minimizing, then it admits arbitrarily small neighbourhoods
Vε ⊃ Y in X with smooth strictly mean convex boundaries. Then by reflecting
such a varepsilon in the two boundary components, one obtains manifolds V̂ε
with isometric actions of Z ⋊Z2.

If these Y are non-singular, e.g. if dim(X) ≤ 7, then one can take solutions of
the isoperimetric problem for these Vε, where one minimize the volumes of both
components of the boundaries of Vε per given (small) volume contained between
them and Y . In this case, V̂ε, ε→ 0, converge to smooth Riemannian manifolds
V ⋊ with isometric actions of R and with their scalar curvatures bounded from
below by Sc(X)∣Y .

If Y is singular, the boundaries of these Vε, even if singular, 83 can be
smoothed with positive mean curvatures, but it is unclear if they converge to a
reasonable object for ε → 0: what is missing for convergence is a Harnack type
inequality for the boundary components of ∂1, ∂2 ⊂ ∂Vε, that is a uniform bound
for the ratios of the distances

dist(y, ∂i)

dist(y′, ∂i)
, y, y′ ∈ Y,

82 See in, §12[GL(complete)1983], [G(inequalities) 2018] and also the sections 3.7, 5.4 for
details of this argument and for generalizations.

83 If n = 8, then, by adapting Nathan Smale’s argument, one can show that these Vε are
non-singular for an open dense set of values of ε; but this is problematic for n ≥ 9.
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i = 1,2, and /or of distances dist(x,x′, Y ), x,x′ ∈ ∂i.
Notice, that "symmetrization by reflections", albeit open to generalizations

to singular Y , is not, apparently, applicable, to stable µ-bubbles Y , where the
warped product construction does apply. 84

Symmetrization versus Normalization. T⋊-Symmetrization of metrics g typ-
ically) makes their scalar curvatures constant by paying the price of modification
of the topology of the underlying manifolds, X ;X ×T1.

As far as sets of "interesting" maps between Riemannian manifolds are con-
cerned a similar effect effect is achieved by keeping the same manifold X but
modifying the metric by g = g(x); g○ = g○(x) = Sc(X,x)g(x).

In fact, we shall see later in many examples, that
there is a close (but not fully understood) similarity between the sets of λ○-

Lipschitz maps (X,g○) → (Y,h○) and of T1-equivariant λ⋊-Lipschitz maps (X ×

T1, g⋊) → (Y ×T1, h⋊) for λ○ and λ⋊ related in a certain way.

2.9 Positive Eigenfunctions and the Maximum Principle
Let X be a compact connected Riemannian manifold and let

∆f = ∑
i

∇iif = traceHessf = div gradf

denote the Laplace (Beltrami) on X, which, recall, is a negative , since

∫
X
⟨f,∆f⟩dx = −∫

X
∣∣gradf ∣∣2dx ≤ 0

by Green’s formula.
Non-Vanishing Theorem. Let s(x) be a smooth function, such that the

L = Ls ∶ f(x) ↦ −∆f(x) + s(x)f(x)

is non-negative, that is ∫X⟨f(x), Lf(x)⟩dx ≥ 0 for all f or, equivalently, if L the
lowest eigenvalue λ = λmin is ≥ 0.85

Then
the eigenfunction f(x) associated with λ doesn’t vanish anywhere on X.
Start with two lemmas.
1. C1-Lemma. If the minimal eigenvalue of the f(x) ↦ Lf(x) = −∆f(x) +

s(x)f(x) on a compact Riemannian manifold is non-negative, λ = λmin ≥ 0, then
the absolute value ∣f(x)∣ of the eigenfunction f associated with λ is C1-smooth.

2. ∆-Lemma. Let f(x) be a non-negative continuous function on a Riemannian
manifold, such that

(i) f(x) vanishes at some point in X,

f(x0) = 0, x0 ∈X,

(ii) f(x) is not identically zero in any neighbourhood of the point x0 ∈X,
(iii) f(x) is everywhere C1-smooth and it is C2-smooth at the points x where

84See §8 in [G(billiards) 2014], §4.3 in [G(inequalities) 2019] and section 5.1 for more about
all this.

85This is equivalent since our L has discrete spectrum.
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it doesn’t vanish.
Then there exists a sequence of points x1, x2, ... ∈ X convergent to x0, where
f(xi) > 0 and such that

∆f(xi)

f(xi)
→ ∞, for i→∞.

Derivation of Non-vanishing Theorem from the Lemmas. Since ∣f ∣ is C1 by
the first lemma, the ∆-lemma, applied to ∣f(x)∣, shows that there exists a point
x, where f(x) ≠ 0 and

∆f(x)

f(x)
=

∆∣f(x)∣

∣f(x)∣
> ∣s(x)∣,

that is incompatible with −∆f(x) + s(x)f(x) = λf(x) ≥ 0 for λ ≥ 0.
Proof of C1-Lemma. Recall that the eigenvalues of the L = Ls = −∆ + s are

equal to the critical values of the energy functional

E(f) = ∫
X
(∣∣gradf(x)∣∣2 + s(x))f2

(x)dx

on the sphere
∣∣f ∣∣2 = ∫

X
f2

(x)dx = 1

in the Hilbert space L2(X) and the critical points of E are represented by
eigenfunctions

Indeed,
E(f) = ⟨f,Lf⟩ = ∫

X
⟨f(x), Lf(x)⟩dx

by Green’s formula and the differential of the quadratic function f ↦ ⟨f,Lf⟩ on
the sphere ∣∣f ∣∣2 = 1 is

(dE)f(τ) = ⟨τ,Lf⟩ for all for all τ normal to f.

Thus, vanishing of dE at f on the unit sphere says, in effect, that Lf is a
multiple of f , i.e. Lf = λf .

All this makes sense in the present case, albeit the space L2(X) is infinite di-
mensional and L an unbounded, because L is an elliptic operator, which implies,
for compact X, that

the spectrum of L is discrete, bounded from below and all eigenfunctions are
smooth.

In particular – this is all we need,
all minimizes of E(f) on the unit sphere, that are, a priori, only Lipschitz

continuous, are smooth.86

Now, observe that,
taking absolute values of smooth functions f(x) ↦ ∣f(x)∣ doesn’t change their

energies, as well as their L2-norms,

∥∣f ∣∥ = ∥f∥ =

√

∫
X

∣f ∣2(x)dx,

86Recall that our "smooth" means C∞ and all our Riemannian manifolds are assumed
smooth.
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E(∣f ∣) = E(f) = ∫
X
(∣∣grad∣f ∣(x)∣∣2 + s(x))∣f ∣2(x)dx,

Indeed, absolute values ∣f ∣(x) are Lipschitz for Lipschitz f , hence, they are
almost everywhere differentiable functions, such that grad∣f ∣(x) = ±gradf(x) at
all differentiability points x of ∣f ∣.

It follows that the absolute value of the eigenfunction f with the smallest
energy E(f) = λmin is also a minimizer; hence, this ∣f ∣ is smooth. QED.

Poof of ∆-Lemma. The common strategy for locating points x ∈ X with
"sufficiently positive" second differential of a function f(x) is by using simple
auxiliary functions e(x) with this property and looking for minima points for
f(x) − e(x).

The basic example of such a function e(x) in one variable is e−Cx, x > 0, for
large C, where e′′

e
= C2, and where observe that the ratio e′′

e′
= C also becomes

large for large C.
It follows that that the Laplacians of the corresponding radial functions in

small R-ball By(R) in Riemannian manifolds X,

e(x) = eC(x) = ey,C(x) = e−C⋅ry(x) for ry(x) = dist(y, x) ≤ R

satisfy

∆e(x) ≥ C2e(x) −C ⋅mean.curv(∂By(r), x) for r = ry(x) = dist(y, x)

Now, in order to find a point x close to a given x0 ∈X where f(x) = 0, take
y ∈X very close to x0, where f(y) > 0, let By(R) ⊂X be the maximal ball, such
that f(x) > 0 in its interior, let

e(x) = eC(x) = e−C⋅ry(x) − e−C⋅R

and observe that e(x) vanishes on the boundary of the ball By(R) and is strictly
positive in the interior. Moreover

e(x) ≥ ερ,

for all x on the geodesic segment between y and x0 within distance ≥ ρ from x0

for all ρ0 ≤ R.
Notice that this ε = εC albeit strictly positive, tends to zero for C →∞.
Assume without loss of generality that x0 is the only point in Bx(R) where

f(x) vanishes (if not, move y closer to x0 along the geodesic segment between
the two points), let C be very very large and see what happens to f(x) and e(x)
in the vicinity of x0 ∈ ∂By(R), say in the intersection

U0 = By(R) ∩Bx0(R/3).

Observe the following.
● Since f(x) > 0 for x ∈ By(R), x ≠ x0, and since eC(x) → 0 for C → ∞ for

ry(x) = dist(y, x) ≥ r0 > 0, the function e(x) = eC(x), for large C, is bounded
by f(x) on the boundary of U0,

e(x) ≤ f(x), x ∈ ∂U0,

where e(x) < f(x) unless x = x0.
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● Since f is differentiable at x0 and assumes minimum at this point, the
differential df vanishes at x0, which makes f(x) = o(ρ) for ρ = dist(x,x0), there
is a part of (the interior of) U0, where e(x) > f(x).

Hence, the difference f(x) − e(x) assumes minimum at an interior point
x = xy,C ∈ U0, such that x = xy,C → x0 for C →∞ and

∆f(x)

f(x)
≥

∆e(x)

e(x)
→ ∞.

The proof of the ∆-lemma and of the non-vanishing theorem are thus concluded.

Discussion. The non-vanishing theorem, which, probably, goes back to
Rayleigh, is often used without being even explicitly stated as, for instance,
by Kazdan and Warner in their "conformal change" paper. But I couldn’t find
an explicit reference on the web, except for the paper by Doris Fischer-Colbrie
and Rick Schoen, where they prove such a non-vanishing for non-compact man-
ifolds needed for their

non-existence theorem for non-planar stable minimal surfaces in R3.
Their argument relies on the "strong maximum principle" for the L, for which

they refer to pp. 33-34 of the canonical Gilbarg-Trudinger textbook, where the
relevant case of this principle is stated (on p. 35 in the 1998 edition which is
available on line) after the proof of theorem 3.5 as follows.

"Also, if u = 0 at an interior maximum (minimum), then it follows from the
proof of the theorem that u = 0, irrespective of the sign of c."

(The assumptions of the theorem specifically rule out c with variable signs,
where this c = c(x) is the coefficient at the lowest term in the equation Lu =

aij(x)Diju + b
iDiu + c(x)u = 0 introduced on p. 30.)

What is actually proven in this book on about twenty lines on p. 34, is a
version of "∆-lemma" for L.

In our proof, we reproduce what is written on these lines, except for "direct
calculation gives" that is replaced by an explicit evaluation of ∆e(x) 87

The following (obvious) corollary to the non-vanishing theorem will be used
for construction of stable symmetric µ-bubbles in sections 5.2, 5.4.

Uniqueness/Symmetry Corollary. If X is compact connected, then the
lowest eigenfunction f of the L is unique up to scaling. Consequently, if L
is invariant under an action of an isometry group on X, then, even if X is
disconnected, there exists a positive f invariant under this action.

87In truth, the only non-evident aspect of the argument resides with the identities
(e−Cx)′ = −Ce−Cx and (e−Cx)′′ = (−Ce−Cx)′ = C2e−Cx with the issuing inequalities
(e−Cx)′′ >> e−Cx and (e−Cx)′′ >> ∣(e−Cx)′∣, which can’t be done by just staring at the ex-
ponential function. (The appearance of ex, that is an isomorphism between the additive R
and multiplicative R×+ with all its counterintuitive properties, is amazing here – there is noth-
ing visibly multiplicative in ∆; besides, the geometric proof of the existence of ex via the
conformal infinite cyclic covering map C→ C ∖ {0} and analytic continuation is non-trivial.)
The rest of the proof is geometrically effortless: you just look at the graph Γe of the function

e(x) = exp−C ⋅ dist(y, x) in a small R-ball B ⊂ X outside zero set of f with the center of your
choice, such that B touches this set at x0, and let C = Ci →∞. Then you see a tiny region in
this ball close to x0, where Γe mounts above Γf , and you take the point in X just under the
top of this mountain, i.e. where the distance measured vertically between the two graphs is
maximal, for you x = xi.
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Exercises. (a) Multi-Dimensional Morse Lemma. Show that two non-
coinciding volume minimizing hypersurfaces in the same indivisible homology
integer homology class of an orientable manifold X have empty intersection and
that, consequently, volume minimizing hypersurfaces must be invariant under
symmetries of X.88

(b) Generalize this to µ-bubbles, that are boundaries of domains V in a
Riemannian manifold X that minimize the functional

V → voln−1(∂V ) − ∫
V
µ(x)dx

for a smooth function µ(x). (Unit spheres Sn−1Rn are not minimizing µ-bubbles
for µ = (n − 1)dx.)

(b) Courant’s Nodal Theorem. Show that the that is the number of
connected components of the complement to the "k-th nodal set", i.e. the zero
set of the k-th eigenfunction of L = Ls = ∆+s on a compact connected manifold,
can’t have more than k connected components.

Question. Is there a counterpart to this for non-quadratic functionals in
spaces of functions, or, even better, spaces of hypersurfaces?

3 Topics, Results, Problems

3.1 Scale Persistent Criteria for Sc ≥ σ for Smooth and
non-Smooth Metrics

Scale persistence of a geometric property P applicable to compact n-dimensional
Riemannian manifolds V with boundaries, means the following:

if such a P is satisfied by small neighbourhoods of all points in a Riemannian
n-manifold X then it is satisfied for all domains V in X.

Two classical examples of these are the following characteristic properties of
surfaces with non-negative sectional curvatures κ and of n-dimensional mani-
folds with non-negative Ricci curvatures.

In the case of the sectional curvature we formulate such a property as a
comparison inequality for geodesic quadrilaterals as follows.
2κ≥0 All convex, e.g. geodesic, quadrilaterals in surfaces with non-negative

curvatures, call them 2 ⊂X, have the greatest of their four angles at least 90○:

max
i=1,...,4

∠i(2) ≥
π

2
.

In fact, the sum of the four angles of such a ◻ must be ≥ 2π by the Gauss-
Bonnet inequality for compact surfaces V with (quadrilateral in the present case)
boundaries Θ:

if κ(V ) ≥ 0, then

∫
Θ
curv(Θ, θ)dθ ≤ 2π.

88This was used by Marston Morse to show that
if the (n−1)-dimensional homology group of some covering of a compact Riemannian n-manifold,

doesn’t vanish then the universal covering X̃ of X contains an infinite minimal hypersurface the
image of which under the covering map X̃ → X is compact.

Morse was concerned in his paper "Recurrent Geodesics on a Surface of Negative Curvature"
with the case of n = 2 but his argument, transplanted to the environment of the geometric
measure theory, applies to manifolds of all dimensions n.
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(The curvature of Θ = ∂V at a vertex of V with the angle α is the point-measure
with the weight π − α.)

It is also clear that 2κ≥0 is sufficient, as well as necessary, for κ ≥ 0:
if κ(X,x) < 0, then there exist (small) geodesic quadrilaterals in X around

x with all angles < π
2
.

Thus,
local validity of 2κ≥0 implies the global one.

(Also notice that if all four angles of a convex ◻ with κ(◻) ≥ 0 are ≤ π
2
, then

this ◻ is isometric to a plane Euclidean rectangular.)
Next, turning to Ricci, observe that the inequality#Ricci≥0 stated below says,

in effect, that the mean curvatures of the boundaries of compact manifolds with
Ricci ≥ 0 can’t be greater than these of Euclidean balls of comparable size.

PRicci≥0. If Ricci(V ) ≥ 0, then the minimum of the mean curvature of the
boundary of V is related to the inradius of V by the inequality

inf
v∈∂V

mean.curv(∂V, v) ≤
n − 1

inrad(V )
, n = dim(V ),

where
inrad(V ) = sup

v∈V
dist(v, ∂V ),

where our sign convention for the mean curvature is such that convex domains have
mean.curv ≥ 0 and where

the (opposite) inequality

mean.curv(∂V, v) ≥
1

inrad(V )
,

implies that V is isometric to the Euclidean ball of radius R = inrad(V ).
All this follows from Hermann Weyl’s tube formula applied to concentric

spheres in V around the point v ∈ V farthest from the boundary.
Let us now state two inequalities that characterize n-manifolds X with non-

negative scalar curvatures, where
the first one says that cubical domains V ⊂X can’t be "more mean convex",

than rectangular solids in the Euclidean space,
and the second one, that applies to domains V ⊂X with smooth boundaries,

claims that
these boundaries can’t be simultaneously greater in size and "more mean

convex" than convex hypersurfaces in the Euclidean space.
I. ∎-Inequality. Let V be a Riemannian n-manifold diffeomorphic to the

cube [0,1]n.
If Sc(V ) ≥ 0 and if all (n−1) faces ∂i ⊂ ∂V , i = 1, ...,2n, havemean.curv(∂i) ≥

0, then the supremum of the dihedral angles between the (tangent spaces of)
(n − 1)-faces at the points in the (n − 2) faces satisfy

∎ sup
i,j

∠ij(V ) ≥
π

2
.

This may serve as a criterion for Sc(X) ≥ 0, since
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(◻) the inequality Sc(X,x) < 0 implies the existence of a small (topologically)
cubical mean convex neighbourhood V ⊂X of x which violates ∎ ∶

all dihedral angles of V are everywhere > π
2
.

cII. -Inequality. Let V be a Riemannian manifold diffeomorphic to the
n-ball the boundary of V of which has positive mean curvature,

mean.curv(∂V ) > 0,

let V ⊂ Rn be a convex domain with smooth boundary and let

f ∶ ∂V → ∂V

be a diffeomorphism.89

If Sc(V ) ≥ 0, then the differential of f can’t be everywhere strictly smaller
than the ratio of the mean curvatures of the two boundaries: there exists a point
v ∈ ∂V , such that

c≥ ∣∣df(v)∣∣ ≥
mean.curv(∂V, f(v))

mean.curv(∂V , v)
.

(b<)Conversely, the inequality Sc(X,x) < 0 implies the existence of V ⊂ X,
V ⊂ Rn and of a diffeomorphism f ∶ ∂V → ∂V , such that

∣∣df(x)∣∣ <
mean.curv(∂V, f(v))

mean.curv(∂V , v)
for all v ∈ ∂V.

We indicate the proofs of ∎ and c in the next section, and refer to section
3.4 for a generalization of c to topologically non-trivial manifolds V ; below,
we turn to manifolds with Sc ≥ σ ≠ 0.

Corollaries of I and II for manifolds X with Sc(X) ≥ σ for σ ≷ 0 . The
inequalities ∎ and c, when applied to manifolds X multiplied by surfaces S with
scalar curvatures −σ, yield

geometric criteria for Sc(X) ≥ σ for all σ.

The geometric meaning of this, if any, is obscure; possibly, it can be ex-
pressed in terms of 2-parametric families of domains Vs, s ∈ S. But the following
generalizations of c to σ > 0 and of ∎ to σ < 0 are geometrically transparent.
c-Comparison Theorem for Sc > 0. Let V and V be compact Riemannian

n-manifolds with smooth boundaries, where V has constant sectional curvature +1
and the boundary ∂V is convex and and let f ∶ V → V be a diffeomorphism.

Then either
there exists a point v ∈ V , where the norm of the exterior square of the

differentials of f is bounded from below by

∣∣ ∧
2 df(v)∣∣ ≥

Sc(V, v)

n(n − 1)

or, as earlier,
89 It is enough to assume that f is a smooth map with positive degree as it will become

clear later on.
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there exists a point v′ ∈ ∂V , such that

c′
>0 ∣∣df(v′)∣∣ ≥

mean.curv(∂V, f(v′))

mean.curv(∂V , v′)
.

∎-Comparison Theorem for Sc(V) > σ < 0. Let

(Hn, ghyp) = R1
⋊Rn−1

= (R1
×Rn−1, dt2 + e2tdx2

)

be the hyperbolic space with sectional curvature -1 represented as the warped
product in the normal horospherical coordinates, let

V = [0,1] × [0,1]n−1
⊂ R1

⋊Rn−1
=Hn

and observe that all dihedral angles in V are π
2
, all "side faces" are geodesic

flat, while the "bottom" {0} × [0,1]n−1 ⊂ V and the "top" {1} × [0,1]n−1 ⊂ V ,
have mean curvatures −(n − 1) and n − 1 respectively.

The corresponding comparison inequality for cubical Riemannian manifolds V
diffeomorphic to [0,1] × [0,1]n−1 reads.

Let all dihedral angles of V be ≤ π
2
, let all ("side") faces ∂i ⊂ V , except for

∂0 = {0} × [0,1]n−1 and ∂1 = {1} × [0,1]n−1, have non-negative mean curvatures
and let

mean.curv(∂0) ≥ −(n − 1) and mean.curv(∂1) ≥ n − 1.

Then the scalar curvature of V can’t be everywhere greater than that of Hn,

∎′<0 inf
v∈V

Sc(V, v) ≤ −n(n − 1).

Remarks. (a)The proofs of these are indicated in the sections 3.1.1 below.
(b) Probbaly – figuring this out this way or another can’t be too difficult –

these c′
>0 and ∎′<0 characterizes Sc ≥ ±1.

(c) Granted (b), either of ∎′<0 or c′
<0 can be used for characterization of

Sc ≥ σ for all σ by passing to products of X with S2 or H2 as we did earlier.
(c) The proof of ∎′<0 for n ≥ 9, which relies on stable µ-bubbles, needs (a

slight generalization of) the desingularization theorem from [SY(singularities)
2017] or of such a result from [Lohkamp(smoothing) 2018].

(d) Probably, a combination of ideas from [Min-Oo(hyperbolic) 1989] and
from recent papers by Cecchini, Zeidler, Lott and Guo-Xie-Yu on index theorems
for manifolds with boundaries90 may provide an alternative proof of ∎′<0 for all
n.

∎ And c for Continuous Riemannian Metrics. One can define mean con-
vexity and, more generally, lower bound of the mean curvatures from below for
boundaries ∂V of domains V in a metric space X, whenever one has a notion
of the volume/measure for ∂V as follows.

mean.curv(∂V, v) > m, v ∈ ∂V , if there exists a sequence of subdomains
Vi ⊂ V with the following properties.

(i) The difference between V and Vi contains a neighbourhood v in V for all i
and it converges to v for i→∞, i.e. V ∖ Vi is contained in the δi-ball around v for
δi → 0.

90See [Cecchini-Zeidler(Scalar&mean) 2021], [Lott(boundary) 2020], [Guo-Xie-
Yu(quantitative K-theory) 2020.
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(ii) the volume of ∂Vi is bounded in terms of the volume of the part of ∂V
outside Vi and the Hausdorff distance between the boundaries of V and ∂Vi as
follows:

vol(∂Vi) < vol(∂V ) −m ⋅ vol(∂V ∖ Vi) ⋅ distHau(∂V, ∂Vi).

With this "mean curvature", the definitions of ∎ and c as well as ∎<0 and
c>0 automatically extend to continuous, even only Borel, Riemannian metrics.

Question. Do ∎ and c define the same concept of Sc(g) ≥ 0 for continuous
Riemannian metrics g?

3.1.1 Reflection Orbihedra and Trapped Minimal Hypersurfaces

(1≥0) Idea of the Proof of ∎. Reflect V = (V, g) as a cube in Rn in the (n−1)-
faces, let V̂ be the resulting universal orbi-covering manifold with an action
of the relection group Γ that is isomorphic of a finite extension the group Zn
for cubical V , and let ĝ be the (singular path) metric on V̂ that Γ-invariantly
extends g from V naturally embedded to V̂ .

If the mean curvatures of all codimension one faces are ≥ 0, all dihedral angles
of V are ≤ π

2
and the dihedral angle at a point v on some codimension two face

of V satisfies the strict inequality ∠ij(v),
π
2
, then one can approximate ĝ by

smooth Γ-invariant metrics g̃ for, such that Sc(g̃) > σ for σ = infv∈V (Sc(V, v).91

Thus, if we assumed that Sc(V ) ≥ 0, this g̃ would descend to a metric on
the torus V̂ /Zn with Sc > 0 and the proof of ∎ follows by contradiction: there
is no metrics with positive scalar curvatures on the torus.

(2≤0.) About ∎<0. Here we reflect V around the 2(n − 1) "side faces" and,
thus, after smoothing, reduce ∎<0 to the comparison inequality for hyperbolic
cusps R1 ⋊Tn−1 =Hn/Zn−1. 92

The available proofs of this inequality, apply only for n = dim(X) ≥ 3, while
the case n = 2 follows by a simple argument that we suggest as an elementary
exercise to the reader.

Remark. The proof of the comparison inequality for hyperbolic cusps relies
on stable µ-bubbles Ŷ between pairs of (n−1) tori in the cusps R1⋊Tn−1 where
mean.curv(Ŷ ) ≥ n − 1.

This suggests a similar proof directly in V with relevant µ-bubbles Y ⊂ V
having free boundaries in the side boundary of V that is in the union of the "side"
faces i.e. all, except for the two corresponding to the bottom {0}×[0,1]n−1 and
the top of the cube {1} × [0,1]n−1.

But since the mean curvatures of the side faces are only assumed non-
negative, such a bubble with mean curvature ≥ n − 1 may meet a side face in the
interior and render the argument invalid.

It is unclear how to formulate the existence of needed Y ⊂ V without direct
appeal to reflections in the "side mirrors".

(3) Other Reflection Groups. The above construction applies to all Rie-
mannian reflection orbifolds, that are manifolds (V, g0) with corners that serve

91Working this out in detail requires some patience, see [G(billiards) 2014]) and [Nuchi(cube)
2018].

92See §5 5
6
in [G(positive) 1996], §9 in [G(inequalities) 2018].
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as fundamental domains ∆ of reflection groups Γ, that act on the corresponding
orbi-covering manifolds V̂ as follows.

Let g be a Riemannian metric on such a V , which satisfies the following 2 1
2

conditions.
●1 the codimension 1 faces ∂i of V are g-mean convex:

mean.curvg(∂iV ) ≥ 0;

●4 the g-dihedral angles ∠ij of V at the codimension 2 faces of V are bounded
by the corresponding g0-angles of V ,

∠ij(V, g) ≤ ∠ij(V, g0);
93

●<2 there is a point v on some codimension 2 face of V , where the above inequality
is strict,

∠ij(V, g)(v) < ∠ij(V ).

Then, as earlier for the cubical V , one can show, that
the natural singular metric ĝ on V̂ can be approximated by smooth g̃ with

Sc(g̃) > infv Sc(V, g)(v).
About Examples. There are few V ⊂ Rn and Euclidean reflection groups, to

which the above applies. In fact, all such V are the products of segments and
triangles with the angles (60○, 60○, 60○), (60○, 30○, 90○) and (45○, 45○, 90○).

But there are lots of non-Euclidean orbifold V , e.g. with right-angled cor-
ners, (see [Davis(orbifolds) 2008]), the universal orbi-coverings V̂ of which are
hyper-Euclidean and, hence, admit no Γ-invariant metrics with Sc > 0 (see sec-
tions 1.6.3, 3.3). Therefore,

the conditions ●1,●2 and ●<2 imply that infv∈V Sc(g, v) ≤ 0 for these V .
But, in general, the following problem, solutions of special cases of which

are spread throughout this paper, remains widely open,
D-Problem. Let V be a compact manifold with corners, e.g. a closed

manifold, or, at the other end of the spectrum, diffeomorphic to a convex polyhedron
in the Euclidean space. Find necessary (ideally, necessary and sufficient) conditions
on V for the existence of a Riemannian metric g on V , such that:

(i) the scalar curvature is bounded from below by a given real number, Sc ≥ σ,
(ii) the mean curvatures of the codimension 1 faces, call them Vi, are are similarly

bounded from below, mean.curvg(Vi) ≥ µi
(iii) the dihedral angles of all codimension 2 faces are bounded by given numbers,

say, ∠ij ≤ αij .
The above ∎-comparison theorem provides an instance of such a condition

with σ ≤ 0 (this, moreover, characterizes metrics with Sc ≥ σ), but the inequality,
c′

>0 for σ > 0, unlike ∎ involve the distance geometry of V .
It n = 2, then it is not hard to show (an exercise to the reader) that
if σ ≥ 2 then no k-gonal Riemannian (surface) V may have the faces (edges)

with curvatures ≥ µ ≥ −ε and the angles ≤ α ≤ ε for a sufficiently small ε = εk > 0.
93All dihedral g0-angles are π

k
, k = 3,4, ..., where k are half-orders of the stabilizer subgroup

of the corresponding faces ∂ij . Thus, all dihedral angles of (V, g) must be ≤ π/2.

56



But it is unclear if this condition is T⋊-stable, i.e. extends to Tn−2-invariant
(warped product) metrics g⋊ on V ×Tn−2, and thus, would allow the reduction
of higher dimensions n to n = 2 by the (warped FCS) T ⋊-symmetrization.

(The full solution of the D-problem remains unsettled even for n = 2.)
(6) Minimal Hypersurfaces in Cubical V . At the core of the proof of ∎

lies non-existence of metrics with Sc > 0 on the torus X = V̂ /Zn, which in turn,
can be proved in two different ways: by the Schoen-Yau’s descent with minimal
hypersurfaces or with a use of twisted Dirac operators on X

To pursue the latter, one has to describe/construct/analyse twisted harmonic
spinors on V̂ in terms of V with no use to the orbi-covering condition V ; V̂ ,
such that it would be applicable to (more) general manifolds V with corners.94

The picture of minimal hypersurfaces in X is more transparent in this re-
spect, where those homologous to the coordinate subtori in X may originate
from V , namely from

minimal hypersurfaces Y ⊂ V , which separate pairs of opposite (n − 1)-faces
in V .95

In general, such Y do not exist, since they may escape the interior of Y in
the course of volume minimization, but if mean.curv(∂iV ) > 0 and ∠ij(V ) < π

2
,

then the "boundary walls" ∂i "trap" Y inside V .
Indeed, the first inequality shows that, in the course of minimisation, the

interior of Y can’t touch ∂V by the maximum principle and the second one
keeps the boundary of Y away from faces Y is suppose to separate.96

What is non-obvious here is the nature of singularities at the boundary of
Y which may create complications in consecutive inductive steps of descent
method, even for n ≤ 7, where there is no singularities away from the n−2-faces
of V .

Recently, however, Chao Li [Li(rigidity) 2019] established necessary regu-
larity property of minimal Y ⊂ V at the corners of V and thus gave a direct
proof of ∎ for n ≤ 7 by Schoen-Yau’s inductive decent method with minimal
hypersurfaces separating pairs of opposite (n − 1)-faces in V .

An advantage of the direct approach is applicability to a class of non-cubical
manifolds V with corners, which are not amenable to reflections, namely to
products V = [0,1]n−2 ×7 ⊂ Rn, where 7 ⊂ R2 is a convex polygon.

no metric g on such a V , for which the codimension 1 faces are mean convex
and all dihedral angles are bounded by the Euclidean ones of V , can have Sc(g) >
0.(See section 3.16 for more about it.)

However, reflections reveal a fuller picture of the geometry of V , not lim-
ited to minimal hypersurfaces between opposite faces, but also including those
reflected in various (n − 1)-faces which correspond to the minimal Γ-invariant
hypersurfaces in the universal orbi-covering V̂ of V .

Plateau Billiard Problem. Given a Riemannin manifold V with (smooth or
cornered) boundary, study minimal subvarieties in V with the reflection boundary
condition.

94Relevant harmonic spinors on V̂ may be not Γ-invariant but interesting classes of such
spinors are.

95Complete minimal subvarieties in Ŷ ⊂ V̂ correspond to non-compact singular Y ∈ V that
reflect in the codimension 1 faces alike to billiard trajectories in the case dim(Ŷ ) = 1.

96In the case of non-strict inequalities, the minimal Y may touch these two faces, even
coincide with one of them but the interior of Y can’t touch the boundary of V by the maximum
principle.
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3.1.2 MC-Normalization of Hypersurfaces with Positive Mean Curvatures
and Sc-Normalized Convex Area Extremality Theorem

(5) Reduction of ∎ to c and the Proof of c. Such a reduction, which
provides an alternative proof of ∎, is achieved by smoothing the corners of V .
Then c is proved by doubling V and applying the following.

[b] Convex Area Extremality Theorem. Let X ⊂ Rn+1 be a compact
smooth convex hypersurface, let g be the Riemannian metric on X induced from
the ambient Euclidean space Rn+1 ⊃X and let g be another Riemannian metric on
X with non-negative scalar curvature, Sc(g) ≥ 0.

Denote by g○ and g○ normalizations of these metrics by their respective scalar
curvatures,

g○(x) = Sc(g, x) ⋅ g(x) and g○(x) = Sc(g, x) ⋅ g(x).

(These metrics vanish, where the scalar curvatures vanish.)
If n is even,97 then there exists smooth surface S ⊂ X, on which both func-

tions Sc(g, x) and Sc(g, x) are strictly positive and such that

areag○(S) ≤ areag○(S).

In words,
The Sc-normalization of no Riemannian metric with non-negative scalar cur-

vature on a convex Euclidean hypersurface can’t be area wise greater than the
Sc-normalized original metric on this hypersurface that is induced from the Eu-
clidean space.

This is a special case of Spin-Area Convex Extremality Theorem (see [Xspin
→b]

in sections 3.4, 3.4.1 that is derived from curvature estimates for the twisted
Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner) formula due to Uwe Goette
and Sebastian Semmelmann. Earlier, these estimates and the issuing extremal-
ity were established by Marcelo Llarull for the spheres Sn for all n, while the idea
of Sc-normalisation, which is crucial for geometric applications, was suggested
by Mario Listings.98

(6) Problem. Find an elementary (whatever this means) proof of ∎ in the case
where (V, g) admits an isometric embedding to Rn.

Exercise. Give a direct proof of ∎ for convex V ⊂ Rn.
Hint. Show that if all n(n−1)

2
dihedral angles at a vertex v ∈ V are < π

2
,

then the spherical measure of the set of the supporting hyperplanes of V at v
is > 1

2n
vol(Sn−1).

It is known (private communication by Karim Adiprasito) that
no convex polyhedron admits an infinitesimal deformation, which decreases its

dihedral angles but it is unknown if a polyhedron P ′ combinatorially equivalent to
P may have all its dihedral angles ∠′

ij < ∠ij .

97Conjecturally, this parity assumption is unneeded.
98See [Goette-Semmelmann(symmetric)2002], [Llarull(sharp estimates)1998], [List-

ing(symmetric spaces) 2010] and compare with §5 4
9
(D) in [G(positive) 1996]. Also note

that recently, John Lott [Lott(boundary 2020] suggested a direct proof of a non-Sc an
non-MC-normalized version of c by establishing index and vanishing theorems for Dirac
operators on manifolds with boundaries. Probably, a minor adjustment of his argument will
deliver the full normalized c.
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Conjecturally, there is no such P ′ even among curve-linear polyhedra with
mean convex faces.

At the present time, this is confirmed for for special polyhedra P , e.g. those
with all dihedral angles ≤ π

2
. (see section 3.18).

(7) On the Proof of ◻ and b. Construction of a small strictly mean
convex V ⊂ X with rectangular corners needed for ◻ proceeds by induction on
n, where the resulting V looks like a solid [0, l1]×) × [0, l2 × ... × [0, ln] with
l1 >> l2 >> ...

′ >> ln. (See [G(billiards) 2014] or do it yourself.)
Then the proof of b follows by smoothing these corners (another exercise

for the reader).
Small domains V ⊂X, especially forb, obtained this way are fairly artificial.

It would be nicer to have exp-images of ellipsoids from Tx(X) at a point where
Sc(X,x) < 0, or small perturbation of these in X.

But, probably, such a B can’t be a ball, unless X has constant sectional
curvature.

(8) Normalization of Metrics by Mean Curvatures . The relations c≤
and c= for f ∶ ∂V → ∂W becomes more transparent if the Riemannian met-
rics in the hypersurfaces ∂V ⊂ V and in ∂W ⊂ Rn induced from the ambient
spaces, call them g on ∂V and h on ∂W , are rescaled by (the squares of)
their mean curvatures, denoted here m(v) = mean.curv(∂V, v), v ∈ ∂V and
m(w) =mean.curv(∂W,w), w ∈ ∂W,

g = g(v) ↦ g♮ =m(v)2
⋅ g(v), v ∈ ∂V, and h = h(w) ↦ h♮ =m(w)

2
⋅ h(w),w ∈ ∂W.

Now, the inequality c≤ says that the map f is distance non-increasing with
respect to the MC-scaled metrics g♮ and and h♮, while c= expresses the
isometry between these metrics established by f .

Exercise. Let V ⊂ Rn be a convex polyhedron and Vi ⊃ V be a decreasing
sequence of larger convex subsets in Rn with smooth boundaries, which converge
to V , i.e.

V1 ⊃ V2 ⊃ ... ⊃ Vi ⊃ ... ⊃ V and ⋂
i

Vi = V.

Describe the limit of the metrics spaces (∂Vi,m
2
i ⋅ gi), where mi = mi(v),

v ∈ ∂Vi, denote the mean curvatures of the boundaries ∂Vi and gi are the
Riemannian metrics on these ∂iV induced from Rn.

(To make it more specific, let ∂Vi be (very closely) pinched between the
boundaries of εi- and (εi + ε

i
i)-neighbourhoods of V , i.e.

Uεi(V ) ⊂ V ⊂ Uεi+εii(V ),

where εi → 0 for i→∞.)
Do the same for the (induced Riemannian) metrics gi on ∂Vi normalized

by their scalar curvatures, gi ; Sc(gi) ⋅ gi, and then for the other symmetric
functions sk, k = 1,2, ...n − 1, of the principal curvatures α1, α2, ...αn−1 of ∂Vi,
i.e. gi; s

2
k

k ⋅ gi.
(10) Problem. Is there a theory of singular spaces with Sq ≥ σ, that is built

on the basis of ∎, c or more powerful inequalities?
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Example. Let U ⊂ Rn+1 be a convex subset, the principal curvatures αi of
the boundary X = ∂U of which satisfy

∑
i>j
αiαj ≥ σ ≥ 0.

at all regular points of X.
Albeit in general singular, X can be neatly approximated by the C1,1-regular

boundary Xε of the ε neighbourhood of U , where the induced Lipschitz con-
tinuous Riemannian metric gε on Xε gε be C0 can be approximated– – this is
obvious in the present case – by C∞-metrics with Sc ≥ σ.

Thus, (the intrinsic) path metric on X must share all its geometric properties
with smooth manifolds which have Sc ≥ σ.

Exercise. Show that X satisfies the inequalities ∎, c.99

(11) Category Theoretic Perspective on normalized Riemannian metrics.
The above suggests that the geometry of Riemannian manifolds X = (X,g),
where Sc(g) > 0 without bounary is well depicted by the Sc-normalised metric
Sc(X)⋅g and that maps, which are 1-Lipschitz with respect to the Sc-normalised
metrics can be taken for morphisms in the category of manifolds with Sc > 0.

Now, If X does have a boundary and this boundary is mean convex, the
normalization of X by Sc(X) and of ∂X by mean.curv(∂X) do not agree on
∂X.

Alternatively, one may use positivity of the mean curvature of ∂X for blowing
up the metric of X near ∂X keeping Sc > 0, as it is done in fill-ins3.

(11) Polyhedral Localization Conjecture. Let V ⊂ Rn be a convex polyhedron
an let

V be a compact oriented Riemannian n-manifold with corners, of "combi-
natorial class" of V , which means there exists a proper corner continous map
f ∶ V → V of degree one, where "proper corner" means "face respecting": the
(n−1) faces Vi ⊂ ∂V ae equal the pullbacks of the corresponding faces V i ⊂ ∂V .

Let the boundary of V be more mean convex than that of V , i.e. all (n−1)-
faces Vi ⊂ ∂V have non-negative mean curvatures. and the dihedral angles of V
along the (n − 2)-faces are strictly bounded by the corresponding angles in V ,

∠(Vi, Vj) ≤ ∠(V i, V j).
100

Then, conjecturally,
[�] V contains domains Uε ⊂ V with corners, which have arbitrarily small

diameters,
diam(Vε) ≤ ε > 0,

which are also in the combinatorial class of V and such that their boundaries are
more mean convex than that of V .

"Cubical" Remark/Theorem. The ∎-inequality together with its contra-
position (◻), that is the existence of cubical mean convex domains with acute
dihedral angles in manifolds with Sc < 0, (see section3.1) imply the validity of
[�] for cubical, V = [0,1]n and V homeomorphic to V .

99I haven’t done this exercise.
100This strict "<", rather than more natural "≤", is used here to avoid possible technical
complications with the rigidity problem (see sections 3.18 and ??)
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Now, a close look at the proofs of the ∎ in section 3.1.1 the ∎ (also see 3.18
and 4.4) apply to more general V :

The proofs with the Dirac operator works for all spin manifolds V , while
the calculus of variation methods needs no spin, but it become cumbersome
for n ≥ 8 and especially so for n ≥ 9, due to possible singularities of minimal
hypersurfaces of dimension≥ 7 (see section 3.7.1 for more about it.)

However, these proofs, especially the Dirac-operator theoretic one, do not
directly pinpoint the small cube with acute angles in V , as they also need the
local property (◻) of Sc < 0.101

In fact, one can construct Uε, at least for n ≤ 8, to get such a cube Uε arguing
with minimal hypersurfaces, roughly as follows.

Given an admissible U ⊂ V , i.e. a mean convex cubical domain with acute
dihedral angles, let us push the faces Ui in one after another little by little
keeping mean.curv.0 and ∠ij ≤

π
2
.

This process stops when we arrive at some U = Umin, where all faces a
(locally) volume minimizing with free boundaries on the unions of th remaining
faces. Now one can slightly move each face, say U1 in, U1 ; U1,δ keeping the
dihedral angles equal π

2
, but now such that U1,δ is everywhere mean concave

rather than mean convex. Thus, we obtain a smaller admissible domain, say
U ′ ⊂ U = Umin namely the band between U1 ; U1,δ in U .

If n ≤ 8 one can indeed arrange this process to arrive at an ε-small "cube"
U = Uε, but, in general, this "cube" may be only as small as the singularities of
the minimal hypersurfaces are: the "cube minimization process" can, a priori,
converge to an (n − 8)-dimensional closed subset U● ⊂ V .

About Dimension n = 9. If n = 9, the domains Uε, are spin.
Indeed, Uε are localized near a subset U● of dimension ≤ 1, while the ob-

struction to spin, that is the second Stiefel-Whitney number w2 ∈ H2(V ;Z2),
resides in dimension 2.

At this point, the Dirac theoretic argument applies to Uε and, together with
(◻), yields [�] for cubical V with dim(V ) = 9. (see [G(billiards) 2014]).

3.1.3 C0-Limits of Metrics g with Sc(g) ≷ σ

Let X be a smooth Riemannian manifold, let G = G(X) the space of C2-smooth
Riemannian metrics g on X and let GSc≥σ ⊂ G and GSc≤σ ⊂ G, −∞ < σ < ∞, be
the subsets of metrics g with Sc(g) ≥ σ and with Sc(g) ≤ σ respectively.

Then:
A: C0-Closure Theorem. The subset GSc≥σ ⊂ G is closed in G with respect

to the C0-topology:
uniform limits g = lim gi of metric gi with Sc(gi) ≥ σ have Sc ≥ σ, provided

these g are C2-smooth in order to have their scalar curvature defined.
B: C0-Density Theorem. The subset GSc≤σ ⊂ G is dense in G with respect

to the C0-topology.
Moreover, all g ∈ G admit fine (which is stronger than uniform for non-

compact X) approximations by metrics with scalar curvatures ≤ σ.

Short Proof of A. Let us show that violation of c for a smooth metric g
on a manifold X, that is (b) from the previous section, implies this for gε for
101Our conjecture doesn’t mention any curvature and we want the proof to be also like that.
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sufficiently small ε = ∣∣g − gε∣∣C0 .
Indeed let the boundary ∂V of a compact strictly mean convex domain

V ⊂ X = (X,g) admits a smooth map f of degree one to the boundary of a
convex W ⊂ Rn, the norm of the differential of which satisfies:

∣∣df(v)∣∣ <
mean.curv(∂W,f(v))

mean.curv(∂V, v)
.

If gε is close to g, then there exists a smooth Vε ⊂X, the boundary of which is δ-
close to ∂V and its gε-mean curvature is δ-close to the g-mean curvature of ∂V ,
where δ → 0 for ε→ 0, and where "δ-close" means the following. diffeomorphisms
exists a smooth (1 + δ)-Lipshitz map102 ν ∶ ∂Vε → ∂V , i.e. ∣∣dν∣∣ ≤ 1 + δ, such
that

distg(x, ν(x)) ≤ δ for all x ∈ ∂Vε

as well as
∣mean.curvgε(∂Vε, x) −mean.curvg(∂V, ν(x))∣ ≤ δ.

In fact, one can take the g-normal projection of the δ-neighbourhood of ∂V
to ∂V restricted to ∂Vε for this ν, where, observe, this projection ∂Vε → ∂V ,
albeit not necessarily a diffeomorphism for small ε→ 0, can be C0-approximated
by diffeomorphisms. 103

About Alternative Proofs. Instead of c one can use ∎ but the available
argument in [G(billiards) 2014]) is unpleasantly convoluted.

A streamlined proof based on Hamilton-Ricci flow was suggested by Richard
Bamler and further developed by Paula Burkhardt-Guim who has shown, in
particular, that

(⋆) if a continuous metric g on a smooth manifold X admits a C0-approximation
by metrics gε with Sc(gε) ≥ ε→ 0, then X admits a smooth metric with Sc ≥ 0.

Moreover,
g can be C0 approximated by metrics with Sc ≥ 0.

Thus,
continuous metrics which are C0-limits of of smooth metrics metrics gi with

limSc(gi) ≥ −ε→ 0 have the same kind of geometries as metrics with Sc ≥ 0.

Question. Do Lipschitz metrics104 are similar to continuous ones in this
respect for suitable limits gi → g?

About B. This is a special case of the curvature h-principle discovered by
Joachim Lohkamp,105 whose proof in depends on a (more or less) direct, yet,
elaborate, geometric construction, which also shows that

102A map between metric spaces, f ∶ X → Y , is λ-Lipschitz if distY (f(x1), f(x2)) ≤
λdistX(x1, x2)); a λ-Lipschitz map is λ-bi-Lipschitz if it is one-to-one and the inverse map is
also λ-Lipschitz.
103The existence of such a Vε and its properties must be a common knowledge among experts
on the geometric measure theory but I couldn’t find a reference and written down a proof in
section 10.2 of [G(Hilbert) 2011].
104 A measurable Riemannian metric g on a smooth n-manifold X is Lipschitz if it is locally
bi-Lipschitz equivalent to the Euclidean metric on (a domain in) Rn, see [Ivanov(Lipschitz)
2008]. Notice that the natural domains X for such g are Lipschitz, rather than smooth,
manifolds that are defined by bi-Lipschitz atlases on X, see [NSLipschitz) 2007].
105[Lohkamp(negative Ricci curvature) 1994].
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(⋆) the metics with Ricci < 0 are C0-dense in he space of all Riemannian
metrics on X.

(If, contrary to A, the space of metrics with Sc ≥ 0 were dense, there would
be no hope for a non-trivial geometry of such metrics.)

(The C0-closure theorem for the scalar curvature looks similar to
Eliashberg’s C0-Closure Theorem, which claims that
C0-limits of symplectomorphisms, are again symplectomorphisms, provided

they
are C1-smooth and C1-invertible.
But, unlike Sc ≥ 0, non-smooth such limits are significantly more flexible and

geometrically less constrained than smooth symplectomorphisms106

Weak convergence of metrics and convergence of manifolds. Besides
uniform convergence, there are other metric conditions on sequences of metrics
that preserve positivity of the scalar curvature in the limit, where the simplest
unkown case is the following.

Let smooth Riemannian metrics gi converge in measure to an also smooth g,
i.e. the measure of the subset, where the ∣g(x) − gi(x)∣ ≥ ε tends to 0 for i→∞.

Do the inequalities Sc(gi) ≥ 0, imply that also Sc(g) ≥ 0?
This is most likely to hold true if the Lipschitz distance107 between g and gi

remains bounded by a constant independent of i→∞. 108

In geometry, however, natural limits are not these of metrics but those of
Riemannian manifolds, with no fixed topological background,

Xi = (Xi, gi) →X = (X,g),

where, relevantly for us, such limits, even when drastically changing topology,
may preserve positivity of the scalar curvature; yet, some natural geometric
limits, e.g. the Hausdorff and intrinsic flat ones may uncontrollably change
scalar curvature.109

Conjecture: Quantification of C0-Convergence. Let g0 and gε be smooth
Riemannian metrics on the ball Bn, such that the C0-norm of the difference gε−g0

is bounded by ε, or (almost) equivalently the identity map (Bn, g0) → (Bn, gε) is
(1 + ε

2
)-bi-Lipschitz.

Then there exist positive constants (large) c0 > 0 and (small) ε0 > 0, which
depend only on g0, such that if ε ≤ ε0, then the scalar curvature of gε at the
center of the ball satisfies,

Sc(g0(0)) ≥ inf
x∈Bn

(Sc(gε(x))) − c0ε.

106[Buhovsky-Opshtein(C0-symplectic)2014], [Bu-Hu-Sey(C0 counterexample) 2016]; yet,
some symplectic geometry, if properly understood, passes the C0-barrier [Bu-Hu-Sey(C0-
symplectic) 2020].
107This is the maximum of the Lipschitz constants of the identity map V → V with respect
the pairs of metrics, (V, g) → (V, gi) and (V, gi) → (V, g).
108Beware of examples implied by theorem 1.4 in [Brun-Han(large and small) 2009]).
109 See sections 3.1.3, 6.8 for examples (and counter examples), of various kind of behaviour
of the scalar curvature under such convergence.
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Motivating Example. If gε = (1±ε)2g0, then ∣∣gε−g0∣∣ = 2ε+o(ε) and ∣Sc(gε)−
Sc(g0)∣ = O(ε).

Exercise. Prove this conjecture for n = 2.
Remark. Probably, a close look at the proof of A will yield the conjecture for

radial (i.e. O(n)-invariant) metrics g0 (compare with approximation corollary
in §5 5

6
from [G(positive)1996] as well as the inequality Sc(g0,0) ≥ infx∈Bn(gε)−

c0ε
1
2 .

3.2 Spin Structure, Dirac Operator, Index Theorem, Â-
Genus, α̂-Invariant and Simply Connected Manifolds
with and without Sc > 0

Let L → X be a real orientable vector bundle of rank r and F → X be the
oriented frame bundle of L. If r ≥ 2 the fundamental group of the fiber Fx =

SL(k) is infinite cyclic and if k ≥ 3 this group is cyclic of order 2. In both cases,
F comes with a canonical double cover F̃x → Fx.

The bundle L is called spin, if F̃x → Fx extends to a double cover F̃ → F ,
and smooth orientable manifold X is spin if its tangent T(X) bundle is spin.
Extension of the covering F̃x → Fx, if it exists, is, in general, non-unique. In

the case of of L = T (X) such an extension is called a spin structure on X.
When you speak of spin, it is common in geometry and for a good reason,

to reduce the structure group of L from SL(r) to SO(r) ⊂ SL(r) and to deal
with the orthonormal frame bundle OF → X instead of F , where the double
cover group S̃O(r) = OFx is called spin group Spin(r).

Example. The tangent bundle of the 2-sphere is spin, but the Hopf bundle
over S2 is not, since OF , that is S3 for the Hopf bundle, is simply connected.

Similarly – this an exercise in elementary topology,
an oriented bundle L of rank two over an oriented surface X is spin if and only

if its Euler class, that is the self-intersection number of X ⊂ L is even; if X is
non-orientable, then L is spin if the second Stiefel-Whitney class, that is the self-
intersection number mod 2 of X ⊂ L vanishes. In either case L is spin if and only if
the Whitney sum of L with the trivial line bundle l ≃X×R1 is trivial, L⊕l ≃X×R3.
In general,

a bundle L over a manifold X of dimension n ≥ 3 is spin, if and only if its
restriction to all surfaces in X is spin, which is again equivalent to the vanishing of
the second Stiefel-Whitney class w2(L).110

Half-spin Bundles. There exit two (remarkable) irreducible unitary represen-
tations of the group Spin(r) for r = 2k of complex dimensions 2k−1, say S±(r).
Accordingly, Riemannian spin manifolds, (i.e. with spin structures on them) X
support two Spin(n) bundles S± with the fibers S±(r) that are associated with
110 The value of w2(L) ∈ H2(X;Z2) on a homology class h ∈ H2(X;Z2) is, almost by
definition, equal to zero if and only if the restriction of L to surfaces in X that represent h is
trivial.

Geometrically, the double cover F̃x → Fx extends to F over the complement to a subvariety
Σ ⊂ X of codimension two, the homology class of which is Poincare dual to w2(X). This
Σ ⊂ X is waht stands on the way of applying Dirac theoretic methods to non-spin manifolds.
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principal spin bundle S̃O → X for the double covering representing the spin
structure on X. We let S = S+ ⊕ S− and call this S the spin bundle.111

The Dirac operator
D ∶ C∞

(S) → C∞
(S)

is a first order differential operator constructed in a canonical geometrically
invariant way universally applicable to all X (see section ).

This is an elliptic selfadjoint operator, which interchanges C∞(S+) and
C∞(S−) where the operators

D
+
∶ C∞

(S+) → C−
(S−) and D− ∶ C∞

(S−) → C−
(S+)

are mutually adjoint.
We explained already in section 1.6.1 how, following Lichnerowicz, that the

Atiyah-Singer index theorem for the Dirac’s D and the S-L-W-(B) identity

D
2
= ∇

2
+

1

4
Sc,

imply that
there are smooth closed simply connected manifolds X of all dimensions n = 4k,

k = 1,2, ..., that admit no metrics with Sc > 0.
The simplest example of these for n = 4 is the Kummer surface XKu given

by the equation
z4

1 + z
4
2 + z

4
3 + z

4
4 = 0

in the complex projective space CP 3.
In fact, all complex surfaces of even degrees d ≥ 4 as well as their Cartesian

products, e.g XKu × ... ×XKu admit no metrics with Sc > 0.
Also we know that the Atiyah-Singer Z2-index theorem of 1971 allowed an

extension of Lichnerowicz’ argument to manifolds of dimensions 8k+1 and 8k+2,
e.g. to exotic spheres in

Hitchin’s theorem: there exist manifolds Σ homeomorphic (but no diffeo-
morphic!) to the spheres Sn, for all n = 8k + 1,8k + 2, k = 1,2,3..., which admit no
metrics with Sc > 0.

(What makes the differential structures of Hitchin’s topological spheres Σ
incompatible with Sc > 0 is that to these Σ are not boundaries of spin manifolds.)

The actual Lichnerowicz-Hitchin theorem says that if a certain topological
invariant α̂(X) doesn’t vanish, then X admits no metric with Sc > 0, since, by
the Atiyah and Singer index formulae,112

α̂(X) ≠ 0⇒ Ind(D∣X) ≠ 0⇒ ∃ harmonic spinor ≠ 0 on X,

which is incompatible with the identity D2 = ∇2 + 1
4
Sc for Sc(X) > 0

111 In reality, S comes first and then splitting S− ⊕ S+ follows, see section 3.3.3.
112 The Dirac operator is defined only on spin manifolds; we postulate at the present moment
that α̂(X) = 0 for non-spin manifolds X.

(In fact, if n = dim(X) = 4k, this α̂(X) is a certain linear combination of the Pontryagin
numbers of X, called Â-genus and denoted Â[X].
Accidentally, since all compact homogeneous spaces X = G/H, except for tori, support

metrics with Sc > 0, Lichnerowicz’ theorem says that they either non-spin or Â[X] = 0.)
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Conversely,
� if X is a simply connected manifold of dimension n ≥ 5, and if α̂(X) = 0,

then, an application of "thin surgery" (see section 1.3) to suitably chosen generators
O(n)- and Sp(n)- cobordism groups in dimensions n ≥ 5, where these generators
carry metrics with Sc > 0, yields113 that X admits a metric with positive scalar
curvature.

Thus, for instance
all simply connected manifolds of dimension n ≠ 0,1,2,4 mod 8 admit met-

rics with Sc > 0,114 since α̂(X) = 0 is known to vanish for these n.115

Topology of Scalar Flat. By Yau’s solution of the Calabi conjecture, the
Kummer surface admits a metric with Sc = 0, even with Ricci = 0, but there is

no metrics with Sc = 0 on Hitchin’s exotic spheres Σ.
In fact,
if a compact simply-connected scalar-flat manifoldX of dimension ≥ 5 admits

no metric with Sc > 0,116 then there are cohomology classes α ∈ H2(X) and
β ∈H4(X), such that

⟨expα ⌣ expβ ⌣ p1(X)⟩ ≠ 0,

where p1(X) is the first Pontryagin number, [Futaki(scalar-flat)1993], [Des-
sai(scalar flat) 2000].

And if X is non-simply connected then
a finite covering of X isometrically splits into the product of a flat torus and
the above kind simply connected manifold,

as it follows from Cheeger-Grommol splitting theorem + Bourguignon-Kazdan-
Warner perturbation theorem.

A Few Words on n = 4 and on π1 ≠ 0. If n = 4 then, besides vanishing of
the α̂-invariant (which is equal to a non-zero multiple of the first Pontryagin
number for n = 4), positivity of the scalar curvature also implies the vanish-
ing of the Seiberg-Witten invariants (See lecture notes by Dietmar Salamon,
[Salamon(lectures) 1999]; also we say more about it in section 3.16).

If X is a closed spin manifold of dimension n ≥ 5 with the fundamental group
π1(X) = Π , then, again by an application of the thin surgery,

the existence/non-existence of a metric g on X with Sc(g) > 0 is an invariant
of the spin bordism class [X]sp ∈ bordsp(BΠ) in the classifying space BΠ,
where, recall, that (by definition of "classifying") the universal covering of BΠ
is contractible and π1(BΠ) = Π. 117

There is an avalanche of papers, most of them coming under the heading of
"Novikov Conjecture", with various criteria for the class [X]sp, and/or for the
113[GL(classification) 1980], [Stolz 1992].
114If dim(X) = 3, this follows from Perelman’s solution of the Poincaré’ conjecture.
115As far as the exotic spheres Σ are concerned, these Σ admit metrics with Sc > 0 if and
only if α̂(Σ) = 0, i.e. if Σ bound spin manifolds, which directly follows by the codimension 3
surgery of manifolds with Sc > 0 described in [SY(structure) 1979] and in [GL(classification)
1980]. Moreover, many of these Σ, e.g. all 7-dimensional ones, admits metrics with non-
negative sectional curvatures but the full extent of "curvature positivity" for exotic spheres
remains problematic (see [JW(exotic) 2008] and references therein.
116These X are Ricci flat, [Bourguignon (these) 1974], [Kazdan[complete 1982].
117See lecture notes [Stolz(survey) 2001].
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corresponding homology class [X] ∈ Hn (BΠ) (not) to admit g with Sc(g) > 0
on manifolds in this class, where these criteria usually (always?) linked to
generalized index theorems for twisted Dirac operators on X with several levels
of sophistication in arranging this "twisting".

Yet, despite the recent progress in this direction for dimensions 4 and 5118

proving/disproving the following for n ≥ 4 remains beyond the present day
means. 119

(Naive?) Conjecture.120 If a closed oriented n-manifold X admits a contin-
uous map to an aspherical space B,121 such that the image of the rational fun-
damental homology class of [X]Q in the rational homology122 Hn(B;Q) doesn’t
vanish, then X admits no metic g with Sc(g) > 0.

(We shall describe the status of this problem together with the Novikov
conjecture in section 3.14.)

3.3 Unitary Connections, Twisted Dirac Operators and
Almost Flat Bundles Induced by ε-Lipschitz Maps

We turn now to twisted Dirac operators D⊗L that act on tensor products S⊗L
for vector bundles L → X with linear (most of the time, unitary) connections
∇.

One can think of such a D⊗L as an infinitesimal family of D-s parametrized
by L, where the action takes place along S with no differentiation in the L-
directions.

For instance if L = (L,∇) is a trivial flat bundle, L = X ×L0, where L0 is a
vector space (fiber), then C∞(S⊗L) = C∞(S)⊗L0 and the D⊗L doesn’t act on
L at all:

D⊗L(f ⊗ l) = D(f) ⊗ l for all vectors l ∈ L0.

In general, the D⊗L differs from that in the flat case by a zero order term,
which is, bounded by the curvature of L and, strictly speaking, is defined only
locally, where the bundle L is topologically trivial. But exactly this impossibility
of global comparison of D⊗L on C∞(S ⊗ L) with D on C∞(S) ⊗ L0 creates a
correction term in the index formula.

This correction, unlike the background operator D, carries no subtle topo-
logical information about X, such as Â(X) for n = 4k, which is not a homotopy
invariant for n > 4 and even less so about α̂(X) for n = 8k + 1,8k + 2, which is
not even invariant under p.l. homeomorphisms and which is far removed from
anything even remotely, geometric about X, while the topology (Chern classes)
of L reflects the area-wise size of the metric g on X, which, in turn, influences
homotopy theoretic properties of X linked to the fundamental group.
118See [Chodosh-Li(bubbles) 2020], [G(aspherical) 2020] and section 3.10.3
119The case n = 3 follows from the topological classification of compact 3-manifolds X with
positive scalar curvature these are connected sums of quotients of spheres S3 and products
S2 × S1 by finite isometry groups [GL(complete) 1983],[Ginoux(3d classification) 2013].)
120This, as many other our conjectures, is based on a limited class of examples with no idea
of where to look for counter examples.
121 That is the universal covering of B is contractible, hence, B is B(Π) for Π = π1(B).
122Bernhard Hanke pointed out to me that non-vanishing of this image in homology with
finite coefficients, e.g. for finite groups Π, may also prohibit Sc > 0, but this remains obscure
even on the level of conjectures.
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The following definition gives you a fair idea of what kind of properties these
are.

Profinite Hypersphericity. A Riemannian n-manifold X is profinitely hyper-
spherical if

given an ε > 0, there exists an orientable finite covering X̃ = X̃ε, which admits
an ε-Lipschitz map between 123 X̃ → Sn of non-zero degree.
This property of compact manifolds (the definition of this hypersphericity

extends too open manifolds) doesn’t depend on the Riemannian metric on X.
Moreover

If X1 is profinitely hyperspherical and X2 admits a map of non-zero degree to
X1 then, obviously, X2 is also profinitely hyperspherical; in particular, this property
is a homotopy invariant of X.

Example. Manifolds X, which admit locally expanding self-maps E ∶ X → X,
e.g. the n-torus Tn, where the endomorphism t ↦ Nt locally expands the metric
by N , are profinitely hyperspherical.

Indeed, such an E defines a globally expanding homeomorphism, call it Ê,
from X onto a finite covering X̃ = X̃(E), where the inverse map Ê−1 ∶ X̃ → X
contracts as much as E expands.

Therefore, the covering corresponding to the i-th iterate of E comes with
an εi-Lipschitz map to X, where εi → 0 for i → ∞ and compositions of these
with a map X → Sn of non-zero degree also have deg ≠ 0, while their Lipschitz
constants go to zero.124

Now, if you recall Atiyah-Singer index theorem for the twisted Dirac operator
and D⊗L and the (untwisted) S-L-W-(B) formula D2 = ∇∇∗ + 1

4
Sc125 you arrive

at the following.
[Sc ≯ 0]: Provisional Proposition.126Compact orientable127 profinitely

hyperspherical spin manifolds X of all dimensions n support no metrics with
Sc > 0.

Proof. This is obvious once said. Indeed, a simple special case of the Atiyah-
Singer index theorem says that,

if a complex vector bundle L of rank k over a compact orientable spin Rieman-
nian manifold X of dimension n = 2k, has non-zero Euler (Chern) number, that
is the self-intersection index of the zero section X →↪ L, then

the twisted Dirac D⊗L ∶ C
∞(S⊗L) → C∞(S⊗L) has non-zero kernel, for all

linear connections in L, provided,
the number k is odd, and the restriction of L to the complement to a point in

X is a trivial bundle.128

123A map between metric spaces, f ∶ X → Y , is ε-Lipschitz if distY (f(x1), f(x2)) ≤
εdistX(x1, x2) for all x1, x2 ∈ X. For instance, "1-Lipschitz" means "distance non-increasing".
ε-Lipschitz for smooth maps f between Riemannian manifolds is equivalent to ∣∣d(f(x)∣∣ε,
x ∈ X.
124Further examples of this phenomenon and issuing topological obstruction to Sc > 0 for
manifolds with residually finite fundamental groups are given in [GL(spin) 1980] under the
heading of "enlargeability". Since the residual finiteness condition was eventually lifted, this
terminology now applies to a broader class of manifolds, including spaces X the universal
covers of which admit contracting self-maps of positive degrees, see section4.1.1
125This ∇ stands for the Levi-Civita connection in the spin bundle.
126This will be significantly generalized later on.
127If X is non-orientable, take an oriented double cover of it.
128These are minor technical conditions, the role of which is to avoid undesirable conse-
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Then, by elementary algebraic topology,
the 2k-sphere supports a complex vector bundle of rank k, say L→ S2k, which
has non-zero Euler (Chern) number,

and
bundles L = f∗(L) →X induced from L by continuous maps f ∶X → S2k have
their Euler numbers e(L) = deg(f)e(L).
It follows that finite coverings X̃ε of X admit smooth ε-Lipschitz-maps fε ∶

X̃ε → Sn with arbitrary small ε and such that the twisted Dirac operators D⊗Lε
on X̃ε for Lε = f∗ε (L), have non-zero kernels for all connections in Lε.

Apply this to connections ∇ε in Lε induced by fε from a fixed smooth
linear (unitary if you wish) connection ∇ in L → S2k, let ε → 0 and observe
that, since the maps fε converge to constant ones on all unit balls in X̃ε, the
bundles (Lε,∇ε) converge to trivial ones with trivial flat connections on all balls.
Therefore the difference between the Dirac operator D⊗Lε and D twisted with
the trivial flat bundle Lflat of rank k becomes arbitrary small for ε→ 0, and the
S-L-W-(B) formula applied to DLflat shows that infX Sc(X) = infX̃ Sc(X̃ε) ≤ 0.

This completes the proof for n = 4l + 2 and the general case follows by
(shamelessly) taking the product X ×T3n+2.

Well..., this is convincing but it is not quite a proof. We still have to define
D⊗L and to make sense of the "difference" between the operators D⊗Lε and
D⊗Lflat that are defined in different spaces. We do all this below closer to the
end of this section.

Why Spin? The essential new information delivered by D⊗L does not visibly
depend on the spin structure (unlike to how it is with the Dirac operator D
itself).129

However, one doesn’t know how to get rid of the spin condition, in the cases
where it appears irrelevant. For instance, there is no single known area-wise
bound on the size of a non-spin manifold with a large scalar curvature.130

All in all, although "twisted Dirac" proofs are short and simple, their nature
remains obscure.

Partly, this is why we explain below with such a care standard "trivial" prop-
erties of the "twist" D; D⊗L, hoping this may help us to visualize something
behind this "trivial" that makes the Dirac’s D work in geometry, "something",
which is only tangentially related to the Dirac operator itself and, if untangled
from D with its bondage to spin, would open up new possibilities.

quences of possible cancellation in the index formula (see section 4). For instance if X can
be embedded or immersed into R2k+1, or if it admits a metric with positive scalar curvature
then even k is allowed. (Observe in passing that these X are spin.)
129Sometimes, e.g. for lower bounds on the (area) norms of differentials of maps X ×Xkum →
Sn, n = dim(X), for metrics g on X ×Xkum with large scalar curvatures, the spin is irreplace-
able.
130In truth, this applies only to non-spinC manifolds, where spinC means that the second
Stiefel-Whitney class is equal to the mod 2 reduction of the Chern class of a complex line
bundle L→ X.

Such bounds are available for spinC manifolds. For instance (a special case of) Min-Oo
extremality/rigidity theorem says that

if the scalar curvature a Riemannian metric g on on CPm is (non-strictly) greater than that
of the Fubini-Study metric, Sc(g) ≥ Sc(gFuSt), and areag(S) ≥ areagFuSt(S) for all smooth
surfaces S ⊂ CPm, than g = gFuSt.

(The complex projective spaces CPm are non-spin for even m, yet they are all spinC).
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3.3.1 Recollection on Linear Connections and Twisted Differential
Operators

A connection in a smooth fibration L → X is a retractive homomorphism from
the tangent bundle T (L) to the subbundle Tvert = Tver(L) ⊂ T (L) of the vectors
tangent to the fibers of L.131

Denote this by
∇̂ ∶ T (L) → Tvert ⊂ T (L),

and observe that ∇̂ is uniquely defined by its kernel, that is what is called a
horizontal subbundle, Thor = Thor(L) ⊂ T (L) that is complementary to Tvert
such that T (L) = Tvert ⊕ Thor.

If L is a trivia?l (split) fibration L =X ×L0, then it comes with the trivial or
split flat connection, where Thor is the bundle of vectors tangent to the graphs
of constant maps X → L0, l ∈ L.

A connection is called flat at x0 ∈ X if, over a neighbourhood U ⊂ X of x,
it is isomorphic to the trivial flat connection on X ×Lx0 , for the fiber Lx0 of L
over x0.

If the fibration L carries a fiber-wise geometric structure S , say, linear, affine,
unitary, etc, then "flat" signifies that the implied isomorphism, that is a fiber
preserving diffeomorphism L∣U → U ×Lx, preserves S , i.e. it is fiber-wise linear,
affine, unitary, etc.

A connection ∇̂ in L is called S : linear, affine, unitary, etc if, for each x ∈X,
there exist a flat S -connection ∇̂x,flat adapted to ∇̂ at x, i.e.such that the
restriction of ∇̂x,flat to the fiber Lx ⊂ L, denoted (∇̂x,flat)∣Lx is equal to ∇̂∣Lx .

Twisting Differential s. A first order differential between (sections of) vector
bundles (linear fibrations) K1 and K2 over a manifold X, is a linear map

D ∶ C∞
(K1) → C∞

(K2),

such that the valueDf(x) ∈K2 depends only on the differential df(x) ∶ Tx(X) →

Tfx(K1) for all x ∈X.
For instance, a linear connection in L defines a differential , denoted just

∇, from L to the bundle Hom(T (X), L) = T ∗(X) ⊗ L, that is the composition
of the differential df ∶ T (X) → T (L) with ∇̂ ∶ T (L) → Tvert combined with the
canonical identifications of all (vertical) tangent spaces of the fiber Lx with Lx
itself.

Such a ∇ uniquely determines (linear) ∇̂, it is also called "connection". where
the values ∇f(τ) at tangent vectors τ are written as (covariant) derivatives ∇τf .

Basic Example. If ∇ is the flat split connection in X×L0, then this is applies
to sections X →X ×L0, that are the graph of maps f ∶X → L0, as the ordinary
differential df ∶ T (X) → L0.

If a section f ∶ X → L vanishes at a point x ∈ X, then, clearly, ∇f(x) =

∇flatf(x) for all nabla.
It follows that the difference between two connections in L, ∇1 − ∇2, is a it

zero order defined by a homomorphism ∆ = ∆1,2 ∶ L → Hom(T (X), L), that
can be thought of as a Hom(L,L)-valued 1-form on X.

Thus any ∇ in a flat, e.g. split, bundle is df +∆.
131Here, "retractive" means being the identity on Tvert.
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If ∇ is a flat split connection, in L =X×L0, then the twisted D⊗L ∶ C
∞(K1⊗

L) → C∞(K1 ⊗L) is defined via the identity C∞(K ⊗Lsplit) = C
∞(K)⊗L0, as

it was explained above for the Dirac operator.
If ∇ is flat, then D⊗∇ =D⊗(L,∇) is defined on all neighbourhoods where this

connection splits and local ⇒ global by locality of differential s.
Finally, for general (L,∇), the twisted D⊗∇(ψ) for sections ψ ∶ X →K1 ⊗L

is determined by its values at all points x ∈X that are defined as follows

D⊗∇(ψ)(x) =D⊗∇x,flat(ψ)(x)

for flat connections ∇x,flat adapted to ∇ at x.
Since the difference ∇ − ∇flat is a zero order for all connections ∇ in flat

split bundles L = (X × L0∇flat), the same is true for D twisted with ∇: the
difference

∆⊗ =D⊗∇ −D⊗∇flat

is a zero order – "vector potential" in the physicists’ parlance.
A similar representation D⊗∇ = D⊗∇flat + ∆⊗ for topologically non-trivial

bundles L is achieved as follows.
Let L⊥ →X be a bundle complementary to L such that the Whitney sum of

the two bundles topologically splits,

L⊕L⊥ = L⊕ ≃X × (L0 ⊕L
⊥
0)

and let ∇⊥ be an arbitrary connection in L⊕L⊥ and
Define the connection ∇⊕ = ∇ +∇⊥ in L⊕ by the rule

∇
⊕
τ (l + l

⊥
) = ∇τ l +∇

⊥
τ l
⊥

and observe that the ∇⊕-twisted operator D⊗∇⊕ , that maps the space

C∞
(K1 ⊗L

⊕
) = C∞

(K1 ⊗L) ⊕C
∞
(K1 ⊗L

⊥
)

to
C∞

(K2 ⊗L
⊕
) = C∞

(K2 ⊗L) ⊕C
∞
(K2 ⊗L

⊥
)

respects this splitting:
D⊗∇⊕ =D⊗∇ ⊕D⊗∇⊥ .

Thus, if not the D⊗∇ itself, then its ⊕-sum with another is

D⊗∇flat + zero order .

3.3.2 [Sc ≯ 0] for Profinitely Hyperspherical Manifolds, Area De-
creasing Maps and Upper Spectral Bounds for Dirac Oper-
ators

Conclusion of the proof of provisional proposition [Sc ≯ 0] from 3.3. Return to
the bundles Lε = f∗(L) → X induced by smooth ε-Lipschitz maps f ∶ X → Sn,
n = dim(X) = 4l + 2, with non-zero degrees and ε → 0 from a complex vector
bundle L→ Sn, with the Euler number e(L) ≠ 0.
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Let L⊥ → S2k be a bundle complementary to L→ S2k, i.e. the sum L⊕L⊥ is
a trivial bundle, endow L and L⊥ with a connections ∇ and ∇⊥ and let ∇⊕

ε be
the connection on the (topologically trivial!) bundle

L⊕ε = f∗(L⊕L⊥)

induced from ∇⊕ = ∇ ⊕ ∇⊥, where the latter is defined by the component-wise
differentiation rule:

∇
⊕
(φ,ψ) = (∇φ,∇⊥ψ) for sections (φ,ψ) = φ + ψ ∶ Sn → L⊕L⊥.

Then (see the proof of [Sc ≯ 0]) the twisted Dirac operator decomposes into
the sum of (essentially) untwisted D and a zero order (vector potential)

D⊗∇⊕

ε
= D⊗∇flat +∆ε

where ∇flat is the flat split connection in the bundle L⊗ε with the splitting
induced by fε from a splitting of L ⊕ L⊥, obviously (but most significantly),
∆ε → 0 for ε→ 0.

Now, the (untwisted) S-L-W-(B) formula, applied to D⊗∇flat says that

D
2
⊗∇⊕

ε
= ∇flat,S∇

∗
flat,S +

1

4
Sc +∆◽

ε,

where ∇flat,S denotes the flat connection ∇flat,S in the twisted spin bundle
associated with ∇flat.

The correction term ∆◽
ε in this formula is a first order differential (it depends

on how you trivialise the bundle L⊕L⊥) which tends to 0 for ε→ 0,

∆◽
ε → 0 for ε→ 0.

A priori, the ε-bound on the differential of fε doesn’t make the coefficients
of the ∆◽

ε small, but an obvious smoothing allows an approximation of fε by
maps their derivatives of which of all orders converging to 0.

Because of this, we may assume ∆◽
ε → 0 in the strongest conceivable sense,

while al is needed is that ∆◽
ε → 0 becomes negligibly small compare to∇flat,S∇∗

flat,S+
1
4
Sc, which implies strict positivity of the D2

⊗∇⊕

ε
= ∇flat,S∇

∗
flat,S +

1
4
Sc +∆◽

ε, for
ε much smaller than the lower bound σ = infx∈X Sc(X,x) > 0.

Thus, the condition Sc(X) > 0 leads to a contradiction with the index
formula, which in this case, as we already know from the proof of [Sc ≯ 0]
yields non-zero harmonic ∇ε-twisted, hence ∇⊕

ε twisted, spinors, because the
subbundle L ⊂ L ⊂ is invariant under the parallel transport by the connection
∇⊕ = ∇⊕∇⊥, by the very definition of the sum of connections and this property
is inherited by the induced connection ∇⊕

ε .
This concludes the proof of [Sc ≯ 0] for n = 4l + 2 and, as we have already

explained, the general case follows by stabilization X ;X ×T3n+2.
Area Contraction instead of Length Contraction. Say that X is ∧2-profinitely

hyperspherical if, instead of ε-Lipschitz property of maps fεX̃ε → Sn of no-zero
degree, we require that the second exterior power of the differential of fε is
bounded by ε2,

∣∣ ∧
2 dfε(x)∣∣ ≤ ε

2.
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Geometrically, this means that fε decreases the areas of the smooth surfaces in
X by factor ε2, (This, obviously, is satisfied by ε-Lipschitz maps.)

It is clear, heuristically, that the Dirac operator twisted with ∇ε in this case,
similarly how it is for ε-Lipschitz maps, is close to the untwisted D; this

rules out positive scalar curvature for ∧2-profinitely hyperspherical manifolds.
However, the above proof with the complementary bundle L⊥ doesn’t apply

here; to justify heuristics, one has to pursue algebraic similarity between ∇ and
the ordinary differential d a step further.

This can be done by pure thought, on the basis of general principles only,
(no tricks like L⊥) but writing down this "thought" turned out more space and
time consuming than what is needed for (a few lines of) the twisted version of
the S-L-W-(B) formula, as we shall see in section 3.3.4.

So, we conclude here with two remarks.
(i) It is unknown if "length contractive" is topologically more restrictive than

"area contractive".
For instance one has no idea if there exist ∧2-profinitely hyperspherical man-

ifolds which are not profinitely hyperspherical.
(ii) Representation of ∇-twisted differential operators by vector-potentials

∆ in larger bundles has further uses, such as Vafa-Witten’s lower bounds on the
spectra of Dirac operators. For instance,

if a compact Riemannian spin n-manifold X admits a distance decreasing map
to Sn of degree d, then the number N of eigenvalues λ of the Dirac on X in the
interval −Cn ≤ λ ≤ Cn satisfies N ≥ d, where Cn > 0 is a universal constant.132

3.3.3 Clifford Algebras, Spinors, Atiyah-Singer Dirac Operator and
Lichnerowicz Identity

The Dirac on Rn is a particular first order differential , which acts on the space
of smooth CN -valued functions,

D ∶ C∞
(Rn,CN) → C∞

(Rn,CN),

where N = 2
1
2n for even n and N = 2

1
2 (n−1) for odd n and where essential

properties of this D are as follows.
I. Ellipticity. The D is an elliptic, which means that the initial value

(Cauchy) problem for the equation Df = 0 is formally uniquely solvable for
all initial data on all smooth hypersurfaces in Rn, where "formally" can be
replaced by "locally" in the real analytic case.

Basic Example. The Cauchy-Riemann (system of two) equation(s) DCRf = 0
for maps f ∶ R2 → C1, defines conformal orientation preserving maps R2 → C.
These are called holomorphic if R2 is "identified" with C, where the ambiguity
inherent in this identification is responsible for spin.

DCR is elliptic: real analytic functions locally uniquely extend from real analytic
curves in C1 to holomorphic functions.

Let us describe ellipticity in linear algebraic terms applicable to all (systems
of) partial differential equations of first order for maps between smooth man-
ifolds, f ∶ X → Y . Such a system, call it S, is characterised by subsets in the
spaces of linear maps between the tangent spaces of X and Y at all x ∈ X and
132See §6 in [G(positive) 1996] for related spectral geometric inequalities.
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y ∈ Y , denoted Σx,y ⊂ Hom(Tx → Ty), where Tx = Rn, n = dim(X), where
Ty = Rm, m = dim(Y ) and where f satisfies S if df(x) ∈ Σx,f(x) for all x ∈X.

Let RL ∶Hom(Rn,Rm) →Hom(L,Rm) denote the restriction of linear maps
to Rm from Rn to linear subspaces L ⊂ Rn, that is RL ∶ h↦ h∣L ∶ L→ Rm.

Call a smooth submanifold Σ ⊂Hom(Rn,Rm) elliptic if the map RL diffeo-
morphically sends Σ onto Hom(L,Rm) for all hyperplanes L ⊂ Rn.

Now, a PDE system S is called elliptic if the subsets

Σx,y ⊂Hom(Tx → Ty) =Hn,m =Hom(Rn,Rm)

are elliptic for x ∈X and y ∈ Y .
Put it another way, let Kp ∈Hn,m, p ∈ RPn−1, be the family of m-dimension

linear subspaces that are the kernels of the linear maps RLp ∶Hn,m →Hn−1,m,p =

Hom(Lp,Rm) parametrized by the projective space RPn−1 of hyperplanes L =

Lp ⊂ Rn. Then ellipticity says that
Σ transversally intersect Kp at a single point for all p ∈ RPn.
Finally, back to the linear case, observe that systems Df = 0 for maps

f ∶ Rn → Rm, x ∈ Rn

are depicted by linear subspaces

Σ = Σx ⊂Hom(Tx(Rn),Rm = T0(Rm)), x ∈ Rn

and ellipticity says in these terms that
firstly, dim(Σ) = n

secondly
e the linear maps h ∶ Tx(Rn) → Rm have rank(h) = n for all non-zero h ∈ Σ.
and finally
differential operators between sections of vector bundles over a smooth man-

ifold X are elliptic if these properties are verified locally over small neighbour-
hoods of all points in X.

Exercises. (a) Twisting with ∇. Show that
D is elliptic ⇒ D⊗∇ is elliptic:

twisting with connections doesn’t hurt ellipticity.
(b) Symmetric but non-Elliptic. Figure out what makes the exterior differen-

tial

d ∶ C∞
(
k

⋀(T (X)) → C∞
(
k+1

⋀(T (X))

on (2k + 1)-dimensional manifolds non-elliptic.

II. Symmetry and Spinors. The Dirac operatorD on C∞(Rn,CN), is Spin(n)-
invariant, where

●1 Spin(n) denotes the double cover of the special orthogonal group SO(n),
●2 the group Spin(n) acts on Rn via the (2-sheeted covering map) homomor-

phism Spin(n) → SO(n),
●3 the action of Spin(n) on Ck, called spin representation, is faithful: it

doesn’t factor through an action of SO(n),133

133The spin representation, as we shall explain below, is irreducible for odd n and it splits
into two irreducible half-spin representations for even n. There are no faithful representations
of Spin(n) in lower dimensions (except for n = 1,2), where, apparently, this faithfulness is
necessitated by ellipticity of D.
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●4 "invariant" here means equivariant under the (diagonal) action of Spin(n)
on the space of maps ψ ∶ Rn → CN , that is

g(ψ)(x) = g(ψ(g(x)), g ∈ Spin(n), 134

and "equivariant" says that

D(g(ψ)) = g(D(ψ)).135

Cauchy-Riemann Example. The group Spin(2) diagonally acts on on maps
f ∶ R2 → C1, where all actions (representations) of Spin(2) = T = U(1) ⊂ C× on
C1 are possible: these are t(z) = tmz, m = ... − 1,0,1,2, .... (There are no such
possibilities for for n > 1.)

The corresponding operators ∂̄ = ∂̄m are all locally non-canonically isomor-
phic (this makes them often confused in the literature), but this m (spin quantum
number), becomes the major feature of the ∂̄i globally, where it controls its very
existence and its index.

III. Spin Representations and Clifford Algebras Cln = Cl(V ).136The lowest
dimension complex vector space, where Spin(n), can linearly faithfully act is
C2k for k = 1

2
n for n even and k = 1

2
(n−1) for odd n, where such an action (repre-

sentation) is obtained by realizing Spin(n) as a subgroups in the multiplicative
semigroups of the Clifford algebra, denoted Cln = Cl(Rn) = Cl(Rn,−∑n1 x2

i ).
Recall that Cln is an unital137 associative algebra A over the field of real

numbers with a distinguished Clifford basis that is linear subspace V = VCl ⊂ Cln
endowed with a Euclidean structure, that is represented by a negative definite
quadratic form.138

We denote the Clifford product by a1 ⋅ a2 an let "1" stand for the unit in A.
(There is nothing especially exciting about Cln understood as "just an algebra",

especially if you tensor it with C, which we do at the end of the day anyway. For
instance, we shall see it presently, Cl⊗C is isomorphic to a matrix algebra for even
n and to the sum of two matrix algebras for odd n.

What gives to a particular favour to Cln is the distinguished linear subspace
V ⊂ Cln, which, on the one hand, generates all of Cln, on the other hand, the
matrices corresponding to all v ≠ 0 in V , have maximal possible ranks, since all
non-zero v ∈ V are invertible in the multiplicative semigroup CL×n. This "maximal
rank property" is exactly what makes the Dirac operator elliptic and, because of
this, so powerful in the Riemannian geometry.)

The fundamental feature of the pair (A,V ) is that A = Cl(V ) is functorially
determined by V :
isometric embeddings V1 → V2 canonically extend to monomorphisms A1 → A2.

134To visualize this, think of the graphs Γψ ⊂ Rn × CN moved by the diagonal actions of
g ∈ Spin(n) on this product.
135This Dirac operator has "constant coefficients", which means is invariant under parallel
translations ty of Rn that act on our maps: D(ty(ψ)) = ty(D(ψ)) for (ty(ψ))(x) = ψ(x + y),
x, y ∈ Rn.
136The basic reading on this subject matter is the book [Lawson&Michelsohn(spin geometry)
1989] and a (very) brief outline of the main points is contained in [Min-Oo(K-Area) 2002],
[Min-Oo(scalar) 2020].
137This means possessing a unit in it
138It is negative to agree with the Laplacian ∑i ∂2i , which is a negative operator.
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where this Clifford functor is uniquely characterised by the following two prop-
erties.

A. V = VCl is a Basis in A. The subspace V generates A as an R-algebra.
B. Specification. The algebra Cl1 = Cl(R1) is isomorphic to (C, iR), for

i = ±
√
−1.

(It is impossible to mathematically, distinguish i and −i; this unresolvable
±i-ambiguity is grossly amplified, at least psychologically„ when it comes to
spinors. 139)

In simple words, the Clifford squares of all unit vectors v ∈ V are equal to
−1, or, equivalently,

v ⋅ v = −∣∣v∣∣2 = ⟨v, v⟩ for all v ∈ V .

A&B. Anti-commutativity. The Clifford product is anti-commutative on or-
thogonal vectors.

v1 ⋅ v2 = −v2, v1, for ⟨v1, v2⟩ = 0.

Indeed, since ∣∣v1 − v2∣∣
2 = ∣∣v1 + v2∣∣

2 for orthogonal vectors, bilinearity of the
the Clifford product implies that

0 = (v1 − v2)
2
− (v1 + v2)

2
= −v1 ⋅ v2 − v2 ⋅ v1 + v1 ⋅ v2 + v2 ⋅ v1 = 2(v1 ⋅ v2 + v2 ⋅ v1).

Exercise. Show that

v1 ⋅ v2 + v2 ⋅ v1 = −2⟨v1, v2⟩ for all v1, vv ∈ V .

IV. Groups Pin(n) and Spin(n) and Gn. The group Pin(n) is defined
in Cln-terms as the subgroup of the multiplicative semigroup of Cl×n ⊂ Cln
multiplicatively generated by the unit vectors v ∈ V ⊂ Cln.

The subgroup Spin(n) ⊂ Pin(n) consists of the products of even numbers of
unit vectors from V . 140

Existence &Uniqueness. Let us explain why the algebra Cl(Rn), if exists at
all, is large enough to (multiplicatively) contain the group Spin(n) that double
covers the special orthogonal group SO(n). 141

Observe that the Clifford relations 142

[Cl] ei ⋅ ej = −ej ⋅ ei and e2
i = −1

139To be blameless, write ±i (even better, {±i,∓i}) and never dare utter "left ring ideal" and
"right group action", even in absence of left-handed (left-minded?) persons. (Defending such
an action by biological molecular homochirality and parity violation by weak interactions is
not recommended for being politically incorrect.)

Jokes apart, arbitrary terminological conventions presented as mathematical definitions sow
confusion and undermine "rigor" in mathematics.

Who are the lucky ones who are able to tell if f ○ g means f(g(x)) rather than g(f(x)) or
vice versa?

Can encoding formulas by Peano’s integers, e.g. in the proof of Gödel’s incompleteness
theorem, be accepted as "logically rigorous", unless you face the issue of "directionality"
inherent in the decimal representation of integers?
140This parallels the definition of SO(n) ⊂ O(n) as the subgroup consisting of products of
even numbers of reflections of Rn. In fact, Spin(n) equals the connected component of the
identity in Pin(n) and Pin(n)/Spin(n) = O(n)/SO(n) = Z2 = {−1,1}.
141To appreciate non-triviality of the problem, try to construct geometrically more than two,
say three, anti-commuting linear isometric involutions represented by reflections around linear
subspaces in some Euclidean space.
142This must be written in Clifford’s unpublished note On The Classification of Geometric
Algebras see [Diek-Kantowski (Clifford History)1995] for further references.
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for an orthonormal frame {ei} ⊂ V , i = 1, ..., n,

on the one hand, imply v1 ⋅ v2 + v2 ⋅ v1 = −2⟨v1, v2⟩ for all v1, vv ∈ V , hence,
fully characterize Clifford’s algebras,

on the other hand, define
a finite group Gn of order 2n+1 that is a central extension of Zn2 ,

with an additional generator (central element) c of order 2 and the following
relations,

[Clc] cei = eic, c2 = 1, eiej = cejei and e2
i = c.

where the central element c in Gn corresponds to −1 ∈ Cln.
Non-triviality of this Gn is apparent, since letting c = 1 defines a surjective

homomorphism Gn → Zn2 with kernel Z2.
(What is not immediately apparent, is a pretty combinatorics of shuffling

indices in ei1ei2 ...eim ∈ Gn, i1 < i2 < ... < im, under multiplication by ek, which
is rightly appreciated by people working on quantum computers.)

One look at Gn is sufficient to make it obvious that there is a homomorphism
from Gn to the multiplicative (semi) group Cl×n of the Clifford algebra (with the
image in Pin(n) ⊂ Cl×), such that

the algebra homomorphism from the real group algebra R(Gn)
143 to Cln as-

sociated with this group homomorphism Gn → Cl×n is surjective and the kernel of
this homomorphism is defined by the relation c = −1, that is

Cln = R(Gn)/(c + 1), 144

Amazingly, nowhere, except for a few papers on quantum computers, Gn
is called "finite Clifford group",145 while the authors of the only mathemati-
cal papers found on the web (unless I missed some) call Gn a "Salingaros vee
group."146

The structure this "vee group" G,, which tells you everything about Cln, is
transparently seen in the combinatorics of its multiplication table, where g ∈ G
143R(G) is the space of formal linear combinations ∑g∈G cgg with the obvious product rule,
where the identity element id ∈ G serves as the unit of this algebra.
Alternatively, R(G) is defined as the algebra of linear operators R(G) on functions ψ(g)

that is generated by translations on the space of functions on G, for ψ(g) ↦ ψ(g′g), g′ ∈ G.
The same space R(G) = GR of functions on G with the action of G by ψ(g) ↦ ψ(g′g) is called

(not very inventively) the regular R-representation of G, where just "regular representation"
stands for regular C-representation.
144Recall that c ∈ Gn ⊂ R(Gn) is the central involution in Gn and "1" is the unit in the
algebra R(Gn) that is represented by the unit function, where (c + 1) ⊂ R(Gn) denotes the
ideal generated by c+1 ∈ R(Gn). (The quotient algebra R(Gn)/(c+1) has the same underlying
linear space as the group algebra R(Gn/(c)), for the normal subgroup (c) ⊂ Gn generated by
c, but multiplicatively R(Gn)/(c+ 1) is much different from the (commutative) group algebra
of Gn/(c) = Zn2 .)
145 The terms "Clifford group", sometimes "naive Clifford group", are reserved for the sub-
group G of the multiplicative semigroup of Cl, the action of which on Cl by conjugation for
a↦ g ⋅ a ⋅ g−1 preserves V .
146See [AbVaWa(Clifford Salingaros Vee)2018] for more general definitions and references to
the the original 1981-82 papers by Nikos Salingaros. (I don’t know what is written in these
papers, since these are not openly accessible on the web.)

Also, amazingly, no survey or tutorial on Clifford algebras I located on the web makes any
use or even mentions Gn. Possibly, there is something about it in textbooks, but none seems
to be openly accessible.

77



are written as lexicographically ordered products of ei and (if it is there) c. Here
are a few relevant properties of Gn.

All elements in Gn have orders 2 and/or 4.
The commutator subgroup [Gn,Gn] = {g1g2g

−1
1 g−1

2 } equals to the 2-element
(central) subgroup {1, c}.

If n is even, it coincides with the center of Gn;

center(Gn) = [Gn,Gn] = {1, c}

If n is odd, the center has order 4. For instance G1 = Z4; in general, the extra
central element for n = 2k + 1 is the product e1e2, ..., en.

If n is even, then the number Nconj(Gn) of the conjugacy classes of Gn is 2n+1
where 2n of them comes from Zn2 and the extra one is that of c. If n is odd, there
are 2n + 2 classes, where centrality of e1e2, ..., en is responsible for the additional
one.

V. Representations of the Group Gn. The space Ψn = C(Gn) = CGn of
complex functions on G splits into the sum Ψn = Ψ+

n ⊕Ψ−
n, where Ψ+

n consists of
c-symmetric functions ψ(g) that are invariant under the action of the central
c ∈ Gn, i.e. ψ(g) = ψ(cg) and where the functions ψ ∈ Ψ−

n are antisymmetric,
ψ(cg) = −ψ(g).

The space Ψ+
n obviously identifies with the space C(Zn2 ) of functions on

the Abelian group Zn2 , where action of Gn factors through the homomorphism
Gn → Zn2 .

Since the commutator subgroup of Gn is equal to {1, c}, all 1-dimensional
representations of Gn are contained in Ψ+

n.
Frobenius
Now, the number one theorem in the representation theory of finite groups

reads:147

the regular representation of G uniquely decomposes into the sum of sub-
representations GC

⊕iR
2
i , i = 1,2, ...,N = Nirrd(G), where each R2

i is (non-
canonically) isomorphic to the sum of ki-copies of an irreducible representation
Ri of dimension ki and where every irreducible representations of G is isomor-
phic to one and only one of Ri.

Accordingly, the group algebra of G (the same linear space GC, but now with
the group algebra structure) decomposes into the sum of matrix algebras

C(G) =⊕
i

End(Cki).

This is an exercise in linear algebra. What is less obvious is that
The number Nirrd(G) of mutually non-isomorphic irreducible complex rep-

resentations of G is equal to the number of the conjugacy classes in G.

Nirrd(G) = Nconj(G) for all finite group G.

Consequently,
147This must be attributed to Frobenius (1896), since it follows by his character theory, see
file:///Users/misha/Downloads/Curtis2001_Chapter_RepresentationTheoryOfFiniteGr.
pdf

Unfortunately, this theorem has no name an can’t be instantaneously found on Google.
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the sum of the squares of the dimensions of the irreducible representations
of G is equal to the order of the group G,

∑
i

k2
i = card(G).148

If we apply this to Gn for n = 2k, we shall see that, besides the one dimen-
sional representations, this group has a single irreducible one of dimension 2k,
call it Sn, which enters the regular representation with multiplicity 2k.

Now, clearly,
the 2k-multiple Sn-summand of the regular representation is exactly the space

Ψ−
n of antisymmetric functions ψ on Gn.
Equally clearly,
the space of antisymmetric functions ψ(g) = −ψ(cg) on Gn (here we speak

of R-valued functions ψ) is Gn-equivariantly isomorphic to Cln.
VI. Clifford Conclusion. Since the Clifford algebra Cln is, as an algebra,

generated by Gn ⊂ Cln, the representation Sn of Gn in C2k , that is a multiplica-
tive homomorphism Gn → End(C2k), extends to an algebra homomorphism
Cln → End(C2k); hence, to

an irreducible representation of Pin(N) in C2k ,
which extends (irreducible!) representation Sn of Gn ⊂ Pin(n).

This is called the spin representation and still denoted Sn.
Why Clifford Algebra? Why algebras are needed here at all?

What we used for the construction of the spin representation Sn of Pin(n)
in C2k for even n = 2k are the two following simple, not to say "trivial", but
indispensable (are they?) algebra theoretic facts.

(i) The linear actions of Pin(n) and Gn on the space Ψ−
n (and also on Cln)

generate the same subalgebras of operators on this space.
(ii) If an algebraA of operators on a linear spaceM , e.g. M = CN

2

, is isomorphic
to the (full matrix) algebra of endomorphisms of another space,

A ≃ End(L),

then M is A-equivariantly isomorphic to End(L) for, say "left", action of the
algebra End(L) on itself.

(Also we were jumping back and forth between R-linear and C-linear spaces
and actions, but with nothing non-trivial happening on the way.)

The correspondence Φ ∶ L ; A = End(L) is a functor from the category
of vector spaces over R to the category of unital R-algebras, but L can be
reconstructed from End(L) only up to a homothety l ↦ rl, r ∈ R×,where the
projective space P = L/R× can be identified with the space of maximal left
ideals in End(L)149

(Because of this ambiguity, one can’t globally define the Dirac operator on a
non-spin manifold X, because there is no vector bundle that would support D.
148See https://projecteuclid.org/download/pdf_1/euclid.lnms/1215467411
and the character sections in https://web.stanford.edu/~aaronlan/assets/
representation-theory.pdf and https://arxiv.org/pdf/1001.0462.pdf.
149 Left ideals I ⊂ End(L) corresponds to linear subspaces LI ⊂ L, such that a ∈ I⇔ a∣LI = 0.
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And although the the projectivized spin bundle PS → X with a real projective
space as the fiber is still there, this fibration admits no continuous section X → PS
– non-zero second Stiefel-Whitney class is an obstruction to that.)

VII. Subgroup G0
n ⊂ G and half-Spin Representations. Let Zn → Z2 be

the (only) non-zero homomorphism, which is invariant under permutations of
ei, denote by deg ∶ Gn → Z2 = {−1,1} be the composition of this with the
homomorphism Gn → Zn2 which sends c → 1 and let G0

n be the kernel of this
"degree" homomorphism.

In terms of Cln, this is the intersection of the subgroups Gn and Spin(n) in
Pin(n),

G0
n = Gn ∩ Spin(n) ⊂ Pin(N) ⊂ Cln.

Exercise. Show that G0
n+1 is isomorphic to Gn.

Hint. Send ei ∈ Gn, i = 1, ..., n, to the products e′n+1e
′
i for e

′
1, ...., e

′
n+1 ∈ Gn+1.

Let ê = e1e2...en and let us split the representation space L = C2k of Sn for
even n = 2k into ±1-eigenspaces of ê, L = L+ ⊕L−

If n is even then this ê anti-commute with all ei, that is êei = ceiê.
It follows that, for n = 2k,

all ei that act via Sn on L send L+ ↔ L−

and
the restriction of the representation Sn on L = C2k from the group Gn to the
subgroup G0

n ⊂ Gn sends L+ → L+ and L− → L−.
Furthermore, since the representation Sn is irreducible for Gn,

the representations S±n on L± are irreducible for G0
n.

Extend these representations by linearity to the subalgebra Cl0n ⊂ Cln gen-
erated by G0

n ⊂ Cln, observe that Cl0n contains the group Spin(n) and restrict
from Cl0n to Spin(n). Thus, for n = 2k, we obtain

two faithful irreducible representations, called half-spin representations S±

of the group Spin(n) of dimensions 2k−1.
Remark/Question. The above shows that a linear space of dimension < 2k

can’t have 2k anti-commuting anti-involutions. Is there a direct geometric proof
of this?

(The answer must be known to some people.)
VIII. Clifford’s Spin(n) Covers SO(n), What remains (for n = 2k) to show

is that this Spin(n), which is defined as the subgroup of the multiplicative
group of the Clifford algebra Cln generated by products of even numbers of
unit vectors V ∈ V ⊂ Cln, double covers the special orthogonal group SO(n).

To do this we define an orthogonal (i.e. linear isometric) action of all of
Pin(n) ⊃ Spin(n) on the (n-dimensional Euclidean) subspace V = VCl ⊂ Cln as
follows.

Let α ∶ Cln → Cln be the automorphism that linearly extends v ↦ −v on
V ⊂ Cln and let

p(v) = α(p) ⋅ v ⋅ p−1 for v ∈ V and p ∈ Pin(n).

It is clear that if p is a unit vector in V , then the transformation v ↦ p(v)
sends V to itself by reflection in the hyperplane p⊥ ⊂ V normal to p. (You can
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think of this p ∈ Pin(n) as the square root of such a reflection.150)
Since α is an automorphism of the Clifford algebra, the map from Pin(n)

to the group O(n), regarded as the group of linear Euclidean isometries of
V = (V,∑i x

2
i ), is a homomorphism of groups, which sends Spin(n) onto this

SO(n).
To conclude, we need to show that the kernel of the homomorphism Pin(n) →

O(n) ⊂ End(V ) is equal to {1,−1} ⊂ Cl(n), which is done by induction on n
starting from Pin(1) = Z4 = {1, i,−1, i} and α(i) = −1, and using the following.
.

Lemma. If α(p) ⋅ v ⋅ p−1 = v for a unit vector v ∈ V , then p is contained in the
subalgebra Cl(v⊥) ≃ Cln−1 generated by the hyperplane v⊥ ⊂ V .

Proof. Decompose the Clifford algebra into sum of four linear subspaces,

Cln = A0 ⊕ v ⋅A1 ⊕A1 ⊕ v ⋅A0,

where A0 ⊂ Cl(v
⊥) is equal to the +1-eigenspace of α, i.e. where α(a) = a, and

A1 ⊂ Cl(v
⊥) is the −1-eigenspace.

Observe that all a0 in A0 are linear combinations of products of of even
numbers of vectors from V , while all a1 ∈ A1 are combinations of odd products.

Now, by keeping track of parity of products we see that the relation
α(p) ⋅ v ⋅ p−1 = v divides into two equalities,

(a0 + v ⋅ a
′
1) ⋅ v = v ⋅ (a0 + v ⋅ a

′
1) and (a1 + v ⋅ a

′
0) ⋅ v = −v ⋅ (a1 + v ⋅ a

′
0),

which imply that a′1 = 0 and a′0 = 0.
Indeed, since v commutes with a0 and anti-commute with a1,

(a0 + v ⋅ a
′
1) ⋅ v = v ⋅ (a0 + v ⋅ a

′
1) ⇒ v ⋅ a′1 ⋅ v = v ⋅ v ⋅ a

′
1 ⇒ −v ⋅ v ⋅ a′1 = v ⋅ v ⋅ a

′
1,

and v ⋅ v = −1⇒ a′1 = 0.
Similarly, one shows that also a′0 = 0 and lemma follows.
Finally, we are through with even n:
the double cover group Pin(n) → O(n) for n = 2k comes with a faithful
irreducible complex representation Sn = S2k in C22k

, called spin representa-
tion.151

The restriction of Sn to Spin(n) ⊂ Pin(n), that is the double cover of
SO(n) ⊂ O(n), splits into the sum Sn = S

+
1
2n

⊕ S−1
2n

of two complex

conjugate152 representations, called half spin representations.153

IX. About Odd n. A quick way to arrive at the spin representation S2k of
the group Spin(n) in C2k for n = 2k + 1 is by imbedding Spin(n) ↪ Cl×n−1 and
then restricting the spin representation Sn−1=2k the Clifford algebra Cln−1 to
the so embedded Spin(n) ⊂ Cl×n−1.
150If you omit α, the resulting transformation squarev ↦ pvp−1 becomes minus reflection in
p⊥. Thus, if n is odd, all of P (n) ends up in SO(n).

Since one wants Pin(n) to cover the full orthogonal group O(n) one brings in this α.
151There in no faithful representation of Pin(n) in a lower dimensional space, since even the
subgroup Gn ⊂ Pin(n) admits no such representation.
152We didn’t prove these are complex conjugate but this follows from their construction
153 Arriving at this point took unexpectedly long – not a page or two as I had expected.
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To achieve this, we start, somewhat paradoxically, with a (somewhat artifi-
cial) embedding Cln−1 → Cln that sends Cln−1 onto the even part Cl0n ⊂ Cln,
that is the +1-eigen space of the automorphism α ∶ Cln → Cln of the Clifford
algebra induced by the central symmetry v ↦ −v of the Clifford base subspace
V = VCl ⊂ Cln.

It is (nearly) obvious that Cl0n is a subalgebra in Cln and that (this is slightly
less obvious) this subalgebra is isomorphic to Cl0n−1.

To prove the latter, imbed Cln−1 to Cln with the image Cl0n as follows.
Map the orthogonal complement v⊥ ⊂ V ⊂ Cln of a unit vector v ∈ V back

to Cl0n by e↦ v ⋅ e for all e ∈ v⊥ and show that this map extends to an injective
algebra homomorphism Cln−1 = CL(v

⊥) → Cl0n.
All you need for this is an (easy) check up of the identities

(v ⋅ e)2 = −1 and v ⋅ e ⋅ v ⋅ e′ = −v ⋅ e′ ⋅ v ⋅ e

for all v, v′ ∈ v⊥ (implicit in the above exercise about the homomorphism Gn →
G0
n+1).
Finally, since that the group Spin(n), by its very definition, is contained in

(Cl0n)
× it goes to Cl×n−1 by inverting the isomorphism Cln−1 → Cl0n. QED.

IX. Spin Representation of Pin(n) fo Odd n. Just for completeness sake,
let us explain why

the complexified Clifford algebra Cl2k+1, which has dimension 22k+1, is isomor-
phic to the sum of of two matrix algebras End(C2k−1).

Recall that the group G2k+1 has exactly two irreducible non-one-dimensional
representations, where the sum of their dimensions is 2k.

In fact both representation must have the same dimensions, because of an-
other fundamental (also nameless?) theorem:

the dimensions of all irreducible representations of a finite group G divide
the order order of G.154)

Therefore the non-Abelian part of the group algebra of G2k+1, hence the
Clifford algebra Cl2k+1 is the sum of two matrix algebras of the same dimension.
QED.

As a consequence, we get
two irreducible representations of the group Pin(2k + 1) of dimensions 2k−1.

X. Example: Pauli "Matrices". The first interesting case of Sn is an ir-
reducible 2-dimensional complex representation S2 of the group G2, hence of
Pin(2), where he latter is the non-trivial central Z2-extension of the circle
group T1 = U(1).

To obtain such a representation all you need is to find two anti-commuting
anti-involutions σ1, σ2 of C2 corresponding to the generators of e1, e2 of the
(sub)group G2 ⊂ Cl2 ⊃ Pin(2).

This is kindergarten math: let σ1, σ2 be anti-commuting involutions of the
real plane R2, namely reflections in two lines with the 45○ between them. Their
compositions, σ1σ2 and σ2σ1 are rotations by 90○ in the opposite directions,
thus σ1 and σ2 anti-commute:

σ1σ2 = −σ2σ1.

154See https://math.stackexchange.com/questions/243221/
proofs-that-the-degree-of-an-irrep-divides-the-order-of-a-group for several proofs.
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The anti-involutions σ1 = iσ1 and σ2 = iσ2, i =
√
−1, of C2 with σ3 = σ1σ

2

coming along are your Pauli guys.
⊗̂-Remark. This example can be amplified by taking tensor products, for

Clm+n = Clm⊗̂Cln,

where ⊗̂ stands for Z2-graded tensor product, for which

(a⊗ b) ⋅ (a′ ⊗ b′) = (−1)deg(a
′)deg(b)

(a ⋅ a′) ⊗ (b ⋅ b′).

This allows a sleek construction of the spin representations but it doesn’t
make it more geometrical than the one via Gn.

X. Clifford Moduli and Dirac operators. It is convenient at this point to
call a linear space L with an action S of the Clifford algebra Cl(V ) "Clifford
V -module" and to write just S instead of L = (L,S).

Also observe at this point that the actual action of V ⊂ Cl(V ) on such an
S reduces to a single linear map cl ∶ V ⊗ S → S, where the Clifford action is
denoted by "⋅",

cl(v ⊗ s) = v ⋅ s.

Now, recall, that such a map defines (and is defined by) a first order differen-
tial on the space of smooth maps ψ ∶ V → S, denoted D ∶ C∞(V,S) → C∞(V,S),
that is the composition of this cl with the differential d ∶ C∞(V ) → C∞(H) for
H =Hom(V,S) as we explained in the previous section.

Since v2 = −∣∣v∣∣2, v ∈ V , all v ≠ 0 are invertible in the multiplicative semigroup
End×(S); thus,

the linear operators D are elliptic for all Cln-moduli S.
These D can be also defined with orthonormal frames {ei} ⊂ V by

D(ψ) =
n

∑
i=1

ei ⋅ ∂iψ,

which shows that D2 = −∆2 = −∑i ∂i∂i, since

D2
= ∑
i,j

ei∂iej∂j = ∑
i,j

ei⋅ej∂i∂j = ∑
i

ei⋅ei∂i∂j+∑
i≠j

(ei⋅ej∂i∂j+ej ⋅ei∂j∂i) = −∑
i

∂i∂i.

or, where the symmetry is apparent, by integration over the unit sphere
{∣∣v∣∣ = 1} ⊂ V ,

D(ψ(v)) = constn ∫∣∣v∣∣=1
v ⋅ ∂vψ(v)dv,

and if V = Rn.
It follows by a simple symmetry consideration or by a one line computation

that
D2

= −∆ = −∑∂2
ei .

Exercise. Prove, directly that

∫∣∣w∣∣=1
w ⋅ ∂wdw∫∣∣v∣∣=1

v ⋅ ∂vdv = constn ∫∣∣v∣∣=1
−∑∂2

vdv.
155

155I myself got lost in this calculation.
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Dirac operator D on Spinors. This D is defined with the spinor representa-
tion S2k in C2k ,

D ∶ S2k → S2k,

where the "spinors" are understood here as smooth maps ψ ∶ Rn → S2k for
n = 2k or n = 2k + 1.

If n is even, the spin representation splits into two adjoint representation,
accordingly S2k = S+2k⊗S−2k, where the action of the Clifford algebra interchanges
S+2k ↔ S−2k. It follows that D = D+ ⊗D− for

D
+
∶ S+k → S−k and D− ∶ S−k → S+k ,

the operators D+ and D− are formally adjoint.
XI.D on Manifolds and Schrödinger-Lichnerowicz-Weitzenböck-Bochner For-

mula. Let X be a Riemannian spin manifold of dimension n and let S2k be the
spin bundle associated with the principal spin bundle over X that is the double
cover of the orthonormal frame bundle, where this cover is what defines the spin
structure on X.

Let ∇ be the Riemannian Levi-Civita connection, which is, observe, simul-
taneously and coherently defined on all bundles associated with the tangent
bundle. (It is irrelevant whether his is done via the principal O(n)-bundle or
Spin(n)-bundle.)

We know (this applies to all bundles with connections, see section3.3.1) that
this ∇ decomposes at each point x ∈ X into the sum ∇ = ∇flat + E∇, where
E∇ = E∇,x a smooth endomorphism of S2k over a (small) neighbourhood of
x ∈X, which vanishes at x.

This allows a "functorial transplantation" of the above D = Dflat to an D∇
on the space S of sections of the bundle S2k, where D∇ infinitesimally agree
with D at each point x ∈X,

D∇ = Dflat = ED,

for a smooth (locally defined) endomorphism ED = ED,x of S2k, which vanishes
at x.

If n is even, then, clearly, S2k = S
+
2k⊕S

−
2k and the operator D∇, denoted just

D from now on, splits accordingly: D = D+ ⊗D− for

D
+
∶ S+k → S−k and D− ∶ S−k → S+k ,

where the operators D+ and D− are formally adjoint.
Since the D2

flat = D
2
flat,x, which is defined locally, is equal to −∆ = ∇flat∇

∗
flat

at each x, the square of D = D∇, now globally, satisfies what is called "Weitzen-
boeck identity" (this applies to all "geometric operators")

D
2
= ∇∇

∗
+RD,

where ∇∗ stands for the differential formally adjoint to ∇ (this spinor ∇ acts
from (sections of) S2k to (sections of) the bundle Hom(T (X),S2k), where RD =

R∇,S,D is a selfadjoint endomorphism of the bundle S2k.
It would be nice to continue this line of this reasoning and see without

calculation that, why this RD, is a multiplication by a scalar. Regretfully, I
couldn’t do this and have resort to the (standard) symbolic manipulations. 156

156It doesn’t feel right when you can’t do mathematics solely in your mind: a piece of paper
for this purpose is no more satisfactory than a digital computer.
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To perform these we, observe that the bundle of the Clifford algebras Cl(Tx(X))

acts on S2k, where this action agrees with the covariant differentiation ∇ in S2k.
Then we see that, for all orthonormal framed of tangent vectors ei, i = 1, ..., n,
the Dirac operator is

D =∑
i

ei ⋅ ∇i for ∇i = ∇ei

and

D
2
= ∑
i,j

ei ⋅ ∇iej ⋅ ∇j = ∑
i,j

ei ⋅ ej ⋅ ∇i∇j = ∑
i=j
ei ⋅ ej∇i∇j +∑

i≠j
ei ⋅ ej ⋅ ∇i∇j =

= −∑
i

∇i∇i +∑
i<j
ei ⋅ ej ⋅ (∇i∇j −∇j∇i) = ∇∇

∗
+∑
i<j
ei ⋅ ej ⋅RS(ei ∧ ej),

where RS(ei ∧ ej) is the curvature of the bundle S2k written as a 2-form on X
with values in End(S2k).

The first term in this formula, ∇∇∗ is the Bochner Laplacian in the bundle
S2k which a selfadjoint non-strictly positive .

This ∇∇∗, regarded as a real operator, is characterized by the integral iden-
tity

∫
X
⟨∇∇

∗φ(x), ψ(x)⟩dx − ⟨∇φ(x),∇ψ(x)⟩dx = 0

which is satisfied, whenever one of the two functions has a compact support.
The proof of this formula, which makes sense and is valid for all vector

bundles with orthogonal connections, contains two ingredients, where the first
algebraic one consists in finding

an invariant representation of the integrant as the differential of an (n−1) form
and the second ingredient is, of course, Green’s formula.
In fact, all algebra needed in our is the following Leibniz formula for the

Laplace Beltrami

∆⟨φ(x), φ(x)⟩ = ⟨∇∇
∗φ(x), φ(x)⟩ + ⟨φ(x),∇∇∗φ(x)⟩ + 2⟨∇φ(x),∇φ(x)⟩.

This implies all positivity of ∇∇∗ we need.
Next, turn to the curvature term R = ∑i<j ei ⋅ ej ⋅RS(ei ∧ ej) in the above

Bochner – Weitzenböck formula for D2, that is an endomorphism R ∶ S2k → S2k,
which, being self adjoint as a real , is represented by a family of symmetric linear
operators Rx ∶ (S2k)x → (S2k)x, x ∈X, in the fibers (S2k)x ≃ S2k = C2k = R2k+1 ,
while the curvature operators RS(v1 ∧ v2) themselves are antisymmetric, for all
bivectors v1 ∧ v2 ∈ ⋀

2 Tx(x) = ⋀
2 Rn, since they represent the action of the Lie

algebra of the group Spin(n) ⊂ SO(2k+1) on R2k+1 .
In fact, a closer look shows157 that

RS(v1 ∧ v2) =
1

2
∑
i<j

⟨R(v1 ∧ v2)(ei), ej⟩ei ⋅ ej

where R(ei ∧ ej) ∶ T (X) → T (X) is the curvature of our connection ∇ as it acts
on the tangent bundle of X.
157See formula 4.37 on p. p110 in [Lawson&Michelsohn(spin geometry) 1989].
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(The presence of " 1
2
" agrees with the idea of the bundle S2k being a "the

square root" of the tangent bundle T (X), hence having one half of the curvature
of X, which is clearly seen for the Hopf complex line bundle L → S2, where
L⊗C L is isomorphic to the tangent bundle T (S2) and, accordingly, curv(L) =
1
2
curv(S2).)
Everything up to this point was applicable to an arbitrary Euclidean vector

bundle T → X of rank m with a spin structure, i.e. a double cover of the asso-
ciate principal SO(m)-bundle and the action of bundle of the Clifford algebras
Cl(T ) on the corresponding spin bundle with the fibers ≃ C2l , for m = 2l or
m = 2l + 1, where the Dirac operator defined via an orthogonal connection in T
enjoys all formulas we have presented so far.

But in the case of T = T (X) the symmetries of the curvature tensor encoded
by Bianchi identities allow the following simplification of R.

Lichnerowitz’ Identity.

R =∑
i<j
ei ⋅ ej ⋅RS(ei ∧ ej) =

1

2
∑

i<j,k<l
⟨R(ek ∧ el)(ei), ej⟩ei ⋅ ej =

Sc

4
;

Thus,

D
2φ(x) = ∇∇∗φ(x) +

1

4
Sc(X,s)φ(x) for all sections φ ∶X → S2k.

Why it is so. The action of the linear group GL(n) on the space RCT ≃

R
n2

(n2
−1)

12 of (potential) Riemannian curvature tensors splits into three irre-
ducible representations RCT = Sc ⊕ Ri ⊕W , where Sc is the trivial one di-
mensional representation, Ri the space of traceless symmetric 2-forms and W
the space of Weyl tensors. Accordingly, every smooth n-manifolds X supports
three (curvature) differential operators of the second order from the space G+
of positive definite quadratic differential forms g on X to the space of sections
of vector bundles over X associated with the tangent bundle T (X) via one of
these representations, such that

●lin these operators are linear in the second derivatives of g;
●inv these operators are equivariant under the action of the diffeomorphism

group diff(X) operator and where
these operators and their scalar multiples are the only ones with such quasi-

linearity and invariance properties
On the other hand the R is also constructed in a diff(X)-equivariant man-

ner but it operators on the spinor bundle S2k, where the double cover of GL(n)
can’t act.158 This suggests that there is no non-scalar intertwining from the
space of curvature tensors on X to the space of symmetric operators on S2k, but
since I didn’t figure out how to prove this without a few lines of manipulations
with Bianchi identities, let us accept this for a fact.159

3.3.4 Dirac Operators with Coefficients in Vector Bundles, Twisted
S-L-W-B Formula and K-Area

Let D⊗L be the Dirac twisted with a complex vector bundle L → X with a
unitary connection ∇L on it. Then, as earlier, we have the general Bochner-
158Lemma 5.23. p 132 in [Lawson&Michelsohn(spin geometry) 1989].
159Or see "Proof of Theorem 8.8" on page 161 in [Lawson&Michelsohn(spin geometry) 1989].
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Weitzenböck formula

D
2
⊗L = ∇∇

∗
+∑
i<j
ei ⋅ ej ⋅R⊗(ei ∧ ej),

where this ∇ = ∇⊗ is the connection in the tensor product of the spinor bundle
with L that is defined by the Leibniz rule,

∇
⊗
(s⊗ l) = ∇S ⊗ l + s⊗∇L(l);

hence, the curvature ⋅R⊗ of this connection, that is the commutator of the ∇⊗-
differentiations, also behaves by this rule:

R⊗(ei ∧ ej)(s⊗ l) = RS(ei ∧ ej)(s) ⊗ l + l ⊗RL(ei ∧ ej)(l)

which brings us to the following.
[D⊗] Twisted S-L-W-B Formula:

D
2
⊗L(σ ⊗ l) = ∇∇

∗
(σ ⊗ l) +

Sc(X)

4
(σ ⊗ l) +∑

i<j
ei ⋅ ej ⋅ σ ⊗RL(ei ∧ ej)(l).

A basic application of this formula is the bound on the area-size of manifolds
with Sc ≥ σ > 0 expressed in terms of vector bundles over X.

[K☆] Bound on K-Area by Scalar Curvature. Let X be compact ori-
entable Riemannian Manifold with positive scalar curvature and let L → X be a
complex vector bundle with the unitary connection.

If the norms of the curvature operators Rx(e1 ∧ e2) ∶ Tx(Xx → Tx(X) of this
connection are bounded by

∣∣Rx(e1 ∧ e2) ∶ Tx(Xx → Tx(X)∣∣ ≤ κn ⋅ Sc(X,x)

for all x ∈ X, all unit bivectors e1 ∧ e2 in the tangent spaces Tx(X) and a
universal strictly positive constant κn > 0, then, provided X is spin, all Chern
numbers of the bundle L vanish.

Proof. If some Chern number of L doesn’t vanish, then an easy computa-
tion with Chern classes and the index formula shows160 that there exists an
associated bundle L′, such that the curvature R′ of the connectin in L′ satisfies

∣∣R′
x(e1 ∧ e2) ∶ Tx(Xx → Tx(X)∣∣ ≤ constn ⋅ ∣∣Rx(e1 ∧ e2) ∶ Tx(Xx → Tx(X)∣∣

and such that the index of the twisted Dirac operator on the spinor bundle
tensored with L′,

D
+
⊗L′ ∶ S

+
⊗L′ → S+ ⊗L′,

doesn’t vanish.
But if

∣∣R′
x(e1 ∧ e2) ∶ Tx(Xx → Tx(X)∣∣ <

1

4
⋅

2

n(n − 1)
⋅ Sc(X,x).

160For details and further applications see [GL(spin) 1980], §4-5 in chapter IV in [Law-
son&Michelsohn(spin geometry) 1989], §4-5 in [G(positive) 1996], [Min-Oo(K-Area) 2002] and
sections 3.3.4, 4.1, 4.1.4.
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then, according to [⊗] the D2
⊗L′ is positive and the poof follows by contradiction.

At first sight this [☆] looks as an artifact of symbolic manipulations with
curvatures of vector bundles, an insignificant generalization of the Lichnerowicz
theorem, as devoid of an actual geometric information about X as this theorem
is.

But, surpassingly, although the proof of [☆] is 90% the same161 as that by
Lichnerowicz, the information contents of the two statements are vastly different
– almost nothing in common between them:

Lichnerowicz is 99% about delicate smooth topological invariants of manifolds
with Sc > 0, while [☆] reveals raw geometric essence of Sc(X) ≥ σ > 0, which,
as it becomes a positive curvature condition, limits the size of X.162

Below is a specific instance of this.
Rough Area (non)-Contraction Corollary. Given a compact Rieman-

nian manifold X, there exists a positive constant κ = κX > 0, which restricts
how much manifolds X with Sc ≥ 1

κ
can be area-wise greater than X, which

is expressed by a bound on a possible decrease of areas of surfaces in X under
"topologically significant" maps X →X.

In precise language,
[⋆] letX be an oriented Riemannian manifold with Sc(X) > 0 and f ∶X →X

a smooth map, such that the norm of the second exterior power of the differential
of f ,

∧
2df ∶

2

⋀T (X) →
2

⋀T (X),

is bounded by the reciprocal of the scalar curvature of X times κX ,

∣∣ ∧
2 df(x)∣∣ <

κX

Sc(X,x)
, for all x ∈X.

Then, provided X is spin, the image h of of the fundamental homology class
of X in the homology of X, that is

h = f∗[X] ∈Hn(X), n = dim(X),

is torsion.
Proof. By basic topology (a corollary to a theorem by Serre), an even di-

mensional non-torsion homology class h in X is "detected" by a complex vector
bundle: that is a L→X, such that some characteristic cohomology class c of L,
doesn’t vanish on h

c(h) ≠ 0.

If h = f∗[X], then f∗(c)[X], which serves as a characteristic number of the
induced bundle L = f∗(L) →X, is equal to c(h); hence it doesn’t vanish either.

Now, arguing as in the proof of [Sc ≯ 0] for profinitely hyperspherical man-
ifolds (see section 3.3), let ∇ be a unitary connection in L and observe that the

161The proof of [☆] , unlike that of Lichnerowicz’ theorem, needs only 10% of the power
of the Atiyah-Singer theorem – the easy part of it: non-trivial variability of the index of D⊗L
with variations of (the Chern classes of) L, rather than a more subtle aspect of the formula
which involves Â-genus of X.
162Positivity of the sectional (and Ricci) curvature, imposes bounds the first and the second
derivatives of the growths of balls in respective manifolds.
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norm of the curvature R of the induced connection in L, which is, after all, is a
2-form, is bounded by the curvature R of ∇,

∣∣Rx∣∣ ≤ ∣∣ ∧
2 df(x)∣∣ ⋅ ∣∣Rx∣∣.

Thus, if n = dim(X) is even, the proof follows from [☆] and the odd case
reduces to the even one by taking the products of both manifolds with the
circle.

Remarks and Exercises. (a) We use the word "K-area" to express the idea
that

if X contains "homologically significant" families of surfaces with small areas,
then K-cohomology classes of X can’t be represented by bundles with connections,
which have small curvatures
and where
the norm of ∧2df measures by how much f contracts/expands these areas.163

Yet, we shall eventually switch to an uglier but more appropriate word "K-
cowaist2".

(b) Let X and Y be closed oriented surfaces with Riemannian metrics on
them and let f0 ∶ X → Y be a continuous map of degree d. Show that f0 is
homotopic to a smooth strictly area decreasing map f , i.e. where ∣∣∧2df(x)∣∣ < 1
for all x ∈X, if and only if area(X) > d ⋅ area(Y ).

(c) The principal case in the above corollary, which yields most topologi-
cal applications, 164 is where X is the n-sphere Sn and where the non-torsion
condition amounts to non-vanishing of the degree of f ∶X → Sn.

In fact, as one knows by a theorem of Serre, the multiple of every cohomology
class h in X with h ⌣ h = 0 can be induced from the the fundamental class of Sn

by a smooth map X → Sn, the general case of this corollary, for all dimensions,
can be (with a minor effort) reduced X = Sn.

(d) We call this corollary "rough", since the (lower) bound on κX its proof
delivers is far from optimal;

Optimal bounds, however, are available, albeit only in a few cases, including
X = Sn as we shall see in the following sections.

Questions. (A) Is the spin condition in [⋆] redundant?
Or the opposite is true: if an orientable non-spin n-manifold X admits a metric

g0 with Sc(g0) > 0, then it carries metrics gε, for all ε > 0, with Sc(gε) ≥ 1, for
which allow smooth maps fε ∶ (X,gε) → Sn with deg(fε) ≠ 0, and ∣∣ ∧2 df ∣∣ ≤ ε?

(B) Can the torsion conclusion in [⋆] be replaced by "p-torsion for some
particular p, preferably for p = 2 and, in lucky cases, even by just f∗[X] ≠ 0?

(It is not even clear if this can be done with a bound on ∣∣df ∣∣ rather than on
∧2∣∣df ∣∣, where there is a chance for a successful use of minimal hypersurfaces.)

3.4 Sharp Lower Bounds on sup- and trace-Norms of Dif-
ferentials of Maps from Spin manifolds with Sc > 0 to
Spheres.

There is no single numerical invariant faithfully representing the size of X, but
there are several ways of comparison the sizes of different manifolds.
163See [G(positive) 1996], [Min-Oo(K-Area) 2002] and sections 3.3.4, 4.1.4 for more about
this K-area.
164See [GL(spin) 1980], [GL(complete) 1983], [Lawson&Michelsohn(spin geometry) 1989].
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In the case, where two Riemannian metrics are defined on the same back-
ground manifold, say g and g on X, one compares these at a point x by si-
multaneously diagonalizing them and recording the ratios of their values on the
vectors ei from the common orthonormal frame {e1, e2, ...., en} ⊂ Tx(X), that
are the numbers

λi(x) = λi(g/g, x) =
∣∣ei∣∣g

∣∣ei∣∣g
.

In terms of these numbers, the inequalities λi(x) ≤ 1, x ∈ X, say that g ≥ g,
while the inequalities λiλj(x) ≤ 1 convey that g is (only) area wise (non-strictly)
greater than g, where, of course, the former implies the latter.

Another way to compare the metrics is by using the trace of g relative to g,
denoted

trace(g/g) =
n

∑
1

λi, n = dim(X),

where the inequality
1

n
trace(g/g) ≤ 1

expresses the idea of g being greater than g.
This "trace-wise greater" is less restrictive, yet, moderately so, than the

"ordinary greater" g ≥ g, for

g ≥ g⇒ g ≥
tr
g⇒ g ≥

1

n2
g.

(Notice that λi(g/c2g) = 1
c
λi(g/g).)

A more relevant for us is the "area trace"

trace∧2(g/g) = ∑
i≠j
λiλj

where "trace area-wise greater" inequality reads

1

n(n − 1)
trace∧2(g/g) ≤ 1,

which is related to the "untraced area-wise greater" ratio by the relations

[g ≥
∧2
g] ⇒ [g ≥

tr
∧
2

g] ⇒ [g ≥
1

n(n − 1)
g] .

3.4.1 Area Inequalities for Equidimensional Maps:Extremality and
Rigidity

In order to apply the above to Riemannian metrics g and g on differentmanifolds
X and X we relate them by a smooth map, say f ∶X →X, where the principal
case is of dim(X) = dim(X) = n and where, to make sense of what follows, the
map f must be "homotopically onto", that is not homotopic to a map into a
proper subset in X.
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If both manifolds are orientable – they are assumed compact without bound-
aries at this point – this is equivalent to non-vanishing of the degree deg(f) of
the map, 165

If non-orientability is easily taken care of by just passing to orientable double
covers, what does cause a problem is the spin condition, the relevance of which
the following two geometric theorems remains problematic.

[Xspin
→b] Spin-Area Convex Extremality Theorem. Let X ⊂ Rn+1

be a smooth compact convex hypersurface and let g be the Riemannian metric
on X induced from Rn+1. Let X = (X,g) be a compact orientable Riemannian
n-manifold with Sc ≥ 0 and let f ∶X →X be a smooth map of non-zero degree.

Let g○ = Sc(g) ⋅g and g○ = Sc(g) ⋅g be the corresponding Sc-normalized metrics
If X is spin and n is even, then the map f can’t be strictly area decreasing,

that is the metric g○ is not area-wise greater, than the induced metric f∗(g○) on
X.

Put it another way,
there necessarily exists a point x ∈X, where the norm of the second exterior

power of the differential of f is bounded from below by the scalar curvature of
X as follows

Sc(X,f(x)) ⋅ ∣∣ ∧2 df(x)∣∣ ≥ Sc(X,x),

which, in terms of λ○i = λi(f
∗(g○))/g○), reads

max
x∈X,i≠j

λ○i (x)λ
○
j(x) ≥ 1.

In the simplest case, where X is the unit sphere Sn ⊂ Rn+1, this theorem
can be refined as follows.

[Xspin → #] Spherical Trace Area Extremality Theorem. Let X be a
compact orientable Riemannian spin manifold of dimension n and f ∶X → Sn =X
be a map with deg(f) ≠ 0.

Then f can’t be trace area-wise strictly decreasing with respect to the Sc-
normalized metrics g○ = Sc(g) ⋅ g on X and g○ = Sc(g) ⋅ g○ = n(n− 1)ds2, which,
in terms of the exterior power of f , says that there is a point x ∈ X, where the
trace-norm of the second exterior power of the differential of f is bounded from
below by the scalar curvature of X as follows

2∣∣ ∧2 df(x)∣∣trace ≥ Sc(X,x),

that is
1

2n(n − 1)
∑
i≠j
λ○i (x)λ

○
j(x) ≥ 1 for λ○i = λi(f

∗(g○))/g○).

Remarks (a) Neither [Xspin
→b] nor [Xspin → #] seem obvious even,

where X is also a convex hypersurface in Rn+1.
Question. Are there counterparts of [Xspin

→b] and/or of [Xspin → #]
for symmetric function sk of the principal curvatures α1, α2, ..., αn of convex
hypersurfaces X and X? (We shall return to this question in (b) of 3.5.)
165The implication [deg(f) ≠ 0] ⇒ [f is homotopically onto], which is obvious by the modern
standards, is by no means trivial. For instance, "homotopically onto" for the identity map of
the n-sphere is equivalent (one line kindergarten argument) to the Brauer fixed point theorem
for the (n + 1)-ball.
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(b) The condition n = 2k, which is unneeded for [Xspin → #], probably is

also redundant for [Xspin
→b].

(c) These two theorem will be later generalized in several directions.
(d1) One may allow non-compact, and sometimes even non-complete mani-

folds X with suitable conditions on maps f , in order to have their degrees being
properly defined.

(e2) In the case, where dim(X) = dim(X) + 4l, the condition deg(f) ≠ 0
can be replaced by Â[f−1(x)] ≠ 0 for a generic point x ∈ X of a smooth map
f ∶ X → X. (c3) Instead of a convex hypersurface in Rn+1, one may take
a more general Riemannian manifold for X, namely one with a non-negative
curvature operator and – this is, probably, unnecessary – with non-zero Euler
characteristic.

(f) Who is extremal? These two extremality theorems can be thought of as
properties of X, saying that "large scalar curvature makes X small".

From another perspective, these theorems are about X, saying that X can’t
be enlarged without making its scalar curvature smaller at some point.

This suggest two avenues of generalizations that we shall explore in the
following sections.

1. Widen the class of manifolds X and maps f ∶ X → X, which satisfy
the above or similar theorems and, regardless of the scalar curvature, study
invariants of manifolds X responsible for existence/non-existence of metrically
contracting, yet topologically significant, maps from X to "standard" manifolds
X such as the spheres, for instance.

2. Find further instances of extremal manifolds X = (X,g) with Sc(g) > 0,
i.e. where no Sc-normalized metric g can be greater the so normalized g,

Sc(g) ⋅ g ≯ Sc(g) ⋅ g

and study properties of such metrics.166

A few Words about the Proofs. 167. The logic here is the same as in the proof
of the rough area (non)-contraction corollary from the previous section, where
the sharpness of the bound on ∧2df is achieved by a choice of the bundle L→X
with a non-zero top Chern class with a connection ∇ with minimal possible
curvature, that allows the necessary strong bound on the "twisted curvature"
term ∑i<j ei ⋅ej ⋅σ⊗RL(ei∧ej)(l) in the Schrödinger-Lichnerowicz-Weitzenböck-
Bochner formula for the Dirac operator on X tensored with induced connection
∇ = f∗(∇) in the bundle L = f∗(L) →X,

D
2
⊗L(σ ⊗ l) = ∇∇

∗
(σ ⊗ l) +

Sc(X)

4
(σ ⊗ l) +∑

i<j
ei ⋅ ej ⋅ σ ⊗RL(ei ∧ ej)(l).

The natural choice of L – this was suggested by Blaine Lawson 40 years
166See [Sun-Dai(bi-invariant)2020] for the proof of the extremality of bi-invariant metrics on
compact Lie groups in the class of left invariant metrics.
167For detailed poofs the above mentioned results see [Llarull(sharp estimates) 1998],
[Min-Oo(Hermitian) 1998], [Min-Oo(K-Area) 2002], [Goette-Semmelmann(symmetric) 2002],
[Goette(alternating torsion) 2007], [Listing(symmetric spaces) 2010]; also we say a bit more
about this in sections4, 4.1.
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ago –168) is one of the Bott generator bundles, that are the 1
2
-spinor bundles

L± = S±(X) (with rankC(L) = 2k−1 for n = 2k), which, being the "moral square
roots" of the tangent bundle T (X), have their curvatures equal to the one half
of that of T (X). (This is clearly seen for n = 2 where L+ is the Hopf complex
line bundle over S2.

What makes L± promising candidates for S-L-W-B-extremality, is the fact
that L±-twisted Dirac operator on the manifold X itself does have harmonic
spinors but only barely so: these spinors are parallel as they correspond to
constant functions and/or to constant multiples of the Riemannian volume n-
form on X.

The extremality property of L± was confirmed by Llarull in the case of
X = Sn and – this was by no means expected – by Goette and Semmelmann
for manifolds X with positive curvature operators, while the possibilities of
Sc-normalization and of tracing ∧2df , were suggested by Listings. (Although
there is no technical novelties in the proofs of the Sc-normalised and traced
modifications of [Xspin

→b] and [Xspin → #] these significantly widen the
range of applications of these extremality theorems.)

Besides facing algebraic complexity of the "twisted curvature" one has to
ensure the existence of non-zero L±-twisted harmonic spinors on X for L± =

f∗L±.
The index formula guarantees this for n = 2k and, under an additional con-

dition on f , also for n = 4l + 1, but in general the existence of such spinors for
all metrics on X and all n remains problematic.
#∎. The Proof of [Xspin → #] for odd n = dim(X). Given a map X → Sn ⊂

Sn+1, radially (and obviously) extend it to the map X × [−π
2
, π

2
] → Sn+1 with

the bottom and the top of the cylinder X × [−π
2
, π

2
] sent to the poles of Sn+1,

X × {∓π
2
} → ∓1.

One can proceed three ways from this point.
1. EndowX×[−π

2
, π

2
] with the (spherical suspension) warped product metric

ĝ with the same warping factor as that for the spherical cylinder Sn+1∖{−1,+1}
and observe that, say in the case of Sc(X) ≥ n(n− 1) = Sc(Sn), this metric has
greater scalar curvature than that of Sn+1.

Then, by an easy argument, an ε-small C0-perturbation of this metric ε-
near the boundary extends, for all ε > 0, to a complete metric ĝε on the infinite
cylinder X × (−∞,+∞), such that Sc(ĝε) ≥ n(n + 1) − ε and such that the
geometry of X × (−∞,+∞), gε) ≥ n(n+ 1) − ε is cylindrical for ∣t∣ ≥ π

2
+ ε infinity

with the scalar curvature ≥ n(n + 1) + 1.
Thus the untraced inequality [Xspin → #] applies to the product Sn×S1(R)

R ≥ 2 obtained by closing this cylinder at infinity and letting ε→ 0.
2. Apply the traced inequality [Xspin → #] to maps Xn × S1(R) → Sn+1,

where Sn×S1(R) comes with with the product metric, and let the radius of the
circle R →∞. (This is, essentially, how it was done in [Llarull(sharp estimates)
1998].)

3. Regard a map Xn × S1 → Sn+1 of non-zero degree as a family of maps
fs ∶X → Sn+1 and use the spectral flow index theorem for the family of operators
168I recall this well, since I was taken by surprise by the properties of this bundle, which
has the minimal curvature (one half of that of the tangent bundle of the sphere) among all
unitary bundles with non-trivial Euler class.
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on X =X × s parametrized by S1.169

.
Exercise. Fill in the details in (1) and (2).
Question Is there a more direct (K1-theoretic?) proof of the inequality [Xspin →

#] for odd n with no direct reference to Sn+1 and desirably of [Xspin
→b] as well

for, odd n, e.g. by a spectral flow argument?
Infinite Dimensional Remark. Both, spherical suspension in 1 and the cylin-

drical one in 2, when repeated N-times times and can be interpreted in the limits
for N →∞ as properties of

1∞ infinite dimensional manifolds X∞ with Sc(X∞) ≥ Sc(S∞);
2∞ Sc(X∞) ≥ Sc(Sn ×R∞−n;
inequalities are implemented in both cases by certain special Fredholm-type

maps X∞ → S∞.
Conversely, one can prove an infinite dimensional version of [Xspin → #] for

limits of the above maps, say for
Fredholm maps from a Hilbertian manifold X to the Hilbertian sphere, f ∶X →

S∞,such that deg(f ≠ 0 and such that there exists a sequence of equatorial spheres

SN1 ⊃ SN2 ⊃ ... ⊃ SNi ⊃ ... ⊃ S∞,

where the union ⋃i SNi is dense in S∞ and such that the pullbacksXi = f
−1(SNi) ⊂

X are smooth submanifolds of dimensions Ni, the scalar curvatures of which with
the induced metrics satisfy Sc(Xi) −Ni(Ni − 1) − 0 for i→∞.

Infinite Dimensional Questions. What is the most general/natural infinite
dimensional inequality [Xspin → #]?

Is there a direct proof of such an inequality with no use of finite dimensional
approximation?

Are there natural Hilbertian and/or non-Hilbertian spaces X to which such
an inequality may apply?

Stability Remark. Probably, (I haven’t thought trough this) the reduction
argument even; odd implies certain stability of harmonic spinors on (2m−1)-
manifolds X twisted with spherical spinors, that are section of the induced
bundle f∗(S(S2m−1)) by maps f ∶X → S2m−1 with deg(f) ≠ 0.

Another (seemingly unrelated) instance of stability of harmonic spinors (seem-
ingly) independent of the index theorem is present in

Witten’s argument in his proof of the Euclidean positive mass theorem as well
in Min-Oo’s proof of the hyperbolic one.

Probably, there are many examples of stable (twisted) harmonic spinors on
compact manifolds, where this stability is not not predicted, at least not directly,
by the index theorem.170

169Such argument was used in [Vafa-Witten(fermions) 1984] for lower bounds on spectral
gaps for the Dirac operator, succinctly exposed in [Atiyah(eigenvalues) 1984] and applied in
§6 in [G(positive) 1996] to spectral bounds for the Laplace operators on odd dimensional
Riemannian manifolds.

Also spectral flow for Dirac operators combined with a refined Kato inequality is used in
[Davaux(spectrum) 2003] for the proof of sharp upper bounds on the scalar curvatures of
Riemannian metrics on compact manifolds which admit hyperbolic metrics.
170To make sense of this one has to properly specify the meaning of "stability" not to
run into (counter) a example, see Harmonic Spinors and Topology by Christian Bár,https:
//link.springer.com/chapter/10.1007/978-94-011-5276-1_3
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Area Rigidity Problem: Examples and Counter Examples. Given
a smooth convex hypersurface X ⊂ Rn+1 and let g be the induced Riemannian
metric on X.

Describe (all) Riemanniann-manifolds X = (X,g) along with smooth maps f ∶
X →X, such that

Sc(g, f(x)) ≤ Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣

at all x ∈X and also X and f where

Sc(g, f(x)) = Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣.

In the "ideal rigid" case, at least for Sc(X) > 0, one wants all such maps to
be locally isometric with respect to the Sc-normalised metrics g○ = Sc(g) ⋅ g and
g○ = Sc(g) ⋅ g. (This, if I am not mistaken, is the same as local homothety with
respect to the original metrics: the induced Riemannin metrics f∗(g) on X are
constant multiples of g, i.e. g = λ ⋅ f∗(g))

But the true picture is more interesting than this "ideal". Here is what one
can say in this regard.

(A) If n=2 then the equality Sc(g, f(x)) = Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣ says that
f is locally area preserving with respect to g○ and g○; hence, the space of such
maps is (at least) as large as the group of area preserving diffeomorphisms of
the disc.

(B) If n ≥ 3, then locally area preserving maps are locally isometric and, in
fact,

"Ideal rigidity", i.e. the implication

Sc(g, f(x)) ≤ Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣ ⇒ g = λ ⋅ f∗(g),

was proven by Mario Listing under the following assumptions:171

● X is a closed strictly convex hypersurface of dimension n ≥ 3, where this
"strictly" signifies that all principal curvatures are > 0 (rather than non-existence of
straight segments in X);

● X is a closed connected orientable spin manifold and deg(f) ≠ 0.
Now let us look at non-strictly convex hypersurfaces of dimensions n ≥ 3.
(C) Let a hypersurface X ⊂ Rn0+m be the product

X =X0 ×Rm

where X0 ⊂ Rn0 is a smooth hypersurface. Then all (self) maps

f = (f0, f1) ∶X →X0 ×Rm =X,

such that ∣∣df1∣∣ ≤ 1, satisfy Sc(g, f(x)) = Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣.

If m ≥ 2, there are no closed Euclidean hypersurfaces displaying such non-
rigidity (unless I am missing obvious Euclidean examples)172 but this non-
rigidity, of cylinders, i.e. for m = 1, can be cast into a compact form; also
this can be done to conical hypersurfaces as follows.
171See theorem 1 in [Listing(symmetric spaces) 2010], and compare with Theorem 4.11 in
[Llarull(sharp estimates) 1998].
172There are these in Rn0 × Tm.
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(D) Let C ⊂ Rn+1 a smooth convex cone and let X ⊂ C be a smooth closed
convex hypersurface, such that the intersection X∩∂C contains a conical annuls
A in the boundary of C pinched between two spheres,

A = {a ∈ ∂C}R1≤∣∣a∣∣≤R2
.

Thus, the boundary of X ⊂ C consists of three parts:
the side boundary that is the intersection X ∩ ∂C;
bottom X1 ⊂X that lies on the R1-side in the interior of C, i.e. ∣∣x1∣∣ < R1, for

x1 ∈X1,
top of X2 ⊂ X that lies on the R2-side in the interior of C, i.e. ∣∣x∣∣ > R2 for

x2 ∈X2.
Scale up the top of X and set:

X = (X ∖X2) ∪ λX2, λ > 1.

This X admits an obvious (infinite dimensional) family of diffeomorphisms
f ∶X →X, that

fix the bottom,
return back the top by x→ λ−1x,
send all straight radial segments in the side boundary of X to themselves,
satisfy the equality Sc(g, f(x)) = Sc(g, x) ⋅ ∣∣ ∧2 df(x)∣∣.

Probbaly, (C) and (D) give a fair picture of possible kinds of not-quite-rigid
X with Sc(X) > 0 in the class of convex X, but it is not so clear for the class
of all X with Sc(X) > 0

3.4.2 Area Contracting Maps with Decrease of Dimension

The lower bounds on the norms ∣∣ ∧2 df ∣∣ for equividimensional maps f ∶X →X
with non-zero degree generalize to maps, where dim(X) > dim(X) with an
appropriate generalization of the concept of degree.

For example, the proofs of the rough Area (non)-contraction property (sec-
tion 3.3.4) and of both its above refinements [Xspin

→b] and [Xspin → #], which
say that such norms can’t be too small at all points in X,

∣∣ ∧2 df(x)∣∣ ≮ Sc(X,x)
Sc(X,f(x)∣∣ and ∣∣ ∧2 df(x)∣∣trace ≮ 2Sc(X,x)

n(n−1) correspondingly,

extend with (almost) no change to maps f ∶ Xn+4l → Xn with non-zero Â-
degrees, which means non vanishing of the Â-genera of the pullbacks f−1(x) ⊂
Xn+4l of generic points x ∈Xn. 173

For instance:

[Xspin
Â
→ #]] Â-Extremality Theorem. Let X be a compact orientable

Riemannian spin manifold of dimension n + 4l and f ∶ X → X = Sn be a smooth
map, such that the Â-genus of the f -pullback of a regular point from Sn doesn’t
vanish,

Â[f−1
(x0)] ≠ 0, x0 ∈ S

n.

.
173This is done in [GL(spin)1980], [Llarull(sharp estimates) 1998], [Goette-
Semmelmann(symmetric) 2002] and in [Goette(alternating torsion)2007] for bounds on
∣∣∧2df ∣∣, but the corresponding lower bound on ∣∣∧2df ∣∣trace is missing from [Listing(symmetric
spaces) 2010]; however, as I see it, there in no problem with this either.
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Then there exists a point x ∈X, where the the trace-norm of the second exte-
rior power of the differential of f is bounded from below by the scalar curvature
of X as follows,

2∣∣ ∧2 df(x)∣∣trace ≥ Sc(X,x).

Since

2∣∣∧2df(x)∣∣trace = ∑
i≠j
λi(x)λj(x) ≤ n(n−1)max

i≠j
λi(x)λj(x) = n(n−1)∣∣∧2df(x)∣∣,

this implies that if Sc(X) ≥ n(n − 1) = Sc(Sn), then the map f can’t be strictly
area decreasing.

Generalization to α̂. The above remains true with α̂ instead of Â, e.g.
where the pullback of a regular point f−1(x0) ⊂X is diffeomorphic to Hitchin’s
exotic sphere Σn for n = 8k + 1,8k + 3.174

Question. Does the conclusion of the above theorem remain true if the
nonvanishing of Â[f−1(x0)] is replaced by the following

the pullbacks (f ′)−1(x), for all smooth maps f ′ ∶Xn+m →Xn homotopic to f
and

all f ′-non-critical x ∈Xn, admit no metrics with Sc > 0.
This is beyond the present day techniques, already for manifolds Xn+m

homeomorphic to Sn × Y m, where Y m is SYS-manifold.
But if Y m is the torus or, more generally an enlargeable manifold, e.g. if

it admits a metric with non-positive sectional curvature, then Dirac theoretic
techniques on complete manifolds (see sections 3.14.2, 4.1) delivers the proof of
the following.

⨉Rm- Stabilized Mapping Theorem. Let Xn+m be a complete orientable
Riemannian spin manifold with Sc(Xn+m) ≥ σ > 0 175 and let Xn be a smooth
convex hypersurface in Rn+1. Let f1 ∶ Xn+m → Xn and f2 ∶ Xn+m → Rm be
smooth maps, where f2 is a proper176 distance decreasing map and where the
"product map",

(f1, f2) ∶X
n+m

→Xn
×Rm

has non-zero degree.
Then, if n is even, there exists a point x ∈X, where

∣∣ ∧
2 df(x)∣∣ ≥

Sc(X,x)

Sc(X,f(x)).

Furthermore, if Xn
= Sn, one can allow odd n and replace the above inequal-

ity by the stronger one:

2∣∣ ∧2 df(x)∣∣trace ≮ Sc(X,x).
177

174Such a Σn is homeomorphic to the ordinary sphere Sn, but doesn’t bound a spin manifold.
175In view of [Zhang(Area Decreasing) 2020], one can, probably, relax this to Sc(Xn+m) ≥ 0.
176This is the usual "proper": pullbacks of compact subsets are compact.
177See[Cecchini(long neck) 2020], [Cecchini-Zeidler(generalized Callias) 2021], [Cecchini-
Zeidler(Scalar&mean) 2021] for more general results applicable to manifolds Xn+m with
boundaries and to all closed manifolds Ym, the non-existence of metrics with Sc > 0 on
which follows from non-vanishing of Rosenberg index.
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There is a particularly useful corollary of this theorem, where Xn+m = Y n ⋊
Tm is a T⋊-extension of a manifold Y n, that is the product Y n × Tm with a
warped product metric dy2 +φ(x)2dt2 and where the map f ∶X ×Tm factors as
Y n ×Tm → Y n →X for the coordinate projection Y n ×Tm → Y n

For instance, such a T⋊-stabilized mapping theorem for m = 1 together with
the µ-bubble separation theorem (sections 3.7, 5.4), yield a sharp area mapping
inequality for a class of manifolds X with boundaries, e.g. for X = Y × [−1,1].

3.4.3 Parametric Area Inequalities for Families of Maps

Introduce parameters wherever possible is a motto of modern mathe-
matics; Grothendieck concept of topos – a category of sets parametrized by a
"topological site" – is the most general manifestation of this.

The first instance of this in the present context is an application of the index
theorem to the

family of flat complex line bundles Lp over the torus parametrized by the dual
(Picard) torus

and thus showing that the torus T2m with an arbitrary Riemannian metric g
supports a non-zero harmonic spinor twisted with a flat unitary bundle; hence,
no metric g on the torus may have Sc(g) > 0 by the (untwisted) S-L-W-B
formula. 178

Today, this idea is expressed in terms of elliptic operators E⊗A with coeffi-
cients in C∗-algebras A, which, for commutative A, are algebras of continuous
functions on toplogical spaces P parametrizing families of operators Ep, p ∈ P .

Closer home, we want to determine a homotopy bound on a space of maps
f ∶X →X in terms of inf Sc(X) and the the norms ∣∣ ∧2 df ∣∣ of these maps.

Here is an instance of what we are looking for.
[X × P → #] Sharp Parametric Area Contraction Theorem. Let X

be an orientable spin manifold of dimension n, let P be an m-dimensional orientable
pseudomanifold, let gp, p ∈ P , be a C2-continuous family of smooth Riemannian
metrics and let f ∶X ×P → Sn+m be a continuous map, where all maps fp = f∣Xp ∶
X =Xp =X × {p} → Sn+m are C1-smooth.

Then there exists a point (x, p) ∈X, where the gp-trace norm of the exterior
square of the differential of fp(x) is bounded from below by

2∣∣trace(∧2dfp)∣∣ =
n

∑
i≠j
λi(x)λj(x) ≥ Sc(gp, x)

for some (x, p) ∈X × P .
Consequently,
the inclusion I{g} of the space F{g} of pairs (g, f), where g is a Riemannian

metric on X and f ∶X → Sn+m f is a smooth map, such that

2∣∣trace(∧2dfp)∣∣ =
n

∑
i≠j
λi(x)λj(x) < Sc(gp, x) for all (x, p) ∈X × P,

178This idea goes back to George Lusztig’s paper Novikov’s higher signature and families
of elliptic s where it is used for a proof of the homotopy invariance of "torical" Pontryagin
classes.
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to the space of all continuous maps X → Sn+m,

I{g}F{g} ↪ Fcont(X,S
n+m

),

is contractible.
Outlines of two Proofs. 1. Apply the parametric index theorem to the

Dirac operators on Xp twisted with bundles Lp → Xp induced from the same
bundle L = S±(Sn+m) → Sn+m that was used in the proof of the area contraction
theorems in section 3.4.1 and confirm curvature estimates needed for the twisted
S-L-W-B formula.

(If n is odd, one has to argue as in #∎ in the proof of [Xspin → #] for odd
n in section 3.4.1.)

2. Reduce the parametric problem to the non-parametric trace extremality
theorem [Xspin → #] from section 3.4.1 applied to maps Xn+m → Sn+m.

To do this, assume P is a manifold179 and let hλ, λ ≥ 0, be a family of
Riemannian metric on P such that gλ ≥ λ ⋅ h0 and Sc(hλ) ≤ λ−1 and send
λ → ∞. Then, due to additivity of trace, application of [Xspin → #] yields
[X × P → #].

Remarks.(a) If instead of the trace norm of df we had used the sup-norm,
this argument would give you a non-sharp inequality, namely with the extra
constant (n+m)(n+m−1)

n(n−1) .
(b) Non-product families. Let {Xp} be a continuous family of compact con-

nected orientable Riemannian n-manifolds parametrized by an orientable N -
psedomanifold P ∋ p, that is {Xp} is represented by a fibration X = {Xp} → P
with the fibers Xp.

Let f ∶ X → Sn+N , where n = dim(Xp) and N = dim(P ), be continuous
map the restrictions of which to all Xp are, smooth area non-decreasing, e.g.
1-Lipschitz maps, the differentials of which are continuous in p ∈ P , and let the
degree of f be non zero.

If the fiberwise tangent bundle {T (Xp)} of X is spin, then the above mentioned
parametric index theorem to the Dirac operators on Xp implies that

the infimum of the scalar curvatures of all Xp satisfies

inf
x∈Xp,p∈P

Sc(Xp, x) ≤ n(n − 1).

Moreover, in the extremal case of infx∈Xp,p∈P Sc(Xp, x) = n(n − 1), one can
show that some of Xp is isometric to Sn.

(If P is a smooth manifold, such that X is spin, then all this can be proved
with the index theorem on X .)

(c) Maps to Fibrations. Let X → P be a sphere bundle with the fibers
Sn+Np = Sn+N and f ∶ X → X a fiberwise map,

f = {fp ∶ Xp → Sn+Np }.

Then, with a suitable defined condition "deg(f) ≠ 0",the above inequality on
the scalar curvatures of the fibers Xp remains valid.
179 In the general case, by using a Thom’s theorem, replace P by a manifold P ′ mapped to
P with non-zero degree
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To see this, reduce (c) to (b) as follows.
Let X ⊥ → P be the complementary Sm-bundle, that is the join bundle X ∗X ⊥

with the fibers Sn+N+m+1
p = Sn+Np ∗ Sm is trivial, and observe that the map f

canonically suspends to a fiberwise map

X ∗ X
⊥
→ X ∗X

⊥,

which, due to the triviality of the fibration X ∗X
⊥, defines a map

∗f ∶ X ∗ X
⊥
→ Sn+N+m+1.

Since the scalar curvatures of the fibers Xp ∗ X ⊥p are bounded from below
by the curvature of Sn+N+m+1 (see exercise [∗] in section 1.1) one can use (b),
where, as in the reduction of the odd dimensional case of maps X → Sn to n
even in #∎ in section 3.4.1, the fibers Xp∗X ⊥p and thus the space X ∗X ⊥ must be
completed by slightly perturbing the metric and then extending it cylindrically
at infinity with (arbitrarily) large scalar curvature.

Exercises. (c1) Use the trace norm on ∧2df and reduce (c) to (b) with the
fiberwise version of #∎.

(c2) Directly define "deg(f)" and prove (c) with the parametric index the-
orem.

(d) Families of Non-Compact Manifolds. The above generalizes to families
of complete manifolds Xp and maps f ∶ X → Sn+N , which are (locally) constant
at infinities of all Xp (degrees are well defined for such maps f), where, the
parametric relative index theorem, according to [Zhang(area decreasing) 2020],
applies whenever all Xp have (not necessarily uniformly) positive scalar cur-
vatures and where the conclusion concerns the scalar curvatures of Xp on the
support of the differential df on the manifolds Xp

inf
x∈supp(df∣Xp),p∈P

Sc(Xp, x)

2∣∣ ∧2 df∣Xp(x)∣∣trace
≤ 1,

(e) Foliations. There is a further generalizations of (b) to smooth foliations
n-dimensional leaves on compact orientable (n +N)-dimensional manifolds X ,
with smooth Riemannian metrics on them X.i

Namely, let X → Sn+N be a smooth map of non-zero degree.
If either the manifold X is spin or the tangent bundle to the leaves is spin,

then there exists a point x ∈ X ,such that the scalar curvature of the leaf X =

Xx ⊂ X passing trough x at x is related to the differential of f restricted to X
by the inequality

Sc(X,x) ≤ 2∣∣ ∧2 df∣X(x)∣∣trace.

This is proven with n(n − 1)∣∣df ∣∣2 instead of ∣∣ ∧2 df∣X(x)∣∣trace by Guangxi-
ang Su [Su(foliations) 2018] and extended to complete manifolds in [Su-Wang-
Zhang(area decreasing foliations) 2021] by sharpening the arguments by Alain
Connes and Weiping Zhang. (The proofs in these papers, if I red them correctly,
allows a use of ∣∣ ∧2 df∣X(x)∣∣trace rather than ∣∣df ∣∣2.

Examples. Most natural (homogeneous) foliations with non-compact leaves
support no metrics with Sc > 0 by Alain Connes’ theorem, but their products
with spheres Si, i ≥ 2 carry lots of such metrics, to which Su’s theorem applies.
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Questions. Does this theorem remain valid for foliations with smooth fi-
bres but only Ck-continuous in the transversal direction, such for instance, as
stable/unstable foliations of Anosov systems?

(Notice in this regard that another Connes’ theorem, which generalizes
Atiyah L2-index theorem and applies to foliations with transversal measures,
needs these foliations to be only C3-continuous in the transversal direction,
compare with discussion in sections 9 2

3
, 9 3

4
in [G(positive)1996].)

What is the comprehensive inequality that would include all of the above
from (b) to (e)?

Families with Singularities. Is there a meaningful version of the above for
families Xp, where some Xp are singular, as it happens, for instance, for Morse
functions X → R?

Notice in this regard that Morse singularities, are, essentially, conical, where
positivity of Sc(Xp) for singular Xp in the sense of section 5.4.1 can be enforced
by a choice of a Riemannian metric in X . 180

Conversely, positivity of Sc(Xp), for all Xp including the singular ones,
probably, yields a smooth metric with Sc > 0 on X .

And it must be more difficult (and more interesting) to decide if/when a
manifolds with Sc > 0 admits a Morse function, where all, including singular,
fibers have positive scalar curvatures or, at least, positive operators −∆ + 1

2
Sc.

3.4.4 Area Multi-Contracting Maps to Product Manifolds and Maps
to Symplectic Manifolds

A guiding principle in the scalar curvature geometry reads:
If certain geometric and/or topological properties of Riemannian manifolds Xi,

i = 1,2, ...., k imply that inf Sc(Xi) ≤ σi, then such a property of Riemannian mani-
folds X homeomorphic the products ⨉iXi =X1× ...×Xk implies that inf Sc(X) ≤

∑i σi.
1. Topological non-Existence Example. IfX1 andX2 admit no complete

metrics with Sc > 0, and if X2 is compact, then in many, probably, not in all cases
the product X1 × X2 admits no such metric either, (this seems to fail for SYS-
manifolds).

A a prominent instance of this – here and everywhere with scalar curvature – is
X2 equal to the N -torus TN .

2. Length Contraction Example. Let Xi i = 1, ..., k, be orientable
(spin) length extremal Riemannian manifolds with Sc(Xi) ≥ 0, which means
that all smooth maps of non-zero degrees from orientable (spin) Riemannian
ni-manifolds Xi with Sc(Xi) > 0 to Xi

fi ∶Xi →Xi,

satisfy

inf
xi∈Xi

Sc(Xi, xi)

Sc(Xi, f(xi))∣∣dfi(xi)∣∣
2
≤ 1.

Then – this is expected in many cases – the Riemannian manifold X = ⨉iXi is
also (spin) length extremal. (This is, probably, true for all known examples of
spin length extremal manifolds Xi.)
180These are cones over Sk × Sn−k−1, n = dimXp, where the scalar curvature of such a cone
can be made positive, unless k ≤ 1 and n − k − 1 ≤ 1.
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Moreover all smooth maps from orientable (spin) Riemannian manifolds X
to the product X = ⨉iXi defined by a k-tuple of maps X →Xi,

Φ = (φ1, ..., φk) ∶X →
k

⨉
i

Xi,

which have non-zero degree should satisfy the following stronger inequality,

min
i=1,...,k

( inf
x∈X

Sc(X,x)

Sc(Xi, φi(x))∣∣dφi(x)∣∣
2
) ≤ 1.

And in the ideal world one expects even more:

⎛
⎜
⎝

inf
x∈X

Sc(Xi, xi)

Sc(X,Φ(x)) (∑
k
i=1 ∣∣dφi(x)∣∣)

2

⎞
⎟
⎠
≤ k2.

One also expects this product property for area rather than length, that is
with the norm of the exterior power of the differentials, ∣∣ ∧2 dφi(x)∣∣ instead of
∣∣dφi(x)∣∣

2, which is (partly) justified by what follows.
Rough Multi-Area non-Contraction Inequality. Let X be a compact

Riemannian manifold decomposed into product of Riemannian manifolds of positive
dimensions,

X =X1 × ... ×Xi × ... ×Xk, dim(Xi) ≥ 1,

let X be a compact orientable spin manifold of dimension n ≤ dim(X) and let
X →X be a smooth map defined by a k-tuple of maps to Xi,

f = (f1, ..., fi, ...fk) ∶X →X =X1 × ... ×Xi × ... ×Xk.

If the image of the fundamental homology class under f ,

f∗[X] ∈Hn(X)

is non-torsion, then the scalar curvature of X is bounded by the area contraction
by f , as follows

min
i

inf
x∈X

Sc(X,x)

∣∣ ∧2 dfi(x)∣∣
≤ σ,

where the constant σ depends on X but not on X.181

Proof. Since f∗[X] is non-torsion, there exist cohomology classes hi ∈

Hni(Xi;Q), ∑i ni = n, such that the cup product h∗ ∈ Hn(X) of their lifts
to X doesn’t vanish on f∗[X]Q).

By multiplying Xi, where ki are odd, by circles and multiplying X by the
product of these circles, we reduce the situation to the case, where all ki as well
n = dim(X) = ∑i ni are even.

Then, by the rational isomorphism between the K-theory and ordinary co-
homology,
181If X is infinite dimensional, e.g. this is the Grassmann manifold ofm-planes in the Hilbert
space, then σ may depend on n = dim(X).
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there exist complex vector bundles Li → Xi, such that the Chern character
of the tensor product L → X of the pull-backs of Li to X doesn’t vanish on
f∗[X]Q either.

It follows, that the index of the Dirac operator on X with values in the f -
induced bundle L∗ = f∗(L) – we assume that X is spin and the this is defined
– or in some associated bundle L⋆ → X doesn’t vanish. (This is elementary
algebra as in the definition f the K-area.)

Endow the bundles Li with unitary connections and observe, as we did
earlier, that the norm of the curvature of the corresponding connection in L⋆ →
X is bounded by a constant C which depends only on X and on the norms
∣∣ ∧2 dfi∣∣, but not in any other way on X and on f .

Therefore, by the twisted Schrödinger-Lichnerowicz-Weitzenböck-Bochner
formula the index of D⊗L⋆ would vanish for Sc(X) >> C and the proof follows.

Rank 1 Corollary. If Sc(X) > 0 and (the differentials of) all maps fi
have ranks ≤ 1 then f∗[X]Q = 0.

This follows from the inequality σ(0,0, ...,0) ≤ 0 and the definition of σ.
For instance, this shows again that
continuous maps from orientable Riemannian spin manifolds X with Sc(X) >

0 to Tm send the fundamental homology classes [X] ∈Hn(X) to zero in Hn(T
m),

since tori are products of circles and maps to circles have ranks ≤ 1.
(Maps f with all their components fi of rank one, may be themselves smooth

embeddings X →X.)
Sharp Multi-Area Inequalities. Let Xi, i = 1, ..., k, be compact orientable

Riemannian manifolds, either with non-negative curvature s or Hermitian ones with
positive Ricci curvatures. Let X be a compact orientable manifold and let

f = (f1, ..., fk) ∶X →X =
k

⨉
i=1

Xi

be a map a positive degree. Let ∣∣ ∧2 dfi∣∣ stands either for the norm of the second
exterior power of the differential of the map fi ∶X →Xi or , in the case where Xi

is the sphere Sni , it for the averaged trace of ∧2dfi defined as earlier:

1

n(n − 1)
∣∣trace(∧2dfi(x))∣∣ =

1

n(n − 1)

n

∑
µ≠ν

λµ(x)λν(x).

(The latter is non-greater than the former.)
Conjecture. There exists a point x ∈X, such that

(☀) Sc(X,x) ≤ Sc(X,f(x)) ⋅∑
i

∣∣ ∧
2 dfi(x)∣∣.

1. Start with enumerating the cases, where this conjecture was proved for
maps from spin manifolds X to unsplit into products manifolds X, i.e. for k = 1.

1.A. X is the n-sphere Sn.
The main computation and reduction of the case n = 2m − 1 to n = 2m

via the map X × T1 → S2m was performed in [Llarull(sharp estimates) 1998].
Then the scale invariant trace form of Llarull’s inequality was established in
[Listing(symmetric spaces) 2010] for even n, and as we explained in section
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3.4.1 the trace form of the area inequality allows an automatic reduction n =

2m − 1; n = 2m.
1.B. X is a Hermitian symmetric space with Ricci(X) > 0. This was proved

for symmetric X in [Min-Oo(Hermitian) 1998] and extended to all Hermitian
spaces with Ricci(X) ≥ 0 and Ricci(X,x0) > 0 at some point in [Goette-
Semmelmann(Hermitian) 2002].

1.C.X has non-zero Euler characteristic. Proved in [Goette-Semmelmann(symmetric)
2002] and brought to the scale invariant form in [Listing(symmetric spaces)
2010].

2. Stabilization by TN . Whenever the inequality (☀) is established for
manifolds Xo of dimension no and maps Xo →Xo by confronting the index the-
orem with the twisted Schrödinger-Lichnerowicz-Weitzenböck-Bochner formula
(there is no known alternative for this) then this argument also applies to maps
f ∶X →Xo ×TN , dim(X) = no +N .

To show this, recall that the N -tori TN for N even, support (almost flat)
unitary bundles Lε for all ε > 0, (and similar families of flat bundles a la Lusztig)
with

(a) non-zero Chern characters man and, at the same time with
(b) curvature operators with norms ≤ ε.
Now, suppose that (☀) follows with the Dirac D on Xo twisted with the

bundle Lo →Xo induced from a bundle Lo →Xo by a map fo ∶Xo →Xo.
Then observe that the same argument applies to D on on X twisted with

the bundle L → X induced by a map f ∶ X → Xo × TN of non-zero degree from
the tensor product Lo ⊗Lε →Xo ×TN by letting ε→ 0.

Indeed, (a)&(deg(f) ≠ 0) imply non-vanishing of index(D⊗L),while (b)
guaranties the same bound on the L-curvature term in the twisted S-L-B-W
formula for ε→ 0, as in the Lo-curvature for D⊗Lo .

Remark. As we mentioned above, one can use families of flat bundles over
TN , (or more generally, suitable Hilbert moduli over the C∗-algebra of π1(TN))
which have a advantage of giving (slightly) sleeker proofs of rigidity theorems.

3. The above argument, probably, applies to general manifolds X1 with
bundles L1 →X1 instead of Lε → TN , where an essential point is checking that
the curvature contribution to the S-L-B-W formula from the induced bundle
L = f∗(L0 ⊗ L1) → X for maps f ∶ X → Xo ×X1 is bounded by the sum of the
corresponding contributions from f∗o (Lo) and f

∗
1 (L1) for maps f ∶Xo →Xo and

f1 ∶X1 →X1.
We suggest the reader will verify this, while we turn ourselves to a special

case, where the necessary linear algebraic computation has been already done.

4. Maps to Products of 2-Spheres and to Symplectic Manifolds. Let

X =
k

⨉
i=1

S2
i ,

S2
i are spheres with smooth Riemannian metrics, let X be a compact orientable

Riemannian manifold of dimension 2k and let

f = (f1, ..., fk) ∶X →X

be a smooth map.
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Let ωi be the area forms of S2
i , thus, ∫S2

i
ωi = area(S

2
i ), and let ωi be the

2-forms on X induced from ωi by fi → S2
i .

Observe that ∣∣ ∧2 dfi(x)∣∣ = ∣∣ωi(x)∣∣ equals the maximal area dilation by fi at
x of surfaces S ∋ x in X.

f has non-zero degree, then there exist a point x ∈ X, where the scalar
curvature of X is bounded un terms of ∣∣ ∧2 dfi(x)∣∣ as follows,

(☀2) Sc(X,x) ≤ 8π∑
i

∣∣ ∧2 dfi(x)∣∣

area(S2
i )

,

where the equality holds if and only if X is the product of Euclidean spheres
X = ⨉

k
i=1 S

2(ri) with no restrictions on their radii ri and on the Riemannian
metrics in S2

i .
Proof. Start by observing that the right hand side of (☀2) doesn’t depend

on the choice of Riemannian metrics on S2
i and we may assume all S2

i isometric
to the unit sphere S2 = S2(1).

Let L→X = (S2)k be the tensor product of the pullbacks of the Hopf bundle
over S2 under the k projections X → S2 and observe that the curvature form of
this (complex unitary line) bundle L→X is:

curv(L) =
1

2
∑
i

ωi.

Therefore, for all x ∈X, the diagonal decomposition of form ωx in an orthonor-
mal basis in the tangent space Tx(X), orthonormal basis (τi, θi), i = 1, ..., k,

ω = ∑
i

λiτi,∧θi, λi ≥ 0

satisfies
∑
i

λi ≤ ∑
i

∣∣ ∧
2 dfi(x)∣∣.

It follows (theorem1.1 in [Hitchin(spinors) 1974]) that if

Sc(X,x) > 8π∑
i

∣∣ ∧2 dfi(x)∣∣

area(S2
i )

,

then X supports no non-zero harmonic spinors twisted with L.
On the other hand the top term in the Chern character of L is non-zero and

the index theorem says that X does support such a spinor, and, as everywhere
in this kind of argument, the proof follows by contradiction.

Symplectic Manifolds and ω-Extremality. The above argument equally ap-
plies to maps of non-zero degree between 2k-dimensional orientable manifolds,
f ∶X →X, where X is endowed with a closed 2-form ω, such that

● the cohomology class c = 1
2π

[ω] ∈ H2(X;R is integral: ∫S[ω] ∈ 2πZ for all
closed oriented surfaces in X (the basic example is one half of the area form on
S2);

● the product of exp c = 1 + c + c2

2
+ ... + ck

k!
where c = f∗(c) ∈ H2(X) for the

cohomology homomorphism f∗ ∶ H2(X) → H2(X), with the Todd class Â(X)
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(a polynomial in Pontryagin classes of X, see section 4) doesn’t vanish on the
fundamental homology class of X

(exp c) ⌣ Â[X] ≠ 0.

(For instance ck ≠ 0 and X is stably parallelizable, which, by Hirsch immersion
theorem, is equivalent to the existence of a smooth immersion X → R2k+1, while
ck ≠ 0.)

κ⋆-Invariant. Let X = (X,ω,h) be a smooth manifold, where:
ω is a differential 2-form on X, e.g. a symplectic one, i.e. where ω is closed,

the dimension of X is even and ωm, m =
dim(X)

2
, nowhere vanishes on X

and where h ∈Hn(X) is a distinguished homology class.
Define κ⋆(X)n as the infimum of the numbers κ > 0, such that all smooth

maps of from all closed orientable Riemannian spin182 manifolds of dimension
n to X,

f ∶X →X,

which send the fundamental homology class of Xtoh,

f∗[X] = h,

satisfy
inf
x∈X

Sc(X,x) ≤ 4 ⋅ κ ⋅ trace(ω(x)),

where ω = f∗(ω)) is the f -pullback of the form ω and

trace(ω(x)) = ∑λi

for the above g-diagonalization of ω.
(See §5 4

5
in [G(positive)1996] and section3.4 in [Min-Oo(scalar) 2020] for

integral versions of this invariant.)
A Riemannian manifold X is called ω-extremal if it admits a smooth map

f ∶X →X, such that f∗[X] = h and

Sc(X,x) = 4 ⋅ κ⋆ ⋅ trace(ω(x)), for all x ∈X.

The above proof of (☀2) actually shows that the product of spheres X =

(S2)k is ω-extremal for the sum of the area forms ωi of the S
2-factors of X,

ω = ∑
i

ωi,

where h ∈ H2k(X) is the fundamental class [X], where κ = 1
2
and where any

symplectomorphism X =X →X can be taken for f .
Remarks. (a) The above is a reformulation of a special case of area ex-

tremality183 theorems from [Min-Oo(Hermitian) 1998], [Bär-Bleecker(deformed
algebraic) 1999] and [Goette-Semmelmann(Hermitian) 1999], where the authors
182This can be relaxed to properly formulate spinc.
183 Area extremality of a Riemannian manifold X = X(g) (essentially) means that all metrics
g′ with Sc(g′) > Sc(g) on X must have areag′(S) < area(Sg) for some surface S ⊂ X. If X
is a Kähler manifold then ω-extremality (obviously) implies area extremality for the Kähler
form ω of X.
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establish the ω-extremality of several classes of Kähler manifolds including com-
pact Hermitian symmetric spaces, Kähler manifolds X with Ricci(X) > 0 and
also of certain complex algebraic submanifolds X ↪X = CPN , with the Fubini-
Study form ω on CPN .

(b) Besides multi-area contraction inequalities there are similar multi-length
inequalities, such as the multi-width ◻n-inequality from section ??, where the
(stronger) multi-area contraction inequality doesn’t apply.

Conjecture All (most?) ω-extremal manifolds are Kählerian, or closely associ-
ated with with Kählerian or similar manifolds, such, e.g. as Kälerian×Tm.

Admission. I don’t even see, why the forms ω in all extremal cases must be
closed but not, say, "maximally non-closed", such as generic ones.

Question. Are there further sharp inequalities between (norms of) differen-
tials dfi for maps

f = (f1, ...fi, ...fk) ∶X →X =
k

⨉
i=1

Sni , ∑
i

ni = n,

with deg(f) ≠ 0 and (the lower bound on) Sc(X) besides

inf
x∈X

Sc(X,x)

Sc(X,f(x)) ⋅ ∑i ∣∣ ∧
2 dfi(x)∣∣

≤ 1

from the above (☀) and/or its ∣∣ ∧2 dfi(x)∣∣trace counterpart?
Namely, what are conditions on numbers σ and b1, ...bi, ...bk, such that there

exists a compact orientable (spin) manifold X of dimension n = ∑i ni with
Sc(X) ≥ σ and a smooth map f = (f1, ...fi, ...fk) ∶ X → X = ⨉

k
i=1 S

ni with
deg(f) ≠ 0, such that ∣∣ ∧2 dfi(x)∣∣ ≤ bi for all x ∈X?

3.5 Sharp Bounds on Length Contractions of Maps from
Mean Convex Hypersurfaces

The Atiyah-Singer theorem, when applied to the double DD(X) of a compact
manifold X with boundary, delivers a non-trivial geometric information on X
as well as on the boundary Y = ∂X.

For instance, if mean.curv(Y ) > 0, then, as we explained in section 1.4, the
natural, continuous, metric g on DD(X) can be approximated by C2-metrics g′

by smoothing g along the "Y -edge" without a decrease of the scalar curvature
in a rather canonical manner. Here is an instance of what comes this way.

[Yspin → e] Mean Curvature Spin-Extremality Theorem. Let X
be a compact Riemannian manifold of dimension n with orientable mean convex
boundary184 Y and let Y ⊂ Rn be a smooth compact convex hypersurface.

Let h and h denote the Riemannian metrics in Y and Y induced from their
ambient manifolds and let h♮ and h♮ be their MC-normalizations (see section ??),

h♮(y) =mean.curv(Y, y)2
⋅ h(y) and h♮(y) =mean.curv(Y, y)2

⋅ h(y).

184This mean the mean curvature of the boundary is non-negative, where the sign convention
is such that boundaries of convex domains in Rn are mean convex.
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Then, provided the manifold X is spin, all λ-Lipschitz maps f ∶ Y → Y with
λ < 1 are contractible.

In other words,
if a smooth (Lipschitz is OK) map f ∶ Y → Y has a non-zero degree, then

there exists a point y ∈ Y , where the norm of the differential of f is bounded
from below as follows:

∣∣df(y∣∣ ≥
mean.curv(Y, y)

mean.curv(Y , f(y))
.185

If Y = Sn−1, this extremality, as in the case of the scalar curvature, can can
be sharpened with a use of the trace norm of the differential df ..., except that
I have not verified the computation and leave the following "theorem" with a
question sign.

[Yspin →d] Mean Curvature Trace Extremality Theorem(?)186. Let
X be a compact orientable Riemannian spin manifold of dimension n with orientable
boundary Y and f ∶ Y → Sn−1 = y be a map with deg(f) ≠ 0.

Then f can’t be trace-wise strictly decreasing with respect to theMC-normalized
metrics h♮ =mean.curv(Y )2h for the Riemannian metric h on Y induced from
X ⊃ Y and h♮ = (n − 1)2ds2 on Sn−1, that is there is a point x ∈ X, where the
trace-norm of the differential of f is bounded from below by the mean curvature
of X as follows:

1

(n − 1)

n−1

∑
i=1

λ♮i(y) ≥ 1 for λ♮i = λi(f
∗(h♮))/h♮),

which means that the trace-norm of df with respect to the original (non-
normalized) metrics satisfies:

1

(n − 1)
∣∣df(y)∣∣trace ≥

mean.curv(Y , f(y))

mean.curv(Y, y)
.

The simplest and most interesting common corollary of these two theorems
is the following.
T (Seemingly Elementary) Example. If the mean curvature of a smooth

hypersurface Y ⊂ Rn is bounded from below by n − 1, that is the mean curvature
of the unit sphere Sn−1 ⊂ Rn, then all λ-Lipschitz map f ∶ Y → Rn, where λ < 1,
are contractible.187

(If "Lipschitz" is understood with respect to the Euclidean distance function
on X, rather than the larger one which is associated with the induced Rieman-
nian metric, the proof easily follows from Kirszbaum theorem.)
185Here we agree that 0

0
= ∞.

186Probably, the quickest way to remove "?", at least for even n, is by adapting/refining the
argument from [Lott(boundary) 2020]and/or from [Bär-Hanke(boundary) 2021].
187It is impossible not to ask oneself what happens for λ = 1, i.e. where f is distance non-
increasing. You bet, such an f is either contractible, or it is an isometry. Indeed (almost)
all our extremality theorems are accompanied by rigidity results in the equality cases, as we
shall see later on.

But it is non-trivial to formulate and hard to solve the stability problem: what happens to
geometries of hypersurfaces Xε ⊂ Rn with mean.curv(Xε) ≥ n− 1 and to (1+ ε)-Lipschitz maps
to Sn−1 with non-zero degrees, when ε→ 0.

108



About the Proof ofe. Let X lie in a (slightly larger) Riemannian n-manifold
X+ ⊃ X without boundary, let Y n+l−1

ε ⊂ X+ × Rl be the boundary of the ε-
neighbourhood of X ⊂X+×Rl and let us similarly, define Y n+l−1

ε ⊂ Rn+l = Rn×Rl
as the boundary of the ε-neighbourhood ofX ⊂ Rn+l = forX ⊂ Rn with boundary
Y .

Observe – this needs a little computation as in section 1.4 – that the lower
bounds on the scalar curvatures of the "interesting parts"

Y n+l−1
εε ⊂ Y n+l−1

ε and Y n+l−1
εε ⊂ Y n+l−1

ε

which are ε-close to the original Y ⊂ Y n+l−1
ε and Y ⊂ Y n+l−1

ε , are perfectly
controlled by their mean curvatures, while their complements, being flat in the
ambient manifolds, have the same scalar curvatures as X and X, where the
latter is equal to zero.

Then extend f ∶ Y → Y a map

fε ∶ Y
n+l−1
ε → Y n+l−1

ε ,

such that the "interesting part"of Y n+l−1
ε goes to that of Y n+l−1

ε and the comple-
ment of one to the complement of the other and such that the "interesting part"
of this extensions is done in a most economical manner along normal geodesics
to Y ⊂ Y n+l−1

εε and to Y ⊂ Y n+l−1
εε .

If we do it with a proper care then, for a small enough ε and l with the
same parity as n, we shall be able to apply the spin-area convex extremality
theorem [Xspin

→b] from the section 3.4.1 to the map fε, which that would
need a preliminary smoothing of the manifolds Y n+l−1

ε and Y n+l−1
ε by tiny C1-

perturbations (these manifolds themselves are only C1-smooth), where, while
while smoothing the hypersurface Y n+l−1

ε convex, smoothing of Y n+l−1
ε must

keep the flat part flat.
Because of the latter, the point yε ∈ Y n+l−1

ε , where

Sc(Y n+l−1
ε , f(yε) ⋅ ∣∣ ∧2 df(ε)∣∣ ≥ Sc(Y n+l−1

ε , yε),

provided by [Xspin
→b] must be necessary located in the "interesting region"

Y n+l−1
εε ; then the needed inequality for the mean curvature of Y will be satisfied

by the point y ∈ Y nearest to yε.
Remark about [Yspin →d]. To carry out the above argument one needs a

generalization of of the spherical trace inequality [Xspin → #] from the previous
section to manifold X that don’t have full O(n + 1)-symmetry of Sn.

In the present case the relevant metric g is O(n) invariant and one needs a
separate bounds on the two parts of the trace norm of ∧2df :

the first part comes from n−1(n−2)
2

bivectors ei ∧ ej with ei and ej , i, j =

1, ..., n − 1, tangent the Sn−1-spherical O(n)-orbits and the second one from the
n − 1 remaining ei ∧ en with the vector en normal to these orbits.

This is an instance of a more general principle:
to achieve the sharpest inequality, one should choose the norm for measuring df

in accordance with the the symmetries of the manifold X.
We shall see later on other instances of this "principle", e.g. for maps to

products of spheres in section 3.4.4.

On Non-spin Manifolds and on σ < 0. Conjecturally, if the boundary
Y = ∂X of a compact orientable Riemannin n-manifold X with Sc ≥ −n(n − 1)
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admits a smooth map f with non-zero degree to the boundary of the R-ball in the
hyperbolic n-space with sectional curvature −1,

f ∶ Y → ∂B(R) ⊂Hn
(−1),

and if
mean.curv(Y ) ≥ n − 1 and ∣∣df ∣∣ ≤ 1,

then the map f is an isometry. Moreover, f extends to an isometry X → B(R).188

We shall prove a partial result in this direction with a use of stable capil-
lary µ-bubbles, which may also apply to maps to more general hypersurfaces in
Hn(−1) (see section 5.8.1), but it remains unclear how to approach the trace-
norm version of this conjecture.

Questions and Exercises. (a) Is there an elementary proof of this inequality for
n ≥ 4?

(b) Besides the lower bound on the mean curvature, that is the sum of
the principal curvatures, ∑i αi, the "size" of a hypersurface Y is bounded by
the scalar curvature ∑i≠j αiαj and also - this is obvious by the product of the
principal curvatures ∏i αi.
Are there similar inequalities for other elementary symmetric functions of αi.

(If Y ⊂ Rn is convex, i.e. all αi ≥ 0, then ∏i αi minorizes the rest of el-
ementary symmetric functions, which gives a trivial proof of T and similar
inequalities for other symmetric functions for distance decreasing maps from
convex hypersurfaces to Sn.)

the above theorems for convex hypersurfaces Y Rn.)
But it is unclear if, for instance, there is a bound on this radius in terms of

∑i>j>k αiαjαk for n ≥ 5 when this sum is positive.)
(d) Let Y0 ⊂ Rn be a smooth compact cooriented submanifold with boundary

Z = ∂Y0, such that
the mean curvature of Y0 with respect to its coorientation satisfies

mean.curv(Y ) ≥ n − 1 =mean.curv(Sn−1
).

Show that
every distance decreasing map

f ∶ Z → Sn−2
⊂ Rn−1

is contractible,
where "distance decreasing"refers to the distance functions on Z ⊂ Rn and

on Sn−2 ⊂ Rn−1 coming from the ambient Euclidean spaces Rn and Rn−1.
Hint. Observe that the maximum of the principal curvatures of Y0 is ≥ 1

and show that the filling radius of Z ⊂ Rn is ≤ 1.189

(e) Question. Does contractibility of f remains valid if the distance decreasing
property of f is defined with the (intrinsic) spherical distance in Sn−2 and with
188Granted f is an isometry (with respect to the induced Riemannin metrics in ∂X ⊂ X and
∂B(R) ⊂ B(R)), an isometry X → B(R) follows from Min-Oo’s hyperbolic rigidity theorem
from section 3.13.
189 This means that Z is homologous to zero in its 1-neighbourhood.
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the distance in Z ⊂ Y0 associated with the intrinsic metric in Y0 ⊃ Z, where
distY0(y1, y2) is defined as the infimum of length of curves in Y0 between y1 and
y2?

(f) Formulate and prove the mean curvature counterparts of the theorems

[Xspin
Â
→ #]], ⨉Rm and [X × P → #] for maps Xn+m → Xn and Xn → Xn+m

from sections 3.4.1 and 3.5, either by the above Y n+l−1
εε -construction or by gen-

eralizing Lott’s argument for manifolds with boundaries.
(h) Question. Is there a version (or versions) of the mean curvature ex-

tremality theorems for maps to products of convex hypersurfaces in the spirit
of area multi-contracting maps in section 3.4.4

3.6 Riemannian Bands with Sc > 0 and 2π
n -Inequality.

We saw in the previous sections how a use of twisted Dirac operators leads to
geometric bounds, including certain sharp ones, on the size of compact Rieman-
nian spin manifolds. Such bounds usually (always) extend to non-compact com-
plete manifolds, but until recently no such result was available for non-complete
manifolds and/or for manifolds with boundaries. 190

On the other hand minimal hypersurfaces were used in [GL(complete)1983]
for obtaining rough bounds for non-complete manifolds; below, we shall see how
such hypersurfaces (and µ-bubbles in general) serve for getting sharp geometric
inequalities of this kind.

Bands, sometime we call them capacitors, are manifolds X with two distin-
guished disjoint non-empty subsets in the boundary ∂(X), denoted

∂− = ∂−X ⊂ ∂X and ∂+ = ∂+X ⊂ ∂X.

A band is called proper if ∂± are unions of connected components of ∂X and

∂− ∪ ∂+ = ∂X.

The basic instance of such a band is the segment [−1,1], where ±∂ = {±1}.
Furthermore, cylinders X =X0×[−1,1] are also bands with ±∂ =X0×{±1},

where such a band is proper if X0 has no boundary.
Riemannian bands are those endowed with Riemannian metrics and
the width of a Riemannian band X = (X,∂±) is defined as

width(X) = dist(∂−, ∂+),

where this distance is understood as the infimum of length of curves in V be-
tween ∂− and ∂+.

We are mainly concerned at this point with compact Riemannian bands X
of dimension n, such that
h Sc≯0 no closed embedded hypersurface Y ⊂ X, which separates ∂− from

∂+, admits a T1-stabilization Y ⋊ with positive scalar curvature, i.e. no complete
190Several such results have appeared in the papers [Zeidler(bands) 2019], [Zeidler(width)
2020] and [Cecchini(long neck) 2020],[Cecchini-Zeidler(generalized Callias) 2021], [Cecchini-
Zeidler(Scalar&mean) 2021], [Guo-Xie-Yu(quantitative K-theory) 2020], which we briefly dis-
cuss letter on .
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(warped product) metric on the product Y × T1 of the form dy2 + φ(y)2dt2 has
Sc(h⋊) > 0.

(Since Y is compact, the existence of this (warped product) metic h⋊ with
Sc(h⋊) > 0 is equivalent to the existence of a metric h with Sc(h) > 0 on Y
itself, since the conformal Laplacian −∆ + areaextremality3n − 24(n − 1)Sc is
more positive that the −∆ + 1

2
Sc implied by positivity of Sc(h⋊).)

Representative Examples of compact bands with this property are:
●Tn−1 toric bands which are homeomorphic to X = Tn−1 × [−1,1];
●SY S manifolds X homeomorphic to a Schoen-Yau-Schick manifolds times

[−1,1];
●α̂ these, called α̂ bands, are diffeomorphic to Y × [−1,1], where the Y is

a closed spin (n − 1)-manifold with non-vanishing α̂-invariant (see 3.2 the IV
above);

●Tn−1×α̂ these are bands diffeomorphic to productsXn−k×Tk, where α̂(Xn−k) ≠
0.

(A characteristic non-compact example with a similar property is
●×R∖{Z}: X is homeomorphic to the product Tn−2×R×[−1,1] minus a discrete

subset.)191

2π
n -Inequality. Let X be a proper compact Riemannian bands X of dimen-

sion n with Sc(X) ≥ σ > 0.
If no closed hypersurface in X which separates ∂− from ∂+ admits a metric

with positive scalar curvature, then

[�± ≤
2π
n
] width(X) = dist(∂−, ∂+) ≤ 2π

√
(n − 1)

nσ
=

2π

n
⋅

√
n(n − 1)

σ

In particular if Sc(X) ≥ Sc(Sn) = n(n − 1), then

width(X) ≤ 2π

√
(n − 1)

nσ
=

2π

n
.

Moreover, the equality holds in this case only for warped products X = Y ×

(−π
n
, π
n
)192 with metrics ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and

where
ϕ(t) = exp∫

t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,

as in section 2.4.
About the Proof. If a hypersurface Y ⊂ X, which separates ∂− from ∂+

contains a descending chain (flag) of closed oriented hypersurfaces,

Y ⊃ Y−1 ⊃ ... ⊃ Y−i ⊃ ...,

191 The property h Sc≯0 for toric bands and for SYS-bands follows from the Schoen-Yau
codimension 1 descent theorem (see section 2.7), in the case ●α̂ this is the Lichnerowicz-
Hitchin theorem (section 3.2) and ●Tn−1×α̂ is a corollary to theorem 2.1 in [GL(spin) 1980],
while a "complete" version of this property for the non-compact (Tn−2 ×R × [−1,1]) ∖ {Z} is
an example, where theorem 6.12. from [GL(complete) 1983] applies. (See sections 4.7, 5.10
for more about these and more general examples.
192Here, since X is non-compact, the width is understood as the distance between the two
ends of X.
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where where each Y−i ⊂ X is equal to a transversal intersection of Y−(i−1) with
a smooth closed oriented sub-band Hi ⊂X, of codimension one,

Hi ∩X−(i−1) =X−i

and where Y−i represent non-zero classes in the homology Hn−1−i(X), then one
can proceed by the inductive Schoen-Yau’s kind of descent method (see sections
2.7) with minimal hypersurfaces

...X−i ⊂X−(i−1) ⊂ ... ⊂X−1 ⊂X,

where theseX−i are T⋊-symmetrised as in the [⋊ϕ]
N -symmetrization theorem in

section 2.8 where X−i in our band X have "free" (pairs of) boundaries contained
in ∂∓(X−(i−1)), and such that the intersections X−i ∪ Y are homologous to Y−i.

This argument delivers the sharp version of 2π
n

for over-toric bands, i.e.
those which admit maps X → Tn−1, n = dim(X), with non-zero degrees of their
restriction to ∂∓, but when it comes to SYS-bands, one gets only a weaker lower
bound on width(X), that is by 4π

n
, instead of 2π

n
.

The same weakening of 2π
n

takes place if separating hypersurfaces Y ⊂ X,
are enlargeable, e.g. if the interior of X, assumed compact, admits a complete
metric with non-positive sectional curvature. And if separating Y are SYS times
enlargeable, one has to be content with 8π

n
.193

In section 3.7, we present a more efficient argument, where, instead of
working with chains of minimal hypersurfaces, we show in one step that if
width(X) ≥ 2π

√
(n−1)
nσ

, then a certain stable µ-bubble Yst ⊂ X, which separates
Y− from Y+, supports a metric with Sc > 0.

Besides, the sharp 2π
n

for wide class of spin bands was recently proven by
Zeidler, Cecchini and Guo-Xie-Yu with new index/vanishing theorems on Dirac
operators with potentials on manifolds with boundaries. 194

Remarks.(a) If hypersurfaces separating ∂− from ∂+ inX are enlargeable, e.g.
if X is homeomorphic to Tn−1×[0,1], then a non-sharp version of 2π

n
-inequality,

dist(∂−, ∂+) ≤ 2nπ

√
(n − 1)

nσ

follows from theorem 12.1 in[GL (complete)1983].
(b) One might think that the sharp 2π

n
-inequality, must be obvious for do-

mains in the unit sphere Sn homeomorphic to Tn−1 ×[−1,1] and for bands with
constant sectional curvatures in general; to my surprise, I couldn’t find a direct
proof of it even for X is homeomorphic to Tn−1 × [0,1].

3.6.1 Quadratic Decay of Scalar Curvature on Complete Manifolds
with Sc > 0.

QD-Exercise. Quadratic Decay Property. Let X be a complete non-compact
Riemannian n-manifold and X0 ⊂ X a compact subset, such that there is no
193This is worked out in §2-6 of [G(inequalities) 2018].
194See [Zeidler(bands) 2019], [Zeidler(width) 2020], [Cecchini(long neck) 2020] and the most
recent [Guo-Xie-Yu(quantitative K-theory) 2020],[Cecchini-Zeidler(generalized Callias) 2021],
[Cecchini-Zeidler(Scalar&mean) 2021].
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domain X1 ⊂ X, which contains X0 and the boundary ∂X1 of which (assumed
smooth) admits a metric with Sc > 0, e.g. X is homeomorphic to Tn−2 ×R2.

Show that there exists a constant R0 = R0(X,x0), such that
the minima of the scalar curvature of X on concentric balls B(R) = Bx0(R) ⊂

X around a point x0 ∈X, satisfy

min
x∈B(R)

Sc(X,x) ≤
4π2

(R −R0)
2
for all R ≥ R0.

Hint. Apply 2π
n
-inequality to the annuli between the spheres or radii R and

R for a suitable constant c.
(Compare this with the quadratic decay theorem in section 1 of [G(inequalities)

2018] and see [Wang-Xie-Yu(decay) 2021] for estimates of the scalar curvature
decay rates by contractibility radius and the diameter control of the asymp-
totic dimension and observe that, if X is homeomorphic to Tn−2 ×R2, than the
quadratic decay with the constant 2n+1π2 follows from [GL(complete 1983].)

Critical Rate of Decay Conjecture. There exists a universal critical
constant cn, conceivably, cn =

4π2(n−1)
n

, such that:
[a] if a smooth manifold X admits a complete metric g0 with Sc(g0) > 0,

then, for all c < cn, it admits a complete metric gε, with Sc(gε) > 0 and at most
c-sub-quadratic scalar curvature decay,

Sc(gε, x) ≥
c

dist(x,x0)
2
for a fixed x0 ∈X and all x ∈X with dist(x,x0) ≥ 1;

and
[b] if X admits a complete metric g0 with Sc(g0) > 0 and c-sub-quadratic for

c > cn scalar curvature decay,

Sc(gε, x) ≥
cn

dist(x,x0)
2
for dist(x,x0) ≥ 1,

then it admits a complete metric with Sc ≥ σ > 0.
Moreover,
for all continuous functions ω = ω(d), there exists a complete metric gω on X,

such that

Sc(gω, x) ≥ ω(dist(x,x0)) for a fixed point x0 and all x ∈X.

Here is a related compactness conjecture, which expresses the following
idea:

The existence of a complete metric with Sc ≥ σ > 0 on an X is detectible by
topologies of compacts parts V of X:

if, for all compact subsets V ⊂ X and all constants ρ > 0, there exists a (non-
complete) metric on X with Sc ≥ 1, such that the closed ρ-neighbourhood Uρ(V ) ⊂

X is compact, then X admits a complete Riemannian metric with Sc ≥ 1.

3.7 Separating Hypersurfaces and the Second Proof of the
2π
n -Inequality

The main ingredient in the proof of the general 2π
n
-Inequality is the following.
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III µ-Bubble Separation Theorem. Let X be an n-dimensional, Rieman-
nian band, possibly non-compact and non-complete.

Let
Sc(X,x) ≥ σ(x) + σ1, ,

for a continuous function σ = σ(x) ≥ 0 on X and a constant σ1 > 0, where σ1 is
related to d = width(X) = distX(∂−, ∂+) by the inequality

σ1d
2
>

4(n − 1)π2

n
.

(If scaled to σ1 = n(n − 1), this becomes d > 2π
n
.)

Then there exists a smooth hypersurface Y ⊂X, which separates ∂− from ∂+,
and a smooth positive function φ on Y , such that the scalar curvature of the
metric gφ = g⋊φ = gY−1 + φ

2dt2 on Y ×R is bounded from below by

Sc(gφ, x) ≥ σ(x).

Derivation of 2π
n
-Inequality from III. If a band X with Sc ≥ σ > 0 has

width(X) = dist(∂−, ∂+) > 2π
√

(n−1)
nσ

, then III implies the existence of a sep-
arating hypersurface Y and a function φ(y), such that Sc(g⋊φ) ≥ ε for a small
ε > 0.

About the Proof of III. If X is compact and n ≤ 7, we take a µ-bubble Ymin
for Y , that is the minimum of the functional

Y ↦ voln−1(Y ) − µ[Y, ∂−]

defined in the space of separating hypersurfaces Y ⊂ X, where [Y, ∂−] ⊂ X
denotes the region in X between Y and ∂− ⊂ ∂X and where the key point is to
choose µ suitable for this purpose.

What is required of µ is that
● the boundaries ∂± must serve as barriers for our variational problem and

thus ensure the existence of Ymin;
● positivity of the second variation should imply the positivity of the ∆ +

Sc(Ymin) − σ on Y .
This is achieved with µ, that is modeled after the measure µ on Tn−1×[−1,1],

(the density of) which is equal the mean curvatures of the hypersurfaces Tn−1 ×

{t} with respect to the warped product metric ϕ2h + dt2 for

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
.195

III↺ Separation with Symmetry. If the Riemannian band is isometrically
acted upon by a compact group G, then the separating hypersurface Y ⊂ X and
the function φ on Y can be chosen invariant under this action.

Proof. Use the multi-dimensional Morse lemma (see section 2.9); alter-
natively, apply more elementary uniqueness/symmetry property of the lowest
195This is the same ϕ(t) that was used in section 12 in [GL(complete) 1983] for proving a
rough lower bound on the norms of the differentials of smooth maps of non-zero degrees from
non-complete Riemannian manifolds X with Sc(X) ≥ 1 to Sn for n = dim(X) ≤ 7.
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eigenfunction of the (linear elliptic) second order variational (linear elliptic)
∆Y +s on a hypersurface Y , which minimizes the functional voln−1(Y )−µ[Y, ∂−]
among G-invariant separating hypersurfaces Y ⊂X.

Remark. In our case, the group G is the torus Tk, which freely acts on X,
and the equivariant µ-bubble problem (trivially) reduces to the ordinary one on
the quotient space X/Tk.

To make use of this for the next step of T⋊-symmetrization, one only needs
to check – this is an exercise to the reader – that the corresponding warped
product with Tk+1 will have the same scalar curvature as one gets by doing this
in X itself.

Compact/Non-compact. If X is non-compact, then, as usual, we exhaust
X by compact submanifolds with boundaries, proceed as in the compact case
(these compact bands an not proper, part of their boundary is not contained in
∂X = ∂− ∪ ∂+, but this causes no problem) and then pass to the limit. This is
routine.

Example of Corollary. Let X = (X,g) be an n-dimensional manifold with
uniformly positive scalar curvature, Sc(X) ≥ σ > 0, and let f ∶X →X = Rn−m be a
smooth proper (infinity to infinity) 1-Lipschitz (i.e. distance non-increasing) map.

Then the homology class of the pullback of the generic point, f−1(x) ⊂X, is
representable by a compact submanifold Y ⊂ X, such that the product Y × Tm
admits a Tm-invariant (warped product) metric h⋊ (h = g∣Y ) with Sc(h⋊) > 0.

Consequently, Y itself admits a metric with Sc > 0.

Singularity Problem for dim(X) > 7 and the Second Proof of the µ-Bubble
Separation Theorem. By the standard theorems of the geometric measure the-
ory, the minimizing µ-bubble Y ⊂X exists for all n but it may have singularities
of codimension 7.196

(The first instance of this is the vertex of the famous cone from the origin
over S3 × S3 ⊂ S7 ⊂ R8.)

If n = 8, then (a minor generalization of) Natan Smale’s generic regularity
theorem takes care of things, but if n ≥ 9 one needs to adapt Lohkamp’s min-
imal smoothing results and/or techniques to our case. My, rather superficial,
understanding of Lohkamp works suggests that this is possible, but it can’t be
safely applied unless everything is written out in full detail.

I feel more comfortable at this point with generalizing theorem 4.6 from the
Schoen-Yau paper [SY(singularities) 2017], where it used in the inductive de-
scent method with singular minimal hypersurfaces, to our minimizing µ-bubbles.

Such a generalization feels plausible and, if it’s true, this must be obvious
to Schoen and Yau. (I guess, the same can be said about what Lohkamp thinks
about generalization of his theorem to µ-bubbles.)

Granted this, one gets the sharp 2π
n
-inequality for SYS-bands, and in fact

for all bands X which satisfy h, where the poof of non-existence of metrics
of positive scalar curvatures on separating hypersurfaces Y ⊂ X is obtained by
196The most general existence theorem of this type applicable to all codimensions is in the
technically difficult Almgren’s 1986 paper "Optimal Isoperimetric Inequalities".

The existence and regularity theorem we need in codimension one are easier, they follow
by the usual technique of integer currents and regularity theorems, see [Ros(isoperimetric)
2001]), [Morgan(isoperimetric)(2003); the arguments from this papers which are applied there
to the more traditional formulation of the isoperimetric problem, can be carried over to our
µ-bubble setting with no problem; alternatively, one can use the language of Caccippoli sets.
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exclusively by inductive decent with no appeal to Dirac operators and related
invariants, such as the Â-genus and the α̂-invariant.197

Minimal Hypersurfaces in Non-compact Bands. An essential advantage of
µ-bubbles over minimal hypersurfaces is that the former are easier to "trap"
them and prevent from fully sliding away to infinity than the former.

For instance if X is a complete non-flat manifold with positive sectional
curvature which is conical at infinity then it contains no complete (even locally)
volume minimizing hypersurfaces, but it contains lots of stable complete (and
compact) µ-bubbles.

However, a version of the 2π
n

can be proven for non-compact complete bands
by reduction to "large" compact non-proper bands X, where the boundary is
divided into three parts

∂X = ∂+ ∪ ∂− ∪ ∂side

where ∂+ = ∂+(X) and ∂− = ∂−(X) are disjoint with controlled lower bound
on the distance between them, while ∂side = ∂side(X), which intersects both
∂+ and ∂− is supposed to be far away from the bulk of the intended minimal
hypersurfaces in X.

Example. Let X be the cylinder Bn−1(R) × [−1,+1], where Bn−1(R) the
Euclidean R-ball of dimension n− 1 ≥ 2 and where ∂side(X) = Sn−3(R)n−1(R)×

[−1,+1] for the equatorial sphere Sn−3(r) ⊂ Sn−2(r) = ∂Bn−1(r).
Let ∂r ⊂X, r > R be the r-cylinder concentric to ∂side(X), that is

∂side(r) = S
n−2

(R)
n−1

(R) × [−1,+1].

Minimal hypersurfaces Y = Yr ⊂X we shall meet inX will be similar to those
Y ⊂X, which have their boundaries contained in Zr = ∂+(X) ∪ ∂−(X) ∪ ∂side(r)
and which represent non-zero homology classes in Hn−1(X,Zr.

Namely, let X be a compact orientable non-proper n-dimensional band. Let
f = (f1, f2) ∶X →X = Bn−1(R)×[−1,+1 be a smooth map which sends ∂∓(X) →

∂∓(X) and ∂side(X) → ∂side(X) and such that
●1 the map f1 ∶X → Bn−1 is 1-Lipschitz;
●2 the map f2 ∶X → [−1,+1] is λ-Lipshitz for λ > 0
●3 the map f has non-zero degree.
Observe that
●1 implies that

dist(∂side(X), ∂side(r)(X) ≥ R − r;

●2 makes

width(X) = dist(∂−(X), ∂+(X)) ≥ d = dλ =
2

λ
;

●3 shows that if an oriented hypersurface Y ⊂ X with ∂Y ⊂ Zr, repre-
sents a non-zero homology class in Hn−1(X,Zr), then it necessarily intersects
∂side(r)(X).

In fact, Y intersects every (n−3)-dimensional submanifold Z ′ ⊂ Zr (observe
that dim(Zr) = n − 2 for generic maps f) which separates ∂−(Zr) = Zr ∩ ∂−(X)

from ∂+(Zr) = Zr ∩ ∂+(X).
197 This is complementary to what can obtained by Dirac operators methods of Zeidler and
Cecchini.
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3.7.1 Paradox with Singularities

Singularities must enhance the power of minimal hypersurfaces and stable µ-
bubbles rather than to reduce it, since the large curvatures of hypersurfaces
Y ⊂X (these curvatures are infinite at singularities) add to the positivity of the
second variation .

Thus, for instance, if a Y ⊂X, where dim(X) = 8 and Sc(X) ≥ −1, is a stable
minimal hypersurface with a singularity at y0 ∈ Y and if no smooth submanifold
in the homology class of Y admits a metric with Sc > 0, e.g. X is homeomorphic
to the torus and Y is non-homologous to zero, then scalar curvature of X can’t
be non-negative outside a small neighbourhood of y0 ∈X.

Yet, there is no known argument for dim(X) ≥ 9 fully implementing this
idea.

On n = dim(X) = 8. If dim(X) = 8 then stable minimal hypersurfaces and
µ-bubbles Y ⊂ X have isolated singularities which can be removed by small
generic perturbation as in [Smale(generic regularity) 2003] as follows.

Theorem. Let Y0 ⊂X be a cooriented compact isolated volume minimizing hy-
persurface and let et Xt = [X0, Yt] ⊂X be the bands between Y0 and hypersurfaces
Yt, which are positioned close to Y0 on their "right sides" in X, and which minimize
the function Y ↦ voln−1(Y ) − t ⋅ vol[Y0, Y ] for 0 ≤ t ≤ δ for a small δ > 0.

If n = 8, then submanifolds Yt are non-singular for an open dense set of
t ∈ [0, δ].

Outline of the Proof. The key (standard) facts one needs here are as follows.
1. Monotonicity. If the sectional curvature of X is bounded by κ̄2, then

the volume of intersections of m-dimensional minimal subvarieties Y ⊂ X with
r-balls By0(r) ⊂X centered at y0 ∈ Y satisfy

dr−mvolm(Y ∩Bx(r)

dr
≤ constnrκ̄. for all r ≤ r0 = r0(X,y0) > 0.

2. Corollary. The densities of (singularities of) minimal Y ⊂X are semicon-
tinuous:

if be a sequence of pointed manifolds with uniformly bounded geometries,
(Xi, xi), Haussdorf converges to (X,x) and if minimal subvarieties Yi ⊂Xi, which
contain the points xi, current-converge to Y ⊂X, then

lim supdens(Yi, xi) ≤ dens(X,x),

where, recall,

dens(Y,x) = lim
r→0

r−mvolm(Y ∩Bx(r)),mboxm = dim(Y ).

3. Weak Compactness: The set YA of minimal subvaraities Y ⊂X with volumes
bound by a constant A is compact in the current topology for all A < ∞.

4. Codimension one Intersection Property. Minimal codimension one cones
C1,C2 ⊂ Rn necessarily intersect by the maximum principle.

5. Split Cone Property. Let C ⊂ Rn be a minimal cone. Then either the
density of this cone at the apex 0 ∈ C is maximal +ε,

dens(C,0) ≥ dens(C, c) + ε for all 0 ≠ c ∈ C and some ε = ε(C) > 0,
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or the cone split, i.e. C = C−1 ×R1 for a minimal cone C−1 ⊂ Rn−1.

Now, turning to the proof, let all Yt have singularities at some points yt →
y0 ∈ Y0, t → 0, and assume without loss of generality, this is possible due to 2,
that

dens(Yt, yt) = dens(Y0, y0).
198

Let λ-scale these Yt at y0, thus making λY0, converge to a minimal cone, call
it Y ′

0 ⊂ Ty0(X)Rn, and let Y ′
t be what remains of the limits of other Yt.

Since these Y ′
t don’t intersect Y ′

0 , none of Y
′
t is conical, which is only possible

if the singularities of Yt slide tangentially along Y0 for t ∼ λ−1 by the distance
c(t), such that c(t)/λ → ∞ for λ → ∞. It follows that if all Yt were singular,
these singularities would accumulate in the limit to a ( one dimensional or larger)
singularity of Y ′

0 of constant density equal to that of dens(Y0, y0). Therefore,
the cone Y ′

0 splits, since n = 8, it is non-singular and the proof follows by
contradiction.

On n = dim(X) ≥ 8. (a) Schoen-Yau in their desingularization argument
apply descent by warped T⋊-symmetrised/stabilized minimal hypersurfaces

X =Xn
⊃ Y n−1

⊃ ... ⊃ Y n−i ⊃ .... ⊃ Y 2,

where minimization and T⋊-stabilization (essentially) apply to non-singular parts
of these Y and where the main difficulty, as far as I can see, is to show that
Y n−i can’t be eventually sucked in the singularity of Y n−1,199 and where the
outcome of this process - the surface Y 2 – is non-singular.200

(b) The main desingularization result by Lohkamp in [Lohkamp(smoothing)
2018], is

approximation theorem of volume minimizing codimension one cones Cn−1 ⊂

Rn by smooth minimal hypersurfaces (generalizing Smale’s result in the case of
cones) with the following

Splitting Corollary. sf Let X be a compact orientable Riemannian manifold
with Sc(X) > 0. Then all homology classes in Hn−1(X) are representable by
hypersurfaces Y ⊂X, which support metrics with Sc > 0.

Remarks (a) As far as the topology of compact manifolds with Sc > 0 this
result is more general than that by Schoen and Yau.

For instance it implies that
products of Hitchin’s spheres and connected sums of tori with non-spin man-

ifolds admit no metrics with Sc > 0.
Nor alternative proof of this kind of results is available.
(b) As far as I understand,201 Lohkamp’s smoothing allows applications of

our µ-bubble arguments to manifolds of all dimensions n, with possible excep-
tions for rigidity theorems for non-compact manifolds.
198 Our Yt are µ-bubble rather than minimal, but this makes no difference at this point.
199If n ≤ 9, this problem for overtorical X can be handled with Dirac operators, as in section
5.3 in [G(billiards) 2014].
200 Schoen and Yau articulate their main results (theorems 4.5 and 4.6 in [SY(singularities)
2017]) for compact SYS-manifolds, although the basic arguments of their paper are essentially
local and and apply to a wider class of manifolds.
201My understanding of the results by Lohkamp as well as those by Schoen and Yau
is limited, since I haven’t mastered the proofs from [SY(singularities) 2017]) and from
[Lohkamp(smoothing) 2018].
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(c) The above 1-5 seems to suffice for smoothing conical singularities (am
I missing hidden subtleties?) but it is unclear to me how Lohkamp’s splitting
corollary for n ≥ 9 follows from it.

3.7.2 T⋊-Stabilized Scalar Curvature and Geometry of Submanifolds
of Codimensions One, Two and Three

Besides 2π
n , there are other immediate applications of the separation theorem

III.
[1] Compact Exhaustion Corollary. Let X be a complete Riemannian

manifold with Sc(X) ≥ σ > 0.
Then X can be exhausted by compact domains Ui with smooth boundaries

Yi = ∂Ui
U1 ⊂ U2 ⊂ ... ⊂ Ui ⊂ ... ⊂X, ⋃

i

Ui =X,

such that Ui+1 is contained in the ρ-neighbourhood of Ui for all i = 1,2, ... and
and where all Yi admit T⋊-extension Yi ⋊T1 with

Sc(Yi ⋊T1
) ≥

σ

2
.

Poof. Let S(10), S(20), ...S(10i), ... ⊂ X be concentric spheres around a
point x0 ∈X, let Yi be hypersurfaces in the annuli [S(10i), S(10(i+1))] between
these spheres, which separate S(10i) from S(10(i + 1)) and which enjoy the
properties supplied by III. Then take the domains in X bounded by Yi for Ui.

[2] Codimension 2 Corollary. Let X be a (possibly non-compact) con-
nected orientable n-dimensional Riemannian manifold with boundary, let X be a
compact connected orientable surface with boundary and with an arbitrary metric
compatible with topology and let Ψ ∶X →X be a smooth distance decreasing map
which sends the boundary ∂X to ∂X.

If Sc(X) ≥ σ + σ1, σ,σ1 > 0 and the inradius of X is bounded from below by

inrad(X) = sup
x∈X

dist(x, ∂X) >
2π
√
σ
,

then X contains an oriented codimension two (possibly disconnected) submani-
fold Y ⊂X, which, if X is non-compact, is properly embedded to X and which is
homologous for the homology group Hncpt

n−2 (X) with infinite supports in the case of
non-compact X) to the pullback Ψ−1(x) ⊂ X of a generic point x ∈ X, and such
that Y with the induced Riemannian metric from X admits a T2-extension, that
is the product Y ×T2 with the metric gφ = dy2 + φ2(dt21 + dt

2
2), such that

Sc(gφ) ≥ σ1.

Proof. Let X1 ⊂ X be the I-hypersurface that, according to III, separates
the boundary of X from the f -pullback of the (small disc around) the point
x ∈ X furthest from the boundary (as in the proof of T⋊-stabilized Bonnet-
Myers diameter inequality [BMD] in section 2.8 and apply 2π

n
to the infinite

cyclic covering of X1 ⋊ T1 induced by the natural cyclic covering of X minus
this point.
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[2′] Codimension 2 Sub-Corollary. Let X be a closed orientable n-
dimensional Riemannian manifold with Sc(X) ≥ σ > 0, let X be a closed surface
with an arbitrary metric compatible with topology and let Ψ ∶X →X be a smooth
distance decreasing map.

If no closed oriented codimension two submanifold Y ⊂X homologous to the
pullback Ψ−1(x) ⊂X of a generic point x ∈X admits a metric with Sc > 0, then
the diameter of the surface X is bounded in terms of σ as follows.

diam(X) <
2π
√
σ
.

Proof. Let x0, x1 ∈ X be mutually furthest points and apply the above to
the pullback X− of the complement X− to a small disc in X around x0.

[3] Area non-Contraction Corollary. Let X be a proper compact ori-
entable Riemannian band of dimension n + 1, let X ⊂ Rn+1 be a smooth convex
hypersurface and let f ∶ X → X be a smooth map the restriction of which to
∂− ⊂ ∂X (hence, to ∂+ as well) has non-zero degree.

If X is spin and if n is even,202 then there exists a point x ∈ X, where
the exterior square of the differential of f is bounded from below in terms of
d = width(X) = dist(∂−, ∂+) and the scalar curvature Sc(X,x) as follows.

Sc(X,f(x)) ⋅ ∣∣ ∧2 df(x)∣∣ ≥ Sc(X,x) −
4(n − 1)π2

nd2
.

Furthermore, if X = Sn, then, now for odd as well as for even n, the trace
norm of ∧2df satisfies:

2∣∣ ∧2 df(x)∣∣trace ≥ Sc(X,x) −
4(n − 1)π2

nd2
.

Proof. Apply the Tm-stabilized area/mapping extremality theorem (3.4.1,
3.4.4) for m = 1 to Y ⋊T1 where Y ⊂X is the separating hypersurface from III.

Exercises. (a) Codimension 3 Linking Inequality. LetX be a closed orientable
n-dimensional Riemannian manifold with Sc(X) ≥ σ > 0, let X be the 3-sphere
with an arbitrary metric compatible with topology and let f ∶ X → X be a smooth
distance decreasing map. Show that

if no closed oriented codimension three submanifold Y ⊂ X homologous to
the pullback f−1(x) ⊂ X of a generic point x ∈ X admits a metric with Sc > 0,
then the distances between all pairs of embedded circles S1, S2 ⊂X with non zero
linking numbers between them satisfy:

dist(S1, S2) <
2π
√
σ
.

Hint. Use the argument from the proof of the codimension 2 corollary [2]
and consult [Richard(2-systoles) 2020]203

202As we have said already several times, these conditions must be redundant.
203Our codimension 2 area bounds, including this exercise, are motivated by Richard’s bound
on systoles of 4-manifolds with Sc > σ proved in this paper.

121



(b) Area non-Contraction in Codimension 3. Let X, X and f ∶X →X be as
in (a), let X1 ⊂ Rn−2 be a smooth closed convex hypersurface and let f1 ∶X →X1

be a smooth map, such that the "product" of the two maps,

(f, f1) ∶X →X ×X1,

has non-zero degree. Show that
if X is spin and n is odd (thus, dim(X1) even) then there exists a point

x ∈ X, where the exterior square of the differential of f is bounded from below
in terms of d = width(X) = dist(∂−, ∂+) and the scalar curvature Sc(X,x) as
follows.

Sc(X,f(x)) ⋅ ∣∣ ∧2 df(x)∣∣ ≥ Sc(X,x) −
4(n − 1)π2

nd2
,

for d equal the supremum of the distances between pairs of linked circles in X.

3.7.3 On Curvatures of Submanifolds in the unit Ball BN ⊂ RN

(The earlier versions of this section contained errors.)
Here is our
Problem. Given a closed smooth n-manifold X and a number N > n,
evaluate the minimum of the curvatures of smooth immersion of X to the
unit N -ball,

f ∶X ↪ BN = BN(1) ⊂ RN .

We shall briefly describe in this section what is known and and what is
unknown about this problem and refer to section 3 and 7 in [G(inequalities)
2018] and to [G(growth of curvature) 2021] for more general discussion and for
the proofs.

Six Examples of Immersed and Embedded Manifolds
with Small Curvatures

Just to clear the terminology, we agree that a smooth map f ∶ X → Y is an
immersion if the differential df ∶ T (X) → T (Y ) is injective on all tangent spaces
Tx(X) ⊂ T (X).

An immersion f of a compact manifold is an embedding if it has no double
points, f(x) ≠ f(y) for x ≠ y.

If Y is a Riemannian manifold, e.g. Y = RN , then the curvature of this f ,
denoted

curvf(X) = curvf(X ↪ Y ) = curv(X ↪ Y ) = curv(X),

is the supremum of the Y -curvatures of all geodesics in X, where "geodesic" is
understood with respect to the Riemannian metric in X induced from Y .

1. Clifford Embeddings. Here, X = Xn is the product of m spheres of
dimensions ni, ∑mi=1 ni = n, all of the radius r = 1√

m
,

X = Sn1 (
1

√
m

) × ... × Sni (
1

√
m

) × ... × Snm (
1

√
m

)
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and
fCl ∶X ↪ SN−1

⊂ BN(1) ⊂ RN , N =m +∑
i

ni,

is the obvious embedding, that is the 1√
m
-scaled Cartesian product of the imbed-

dings Sni(1) ⊂ Rni+1.
Clearly,

curvfCl(X ↪ BN) =
√
m

and the curvature of X in the unit sphere is

curvfCl(X ↪ SN−1
) =

√
m − 1.

Two natural questions arise:
Can the products of spheres be immersed to the unit ball with smaller curvatures?
Are there non-spherical, immersed or embedded, submanifolds X ↪ BN(1) with

curv(X) <
√

2?
A definite answer is available only for immersions Xn → Sn+1 by a theorem

of Jian Ge. 204

[#×#] Clifford’s are the only codimension one immersed non-spherical sub-
manifolds X in the spheres with curvatures curv(X ↪ Sn+1) ≤ 1.

But if m ≥ 3 then there are immersions of non-spherical n-manifolds to
Sn+m−1 with smaller curvature.

2. Veronese embeddings of projective spaces to spheres,

fV er ∶ RPn → S
(n+1)(n+2)

2 −2
⊂ B

(n+1)(n+2)
2 −1

= B
(n+1)(n+2)

2 −1
(1)

satisfy

[
√

n−1
n+1

] curvfV er (RP
n
↪ S

(n+1)(n+2)
2 −2

) =

√
n − 1

n + 1
< 1.

and

curvfV er (RP
n
↪ B

(n+1)(n+2)
2 −1

) =

√
n − 1

n + 1
+ 1 <

√
2.

Conjecturally, these have the minimal curvatures among all non-spherical
n-submanifolds in the unit spheres and unit balls, where the minimum for all n
is achieved (only conjecturally) by Veronese’s projective plane in unit 4-sphere,
where

[ 1√
3
], curvfV er(RP

2
↪ S4

) =
1

√
3
= 0.577350...

and
curvfV er2(RP

2
↪ B5

) =
2

√
3
= 1.15470... .

3. The 1√
l
-scaled Cartesian power of the Veronese map

F =
1
√
l
⋅ f×lV er ∶X

2l
= RP 2

× ... ×RP 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l

→ S4l−1
⊂ B4l

(1)

204See [Ge(linking) 2021] and ◊ in this section.
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competes with the Clifford embedding, for

curvF (X2l
↪ B4l

) =
√
l ⋅

√
l

3
+ 1 <

√
2l.

4. If N ≥ (1 +∆)n, say for ∆ > 10 then all n-manifolds X admits immersions

f ∶X ↪ SN

with
curvf(X) ≤ C∆,

where C∆ <
√

2 for all n and where

C∆ →

√

2 −
6

n + 2
for ∆→∞

with the rate of convergence which, a priori, may depend on n.
It is unclear if the "true" C∞ is, actually, smaller than

√
2 − 6

n+2
and it is also

unclear what happens to C∆ for ∆ close to zero.
5. It easily follows from the above that
if the dimension nm of the last factor in a product of spheres

Xn
=
m

⨉
i=1

Sni ,
m

∑
i=1

ni = n,

is much greater then the remaining ones, say, roughly,

nm ≥ exp exp
m−1

∑
i−1

ni,

then Xn admits an immersion

f ∶Xn
↪ Bn+1

(1)

such that
curvf(X

n
) < 2

√
3.

This is smaller than Clifford’s
√
m starting from m = 12.

It is unclear, however, if these Xn admit embeddings to the unit ball with
curv(Xn ↪ Bn+1) ≤ 100, for example.

6. There are no topological bounds on curvatures of immersed submanifolds
of a given dimension n:

if an Xn admits a smooth immersion to RN , then it also admits an immersion
to the unit ball with curv(Xn ↪ BN) < constn.

But all we can say about this constant is, roughly, that

0.1n < constn < 10n
3
2 .

Imbeddings, at least these with codimension one, are different from immer-
sions in this regard.

124



For instance, if X = Xn is disconnected and contains m mutually non-
diffeomorphic components, then, clearly,

curvf(X ↪ Bn+1
) ≥ constnm, constn ≥

1

(10n)n
,

for all embeddings f ∶X ↪ Bn+1(1).
It is also not hard to construct similar connected X for n ≥ 6 and, probably,

for all n ≥ 3.
Conceivably the same is possible for imbeddings with higher codimensions k,

at least for k << n, where one expects that, say for k < n
3
and a given, arbitrarily

large, constant C > 0, there exists
a connected n-dimensional submanifold X ⊂ Rn+k, such that all imbeddings

X ↪ Bn+k(1) satisfy
curv(X ↪ Bn+k) ≥ C.

But it should be noted that
all connected orientable surfaces embed to the unit ball B3 with curvatures

≤ 100
and
the connected sums X of copies of products of spheres with any number of

summands admit embeddings

f ∶X ↪ Bn+1
(1), n = dim(X),

with
curvf(X) ≤ 100n

3
2 .

Questions. Do all smooth n-manifold admit embeddings to the unit 2n-ball
with

curv(Xn
↪ B2n

) ≤ 100?

Do the products of spheres

X =
m

⨉
i=1

Sni , where all ni ≥ 2, e.g. X = (S2)m,

embed to BN(1), N = 1 +∑i ni with curv(X) ≤ 100?

Lower bounds on curv(X).

A. It is obvious that
immersed n-manifolds X ↪ BN(1) with curv(X) ≤ 1 + δ for a small δ >

0 keep close to an equatorial N -sphere in Sn ⊂ SN−1 = ∂BN ; thus, they are
diffeomorphic to Sm.

In fact, it is is not hard to show, that
δ = 0.01, is small enough for this purpose,

while, conjecturally, this must hold for

δ <
2

√
3
= 1.15470...
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with the Veronese surface being the extremal one.
B. Also conjecturally,
[# × #]? the inequality curvf(X) <

√
2 for codimension one immersions f ∶

X → Bn+1 must imply that X is diffeomorphic to Sn (with the equality for non-
spherical X achieved by the Clifford embeddings).

This is apparently unknown even for n = 2..

C. Let X be an n-dimensional ∄-PSC manifold, i.e. admitting no metric with
Sc > 0, e.g. Hitchin’s sphere or a connected sum of n-tori.

Then a simple application of Gauss’s Theorema Egregium,205 shows that
immersions f ∶X → SN satisfy

curvf(X) ≥

√
n − 1

N − n

and

curvf(X) ≥

√

1 −
1

n
.

for all n and N .
Here, observe, it is as it should be: no contradiction with the above 4, for

1 −
1

n
≤ 2 −

6

n + 2

for all n ≥ 2 with the the equality for n = 2.
D. If X =Xn is ∄-PSC, then all immersions f ∶X → BN = BN(1) satisfy

curvf(X) ≥
1

C○

√
n − 1

N − n
+ 1

where C○ > 0 is a universal constant that is defined as
the minimal possible increase of curvatures of curves

under smooth immersions BN → Sn = SN(1). More precisely, C○ is the infimum
of the numbers C > 0, for which

there exits an immersion g ∶ BN ⊂ SN , such that all curves S ⊂ BN with
curvatures

curvBN (S) ≤
√

1 + κ2

are sent to curves with curvatures

curvSN (g(S)) ≤ Cκ.

This C○, most probably, is assumed by a radial (i.e. O(n)-equivariant) map
g and then it must be easily computable; without computation, one can get

C○ < 4.206

205Compare with [Guijarro-Wilhelm(focal radius) 2017].
206A natural candidate for g is a projective map, where curvSn(g(S) ≤ constgcurvBn(S) for
all curves S ⊂ Bn. But since we are essentially concerned only with what happens to curves
with curv > 1, the best g doesn’t have to be projective – it might be conformal, for example.
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E. Conjecture + Theorem. If If X = Xn is ∄-PSC, then conjecturally all
immersions f ∶X → BN = BN(1) satisfy

[ n
N−n] curvf(X) ≥ const

n

N − n
.

E1. It is esay to see in this regard that the 2π
n
-inequality yields this conjec-

ture for N = n + 1, n + 2:
if N = n + 1, then

curvf(X) ≥
N

2π
=
n + 1

2π
.

and if N = n + 2, then

curvf(X) ≥
N

4π
=
n + 2

4π
.

Here we must recall that our proof of the 2π
n
-inequality in section 3.6 is un-

conditional only for N ≤ 8, where these inequalities are not especially informa-
tive. And ifN ≥ 9, our proof relies on not formally published "desingularization"
results by Lohkamp and by Schoen-Yau.

Fortunately, there are now two Dirac theoretic proofs for a large class of
∄-PSC manifolds of all dimensions, including n-tori Tn and connected sums of
these for, example.207

E2. If X is enlargeable e.g. the connected sum of the n-torus with another
closed manifold, then a minor generalization of the Schoen-Yau "desingulariza-
tion" theorem allows a proof of the following version of [ n

N−n] for N = n + 3:

curv(X ↪ BN) ≥ const3N,

where, roughly, const3 > 1
16π

.
Also, granted a more serious (but realistic) generalization of the Schoen-Yau

result or a version of Lohkamp’s theorem, one can prove a similar inequality for
N = n + 4.

curv(X ↪ BN) ≥ const4N

with const4 > 1
400π

.
Finally, assuming that one can ”go around singularities” of stable µ-bubbles,

and that (this is more serious)
the filling radii of n-manifolds Y with Sc(Y ) ≥ σ > 0 satisfy

filrad(X) ≤ 100
n

√
σ
,

one can show for all n and k = N − n that

curv(X ↪ BN) ≥ constkN

where one needs constk about 1
500500k

.

F. All of the above equally applies to immersions of products of enlargeable
manifolds X0 with spheres, say to

f ∶X =Xn0

0 × Sn1 → Bn0+n1+k,

207See [Cecchini-Zeidler(generalized Callias) 2021] and [Guo-Xie-Yu(quantitative K-theory)
2020].
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where we conjecture that

[ n0

n1+k ] curvf(X ⊂ Bn0+n1+k) ≥ const
n0

n1 + k

and where the case n1 + k ≤ 4 is within reach. (Notice that [ n0

n1+k ] implies
[ n
N−n].)

Four Questions

I. Are there lower bound on curvf(X) unrelated to the scalar curvature?
II. What is the minimal dimension N = N(n) such that all n-manifold can be

immersed to the unit N -ball with curvatures ≤ 1 000?
III What is the minimal C = C(n) such that the n-torus can be immersed to

the unit (n + 1)-ball with

curv(Tn ↪ Bn+1
) ≤ C?

IV Can the Cartesian n-th power of the 2-sphere be immersed to the unit (2n+1)-
ball

X = S2
× ... × S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

↪ B2n+1

with
curv(X ↪ B2n+1

) ≤ 100?

Looking back on the above examples, questions and conjectures, one may be
disconcerted by their chaotic irregularity. But this only highlights the patchiness
of our present-day knowledge of the basic geometry of submanifolds in Euclidean
spaces.

◊Wide bands with sectional curvatures ≥ 1. Let a proper compact Riemannian
band Y (see 3.6) of dimension n + 1 admit an immersion to a complete (n + 1)-
dimensional Riemannian manifold Y+ with sectional curvature

sect.curv(Y+) ≥ 1,

and let the width of Y with respect to the induced Riemannian metric satisfy

width(Y ) = dist(∂−Y, ∂+Y ) >
π

2
.

Then
Y contains a subband Y− ⊂ Y of width d = width(Y ) > π

2
, which is homeo-

morphic to the spherical cylinder Sn × [0,1].
Acknowledgement. A similar result for n = 3 is proved in [Zhu(width) 2020],

while our argument below follows that of Jian Ge from [Ge(linking) 2021], who
sent me his preprint prior to publication.

Proof. Let Y− be the intersection of the d-neighbourhoods of the ∂∓-boundaries
of Y ,

Y− = Ud(∂−) ∩Ud(∂+),
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and observe that the ∂∓-boundaries of this Y− are concave for κ ≥ 1 and d > π
2
.

Therefore, ∂∓ are diffeomorphic to Sn−1 and the immersions

∂∓ → Y+

extend to immersions of n-balls, such that the locally convex boundaries of these
are equal to ∂∓ (with their coorientations opposite to those in Y−). 208

It follows, that if Y+ is simply connected, then then the immersion Y− → Y+
is one-to-one and the complement Y+ ∖ Y− consists of two convex balls with
distance > π

2
between them.

Hence, diam(Y+) > π
2

and Y+ is homeomorphic to Sn+1 by the Grove-
Shiohama diameter theorem; consequently, Y− is homeomorphic to Sn × [0,1].
QED.

Remark. (a) The conclusion of the theorem, probbaly, holds if sect.curv(Y−) ≥
1 and sect.curv(Y−) ≥ 0, since the proof of the diameter theorem seems to work
in this case.

(b) It also doesn’t seem difficult to prove the rigidity theorem a la Berger-
Gromoll-Grove in case of an open band with width(Y ) = π

2
, where the only

alternatives to the homeomorphism of Y to Sn × (0,1) should be as follows:
● Y is isometric the open π

4
-neighbourhood of a Clifford submanifold

Sn1 × Sn2 ⊂ Sn+1 n1 + n2 = n;

●● Y+ is isometric to the projective space over complex numbers, quaternion
numbers or Cayley numbers and Y is isometric to the open π

2
-ball minus the

center in such an Y+.
In fact, the poof of this rigidity seems quite easy in the case of the interest

(the above [# × #]), where Y is equal to the (normal) π
4
-neighbourhood of a

hypersurface X ⊂ Sn+1 with curv(X) ≤ 1.
Questions. (i) Is the manifold Y+ ⊃ Y indispensable? Do there exist "non-

obvious" bands with sect.curv ≥ 1 and with width ≥ π
2

?
(ii) Given a closed n-manifold X, e.g. a product of spheres, X = ⨉i S

n+1,
what is the supremum of the widths of the Riemannian bands Y homeomorphic
to X × [0,1] with sect.curv(Y ) ≥ 1?

3.8 Multi-Width of Riemannian Cubes
Let g be a Riemannian metric on the cube X = [−1,1]n and let di, i = 1,2, ..., n,
denote the g-distances between the pairs of the opposite faces denoted ∂i± = ∂i±(X)

in this cube X, that are the length of the shortest curves between ∂i− and ∂i+ in
X.

◻n-Inequality. If Sc(g) ≥ n(n − 1) = Sc(Sn), then

◻∑
n

∑
i=1

1

d2
i

≥
n2

4π2

208Recall that a closed immersed locally convex hypersurface in a complete Riemannian
manifold of dimension n ≥ 3 with sectional curvatures > 0 bounds an immersed ball.
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In particular,

◻min min
i
dist(∂i−, ∂i+) ≤

2π
√
n
.

(On the surface of things, this inequality is purely geometric with no topological
string attached. But in truth, the combinatorics of the cube fully reflects toric
topology in it.)

2π
n
-Corollary. If X is a proper orientable non-compact band with Sc(X) ≥

n(n − 1), which admits a proper 1-Lipschitz map f ∶ X → Rn−1, such that the
restriction of f to the ∂±-components of the boundary, of X,

∂−(X), ∂+(X) → Rn−1,

have non-zero degrees,(these two degrees are mutually equal) then

width(X) = dist(∂−, ∂+) ≥
2π

n
.209

The proof of ◻∑ proceeds by inductive dimension descent with T⋊-symmetrization
with the use of the "separation with symmetry" theorem III↺ from section 5.4.
210

Generalization. We shall apply this argument in 5.4 to more general
"cube-like" manifolds X, such as products of surfaces with square-like decom-
positions of their boundaries and also to products Y−m × [−1,1]n−m, where this
yields inequalities mediating between ◻∑ and the 2π

n
-inequality.

◻2-Example. Let Z be a compact connected orientable surface with non-empty
connected boundary where this (circular) boundary S = ∂Z is decomposed into four
segments meeting at their ends,

S = S1+ ∪ S2+ ∪ S1− ∪ S2−.

Let g be a Riemannian metric on Z ×Tn−2 with Sc(g) ≥ σ > 0.
Then the g-distances between the products of the pairs of the opposite (i.e.

non-intersecting) segments in S by the torus Tn−2, denoted ∂i± = Si± × Tn−2 ⊂

Z ×Tn−2, i = 1,2, satisfy:

[2
√

2] min
i=1,2

(distg(∂1−, ∂1+), distg(∂2−, ∂2+)) ≤ 2
√

2π ⋅

√
n − 1

n
⋅

√
1

σ
.

Proof. Pass to Z × Rn−2 for the universal covering Rn−2 → Tn−2 and apply
the ◻n-inequality to Z × [−d, d]n−2 for d→∞.

Hemi-spherical Corollary. Let X be a Riemannian manifold with Sc(X) ≥

n(n−1) = Sc(Sn), which admits a λn-Lipschitz, (i.e. dist(f(x)f(y)) ≤ λndist(x, y))
homeomorphism onto the hemisphere Sn+ ,

f ∶X → Sn+ .

209A proof of this for bands with locally bounded geometries can be performed using minimal
hypersurfaces rather than µ-bubbles as it is (briefly and sloppily) indicated in section 11.7 in
[G(inequalities 2018].
210A Dirac theoretic proof of this inequality is given in the recent paper [Wang-Xie-Yu(cube
inequality) 2021].
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Then
λn ≥

arcsinβn
πβn

>
1

π
for βn =

1
√
n
.

Proof. The hemisphere Sn+ admits an obvious cubic decomposition with
the (geodesic) edge length 2 arcsin 1√

n
and ◻min applies to the pairs of the f -

pullbacks of the faces of this decomposition.
Remarks and Exercises. (a) This lower bound on λn improves those in §12

of [GL(complete) 1983] and in §3 of [G(inequalities) 2018].
Moreover the sharp inequality for Lipschitz maps to the punctured sphere

stated in the next section implies that λn ≥ 1
2
for all n.

But it remains problematic if, in fact, λn ≥ 1 for all n ≥ 2.
(b) Show that λ2 ≥ 1.
(c) The proof of the inequality ◻∑ in section ?? applies to proper ((boundary→

boundary) λ-Lipschitz maps with non-zero degrees from all compact connected
orientable manifolds X to Sn+ , while the proof via punctured spheres needs X
to be spin.

(d) Show that the Riemannian metrics with sectional curvatures ≥ 1 on the
square [−1,1]2 satisfy

◻2
min. min

i=1,2
dist(∂i−, ∂i+) ≤ π.

(e) Construct iterated warped product metrics gn on the n-cubes [−1,1]n

with Sc(gn) = n(n − 1), where, for n = 2, both di, i = 1,2, are equal to π and
such that

di > 2 arcsin
1

√
n
, i = 1, ..., n, for all n = 3,4, ..., .

(f) Show, that ◻min is equivalent to the over-torical case of 2π
n -Inequality.

modulo constants. Namely,
(i). If a Riemannian n-cube X has mini dist(∂i−, ∂i+) ≥ d, then it contains an

n-dimensional Riemannian band X○ ⊂X, where dist(∂−X○, ∂+X○) ≥ εn ⋅ d, εn > 0,
and where X○ admits a continuous map to the (n− 1) torus, f○ ∶X○ → Tn−1, such
that all closed hypersurfaces Y○ ⊂ X○ which separate ∂−X○ from ∂+X○ are sent by
f○ to Tn−1 with non-zero degrees.

(ii). Conversely, let Xo be a band, where dist(∂−Xo, ∂+Xo) ≥ d) and which
admits a continuous map to the (n−1) torus, such that the hypersurfaces Yo ⊂Xo,
which separate ∂−Xo from ∂−Xo, are sent to this torus with non-zero degrees.

Then there is a (finite if you wish) covering X̃o of Xo, which contains a
domain X◽ ⊂ X̃o, where this domain admits a continuous proper map of degree
one onto the d-cube f◽ ∶X◽ → (0, d)n, such that the n coordinate projections of
this map, (f◽)i ∶X◽ → (0, d), are distance decreasing.

3.9 Extremality and Rigidity of Punctured Spheres
Let X be the unit sphere Sn minus two opposite points ±x0 ∈ Sn and let g =

gsphe denote the spherical metric (of constant curvature +1) restricted to this
X = Sn ∖ {±x0} ⊂ S

n.
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Double Puncture Extremality/Rigidity Theorem. If a smooth metric
g on X satisfies

g ≥ g and Sc(g) ≥ n(n − 1) = Sc(g),

then g = g.

This is shown by applying the spin-area extremality theorem [Xspin
→b]

from section 3.4.1 (one needs here only the spherical case of it but sharpened
by rigidity in the case of equality) to the T1-symmetrization of a certain stable
µ-bubble, Y ⊂ Sn ∖ {±x0}, which separates the punctures ±x0 ∈ S

n.
(See section 5.5 for the proof of this for general spin manifolds with Sc ≥

n(n − 1) properly mapped to Sn ∖ {±x0} with deg ≠ 0, where, recall, the details
of this proof for n ≤ 8 are yet to be worked out.)

Remark. If the above metric g on X = Sn ∖ {±x0} is complete, one can
prove that the inequalities g ≥ g and Sc(g) ≥ n(n − 1) imply that g ≥ g for the
complements X = Sn ∖Σ for certain subsets Σ larger than {±x0}.

For instance, Llarull’s inequality implies this for all finite subsets Σ ⊂ Sn and
a similar (purely index theoretic) argument yields this for

piecewise smooth 1-dimensional subsets (graphs) Σ ⊂ Sn, such that the mon-
odromy transformations of the principal tangent Spin(n)-bundle (that is double
cover of the orthonormal tangent frame-bundle over all closed curves in Σ are
trivial (e.g. Σ is contractible).

But if one makes no completeness assumption, our proof is limited to Σ being
either empty, or consisting of a single point or of a pair of opposite points.

Exercise. Prove with the above that no metric g on the hemisphere (Sn+ , g)
can satisfy the inequalities g ≥ 4g and Sc(g) > n(n−1). Then directly show that
if n = 2 then the inequality g ≥ g and Sc(g) ≥ 2 imply that g = g.

Questions. (a) Does the implication

[g ≥ g]&[Sc(g) ≥ n(n − 1)] ⇒ g = g

ever hold for Sn ∖Σ apart from the above cases?
(b) Can the sphere Sn with k-punctures carry a metric g, such that [Sc(g) ≥

n(n−1)] and such that the g-distances between these punctures are all ≥ 10nk?211

3.10 Slicing and Sweeping 3-Manifolds and Bounds on
their Widths and Waists .

If n ≥ 4, then then all known bounds on the size of n-manifolds X with
Sc(X) ≥ σ > 0 are expressed by non-existence of "topologically complicated
but geometrically simple" maps from these X to "standard manifolds" X.

But if n = 3 then
complete 3-Manifolds X with scalar curvature Sc(X) ≥ σ > 0 are
known to satisfy the following properties A, B, C
A. Uryson’s 1-Width Estimate. Let X be a complete Riemannian 3-

manifold with Sc(X) ≥ σ > 0.

211The negative answer was recently delivered by Cecchini’s long neck theorem, see section
3.14.3.
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Then there exists a continuous map f ∶X → P 1, where P is a 1-dimensional
polyhedral space (topological graph), such that the diameters of the pullback of
all points are bounded by

[width3/1] diam(f−1
(p)) ≤

24π
√
σ
.

A′. Moreover, if the rational homology group H1(X,Q) vanishes, then the
diameters of the connected components of the levels of the distance function

x↦ dist(x0, x)
are bounded by 8π√

σ
. for all x0 ∈X.

We prove a T⋊-stabilized version of A′ for manifolds with mean convex
boundaries in the next section and then derive A, also in the T⋊-stabilized form
needed for applications, for all 3-manifolds X with Sc(X) ≥ 6.212

A′′. Corollary. The filling radius of a complete 3-manifold X with Sc(X) ≥

σ is bounded by

fil.rad(X) ≤ C ⋅
1

σ
for C ≤ 24π.

(We shall show in the next section that C ≤ 8π.)
Exercises. (a) Map the unit sphere Sn ⊂ Rn+1 onto the cone P 1 = P 1

n over
the vertex set of the regular simplex inscribed into Sn, such that the diameters
of the pullbacks of all points are ≤ π − δn for δn > 0.

(Probably, The Uryson 1-width of Sn is realized by such a map.)
(b) Let X be a compact Riemannin 3-manifold with Sc(X) ≥ σ > 0 and let

f ∶X →X be a continuous map. Show that if the 1-dimensional homology of X
is torsion, e.g. zero, then there exists a point x ∈ X, such that dist(x, f(x)) ≤
6π

√
2
σ
.

Hint. See (E′5) in Appendix 1 in [G(filling) 1983].
B. Topological ⊔S2-Sweeping Theorem. A compact 3 manifold admits

a Riemannian metric with with Sc > 0 if and only if there exists a finite covering
X̃ → X and a Morse function f̃ ∶ X̃ → R, such that the pullbacks f̃−1(t) ⊂ X of
all non-critical t ∈ R are disjoint unions or spheres S2.

About the Proof. This is a reformulation of the classification theorem for
compact manifolds X with Sc > 0, which says, in effect, that these X

admit finite coverings X̃ diffeomorphic to connected sums of S2 × S1,
and which follows from non-existence of aspherical components in the prime
decompositions of manifolds with Sc > 0, and Perelman’s solution of Thurston
conjecture. 213

B′. S2-Sweeping Complete Manifolds. If X is a complete oriented 3-
manifold with Sc(X) ≥ σ > 0, then, instead of a finite covering X̃, one constructs

a 3-polyhedron X̂, a proper piecewise smooth locally finite-to-one map Φ̂ ∶

X̂ →X and a proper piecewise linear positive function f̂ ∶ X̂ → R+, such that
(i) the map Φ̂ sends a (non-compact) homology class from the rational 3-

dimensional homology group of X̂ with infinite supports to the fundamental class
of X;
212A′ is proven in [GL(complete)1983], where the condition H1(X,Q) = 0 was erroneously
omitted. Also see sections (E)-(E′2) in Appendix 1 in [G(filling). 1983].
213See [Gl(complete) 1983] and [Ginoux(3d classification) 2013].
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(ii) the connected components of the pullbacks f̂−1(t) ⊂ X̂ for all t ∈ R are
either single points or joints of 2-spheres.

(This is suggestive of what can be expected for n > 3.)
C. Sharp Area Slicing Inequality. Let X be a Riemannian 3-manifold

diffeomorphic to S3 or to a connected sum of several S2 × S1.
If Sc(X) ≥ 6, then X admits a Morse function f , the non-singular levels

of which are disjoint union of spheres, where the areas of all these spheres are
bounded by 4π.

About the Proof. We already know the all stable minimal surfaces Y in
X have areas bounded by 4π

3
by Schoen-Yau’s rendition of the second variation

inequality (sections 2.5 and 2.7 + the Gauss-Bonnet theorem. Furthermore, this
inequality combined with Hersch’s upper bound on the first non-zero eigenvalue
of the Laplace on surfaces Y diffeomorphic to S2 with area(Y ) ≥ 4π = area(S2),
that is

λ1(Y ) ≥ 2 = λ1(S
2
)

implies that minimal surfaces Y ⊂ X with Morse index 1 have their areas
bounded by 4π. 214

Then "the almost extremal ⊔S2-Morse slicing" f ∶ X → R, that almost
minimizes the area of the maximal pullback sphere is the required one. 215

C. Liokumovich-Maximo Area+Diameter Slicing Inequality. Let X
be a compact Riemannian 3-manifold with Sc ≥ 6 = Sc(S3). Then X admits a
Morse function, the connected components Σ of all nonsingular levels f−1(t) ⊂
X, t ∈ R satisfy:

(i) area(Σ) ≤ 64π),
(ii) diam(Σ) ≤ 40π√

6
,

(iii) genus(Σ) ≤ 13.
Corollary. X admits a map F ∶ X → R2, such that the lengths of the

pullbacks of all points are bounded by a universal constant C ≤ 100.
Consequently, X contains a stationary geodesic net of length ≤ C.
For the proof we refer to [Lio-Max (waist inequality) 2020].
All known manifolds with Sc ≥ σ > 0 satisfy counterparts of these A, B, C

for all dimensions n, which suggests the following conjectures.
Topological S2-Sweeping Conjecture. LetX be a complete, e.g. compact,

orientable n-manifold, n ≥ 3 with Sc(X) ≥ σ > 0.
Then there exists an n-polyhedron X̂, a proper piecewise smooth locally finite-

to-one map Φ̂ ∶ X̂ → X and a proper piecewise linear map f̂ ∶ X̂ → Pn−2, where
Pn−2 is an (n− 2)-dimensional polyhedral space (pseudomanifold maybe?), such
that
214See J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes,
C.R. Acad. Sci.Paris Sér. A-B 270 (1970), A1645-A1648 and [Marques-Neves(min-max
spheres in 3d) 2011].
215See [Lio-Max (waist inequality) 2020], where this is proved using the mean curvature flow.
Probably, this can be also proved by the Sacks-Uhlunbeck direct minimization, where bub-

bling creates disconnectedness of the levels of f . (Apparently, if X diffeomorphic to S3

contains no stable minimal surfaces, then it admits a Morse function with two critical points
and areas of all levels bounded by 4π. But, in general high disconnectedness of the levels of
f is inevitable, even for X diffeomorphic to S3.)
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(i) the map Φ̂ sends a (non-compact if X is non-compact) homology class from
the rational n-dimensional homology group of X̂ (with infinite supports if X and
X̂ are non-compact) to the fundamental class of X;216

(ii) the connected of the pullbacks f̂−1(t) ⊂ X̂ for all t ∈ R are either single
points or joints of 2-spheres.

Corollary. If a compact orientable manifold X admits such an Φ̂ ∶ X̂ →X, then
all continuous maps from X to aspherical spaces induce zero homomorphisms on
Hn(X).

(This remains unknown for manifolds X with Sc(X) > 0 of dimensions n ≥ 4,
but a weaker property – non-contractibility of the universal covering of X – is
confirmed by the Chodosh-Li theorem we prove in the next section.)

Reversed S2-Slicing Conjecture. Let a complete (e.g.compact) smooth
manifold X admits a (proper in the non-compact case) piecewise linear map with
respects a smooth triangulation of X to a pseudomanifold Pn−2, such that the
connected components of the pullbacks of the points are either single points or
joints of 2-spheres.

Then X admits a metric with Sc > 0.
(Possibly, one should add an extra condition on singularities of such a map.)

Width/Waist Conjecture. All complete n-manifoldsX with Sc(X) ≥ n(n−
1) admit continuous maps to polyhedral spaces of dimension n − 2, say, F ∶ X →

Pn−2, such that

diam(F −1
(p)) ≤ constn and voln−2(F

−1
(p)) ≤ const′n for all p ∈ Pn−2.

Observe in this regard the following.
● The existence of a proper map F ∶ X → Pn−1 with diam(F −1(p)) ≤ C

would imply that fill.rad(X) ≤ C, that remains unknown if n ≥ 4 even for
universal coverings of compact n-manifolds with Sc > 0.

● The bound fill.rad(X) ≤ C < ∞ implies that the balls in X can’t be all
contractible; moreover,

given a continuous function R(r) ≥ r, r ≥ 0, and a number r0, there exits a
ball of radius r ≥ r0 in X, which is non-contractible in the concentric R(r)-ball.

This uniform non-contractibility property, remains conjectural for n ≥ 6 but
we prove it for n = 4,5 in the next section.

The only known result of this kind, which implies a (sharp) bound on the
injectivity radius of manifolds with Sc ≥ σ is

Green-Berger Integral Scalar Curvature Inequality. Among all compact man-
ifolds X with given vol(X) and the integral ∫X Sc(X,x)dx, the round spheres
maximize the average distance between conjugate points on geodesics.217

216This condition ensures "homotopical surjectivity" of this map, that is non-existence of its
(proper in the non-compact case) homotopy to a map into a subset Y ⫋ X. I am not certain
if another such condition is relevant here.
217 M. Berger, Lectures on geodesics in Riemannian geometry, Tata Institute of Fundamental
Research, 1965.

Berger’s proof of this applies to complete non compact amenable manifolds X with Sc(X) ≥
n(n − 1), e.g. with subexponential volume growth, thus providing a bound inj.rad ≤ Cn < ∞.
But I don’t see offhand how to prove such a bound for non-amenable X.
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3.10.1 Filling Radii of 3-Manifolds, Hyperspherical Radii, Enlarge-
ability and Uniform Asphericity

Recall that the Uryson k-width widthm(X) of a metric space X is the infimum
of the numbers d ≥ 0, such that X admits a continuous map a m-dimensional
polyhedral space Pm, such that that the diameters of the pullbacks of all points
p ∈ Pm are bounded by d.

Lemma (A). Let a proper218 locally contractible metric space X be covered
by closed locally contractible subsets Xi, i ∈ I, such that

●1 there is no triple intersections between Xi;
●2 the connected components Y = Yijk ⊂Xi ∩Xj of all double intersections are

locally contractible,219 and their rational homology H1(Yijk;Q) vanish;
●3 the diameters of all these Y are bounded by

diam(Yijk) ≤ δijk < ∞.

Then
width1(X) ≤ sup

ijk
(2δijk +width1(Xi)).

Proof. Let χi ∶ Xi → P 1
i be a continuous map, such that the pullbacks

χ−1
i (p), p ∈ P 1

i , are bounded by

diam(χ−1
i (p)) ≤ di for all p ∈ P 1

i

and observe that the union Up of the χi-pullback χ−1
i (p) of p ∈ P 1

i with the
components Yijk ⊂Xi for which χ(Yijk) ∋ p satisfies:

diam(Up) ≤ diam(χ−1
i (p)) + 2 sup

j,k
δijk ≤ di + 2 sup

j,k
δijk for all p ∈ P 1

i .

Since H1(Yijk;Q) = 0 the χi-maps from Yijk onto their images in P 1
i are

contractible. Therefore,
given an arbitrary small neighbourhood U ′

i ⊂ Xi of the union ⋃j,k Yijk ⊂ Xi,
there exists a map χ′i ∶Xi → P 1

i homotopic to χi , such that
● χ′i is constant an all Yijk ⊂Xi;
● χ′i is equal to χi outside U

′
i , where we may assume that U ′

i = ⋃j,k U
′
ijk for

the connected components U ′
ijk ⊃ Yijk of U ′

i ;
● the image χ′i(Uijk ⊂ P

1
i is contained in the image χi(Uijk).

It follows that

diam(χ′i)
−1

(p) ≤ diam(Up) + εi ≤ di + 2 sup
j,k

δijk + εi,

where εi can be made arbitrarily small for small Ui.
Finally, we glue the graphs P 1

i and Pj at the points pijkχ′i(Yijk ∈ P 1
i and

pjikχ
′
j(Yjik ∈ P

1
j and let P 1 = ⋃i P

1
i be the resulting graph.

Then the obvious map

χ′ ∶X = ⋃
i

Xi → P 1
= ⋃

i

P 1
i

218Closed bounded subsets are compact.
219Probably, "locally contractible" is an unnecessary precaution, but in our case Xi are
manifolds with boundaries, where the intersectionsXi∩Xj are unions of connected components
of common boundaries of Xi and Xj .
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satisfies

diam((χ′)−1
(p)) ≤ sup

i
diam((χ′i)

−1
(p)) ≤ sup

ijk
(2δijk +width1(Xi) + εi)

which concludes the proof for supi εi → 0.
Remark (A′). The condition H1(Yijk;Q) = 0 looks strange here but I don’t

know if it can be omitted.
On the other hand, the 2-width of X can be bounded by

[width2] width2(X) ≤ max(sup
i
width1(Xi), sup

i,j,k
diam(Yijk))

with no such condition, where the relevant 2-polyhedron where X = ⋃iXi goes
is obtained from the cones Cjk(Xi) by gluing the apexes of Cjk(Xi) with these
of Cik(Xj).

Next – this is a provisional definition adapted to our present purpose –
define maximal ◻-width of a metric space S homeomorphic to the circle, denoted
max.width◻(S), as the maximum of the numbers D, such that S admits a
decomposition into four segments, with the same combinatorial arrangement as
that of the four faces of the square [−1,1]2 and such that the distances between
both pairs of opposite (i.e. non-intersecting) segments are bounded from below
by D.

Lemma (B). Let a circle in a proper metric space, say S ⊂X, with the induced
metric satisfies

max.width◻(S) ≥D.

Then there exists a pair of non-negative 1-Lipschitz functions on X that define a
proper map

Ψ◻ = (ψ1, ψ2) ∶X → R2
+,

such that
S is sent by Ψ◻ to the complement of the interior of the square [0,D]2 ⊂ R2

+,
where the induced homology homomorphism

Z =H1(S) →H1(R2
+ ∖ (0,D)

2
) = Z

is an isomorphism.
Proof. Let

S = S1+ ∪ S2+ ∪ S1− ∪ S2−,

where
dist(S1+, S1−) ≥D and dist(S2+, S2−) ≥D

and observe that the map defined by

ψi(x) = dist(x,S1+), i = 1,2,

is the required one.
Corollary (B′). The rational filling radius of S in X is bounded from below

by

fil.rad(S,X;Q) ≥
1

2
width◻(S).
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This means that no multiple of the curve S bounds in the ρ-neighbourhood
Uρ(S) ⊂ X for ρ < width◻(S), or, more formally, the homology boundary ho-
momorphism H2(Uρ(S), S) →H1(S) = Z vanishes for these (small) ρ.

These (A) and (B) and (B′), albeit useful, are boringly trivial, but the
following one is mildly amusing.

Lemma (C). Let X be a locally contractible path metric space 220 and let
γ(x) = dist(x,x0) be the distance function on X to some point x0 ∈X.

If all embedded circles S ⊂X have

max .width◻ ≤D,

then the diameters of all connected components of the levels γ−1(t) ⊂ X, t ≥ 0
are bounded by 3D.

Proof. Let γ(x) = dist(x,x0) for some point x0 ∈ X and let us show that
the diameters of all connected components of the levels γ−1(t) ⊂ X, t ≥ 0 are
bounded by 3D. Indeed, assume without loss of generality that t ≥ 3

2
D and let

x1, x2 be two points in a connected component of γ−1(t).
Let x̃1, x2 be a segment joining x1 with x2 in a small neighbourhood of this

component and let [x1, x0] and [x2, x0] be almost shortest segments between
x0 and xi, i = 1,2, where we assume without loss of generality that the union S
of these three segments

S = x̃1, x2 ∪ [x1, x0] ∪ [x2, x0] ⊂X

makes a topological circle.
Let [xi, x

′
i] ⊂ [xi, x0] be subsegments of length D + ε and let

x̃′1, x
′
2 = [x′1, x0] ∪ [x′2, x0] ⊂ [x1, x0] ∪ [x2, x0]

be the union of the complementary segments. Now,

dist(x̃1, x2, x̃′1, x
′
2) >D

while
dist([x1, x

′
1], [x2, x

′
2]) ≥ dist(x1, x2) − 2D − ε′,

which, due to our assumption max.width◻(S) ≤ D, implies for ε, ε′ → 0 that
dist(x1, x2) ≤ 3D. QED.

Corollary (C′). The inequality

max .width◻ ≤D

for all embedded circles S ⊂X implies that the Uryson 1-width of X is bounded
by:

width1(X) ≤ 3D.

Proof. Factor the map γ ∶X → R as

X
α
→ P 1

0

β
→ R,

220The distances between pairs of points are equal to the infima of lengths of curves between
them.
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such that the levels of α are equal to the connected components of γ, and
approximate (this is trivial) the (1-dimensional!) space P 1

0 by a polyhedral P 1

as it is done for this purpose in the proof of corollary 10.11 in [GL(complete)
1983].

Corollary (C′′). If the first cohomology of X vanishes then the above graph
P 1 is a tree.

Consequently, X is quasiisometric to a tree in this case.
Proof. Slightly modify α to make the levels of α path connected and observe

that continuous onto maps with path connected fibers are surjective on the
fundamental groups.

Corollary (D) If all closed curves immersed toX bounds in their ρ-neighbourhoods,
then the the Uryson 1-width of X is bounded by:

width1(X) ≤ 6ρ.

Corollary (E). If X has infinite 1-width, then it contains closed curves S
with arbitrarily large maximal ◻-widths.

Example (E′). Universal coverings X̃ of compact spaces X with non-virtually
free fundamental groups π1(X) contains circles with arbitrarily large maximal ◻-
widths.221

Lemma (F). Let X = (X,g) be a complete Riemannian 3-manifold with a
boundary and let X⋊ =X ⋊Tm = (X ×Tm, g⋊ = g + φ2dt2 be a T⋊ extension of X
with mean convex boundary and such that Sc(g⋊) ≥ σ > 0.

Then all immersed circles S ⊂X, homologous to zero (e.g. contractible ones)
have their rational filling radii bounded by

fil.rad(S,X ′Q) <
2π
√
σ
.

Proof. Since S is homologous to zero, it bounds an orientable surface in X;
let Z ⊂ X be such a surface with boundary ∂ = S, which minimizes the g⋊-area
of Z that is the (m + 2)-volume of the hypersurface Y ×Tm ⊂X⋊, that is equal
to the area of Y with respect to the conformal metric ψ(x) ⋅ g(x) on X, where
ψ(x) = vol({x} ×Tm) = (2π)mφm(x).

Since the minimal hypersurface Z×Tm ⊂X⋊ is stable it admits a T1 extension
with the scalar curvature bounded from below by that of X⋊ and the proof
follows from codimension 2 corollary to 2π

n
-inequality. (See [2] in section 3.7.2,

where the surface is denoted X rather than Z.)
This, together with the above corollary (D) yields the following.
Proposition (F′). Let X = (X,g) be a complete Riemannian 3-manifold with

a boundary, such that the homology group of X is torsion.
If X admits a T⋊-extension X⋊ =X⋊Tm = (X×Tm, g⋊ = g+φ2dt2) with mean

convex boundary and with Sc(g⋊) ≥ σ > 0, then the first Uryson width of X is
bounded by

width1(X) ≤
12π
√
σ
.222

221Compare with Corollary in the section 1.2 C in [G(foliated) 1991].
222Our present proof of this inequality follows that of corollary 10.11 in [GL(complete) 1983]
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3D Classification Corollary (F′′). A compact 3-manifold admits a metric
with Sc(X) > 0 only if it contains no aspherical connected summand in its
Kneser-Milnor prime decomposition. ("If" is also true by Perelman’s theorem.)

Proof. In view of (C′′), the universal covering of X is quasiisometric to a
tree, and then an application of Stallings’ theorem shows that the fundamental
group is virtually free. QED,.

On Domination. The proof of this classification theorem in [Gl(complete),
1983], which used the index theorem, albeit less straightforward, yields more:

If a closed orientable 3-manifoldX contains an aspherical manifold in its prime
decomposition, then it can’t be dominated by a complete manifold X̂ with Sc > 0:

all maps between such orientable manifolds, X̂ →X, have degrees zero.
Theorem (G). If a complete orientable Riemannian 3-manifold X = (X,g)

with a boundary admits a T⋊-extension X⋊ =X ⋊Tm = (X ×Tm, g⋊ = g +φ2dt2)
with mean convex boundary and with Sc(g⋊) ≥ σ > 0, then the first Uryson width
of X is bounded by

width1(X) <
36π
√
σ
.

Proof. Decompose X into a union of submanifolds with common boundaries.

X = ⋃
i

Xi,

where two such submanifolds intersect by a stable g⋊-minimal surface (as in
lemma (F)) and such that all connected stable g⋊-minimal surfaces in all Xi are
homologous to the connected components of the boundaries of these Xi.

We know that all these surfaces are spherical and there diameters are bounded
by 12π√

σ
.

It is also clear that the rational homology groups H1(Xi,Q) vanish and the
proof follows from lemma (A) and proposition (F′).

Corollary (G′). If X is compact with no boundary, then its absolute filling
radius is bounded by

fillrad(X) <
18π
√
σ
.

This means that
there exists an orientable 4-dimensional pseudomanifolds V with boundary

and a metric distV on V , such that the boundary ∂V is isometric to V and

distV (v, ∂V ) <
18π
√
σ
.

Proof. If a piecewise linear map223 χ ∶X → P 1 has diam(χ−1(p) ≤ d, p ∈ P 1,
then it the cone F = Cχ of χ is a pseudomanifold, which carries an obvious
metric which has the required properties.

where it is stated in the non T⋊-stable form and where the H1-torsion condition, albeit im-
plicitly used in the argument, was erroneously omitted.
223This is understood with respect to some smooth triangulation of X map. Notice that our
χ in the definition of width was assumed continuous rather than piecewise , linear, but it can
be approximated by piecewise linear ones.
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Remark (G′′). It follows from [width2] in Remark (A′) that

fillrad(X) <
6π
√
σ
,

Probably,

fillrad(X) <
π

2

√
6

σ
.

Enlargeability in Dimension 3. Let us conclude this section by proving
that

the universal coverings of compact aspherical 3-manifolds X are enlargeable.
Notice that "enlargeability" (defined below) is, a priori, stronger, than non-

existence of a metric with Sc > 0; this remains conjectural for higher dimensional
aspherical manifolds.

Also notice that in dimension 3, one can easily prove this property for man-
ifolds of each of the 7 non-elliptic Thurston’s geometries separately, and then
(this is also easy) show that enlargeability is stable under JSJ-decomposition.

Our point here is to furnish a direct elementary proof. 224

Definitions of the Hyperspherical Radius, Hypersphericity, En-
largeability and Uniform Lipschitz Asphericity. The hyperspherical ra-
dius RadSn(X), of a closed orientable Riemannian n-manifold X as the supre-
mum of the radii R > 0 of n-spheres, such that X admits a non-contractible
1-Lipschitz, i.e. distance non-increasing, map f ∶X → Sn(R).

More generally, if X is an open manifold, this definition still make sense for
maps f ∶X → Sn, which are locally constant at infinity,225 i.e. outside compact
subsets in X. Similarly, if X allowed a boundary, then f should be constant on
all components of this boundary.

Notice that a (locally constant at infinity if X is open) map f from an
orientable n-manifold X to the sphere Sn is contractible (in the space of locally
constant at infinity maps in the open case) if and only if f has zero degree.

In view of that, we define Raddeg1
Sn (X) ≤ RadSn(X) as the supremum of R

for 1-Lipschitz, maps f ∶X → Sn(R) of degrees 1.
A manifold X is called hyperspherical if RadSn(X) = ∞ and X is enlargeable

if it admits coverings with arbitrary large hyperspherical radii.
A manifold X is called deg1-hyperspherical if, Raddeg1Sn (X) ≤ RadSn(X) = ∞,

or, in different terms if X λ -Lipschitz dominates (the fundamental homology
class of) the unit sphere Sn for all λ > 0.

A metric space S is called uniformly Lipschitz k-aspherical if λ-Lipschitz
maps from the unit sphere Sk to X, are extendable to Λ(λ)-Lipschitz maps
from the unit ball Bk+1 that bounds SK , i.e. ∂Bk+1 = Sk, for all d > 0, where
Λ(d) = ΛX(d) is a continuous (control) function.
224The concepts of enlargeability and related "bad ends" are discussed in [GL(complete)
1983] around theorem 8.1, in [Lawson&Michelsohn(spin geometry) 1989] around theorem
IV.6.18] and also in [G(positive) 1996] in §§9 1

4
, 9 3

11
, where similar properties are proved for

"multiple largeness"; later this appears in [G(inequalities) 2018], section 4, under the name of
iso-enlargeability.
225On can drop ’locally" if X is connected at infinity.
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Example. If X has bounded geometry,226 e.g. X is a covering of a compact
locally contractible space, and if X is k-aspherical, i.e. πk(X) = 0, then it is
uniformly Lipschitz k-aspherical.

Exercise . Construct complete uniformly contractible surfaces, which are
not Lipschitz uniformly 1-aspherical.

Also construct complete uniformly contractible Riemannian 3-manifolds where
the sectional is asymptotically non-positive: κ(X,x) ≤ ε(dist(x,x0)), where
ε(d) is a positive function which goes to 0 for d→∞.

Lemma (I). Let X be a complete orientable Riemannian n-manifold, and
let Yi ⊂ X be smooth closed connected orientable codimension 2 submanifolds
with trivial normal bundles, (e.g. Hn−2(X) = 0) and let Ui = Uρi ⊃ Y be the
ρi-neighbourhoods of Yi in X where ρi →∞ for i→∞.

Let X be 2-aspherical and Lipschitz uniformly 1-aspherical, let Yi admit deg1-
hyperspherical coverings Ỹi.

If the inclusion homomorphisms π1(Yi) → π1(Uρi) are injective and if the
manifolds Yi are not rationally homologous to zero in Uρi , then X is deg1-
hyperspherical.

Proof. Let U ′
i ⊂ Ui be a small tubular neighbourhood of Y , where, observe

the boundary ∂U ′
i topologically splits as Y × S1.

Since X is 2-connected and the class [Y ] ∈Hn−2(Y ) goes to a non-zero class
in Hn−2(Ui;Q), the linking number between closed curves in the complement
U1 ∖ Y with Y defines a homomorphism from π1(U1 ∖ Y ) to Z, which doesn’t
vanish on the class of the circles {y}×S1 ⊂ ∂U ′

i ⊂ Ui∖Y , and vanish on π1(Y ) =

π1(Y × {s}.
It follows that the inclusion homomorphism π1(∂U

′
i) → π1(U1∖Y is injective.

Now, let Ũi ∖ Y be the covering of U1 ∖ Y , the restriction of which to ∂U ′
i =

Y ×S1 equals to S̃1 × Ỹi for S̃1 = R1 and the above deg1-hyperspherical covering
Ỹi of Y1 and show, this is easy, 227 that

since Raddeg1
Sn−2

(Ỹi) = ∞, the deg1 hyperspherical radius of Ũi ∖ Y bounded from
below only by ρi, say as follows,

Raddeg1Sn (Ũi ∖ Yi) ≥
1

10
ρi.

Finally, since X is Lipschitz uniformly 1-aspherical the covering map

Ũi ∖ Yi → ∂(Ui ∖ Yi ⊂X

is one-to-one "deeply inside" Ũi ∖ Yi, i.e. sufficiently far from Yi and ∂(Ui ∖Yi),
("how deeply"or har "far" depends on the (control) function Λ(λ)) and the
proof follows.

Corollary (I′). Compact orientable aspherical 3-manifolds X are enlarge-
able.

Indeed, as we know, the universal coverings X̃ of these X contain closed
curves with arbitrarily large maximal ◻-widths; these can be taken for the above
Yi.
226Probably, a lower bound on the sectional curvature suffices.
227See §§5, 6 in [GL(complete) 1983] and IV. 6 in [Lawson&Michelsohn(spin geometry) 1989].
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Theorem (J). If a compact orientable 3-manifold X contains an aspherical
summand in its prime decomposition then no non-zero multiple of (the funda-
mental class of) X can be dominated by a complete orientable manifold X̂ with
Sc(X̂).0.

In simple words,
all continuous maps X̂ →X constant at infinity have zero degrees.
If X is enlargeable and X̂ dominates X, then X̂ is also enlargeable, and one

knows that enlargeable spin n-manifolds support no metrics with Sc > 0 for all
n (theorem 6.12 in [GL(complete) 1983]). Since all 3-manifolds are spin, the
proof follows.

3.10.2 Geometry and Topology of Complete 3-Manifolds with Sc > 0

Start with a simple proof of the following result by Laurent Bessèeres, Gérard
Besson, and Sylvain Maillot [Be-Be-Ma(Ricci flow) 2011].

(A) Theorem. Complete 3-manifolds X with Sc(X) ≥ σ > 0 are infinite
connected sums of spacial space forms S3/Γ and copies of S2 × S1.

Proof. By the compact exhaustion corollary from section 3.7.2, X decom-
poses into infinite connected sum of compact manifolds Xi, and theorem (J)
from the previous section implies that there is no aspherical summands in these
Xi. Then the conclusion follows by Perelman’s theorem.

Remarks. (i) The argument in [Be-Be-Ma(Ricci flow) 2011] depends on a
generalization of Perelman’s arguments to non compact manifolds. Also, Gérard
Besson recently told me that Jian Wang found a proof of (A) with minimal
surfaces.

(ii) A close look at proof of (A) shows that X decomposes into a union of
compact submanifolds Xi ⊂X, such that

● Xi intersect with Xj , for all i ≠ j, over the common components of their
boundaries;

● the boundaries of Xi are union of spheres the areas and the intrinsic
diameters of which are bounded by a constant depending only on σ;

● the diameters of all Xi are also bounded by a constant depending only on
σ.

(A′) Corollary. No non-torsion homology class h ∈H3(X) in an aspherical
space can be dominated by a complete 3-manifold X with Sc(X) ≥ σ > 0.

Proof. Given a map X → X, homotop it to f ′ constant on representatives
of all non-contractible 2-spheres in X and thus reduce the problem to the, case
where X is a single spherical space form

Alternatively, argue algebraically and use the fact that all finitely generated
subgroups in π1(X) are virtually free.

(B)Generalization to Sc > 0. If a 3-manifold X admits a complete metric
with Sc > 0 then all finitely generated subgroups in π1(X) are virtually free.

Proof. Let X̃ → X be a covering with non-virtually free fundamental group
and let X̄ ⊂ X̃ by the compact Scott core of X̃. Then, by the loop theorem, the
boundary of X̄ ⊂ X̃ is incompressible and the proof follows from theorem 6.12
in [GL(complete) 1983].

Alternatively, one can prove that X contains a (compact or complete) stable
minimal surface, which is non-simply connected, while one knows (see the proof
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of Wang’s theorem below) that such surfaces don’t exist in 3-manifolds with
Sc > 0.

Remarks,Examples and Open Problems for Sc > 0. (a) The apparent
irreducible, i.e. non-trivially indecomposable into connected sum, example of an
open manifold, which admits a complete metric with Sc > 0 is R2 ×S1 with the
(radial warped product) metric

g = dr2 + ϕ(r)2dθ2, t ∈ [0,∞), θ ∈ [0,2π], with ϕ(r) = r2α,

where the scalar curvature

Sc(g)(r) = −
2ϕ′′(r)

ϕ(r)
= α(α − 1)

1

r2

is positive for 1 < α < 2 with quadratic decay for r →∞.
By the above, R2 × S1 admits no metric with Sc ≥ σ > 0; moreover, the the

curvature must decay at least as 4π2

r2
according to QD-exercise in section 3.6.1.

(a′) If n ≥ 4, there are similar complete warped metrics with Sc > 0 on
R2 ×Xn−2 for all (compact and open) manifolds Xn−2.

(b) It is unknown (unless I am missing something obvious) if open handle
bodies of all genera, hence, the interiors all compact 3-manifold X̄ with boundaries,
which have a virtually free fundamental groups π1(X̄), admit complete metrics with
Sc > 0.

(b′) If X is an n-manifold for n ≥ 4, (maybe one should assume n ≥ 5),
which contracts to its codimension 2 skeleton, e.g. a contractible one, then,
conjecturally, it admits a complete metric with Sc > 0.

However, no such metrics are known, for instance, in the interiors of com-
pact manifolds the boundaries of which admit metrics with negative sectional
curvatures < 0.

The following result by Jian Wang shows that obstructions to the complete
metrics with Sc > 0 on X may resides in the complexity of the proper homotopy
type of X.

(C) Theorem. Complete contractible 3-manifolds with Sc > 0 are sim-
ply connected at infinity (see [Wang(Contractible) 2019] and [Wang(topological
characterization) 2021] in this volume).

Idea of the Proof. Recall that the first contractible 3-manifold X = XWh

not simply connected at infinity, which was discovered by Whitehead in 1935,
is equal to the union of an infinite increasing sequence of solid tori,

XWh = ⋃
k

Ti, T1 ⊂ T2 ⊂ ... ⊂ Tk ⊂ .... ⊂XWh,

where the boundary of Tk, k ≥ 2, is not contractible in T2 for all k ≥ 2.
Wang shows in this case that, given an arbitrary complete Riemannian met-

ric on XWh, there exist connected stable minimal surfaces Σk ⊂ Tk of genus zero
with boundaries ∂Σk ⊂ Tk, such that the number of connected of the intersec-
tions Σk ∩ T1 goes to infinity for k →∞.

Then, in the limit, he obtains a connected stable minimal surface Σ = Σ∞ ⊂

XWh of genus zero with a complete induced metric, such that the intersection
Σk ∩ T1 has infinite area; this, in the case of Sc(X > 0), contradicts to the
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Fischer-Colbrie&Schoen (Gauss-Bonnet-Cohn-Vossen) inequality

∫
Σ
Sc(X,σ)dσ ≤ 2πχ(Σ).

Hence
the Whitehead manifold admits no complete metrics with Sc > 0.

(C′) Possible Generalizations. Wang’s argument applies (as far as I
understand it) to connected sums X = XWh#X1#X2... with other 3-manifolds
and shows that theseX admit no complete metric with Sc > 0.

Conceivably, Wang’s argument can be also applied to manifolds X, which
dominate the fundamental homology class [XWh] (with infinite support).

If so, then by the (non-compact T⋊-stabilized version of the) Schoen-Yau
inductive descent argument , the products XWh ×Tm (and probably, the prod-
ucts of XWh with enlargeable manifolds in general) admit no complete metrics
with Sc > 0 either. (If m > 5, one has to appeal to Lohkamp’s desingularization
theorem.)

In fact, contractibility of manifolds in Wang’s theorem doesn’t seem that
essential.

Conjecturally, if an orientable 3-manifold can be exhausted by compact sub-
manifold V1 ⊂ V2 ⊂ ... ⊂ Vi ⊂ ... ⊂ X, such that all components of the complements
X ∖ Vi are aspherical with infinitely generated fundamental groups and the inclu-
sion homomorphisms π1(X ∖ Vi+1) → π1(X ∖ Vi) for all i = 1,2, ...., are injective
(maybe, its enough to assume that the images of the inclusion homomorphisms
π1(X ∖ Vi+1) → π1(X ∖ V1) are infinitely generated), then X admits no complete
metric with Sc(X) > 0.

Moreover,
no non-zero multiple of the fundamental homology class [X+] can be dom-

inated, by a complete manifold with Sc > 0, that is, no complete orientable
3-manifold X̂ with Sc(X̂) > 0 admits a proper map to a X+ with non-zero
degree.

Example. Let a connected orientable manifoldX decompose into a countable
union of compact aspherical submanifolds with aspherical boundaries, X = ∪iXi,
such that

● every two Xi intersect (if at all) over several connected components of their
boundaries, where these intersections are denoted Yij =Xi ∩Xj = ∂Xi ∩ ∂Xj .

● the inclusion homomorphisms π1(Yij) → π1(Xi) are injective and their images
have infinite indices in the fundamental groups π1(Xi). e.g. as in the Whitehead
manifold, where Xi are (the closures of Ti+1 ∖ Ti.

Then the above conjecture implies that for n = 3 no manifold X+, which
contains X as a submanifold, admits a complete metric with Sc > 0.

Remark about n > 3. For all we know, the n-manifolds X (minus the bound-
aries) and X+ ⊃ X in this example don’t admit complete metric with Sc > 0
enlargeable for all n, but this can be proved at the present moment only in
special cases, for instance, if some manifold Yij ⊂ ∂Xi is enlargeable, ( e.g. if
dim(X) = 4, since compact aspherical 3-manifolds are enlargeable, see the pre-
vious section) and if the inclusion homomorphism π1(Yij) → π1(X+) is injective
(see section 4.7).
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Attaching Cylinders to Stable Hypersurfaces. Let X = (X,g) be a
complete, e.g. compact, Riemnnian manifold with a boundary,

Notice that completeness of X, i.e. compactness of closed bounded subsets,
implies completeness of the boundary with respect to the Riemannian distance
function distg in X ⊃ Y.

Let Y ⊂ ∂X ⊂X be a connected component of the boundary and let Y ⋊φR+
be the warped product with the metric hφ = h+φ2dt2 for the Riemannian metric
h on Y induced from g on X and a smooth positive function φ = φ(y).

Observe that the boundary Y × 0 ⊂ Y ⋊φ R+ is isometric to Y ⊂X and let

XO =X ⊔Y Y ⋊φ R+

be obtained by attaching Y ⊂X to Y × 0 ⊂ Y ⋊φ R+ by this isometry.
This XO,which homeomorphic to the complement X ∖ Y carries a natural

continuous Riemannian metric which is complete of X and hence, Y , are com-
plete.

Now, if the Y ⊂ X is mean convex, and if the scalar curvatures of both
manifold are positive, Sc(g) > 0 and Sc(hφ) > 0, then the metric on XO can be
approximated by smooth metrics with Sc > 0, since Y × 0 ⊂ Y ⋊φ R+ is totally
geodesic in Y ⋊φ R+ (see section 1.4). This yields the following.

(D) Proposition. Let X = (X,g) be a complete Riemannian manifold with
Sc > 0 and let Y ⊂ X be a cooriented stable minimal hypersurface. The the
complement X ∖ Y admits a complete metric G with Sc(G) > 0, which is equal to
g outside a given neighbourhood U ⊃ Y intersected with X ∖ Y .

Let us apply this to 3-dimensional manifolds X, where Y is a topological
2-sphere and where we benefit from the following homotopy theorem of due to
Laurent Bessières, Gérard Besson, Sylvain Maillot, and Fernando Coda Mar-
ques.

(D) Theorem. The space of complete Riemannian metrics of bounded ge-
ometry and uniformly positive scalar curvature on an orientable 3-manifold is
path-connected.

It follows the the metric G on X ∖ Y can be homotoped outside a given
compact subset to the standard cylindrical metric ds2+dt2 on S2×R+, and then
extended to the ball B3 keeping the curvature positive all along.

The one can attach the unit 3-ball to the sphere S2 × {t0} and smooth the
resulting C1 metric with Sc > 0 .

Remark. One may use the compact case of (D), namely for S2 × S1, where
this was earlier proven in [Marques(deforming Sc > 0)2012].

Besides, one doesn’t need here the full power of the Ricci flow, since the
relevant deformation proceeds in the space of S1-invariant metics, which are
moreover, of the forms g + φ2dt2, and where the 3-D equations reduce to 2-
dimensional ones for pairs (g, φ) of Riemannian metrics g and functions φ on
S2.

(E) Corollary. Let X be a complete 3-manifold with Sc(X) > 0. Then there
exists a complete (disconnected) manifold X∼, such that

● all connected X∼
i of X∼ are "simple":

the complement to a embedded 2-sphere S2 or to a properly (infinity →
infinity) embedded plane R2 in X∼

i , for all i, is disconnected and at least one
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of the two components is homeomorphic to S3 with finitely or countably many
punctures;

● The complement to a finite or countable set of disjoint complete stable
connected minimal surfaces Σmin in in X is isometric to an open subset in X∼,
where all these Σmin are simply connected, and if Sc(X) ≥ σ > 0 they are all
compact, hence spherical.

Proof. Let Σ be an "essential" embedded 2-sphere or a properly embedded
plane in a complete 3-manifold X, i.e. such that the complement X ∖ Σ is
either connected or none of the two components is homeomorphic to S3 with
punctures. Then either X contains an essential stable minimal sphere or an
essential stable minimal plane. 228

If the scalar curvature of X is uniformly positive, i.e. Sc(X) ≥ σ > 0, then
all these minimal surfaces are spherical and we attach 3- balls to them as above.

In general, where Sc(X) > 0, we attach 3-balls to the spherical cutting
surfaces and cylinders to the planar ones. QED.

Question Is there a version of the above for, say compact, 4-manifolds with
Sc > 0?

Remark. The first things one needs is a "natural filling" of the spherical space
forms S3/Γ by 4-manifolds (may be singular ones?) with Sc > 0, something in
the spirit of discs bundles over S2 that fill in the diagonal lens spaces S3/Zk.

3.10.3 Non-Existence of Uniformly Contractible and Aspherical 4-
and and 5-manifolds with Sc > 0

Recall that a metric space X is uniformly contractible if there exists a function
R(r) ≥ r, Recall that a metric space X is uniformly contractible if there exists
a function R(r) ≥ r, called contractibility control function such that the r-balls
Bx(r) ⊂X around all x ∈X, are contractible in the concentric balls Bx(R(r)).

For instance, if X is bounded then "uniformly contractible"="contractible".
Also obviously, but more interestingly, the same applies to spaces X that

with cobounded, (e.g. compact) isometry groups: there is a constant d, such
that,

for every two points x1, x2 ∈X, there exists isometry I ∶X →X such that
dist(x1, I(x2)) ≤ d.
In particular,
universal coverings of compact aspherical manifolds are uniformly contractible.
An essential property of these X is a
bound on the filling radii of cycles Y ⊂X in terms of the absolute filling radii
of these cycles.
In fact, a standard induction by skeletons extension argument shows the

following.
☀ LetW be a polyhedral space, Y ⊂W a polyhedral subspace and let ϕ ∶W →

X be a continuous map.
If X is uniformly contractible, then ϕ extends to a continuous map Φ ∶W →

X, such that the distances from the points Φ(w) to the image of ϕ are bounded
228It is, certainly well known. I apologize to the author for not being able to find his/her
article.

Notice, however, that this fact is easy in our case, where Sc(X) > 0, since all complete
minimal surfaces necessarily are either spherical or planar in these X.
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by
dist(w,ϕ(Y ) ≤D(dist(v, Y )),

where D(d) is a continuous function that depends only on the contractibility
control function R(r) of X. 229

The following immediate corollary to ☀ will be used below for manifolds X
of dimension n = 4.

☀1 Codimension 1 Filling Lemma. Let X be an n-dimensional orientable
pseudomanifold a proper metric and let U1 ⊂ U2 ⊂ ... ⊂ Ui ⊂ ... ⊂X be an exhaustion
of X by compact sub-pseudomanifolds with boundaries.

For instance, X can be a complete Riemannian manifold exhausted by com-
pact domains with smooth boundaries.

X is uniformly contractible, then the absolute filling radii of the boundaries
of Ui tend to infinity:

filrad(∂Ui) → ∞ for i→∞.

Proof. Let S ⊂ X be an infinite path, i.e. a curve, issuing at a point
x0 ∈ U1 and tending to infinity. Since S has non-zero intersection indices with
the boundaries of all Xi, the boundary ∂Ui can bound in its D-neighbourhood
only if D < dist(x0, ∂Ui). Since dist(x0, ∂Ui) → ∞ so does D and the proof
follows.

Now we recall that, according to compact exhaustion corollary ( [1] section
3.7.2), that complete Riemannian manifolds X with Sc(X) > σ > 0 it can be
exhausted compact smooth domains Ui, the boundaries Yi = ∂Ui of which admit
T⋊1-extension Yi ⋊T1 with

Sc(Yi ⋊T1
) ≥

σ

2
.

If dim(X) = 4 and dim(Yi) = 3. then all these Yi have their filling radii
bounded by

fillrad(X) <
18π
√
σ/2

by corollary (G′) from 3.10.1.(corrected!!!!!!!!!!)Hence,
[4D]A. complete uniformly contractible 4-manifolds X can’t have Sc(X) ≥

σ > 0.
This, applied to the universal coverings of compact manifolds yields
[4D]B. Chodosh-Li 4D Theorem. No compact aspherical 4-manifold

admits a metric with Sc > 0.
[4D]C. Generalization-Exercise. Let X be an orientable uniformly ra-

tionally acyclic four dimensional pseudomanifold, which means that the rational
homology inclusion homomorphisms between the balls around all points x ∈X,

Hi(Bx(r);Q) →Hi(Bx(R);Q)

229Consult [G(filling) 1983], [G(aspherical) 2020] for basics on filling and uniform con-
tractibility and see [Katz(systolic geometry) 2017], [Guth (waist) 2014], [Wenger(filling) 2007],
[DFW(flexible) 2003], [Dranishnikov(asymptotic) 2000]. [Dranishnikov(macroscopic) 2010],
[Dranishnikov (large scale) 1999]. [Dra-Kee-Usp(Higson corona) 1998] and section 7 for re-
lated topics.

148



vanish for all i = 1,2, ... and R ≥ RQ(r) for some (acyclicty control) function
RQ(r).

Let X be a complete orientable Riemannian manifold and f ∶ X → X be a
proper 1-Lipschitz map with non-zero degree.

Show that there exist constants C,R0 > 0, such that
the minima of the scalar curvature of X on concentric balls B(R) = Bx0(R) ⊂

X around a point x0 ∈X, satisfy

min
x∈B(R)

Sc(X,x) ≤
C

R2
for all R ≥ R0.

Hint. Adapt the above proof to maps X → X similarly to how this is done
in [G(aspherical) 2020].

Remark. This implies that if X is a compact orientable 4-manifold with
Sc(X > 0), then continuous maps from X to aspherical 4-dimensional pseudo-
manifolds send the rational fundamental homology class of X to zero. But this
remains unknown for maps from these X to aspherical spaces in general.

Let us prove another corollary to ☀ needed which will be used in dimension
n = 5.

☀2 Codimension 2 Filling Lemma. Let X be an n-dimensional orientable
pseudomanifold where the singular locus of X, (where it is not a manifold) has
codimension 3, i.e. the links of the codimension 2 faces are connected and let
X be endowed with a proper path metric with respect to which X is uniformly
contractible.

Then, for all R > 0, there exits a proper piecewise linear 1-Lipschitz map
Ψ = ΨR ∶X → R2, such that

(⋆) all orientable codimension 2-sub-pseudomanifolds Y , which are con-
tained in the the pullback Ψ−1(B(R)) of the R-ball B(R) = B0(R) ⊂ R2 and
which are

homologous in Ψ−1(B(R)) to the pullbacks
Ψ−1(t) ⊂X, of regular points t ∈ B(R) of Ψ, 230

have their absolute filling radii bounded from below by

fillrad(Y ) ≥ r(R),

where r(R) is a continuous function (which depends on the contractibility control
function of X), such that

r(R) → ∞ for R →∞.

Proof. The uniform contractibility of pseudomanifolds X implies that their
Uryson 1-width are infinite

width1(X) = ∞;

otherwise, the hypersurfaces in X would have bounded width, hence their filling
radii as well in contradiction with ☀1.
230These points are dense in R2 and their pullbcks Ψ−1(t) ⊂ X are compact sub-
pseudomanifolds in X, which, for t ∈ B(R), are all mutually homologous in Ψ−1(B(R)),
i.e. represent the same class in the group Hn−2(Ψ−1(B(R))).
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Next, by lemma (C) from the previous section, there exists closed curves
S ⊂ X with arbitrary large maximal ◻-widths D, and let Ψ◻ ∶ X → R2 be the
corresponding maps delivered by lemma (C),which, recall, is

√
2-Lipschitz and

which sends S onto the boundary of the square [0,D]2 ⊂ R2 with degree 1.
Scale this map by 1√

2
, shift it to move the center of the square to the origin

0 ∈ R2 and take the resulting map for Ψ.
Since X is contractible, the curves S = SD bound orientable surfaces Σ = ΣD

which have non-zero intersection indices with Y . Therefore, if r is much smaller
then D, yet goes to infinity along with D, then the filling radii of Y ⊂ Ψ−1(B)

also tend to infty. Q.E.D.
Now, if X is a Riemannian n-manifold with Sc(X) ≥ σ > 0, then, by codi-

mension 2 corollary [2] from section 3.7.2, it contains submanifolds Y ⊂ Ψ−1

which admit T⋊ extensions Y ⋊ = Y ⋊ T2 with Sc(Y ⋊) ≥ σ
2
, which for n = 5

and dim(Y ) = 3, have filling radii uniformly bounded by (G′) from the previous
section; hence,

[5D]A. complete uniformly contractible 5-manifolds X can’t have Sc(X) ≥

σ > 0.
Accordingly, one has the following
[5D]B. 5D-Non-asphericity Theorem. No compact aspherical 5-manifold

admits a metric with Sc > 0.
Remarks, Generalizations, Problems. (a) Albeit these [5D]A&B imply [4D]A&B

(for X4 ; X5 = X4 × R1) the mapping versions X → X of them, [4D]C and
[5D]C,231 are formally independent, due to the codimension 3 condition on sin-
gularities of X for dim(X) = dim(X) = 5 that is needed for a homological
definition of the linking numbers between curves S ⊂ X and codimension two
sub-pseudomanifolds Y ⊂X.

(b) This kind of "dual linking" appears in section 1.2 of [G(foliated) 1991] for
the purpose of "trapping" minimal foliations and also in §9 3

11
[G(positive) 1996],

where Y is a circle, for the proof of enlargeability and the Novikov conjecture
for 3-manifolds.

In the present context, Chodosh and Li use it for their proof of non-asphericity
of 4-manifolds with Sc > 0 (enlargeability and the Novikov conjecture remain
problematic for n ≥ 4), where Y is a surface and the bound on filrad(Y )

(in terms which I don’t quite understand) was derived in the first version of
[Chodosh-Li(bubbles) 2020] from the area bound due to Zhu.

Then Chodosh-Li’s linking idea, combined with the T⋊-stabilized bound on
widths of 3-manifolds, was applied to n = 5 in [Chodosh-Li(bubbles) 2020] (I
didn’t quite follow how this is done in their paper) and in [G(aspherical) 2020],
where it is proved that

complete uniformly rationally acyclic (e.g. the universal coverings of com-
pact aspherical) Riemannian manifolds X of dimension 5 can’t be 1-Lipschitz
dominated232 with degrees ≠ 0 by Riemannian manifolds X with Sc(X) ≥ σ > 0.

(c) To extend the linking argument to n = 6 one needs, as it is explained
in [G(aspherical) 2020], either a proof of a universal bound on the filling radii
of 4-manifolds with Sc ≥ σ > 0 (this remains conjectural), or the existence of
closed surfaces Σ (instead of curves S) in uniformly contractible manifold X,
231The statement and the proof of this is left to the reader.
232See section 1.5 for the definition.
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with filling radii fillrad(Σ,X) ≥ ρ, for all ρ > 0, i.e. non-homologous to zero in
their ρ-neighbourhoods in X. (This remains problematic even for the universal
covers of compact manifolds.)

At the present moment, one has only limited results for n ≥ 6 available along
these lines, e.g.

(d) non existence of metrics with Sc > 0 on closed aspherical manifolds X of
dimension n ≥ 5, the fundamental groups of which contain subgroups isomorphic
to Zn−4, see section 7.5.

(e) A closer look at the above argument shows the following.
Let X be an orientable n-pseudomanifold with a proper (bounded subsets

are compact) metric. If X is uniformly contractible (uniformly rationally acyclic
will do) and if either n = 4 or if n = 5 and the singularity of X has codimension 3
(or more).

Then, if complete Riemannian n-manifold X with Sc(X) ≥ σ > 0 admits a
proper 1-Lipschitz map f ∶X →X then infx∈X Sc(X,x) ≤ 0.

Moreover,
the scalar curvature of X, assuming it is positive, can’t decay subquadrati-

cally, or even slow quadratically: one can’t have

Sc(X,x) ≥
C

dist(x,x0)
2

for a fixed point x0 ∈X, all x ∈X with dist(x,x0) ≥ 1 and a positive constant C = C(X).

Corollary. Compact aspherical manifolds of dimensions 4 and 5 with punc-
tures admit no complete metrics with Sc ≥ σ > 0.

Question Are there complete metrics with Sc > 0 on these punctured man-
ifolds?

[5E]. Classification of Non-aspherical 4- and 5-Dimensional Man-
ifolds with Sc > 0. The classification theorem for 3-manifolds with positive
scalar curvatures was generalized in [Chodosh-Li-Liokumovich (classification)
2021] as follows.
● Let X be a closed connected Riemannian n-manifold with infinite fundamen-

tal group π1(X) and such that the higher homotopy groups π2(X),..., πn−2(X)

vanish.
If X admits a metric with Sc > 0, then, assuming n = 4 or n = 5, a finite

covering of X is homotopy equivalent to the connected sum of several copies of
Sn−1 × S1.

Let us extend the above non-asphericity arguments to classification and
prove ● by observing the following.

1. The (obvious induction by skeleta) proof of the above ☀ actually shows
that

if a compact polyhedral space, e.g. a compact manifold X has trivial homotopy
groups π2(X), ..., πk(X), then the filling radii R of all m-dimensional submanifolds
(and subpseudomanifolds, if you wish) of dimensionsm ≤ k in the universal covering
of X, say Y ⊂ X̃, are bounded in terms of their absolute filling radii r,

R ≤D(r) for R = filrad(Y ⊂X) and r = filrad(Y )
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and where D = DX = DX,k is the iterated contractibility control function for l-
dimensional subpolyhedra in X̃, for l = 2,3, k.

2. Notice that,
unless the fundamental group of a compact manifold X is virtually free,

the conclusion of the codimension 2 filling lemma ☀2 holds for X̃: that is,
there exists of a proper piecewise linear 1-Lipschitz map Ψ = ΨR ∶ X̃ → R2,

such that all orientable codimension 2-sub-pseudomanifolds Y , which are contained
in the the pullback Ψ−1(B(R)) of the R-ball B(R) = B0(R) ⊂ R2 and which are
homologous in Ψ−1(B(R)) to the pullbacks Ψ−1(t) ⊂X, of regular points t ∈ B(R)

of Ψ, have their absolute filling radii bounded from below by

fillrad(Y ) ≥ r(R), r(R) → ∞ for R →∞.

In fact, according to example (E′) in 3.10.1.
universal coverings of compact spaces X with non-virtually free fundamental
groups π1(X) do contain circles with arbitrarily large maximal ◻-widths

and the presence of such "large circles" was all we used in the proof of ☀2. (In
truth, we also needed these circles to be homologous to zero, which is automatic
for X̃ is simply connected.)

Now, if Sc(X) ≥ σ > 0, then, as earlier, the "large" codimension 2 cycle
Y ⊂ X̃ delivered by the codimension 2 filling lemma can be represented by a
submanifold Y ′ which is positioned close to Y and such that a T⋊-stabilization
of it has Sc ≥ σ

2
.

Since, as we know,233 the inequality Sc(Y ′⋊T2) ≥ σ/2 implies that the filling
radius of Y ′ is bounded by filrad(Y ′) ≤ const/

√
σ, it follows by contradiction

that
(⋆) the fundamental group π1(X) is virtually free.
We conclude the proof with the following elementary topological lemma.
(∗) If a closed orientable manifold X̂ of dimension n has free fundamental

group and zero π2(X), ..., πk(X), k = n − 2, then it is homotopy equivalent to a
connected sum of copies of Sn−1 × S1. QED.

Exercises. (a1) Show that the conclusion of (∗) remains valid for n < 2k,
e.g. for k = 3 and n = 6.

(If n = 5, then these manifolds are actually diffeomorphic to connected sums
of S4 × S1, see [Gadgil-Seshadri(isotropic)2008], [Kreck-Su](5-manifolds) 2017]
and references therein.)

(a2) Show that (∗) also holds for orientable pseudomanifolds X̂, the singular
loci of which have codimensions 3.

(a3) Formulate and prove a counterpart of (a1) for pseudomanifolds with
singular loci of codimensions l.

(b) Generalize ● by replacing "X admits a metric with Sc > 0" with "X can
be dominated by a complete Riemannin manifold with Sc ≥ σ > 0".

Generalize further to manifolds X, the universal coverings X̃ of which admit
such Lipschitz dominations, i.e. such that
233If n = 4 this follows from the T∗-stable Bonnet-Myers diameter inequality proved in section
2.8 and if n = 5 this is stated in corollary (G′) in section 3.10.1.
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there exist complete orientable Riemannin manifolds X ′ with Sc(X ′) ≥ σ > 0
and quasi-proper (e.g. proper) 1-Lipschitz maps X ′ → X̃ with non-zero degrees.

Then do the same for pseudomanifolds X, the singular loci of which have
codimension 3.

3.11 Asymptotic Geometry with Sc > 0, Positive Mass
Theorem and Penrose Inequality

Let us show that complete Riemannian n-manifold X with Sc(X) ≥ 0 can’t
grow faster the Euclidean space Rn, which is regarded as the cone over the
unit sphere Sn−1 with the Euclidean metric represented (in polar coordinates)
is gRn = dr2 + r2ds2.

1. Conical Example. Let Y be a Riemannian manifold of dimension
(n − 1) ≥ 2 with Sc(Y ) ≤ (n − 1)(n − 2) = Sc(Sn−1) and let g be the Riemannian
metric on X = Y × [0,∞) asymptotic to a conical, one, namely

g = g(y, r) = dr2
+ λr2dy2

+ go(y, r),

where go(y, r) = o(1), or, in words, go(y, r) converges to 0 for r →∞.
This, in the scale invariant terms, means that the differential dI of the identity

map
I ∶ (X,g) → (X,dr2

+ λr2dy2
)

converges to isometry for t→∞,

∣∣dI(y, r)I ∣ → and also ∣∣(dI)−1
(y, r)I ∣ → 1,

that is I is λ(r)-bi-Lipschitz for λ(r) → 1.
Granted the above, if Sc(X) ≥ 0, then λ ≤ 1.

Proof. The condition go(y, r) = 0(r2) is equivalent to the C0-convergence of
the ε scaled metric g to the background conical (scale invariant) metric

ε2g(y, r) → dr2
+ λr2dy2 for ε→ 0.

Hence, Sc(dr2 + λr2dy2) ≥ 0 by the C0-closure theorem (section 3.1.3). But
if λ > 1, then, for dim(X) ≥ 3, the conical metric dr2 + λr2dy2 on X has
Sc(dr2 + λr2dy2) < 0. QED.

2. Asymptotically Schwarzschild. Recall (see section2.6) that the
scalar curvature (of the space slice of the) Schwarzschild metric with mass m,

gSwm = gSw = (1 +
2m

r
)

4

gEucl.

is zero and that:
if m > 0, the metric gSwm is defined on R3 minus zero, and it is complete,
if m = 0, this is the flat Euclidean metric;
if m < 0, then this metric is defined only for r >m with a singularity ar r =m.
For all m, the metric gSwm is asymptotically Euclidean (conical), where,

gSwm grows slightly slower then the Euclidean metric one and if m < 0 it growth
slightly faster.
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This seen by rewriting this metric as

gSwm = (1 −
2m

r
)

−1

dr2
+ r2ds2

and computing the mean curvature of the r-spheres with respect to the Schwarzschild
metric (see [Brewin(ADM) 2006]),

mean.curv(SSwm) =
2

r
(1 −

2m

r
)

1
2

=
2

r
−

2m

r2
+O (

1

r3
) ,

where 2
r
is equal to the Euclidean mean curvature of the sphere S2(r).

Observe that the difference between the Euclidean and Schwarzschild metrics
and their first derivatives in the Euclidean coordinates satisfy

gSwm − gEucl =
2m

r
dr2

−O (
1

r2
)

and
∂1

(gSwm − gEucl) = ∂
1gSwm =

∂gSwm
dr

=
2m

r2
dr2

+O (
1

r3
)

Now we are going to estimate the scalar curvature of a metric g = g(s, r)
that is asymptotic to gSwm , where we start with the following.

Observation. Let a g0 be a Riemannian metric in a neighbourhood U0 ⊂ Rn
of the origin 0 ∈ Rn, let S ⊂ U0 be a smooth hypersurface passing through the
origin and let g be another smooth Riemannian metric in U0, which is ε-close
to g0 with its first Euclidean derivatives at the origin,

∣∣g0(0) − g(0)∣∣ + ∣∣∂1
(g0(0) − g(0))∣∣ ≤ ε ≤ 1.

Then
the mean curvatures of S at the origin with respect to the two metrics satisfy:

∣mean.curvg(S,0) −mean.curvg0(S,0)∣ ≤ Cε,

where the constant C > 0 depends only on the g0 and its fist derivatives at the
origin, i.e.

C ≤ Cn(1 + ∣∣g0(0) − gEucl∣∣ + ∣∣∂1
(g0(0)∣∣)

for a universal constant Cn.
Proof. Check it for metrics g0 = a2

0dx
2
i + b

2
0dy

2 and g = a2dx2 + b2dy2 for
smooth positive functions a0, b0, a, b in the (x, y)-plane and for the parabola
S = {y = cx2}; then reduce the general case to this special one.

3. Positive Mass Corollary. Let g0 = g0(s, r) be a warped product metric
on the cylinder Sn−1 × [2m,∞) written as

g0 = (1 − α(r))dr2
+ r2ds2,

where 0 < α(r) <m is a smooth function with supr
dα(r)
dr

< ∞. Let gi be a sequence
of smooth Riemannian metrics defined in neighbourhoods

Vi ⊂ S
n−1

× [2m,∞)
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of ri-spheres
Si = S

n−1
(ri) = S

n−1
× {ri} ⊂ S

n−1
× [2m,∞),

where ri → ∞ with i → ∞, such that the differences between gi and g0 and their
first derivatives measured with respect to the Euclidean metric dr2 + r2ds2 are
asymptotically bounded as follows,

∣∣gi(s, ri) − g0(ri, s)∣∣

α(ri)
→
i→∞

0 and
∣∣∂1gi(s, ri) − ∂

1g0(ri, s)∣∣

α(ri)
→ 0.

If a complete orientable (possibly disconnected) Riemannian spin n-manifold
X contains closed smooth embedded hypersurfaces Σi which admits isometries
fi → Σi → Si, which preserves their mean curvatures,

mean.curv(Σi, x) =mean.curv(Si, fi(x),

then X can’t have non-negative scalar curvature

inf
x∈X

Sc(X,x) < 0.

Proof. Observe that the mean curvatures of Si with respect to g0 are

mean.curvg0(Si) = (1 − α(r))−
1
2 .

Then, according to the above observation, mean curvatures of Σi are strictly
bounded away from below by those of the Euclidean ri-spheres,

(mean.curvgi(Σi)) >
n − 2

r2
i

and the proof follows from the mean curvature spin-extremality theorem (e)
in section 3.5) applied to spheres.

Example. If α(r) = (1 − 2m
r

)
−1

the above applies to to complete manifolds
with asymptotically Schwarzschild’s metrics g and shows that positivity of the
scalar curvature of g makes m ≥ 0.

Worrisome Remark. Our assumptions on the asymptotics of g are suspi-
ciously weak compared to the commonly used in the literature, e.g. by Schoen
and Yau in [SY(positive mass) 1979]. This makes me wonder if I haven’t make
a silly mistake in my interpretation of "derivatives of metrics". 234

4. C0- Variation. Let the above neighbourhoods Vi be the annuli (bands)
between the spheres of radii ri and ciri,

Vi = S
n−1

× [ri, ciri] ⊂ S
n−1

× [2m,∞), ci > 1.

If the difference ∣∣gi(s, r) − g0(r)∣∣ divided by the width of such a band becomes
sufficiently small on Vi

∣∣gi(s, ri) − g0(ri, s)∣∣

(ci − 1)ri
≤ εi,

234Only while preparing these notes, I attempted to penetrate the meaning of these mysteri-
ous "derivatives", the geometry of which still remains above my understanding. Probably, if
these have any meaning, it should reside with physics (which I don’t know) rather than with
geometry.
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then, regardless of any bound on the derivatives of gi, such a band (Vi, gi)
contains a µ-bubble Si,min ⊂ Vi for a (density) function µi(s, r), which is close
to the g0-mean curvature of the spheres Sn−1(r)

∣µi(s, r) −mean.curvg0(S
n−1

(r)∣ ≤ δi

For instance if g0 is the Schwarzschild metric with mass m < 0, and if εi
is very small, e.g. o(r−4

i ), ri → ∞, then the argument, as in the proof of
the approximation corollary in §5 5

6
from[G(positive1996],235 based on Llalrull’s

inequality, shows that inf Sc(g) ≤ 0, and it is not hard to show that the mean
curvature extremality theorem allows the same conclusion with εi = o(r−1

i ).
About Rigidity. Our argument, unlike these by Schoen-Yau and by Witten,

is poorly adapted to the case, where g is asymptotically close, even when it
very close, to the Euclidean metric, that is Schwarzschild with the mass m = 0.
Apparently, rigidity of this kind is hard to derived from the geometry of finite
object without passing to the infinite limit at an earlier stage of the argument.

Remark/ Questions. What happens to twisted harmonic spinors (best seen in
Lott’s rendition of the mean curvature spin-extremality theorem) that lie at the
bottom of our argument in the limit for r →∞?

They don’t seem to converge in an obvious way to Witten’s spinors, but do
they?

Does the positive mass rigidity holds for C0-perturbations of the Euclidean met-
ric?

Although no available techniques is capable to prove this even for very fast
decay of ∣∣g − g0∣∣, we formulate the following.

Euclidean C0-Rigidity Conjecture. If a smooth Riemannian metric g on Rn
(a) satisfies

∣∣g(x) − gEucl(x)∣∣ = o(
1

∣∣x∣∣
) , x→∞,

or
(b) if the identity map

(Rn, g) → (Rn, gEucl)

is λ-bi-Lipschitz for some λ < ∞ and the difference of the two distance functions

distg(x1, x2) − distgEucl(x1, x2)

is bounded, on Rn ×Rn, then either

inf
x∈Rn

Sc(g(x)) < 0,

or g is Riemannian flat.
(If g satisfies (a) and is everywhere C0-close to the Euclidean gEucl, one may

try the Hamilton-Ricci flow.)
Admission. It is unclear, not even conjecturally, how close these sufficient

rigidity conditions (a) and (b) are close to necessary ones..
235This argument was motivated by trying to geometrically understand Min-Oo’s hyperbolic
positive mass theorem.
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5. On History and Recent Developments. The following special case of the
positive mass conjecture (unsolved by that time) was emphasized by Robert
Geroch in his expository article [Geroch(relativity) 1975] for geometers.

The Euclidean metric on Rn admits no compactly supported perturbations with
increase of the scalar curvature.

Moreover,
If a metric g on Rn with Sc(g) ≥ 0 is equal to gEucl outside a compact subset

in Rn, then (Rn, g) is isometric to (Rn, gEucl).
This, of course, "trivially" follows from non-existence of non-flat metrics

with Sc ≥ 0 on tori, since compactly supported perturbations of the flat metric
on Rn yield similar perturbations of flat tori. 236

Originally Schoen and Yau directly proved a stronger positive mass/energy
theorem, that claims positivity of the ADM-mass,237 which means that the

total (i.e. integral) mean curvature of the Euclidean spheres S2(R) with
respect to g, is bounded, for large R →∞, by 8πR. 238

Two years later, Schoen and Yau extended their argument, based on non-
compact minimal surfaces, to manifolds of dimensios n ≤ 7, while Witten sug-
gested a proof applicable to spin manifolds of all dimensions.

Witten’s argument, that uses perturbations of invariant (non-twisted) har-
monic spinors on Rn, was worked out in details by Bartnik and it was adapted
by Min-Oo to hyperbolic spaces.

Later, Lohkamp found a (relatively) simple reduction of the general, and
technically more challenging, case of the positive mass theorem to that of com-
pactly supported perturbations, thus reducing the problem to Sc ≯ 0 on tori.

Most recently, the positive mass theorem was extended to a class of incom-
plete manifolds. (See [Lesourd-Unger-Yau(arbitrary ends) 2021], where there
are references to the earlier work by these authors.) 239

Problems. What are other (homogeneous?) Riemannian spaces that admit no
(somehow) localised deformations with increase of the scalar curvatures?

What are most general asymptotic conditions on such deformations that would
allow their localization?

6. Penrose Inequality. Recall that the Schwarzschild metric with mass
m > 0,

gSwm = (1 +
2m

r
)

4

gEucl,

defined in the 3-space minus the origin, is invariant under the the (conformal)
236The reduction to tori is amazingly simple, where this "amazing" brings it far from "trivial".
237 In their paper [SY(positive mass) 1979] the authors refer to some earlier results, e.g. to
Jang, P.S.: J. Math. Phys. 1, 141 (1976), but its hard to say what’s in there since it is not
openlc available on line.
238This interpretation of the ADM-mass is explained in [Brewin(ADM) 2006], where the
autor referres to Brown and York for the origin of this idea.
239We don’t even attempt to convey the basics of physics and mathematics behind the
positive mass/energy idea, with dozens(hundreds?) papers dedicated to it, besides the
early ones we mentioned: [SY(positive mass) 1979], [Witten(Positive Energy) 1981], [Bart-
nik(asymptotically flat) 1986], [Min-Oo(hyperbolic) 1989], [Lohkamp(hammocks) 1999]; we
refer to the survey [Herzlich(mass) 2021] and to Positive energy theorem in Wikipedia for an
overview of this subject matter.
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reflection of R3 around the sphere S2(ρ) ⊂ R3 of radius ρ = m
2
, that is

(s, r) ↦ (s,
ρ2

r
) .

This show that he Schwarzschild metric is complete and that the sphere S2(ρ)
is totally geodesic in geometry of gSw, with area

areagSwm (S2
(ρ) = πρ2

(1 +
ρ

ρ
)

4

= 16πm2.

In 1973 Penrose formulated in [Penrose(naked singularities) 1973] a conjec-
ture concerning black holes in general relativity with an evidence in its favour,
that would, in particular imply the following.

Special case of the Riemannian Penrose Inequality. Let X be complete Rie-
mannian 3-manifolds with compact boundary Y = ∂X, such that

● X is isometric at infinity to the Schwarzschild space of mass m at one of its
two ends at infinity;

● the scalar curvature of X is everywhere non-negative: Sc(X) ≥ 0;
● the boundary Y of X has zero mean curvature;240

● no minimal surface in X separates a connected component of Y from infinity.
Then the area of Y = ∂X is bounded by the mass of the Schwarzschild space

as follows.241

area(Y ) ≤ 16πm2.

.
This, in a greater generality was proven by Hubert Bray in [Bray(Penrose

inequality) 2009].

3.12 Extensions and Fill-ins with Sc > 0

The positive mass/energy results from in the previous two sections concern-
ing asymptotically flat and asymptotically hyperbolic spaces, as well as sharp
bounds on the size of mean convex hypersurfaces from section 3.5 are solutions
of special cases of the following two general problems.

A. Extension Problem for Sc ≥ σ. Let X be a smooth manifold with a
boundary Y = ∂X, , let h be a Riemannin metric on Y and let σ(x) and µ(y)
be smooth functions on X and on Y .

What are necessary and what are sufficient conditions for the existence of a
complete (if X is non-compact) Riemannin metric g on X, which extends h,

g∣Y = h,

with respect to which the mean curvature of Y ⊂X is equal to µ,

mean.curvg(Y ) = µ,

240It suffices to assume that the the boundary is mean convex, i.e. its mean curvature relative
to the normal field pointing outward is positive.
241This version of the Penrose conjecture is taken from the modern literature. It is unclear,
at least to the present author, when, where and by whom an influence of positivity of scalar
curvature in 3D on geometry of surfaces, which was, probably, known to physicists since the
early 1970s (1960s?) was explicitly formulated in mathematical terms for the first time.
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and such that
Sc(X,x) ≥ σ(x)?

B. Fill-in Problem for Sc ≥ σ. Let Y = (Y,h) be a Riemannian manifold
and µ(y) be a smooth function on Y .

Under what condition(s) does there exist, for a given number σ, a complete
Riemannian manifold X = (X,g) with Sc(g) ≥ σ with boundary ∂X = Y , such
that

g∣Y = h and mean.curvg(Y ) = µ,

and where, if Y is compact, one may (or may not) require that X is also com-
pact?

3.12.1 Construction of Extensions of Metrics with Sc > 0

Prior to enlisting known obstruction to extensions and fill-ins with Sc > 0 in the
next section, let is describe known instances of existence of such extensions and
formulate several questions.

Remarks. (a) One could, instead of the Bartnik data (h,µ) on Y , prescribe
a germ g○ of a Riemannin metric on an infinitesimal neighbourhood of Y in X,
since, by the proof Miao’s gluing lemma in section 1.4, a metric g0 on X with
the same Bartnik data on Y several as g○ can be deformed to g with the same
germ at Y as g○ without decease of the scalar curvature.

(b) Following the general logic of the scalar curvature problems, one is con-
cerned not only with the shear existence of metrics g, (manifolds X = (X,g) in
the case B), but with the space of all g which have given Bartnik data on Y
and Sc(g) ≥ σ.

Also, one may ask for a metric g with some its metric invariant(s) (e.g. the
hyperspherical radius) bounded from below.

(c) If one drops µ from Bartnik Data (h(y)µ(y) then one expect no con-
straint for Sc(g) on X at all, where a recent definite result in this regard, due
to Yuguang Shi, Wenlong Wang, Guodong Wei in [SWW(total mean) 2020] (re-
sponding to "embarrassing question" from an earlier version of this manuscript)
is as follows.

SWW Extension Theorem. All smooth Riemannin metrics h on the
boundary Y = ∂X of a compact n-manifold X, extend to metrics g on X with
Sc(g) > 0.

The main technical ingredient of the proof is the following,
SWW Lemma. Let h0 and h1 be smooth Riemannin metrics on a compact

Riemannin manifold Y , and let M1 be a constant.
If h1 > h0, then then there exists a smooth metric g○ on the cylinder Y × [0,1]

with Sc > 0, which extends h0 and λ ⋅ h1,

g○∣Y ×{0} = h0 and g○∣Y ×{1} = doth1.

and such that
the mean curvature of the 1-end of the cylinder is bounded from below by

M1,
mean.curvg○(Y × {1} ⊂ Y × [0,1]) ≥M1.
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Derivation of the theorem from the lemma. By the h-principle for open
manifolds, there exists a Riemannin metric g1 on X with Sc(g1) > 0.

Let g○ be the metric on the cylinder Y × [0,1] delivered by the lemma for
h0 = h and h1 = g∣Y ×{1}, such that the g○-mean curvature of the 1-end Y ×{1} = Y
of the the cylinder is greater than the minus g1-curvature of the boundary
∂X = Y

mean.curvg○(Y, y) =mean.curvg1(Y, y)

Multiply the metric g1 by λ ≥ 1 from the lemma and isometrically attach the
cylinder to (X,λ ○ g1). By Miao’s gluing lemma 1.4, the (continuous Rieman-
nian) metric on

X ⊔Y ×{1} Y × [0,1]

can be approximated by a smooth metric g on X⊔Y ×{1}Y ×[0,1] with Sc(g) > 0
and, by an obvious identificationX =X⊔Y ×{1}Y ×[0,1], the proof of the theorem
follows.

On the Proof of the Lemma.242 The metric g○ is constructed in [SWW(total
mean) 2020] in the form

g○ = gu = (1 − t)h0 + th1 + u
2dt2,

where the needed function u = u(y, t) is obtained as a solution of a (non-linear
parabolic) equation expressing Sc(gu) in terms of the function u and its first an
second derivatives.)

σ-Remark. The metric g○ delivered by the argument in [SWW(total mean)
2020] can be chosen with arbitrarily large scalar curvature

Sc(g○) ≥ σ for a given σ > 0.

σ-Corollary. All smooth Riemannin metrics h on the boundary Y = ∂X
of a compact n-manifold X, extend to metrics g on X with Sc(g) > σ for all
σ > 0.

Proof. By the h-principle, one gets g1 on X with Sc(g1) > σ, where then
the induced metric h1 on Y = ∂X can be made greater than a given h by the
(Nash)-Kuiper stretching construction.

The following elementary proposition also yields SWW theorem (albeit only
with small σ) via the gluing argument from [SWW(total mean) 2020] .

Weak SWW Lemma. There exists positive constants δν > 0, for ν > 0 and a
family of smooth positive monotone increasing functions λν on the segments [0, δν]

λν(t), 0 ≤ t ≤ δν , ν ≥ 0, λν(0) = 1

with the following property.
Let ht , 0 ≤ t ≤ 1, be a smooth family of Riemannian metrics on a compact

manifold Y . Then the scalar curvature of the metric

gν = λ
2
ν(t) ⋅ ht + dt

2 on Xν = Y × [0, δν]

242 I want to thank Yuguang Shi who explained to me several points in the proof of this
lemma and pointed out an error in my first version of the proof of the "weak lemma".
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becomes arbitrarily large for large ν,

Sc(gν) ≥ σ = σ(ht, ν) → ∞ for ν →∞

and also the mean curvature of the δν-boundary of X becomes large

mean.curvgν (Y × {δnu}) ≥M =M(ht, ν) → ∞ for ν →∞.

Proof. Recall the function

ϕν(t) = exp∫
t

−π/ν
− tan

νt

2
dt, −

π

ν
< t <

π

ν
,

from section 2.4, let

λ○ν(t) =
ϕν(t)

ϕν(t0)
, t ∈ [t0, t1],

and
λν(t) = λ

○
ν(t + t0), t ∈ [0, t1 − t0].

Now an elementary computation243 shows that if

t0 = −
π
ν
+ 1
ν3 and t1 = −πν +

1
ν2 ,

then the family λν(t), t ∈ [0, δν = t1 − t0] is the required one.
Remark. The lower bounds on the scalar curvature of g and on the mean

curvature of Y × {1} in the sublemma depend only on the lower bounds on the
scalar curvatures of the metrics ht on Y and on the mean curvatures of the
submanifolds Yt = Y × [0, t] ⊂ [0, t] with respect to the metric g = ht = dt2

on Y × [0,1]. Thus the sublemma remains valid for non-compact manifolds,
where the scalar curvatures of the metrics ht and on the mean curvatures of the
submanifolds Yt = Y × [0, t] ⊂ [0, t] are bounded from below.

Corner Corollary to SWW Theorem.244 Let X = (X,g0) be a smooth
manifold with corners. Then X admits a metric g with Sc(g) > 0 and such that
all codimension 1 faces are mean convex and all dihedral angles are bounded from
above by given positive numbers.

Proof. It is obvious that there exists a Riemannin metric with Sc > 0 in a
small neighbourhood U ⊂ X of the boundary ∂X ⊂ X with respect to which
∂X is mean convex with arbitrarily small dihedral angles. Then the theorem
applies to a domain X0 ⊂ X with smooth(!) boundary ∂X0 ⊂ U and the proof
is concluded with Miao’s gluing lemma.

Exercise. Let R ∶ G+(X) → H(Y ) be the restriction map, g ↦ g∣Y , from
the space G+(X) of metrics g on X with Sc(g) > 0 to the space H(Y ) of (all)
Riemannian metrics h on Y . shows that R is a Serre fibration,
243The formulas one needs, collected in sections 2.1, 2.3,2.2, 2.4 are: Riemannian variation
formula: dht

dt
= 2A∗t , Second Main Formula: dAt

dt
= −A2(Yt) − Bt, and Gauss’ theorema

egregium, while the relevant computation is sufficient to perform for the case of ht = h, where
h is a flat metric (as in example (c) in ??) and then argue by continuity. In fact, a similar
computation free argument can be applied to the metric with constant curvature 1 on S2.
244A version of this was suggested in in section 6 in [G(boundary) 2019] as an approach
to "Unproven (non-extendability with Sc > 0) Corollary", which we will prove by a different
argument in section 5.8.1.
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(It is not so clear if the Serre fibration property remains satisfied if G+(X) is
replaced by a subspace G+(X,U0, g0) of metrics that are equal to a given g0 away
from a small neighbourhood U0 ⊂X of Y ⊂X. 245)

(Naive?) Questions. Let X be a compact manifold with a boundary.
(1) Does, assuming n = dim(X) ≥ 3, (it may be safer to assume n ≥ 5) the

manifold X admits a Riemannin metric g such that

Sc(g) ≥ σ and mean.curvg(∂X) ≥M−

for given σ+ > 0 and M− < 0?
Observe the following in this regard.
(i) If n=2, such a g seems to exist for all σ+ > 0 and M− < 0 only if X is

homeomorphic to the disc, cylinder or the Möbius band.
(ii) It is obvious that g exists for all σ+ > 0 and M− < 0 if X contracts to the

(n − 2)-dimensional polyhedral subset P ⊂X.
(iii) It is unclear if such metrics exist, for all σ+ > 0 and M− < 0, on the n-

torus minus an open ball and/or on anX homeomorphic to a compact hyperbolic
manifold with a totally geodesic boundary.

(iv) If such g don’t always exist, then the supremum of σ+
∣M−∣ , for which such

a g does exist on an X, makes a non-trivial topological invariant of X, which,
one can only dream of this , would assume several different values at certain X.

(v) This may be too good to be true, but this invariant does make sense for
Riemannian manifolds Y = (Y,h), where the above metric g must extend h and
where the maximum of the ratios σ+

∣M−∣ , where such a g exists is an interesting
(is it?) invariant of (Y,h), evaluation of which may be possible for specific
manifolds Y , such as compact symmetric spaces, for instance.

(2) Let X be a compact orientable manifold with two boundary components,
say ∂X = Y0⊔Y2 and let h0 and h1 Riemannian metrics on Y0 and on Y1 and let
f ∶ Y1 → Y0 be a smooth strictly distance decreasing map (∣∣df ∣∣ < 1) of degree 1
(e. g. a diffeomorphism) and let M0 < 0 and M1 > 0 be two numbers such that
M0 +M1 < 0.

Does the pair of metrics (h0, h1) extend to a metric g on X with Sc(g) > 0
and such that the g-mean curvatures of Y0 and Y1 are bounded from below by
M0 and M1 respectively?

3.12.2 Obstructions to Fill-ins with mean.curv ≥M and Sc ≥ σ

I. BMN-Counter Example. Motivated by Min-Oo’s conjecture to the contrary,
Simon Brendle, Fernando C. Marques and Andre Neves constructed in [Bre-Mar-
Nev(hemisphere) 2011] a C2-small perturbation of the standard Riemannian
metric on the hemisphere Sn+ , n ≥ 3, that enlarges its scalar curvature while
keeping unchanged the metric and the (zero) second fundamental form on the
boundary sphere Sn−1 = ∂Sn+ .

II.BM-Non-Perturbation Theorem Brendle and Marques proved in [Brendle-
Marques(balls in Sn)N 2011] that small balls in Sn admit no such perturbations
and conjectured that

there is a critical radius rn > 0, such that
245It is easy to see if you replace H(Y ) by the quotient space H(Y )/R for the action of the
multiplicative group R on metrics by r ∶ H ↦ r ⋅ h.
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if a compact Riemannin manifold X with a boundary has Sc ≥ n(n − 1),
and if the mean curvature mean.curv∂X is bounded from below by that of the
r-ball Bn(r) ⊂ Sn, r ≤ rn, then X is isometric to this ball.

III. STEMW Total Mean Curvature Rigidity Theorem. Michael Eich-
mair, Pengzi Miao and Xiadong Wang generalized an earlier result by Yuguang
Shi and Luen-Fai Tam246 and proved the following.

Let X ⊂ Rn be a star convex domain, e.g. a convex one, such as the unit ball,
for example, and let X be a compact Riemannian manifold, the boundary Y = ∂X
of which is isometric to the boundary Y = ∂X.

If Sc(X) ≥ 0 and if the total mean curvature of Y is bounded from below by
that of Y ,

∫
Y
mean.curv(Y, y)dy ≥ ∫

Y
mean.curv(Y , y)dy,

then X is isometric to X.
This is proven in the above cited papers by extending g (from a small neigh-

bourhood of Y in X) to a complete asymptotically flat metric g+ on X+ ⊃ X
with Sc(X+) ≥ 0, where Y serves as the boundary of the closure of X+∖X ⊂X+,
and such that

ADM-mass(g+) < 0 for ∫Y mean.curv(Y, y)dy > ∫Y mean.curv(Y , y)dy
and then applying the positive mass theorem, where, originally this was for n ≤ 7.
But this restriction, due to possible singularities on minimal hypersurfaces, may
be now removed in view of the recent results by Lohkamp and Schoen-Yau.

Conjecture. Let X be a compact Riemannian manifold with Sc ≥ σ. Then the
integral mean curvature of the boundary Y = ∂X is bounded by

∫
Y
mean.curv(Y, y)dy ≤ const,

where this const depends on σ and on the (intrinsic) Riemannian metric on Y
induced from that of X ⊃ Y .

IV. Non-Fill for Euclidean Hypersurfaces. It is shown in [SWWZ(fill-in)
2019], [SWW(total mean) 2020] among other things that a pointwise version of
STEMW holds for non-spin Riemannian n-manifolds X = (X,g) with bound-
aries Y = ∂X which admit smooth topological embeddings to Rn:

(A) if Sc(X) ≥ 0, then the lower bound on the mean curvature of Y is bounded
in terms of topology of Y and (geometry of) g,

inf
y∈Y

mean.curv(Y, y) ≤ const(Top(Y ), g).

Furthermore,
(B) if Y is diffeomorphic to Sn−1 and the induced Riemannian metric g∣Y on

Y is homotopic in the set of metrics on Y with Sc > 0 to one with constant
sectional curvature, then

∫
Y
mean.curv(Y, y)dy ≤ const′n(g∣Y ),

that confirms the above conjecture in a special case.
246See [EMW(boundary) 2009] and [Shi-Tam(positive mass) 2002]
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This is proven by extending g from a small neighbourhood of Y in X to
a complete asymptotically flat metric g+ with Sc ≥ 0, where Y serves as the
boundary of the closure of X+ ∖X ⊂ X+ and such that the ADM mass of g+ is
negative provided the mean curvature of (or its integral over) Y is sufficiently
large. Then the the positive mass theorem applies. ´

Remark. Probably, by incorporating Lohkamp reduction of the positive mass
theorem to the flat at infinity case (see section 3.11) one can make g+ flat, rather
than only asymptotically flat with mass≤ 0 at infinity, where this may generalize
to manifolds Y that are not necessarily diffeomorphic to Sn−1.

V. Pointwise non-Fill-in for Compact Y . Pengzi Miao found a simple
derivation of the following version of (A) from the SWW extension theorem for
all Y [Miao(nonexistence of fill-ins) 2020]:

inf
y∈Y

mean.curv(Y, y) ≤ const(Top(X), g).

Proof. Given X = (X,g) with Sc(g) ≥ 0 and mean.curvg(Y ) ≥ µ+, Y = ∂X
let X ′ be a connected sum of X with the n-torus and let g′ be a metric with
Sc > 0 such the restriction of g′ to Y = ∂X ′ = ∂X is equal to the restriction
of g∣Y , where the existence of such a g′ is guaranteed by the SWW extension
theorem.

Observe that the supremum µ′∗ = supg′ infx′∈Y mean.curvg′(Y,x
′) depends

on the topology X and on the restriction of g to Y .
Also observe that the manifold X ⊔Y X

′ obtained by gluing X and X ′ along
Y admits no metric with Sc > 0 by the Schoen-Yau theorem.

But if µ+ + µ′∗ > 0, the natural continuous metric g&g′ on X ⊔Y X
′ can be

smoothed with Sc > 0 by Miao gluing theorem; hence, µ+ ≤ −µ′∗. QED.
VI. Another derivation of pointwise non-fill-in theorem from SWW extension

theorem is with a use of the Corner Corollary from the previous section. Indeed,
if the mean curvature of ∂Y is sufficiently large, one can modify the Riemannin
metric on X (by attaching an external color to X along Y ∂X) keeping Sc ≥ 0
and creating cubical corner structure on the boundary with dihedral angles < π

2
,

as in "Unproven Corollary" from section 6 in [G(boundary) 2019].
Then, by the reflection argument from section 3.1.1, the problem reduced

to Schoen-Yau theorem on non-existence of metrics with Sc > 0 on manifolds
which admits maps with non-zero degrees to tori.

VII. In the case of spin manifolds X a more precise non-fill inequality follows
from the mean curvature spin-Extremality theorem in section 3.5, and a µ-
bubble approach to the non-spin case is indicated in section 5.8.1.

Questions. Let X be compact n-manifold with boundary, let Yi ⊂ ∂X be
be the connected components of the boundary. (For instance, X is the n-torus
minus two open balls and σ = 1.)

(a) Given numbers σ and Mi, when does there exist a Riemannin metric g
on X, such that Sc(X) ≥ σ and the mean curvatures of Yi are bounded from
below my Mi,

mean.curvg(Yi) ≥Mi?

(b) Let all Yi be diffeomorphic to the sphere Sn−1 and let, besides σ andMi,
we are given positive numbers κi.
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When does there exist a Riemannin metric g on X, such that Sc(X) ≥ σ,
the induced metrics g∣Yi have constant sectional curvatures κi and

mean.curvg(Yi) ≥Mi?

(c) Let now Riemannin metrics gi on Yi be given. When does there exist a
Riemannin metric g on X, such that Sc(X) ≥, g∣Yi − gi and

mean.curvg(Yi) ≥Mi?

3.13 Manifolds with Negative Scalar Curvature Bounded
from Below

If a "topologically complicated" closed Riemannian manifold X, e.g. an aspher-
ical one with a hyperbolic fundamental group, has Sc(X) ≥ σ for σ < 0, then a
certain "growth" of the universal covering X̃ ofX is expected to be bounded from
above by const

√
−σ and accordingly, the "geometric size" – ideally n

√
vol(X)–

must be bounded from below by const′/
√
−σ.

If n = 3 this kind of lower bound are easily available for areas of stable
minimal surfaces of large genera via Gauss Bonnet theorem by the Schoen-Yau
argument from [SY(incompressible) 1979].

Also Perelman’s proof of the geometrization conjecture delivers a sharp
bound of this kind for manifolds X with hyperbolic π1(X) and similar results
for n = 4 are possible with the Seiberg-Witten theory for n = 4 (see section 3.16).

No such estimate has been established yet for n ≥ 5 but the following results
are available.

Ono-Davaux Hyperbolic Spectral Inequality.247 Let X be a closed
Riemannian manifold and let X̃ →X be some Galois covering ofX, e.g the universal
covering, such that all smooth functions f(x̃) with compact supports on X̃ of X
satisfy

∫
X̃
f(x̃)2dx̃ ≤

1

λ̃2
0

∫
X̃

∣∣df(x̃)∣∣2dx̃.

(The maximal such λ̃0 ≥ 0 serves as the lower bound on the spectrum of the
Laplace on the universal covering X̃ of X).

If X̃ is spin and if one of the following two conditions (A) or (B) is satisfied,
then

[Sc/λ̃0] inf
x∈X

Sc(X,x) ≤
−4nλ̃0

n − 1
.

Condition (A). The dimension of X is n = 4k and the α̂-invariant from
section 3.2 (that is a certain linear combination of Pontryagin numbers called Â-
genus) doesn’t vanish.

Condition (B). The manifold X̃ is hypereuclidean: it properly Lipschitz dom-
inate the Euclidean space, i.e. X̃ is orientable and it admits a proper distance
decreasing map to Rn with non-zero degree.

Idea of the Proof. By Kato’s inequality (and/or by the Feynman-Kac for-
mula, see 6.1.2), the lower bound on λ̃0 implies a similar bound on the Bochner
247See [Ono(spectrum) 1988], [Davaux(spectrum) 2003].
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Laplacian ∇2 on X̃, hence, a corresponding bound on the (untwisted) Dirac
operator expressed by the SLW(B)-formula D = ∇2 + 1

4
Sc.

This, confronted with the L2-index theorem, yields Condition (A) and
Condition (B) for n even follows by similar argument for mathcalD on X̃
twisted with suitable almost flat bundles, while the sharp inequality for odd n
needs a an odd dimensional version of the L2-index theorem and a delicate anal-
ysis of the spectral flow for a family of Dirac operators (see [Davaux(spectrum)
2003]).

Remarks. (a) The inequality [Sc/λ̃0] is sharp: if X has constant negative
curvature −1, then

−n(n − 1) = Sc(X) = −4nλ̃0

n−1

for λ̃0 =
(n−1)2

4
, that is the bottom of the spectrum of Hn

−1 = X̃.

(b) The rigidity sharpening of [Sc/λ̃0] is proved in [Davaux(spectrum) 2003]
in the case A and it seems that a minor readjustment of the argument from this
paper would work in the case B as well.

(c) Since the spectrum of the Laplacian is Lipschitz continuous under C0-
deformations of Riemannian metrics, the Ono-Davaux hyperbolic spectral in-
equality implies, for instance, that

if a metric g on a compact n-manifold X is λ-bi-Lipschitz, λ ≥ 1, to a metric
g0 with sectional curvatures κ ≤ −1, then

inf
x∈X

Sc(g, x) ≤ −
constn
λ2

, constn > 0.

On the other hand, the spectrum of ∆ drastically drops down, if for instance
one takes connected sums of X with spheres Sn attached to X by long narrow
"necks" by means of the thin surgery with only a minor perturbation of the
infimum of the scalar curvature.

Non-Amenable Hypereuclidean Manifolds with Sc ≥ σ < 0. Probably,
the above bound on the scalar curvature in case (B) remains true for all complete
Riemannin manifold X̃ ,with no spin assumptions and with no action of any
(deck transformation) group on it.

Below is a result in this direction, which we formulate in geometric rather
than analytic terms.

A Riemannian n-manifoldX is called (uniformly) α-non-amenable if all com-
pact smooth domains U ⊂ X satisfy the linear isoperimetric inequality with
constant α,

vol(U) ≤ α ⋅ voln−1(∂U).

It is easy to see that
if a complete α-non-amenable Riemannin n-manifoldX has bi-Lipschitz bounded

local geometry, i.e. all δ-balls in X are λ-bi-Lipschitz homeomorphic to the Eu-
clidean δ-ball for some positive numbers delta and λ depending on X, then X can
be it exhausted by compact smooth domains Vi,

V1 ⊂ V2 ⊂ ... ⊂ Vi ⊂ ... ⊂X

such that boundaries Yi∂Vi satisfy

mean.curv(Yi) ≥ α − εi, where εi → 0 for i→∞.
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Indeed, let µi(x) be a sequence of smooth functions on X, such that
∗ all µi is very large at a point x0 ∈X,
∗ all µi(x) < α − εi for x very far from x0,
∗ the gradients of all µi(x) is very small at all x ∈X,
∗ µi(x) → α for i→∞ and x→∞.
Then our conditions on X imply the existence of µi-bubbles Y ′

i = ∂V
′
i ⊂ X,

where Vi exhaust X and where Y ′
i can be smoothed to the required Yi = ∂Vi

(compare with 1.5(C) in [G(Plateau-Stein) 2014 ]).
This, combined with multi-width mean curvature inequality from section

5.8.1, yields the following.
Rough Negative bound on Sc(X). Let X be an α-non-amenable hyper-

euclidean Riemannian n-manifold. If n ≤ 7, then the infimum of the scalar cur-
vature of X is bounded by α as follows

inf
x∈X

Sc(X,x) ≤ −constnα
2(n−1)
n

for some constn > 0.
Let us indicate an application of this to manifoldsX discretely a cocompactly

acted upon by , countable groups Γ, e.g. to universal coverings of compact
manifolds, where Γ uniformly no-amenable, where

a finitely generated group Γ is uniformly non-amenable if there exists an
α = α(Γ) > 0, such that, for all symmetric finite generating subset ∆ ⊂ Γ the
cardinalities of all finite subsets V ⊂ Γ are bounded by the cardinalities of their
∆-boundaries,

card(V ) ≤ α ⋅ card(∆ ⋅ S ∖ S.

Example. Non-virtually solvable subgroups of the linear group GL(N,C)

are uniformly non-amenable (see [Breuillard-Gelander(non-amenable) 2005] and
references therein)

To use this, we observe that if a Riemannin n-manifold is discretely and
isometrically acted upon by such a Γ with compact quotient X/Γ, then the
isoperimetric constant α = α(X) is bounded from below in terms of α(Γ and a
bound on the local Lipschitz geometry of X.

Namely, given numbers λ > 0, d and α > 0, there exists α = αn(λ, , dα) > 0,
such that if all unit balls in X are λ bi-Lipschitz homeomorphic to the unit Eu-
clidean ball, and the diameter of the quotient space is bounded by diam(X/Γ) ≤,

then, by an easy argument,
the inequality α(Γ) ≥ α implies that X is α-non-amenable.

Remark/Conjecture. The conditions on the Lipschitz geometry and the di-
ameter are unpleasantly restrictive. Conjecturally all one needs is a bound on
the volume of X/Γ.

The last theorem in tis section formulated below, was, historically, the first
result on the geometry of Sc ≥ σ for negative σ.

Thus,
if X is hypereuclidean, then the infimum of the scalar curvature Sc(X) is

bounded by a strictly negative constant which depends only on Γ and the bound
on the local Lipschitz geometry of X.
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Exercise. Show that the universal covering X̃ of the n-torus X with an
arbitrary Riemannian metric can be exhausted by over-cubical domains Vi ⊂ X̃
with corners, i.e. such that they admit face preserving (corner proper in terms
of section3.18) maps

fi ∶ Vi → [0,1]n

with degree 1 and such that all (n−1)-faces of all Vi have positivemean curvatures
and the dihedral angles of all Vi along the (n − 2)-faces are ≤ π

2
.

Hint. Cut the manifold X by a minimal hypersurface in the homology class
of Tn−1 ⊂ Tn ≃

homeo
X, then cut the resulting band by a sub-band homologous

to Tn−2×[0,1] etc. If n ≤ 7 this terminates in a cubical V1 ⊂ X̃, and by applying
the same procedure to finite coverings of X with fundamental subgroups i ⋅Zn ⊂
Zn = π1(X) we obtain an exhaustion of X̃ by over-cubical Vi with minimal
(n − 1)-faces and all dihedral angles π/2.

These Vi may have, however, not very smooth faces and an extra work is
needed to smooth them.

And if n ≥ 8, such Vi , come, in general, with more serious singularities, but
one can smooth them keeping the (n − 1)-faces mean convex and the dihedral
angles ≤ π/2, as it is done in [G(Plateau-Stein) 2014].

Remark/Conjecture. It is not impossible (but unlikely) that all contractible
manifolds X̃ which admit cocompact isometric group actions also admit similar
over-cubical exhaustions, where this seem quite realistic for enlargeable X.

Also other "large" manifolds X̃ without any group actions, e.g. complete
simply connected manifolds with non-positive sectional curvatures admit such
exhaustions or, at least, contain arbitrarily large man convex overtorical do-
mains with dihedral angles ≤ π/2.

Question. What are possible values of dihedral angles of large non-over-cubical
domains with corners in various manifolds?

For instance, it seem not hard to show in this regard that the 2-plane with a
metric bi-Lipschitz homeomorphic to the hyperbolic plane can be exhausted by
convex k-gons, for all k = 2,3,4, ... with all angles ≤ ε for all ε > 0.

Also it seems not impossible that, for all convex polyhedral domains P ⊂ Rn,
the above universal covering X̃ →X ≃

homeo
Tn can be exhausted by mean convex

"over P -domains" Vi (admitting face respecting maps Vi → P with degrees 1),
such that the dihedral angles of all Vi are bounded by the corresponding angles
in P ,

∠kl(Vi) ≤ ∠kl(P ),

and where, moreover, unless X is Riemannin flat, one can find/construct such
Vi with ∠kl(Vi) < ∠kl(P ).

The last theorem in this section we state below was, historically, the first
result on ıgeometry of Sc ≥ σ for σ < 0.248

Min-Oo Hyperbolic Rigidity Theorem. Let X be a complete Rieman-
nian manifold, which is isometric at infinity (i.e. outside a compact subset in X)
to the hyperbolic space Hn

−1.
If Sc(X) ≥ −n(n − 1) = Sc(Hn

−1), then X is isometric to Hn
−1.

248Strictly speaking, the first, for alI know, topological-geometric constraint on Sc ≥ σ < 0
appears in [Ono(spectrum) 1988], but his argument resides within the realm of Sc ≥ 0.
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About the Proof. The original argument in [Min-Oo(hyperbolic) 1989], which
generalizes Dirac-theoretic Witten’s proof of the positive mass/energy theorem
for asymptotically Euclidean (rather than hyperbolic) spaces, (see section 3.11)
needs X to be spin.

But granted spin, Min-Oo’s proof allows more general asymptotic (in some
sense) agreement between X and Hn

−1 at infinity.
If one wants to get rid of spin, one can use minimal hypersurfaces or µ-

bubbles, where it is convenient, to pass to a quotient space Hn
−1/Γ, where Γ is

a parabolic isometry group isomorphic to Zn−1, and where the quotient Hn
−1/Γ

is the hyperbolic cusp-space, that is Tn−1 ×R with the metric e2rdt2 + dr2.249

Then one applies the rigidity theorem for the flat metrics on tori with Sc ≥ 0 to
T1-symmetrised stable µ-bubbles in manifolds X isometric to Hn

−1/Γ at infinity,
where these bubbles separate the two ends of X and where µ = (n− 1)dx. Thus
one shows that

n-manifolds X with Sc(X) ≥ −n(n − 1), which are isometric to Hn
−1/Γ at

infinity, are, isometric to Hn
−1/Γ everywhere.250

Finally, a derivation of a Min-Oo’s kind hyperbolic positive mass theorem
without the spin condition from the rigidity theorem follows by an extension
of the Euclidean Lohkamp’s argument from to the hyperbolic spaces, due to
Andersson, Cai, and Galloway.251

Questions.Can one put the index theoretic and associated Dirac-spectral con-
siderations on equal footing with Witten’s and Min-Oo’s kind of arguments on
stability of harmonic spinors with a given asymptotic behavior under deforma-
tion/modifications of manifolds away from infinity?

Can Cecchini kind long neck argument(s) be extended to σ < 0?252

Three conjectures

[#−n(n−1)] Let X be a closed orientable Riemannian manifold of dimension
n with Sc(X) ≥ −n(n − 1).

Then the following topological invariants of X must be bounded by the
volume of X, and, even more optimistically, (and less realistically), where the
constants are such that the equalities are achieved for compact hyperbolic man-
ifolds with sectional curvatures −1.

Namely, granted [#−n(n−1)] one expects the following.
1. Simplicial Volume Conjecture: There exist orientable n-dimensional

pseudomanifolds X▵i and continuous maps f▵i ∶ X
▵
i →X with degrees

deg(f▵i ) →
i→∞

∞,

249The logic of what we do here is similar to the proof of rigidity of Rn by passing to
Tn = Rn/Zn and thus, reducing the problem to the scalar curvature ≥ 0 rigidity of the flat
tori.
250Instead of using µ-bubbles as in §5 5

6
of [G(positive) 1996], one can proceed here by

inductive descent with T⋊-symmetrised minimal hypersurfaces with free boundaries, as in the
proof of the 2π

n
-inequality indicated in section 3.6; see section ?? for this and for more general

results of this kind.
251See [Lohkamp(hammocks) 1999] and [AndMinGal(asymptotically hyperbolic) 2007].
252 Notice that the long neck proofs in [Cecchini(long neck) 2020] and in [Cecchini-
Zeidler(generalized Callias) 2021], similarly to these in [Min-Oo(hyperbolic) 1989], depend
on Dirac operators with potentials.
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such that the numbers Ni of simplices in the triangulations of X▵i and the degrees
deg(f▵i ) are related to the volume of X by the following inequality:

Ni ≤ C
▵
n ⋅ deg(f

▵
i ) ⋅ vol(X).

2. The L-Rank Norm Conjecture: There exist, for all sufficiently large
i ≥ i0 = i0(X), smooth orientable n-dimensional manifolds X○i and continuous
maps fi ∶ X○i →X, with degrees

deg(f▵i ) →
i→∞

∞,

such that the minimal possible numbersNi of the cells in the cellular decompositions
of X○i and the degrees of the maps f▵i are related to the volume ofX by the following
inequality:

Ni ≤ C
○
n ⋅ deg(f

○
i ) ⋅ vol(X).

3. Characteristic Numbers Conjecture. if, additionally to [#−n(n−1)],
the manifold X is aspherical, then the Euler characteristic χ(X) and the Pon-
tryagin numbers pI of X are bounded by

∣χ(X)∣, ∣pI(X)∣ ≤ C◽
n ⋅ vol(X).

Remarks. (i) Conjecture 1 makes sense for an X, in so far as X has non-
vanishing simplicial volume ∣∣X ∣∣△, e.g. if X admits a metric with negative
sectional curvature or a locally symmetric metric with negative Ricci curvature.
253¯

(ii) The L-rank norm ∣∣[X]L∣∣ is defined in §8 1
2
of [G(positive) 1996] via the

Witt-Wall L-groups of the fundamental group of X.
This ∣∣[X]L∣∣ is known to be non-zero for compact locally symmetric spaces

with non-zero Euler characteristic as it follows from [Lusztig(cohomology) 1996].254

In fact, all known manifolds X with ∣∣[X]L∣∣ ≠ 0 admit maps of non-zero
degrees to locally symmetric spaces with non-zero Euler characteristics.

And nothing is known about zero/non-zero possibility for the values of the
L-rank norm for manifolds with negative sectional curvatures of odd dimensions
> 3.

(Vanishing of ∣∣[X]L∣∣ for all 3-manifolds X trivially follows from the Agol-
Wise theorem on virtual fibration of hyperbolic 3-manifolds over S1.)

Question. What are realtions between the ∣∣X ∣∣△ and ∣∣[X]L∣∣? Are there
natural invariants mediating between the two?

(It is tempting to suggest that ∣∣X ∣∣△ ≥ ∣∣[X]L∣∣, since being a triangulation is
(by far) more restrictive than being just a cell decompositions, but since ∣∣[X]L∣∣,
253See [Lafont-Schimidt(simplicial volume) 2017] and the monograph [Frigero(Bounded Co-
homology) 2016] for the definition and basic properties of the simplicial volume.
254 In the simplest case, where X is the product of k closed surfaces S1, S2, ..., Sk with
negative Euler characteristics, non-vanishing of ∣∣[X]L∣∣ is proven in [G(positive) 1996]:

If a manifold X○ admits a map of degree d to such an X, then X○ can’t be decomposed
into less than

N = constk ⋅ d ⋅ ∣χ(S1)∣ ⋅ ∣χ(S2) ⋅ ... ⋅ ∣χ(Sk)∣, constk > 0,

cells.
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unlike ∣∣X ∣∣△ defined with manifolds, rather than with pseudomanifolds mapped
to X, this is unlikely to be true in general.)

Integral Strengthening of the Three Conjectures. The above con-
jectural inequalities 1,2,3, for the three topological invariants, call them here
invi, i = 1,2,3, may, for all we know, hold (with no a priori assumption
Sc(X) ≥ −n(n − 1)) in the following integral form,

invi ≤ consti ⋅ ∫
X

∣Sc−(X,x)∣
n
2 dx,

where Sc−(x) = min(Sc(x),0), but no lower bound on this integral is anywhere
in sight for n ≥ 5. 255 (See section 3.16 for what is known for n = 4.)

3.14 Positive Scalar Curvature, Index Theorems and the
Novikov Conjecture

Given a proper (infinity goes to infinity) smooth map between smooth oriented
manifolds, f ∶ X ↦ X of dimensions n = dim(X) = 4k + n for n = dim(X), let
sign(f) denote the signature of the pullback Y 4k

x = f−1(x) of a generic point
x ∈X, that is the signature of the (quadratic) intersection form on the homology
H2(Y

4k
x ;R), where, observe, orientations of X and X define an orientation of

Y 4k
x which is needed for the definition of the intersection index.
Since the f -pullbacks of generic (curved) segments [x1, x2] ⊂X are manifolds

with boundaries Y 4k
x1

− Y 4k
x2

, (the minus sign means the reversed orientation),

sign(Y 4k
x1

) = sign(Y 4k
x2

),

as it follows from the Poincaré duality for manifolds with boundary by a two-
line argument. Similarly, one sees that sign(f) depends only on the proper
homotopy class [f]hom of f .

Thus, granted X and a proper homotopy class of maps f , the signature
sign[f]hom serves as a smooth invariant denoted sign[f](X), (which is actually
equal to the value of some polynomial in Pontryagin classes ofX at the homology
class of Y 4k

x2
in the group H4k(X)).

If X and X are closed manifolds, where dim(X) > dim(X) > 0, and if X,
is simply connected, then, by the Browder-Novikov theory, as one varies the
smooth structure of X in a given homotopy class [X]hom of X, the values of
sign[f](X) run through all integers i = sign[f](X) mod 100n! (we exaggerate
for safety’s sake), provided dim(X) > 0 and Y 4k

x ⊂X is non-homologous to zero.
However, according to the (illuminating special case of the) Novikov conjec-

turec
if X is a closed aspherical manifold256 then this sign[f](X) depends only

on the homotopy type of X. 257

255One doesn’t even know if there are such bounds for ∣∣X ∣∣△ and/or ∣∣[X]L∣∣ in terms of the
full Riemannian curvature tensor R(X,x), namely the bounds

∣∣X ∣∣△, ∣∣[X]L∣∣ ≤ constn ∫
X

∣∣R(X,x)∣∣n2 dx.

256Aspherical means that the universal cover of X is contractible
257Our topological formulation, which is motivated by the history of the Novikov conjecture,
is deceptive: in truth, Novikov conjecture is 90% about infinite groups, 9% about geometry
and only 1% about manifolds.
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Originally, in 1966, Novikov proved this, by an an elaborated surgery ar-
gument, for the torus X = Tn, where X = Y × Tn and f is the projection
Y ×Tn → Tn.

In 1972, Gheorghe Lusztig found a proof for general X and maps f ∶X → Tn

based on the Atiyah-Singer index theorem for families of differential operators
Dp parametrised by topological spaces P , where the index takes values not in
Z anymore but in the K-theory of P , namely, this index is defined as the K-
class of the (virtual) vector bundle over P with the fibers ker(Dp)− coker(Dp),
p ∈ P , (Since the operators Dp are Fredholm, this makes sense despite possible
non-constancy of the ranks of ker(Dp) and coker(Dp).)

The family P in Lusztig’s proof in [Lusztig(Novikov) 1972] is composed of
the signature s on X twisted with complex line bundles Lp, p = P , over X,
where these L are induced by a map f ∶X → Tn from flat complex unitary line
bundles Lp over Tn parametrised by P (which is the n-torus of homomorphism
π1(Tn) = Zn → T).

Using the the Atiyah-Singer index formula, Lusztig computes the index of
this , shows that it is equal to sign(f) and deduce from this the homotopy
invariance of sign[f](X).

What is relevant for our purpose is that Lusztig’s computation equally ap-
plies to the Dirac operator twisted with Lp and shows the following.

Let X be a closed orientable spin manifolds of even dimension n and f ∶X →
Tn be continuous map of non-zero degree. Then

ind(D⊗{Lp}) ≠ 0.

Therefore, there exits a point p ∈ P , such that X carries a harmonic Lp-
twisted spinor

But if Sc(X) > 0, this is incompatible with the the Schroedinger-Lichnerowicz-
Weitzenboeck-(Bochner) formula which says for flat Lp that

D⊗Lp = ∇
2
⊗Lp +

1

4
Sc(X).

Thus,
the existence of a map f ∶X → Tn with deg(f) ≠ 0 implies that X carries
no metric with Sc > 0.
Moreover, Lusztig’s computation applies to manifolds X of all dimensions

n = n + 4k, shows that if a generic pullback manifold Y 4
p = f−1(p) ⊂ X (here f

is smooth) has non-vanishing α̂-invariant defined in section 3.2 (that is the Â-
genus for 4k-dimensional manifolds), then the index ind(D⊗{Lp}) doesn’t vanish
either and, assuming X is spin, it can’t carry metrics with Sc > 0.

Remark on X = (X,g0) = Tn. If (X,g0) is isometric to the torus, then
the only g0-harmonic Lp-twisted spinors on X are parallel ones, which allows a
direct computation of the index of D⊗{Lp}. Then the result of this computation
extends to all Riemannian metrics g on Tn by the invariance of the index of
D⊗{Lp} under deformations of D, where the essential point is that, albeit the
harmonic spinors of the (untwisted) D may (and typically do) disappear under a
deformation Dg0 ; Dg, they re-emerge as harmonic spinors of Dg twisted with
a non-trivial flat bundle Lp.
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The index theorem for families can be reformulated with P being replaced by
the algebra cont(P ) of all continuous functions on P , where in Lusztig’s case the
algebra cont(Tn) is Fourier isomorphic to the algebra C∗(Zn) of bounded linear
operators on the Hilbert space space l2(Zn) of square-summarable functions on
the group Zn, which commute with the action of Zn on this space.

A remarkable fact is that a significant portion of Lusztig’s argument gen-
eralizes to all discrete groups Π instead of Zn, where the algebra C∗(Π) of
bounded operators on l2(Π) is regarded as the algebra of continuous functions
on a "non-commutative space" dual to Π (that is the actual space, namely that
of of homomorphisms Π→ T for commutative Π.)

This allows a formulation of what is called in [Rosenberg(C∗-algebras - posi-
tive scalar) 1984] the strong Novikov Conjecture, the relevant for us special case
of which reads as follows.
D⊗C∗ -Conjecture. If a smooth closed orientable Riemannian spin n-manifold

X for n even admits a continuous map F to the classifying space BΠ of a group Π,
such that the homology homomorphism F∗ sends the fundamental homology class
[X] ∈Hn(X;R) to non-zero element h ∈Hn(BΠ;R), then

the Dirac operator on X twisted with some flat unitary Hilbert bundle over
X has non-zero kernel.

(Here "unitary" means that the monodromy action of π1(X) on the Hilbert
fiber H of this bundle is unitary and where an essential structure in this H is
the action of the algebra C∗(Π), which commute with the action of π1(X).)

This, if true, would imply, according to the Schroedinger-Lichnerowicz-Weitzenboeck
formula, the spin case of the conjecture stated in section 3.2. saying that

X admits no metric with Sc > 0.
Also "Strong Novikov" would imply, as it was proved by Rosenberg, the

validity of the
Zero in the Dirac Spectrum Conjecture. Let X̃ be a complete con-

tractible Riemannian manifold the quotient of which under the action of the isom-
etry group iso(X̃) is compact.

Then the spectrum of the Dirac operator D̃ on X̃ contains zero, that is, for
all ε > 0, there exist L2-spinors s̃ on X̃, such that

∣∣D̃(s̃∣∣ ≤ ε∣∣s̃∣∣.

This, confronted with the Schroedinger-Lichnerowicz-Weitzenboeck formula,
would show that X̃ can’t have Sc > 0.

Are we to Believe in these Conjectures? A version of the Strong Novikov
conjecture for a rather general class of groups, namely those which admit discrete
isometric actions on spaces with non-positive sectional curvatures, was proven
by Alexander Mishchenko in 1974.

Albeit this has been generalized since 1974 to many other classes of groups
Π and/or representatives h ∈ Hn(BΠ;R), (most recent results and references
can be found in [GWY (Novikov) 2019]) the sad truth is that one has a poor
understanding of what these classes actually are, how much they overlap and
what part of the world of groups they fairly represent.
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At the moment, there is no basis for believing in this conjecture and there
is no idea where to look for a counterexample either.258

The following is a more geometric version of the above conjecture.
Coarse D-Spectrum Conjecture. Let X̂ be a complete uniformly contractible

Riemannian manifold, i.e. there exists a function R(r) ≥ r, such that the ball
Bx̂(r) ⊂ X̂, x ∈ X, of radius r is contractible in the concentric ball Bx̂(R(r)) for
all x̂ ∈ X̂ and all radii r > 0.

Then the spectrum of the Dirac operator on X̂ contains zero.
This conjecture, as it stands, must be, in view of [DRW(flexible) 2003],

false, but finding a counterexample becomes harder if we require the bounds
vol(Bx̂(r)) ≤ exp r for all x̂ ∈ X̂ and r > 0.259

And although this conjecture remains unsettled for n = dim(X) ≥ 4, its
significant corollary –

non-existence of complete uniformly contractible Riemannian n-manifolds
with positive scalar curvatures
was recently proved for n=4 and 5 by means of torical symmetrization of stable
µ-bubbles,260

3.14.1 Almost Flat Bundles and ⊗ε-Twist Principle

Let us recall Dirac operators twisted with almost flat unitary bundles and con-
struction of such bundles over profinitely hypersphericalmanifolds such as n-tori,
for example.

Let X be a Riemannian manifold and L = (L,∇) be a complex vector bundle
L with unitary connection. If the curvature of L is ε-close to zero,

∣∣RL∣∣ ≤ ε,

then, locally, L looks, approximately as the flat bundle X ×Cr, r = rankC(L),
and the Dirac twisted with L, denoted D⊗L, that acts on the spinors with values
in L, is locally approximately equal to the direct sum D ⊕ ...⊕D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

.

It follows that if Sc(X) ≥ σ > 0 and if ε is much smaller than σ, then by the
(obvious) continuity of the Schroedinger-Lichnerowicz-Weitzenboeck formula,
this twisted Dirac operator has trivial kernel, ker(D⊗L) = 0 and, accordingly,

ind(D+⊗L) = 0, 261

where, by the Atiyah-Singer index theorem, this index is equal to a certain
topological invariant

ind(D+⊗L) = α̂(X,L).

258 Geometrically most complicated groups are those which represent one way or another
universal Turing machines; a group, the k-dimensional homology (L-theory?) of which, say
for k = 3, models such a "random" machine, would be a good candidate for a counterexample.
259See [F-W(zero-in-the-spectrum) 1999] for what is known about the similar conjecture by
John Lott for the DeRham-Hodge .
260See [Chodosh-Li(bubbles) 2020] and [G(aspherical) 2020].
261Here we assume that n = dim(X) is even, which makes D split as D = D+⊕D−, such that
ind(D+) = −ind(D−), see section 4.
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For instance, if X is an even dimensional topological torus, and if the top
Chern class of L doesn’t vanish, cm(L) ≠ 0 for m =

dim(X)
2

, then α(X,L) ≠ 0 as
well.

On the other hand, given a Riemannian metric g on the torus Tn, n = 2m,
and ε > 0,

there exists a finite covering T̃n of the torus, which admits an ε-flat vector
bundle L̃→ T̃n of C-rank r =m = n

2
with cm(L) ≠ 0,

where the "flatness" of L̃, that is the norm of the curvature RL̃ regarded as a 2-
form with the values in the Lie algebra of the unitary group U(r), r = rankC(L̃),
is measured with the lift g̃ of the metric g to T̃n.

Indeed, let L̂→ Rn, n = 2m, be a vector bundle with a unitary connection, such
that L̂ is isomorphic (together with it connection) at infinity to the trivial bundle and
such that cm(L̂) ≠ 0, where such an L̂ may be induced by a map Rn → Sn, which
is constant at infinity and has degree one, from a bundle L→ Sn with cm(L) ≠ 0.

Let L̂ε be the bundle induced from L̂ by the scaling map x ↦ εx, x ∈ Rn.
Clearly, the curvature of L̂ε tends to 0 as ε→ 0.

Since the finite coverings T̃n of the torus converge to the universal covering
Rn → Tn this L̂ε can be transplanted to a bundle L̃ε → T̃n over a sufficiently large
finite covering T̃n of the torus, where the top Chern number remains unchanged
and where the curvature of L̃ with respect to the flat metric on T̃n can be assumed
as small as you wish, say ≤ ε.

But then this very curvature with respect to the lift g̃ of a given Riemannian
metric g on Tn also will be small, namely ≤ constgε and our claim follows.262

With this, we obtain
one of the (many) proofs of nonexistence of metrics g with Sc(g) > 0 on tori.

Seemingly Technical Conceptual Remark. The above rough qualitative
argument admits a finer quantitative version, which depends on the twisted
Schroedinger-Lichnerowicz-Weitzenboeck formula

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

where R⊗L is an operator on twisted spinors, i.e. on the bundle S⊗L, associated
with the curvature of L and where an essential feature of R⊗L is a bound on its
norm by the it norm ∣∣RL∣∣ of the curvatureRL of L, with a constant independent
of the rank of L.

Thus, for instance, the above proof of nonexistence of metrics g with Sc(g) >
0 on tori, that was performed with the twisted Dirac D⊗L̃ over a finite covering
X̃ of our torical X, can be brought back to X by pushing forward L̃ from the
X̃ to X, where this push forward bundle (L̃)∗ →X has

rank(L̃)∗ = N ⋅ rank(L̃)

262Why do we need twelve lines to express, not even fully at that, so an obvious idea? Is
it due to an imperfection of our mathematical language or it is something about our mind
that makes instantaneous images of structurally protracted objects? Probably both, where
the latter depends on the parallel processing in the human subliminal mind, which can’t be
well represented by any sequentially structured language that follows our conscious mind and
where besides "parallel" there are many other properties of "subliminal" hidden from our
conscious mind eye.
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for N being the number of sheets of the covering.
(The lift of (L̃)∗ to X̃ is the Whitney’s sum of N -bundles obtained from L̃

by the deck transformations of L̃.)
This property of R⊗L, in conjunction with the shape of the Atiyah-Singer

index formula, for the Dirac operator twisted with Whitney’s N -multiples
=

L⊕ ...⊕L = L⊕ ...⊕L
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

,

which implies that in the relevant cases

ind(D+⊗(L⊕...⊕L)) = α(X,L⊕ ...⊕L) = N ⋅ α̂(X,L) +O(1),

allows N →∞ and even N = ∞ in a suitable sense, e.g. in the context of infinite
coverings and/or of C∗-algebras as was mentioned in the previous section.

What is also crucial, is that twisting with almost flat bundles is a functorial
operation, where this functoriality yields the following.

⊗ε-Twist Principle. All (known) arguments with Dirac operators for non-
existence of metrics with Sc ≥ σ > 0 under specific topological conditions on X
can be (more or less) automatically transformed to inequalities between σ and
certain geometric invariants of X defined via ε-flat bundles over X.

⊗ε-Problem. Can one turn ⊗ε-Twist Principle to a ⊗ε-theorem?
At the present moment, an application of the⊗ε-principle necessitates track-

ing step by step, let it be in a purely mechanical/algorithmic fashion, a particular
Dirac theoretic argument, rather than a direct application of this principle to
the conclusion of such an argument.

What, apparently, happens here is that the true outcomes of Dirac operator
proofs are not the geometric theorems they assert, but certain linearized/hilbertized
generalization(s) of these, possibly, in the spirit of Connes’ non-commutative ge-
ometry.

To understand what goes on, one needs, for example, to reformulate (re-
prove?) Llarull’s, Min-Oo’s and Goette-Semmelmann’s inequalities in such a
"linearized" manner.263

Twists with non-Unitary Bundles. Available (rather limited) results con-
cerning scalar curvature geometry of manifolds X, which support almost flat
non-unitary bundles and of (global spaces of possibly) non-linear fibrations with
almost flat connections over X, are discussed in section ??.

Flat or Almost Flat? Lusztig’s approach to the Novikov conjecture via
the signature operators twisted with (families of) finite dimensional non-unitary
263A promising approach is suggested by the convept of quantitative K-theory, which was
successfully used in [Guo-Xie-Yu(quantitative K-theory) 2020] for a new proof of the pi

n
-

bounds in the width of Riemannian bands with Sc ≥ n(n − 1).
This theory encodes the geometric information on the underlying Riemannian manifold X

in term of the propagation radius r of operators in the Roe translation algebra that corre-
spond to (linear combinations) of r-translations of X that are self mappings a ∶ X → X with
dist(a(x), x) ≤ r.

This faithfully reflects the distance geometry of X, but the quantitative K-theory, as it
stands now, can’t adequately capture the area geometry; conceivably this can be achieved by
incorporation ideas from Cecchini’s long neck paper into this theory.

176



flat bundles was superseded, starting with the work by Mishchenko and Kas-
parov, by more general index theorems, for infinite dimensional flat unitary
bundles.

Then it was observed in [GL(spin) 1980] and proven in a general form in
[Rosenberg(C∗-algebras - positive scalar) 1984]) that all these results can be
transformed to the corresponding statements about Dirac operators on spin
manifolds, thus providing obstructions to Sc > 0 essentially for the same kind
of manifolds X, where the generalized signature theorems were established.

Besides following topology, the geometry of the scalar curvature suggested
a quantitive version of these topological theorems by allowing twisted Dirac
and signature operators with non-flat vector bundles with controllably small
curvatures, thus providing geometric information on X with Sc ≥ σ > 0, which
complements the information on pure topology of X.

At the present moment, there are two groups of papers on twisted (sometimes
untwisted) Dirac operators on manifolds with Sc > σ.

The first and a most abundant one goes along with the work on the Novikov
conjecture, where it is framed into the KK-theoretic formalism.

A notable achievement of this is
Alain Connes’ topological obstruction for leaf-wise metrics with Sc > 0
on foliations,

where
a geometric shortcut through the KK-formalism of Connes’ proof is unavailable
at the present moment.
Another direction is a geometrically oriented one, where we are not so much

concerned with the K-theory of the C∗-algebras of fundamental groups π1(X),
but with geometric constraints on X implied by the inequality Sc(X) ≥ σ.

This goes close to what happens in the papers inspired by the general rela-
tivity, where one is concerned with specified (and rather special, e.g. asymptot-
ically flat) geometries at infinity of complete Riemannian manifolds and where
one plays, followingWitten and Min-Oo, with Dirac operators, which are asymp-
totically adapted at infinity to such geometries. (In this context, the Schoen-Yau
and the related methods relying of the mean curvature flows are also used.)

In the present paper, we are primarily concerned with geometry of manifolds,
while topology is confined to an auxiliary, let it be irreplaceable, role.

3.14.2 Relative Index of Dirac Operators on Complete Manifolds

Most (probably, not all) bounds on the scalar curvature of closed Riemannian
manifolds derived with twisted Dirac operators D⊗L have their counterparts for
complete manifolds X, where one uses a relative version of the Atiyah-Singer
theorem for pairs of Dirac operators which agree at infinity 264 the simplest and
the most relevant case of this theorem applies to vector bundles L → X with
unitary connections which are flat trivial at infinity.

In this case the pair in question is (D⊗L,D⊗∣L∣), where ∣L∣ denotes the trivial
flat bundle X ×Ck →X for k = rankC(L), which comes along with an isometric
264See [GL(complete) 1983], [Bunke(relative index) 1992], [Roe(coarse geometry) 1996]), and
more recent papers [Zhang(Area Decreasing) 2020], [Cecchini(long neck) 2020], [Cecchini-
Zeidler(generalized Callias) 2021], [Cecchini-Zeidler(Scalar&mean) 2021].
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connection preserving isomorphism between L and ∣L∣ outside a compact subset
in X.

f∗-Example. Let f ∶ X → Sn be a smooth map which is locally constant
at infinity (i.e. outside a compact subset) and let L → Sn be a bundle with a
unitary connection on Sn.

Then the pullback bundle f∗(L) →X is an instance of such an L.
The relative index theorem, similarly to its absolute counterpart implies that

if the scalar curvature of X is uniformly positive (i.e. Sc ≥ σ > 0) at infinity and
if

a certain topological invariant, call it α̂(X,L),265 doesn’t vanish, then either
X admits a non-zero (untwisted) harmonic L2-spinor s on X, that is a solution
of D(s) = 0, or there is a non-zero L-twisted harmonic L2-spinor on X.266

f∗-Sub-Example. Let L = f∗(L) be as in the f∗-example, let where n =

dim(X) is even, and let the bundle L → Sn has non-zero top Chern class (e.g.
L is the bundle of spinors on the sphere, L = S+(Sn)). If the map f ∶ X → Sn

has non-zero degree, then α̂(X,L) ≠ 0.

Finally, since the twisted Schroedinger-Lichnerowicz-Weitzenboeck formula
(obviously) applies to L2-spinors, one obtains, for example, as an application
of the ⊗ε-Twist Principle the following relative version of the Lichnerowicz’
theorem for k-dimensional manifolds from section 3.2, that, let us remind it,
says that

Â[X] ≠ 0⇒ Sc(X) ≯ 0 for closed spin manifolds X.
If a complete Riemannian orientable spin manifolds X (of dimension n+4k)

admits a proper λ -Lipschitz map f ∶X → Rn for some λ < ∞, then the pullbacks
of generic points y ∈ Rn satisfy Â[f−1(y)] = 0.

This, in the case dim(X) = n, shows that
the existence of proper Lipschitz map X → Rn implies that infx Sc(X,x) ≤

0.267

Moreover,
it follows from Zhang’s theorem stated below, that, in fact, infx Sc(X,x) < 0.

The relative index theorem combined with the linear-algebraic analysis of the
L-curvature term R⊗L in the twisted Schroedinger-Lichnerowicz-Weitzenboeck
formula due to Llarull , Min-Oo, Goette-Semmelmann and Listing allows an ex-
tension of their inequalities from compact manifolds) to non-compact complete
manifolds.

For instance,
⋆If a complete Riemannian orientable spin manifolds X (of dimension n+

4k) with Sc(X) > n(n− 1) admis a locally constant at infinity 1 -Lipschitz map
f ∶X → Sn, then the pullbacks of generic points y ∈ Sn satisfy Â[f−1(y)] = 0.268,
265See section 3.2 for the definition of this invariant.
266 If we don’t assume that Sc(X) is uniformly positive at infinity, then one can only claim
the existence of either non-zero untwisted or non-zero twisted almost harmonic L2-spinors,
i.e. satisfying ∫X D2(s)dx ≤ ε ∫X ∣∣s(x)∣∣2 or ∫X D2

⊗L(s)dx ≤ ε ∫X ∣∣s(x)∣∣2, for arbitrarily small
ε > 0.
267This has a variety of generalizations and applications, (see e.g. [GL(spin) 1980],
[GL(complete) 1983], [Roe(partial vanishing) 2012] and references therein), such as non-
existence of metrics with Sc > 0 on tori.
268 See [Llarull(sharp estimates) 1998] and also sections 3.4.1
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4.1.5, 4.2.
Zhang’s Extension of the Relative Index Theorem with Applications to maps

X → Sn . The above stated relative index theorem needs uniform positivity of
the scalar curvature of X at infinity, i.e. the bound Sc(X) ≥ σ > 0.

This uniformity condition was removed in [Zhang(Area Decreasing) 2020] by
using a small zero order perturbation of the relevant twisted Dirac at infinity
making the resulting positive at infinity and thus, proving the following theorem.

Let a complete orientable spin n-manifold X of non-negative scalar curvature,
Sc(X) ≥ 0 and let X admit a smooth area decreasing locally constant at infinity
(i.e. outside a compact subset) map f ∶X → Sn of non-zero degree.

Then
⋆⋆ the scalar curvature of X on the support of the differential of f (where

df ≠ 0) satisfies:
inf

x∈supp(df)
Sc(X,x) ≤ n(n − 1), 269

and if n is even, then

inf
x∈supp(df)

Sc(X,x) < n(n − 1),

unless X is compact and f is an isometry.
Remark It remains unclear, even for compact X, if the spin condition is

essential, but the completeness condition can be significantly relaxed as we shall
explain in the next section.

3.14.3 Roe’s Translation Algebra, Dirac Operators on Complete Man-
ifolds with Boundaries and Cecchini’s Long Neck Theorem for
Non-Complete manifolds

C∗-algebras bring forth the following interesting perspective on coarse geometry
of non-compact spaces proposed by John Roe following Alain Connes’ idea of
non-commutative geometry of foliations.

Given a metric space Ξ, e.g. a discrete group with a word metric, let T =

Tra(Ξ) be the semigroup of translations of M that are maps τ ∶ Ξ → Ξ, such
that

sup
ξ∈Ξ

dist(ξ, τ(ξ)) < ∞.

The (reduced) Roe C∗-algebra R∗(Ξ) is a certain completion of the semi-
group algebra C[T ]. For instance if Ξ is a group with a word metric for which,
say the left action of Ξ on itself is isometric, then the right actions lie in T and
R∗(Ξ) is equal to the (reduced) algebra C∗(Ξ).270

Using this algebra, Roe proves in [Roe(coarse geometry) 1996], (also see [Hig-
son(cobordism invariance) 1991], [Roe(partial vanishing) 2012]) a partitioned
index theorem, which implies, for example, that.
� the toric half cylinder manifold X = Tn−1 ×R+ admits no complete Rie-

mannian metric with Sc ≥ σ > 0.271

269This also follows from Cecchini’s long neck theorem stated in the next section.
270"Reduced" refers to a minor technicality not relevant at the moment. A more serious
problem – this is not joke – is impossibility of definition of "right" and "left" without an
appeal to violation of mirror symmetry by weak interactions.
271I must admit I haven’t fully understood Roe’s argument.
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Nowadays � can be proved with the techniques of minimal hypersurfaces
and of stable µ-bubbles, (sections 3.6, 3.6.1) as well as withDirac theoretic
techniques with potentials developed by Zeidler and by Cecchini and by the
Guo-Xie-Yu in the framework of the quantitative K-theory, (see below) where
these techniques yield not only the bound infx Sc(X,x) ≤ 0 but a quadratic
decay of the scalar curvature on T1 ×R+.

Also notice in this regard that if X is sufficiently "thick at infinity", then
� follows by a simple argument with twisted Dirac operators and the standard
bound on the number of small eigenvalues in the spectrum of the Laplace (or
directly of the Dirac) operator in vicinity of ∂X, which applies to all manifolds
with boundaries and which yields, in particular, (see section 4.6.3) the following.

� Let X be a complete oriented Riemannian spin n-manifold with compact
boundary, such that

there exists a sequence of smooth area decreasing maps fi ∶X → Sn, which are
constant in a (fixed) neighbourhood V ⊂ X of the boundary ∂X as well as away
from compact subsets Wi ⊂ V , and such that

deg(fi) →
i→∞

∞.

Then the scalar curvature of X satisfies

inf
x∈X

Sc(X,x) ≤ n(n − 1).

Quantitative K-theory and Long Neck Principle. It seems that most (all?)
results for complete Riemannian manifolds with Sc ≥ σ have their counterparts
for manifolds X with boundaries insofar as this concerns the part of X that lies
far from the boundary ∂X.

Definite results in this regard were recently obtained by Hao Guo, Zhizhang
Xie and Guoliang Yu who, if I understand this correctly, developed a quanti-
tative version of Roe’s theory, and also by Rudolf Zeidler and Simone Cecchini
who obtained index theorems for Dirac operators with potentials on manifolds
with boundaries.272

Here is an instance of some of new results.
Cecchini’s Bound on Hyperspherical Radii of Long Neck mani-

folds.273 Let X be a compact n-dimensional orientable spin Riemannian mani-
folds with a boundary, let Sc(X) ≥ σ0 > 0 and let f ∶ X → Sn(R) be a smooth
area decreasing map, which is locally constant in a neighbourhood of the boundary
∂X ⊂X and which have nonzero degree.

Let the scalar curvature of the support of the differential of f be bounded from
below by σ (where typically but not necessarily σ ≥ σ0),

Sc(X,x) ≥ σ, x ∈ supp(df).

272See [Cecchini(long neck) 2020], [Guo-Xie-Yu(quantitative K-theory) 2020], [Zei-
dler(bands) 2019], [Zeidler(width) 2020], [Cecchini-Zeidler(generalized Callias) 2021],
[Cecchini-Zeidler(scalar&mean) 2021].
273This was a response to a question from an earlier version of this manuscript.
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If f satisfies the following "long neck condition",

dist(supp(df), ∂X) ≥ π

√
n − 1

nσ0
,

then the radius of the sphere Sn(R) is bounded, similarly to the case of complete
X, by

R ≤

√
n(n − 1)

σ
,

where in the case of odd n one additionally assumes (this is, probably, redundant)
that f is constant (not just locally constant) in the neighbourhood of ∂X ⊂X.

Question. What are (preferably sharp) long neck counterparts of the spin-
area convex and spherical trace area extremality theorems from section 3.4.1

3.15 Foliations With Positive Scalar Curvature
According to the philosophy (supported by a score of theorems) of Alain Connes
much of the geometry and topology of manifolds with discrete group actions,
notably, those concerned with index theorems for Galois actions of fundamen-
tal groups on universal coverings of compact manifolds, can be extended to
foliations.

In particular, Connes shows in [Connes(cyclic cohomology-foliation) 1986]
that compact manifolds X which carry foliations L with leaf-wise Riemannian
metrics with positive scalar curvatures behave in many respects as manifold
which themselves admit such metrics.

For instance,
⋆ if L is spin, i.e. the tangent (sub)bundle T (L ) ⊂ T (X) of such an L is

spin then,
by Connes’ theorem, Â[X] = 0.
This generalises Lichnerowicz’ theorem from section ?? for oriented spin

manifolds of dimensions n = 4k , where, recall, Â[X] is the value of a certain
rational polynomial Â(pi) in the Pontryagin classes pi ∈H4i(X ∶ Z) (see section
4) on the fundamental homology class [X] ∈Hn(X).274

In fact, the full Connes’ theorem implies among other things
vanishing of the ⌣-products of the Â-genus Â(pi), j = 0,1, ..., k = n

4
, with

all polynomials in the Pontryagin classes of the "normal" bundle T ⊥(L ) =

T (X)/T (L ), in the case where L is spin.
Connes’ argument, which relies on Connes-Scandalis longitudinal index theo-

rem for foliations), delivers a non-zero almost harmonic spinor on some leaf of L
and an alternative and simpler proof of the existence of such spinors under suit-
able conditions was given in [Bern-Heit(enlargeability-foliations) 2018], where
L , besides being spin, is required to have Hausdorff homotopy groupoid.275

Another simplified proof of (a part of) Connes’ theorem was also suggested
in [Zhang(foliations) 2016], where the manifold X itself, rather than the tangent
274By definition, the values of the pi-monomials Pd =⌣j pij ∈ Hd(X), 4∑i ij = d, on [X]
equals zero for all d ≠ n.
275One finds a helpful explanation of the meaning this condition in [Con(foliation) 1983] and
in the lectures [Meinrenken(lectures) 2017].
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bundle T (L ) is assumed spin 276 and where the existence of almost harmonic
spinor is proven on some auxiliary manifolds associated with X.

One can get more mileage from the index theoretic arguments in these papers
by applying the⊗ε-Twisting Principle from section 3.14.1, but this needs honest
checking all steps in the proofs in there. This was (partly) done in [Bern-
Heit(enlargeability-foliations) 2018], in [Zhang(foliations:enlargeability) 2018],
[Su(foliations) 2018] and [Su-Wang-Zhang(area decreasing foliations) 2021] in
the context of the index theorems used by the authors in their papers. 277 ,

Here is a geometric conjecture in this regard.278

Long Neck Foliated Conjecture. LetX be a compact oriented n-dimensional
Riemannian manifold with a boundary, let L be a smooth m-dimensional, 2 ≤m ≤

n, foliation on X, such that the induced Riemannian metrics on the leaves of L
have positive scalar curvatures,

Sc(L ) > σ0,

let f ∶ X → Sn be a smooth map, which is locally constant in a neighbourhood of
the boundary ∂X ⊂ X and which have nonzero degree, let the scalar curvature of
L on the support of the differential of f be bounded from below by the trace norm
of the second exterior power of the differential of f on the tangent bundle of L as
follows

Sc(X,x ∈ supp(f)) ≥ 2trace(∧2dfL)(x)).

Then the leaf-wise distance D = distL(supp(df), ∂X)279 is bounded by some
universal function of σ0,

d ≤ θ(σ0).
280

Non-Integrable Question. Is there a "good" bound on the scalar curvature of
non-integrable subbundles T ⊂ T (X) of rank m (instead of the tangent subbundles
T (L) of foliations L)?

Here, Sc(T , x) is defined as the sum of the sectional curvatures of X in an
orthonormal frame of bi-vectors in the space Tx, and where, besides the scalar
curvature, such an inequality must contain a non-integrability correction term.
276In the ambience of Connes’ arguments [Connes(cyclic cohomology-foliation) 1986], these
two spin conditions reduce one to another.
277 I recall going through Connes’ paper long time ago and observing in §9 2

3
in [G(positive)

1996]). that Connes’ argument yields the following.
Complete manifolds X with infinite K-cowaist2 (called "K-area" in [G(positive) 1996]) ,

e.g. Rn, carry no spin foliations, where the induced Riemannian metrics in the leaves satisfy
Sc ≥ σ > 0,
but my memory is uncertain at this point.

278This may follow by what is done in The techniques (results?) from
[Zhang(foliations:enlargeability) 2018], [Cecchini(long neck) 2020], [GWY (Novikov)
2019] may be useful for settling this question.
279This D, that is the infimum of the length of curves in the leaves between the intersections
of these leaves with supp(df) ⊂ X and with ∂X ⊂ X, isIn general, greater than the distance
d = distX((supp(df), ∂X) For instance, if no leaf intersects both subsets, supp(df) ⊂ X and
∂X ⊂ X, than D = ∞.
280Combined arguments from [Su-Wang-Zhang(area decreasing foliations) 2021]and [Cec-
chini(long neck) 2020] may lead to the proof if either X or L is spin and θ(σ0) = π

√
n−1
nσ0

.
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If this correction term is sufficiently small in the C1-topology, then the above
conjecture could apply to families of approximate integral manifolds of T ; how-
ever, the resulting bound on Sc(T , x) seems very rough.

But what we look for is a sharp or a nearly sharp inequality approaching
model examples, such as the standard codimension one (contact) subbundles on
the odd dimensional spheres and codimension three subbundles on the (4k−1)-
spheres.

Next, we want to work out a concept of scalar curvature of sub-Riemannian
(it Carnot-Caratheodory) manifolds and show, for instance, that (self-similar)
nilpotent Lie groups admit no such metrics quasi-isometric to the standard (self-
similar) ones.

Stable Complementation Question [⋆?]. Let (X,g) be a (possibly non-complete)
Riemannian n-manifold with a smooth foliation, such that scalar curvature of the
induced metric on the leaves satisfies Sc ≥ σ > 0.

Does the product of X by a Euclidean space, X ×RN , admit an RN -invariant
Riemannian metric g̃, such that Sc(g̃) ≥ σ and the quotient map (X×RN , g̃)/RN →
(X,g) is 1-Lipschitz, or, at least, constn-Lipschitz?

(See §1 7
8
in [G(positive) 1996] and section 6.5, 6.5.2, 6.5.4 for partial results

in this direction based on the geometry of Connes’ fibrations.)
Notice that even the complete (positive) resolution of [⋆?] wouldn’t yield

the entire Connes’ vanishing theorem from [Connes(cyclic cohomology-foliation)
1986], nor would this fully reveal the geometry of foliated Riemannian manifolds
X with scalar curvatures of the leaves bounded from below, e.g. an answer to
the following questions.

1. Do compact Riemannian n-manifolds with constant curvature −1 admit k-
dimensional foliations, 2 ≤ k ≤ n − 1, such that the scalar curvatures of the induced
Riemannian metrics in the leaves are bounded from below by −ε for a given ε > 0?

2. What would be a foliated version of the Ono-Davaux Spectral Inequality?

3.16 Scalar Curvature in Dimension 4 via the Seiberg
Witten Equation

The simplest examples of 4-manifolds where non-existence of metrics with Sc >
follows from non-vanishing of Seiberg-Witten invariants are complex algebraic
surfaces X in CP 3 of degrees d ≥ 3. (If d is even and these X are spin, this also
follows from Lichnerowicz’ theorem from section ??.)

In fact, it was shown by LeBrun (see [Salamon(lectures) 1999] and references
therein) that

no minimal (no lines with self-intersections one) Kähler surface X admits a
Riemannian metric with Sc > 0, unless X is diffeomorphic to CP 2 or to a ruled
surface .

Furthermore, LeBrun following Witten shows in [LeBrun(Yamabe) 1999]
that

if such an X has Kodaira dimension 2, which is the case, for instance, for the
algebraic surfaces X ⊂ CP 3 of degree d ≥ 5, then

the total squared scalar curvature is bounded by the first Chern number of
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X,

∫
X
Sc(X,x)2dx ≥ 32π2c2(X),

where, moreover this inequality is sharp.

Although one doesn’t expect anything comparable to the Seiberg-Witten
equations for n = dim(x) > 4, one wonders if some coupling between the twisted
Dirac D⊗L and an energy like functional in the space of connections in L may
be instrumental in the study of the scalar curvature of X and lead to bounds
on ∫X Sc(X,x)

n
2 dx for a manifolds X of dimension n > 4 and, even better on

∫X ∣Sc−(X,x)∣
n
2 dx for Sc−(X,x) = min(Sc(X,x),0).

For instance,
Let a closed orientable Riemannian n-manifold X admits a map of non-zero

degree to a closed locally symmetric manifold X with negative Ricci curvature, e.g.
with constant negative curvature.

Does then the scale invariant integral of the negative part of the scalar
curvature is bounded from below as follows:

∫
X

∣Sc−(g, x)∣
n
2 dx ≥ ∫

X
∣Sc(X,x)∣

n
2 dx?

(Three conjectures related to this one are formulated in section 3.13.)
Question. What is the Seiberg-Witten 4D-version of geometric inequalities on

manifolds with boundaries and manifolds with corners?

3.17 Topology and Geometry of Spaces of Metics with
Sc ≥ σ.

Non-connectedness of the space of metrics with Sc > 0 starts with the following
observation.

Let a closed n-manifold X be decomposed as X− ∪X+ where X− and X+ are
smooth domains (n-submanifolds) in X with a common boundary Y = ∂X− =

∂X+ and where X∓ are equal to regular neighbourhoods of disjoint polyhedral
subsets P∓ ⊂X of dimensions n∓ such that n− + n+ = n − 1.

If n∓ ≤ n−2, then, by an easy elementary argument, both manifolds X− and
X+ admit Riemannian metrics, say g∓, such that

the restrictions of these g∓ to Y , call them h∓, both have positive scalar curva-
tures.

And if X admits no metric with positive scalar curvature, e.g. if X is
homeomorphic to the n-torus or to product of two Kummer surfaces, then h−
and h+ can’t be joined by a homotopy of metrics with positive scalar curvatures.

Indeed, such a homotopy, ht, t ∈ [−1,+1] could be easily transformed to
a metric on the cylinder Y × [−1,+1] with positive scalar curvature and with
relatively flat boundaries isometric to (Y,h−) and (Y,h+), which would then
lead in obvious way to a metric on X = X− ∪ Y × [−1,+1] ∪X+ with Sc > 0 as
well.

The first case of disconnectedness of spaces of metrics with Sc > 0 goes back
to Hitchin’s paper [Hitchin(spinors)1974] , where it is shown, among many other
things, that
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the sphere Sn, n = 8k,8k + 1, admits a diffeomorphism φ ∶ Sn → Sn, such
that the pullback g1 = φ

∗(g0) of the standard metric g0 can’t be joined with g0

by a homotopy gt with Sc(gt) > 0,
where appropriate φ are those for which

the exotic spheres obtained by gluing pairs of (n+1)-balls across their boundaries
according to φ have non-vanishing α̂-invariants (see section ??) and where the
proof relies on the index theorem for families of Dirac operators. Similarly,
Hitchin finds non-contractible loops in the spaces of metrics g on Sn with Sc(g) >
0 for n = 8k − 1,8k.

This kind of argument combined with thin surgery with Sc > 0 and empow-
ered by "higher" index theoretic invariants of families of diffeomorphisms, leads
to the following results.

[HaSchSt 2014]. If m is much greater than k then the kth homotopy group
of the space GSc>0(S

4m−k−1) of Riemannian metrics with Sc > 0 on the sphere
S4m−k−1 is infinite.

[EbR-W 2017]. There exists a compact Spin 6-manifold X such that the
space GSc>0(X) has each rational homotopy group infinite dimensional. 281

However, there is no closed manifold of dimension n ≥ 4, which admits a
metric with Sc > 0 and where the (rational) homotopy type, or even the set of
connected components, of the space of such metrics is fully determined.
282

Let us formulate two specific questions motivated by the following vague
one:

What is the "topology of the geometric shape" of the (sub)space of metrics
with Sc ≥ σ?

Question 1. Given a Riemannian manifold X, numbers λ,σ > 0 and
an integer d ≠ 0, let G(X;X,λ,σ, d) be the space of pairs (g, f) where g is a
Riemannian metrics on a X with Sc(g) ≥ σ and f ∶X →X is a λ-Lipschitz map
of degree d.

What is the topology and geometry of this space and of the natural embed-
dings

G(X;X,λ1, σ1) ↪ G(X;X,λ2, σ2)

for λ2 ≥ λ1 and σ2 ≤ σ1.
More specifically,
what is the the supremum σ+ = σ+(λ) = σ+(X,λ, d) of σ, such that the manifold

X receives a λ-Lipschitz map f ∶X →X of degree d(≠ 0), where Sc(X) ≥ σ?
Notice, for instance, that if X is the unit sphere, X = Sn, then σ+(λ) =

n(n− 1)/λ2 by Llarull’s inequality. (Here as ever we need to assume X is spin.)
Question 2. Let D be some natural distance function on the space G of

smooth Riemannian metrics g on a closed manifold X. For instance D(g1, g2)

281It seems, judging by the references in [Ebert-Williams(infinite loop spaces) 2017] and
[Ebert-Williams(cobordism category) 2019] , that all published results in this direction depend
on the Dirac operator techniques which do not cover the above example, if we take a Schoen-
Yau-Schick manifold for X.
282Connectedness GSc>0(X3) is proven in [Marques(deforming Sc > 0)2012] by means of the
Ricci flow. Conceivably, a similar argument may reduce the study of the homotopy structure
of GSc>0(X3) to the space of "standard metrics" with Sc > 0 on X3.
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may be defined as log of the infimum of λ > 0, such that

λ−1g1 ≤ g2 ≤ λg1.

Let Dσ(g) denote the D-distance from g ∈ G to the subspace of metrics
with Sc ≥ σ and D̃σ(g) be the D-distance from the diff(X)-orbit of g to this
subspace.

What are topologies, e.g. homologies, of the a-sublevels, a ≥ 0, of the func-
tions Dσ ∶ G→ [0,∞) and D̃σ ∶ G→ [0,∞) and of the inclusions

D−1
σ (0, a] ↪D−1

σ (0, b], and D̃−1
σ (0, a] ↪ D̃−1

σ (0, b] for b > a?

Observe that the counterpart of the above σ+ call it σ++(λ) = σ++(X,λ),
satisfies

lim
λ→1

σ++(X,λ) = inf
x∈X

Sc(X,x)

by the C0-closure theorem from section 3.1.3, and it is plausible that the function
σ++(λ) is Hölder continuous in λ.

3.18 Domination, Extremality and Rigidity of Manifolds
with Corners

Recall that a corner structure on an n-manifolds X is defined by (a coherent
sets of) diffeomorphisms of small neighbourhoods of all points in X to neigh-
bourhoods of points in convex polyhedra P in Rn.

A corner structure is called simple and/or cosimpicial if these P are intersec-
tions of m ≤ n half-spaces in Rn in general position, i.e. such that the dimension
of the intersection of their boundaries is equal to n −m.

Most (all?) theorems concerning closed manifolds X with Sc ≥ σ and,
more visibly, manifolds with smooth boundaries Y = ∂X, have (some proven,
some conjectural) counterparts for Riemannian manifolds X with corners on
the boundary, where the mean curvature mean.curv(∂X) for the smooth part
of ∂X plays the role of singular/distributional scalar curvature supported on ∂X
and where the dihedral angles ∠ along the corners, or rather the complemen-
tary angles π − ∠, can be regarded as singular/distributional mean curvature
supported on the corners.

We bring several examples in tis section illustrating this idea starting with
the following definitions.

Domination with Corners. A proper continuous map between manifolds
with corners, f ∶X →X called corner proper if the codimension 1 faces Fi ⊂ ∂X
are equal to the pullbacks f−1(F i) of the codimension 1 faces of F i ⊂ ∂X.

Such a map f between equidimensionalmanifolds is called proper domination
if both manifolds are orientable and f has non-zero degree. 283

Extremality. Given a class F of manifolds X along with dominating maps
f from X to a Riemannin manifold X with corners, call X extremal with respect
to F if no map f ∈ F can be simultaneously
283This definition can be generalized by allowing proper maps that sends some of the ends
of X to points and also maps from spin manifolds with with non-zero Â-degrees, i.e. with
non-zero Â-genera of pullbacks of generic points, but we don’t do it this here, since we want
to emphasize the corner aspect of the story.
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(a) "geometrically contracting" and
(b) "scalar and mean curvatures decreasing" at all points,
where an appropriate (but not the only one) specific meaning of these (a)

and (b) is expressed by the following three pointwise inequalities, call them
three "≤", concerning

the scalar curvatures versus area contraction in the interiors of the manifolds,
the mean curvatures of their boundaries in (the interiors of ) the (n − 1)-faces
Fi ⊂ ∂X,
the dihedral angles along the (n − 2)-faces Fij ⊂ Fi ∩ Fj .

[codim = 0] Sc(f(x)) ≥ ∣∣ ∧
2 df(x)∣∣ ⋅ Sc(x), x ∈X,

[codim = 1] mean.curv(F i, f(y)) ≤ ∣∣df ∣∣ ⋅mean.curv(Fi, y), y ∈ Fi ⊂ ∂X,

[codim = 2] π −∠(F ij , f(z)) ≤ π = ∠(Fij , z), z ∈ Fi,j ⊂ Fi ∩ Fj ⊂ ∂X.

Observe that the fist inequality [codim=0] is satisfied by all maps f , when-
ever X is scalar flat (Sc(X = 0) and Sc(X) ≥ 0. No condition on the norms of
the differentials df or on the exterior powers ∧2df is needed here. However, we
(usually) require in this case that Sc(X,x) ≥ 0 even at the points x ∈ X where
df(x) = 0.

Similarly the second inequality is automatic, if the faces F i are minimal
(mean.curv=0) and the faces the boundary is mean convex, mean.curvFi ≥ 0,
e.g. where X is a convex polyhedron in Rn. In this case, however we (usually)
require that Sc(X) ≥ 0 and the boundary of X is mean convex.

Now, an orientable n-manifold X with corners is called extremal with respect
to a class F of domination maps f from Riemannian manifolds&maps from F if
none of these inequalities three "≤" for (X,f) ∈ F can be strict at any point,
i.e. three "≤" imply that

Sc(f(x)) = ∣∣ ∧
2 df(x)∣∣ ≤ Sc(x), x ∈X,

mean.curv(F i)(X)f(y)) =mean.curv(Fi, y), y ∈ Fi ⊂ ∂X,

∠(F ij , f(z)) = ∠(Fij , z), z ∈ Fi,j ⊂ Fi ∩ Fj ⊂ ∂X.

Exercises. (a) Show that the set of extremal Riemannian metrics g on a
smooth manifold with corners X (extremality of g means that for the manifold
(X,g)) is closed in the C2-topology in the space of Riemannin metrics on X,
provided this extremality is understood for a class F in which manifolds X have
Sc(X) ≥ 0 and mean.curv(Fi) ≥ 0.

Hint. Adapt the redistribution of curvature arguments from section 11.2 in
[G(inequalities) 2018].

(b) Let g0 be a smooth Riemannin metric on a manifold X with corners and
let x0 ∈X be a point in X.

Show that there exists a smooth deformation gt, t ≥ 0, of g0 supported in a
given arbitrarily small neighbourhood U0 ⊂X of x0 and such that

●0 if x0 lies in the interior of ⊂ X then the Scalar curvature Sc(X,x0) is
strictly decreasing;
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●1 if x0 lies in the interior of a codimension 1 face Fi ⊂X then the mean cur-
vature of mean.curvgt(Fi, x0) is strictly decreasing, while the scalar curvature
of X is nowhere decreasing;

●2 if x0 is in the interior of a codimension 2 face Fij ∩Fj ⊂ Fj , then the dihe-
dral angle at this point ∠gt(x0) is strictly increasing while the scalar curvature
of X and the mean curvatures of the faces are nowhere decreasing.

(i) the curvatures of g are constant, Sc(X) = σ;
(ii) the faces of all edges Fi are also constant, mean.curvg(Fi) =Mi,
and such that g these g are locally extremal :
if a deformation of g doesn’t decrease the scalar curvature of X, of the mean

curvatures of Fi, and of the complementary angles between the edges π −∠i,j ,
Rigidity. A Riemannian manifold X with corners is called rigid in F if

three "≤" imply that small neighbourhoods Ux ⊂X of all points x are isometric
to some neighbourhoods Ux (depending on of the the image points x = f(x) ∈X.

Recall that in the scalar flat case of complete manifolds rigidity often (but not
always) follows from extremality via the Bourguignon-Kazdan -Warner pertur-
bation theorem. Below is a possible generalization of this theorem to manifolds
with corners, that however has limited applications.

Perturbation Conjecture. Let X = (X,g
0
) be a complete Riemannin manifold

with corners, such that Sc(g
0
) = 0 and such that all codimension 1 faces are

minimal, mean.curv(Fi) = 0.
Then either Ricci(X) = 0 and all faces Fi are totally geodesic, or the Rie-

mannian metric g admits a bounded deformation gt, which increases the scalar
curvature and the mean curvatures of the faces

Sc(g
t
) > 0 and mean.curvg

t
(Fi) > 0, for t > 0,

and also decreasing the dihedral angles, ∠ij(gt) = ∠gtFi, Fj) < ∠ij(g0
).

Remarks/Questions. (a) It is unclear what is a similar perturbation property
(if any) for non-scalar flat (potentially extremal) manifolds with corners.

(b) It is easy to see that extremal surfaces (X) with corners are rigid: these
have constant curvatures and in the case of Sc ≥ 0, they have geodesic edges.

(c) Quadrilaterals X in the hyperbolic plane, such that
(i) all angles π

2
;

(ii) two opposite geodesic edges (mean.curv = 0) of equal length, and the two
other segments are concentric horospherical (with mean.curv = ±1),

are rigid.
Let anX dominateX, Then, if and Sc(X) ≥ −2, ifmean.curvFi ≥mean.curv(F i

and if the angles between adjacent edges in X are all ≤ π
2
, then X is isometric to

a hyperbolic (i)&(ii)-quadrilateral.
It seems, there are no similarly rigid hyperbolic k-gons besides these quadri-

laterals.
Extremality/Rigidity Problem. Identify/classify extremal and rigid Rie-

mannian manifolds X with corners for various classes F of manifolds X and domi-
nating maps f ∶X →X.
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Two motivating examples, where this problems was solved, is the rigidity of
flat metrics on closed manifolds284 and

the Goette-Semmelmann theorem, extended by Lott to compact Riemannian
manifolds X with smooth that claims that the following three conditions are
sufficient for extremality of an orientable X in the class of spin manifolds X
that dominate X and have Sc(X) ≥ 0 and mean convex boundaries.

(1) The curvature operator of X is non-negative.
(2) The boundary of X is convex.
(3) The dimension n of X is even and the Euler characteristic of X is non-zero.
Moreover, such an X =X=(X, g) is rigid in certain cases, e.g. if

0 < Ricci(g) <
1

2
Sc(g) ⋅ g.

Conjecturally, this holds for all compact Riemannian manifolds with corners,
which satisfy (1) and (2) and with no extra topological assumptions, i.e. possibly
non-spin and with χ(X) = 0.

This may be too strong to be true even for Riemannin flat manifolds, where
this reads as follows.

Flat Corner Domination Conjecture. Let X be a compact orientable
Riemannin flat n-manifold with corners, such that all codimension 1 faces F i are
flat, e.g. X is a convex polyhedron in the Euclidean space Rn.

Then X is rigid:
if a proper corner map f of non-zero degree from a compact Riemannian man-

ifold X with Sc(X) ≥ 0, with mean convex faces Fi and with the dihedral angles
between these faces at all points bounded by the corresponding angles ∠(F i, F j),
then

X is also Riemannin flat, the faces Fi are flat, the dihedral angles between
Fi and Fj are equal to ∠(F i, F j); moreover, at all points x ∈X the manifold X
is locally isometric to X at f(x) ∈X.

Although this remains problematic even in the category of convex polyhedra,
where rigidity is known only for infinitesimal deformations, see section 3.1.1 and
IV below, the following results are available.

I. ×▲i-Inequality. Let X0 ⊂ Rn. Let X be a compact orientable Riemannian
flat n-manifold with corners, where all (n − 1)-faces F i are flat.

If all dihedral angles ∠i,j = ∠(F i, F j) in X are ≤ π
2
then X is spin extremal:

if an orientable spin manifold X, which dominates X, i.e. comes with a proper
corner map f ∶X →X with non-zero degree and such that

●0 Sc(X) ≥ 0
●1 mean.curv(Fi) ≥ 0
●2 ∠(Fi, Fj) ≤ ∠(F i, F j),
then

Sc(X) = 0, mean.curv(Fi) = 0, ∠(Fi, Fj) = ∠(F i, F j).

Remark/Example. (a) If X simply connected, thus, is isometric to a convex
polyhedron in Rn then the condition ∠i,j ≤

π
2
implies (by an elementary argument)

284This, recall, in the case of non-spin manifolds X of dimensions n ≥ 10, needs Lohkamp’s
or Schoen-Yau’s desingularizations theorems.
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that X is the product of simplices with dihedral angles ≤ π
2
, such as the n-cube, fo

instance.
About the Proof. The condition ∠(F i, F j) ≤

π
2
, shows (see section 4.4) that

a suitable smoothing of the boundaries of X and X reduces the problem to the
rigidity in the smooth case. For instance if X is a convex polyhedron one may use
the mean curvature spin extremality theorem [Yspin → e] from section 3.5.(If n
is even, is follows from the above Goette-Semmelmann-Lott theorem.)

Exercise. Directly prove the ×▲i- Inequality in the case, where the faces
Fi ⊂X are it convex, rather than only mean convex.

▲−Remark. If both X and X are affine n-simplices, then the implication

∠ij(X) ≤ ∠ij(X) ⇒ ∠ij(X) = ∠ij(X)

follows from the Kirszbraun theorem with no need for the condition ∠ji ≤ π/2.
But there is no no direct elementary proof of this (unless I am missing

something obvious) if X has convex, rather than flat, faces
Question. Are there "good" local boundary conditions for Dirac operators

on manifolds with corners suitable for proving this kind of theorems similar to
what is done by John Lott in [Lott(boundary) 2020] and by Christian Bär with
Bernhard Hanke in [Bär]-Hanke(boundary) 2021] for manifolds with smooth
boundaries?

(Such conditions seem plausible for orbifold like corners, especially for good
orbifolds285 but the general case is not so clear.)

II. Reflection Orbifolds. Let X̂ be a smooth manifold acted upon by a
(reflection) group Γ generated by reflections in cooriented hypersurfaces F̂i ⊂X
and let X ⊂ X̂ be the fundamental domain for this action that is the intersection
of the "half-spaces" X̂i ⊂ X̂i bounded by F̂i ⊂ X̂i in X.

This X = X̂/Γ comes with a natural corner structure and if the action of Γ is
isometric for a Riemannian metric ĝ on X̂, then all codimension 2-faces Fij ∈X
are endowed with angles of the form αij(Γ) = π

2l
, l = 1,2, ....

We have already explained in section 3.1.1 that
if X̂ admits no Γ-invariant metric with Sc > 0 then X satisfies the following
No Sc > 0 Property. Let g be a Riemannian metric g on X, such that
●Sc the scalar curvature of g is non-negative: Sc(g) ≥ 0;
●mean all (n − 1)-faces Fi of X are mean convex: mean.curvg(Fi) ≥ 0;
●∠ The dihedral angles∠ij ofX at all points of all (n−2)-faces Fij = Fi∩Fj ⊂

X are bounded by the canonical ones, ∠ij ≤ αij(Γ).
Then

Sc(g) = 0, mean.curvg(Yreg) = 0, and ∠ij ≤ αij(Γ)

About the Proof. This is shown by reflecting X around its (n − 1)-faces,
smoothing around the edges and applying the corresponding result for closed
manifolds as it was done in [G(billiard] 2014]286 for cubical X, and where the
285Compare with what is done in [Bunke(orbifolds) 2007] and in related paper cited in there.
286When writing this paper I overlooked the paper by Brendle, Marques and Neves [ [Bre-
Mar-Nev(hemisphere) 2011], where an essential step of smoothing codimension one corners
appears as theorem 5.
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general case needs an intervention of arguments from [G(inequalities) 2018],
where the (non-spin) case n ≥ 9 relies on [SY(singularities) 2017].

An immediate application of of this to manifolds X which dominate Eu-
clidean reflection domains X is the following

Extremality of Euclidean Reflection Domains. If X̂ = Rn and the
reflections in Γ are isometric then the orbifold X = Rn/Γ is extremal.

Remark. Since the reflection domains have their dihedral angles ∠ij ≤
pi
2

their spin extremality follows from the above ×▲i-Inequality.
▲-Rigidity. This says that, in fact, X is Riemannin flat and all faces Fij

are also flat.
Proof . The quickest proof of the rigidity is technical, namely it relies on the

regularization theorem proven in [Burkhart-Guim(regularizing Ricci flow) 2019]:
If a continuous metric g0 on a Riemannin manifold can be C0-approximated

by smooth metrics gε, ε > 0, with Sc(gε ≥ σ0 − ε for ε → 0, then it can be
approximated by smooth metrics with Sc ≥ σ0.

We apply this to the γ-invariant metric ĝ0 on X̂ that extend the, a pri-
ori non-Riemannian, metric g0 on X ⊂ X̂, but but because of the equalities
∠ij ≤ αij(Γ) guarantied by the weak rigidity, this g0 Riemannian and the regu-
larization theorem does apply and then an easy argument shows that the metric
g0 itself is Riemannian flat and the faces Fi are flat as well.

Remarks. (a) The rigidity for cubical X of dimension ≤ 7 was originally
proven by Ciao Li in [Li(rigidity) 2019] and then extended in the second version
of his paper to manifolds with the corner structures combinatorially isomorphic
to that in the product of the cube ◻n−2 by an acute angled triangle △, where
an essential novel point in this paper is the proof of a sufficient regularity of
minimal surfaces at the corners that allows one to argue as in the proof of the
rigidity of flat tori. 287

(The products of cubes by general triangles considered by Li are not, in
general reflection orbihedra. On the other hand, the above argument with re-
flections+Ricci flow, implies, for instance, rigidity of products of several regular
triangles, where no present day minimal hypersurface argument applies.)

(b) (Recapturing Rigidity while Smoothing the Corners .

III. Pyramids and Quasi-Prisms. A counterpart ×▲i-inequality is known
to hold for certain polytopes P with dihedral angles > π

2
, which, much as the

above products of simplices, are extremal in the sense that
can’t make the dihedral angles smaller, while keeping the faces mean convex

and the scalar curvature ≥ 0
The simples such extremal P are (convex) k-gonal prisms, where for k ≥ 4

some dihedral angles are always > π
2
. This is shown in [G(billiards) 2014] by

looking at minimal surfaces with free boundary on the side-part of the boundary
of P .

More generally Chao Li [Li(comparison) 2017] proved a similar property
for convex pyramids and quasi-prisms P where the latter are convex polyhedra
in R3, where all vertices are contained in a pair of parallel planes and where
287I haven’t read Li’s paper carefully and I am not certain on how actually he does it, but,
granted regularity, the µ-bubble perturbation argument as in section 5.7 applies in the case
considered by Li.
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the proof follows by a construction and analysis of suitable µ-bubble (capillary
surfaces) pinched between these planes.

(A technical limitation on deformations of the flat geometry in P , a mild
lower bound on the dihedral angles between side faces allowed by Li’s argument,
was removed in his later paper.)

IV. Polyhedral Extremality Problem. The above kind of extremality, even the
local one, remains problematic in general even for simple n-polytopes, where at
most n faces of dimension n − 1 may meet at the vertices:

it is unknown which pairs of combinatorially equivalent polytopes P and P ′

(convex polyhedra) may have their corresponding dihedral angles satisfying ∠ij ≥

∠′
ij without all corresponding angles being mutually equal.288

laer V. Extremality and Rigidity of Hyperbolic Manifolds with Corners. It
is unclear, in general, what kind of extremality/rigidity one can expect from
manifolds which may have have negative scalar curvature at some points, some
non-mean convex faces and/or some dihedral angles > π.

But the extremality of flat manifolds X = (X,g = g(x)) with corners passes
to the hyperbolic cylinders

X⋊
d(−1) = (X × [0, d], g⋊exp = e2tg(x) + dt2),0 ≤ t ≤ d,

with constant sectional curvatures κ(g⋊exp) = −1. Namely, these X⋊
d(−1) can’t be

dominated with manifolds with strict increase of the scalar curvature, increase
of the mean curvatures of the faces and decrease of the dihedral angles, in the
case of extremal X.

In fact, the above reflection, doublings and smoothing arguments apply to
these X⋊

d(−1) in conjunction with the existence and basic properties of stable
µ-bubles Y in the cylinders X⋊

d(−1), which separate the "bottom" X × {0} ⊂

X⋊
d(−1) from "top"X×{d} ⊂X⋊

d(−1), which have constant mean curvatures n−1
and such that some warped products Y T1 have non-negative scalar curvatures.
see section 5.6,

However, there are two technical caveats to this reasoning.
(1reg) If n + 1 = dim(X⋊

d(−1)) ≥ 8 the bubles Y may, a priori, have stable
singularities where the present day state of desingularization art of Lohkamp-
Schoen-Yau is not, at least not immediately, applicable to all cases of interest.

(2reg) Even for n ≤ 7, the bubbles Y ⊂ X × {d} are not fully smooth, at the
corners, where the dihedral angles ∠ij(x) ≠

pi
2k
, and where, the unconditional

implication
X is extremal ⇒X⋊

d(−1) is extremal

and even more so
X is rigid ⇒X⋊

d(−1) is rigid

needs a bit of technical reasoning.
Motivations for Corners. Besides opening avenues for generalisations of what

is known for smooth manifolds, Riemannian manifolds with corners and Sc ≥ σ
may do good to the following.

1. Suggesting new techniques, (calculus of variations, Dirac operator) for
the study of Euclidean polyhedra.
288As we mentioned in 3.1.1, Karim Adiprasito told me that Schläfli formula (see [Souam
(Schläfli) 2004]) implies that no convex polytope admits an infinitesimal deformability on
simultaneously decreasing all its dihedral angles.
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2. Organising the totality of manifolds with Sc ≥ 0 (or, more generally with
Sc ≥ σ) into a nice category (A∞-category?) P◻, that would include, as objects
manifolds Y with Riemannian metrics h and functions M on them and where
morphisms are (co)bordisms (h-cobordisms?) (X,g), ∂X = Y0 ∪ Y1, where g is a
Riemannian metric on X with Sc ≥ 0, which restricts to h0 and to h1 on Y0 and
Y1 and where the the mean curvature of Y0 with inward coorientation is equal
to −M0 while the mean curvature of Y1 with the outward coorientation is equal
to M1.

Conceivably, the variational techniques for "flags" of hypersurfaces from
[SY(singularities) 2017] or its generalisation(s), may have a meaningful inter-
pretation in P◻, while a suitably adapted Dirac operator method may serve as
a quantisation of P◻.

Comprehensive Sc ≥ σ Existence Problem for Manifolds with Corners.
Let X be a smooth compact manifold with corners and let Xi, i ∈ I, 289 be tote

the faces here Xi he set of faces of X of all (co)dimensions, where, we agree that
X0 = X and let σi ∶ Xi → [−∞,∞), µi,k ∶ Xi → [−∞,∞) and αijk ∶ Xi ∩Xj →

(0,2π) be continuous functions, where
µik are defined for all i and those k for which Xi serve as codimension one faces

in Xk;
αijk are defined for the pairs of codimension one sub-faces Xi,Xj ⊂ Xk, such

that dim(Xi ∩Xj) = dim(Xi) − 1 = dim(Xj) − 1 = dim(Xk) − 2.
When does there exist a smooth Riemannian metric g on X, such that
●Sc the scalar curvatures of g restricted to Xi are bounded from below by σi,

that is
Sc(g∣Xi , x) ≥ σi(x), x ∈Xi;

●mean the mean curvatures of Xi ⊂ Xk with respect to g, for all Xi and Xk,
where dim(Xi) = dim(Xk) − 1, are bounded from below by µik;

●∠ the dihedral angles between Xi and Xj in Xk satisfy

∠g(Xi,Xj) ≤ αijk.

More generally, one wants to understand the topology (e.g. the homotopy
type) of the spaces G(σi, µik, αijk) of metrics g on X, which satisfy ●Sc, ●mean
and ●∠, as well as of the inclusions

G(σi, µik, αijk) ↪ G(σ′i, µ
′
ik, α

′
ijk)

for σ′i ≤ σi, µ
′
ik ≤ µik and α′ijk ≥ α′ijk and restriction maps from these spaces

to the corresponding ones on submanifolds Y ⊂ X compatible with the corner
structures. .

Exercise. Let X be a smooth n-manifold with cornered boundary Y = ∂X,
and prescribed mean curvatures of the top dimensional facesXi and the dihedral
angles between them, that is, in the above notation:

σi = −∞, unless dim(Xi) = n − 1,
289We switched the notation from Fi to Xi to place all faces, includung X itself, on equal
footing.
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µi,k = −∞, unless k = 0, i.e. dim(Xi) = dim(Xk) − 1 = n − 1 and
αijk = 2π, unless dim(Xi) = din(Xj) = dim(Xk) − 1 = n − 1.

Show that X admits a smooth metric g, such that
the scalar curvature of g is positive in a (small) neighbourhood of Y ⊂X,

and such that g satisfies the above conditions ●mean and ●∠.
Hint. Construct g in a small neighbourhood of the union of the i-dimensional

faces by induction on i = 1,2, ..., n − 1.
Measure Valued Curvature. The mean curvature of the boundary ∂X and the

complementary dihedral angles π −∠ij can be regarded as measures with con-
tinuous densities on the faces which represent singular scalar curvature, where
this becomes especially clear if you think in terms of the double DDX.

With this in mind, the above problem can reformulated as follows:
given a triangulated n-dimensional manifold X(pseudomanifold?) and numbers

σ = σ(∆) assigned to all simplices ∆ of codimensions 0, 1 and 2.
When does there exist a continuous piecewise smooth Riemannian metric on X,

such that its scalar curvature, understood as a measure, is bounded from below by
σ(∆) on all of the above ∆,
where the inequality Sc(X ∣∆) ≥ σ(∆) is understood as earlier, namely,

(i) if dim(∆) = n this is the usual Sc ≥ σ;
(ii) if dim(∆) = n−1 this is the σ-bound on the sum of the mean curvatures

of this ∆ in the two adjacent n-simplices;
(iii) if codim(∆) = n − 2 this is 2π minus the sum of the dihedral angles of

the n-simplices adjacent to ∆.
Remark on Higher Codimension Singularity. Strictly speaking the above

applies not to triangulated but to stratified manifolds X, where
● there are only strata of codimensions 0, 1 and 2,
● the codimension 2 strata are smooth submanifolds in X,
● the codimension 1 strata Σ−1 are submanifolds with boundaries with all

components of these boundaries being codimension 2 strata Σ−2, where different
Σ−1 with common components Σ−2 of their boundaries meet transversally at
these Σ−2,

● the Riemannian metics in question are piecewise smooth with respect to
this stratification.

One may also to allow singularities of codimensions ≥ 3, but this is a different
matter (compare with (c) in 5.4.1).

3.18.1 Corners, Plateauhedra and Bubble Spaces

Central geometric examples of manifolds with corners are convex polyhedra
in the Euclidean spaces and, more generally domains in spaces with constant
sectional curvatures κ that are intersections on of half spaces bounded by by
umbilic hypersurfaces, that are spheres, hyperplanes and, for κ < 0, horospheres
and equidistances of hyperplanes.

What are Riemannin Counterparts of these?
Below are candidates for answers.
●b Bubblehedra. A bubblehedron Q in a Riemannian n-manifold X is the
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boundary of a domain Q> ⊂X with corners

Q = ∂Q> = ⋃
i=1,2,...

Qi

where all (n − 1)-faces Qi ⊂ ∂X have constant mean curvatures Mi, where all
dihedral angles ∠ij are constant along the (n − 2)-faces Qi ∩Qj and where one
may require these angles to be ≤ π.

A special case of these where all Mi = 0 are called plateuhedra.
Remark. The common description of minimal varieties in terms of currents

doesn’t seem appropriate for such Q, and even less so for similar arrangements
of minimal subvarieties Qi ⊂X of codimensions >1.

Example 1: Normal Plateauhedra and Bubblehedra. An attractive instance
of these is where all dihedral angles ∠ij =

π
2
and where, moreover, each face Qi

is (n-1)-volume minimizing with free boundary in the union of the remaining
edges,

∂Qi ⊂ ⋃
j≠i
Qj .

A more general similar case is where Mi > 0 and each Qi with free boundary
in ⋃j≠iQj .. minimizes voln−1(Qi) −Mi ⋅ voln(Q>).

Example 2: Normal Plateau Webs. Let X be a compact Riemannin manifold
and let Y1 ⊂ X be a a closed locally minimizing minimal hypersurface in X.
Next, let Y2 be a locally minimizing minimal hypersurface in the complement
of Y1 in X with free boundary in ∂Y1, i.e.

Y2 ∖ ∂Y2 ⊂X ∖ Y1 and ∂Y2 ⊂ Y1.

Then continue with minimal Y3, ..., Yi..., where Yi ⊂X lies in the complement
of all Yj ,j < i and has free boundary in the union of these Yj ,

Yi ∖ ∂Yi ⊂X ∖ ⋃
j<i
Yj , ∂Yi ⊂ ⋃

j<i
Yj .

Thus we divide X into mean convex domains with 90○ dihedral angles.
Questions. What do combinatorics of such webs {Yi} tell you about the

topology and geometry of X?
How much does positivity of the scalar curvature X restrict combinatorics

of such a {Yi}?
If X is complete non-compact, where "plateau" may be too restrictive, and

asks:
what geometric/topological condition(s) on X would guarantee the existence

of normal bubblehedra Q ⊂X of given combinatorial types?
Conjectural Example 3: Dodecahedral and Similar Exhaustions of Large

Manifolds. If n = 3 and X̃ is a the universal covering of a compact Riemannian
manifoldX, where thisX admits a hyperbolic Riemannin metric (probbaly, non-
zero simplicial volume will do), then it seems not hard to show that it can be
exhausted by (compact domains Q> ⊂ X̃ bounded by) such normal bubblehedra
Q ⊂ X̃ of dodecahedral combinatorial types, i.e. admitting proper corner maps
of degree 1 to (the boundary of) the dodecahedron).
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Also "hyperbolically looking" manifolds X̃ of dimensions ≥ 4, e.g. the uni-
versal coverings of compact manifolds X with non-zero simplicial volumes, can
probably be exhausted by similar Q.

For instance, if X is the product of surfaces of genera ≥ 2, then such an ex-
haustion is expected by normal bubblehedra Q of combinatorial types of prod-
ucts of k-gons.

Example 4; Local Riemannian Realization of Euclidean P . Let P be a convex
polyhedron in a tangent space Tx0(X) = Rn, let us scale P by a small ε > 0
and let P ′

ε ⊂ X be the image of this εP ⊂ Tx(X) under the exponential map
exp ∶ εP ⊂ Tx(X) →X.

This P ′
ε ⊂ X, which is not a true but only an ε-approximate plateauhedron,

already may carry some information about the scalar curvature Sc(X,x), in
terms of the mean curvatures of its (n − 1)-faces and the dihedral angles along
its (n − 2)-faces similar to the ⊛ representation of the inequality Sc(X,x0) <

Sc(X ′, x′0) in section 1.1 by comparison the integral mean curvatures of the
ε-spheres around the points x0 and x0 in two manifolds.

Next, to make this P ′
ε ⊂X look prettier, one can slightly perturb it and thus

turn it into a true bubblehedron Q ⊂ X by solving the Plateau soap bubble
problems with free boundaries for all (n − 1)-faces one after another290 where,
depending of what one wants, one can either make all its faces with zero mean
curvatures, or all its dihedral angles equal those of the original P . (This seems
easy but I didn’t try to carefully check it.291)

We know, however that if Sc(X,x0) > 0, there are some constraints on
possible values of the mean curvaturesMi(Q) =mean.curv(Qi) and the dihedral
angles ∠ij(Q) of such a Q, e.g. if ∠ij ≤

π
2
, then, for small ε→ 0, one can’t have

all Mi(Q) ≥ Mi(P ) and ∠ij(Q) ≤ ∠ij(Q), where conjecturally this is true for
all P .

Despite this, in general, if n ≥ 3, the space Q of all bubblehedra (or pla-
teuhedra) Q in a small neighbourhood of P ′

ε is typically infinite dimensional.

Example 5: Too Many Q. Let a plateuhedron Q in a Riemannin manifold
X contains only two (n − 1)-faces Q1 and Q2, which are compact smooth hy-
persurfaces in X the common boundary of which makes the only (n− 2)-face of
Q,

Q12 = Q1 ∩Q2 = ∂Q1 = ∂Q2

Imagine that Q1 extends in X ⊃ Q1 beyond its boundary to a minimal
Q1+ ⊃ Q1, such that

●1+ the extended face Q1+ ⊂X is a strictly locally minimizing hypersurface292

with respect to its boundary Z = ∂Q1+;
290One can’t, a priori, guarantee the full (not even C2) regularity of the (n − k) faces for
k ≥ 2, but in view of high non-uniqueness of these Q explained below, such regularity seems
non-impossible in many cases.
291To fully include ⊛ in this picture, one had to start with a P , which has spherical as
well as planar faces. But then perturbing P ′ε into a bubblehedron Q becomes a more delicate
matter. For instance, if, as it is in⊛, our P ⊂ Tx(X) is a ball bounded by a single spherical
"face", then the corresponding Q ⊂ X (bounded by a single hypersurface of constant mean
curvature) may (and usually will) drift away from the point x.
292"Strict local minimum" usually means "isolated local minimum" – this is sufficient for
most our present geometric purposes. But if following an analytic vein of thinking, "strict"
should be understood as strict positivity of the second variation operator.
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●2 the face Q2 is strictly locally minimising with free boundary in Q1+.
Then small deformations Z ′ of the (smooth closed) (n−2)-submanifold Z ⊂X

are (by an elementary elliptic perturbation argument) accompanied by unique
minimal deformations Q′

1+ of Q1+ i.e. submanifolds Q′
1+ are minimal) followed

by minimal Q′
2 that are small deformations of Q2, such that the boundary of

such a of Q′
2 is contained in Q′

1+ and where Q′
2 is normal to Q′

1+ along ∂Q′
2.

Thus the local moduli space of these Q contains, as subspace, the full space
of small functions on Z corresponding to small deformations of Z normal to
Q1+.293

Example 6: Too few Q. Let both faces Q1 and Q2 in the above example
extend to minimal hypersurfaces beyond their boundaries, say to Q1+ ⊃ Q1

and Q2+ ⊃ Q2, and let both be a strictly locally minimizing hypersurface with
respect to their boundaries Z1 = ∂Q1+ and Z2 = ∂Q2+.

Let Z ′
1 and Z ′

2 be small perturbations of these ∂Q′
1+ and ∂Q′

2+, let Q
′
1+, and

Q′
2+ be the corresponding minimal perturbations of Q1+, and Q2+, let

Q′
12 = Q

′
1+ ∩Q

′
2+

and let ∠′
12 be the dihedral angle between Q′

1+, Q
′
2+ regarded as a function on

the perturbed intersection Q′
12 of the two (n − 1)-faces of Q,

∠
′
12 = ∠

′
12(q

′
), q′ ∈ Q′

12.

Here, the situation is opposite to that in the previous example:
the operator (map)

(Z ′
1, Z

′
2) ↦ ∠

′
12

from the space of small deformations of the boundaries of Q1+ and Q2+ to the
space of functions on Q12

294 is (by elliptic regularity) compact.
Hence, only
a minority of functions on Q12 is realizable by dihedral angles of (not quite)

plateuhedra with minimally extendable faces.
Ouroboros Example 7: Biting its Own Tail. Let us describe a class of hyper-

surfaces, where the two opposite phenomena from the above examples strike a
balance and make the Plateau problem "well posed", in particular, allowing its
a Fredholm representation.295

Let Q ⊂X be the image of a compact (n−1)-manifold,296 n = dim(X), with
boundary, say Q̂, immersed to X,

h ∶ Q̂→X, h(Q̂) = Q,

such that
●int the immersion h is one-to one on the interior of Q,

h ∶ Q̂ ∖ ∂Q̂↪X,

293Deformations of Z within Q1+ don’t affect Q.
294Normally project perturbed intersections Q′

12 to Q12 and thus identify the spaces of
functions on all Q′

12 with the space f functions on the unperturbed Q12.
295The concept of "Fredholm" strikes as artificial in the present geometric picture and begs
for something more adequate. Perhaps, I am missing something in the literature.
296Much of what follows makes sense for Q of codimension >1.
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where the images of the connected components of Q̂ serve as the (n − 1)-faces
Qi of Q;

●∂ the immersion h is one-to one on the boundary of Q̂;

h ∶ Q̂ ∖ ∂Q̂↪X;

;
●⊂ the image of the boundary of Q̂ is contained in the image of its interior,

h(∂Q̂) ⊂ h(Q̂ ∖ ∂Q̂),

where the images of the connected components of ∂Q̂ serve as the (n − 2)-faces
or corners of Q;

●min Q is minimal: it has zero mean curvature and it is normal to itself
along the corners.

Sub-Example 8. The most transparent instance of this is where Q is the
union of two faces that are smooth submanifolds in X with boundaries,

Q = Q1 ∪Q2 ⊂X,

such that the boundary of one is contained in the interior of another,

∂Q1 ⊂ int(Q2) and ∂Q2 ⊂ int(Q1).

Thus, the the corner of Q is equal the intersection of the two faces of Q,

Q12 = Q1 ∩Q2,

and where one may think of Q1 as the solution of the Plateau problem with free
boundary in Q2 and, similarly, Q2 is minimal with boundary in Q1.

Proposition/Example 9: Finite dimensionality of Deformations and Code-
formations. It seems obvious, (I didn’t check this carefully) that, by the stan-
dard elliptic estimates, the space of the above compact minimal Q in a small
C∞-neighbourhood of a given minimal Q0 is finite dimensional.

It is slightly less obvious that, given an above minimal Q ⊂X = (X,g), there
exists a finite dimensional297 linear space ∆ of C∞-smooth quadratic forms δ
on X, such that, for all Riemannin metrics g′ sufficiently C∞-close to g

there exit a small δ ∈ ∆ and C∞-small perturbation Q′ of Q such that
Q′ is minimal with respect to the Riemannin metric g′ + δ.

Let us explain this in he simplest case where Q = Q1 ∪Q2 ⊂ X = (X,g) as
in the above sub-example, where we assume that both Q1 and Q2 are strictly
locally minimizing with the free boundary conditions ∂Q1 ⊂ Q2 and ∂Q2 ⊂ Q1.

Slightly C∞-perturb the Riemannin metric in X, say g; g′, and show that
Q can be accordingly deformed to Q′ ⊂ X, which is strictly (n − 1)-volume
minimizing with respect to g′ with similar free boundary conditions . 298

297This dimension can be bounded by the index of the second variation operator for Q.
298In the classical case, where Q ⊂ X is a smooth closed strictly locally minimizing submani-
fold (no boundaries), it is not hard to show that it is stable under C0-small perturbations of g;
probbaly the same applies to Q with smooth edge(s) Q12 and, possibly to general semi-regular
Q presented later in this section.
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The simplest way to do it is by consecutively minimizing g′-volumes of Q1

with free boundary ∂Q1 ⊂ Q2, then of the volume of Q2 with boundary in the
new g′-minimal Q1, etc

Then, for sufficiently small g − g′, the strict minimality of P implies the
convergence of this process to Q′ which lies C∞-close to Q (for the obvious
C∞-topology in the space of our Q ⊂ X) and g′-volume minimizing with free
boundary positioned on the non-singular part of Q. 299

Example 10: Higher Order Corners. Let us generalize the above sub-example
by allowing piecewise smooth

Q = ∪Qi ⊂X

where all Qi ⊂ X, i = 1,2, ..., k, are submanifolds with corners, such that the
boundary of each of them is contained in the union of others,

∂Qi ⊂ ⋃
j≠i
Qj .

More general Q of this kind is where such a decomposition exits only locally
at all points in Q:

given a point q ∈ Q ⊂ X, there exists a neighbourhood of this point in X,
say U(x) ∈ X, such that the intersection Q ∩ U(q) admits the above kind of
decomposition

Q ∩U(q) = ⋃
i

Qi(q), where ∂Qi(q) ⊂ ⋃
j≠i
Qj(q).

It still make sense here to speak ofminimalQ, i.e. with allmean.curv(Qi(q)) =
0 and where, minimality with free boundary in ⋃Qj(q) is also well defined for
all Qi(q).

Question. What is the most general assumption(s) on local topology of such
Q that would imply the above kind Deformations and Codeformations finite dimen-
sionality properties?

Example 11: Semi-regular P and Q. Recall that a simple cone in Rn−1 is the
intersection of at most n − 1 half spaces, with mutually transversal boundary
hyperplanes.

Now, call a piecewise linear linear cone P ⊂ Rn semi-regular if it is equal to
the union of k ≤ n mutually transversal simple cones Pi in some hyperplanes in
Rn,

P = ⋃
i

Pi,

such that the boundary of each Pi is contained in the union of the remaining
ones,

∂Pi ⊂ ⋃
j≠i
Pj ,

and, moreover, such that the interior of each (n − 2)-face in Pi, for all i, is
contained in the interior of some Qj .
299This Q′ can be defined as a fixed point of a self mapping in the space of P behind this
iteration process, where the strictness of minimality makes this self-mapping (which, by the
way, is compact) contracting.
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Example 12: Cones of rank k=1, 2 and 3. The cones of rank 1 are just
hyperplanes in Rn.

A cones of rank 2 is a union of a hyperplane P1 ⊂ Rn and a half-hyperplane
P2 ⊂ Rn with its boundary (an (n − 2)-subspace) in P1.

If k = 3, then there are two possibilities for the position of the third face
P3 ⊂ P : This can be either a half-hyperplane positioned in the halfspace bounded
by P1 on the other side from P2 or be an (n − 1)-cone with two (n − 2)-faces
which is positioned in one of the two convex cones bounded by P1 and P2.

Semi-Regular Q ⊂ X. A piece wise smooth Q ⊂ X is called semi-regular if,
locally, at each point it is diffeomorphic to a semi-regular cone.

Conjecture. Minimal Semi-regular Q ⊂X = (X,g) enjoy the deformations and
codeformations finite dimensionality properties.

Remark (a) This conjecture, is probbaly, not hard to prove but the semi-
regularity condition is too restrictive and much of it seem unneeded, such as the
transversality condition between the half-hyperplanes P2 and P3 attached along
their boundaries on two different side to a hyperplane P1 ⊂ Rn in the above rank
3 example.

More seriously, semi-regularity excludes singular minimal Q in dimensions
N ≥ 8.

(b) It remains unclear if our minimal Q have any global geometric signifi-
cance.

(c) The full transversality condition, albeit, probbaly, redundant, implies the
following convenient (irrelevant?) simple property.

Let Q ⊂ X be compact semi-regular and let Q′ ⊂ X be C∞-close to Q, which
means all, locally defined, (n−1)-faces of Q′ are close to the corresponding faces of
Q. (This is formulated more carefully below.) Then there is a diffeomorphism Φ′ ∶
X →X that moves Q to Q′; moreover, there is a C∞-continuous map Ψ′ ∶ Q′ → Φ′

from the space of Q′ ⊂X to Diff such that Ψ′(Q′)(Q) = Q′ and Ψ′(Q) = Id.
Bubble-Spaces Q ⊂X with Variable Mean Curvatures. The basic properties,

including deformations and codeformations finite dimensionality properties for
semi-regular minimal Plateau spaces Q extend verbatim to to bubble spaces
with constant mean curvatures M , including stability of strictly minimizing
ones under variations of M keeping M constant.

But one needs be more careful with variable mean curvature of Q, since it
is not and is not supposed to be continous as function on Q with the topology
induced by the the embedding Q ⊂X.

Another problem is comparing the mean curvatures of two different spaces,
Q and Q′ in X, let them even be very close one to another.

To handle this, we recall that Q is the image of a smooth manifold with
boundary under a smooth immersion,

h ∶ Q̂→X.

Accordingly, the mean curvature is required to be continuous, smooth if you
wish, as a function on this Q̂.

Also the Cr-distance for all r < ∞ betweenQ andQ′ is defined as the infimum
of the numbers dr, such that there exists a diffeomorphism φ ∶ Q̂→ Q̂′ for which
the Cr distance between the immersions h ∶ Q̂ → Rn and φ ○ h′ ∶ Q̂ → Rn for
h′ ∶ h ∶ Q̂′ → Rn is ≤ dr.
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Finally, the measures µ behind (the existence theorems for) µ-bubbles are
not defined on X ⊃ Q or on a neighbourhood U = UQ ⊃ Q in X but on an n-
manifold Û = ÛQ, which comes with an immersion α ∶ Û →X and an embedding
β ∶ Q̂→ Û such that

α ○ β = h ∶ Q̂→ Q ⊂X.

Granted that one sees the same picture of small deformation and codefor-
mation of bubble-spaces as for constant mean curvature, where codeformations
refer here to finite dimensional families of functions (or measures) on Û . But
understanding global properties of such µ-bubbles remains even more limited
than that for constant M .

But can one prove (or just conjecture) nevertheless something non-trivial about
these Q in relation to the scalar curvature problems?

Wouldn’t it be, perhaps, more sensible to switch to a reasonably regular class
of minimal varifolds, e. g. V n−1 ∈X, where the singular locus of such a V n−1 is a
smooth Fn−2 ⊂ V n−1, where there are three local branches of V n−1 meeting along
this Fn−2 and where the dihedral angles between these branches are 2π

3
?

Can, one, alternatively, "rigidify" bubblehedra by minimizing a single functional,
a weighted combination of volumes of faces of different dimensions and /or in-
volving also dihedral angles and (directions of vectors of) means curvatures of low
dimensional faces?

3.19 Stability of Geometric Inequalities, Metrics and Topolo-
gies in Spaces of Manifolds, Limits and Singular Spaces
with Scalar Curvatures bounded from Below

.
Inequalities relating geometric quantities A and B of geometric objects Ob

progress along the following lines.
1. Rough Inequalities. This says that A(Ob) is bounded by some function

of B(Ob).
For instance, volumes of Euclidean domains V ⊂ Rn are bounded by

; the (n-1)-volumes of their boundaries.
(There is about a dozen of "direct elementary" proofs, of this which
generalize to a variety of situations, e.g. to Riemannian manifolds
with certain restrictions to their curvatures.)

2. Sharp Inequalities. These specify the maximal values of A(Ob) among all
Ob with a given bound on B(Ob), say, in the form A(Ob) ≤ Esharp(B(Ob)).

For instance, the Euclidean domains satisfy the sharp isoperimetric
inequality vol(V ) ≤ γn ⋅ (voln−1∂V )

n−1
n , where γn is equal

; to the volume of the n-ball with unit (n−1)-volume of the boundary.
(There is no direct elementary proof of this, except for n = 2 and 4,
and the present day "non-elementary" proofs don’t generalize to the
expected cases, such as complete manifolds with non-positive
sectional curvatures.)

3. Rigidity. This is a description of all extremal Ob that maximize A(Ob)
with a given bound on B(Ob), that is where A(Ob) = Esharp(B(Ob)).

;
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For instance, the balls in Rn are "isoperimetrically extremal":
they are the only Euclidean domains, where the isoperimetric
inequality becomes equality, vol(V ) = γn(voln−1∂V )

n−1
n .

4. Stability. An extremal object Obextr is stable if convergence A(Obε) →
A(Oextr) and B(Obε) → B(Obextr)) implies that Obε → Obextr in a "suitable
sense", where determination of this "sense" is the main problem here.

For instance, the the balls B in Rn are isoperimetrically stable (mod-
ulo translations) with respect to the flat topology, : if vol(Vε) → vol(B0) and
voln−1(∂Vε) → voln−1(∂B0), then translates V ′

ε of Vε converge to B0 in the flat
topology. This means in the present case that that

● vol(B0 ∩ V
′
ε) → vol(B0)

● vol(B0 ∖ V
′
ε) → 0

● the δ-neighbourhoods of B0 for δ →ε→0 0 contain almost all of the boundary
of V ′

ε , that is V oln−1(Uδ(B0)) ∩ ∂V
′
ε)) → V oln−1(∂V

′
ε).

Turning to scalar curvature, observe, that poofs of sharp inequalities, be
they Dirac theoretic or relying on the µ-bubble, are easily adaptable in most
known cases, at least for compact manifolds, for identification of rigid objects,
such as

(i) Riemannian flat metrics gextr = gfl for the inequality infSc(g) ≥ 0 on
the torus,

(ii) metrics gextr = gsph with constant curvature one on the n-sphere Sn for
the inequality inf Sc(g) ≥ n(n − 1) for metrics g ≥ gsph on Sn.

However, the following two questions remain unsettled.
Problem 1. Fully describe in the case (1) metric gε, ε > 0, on the n-torus

with Sc(gε) ≥ −ε→ 0, and, in the case (ii), metrics g ≥ gsph on Sn with Sc(gε) ≥
n(n − 1) − ε.

Problem 2. Find a minimal set of reasonable additional conditions on ε, such
that the metrics gε would converge to gextr

The following example indicates what can be expected in regard to problem
1.

Bubble-Convergence. Let X be a Riemannian n-manifold, n ≥ 3, and let Xi =

XNi,εi , εi > 0, be the connected sum of X with closed Riemannian manifolds
Xi,j , j = 1,2, , , , .Ni, where the connected sum is realized by εi-thin surgery
localised at Ni disjoint εi-balls Bi,j = Bij(εi) ⊂X, j = 1, ...Ni.

If εi → 0, then, this is geometrically clear, that
X "emerges" from the sequence Xi in the limit for i→∞,

where "emerges" becomes "Hausdorff converges" if diam(Xi) → 0 and "con-
verges to X in the intrinsic flat topology",300 if

Ni

∑
i=1

vol(Xi) → 0.

We explained in section 1.3 that if Sc(X) ≥ σ and Sc(Xi,j) ≥ σ, then the
manifolds Xi "naturally" carry metrics with Sc(Xi) ≥ σ − εi, where εi → 0.
300The definition of this metric, introduced by Christina Sormani and Stefan Wenger in
[Sormani-Wenger(intrinsic flat) 2011], is given in later on in this section.
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More interestingly, the argument indicated in section 3.1.3 can be used to
show301 that

if the set of the centers xi,j ∈X of all these balls is dense in X, i.e. all open
sets U ⊂X contain some balls Bi,j ,

if the distances between the balls are much larger than their radii,

dist(Bi,j1 ,Bi,j2)/εi →∞ for i→∞

and if the scalar curvatures of the manifolds Xi,j are bounded from below,
Sc(Xi,j) ≥ σ,

then Sc(X) ≥ σ.
(One doesn’t need here any bounds on the diameters and/or volumes of Xi,

and, probably, the lower bound on the distances between Bi,j is redundant.)
Intrinsic Flat Distance. Given two compact oriented n-dimensional pseudo-

manifolds with peace-wise Riemannian metrics X1 and X2 define distif(X1,X2)

as the infimum of the numbers D ≥ 0 such that there exists an oriented (n+ 1)-
dimensional piecewise Riemannian pseudomanifold W with a boundary, such
that

● the oriented boundary of W is ∂W = X1 ⊔ −X2, where the imbeddings
X1,X2 ↪ W are isometric with respect to the distance functions associated to
the Riemannian structures in these spaces;

● voln+1(W ) ≤ d.
Remark. If X1 and X2 are Riemannian manifolds, then one can also take a

Riemannian manifold for W , but now with a larger boundary
∂W =X1 ⊔ −X2 ⊔X3 and with the condition voln+1(W ) + voln(X3) ≤ d.
The following conjecture, in agreement with the Penrose inequality, gives an

idea of how wild metrics with Sc ≥ −ε can/can’t be.
Sormani Conjecture. Let Xi be a sequence of Riemannian manifolds homeo-

morphic to the torus T3, such that

Sc(Xi) ≥ −εi →
i→∞

0.

If the volumes and the diameters of all Xi are bounded by a constant and the
areas of all closed minimal surfaces in Xi are bounded from below by a positive
constant,

then a subsequence of Xi converges to a flat torus with respect to the intrinsic
flat distance in the space of Riemannian 3-manifolds.302

Exercise. Show that the above condition ∑Nii=1 vol(Xi) → 0 does imply the
intrinsic flat convergence Xi →X as it is claimed in the above example.

Hint. Use the filling volume inequality:303

Given a compact Riemannian n-manifold X = (X,g), there exists a Rieman-
nian metric g○ on the cylinder W○ =X × (0,1], such that:
301If dim(X) ≥ 9 or if some among manifolds Xi.j are non-spin, then one needs new not
formally published results by Lohkamp and/or by Schoen and Yau on "desingularization" of
minimal hypersurfaces.
302See [Sormani(scalar curvature-convergence) 2016], [AH-VPPW (almost non-negative)
2019], [Sormani(conjectures on convergence) 2021], [Allen(conformal to tori) 2020], [Pa-Ke-
Pe(graphical tori) 2020].
303See [G(filling) 1983], [Wenger(filling) 2007], [Katz(systolic geometry) 2017].
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(i) the metric g○ is conical near 0,

g○(x, t) = t
2dx2

+ dt2, for t ≤ ε = εX > 0;

(ii) the distance function distg○ on X =X × {1} ⊂W○ is equal to distg;
(iii) the volume of W○ is universally bounded by that of X

voln+1(W○) ≤ constn ⋅ voln(X)
n+1
n .

.
Other kinds of convergence. Besides the intrinsic flat there are other dis-

tances in the spaces of Riemannian manifolds (more or less adapted to scalar
curvature such as the directed Lipschitz metric in section 10 in [G(Hilbert) 2012]
and the dp,g-distance introduced in in [Lee-Naber-Neumayer](convergence) 2019]
which well goes along with Sc ≥ −σ under a lower bound on Perelman’s ν ‌ -
functional.

Once you have a metric in the space X of Riemannian manifolds, you are
inclined to complete this space and study the resulting singular spaces X from
this completion.

Then you isolate the essential properties of these X and define more general
" singular spaces X with Sc(X) ≥ σ"

Then you dream of an abstract category of "objects" with Sc ≥ σ that carry
the essence of what we know (and don’t know) about the scalar curvature.

3.20 Who are you, Scalar Curvature?
There are two issues here.

1. What are most general geometric objects that display features similar to
these of manifolds with positive and more generally, bounded from below, scalar
curvatures?

2. Is there a direct link between Dirac operators and minimal varieties or
their joint appearance in the ambience of scalar curvature is purely accidental?

Notice in this regards that there are two divergent branches of the growing
tree of scalar curvature.

A. The first one is concerned with the effects of Sc > 0 on the differential
structure of spin (or spinC) manifolds X, such as their α̂ and Seiberg-Witten
invariants.

B. The second aspect is about coarse geometry and topology of X with
Sc(X) ≥ σ, the (known) properties of which are derived by means of minimal
varieties and twisted Dirac operators; here the spin condition, even when it is
present, must be redundant.

To better visualise separation between A and to B, think of possible singular
spaces X with Sc(X) ≥ 0 corresponding to A and to B – these must be grossly
different.

For instance, if X is an Alexandrov space with (generalised) sectional cur-
vature ≥ κ > −∞ then the inequality Sc ≥ 0 makes perfect sense and, probably
most (all?) of B can be transplanted to these spaces. 304

304 It seems, much of the geometric measure theory extends to Alexandrov spaces but it is
unclear what would correspond to twisted Dirac operators on these spaces.
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But nothing of spin related results makes sense for singular Alexandrov
spaces.

And if you start from the position of 2 you better go away from conventional
spaces and start dreaming of geometric magic glass ball with ghosts of harmonic
spinors and of minimal varieties dancing within. (See section 6.9 for continuation
of this discussion.)

In concrete terms one formulates two problems.
A. What is the largest class of spaces (singular, infinite dimensional ...) which

display the basic features of manifolds with Sc ≥ 0 and/or with Sc ≥ σ > −∞ and,
more generally, of spacesX, where the properly understood −∆+ 1

2
Sc(X) is positive

or, at least not too negative?
For instance, which (isolated) conical singularities and which singular volume

minimising hypersurfaces belong to this class?

B. Is there a partial differential equation, or something more general, the solu-
tions of which would mediate between twisted harmonic spinors and minimal hyper-
surfaces (flags of hypersurfaces?) and which would be non-trivially linked to scalar
curvature?

Could one non-trivially couple the twisted Dirac D⊗L with some equation EL
on the connections in the bundle L the Dirac operator in the spirit of the Seiberg-
Witten equation?305

4 Dirac Operator Bounds on the Size and Shape
of Manifolds X with Sc(X) ≥ σ

4.1 Spinors, Twisted Dirac Operators, and Area Decreas-
ing maps

The Dirac D on a Riemannian manifold X tells you by itself preciously little
about the geometry of X, but the same D twisted with vector bundles L over
X carries the following message:

manifolds with scalar curvature Sc ≥ σ > 0
can’t be too large area-wise.

Albeit the best possible result of this kind (due to Marques and Neves, see
B in section 3.10, which is known for X homeomorphic to S3 and which says
that
if Sc(X) ≥ 6 = Sc(S3), then X can be "swept over" by 2-spheres of areas ≤ 4π,
was proven by means of minimal surfaces, all known bounds on "areas" of
Riemannian manifolds of dimensions ≥ 4 depend on Dirac operators D twisted
(or "non-linearly coupled" for n=4) with complex vector bundles L over X with
unitary connections in L, where, don’t forget it, the very definition of D needs
X to be spin.306

305Natural candidates for EL are equations for critical points of energy-like functional on
spaces of connections, where, observe, L-twisted harmonic spinors s ∶ X → S ⊗ L themselves
minimize s↦ ∫X ⟨D⊗L(s(x))D⊗L(s(x)⟩dx.
306Recently, ¯Jintian Zhu [Zhu(rigidity) 2019] and Thomas Richard [Richard(2-systoles)
2020] established new kind of bounds on areas of surfaces applicable to higher dimensional
non-spin manifolds by using geometric calculus of variations, but these bounds depend on
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Recall that the twisted Dirac operator, denoted

D⊗L ∶ C
∞
(S⊗L) → C∞

(S⊗L),

acts on the tensor product of the spinor bundle S → X 307 with L → X,
where it is related to the (a priori positive Bochner Laplace operator) ∇2

⊗L =

∇2
⊗L = ∇∗

⊗L∇⊗L in the bundle S⊗L, by the twisted Schroedinger-Lichnerowicz-
Weitzenboeck formula

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

where ∇⊗L denotes the covariant derivative in S⊗L and R⊗L is a certain (zero
order) which acts in the fibers of the twisted spin bundle S ⊗ L and which is
derived from the curvature of the connection in L.

If we are not concerned with the sharpness of constants, all we have to know
is that R⊗L is controlled by

∣∣R⊗L∣∣ ≤ const ⋅ ∣∣curv(L)∣∣

for const = const(n, rank(L)), where a little thought (no computation is needed)
shows that, in fact, this constant depends only on n = dim(X). (The actual for-
mula for R⊗L is written down in the next section, also see [L-M(spin geometry)
1989] and [MarMin(global riemannian) 2012] for further details and references.)

We regard a closed orientable even dimensional Riemannian manifold X
area wise large, if it carries a homologically substantial or essential bundle L
over it with small curvature, where "homologically substantial" signifies that
some Chern number of L doesn’t vanish. It is easy in this case308 that there
exists an associated bundle L∧, such that

∣curv∣(L∧) ≤ constn∣curv∣(L)

and such that the Chern character in the index formula guaranties non-vanishing
of the cup product Â(X) ⌣ Ch(L∧) evaluated at [X],

(Â(X) ⌣ Ch(L∧))[X] ≠ 0

and, thus, by Atiyah-Singer theorem, the presence of non-zero harmonic twisted
spinors: sections s of the bundle S⊗L∧ for which D⊗L∧(s) = 0.

If the dimension n of X is odd, the above applies to X ×S1 for a sufficiently
long circle S1.

For instance, n-manifolds, which admit area decreasing non-contractible
maps to spheres Sn(R) of large radii R are area-wise large, where the rele-
vant bundles L are induced from non trivial bundles over the spheres. (One
may take L∧ = L for these L.)

lower distance bounds (that may be hidden in the topological assumptions, such as in the Zhu
paper) and are not sufficient, for instance, to show that the unit sphere Sn for n ≥ 4 admits
no metric g with Sc(g) ≥ n(n − 1) and such that the g-areas of all surfaces Σ in Sn satisfy
areag(Σ) ≥ C ⋅ areaSn(Σ) for arbitrary large C.
307All you have to know about S(X) is that it is a vector bundle associated with the tangent
bundle T (X), which can be defined for spin manifolds X, where "spin" is needed, since the
structure group of S(X) is the double cover of the orthogonal group O(n) rather than O(n)
itself.
308 See (L∧) in section 4.1.3 and references therein.
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But if the scalar curvature of X is ≥ σ for a large σ > 0, where this "large"
properly matches the above "small", then by the Schroedinger-Lichnerowicz-
Weitzenboeck formula the D⊗L∧ is positive and no such harmonic twisted spinor
exists; therefore, a suitably defined "area"(X) must be bounded by const

σ
. (See

the sections 3.3.4, 4.1.4 for a definition of this "area" called K-area and K-
cowaist.)

Next, recall that the Â-genus,

Â(X) = 1 −
1

24
p1 +

1

5760
(−4p2 + 7p2

1) + ... ∈H
∗
(X)

is a certain polynomial in Pontryagin classes pi ∈H4i(X) of X and

Ch(L) = rankC(L) + c1(L) +
1

2
(c1(L)

2
− 2c2(L)) + ... ∈H

∗
(X)

is a polynomial in Chern classes ci(L) ∈ H2i(X) of L, while [X] ∈ Hn(X)

denotes the fundamental class of X.
If n = dim(X) is even, the spin bundle S naturally splits, S = S+ ⊕ S−, the

D⊗L also splits: D⊗L = D+⊗L ⊕D
−
⊗L, for

D
±
⊗L ∶ C

∞
(S± ⊗L) → C∞

(S∓ ⊗L)

and the index formula reads:

ind(D±⊗L) = ±(Â(X) ⌣ Ch(L))[X].)

Relative Index Theorem on Complete Manifolds. Let X be a complete Rie-
mannian manifold the scalar curvature of which is uniformly positive at infin-
ity.309 Then the Schroedinger-Lichnerowicz-Weitzenboeck formula implies that

the Dirac operator is positive at infinity, i.e. outside some compact subset
V ⊂X:

∫
X
⟨D

2s(x), s(x)⟩dx ≥ ε∫
X

∣∣s(x)∣∣2dx

for some ε = ε(X) > 0 and all L2-spinors s supported outside V . This (easily)
implies, in turn, that the operators D± are Fredholm but the indices of these
operators depend on delicate information on geometry of X at infinity and no
simple formula for ind(D±) is available.

However if there are two operators D1 and D2, which are equal at infinity, e.g.
D1 = D

+
⊗L, and D2 = D

+
⊗∣L∣, where L→X is a bundle with a unitary connection,

where ∣L∣ is the trivial bundle of rank k = rankCL over X and where L comes
with an isometric connection preserving isomorphism with ∣L∣ at infinity, as in
section 3.14.2, then the difference of their indices – both are Fredholm for the
same reason as D±– satisfy the Atiyah-Singer formula:

ind(D+⊗L) − ind(D
+
⊗∣L∣) = (Â(X) ⌣ (Ch(L) −Ch∣L∣))[X].

where,

Ch(L) −Ch∣L∣ = c1(L) +
1

2
(c1(L)

2
− 2c2(L)) + ...

309It is shown in [Zhang(Area Decreasing) 2020] that "uniformly"can be dropped – "positive
at infinity" suffices.
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is understood as a cohomology class with compact supports and [X] is the
fundamental homology class with infinite supports.

More generally, if Di = D⊗Li , i = 1,2, where L1 is equated with L2 at infinity,
then

ind(D+1 ) − ind(D
+
2 ) = (Â(X) ⌣ (Ch(L1) −Ch(L2))[X],

where one needs the operators Di be positive at infinity.
The proof of this can be obtained by adapting any version of the local

proof of the compact Atiyah-Singer theorem (see (see [GL(complete) 1983],
[Bunke(relative index) 1992], [Roe(coarse geometry) 1996]).

Namely, the index is represented by the difference of the traces of families
of auxiliary operators K+

1,t −K
+
2,t and K

−
1,t −K

−
2,t, t > 0, where

(i) these K...,t-s are given by continuous kernels K...,t(x, y) which are
supported in the t-neighbourhood of the diagonal in X × X, i.e. where

dist(x, y) ≤ t;
(ii) K±

1,t(x, y) =K
±
2,t(x, y) for x and y in the complement of a compact subset

Vt ⊂X, where Vt1 ⊂ Vt2 for t2 > t1 and where ⋃t Vt =X;

(iii) trace(K+
1,t −K

+
2,t)− trace(K

1
1,t −K

1
2,t) = (Â(X) ⌣ (Ch(L1)−Ch(L2))[X];

for all t > 0;
(iv) the operators K±

i,t, i = 1,2, weakly converge310 for t→∞ to the projection
operators on the kernels of D±i.

The quickest way to get such K...,t is by taking suitable functions ψt of the
corresponding Dirac operators, where the Fourier transforms of ψt have compact
supports, and where (as in all arguments of this kind) the essential issue is the
proof of uniform bounds on the traces of the operators K±

1,t −K
±
2,t for t→∞.

Specific bounds for particular K...,t are crucial for an (approximate) exten-
sion of the index theory to non-complete manifolds, but these bounds are often
buried in the K-theoretic formalism of the recent papers. Also, I must admit,
this point was not explained (overlooked?) in the exposition of Roe’s argument
in my paper [G(positive) 1996].

4.1.1 Negative Sectional Curvature against Positive Scalar Curva-
ture

A characteristic topological corollary of the above is as follows.
[κ ≤ 0] ; [Sc ≯ 0]: If a closed orientable spin n-manifold X admits a

map to a complete Riemannian manifold X with sect.curv(X) ≤ 0,

f ∶X →X,

such that the homology image f∗[X] ∈Hn(X;Q) doesn’t vanish, then X admits
no metric with Sc(X) > 0.

Two Words about the Proof. All we need of sect.curv ≤ 0 is the existence of
distance decreasing maps from the universal covering of X to (large) spheres,

Fx ∶X → Sn(R), n = dim(X), x ∈X,

310 The corresponding functions K...,t(x, y) uniformly converge on compact subsets in X×X.
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which can be (trivially) obtained with a use of the inverse exponential maps

exp−1
x ∶ X̃ → Tx(X), x ∈X.

To make the idea clear, let X be compact, the fundamental group of X be
residually finite, (e.g. X having constant sectional curvature or, more generally
being a locally symmetric space) and X be embedded to X.

Let X⊥ ⊂ X be a closed oriented submanifold of dimension m = n − n for
n = dim(X), which has non-zero intersection index with X ⊂X.

Also assume that the restriction of the tangent bundle of X to X⊥ ⊂ X is
trivial.

Then – this is rather obvious – there exist finite covers X̃i → X, such that
the products of the lifts (i.e. pull-backs) of X and of X⊥ to X̃i, denoted X̃i×X̃

⊥
i ,

admit smooth maps to the spheres of radii Ri,

Fi ∶ X̃i ×X
⊥
i → Sn(Ri),

where
●1 Ri →∞,
●2 deg(Fi) ≠ 0,
● the maps Fi are distance decreasing on the fibers X̃i × x

⊥ for all x⊥ ∈ X⊥i
for the Riemannian metric in these fibers induced by the embedding X̃i × x

⊥ =
X̃i ⊂ X̃i.

It follows that for arbitrary Riemannian metrics g and g⊥ on X and on X⊥

there exists (large) constants λ and C independent of i, such that
the maps Fi are C-Lipschitz with respect to the sum of the lift of the metric g

to X̃i and the lift of λ ⋅ g⊥ to X̃⊥i that is the metric

g̃i ⊕ λ ⋅ g̃
⊥
i on X̃i × X̃

⊥
i .

If Sc(g) ≥ σ > 0, then also Sc(g̃i ⊕ λ ⋅ g̃⊥i ) ≥ σ′ > 0 for all sufficiently large
λ, which, for large Ri, rules out non-zero harmonic spinors on X̃i × X̃

⊥
i twisted

with the bundle L∗ = F ∗
i (L) induced from any given bundle L on Sn.

But if n = 2k and the Chern class ck(L) is non-zero, then non-vanishing of
deg(Fi) implies non-vanishing of of ind(D⊗L) via the index formula and the
resulting contradiction delivers the proof for even n and the odd case follows
with X × S1.

Remarks. This argument, which is rooted in Mishchenko’s proof of Novikov
conjecture for the fundamental group of the above X, which was adapted to
scalar curvature in [GL(complete) 1983] and further generalized/formalised in
[Rosenberg(C∗-algebras - positive scalar) 1984], and [CGM(Lipschitz control)
1993], doesn’t really need compactness of X, residual finiteness of π1(X) and
triviality of T (X)∣X⊥. Beside, the spin condition for X can be relaxed to that
for the universal cover of X.

Moreover, since the bound on the size of X̃i × Tn−n by const√
σ

can be ob-
tained with the use of minimal hypersurfaces (see §12 in [GL(complete) 1983]),
[G(inequalities) 2018] and section 5.4) the spin condition can be dropped alto-
gether.

Question. Are there other topological non-spin obstructions to Sc > 0?
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For instance, is the following true?
Conjecture. Let X be a closed orientable Riemannian n-manifold, such that

no closed orientable n-manifold X ′ which admits a map X ′ → X with non-zero
degree carries a metric with Sc > 0. Then there exists an integer m and a sequence
of maps

Fi ∶ X̃i ×Rm → Sn+m(Ri),

where X̃i are (possibly infinite) coverings of X, such that
● the maps Fi are constant at infinity and they have non-zero degrees,
● Ri →∞,
● the maps Fi are distance decreasing on the fibers X̃+i×x⊥ for all x⊥ ∈ Rm.311

Apparently, there is no instance of a specific homotopy class X of closed
manifolds X of dimension n ≥ 5, where a Dirac theoretic proof of non existence
of metrics with Sc > 0 on all X ∈ X couldn’t be replaced by a proof via minimal
hypersurfaces.

(This seems to disagree with what was said concerning the "quasisymplectic
theorem" ⊗∧ω in section 2.7.

In fact the general condition for Sc ≯ 0 in ⊗∧ω, can’t be treated, not as
it stands, with minimal hypersurfaces, but this may be possible in all specific
examples, where this condition was proven to be fulfilled.)

And it is conceivable when it comes to the Novikov conjecture, that its va-
lidity in all proven specific examples, can be derived by an elementary argument
from the invariance of rational Pontryagin classes under ε-homeomorphisms.312)

But even though the relevance of twisted Dirac theoretic methods is question-
able as far as topological non-existence theorems are concerned, these methods
seem irreplaceable when it comes to geometry of Sc ≥ σ.

4.1.2 Global Negativity of the Sectional Curvature, Singular Spaces
with κ ≤ 0, and Bruhat-Tits Buildings

The essential feature of complete spaces κ ≤ 0 (these often come under heading
of CAT(0)-spaces) needed for [Sc ≯ 0] is as follows.

[↺ε] Self-contraction Property. X admits a family of proper ε-Lipschitz
selfmaps φε ∶X →X, for all ε > 0, where these maps are properly homotopic to
the identity map id. 313

If X is a topological n-manifold, than this property implies the existence of
proper Lipschitz maps X → Rn of degree one, but unlike the latter it makes
sense for singular spaces that are not topological manifolds or pseudomanifolds.

On the other hand, if a possibly singular, say finite dimensional polyhedral
space X satisfies↺ε, then there exists a manifold X+

⊃X, which also satisfies

311See [Dranishnikov(asymptotic) 2000], [Dranishnikov(macroscopic) 2010], [DFW)flexible)
2003], [Dranishnikov( hypereuclidean) 2006] [BD(totally non-spin) 2015] and references therein
for relations between various largeness conditions (e.g. of universal covering of compact man-
ifolds) and their roles in the proofs of the Novikov conjecture and of non-existence of metrics
with Sc > 0.
312The original proof of topological invariance of Pontryagin classes by Novikov, as well as
simplified versions and modifications of his proof in [G(positive) 1996) automatically apply to
ε-homeomorphisms and, sometimes, to homotopy equivalences
313See [G(large) 1986] for more about such manifolds.
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↺ε, where the most transparent case is that of spaces X which come with free
isometric actions by discrete groups Γ with compact quotients X.

To derive X+ from X in this case, embed X/Γ ↪ RN , take a small regular
neighbourhood U ⊂ RN of X+

/Γ ⊂ RN and let Ũ → U . be the universal covering
of U .

Then this Ũ with a suitably blown-up metric serves for X+, where the sim-
plest such blow up is achieved by multiplying the (locally Euclidean) metric in
Ũ by the function 1

dist(ũ,∂U) .

In fact, what is truly needed for the non-existence argument, and what is
satisfied by complete simply connected spaces X with κ < 0 is the following
parametric version of [↺ε].

[↺ε↺ε]. There exist a continuous map Φε ∶ X ×X → X with the following
properties.

●ε the maps φε,x0
= Φε ∶X = x0×X →X are proper ε-Lipschitz for all x0 ∈X

and all ε > 0;
●n the restrictions of these maps φε,x0

∶ X → X to the n-skeleton X(n)
⊂ X

are proper homotopic to the inclusions X(n)
⊂X;314

●Γ the family φε,x0
is equivariant under the isometry group of X:

if γ ∶X →X is an isometry, then

φε,γ(x0) = γ ○ φε,x0
.

The above argument combined with that in the previous section yields the
following generalization of the non-existence theorem [κ ≤ 0]; [Sc ≯ 0].

[κ ≤ 0]global ; [Sc ≯ 0]: If a complete Riemannian spin manifold X̃ of
dimension n with a discrete (not necessarily free) co-compact isometric action of
a group Γ admits a proper Γ-equivariant map to an X which satisfies↺ε↺ε,
then infx(Sc(X,x) ≤ 0.

Corollary. Let Γ be a finitely generated subgroup in the linear groupGLN(C),315

let X be a compact oriented Riemannian spin n-manifold with Sc(X) > 0 and
let f ∶ X → B(Γ) be a continuous map, where B(Γ) denotes the classifying
(Eilenberg MacLane) space of Γ.

Then the image
f∗[X]Q ∈Hn(B(Γ);Q)

of the rational fundamental class

[X]Q ∈Hn(X;Q) for f∗ ∶H∗(X;Q) →H∗(B(Γ);Q)

is zero.316

Proof. A finite index subgroup in Γ freely,317 discretely and isometrically acts
on the product X of Riemannian symmetric spaces and Bruhat-Tits buildings,
where such products, according to Bruhat-Tits are
314Here we assume that X is triangulated and n denotes the dimension of a manifold X we
are going to map to X;
315One may place here any field instead of C.
316A more sophisticated theoretic version of this in the context of the Novikov conjecture
appears in [Kasp-Scan (Novikov) 1991].
317Finite index was needed for his "freely"
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complete simply connected polyhedral space with κ(X) ≤ 0.
Since↺ε↺ε apply to such spaces, the proof of the corollary follows.

Historical Remark. Around 1950, A.D. Alexandrov, H. Pedersen and Buse-
mann who suggested (two somewhat different) definitions of κ ≤ 0 applicable to
singular metric spaces, and their followers focused on essentially local geometric
properties of these spaces X, and tried to alleviate effects of singularities by
adding extra assumptions on X. 318

The theory of κ ≤ 0 has acquired a global mathematical status in early
seventies with the discoveries of Bruhat-Tits buildings (1972)319 and the link of
κ ≤ 0 with the index theory and the Novikov conjecture by Mishchenko(1974).

This has eventually led to the modern perspective on CAT(0)-spaces, i.e.
those with κ ≤ 0, the main interest in which is due to a multitude of signifi-
cant examples of singular CAT(0)-spaces with interesting fundamental groups
inspired by the ideas behind the construction(s) and applications of the Bruhat-
Tits buildings.

Hyperbolic Remark. "ε-Lipschitz" in the theorem [κ ≤ 0]global; [Sc ≯ 0]
is only needed on the large scale, that is expressed by the inequality

dist(fε,x0(x1), fε,x0(x2)) ≤ εdist(x1, x2) + const.

Thus, for instance,
the non-existence conclusion for metrics with Sc > 0 on X applies, where X is

the Vietoris-Rips complex of a hyperbolic group.
It follows, that the conclusion of the above corollary holds for hyperbolic

groups Γ:
Let X be a closed orientable Riemannian spin manifold with Sc(X) > 0 and

let Γ be a hyperbolic group. Then the class f∗[X]Q ∈Hn(B(Γ);Q) vanishes for
all continuous maps f ∶X → B(Γ).

"ε-Area" Remark. Instead of "ε-Lipschitz" one may require "ε-area con-
tracting" or some large scale counterpart to this condition.

This may be significant, because the ε-area version of [κ ≤ 0]global; [Sc ≯
0] is not-approachable with the (known) techniques of minimal hypersurfaces
and/or of stable µ-bubbles, while the above "ε-Lipschitz" [κ ≤ 0]global ;
[Sc ≯ 0] can be proved in many, probably in all, cases with these techniques
having an advantage of not requiring manifolds X to be spin.

On the other hand, for all I know, there is no example of an X, say with a
cocompact action of an isometry group Γ, which satisfies a version of↺ε↺ε

with the ε-contracting area property but not with the ε-Lipschitz one.320

4.1.3 Curvatures of Unitary Bundles, Virtual Bundles and Fredholm
Bundles

Let us try to formalise the concept of
318A brief overview of this circle of ideas is given in section 2.3 of [G(hyperbolic)2016] and
contributions by the Alexandrov’s school are presented in [AKP(Alexandrov spaces) 2017].
319Bruhat and Tits independently developed the local and global theory of their spaces being
unaware of definitions of κ ≤ 0 suggested by differential geometers.
320Neither, it seems, there are examples of X with compact quotients X/Γ, which satisfy
↺ε but not↺ε↺ε.
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"area", of a Riemannian manifold X, where this "area" is associated with cur-
vatures of vector bundles over X and which has the property of being bounded by
const ⋅ 1

σ
, for σ = infx Sc(X,x) > 0.

∣∣curv(L)∣∣. Given a vector bundle (L,∇) with an orthogonal (unitary in
the complex case) connection, over a Riemannian manifold X, let

∣∣curv(L)∣∣(x) = ∣∣curv(∇)∣∣(x) = ∣∣curv(L,∇)∣∣(x)

denote
the infimum of positive functions C(x), such that the maximal rotation an-

gles α ∈ [−π,π] of the parallel transports along the boundaries of smooth discs
D in X satisfy

∣α∣ = ∣αD ∣ ≤ ∫
D
C(d).321

(The holonomy splits into the direct sum of rotations z ↦ αiz, z ∈ C, αi ∈
T ⊂ C, i = 1,2, ..., rank(L), and our α = maxi αi.)

For instance, if D is a geodesic digon in S2 with the angles βπ, β ≤ 1, then
the holonomy of the tangent vectors around the boundary of D satisfies:

∣αD ∣ = 2βπ = area(D),

which agrees with the equality ∣curv∣(T (S2)) = 1.
It follows that the curvature of the tangent bundle (complexified if you wish)

of the product of spheres, satisfies

∣∣curv (T (⨉
i

Snj(Rj)))∣∣ =
1

minj R2
j

.

What is more amusing is that the even dimensional spheres Sn, n = 2m,
support unitary bundles L with with twice smaller curvatures and non-zero top
Chern classes,

∣curv∣(L) = 1
2
and cm(L) ≠ 0.

For instance, if n = 2, then the Hopf bundle, that is the square root of the
tangent bundle, has these properties and in general, the positive C-spin bundle
S+ can be taken for such an L.

This is the smallest curvature a non-trivial bundle over Sn may have:
Unitary vector bundles over Sn with ∣curv∣ < 1

2
are trivial.

Proof. Follow the parallel transport of tangent vectors from the north to the
south pole.

More generally
there are bundles L on the products of even dimensional spheres ⨉i Snj(Rj),

which are induced by λ-Lipschitz maps to Sn, n = ∑nj , λ = 1
minj R2

j
, such that

∣curv∣ ≤ 1
2 minj R2

j
and such that some Chern numbers of these L are non-zero,

and this is the best one can do.
In fact,

321This definition is adapted to vector bundles over rather general metric spaces, e.g. poly-
hedra with piecewise smooth metrics.
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If a unitary vector bundle L = (L,∇) over a product manifold Sn × Y has
∣curv∣(L) < 1

2
, then all Chern numbers of L vanish. (see §13 in [G(101) 2017]).

The role of the Chern numbers here is motivated by the following observation
(see [GL (spin) 1980, [G(positive) 1996]).

Let X be a closed orientable spin manifold of dimension n = 2m and L =

(L,∇) a unitary vector bundle, such that some Chern number of L doesn’t
vanish. Then

(L∧) there exists an associated bundle L∧, which is a polynomial in the
exteriors powers of L, such that

ind(D⊗L∧) ≠ 0

.
Since (it is easy to see) the degree and the coefficients of such a polynomial

must be bounded by a constant depending only on n, the curvature of L∧ satisfies

∣curv∣(L∧) ≤ constn∥curv∣(L);

Therefore,
● if the scalar curvature of a closed orientable 2m-dimensional spin manifold

satisfies Sc(X) ≥ σ > 0, then – this is explained in the previous section – non-
vanishing cm(L) ≠ 0, implies the following lower bound on the curvature of the
bundle L:

∣curv∣(L) ≥ ε ⋅ σ, ε = ε(n) > 0.

Open Problem. Prove ● without the spin condition.
The above suggest the definition of "area"(X) of a Riemannian manifold X

as the supremum of 1
∣curv∣(L) over all unitary vector bundles (L = L,∇) with

non-zero Chern numbers.
However, the "area" terminology we introduced in [G(positive) 1996], despite

several natural/functorial properties of this "area" (see [G(positive) 1996] and
[G(101 2017]), seems inappropriate, since this "area" is by no means additive.
A more adequate word , which we prefer to use from now on is K-cowaist.

Virtual Hilbert and Fredholm. To define this, we represent the (Grothendieck)
classes h of vector bundles over X, which are also called virtual (Fredholm)
bundles, by Fredholm homomorphisms between Hilbert bundles with unitary
connections Li = (Li,∇i), i = 1,2,

h ∶ L1 → L2,

where these h must almost commute, i.e. commute modulo compact s, with the
parallel transports in in L1 and L2 along smooth paths in X.

(This idea for flat bundles goes back to [Atiyah(global) 1969], [Kasparov(index)
1973], [Kasparov(elliptic) 1975], [Mishchenko(infinite-dimensional) 1974] and
where non-flat generalizations and applications are discussed in §9 1

6
of [G(positive)

1996].)
(Such an h represents the finite dimensional virtual (not quite) bundle

ker(h) − coker(h).)
Define
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∣curv∣(h) = max(∣curv∣∥(L1), ∣curv∣(L2))

and let
∣curv∣(h) = inf ∣curv∣(h)

where the infimum is taken over all h in the class h.
Why Hilbert? If one limits the choice of representatives of h to virtual finite

dimensional bundles L → X, then the resulting curvature function on K0(X)

may only increase:
∣curv∣(h)fin.dim ≥ ∣curv∣(h).

Apparently, this must be standard, the Hilbert spaces in the definition of Fred-
holm bundles can be approximated by finite dimensional Euclidean ones, 322

that implies that
∣curv∣(h)fin.dim = ∣curv∣(h),

but even so "Hilbert" allows greater flexibility of certain constructions, example
of which we shall see below.

Naive (Strong Novikov) Conjecture. Let Y be a compact aspherical323 Rie-
mannian manifold, possibly with a boundary. Then

all (classes of complex vector bundles) h ∈K0(Y ) satisfy:

inf
N

∣curv∣(N ⋅ h) = 0, N = 1,2,3, ..., .

Exercises. (a) Show that the equalities ∣curv∣(h) = 0 and infN ∣curv∣(N ⋅h) =
0 are homotopy invariants of Y .

(b) Show that if Y satisfies this naive conjecture and X is a closed Rie-
mannian orientable spin n-manifold with Sc(X) > 0, then all continuous maps
f ∶ X → Y send the fundamental rational homology class [X]Q ∈ Hn(X,Q) to
zero in Hn(Y,Q).

4.1.4 Area, Curvature and K-Cowaist

K-cowaist2. Given a Riemannian manifold Y (or a more general space, e.g. a
polyhedral one with a piecewise smooth metric), define the K-cowaist on the
homology classes h∗ ∈ H∗(Y ), denoted K-cowaist2(h) 324 as the infimum of
∣curv∣(h) over all h ∈K0(Y ), such that h(h∗) ≠ 0, where this equality serves as
an abbreviation for the value of the Chern character of h on h∗,

h(h∗) =def Ch(h)(h∗).

In these terms the above ● can be reformulated as follows.
K-cowaist Inequality for Closed Manifolds. The K-cowaists of (the fun-

damental classes of) closed orientable 2m-dimensional spin manifolds X with
Sc(X) ≥ σ > 0 satisfy:

●wst K-cowaist2[X] ≤
constm
σ

.

322This is an exercise that the author delegates to the reader.
323The universal covering of X is contractible.
324Subindex 2 is to remind that curvature of bundle L over Y is seen on restrictions of L to
surfaces in Y .
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Notice, that conjecturally, a similar inequality also holds for the ordinary
2-waist, (see [Guth(waist) 2014] for an exposition of this "waist") where it is
confirmed for 3-manifold by the Marques-Neves theorem (see section 3.10)

Exercises. Show that the K-cowaist is bounded by the hyperspherical radius
defined in section 3.10.1 as follows,

K-cowaist2[X] ≤ 4πRad2
S2m(X)

(b) Show that K-cowaist2(Sn) = 4π.
Almost Flat Bundles Over Open Manifolds. If X is a non-compact manifold,

then we deal with the K-theory with compact support that is represented by
Fredholm homomorphisms

h ∶ L1 → L2

which are isometric and connection preserving isomorphisms at infinity, i.e.
away from compact subsets in X where the corresponding K-group is denoted
K0(X/∞). (If X is compact then K0(X/∞) =K0(X)

Here the Hilbertian nature of "Fredholm" allows a painless (and obvious
by deciphering terminology) definition of the pushforward homomorphism for
possibly infinitely sheeted covering maps F ∶X1 →X2,

F⋆ ∶K
0
(X1/∞) →K0

(X2/∞),

where, clearly,
∣curv∣(F⋆(h)) ≤ ∣curv∣(h)

for all h ∈K0(X1/∞).

It follows that

K-cowaist2[X1] ≤K-cowaist2[X2]

for coverings X1 →X2 between orientable Riemannian manifolds.
On K-cowast Contravariance. The compact support property of (virtual)

bundles L → X2 is preserved under pullbacks by proper maps F ∶ X1 → X2,
e.g. by finite coverings, but it fails, for instance, for infinitely sheeted coverings
F ∶X1 →X2.

This makes the inequality

K-cowaist2[X1] ≥K-cowaist2[X2]

(that is obvious for finitely sheeted coverings) problematic for infinite covering
maps F ∶X1 →X2.

This should be compared with the covariance problem for max-scalar curva-
ture which is defined in section 5.4.1 and which obviously lifts under covering
maps,

Scmax
prop[X1] ≥ Sc

max
prop[X2],

while the opposite inequality causes a problem (see section 5.4.1).
Question. Can one match the covariance of Scmax by a somehow generalized

K-cowaist2 that would be invariant under (finite and infinite) covering maps
F ∶X1 →X2?
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Specifically, one looks for almost flat (virtual) infinite dimensional Hilbert
bundles in a suitableK-theory, which would be compatible with the index theory
and with the Schroedinger-Lichnerowicz-Weitzenboeck formula in the spirit of
Roe’s C∗-algebras. c

Amenable Cutoff Subquestion. Let X2 be a closed orientable Riemannian
manifold of dimension n = 2k and let L → X2 be a vector bundle induced by
an ε-Lipschitz map f ∶ X2 → Sn from the positive spinor bundle L = S+ =

S+(Sn) → Sn. c Suppose that the fundamental group π1(X2) is amenable, let
X1 = X̃2 →X2 be the universal covering map and let

L̃ = F ∗
(L) →X1

be the pullback of L.
When do there exist unitary bundles L̃i → X1, i = 1,2, ..., with unitary

connections, such that
●∞ the bundles L̃i are flat trivial at infinity;
●∣L̃ there is an exhaustion of X1 by compact Følner subsets

V1 ⊂ ... ⊂ Vi ⊂ ... ⊂X1,

such that the restrictions of L̃i to Vi are equal to the restrictions of L̃,

(L̃i)∣Vi = L̃∣Vi ;

●∫ the integrals of the k-th powers of the curvatures of Li are dominated by
such integrals for L̃ over Vi,

∫X1
∣curv∣k(L̃I)dx1

∫Vi ∣curv∣
k(L̃)dx1

→
i→∞

0;

●ε the curvatures of all L̃i are bounded by

∣curv∣(L̃i) ≤ ε,

where ε = εn(ε) → 0 for ε→ 0.
(The Federer Fleming isoperimetric/filling inequality in the rendition of

[MW(mapping classes) 2018] may be useful here.)
Non-Amenable Cutoff Example. Let X(= X2) be a closed orientable Rie-

mann surface of genus ≥ 0 and L → X a complex line bundle with a unitary
connection, e.g. L is the tangent bundle T (X), the Chern number of which
c1(T (X))[X] = χ(X) doesn’t vanish for genus(X) > 0.

Let L̃→ X̃ be the lift (pullback) of L to the universal covering X̃(=X1) of X
and observe that there exit disks D̃2(R) ⊂ X̃, such that the parallel translates
over the boundary circles S̃1(R) = ∂D̃2(R) are a multiples of 2π and where the
radii R of such disks can be arbitrary large.

Then the restriction of L̃→ X̃ to such a disk D̃2(R) ⊂ X̃ extends to a bundle,
call it L̃R → X̃, which is trivial outside D̃2(R) and such that

c1(L̃R/S̃
1
(R)) ∼ area(D̃2

(R)) →
R→∞

∞,

provided the curvature of L (that is a closed 2-form on X) doesn’t vanish.

217



Problem for n > 2. The main difficulty in similarly trivializing at infinity
bundles over n-dimensional Riemannian manifolds X for n = dim(X) ≥ 3 seems
to be associated with the following questions.

Let Ub(k) = Ub(k,X), b ≥ 0, be the space of the unitary connections ∇ on a
trivial bundle L→X of rank k, such that ∣curv∣(∇) ≤ b.

(a) For which values b1 and b2 > b1 are the connections from Ub1(k) homo-
topic in Ub2(k) ⊃ Ub1(k)?

(b) When do the homomorphisms of the homotopy groups

πi(Ub1(k)) → πi(Ub2(k)), i ≥ 1,

induced by the inclusions Ub1(k) ↪ Ub2(k) vanish?
(c) How do the Whitney sum homomorphisms

Ub(k1) × Ub(k2) → Ub(k1 + k2)

behave in this respect?
In particular, what happens to the homomorphisms πi(Ub1(k)) → πi(Ub2(k))

under stabilization
Ub(k) × ... × Ub(k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

; (Ub(Nk))

for N →∞?
Exercise. Let X be a complete orientable even dimensional Riemannian

manifold with nonpositive sectional curvature. Show that there exists a K-class
h ∈K0(X/∞), such that

∣curv∣(h) = 0 and h[X] ≠ 0,

where [X] denotes the fundamental homology class of X with infinite supports.

4.1.5 Sharp Algebraic Inequalities for the L-Curvature in the Twisted
SLW(B) Formula

Normalization of Curvature. In so far as the scalar curvature is concerned we
are interested not in the curvature ∣curv∣(L) per se but rather in the norm of
the endomorphism()

R⊗L ∶ S⊗L→ S⊗L

in the Schroedinger-Lichnerowicz-Weitzenboeck formula for the twisted Dirac
operator,

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

(see the previous section) where this R⊗L is as following linear/tensorial com-
bination of the values of the curvature of L on the tangent bivectors in the
manifold X, (see [GL(spin) 1980],[Lawson&Michelsohn(spin geometry) 1989]
and section 3.3.3)

R⊗L(s⊗ l) =
1

2
∑
i,j

(ei ○ ej ○ s) ⊗R
L
ei∧ej(l),

where
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ei ∈ Tx(X), i = 1, ...n = dim(X) is an orthonormal frame of tangent vectors at
a point x ∈X,

s ∈ S, are spinors,
l ∈ L vectors in the bundle L,
RL(ei ∧ ej) ∶ L → L is the curvature of L (written down as the valued 2-form

on X)
and
"○" denotes the Clifford multiplication.
This suggest the definition of

λmin[curv]⊗S(L)

as the smallest (usually negative) eigenvalue of the ∣∣R⊗L∣∣.

∗ Example: Llarull’s algebraic inequality. [Llarull(sharp estimates)
1998] Let f ∶ X → Sn be a smooth 1-Lipschitz, or more generally, an area non-
increasing map and let L → X be the pullback the spinor bundle S(Sn). Then
this minimal eigenvalue of the R⊗L satisfies:

λmin[curv]⊗S(L) = −
1

4
(n(n − 1) = −

1

4
Sc(Sn).

(We return to this in correctedthe next section,)
Using this λmin[curv] instead of the ∣curv∣ one defines

λmin[curv]⊗S(h), h ∈K0(X),

as the supremum of λmin[curv]⊗S(L) for all (virtual) bundles L in the class of
h,

Accordingly one modifies the above K-cowaist2(h) and define the corre-
spondingK-cowaist coupled with spinors, denoted K-cowaist⊗S,2(h∗), h∗ ∈H∗(X),
as the supremum of λmin[curv]⊗S(h) over over all h ∈K0(Y ), such that h(h∗) ≠
0.

Then, for instance, the above ●wst for spin manifolds X takes more elegant
form:

K-waist⊗S,2[X] ≤
4

σ
for σ = inf

x
Sc(X,x) > 0.

Notice that this inequality, combined with the above∗, implies Llarull’s
geometric inequality RadSn(X) ≤

√
n(n−1)
σ

, which we discuss at length in the
next section.

Also this may give better formulae for K-cowaists of product of manifolds.
(See section 5.4.1 and also [G(positive) 1996] and [G(101) 2017] for other

known and conjectural properties of ∣curv∣(h) formulated in these papers in the
language of the K-area.)

4.2 Llarull’s and Goette-Semmelmann’s Sc-Normalised Es-
timates for Maps to Convex Hypersurfaces in Sym-
metric Spaces.

Let us now look closer at the above

R⊗L(s⊗ l) =
1

2
∑
i,j

(ei ○ ej ○ s) ⊗Rij(l),
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that is the endomorphism of ( on) the bundle S⊗L→X,
which appears in the zero order term in the twisted Dirac

D
2
⊗L = ∇

2
⊗L +

1

4
Sc(X) +R⊗L,

for
D⊗L ∶ C

∞
(S⊗L) → C∞

(S⊗L).

Example of L = S on Sn. Since the norm of the curvature of (the Levi-Civita
connection on) the tangent bundle is one, the norm of the curvature operators
Rij ∶ S→ S are at most ( in fact, are to) 1

2
,

∣∣Rij(s)∣∣ ≤
1

2
,

since the spin bundle S(X) serves as the "square root" of the tangent bundle
T (X), where this is literally true for n = dim(X) = 2, that formally implies the
inequality ∣∣Rij(s)∣∣ ≤

1
2
for all n ≥ 2.

And since the Clifford multiplication operators s↦ ei ⋅ ej ⋅ s are unitary,

∣∣R⊗L(s⊗ l)∣∣ ≤
1

4
n(n − 1) =

1

4
Sc(Sn)

This doesn’t, a priori, imply this inequality for all (non-pure) vectors v on the
tensor product S⊗L for L = S, but, by diagonalising the Clifford multiplication
operators in a suitable basis and by employing the essential constancy325 of the
curvature Rij of Sn, [Llarull(sharp estimates) 1998] shows that

∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
n(n − 1)

for all unit vectors θ ∈ S(Sn) ⊗ S(Sn).
This inequality for twisted spinors on Sn trivially yields the corresponding

inequality on all manifolds X mapped to Sn, where the bundle L → X is the
induced from the spin bundle S(Sn).

Namely, let X = (X,g) be an n-dimensional Riemannian manifold, f ∶ X →
Sn be a smooth map, L = f∗(S(Sn)), let df ∶ T (X) → T (Sn) be the differential
of f and

∧
2df ∶ ∧2T (X) → ∧

2T (Sn)

be the exterior square of df .326

Then the
R⊗L ∶ S(X) ⊗L→ S(X) ⊗L

satisfies
∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −∣∣ ∧

2 df ∣∣
n(n − 1)

4
, L = f∗(S(Sn)),

for all unit vectors θ ∈ S(X) ⊗ f∗(S(Sn)).
Moreover, – this is formula (4.6) in [Llarull(sharp estimates) 1998] –

325Some eigenvalues of this are ±1 and some zero.
326Recall that the norm ∣∣ ∧2 df ∣∣ measures by how f contracts/expands surfaces in X. For
instance the inequality ∣∣ ∧2 df ∣∣1 signifies that f decreases the areas of the surfaces in X.

220



∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
∣trace ∧2 df ∣,

where trace ∧2 df at a point x ∈X stands for

∑
i≠j
λiλj ,

for the differential df ∶ Tx(X) → Tf(x)(S
n) diagonalised to the orthogonal sum

of multiplications by λi.
This inequality, restricted to L+ = f∗(S+(Sn)) together with the index for-

mula, which says for this L+ that

ind(D⊗L+) =
∣deg(f)∣

2
χ(Sn),

provided X is a closed oriented spin manifold.
Thus we arrive at the proof of Llarull’s theorem in the Sc-normalized trace

form suggested by Mario Listing in [Listing(symmetric spaces) 2010].

⋆ trace ∧2 df -Extremality of Sn.327 Let X be a closed orientable Rie-
mannian spin n-manifold and f ∶X → Sn a smooth map of nonzero degree.

If

Sc(X,x) ≥
1

4
∣trace ∧2 df(x)∣

at all points x ∈Xn then, in fact, Sc(X) = 1
4
∣trace ∧2 df ∣ everywhere on X.

In fact, if n is even and χ(Sn) = 2 ≠ 0, this follows from the above.
And if n is odd, there are (at lest) three different reductions to the even di-
mensional case (see [Llarull(sharp estimates) 1998], [Listing(symmetric spaces)
2010], [G(inequalities) 2018]), but these are artificial and conceptually unsatis-
factory.

Also see see [Llarull(sharp estimates) 1998] and [Listing(symmetric spaces)
2010] for characterisation of maps f , where Sc(X) = 1

4
∣trace ∧2 df ∣.

Llarull’s estimate for the bottom of the spectrum of the curvature operator
in spin bundle S(Sn), was generalized by Goette and Semmelmann [Goette-
Semmelmann(symmetric) 2002] to the other Riemannian manifolds X with non-
negative curvature operators, and (in the Sc-normalized form suggested Listing)
resulted in the following.
⋆⋆ ∧2df -Extremality Theorem.328 Let X = (X,g) and X = (X.g)

be a closed orientable Riemannian spin n-manifolds. where X has non-negative
curvature operator and let f ∶X →X be a smooth map of non-zero degree.

If X has non-zero Euler characteristics, then this map can’t be strictly area
decreasing with respect to the Sc-normalised metrics g○ = Sc(g) ⋅ g and g○ =

Sc(g) ⋅ g.
This means that
if of the exterior square of the differential of f with respect to the original metrics

g and g is related to the scalar curvatures of the two manifolds by the inequality

Sc(g, x) ≥ ∣∣ ∧
2 df(x)∣∣Sc(g, f(x))

327This is Spherical Trace Area Extremality Theorem from section 3.4.1.
328This generalizes Spin-Area Convex Extremality Theorem from section 3.4.1.

221



at all x ∈X, where ∣∣ ∧2 df(x)∣∣ stands fo the sup-norm with respect to the metrics
g and g,

then the equality holds:

Sc(X,x) = ∣∣ ∧
2 df ∣∣Sc(g, f(x)).

Examples, Remarks, Conjectures. (a) All compact symmetric spaces have
non-negative curvature operators.

Also
(a1) the induced metrics in convex hypersurfaces in these spaces also have

the curvature operator non-negative,329

and
(a2) Riemannian products of manifolds with curv.oper ≥ 0 have curv.oper ≥

0.
(a3) By a theorem of Alan Weinstein [Weinstein(Positively curved) 1970],
submanifolds Xn

⊂ Rn+2 with non-negative sectional curvatures have non-
negative curvature operators.

(b) Llarull, Goette-Semmelmann, and Listing also analyzed the equality
cases in their papers and proved the corresponding rigidity theorems.

(c) Goette and Semmelmann also state in their paper an extremality/rigidity
result for odd dimensionalX, that was scrutinized and generalized in [Goette(alternating
torsion)2007].

(d) Besides symmetric spaces, Goette and Semmelmann proved ∧2df -extremality
for was proven for Kähler manifolds with positive Ricci curvature.330

(e) Conjecturally, neither spin nor χ(X) ≠ 0-condition are necessary for the
∧2df -extremality.

In fact, Goette and Semmelmann (as well as Min-Oo) prove their theorems
not only for spin manifolds but also for certain spinc-manifolds and also for for
spin maps f ∶ X → X between non-spin manifolds, i.e. where f pulls back the
Stiefel-Whitney class w2(X) to w2(X).

(f) The above extremality theorems were generalized in the original papers
to maps f ∶ X → X, where dim(X) = n = n + 4k, n = dim(X), and where f has
non-zero Â-degree, i.e. where the pullback f−1(x) ⊂X of a generic point x ∈X
has non-zero Â-genus.

T⋊-Stabilization of Extremality Theorems and Generalizations. The above
(f) suggests the following.c

Conjecture. If a Riemannin manifold X is ∧2df -extremal, then, for all X and
all smooth maps f ∶X →X, such that

Sc(g, x) > ∣∣ ∧
2 df(x)∣∣Sc(g, f(x)),

the generic pullback f−1(x) ⊂X is homologous (even bordant) in X to a subman-
ifold Y , which supports a metric with positive scalar curvature.

As it stands, this seems not very realistic.
329This was explained to me by Anton Petrunin, who introduced a class of metrics inherited
by convex hypersurfaces, see [Petrunin(convex) 2003].
330See [Goette-Semmelmann(Hermitian) 1999] and the earlier "symmetric" paper [Min-
Oo(Hermitian) 1998].
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However, if the extremality of X follows by the above kind of argument
relying on a sharp SLW(B)-inequality for the Dirac operator on X twisted with
the pullback L∗ = f∗(L) of some bundle L → X, with a unitary connection,
then, as we shall explain below,
⋆ ⋆ ⋆ the inequality Sc(g, x) > ∣∣ ∧2 df(x)∣∣Sc(g, f(x)) implies vanishing

not only of Â(f−1(x)) but of more general (all?) Dirac theoretic obstructions
for Sc > 0 on (n − n)-dimensional manifolds.331

The basic (and fairly general) instance of this is where X supports ε-flat
bundles Lε → X for all ε > 0 (i.e. Lε are endowed with unitary connections
the curvatures of which are bounded in norm by ε), such that that the indices
of the Dirac operator D on X twisted with L∗ ⊗ Lε, as expressed by the index
formula, don’t vanish for ε→ 0.

Since the norm of the connection curvature term in SLW(B)-formula for the
operator D⊗(L∗⊗Lε) converges, for ε→ 0, to that for D⊗L∗ , the inequality

Sc(g, x) − ∣∣ ∧
2 df(x)∣∣Sc(g, f(x)) ≥ δ > 0

implies vanishing of of the index of D⊗(L∗⊗Lε) for ε << δ and the proof follows.
Remarks and Examples. (a) The bundles Lε can be understood in a fairly

general way, e.g. is virtual Fredholm bundles, as families of such bundles or,
more generally as moduli over the (reduced) C∗-algebra of a quotient group of
the fundamental group of X.

(b) If X = X0 × X1, where X1 is a compact orientable Riemannin spin
manifold with curv.oper(X0) ≥ 0 as in ⋆⋆, if X is orientable spin, and if f ∶
X →X is a map of non-zero degree, such that Sc(g, x) > ∣∣∧2 df(x)∣∣Sc(g, f(x)),
then, probably, the rational Rosenberg index(see [Zeidler(width) 2020])

α(X1) ∈ (KOn1
(C∗π1(X1))) ⊗Q

vanishes.
I feel shaky in these matters (this must be obvious to the readers well versed

in the K-theory of C∗-algebras) but the proof of this is transparent in many
cases.

For instance, this is so
if the universal covering X̃1 of X1 is ∧2-hyper-Euclidean i.e. there exists a

smooth proper area non-decreasing map X̃1 → Rn1 , n1 = dim(X1),
In fact, the above considerations and the relative index theorem yield the

following more general proposition.
☀ Non-compact Extremality Theorem. Let X and X0 be connected

orientable Riemannin spin manifolds of dimensions n and n0, where X is complete
and X0 is compact, and let the curvature operator of X0 be non-negative.

Let
f = (f0, f1) ∶X →X0 ×Rm, m = n − n0,

be a smooth proper map with non-zero degree.
331 The simplest instance of this, where X = Sn and where X is a warped extension X0⋊,T1,
was observed in §5 4

9
in [G(positive) 1996], and used for the proof of a special case of C0-closure

theorem from section 3.1.3.
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Let X0 be simply connected, let the Euler characteristics of X0 don’t vanish,
χ(X0) ≠ 0, and let the map f1 ∶X → Rm be area non-increasing. Then

inf
x∈X

(Sc(g, x) − ∣∣ ∧
2 df(x)∣∣ ⋅ Sc(g, f(x)) ≤ 0.

Proof. Here, the relevant bundle L∗ → X is the f0-pull back of the positive
spin bundle S+(X0) (as in ⋆ and in ⋆⋆) from X0 to X, while the bundles
Lε → X are the f1 pullbacks of the complex ε- flat bundles of ranks l = m

2
(if

m is odd, multiply X and X0 by R1) on Rm with compact supports (e.g. flat
split at infinity) and such that they have their relative Chern numbers cl → ∞

for ε→ 0.
This and non-vanishing of χ(X0 imply (half line computation) the non-

vanishing of the relative index of D⊗(L∗⊗Lε) by the relative index theorem. and
the proof concluded is with the (ε-perturbed) SLW(B)-formula for X0 as in the
Goette-Semmelmann theorem⋆⋆.

Remarks/Corollaries (a) Probbaly, it is is not hard to prove rigidity of X0

in this case.
(b) Instead of "simply connected and χ(X0) ≠ 0" one could requirer that

the universal covering X̃0 has non-zero Euler characteristics.
Indeed, by the Gromoll-Meyer theorem, X̃0 isometrically splits,

X0 =X
′
0 ×Rk,

where X ′
0 is compact simply connected and the theorem apples to X ′

0 ×Rk+m.
(c) The above proof, similarly to these of ⋆ and ⋆⋆, easily generalizes

to maps f with non-vanishing Â-degrees.
Question. Can one approach the above conjecture from the opposite angle by

actually constructing (n −m)-submanifolds in X with positive scalar curvatures
in the homology class of f−1(x)?

(Application of µ-bubbles, as we know, allows such constructions, but these
fail to deliver sharp inequalities of this kind).

4.3 Bounds on Mean Convex Hypersurfaces
Recall that the spherical radius RadSn−1(Y ) of a connected orientable Rieman-
nian manifold of dimension (n−1) is the supremum of the radii R of the spheres
Sn−1(R), such that X admits a distance decreasing map f ∶ Y → Sn−1(R) of
non-zero degree, where this f for non-compact Y this map is supposed to be
constant at infinity.332

We already indicated in section 3.5 also see [G(boundary) 2019] that Goette-
Semmlenann’s theorem (above ⋆⋆), applied to smoothed doubles DDX and
DDX yields the following corollary.

#n−1Let X be a compact orientable Riemannian manifold with boundary
Y = ∂X.

If Sc(X) ≥ 0 and the mean curvature of Y is bounded from below bymean.curv(Y ) ≥

µ > 0, then the hyperspherical radius of Y for the induced Riemannian metric
332Alternatively, one might require f to be locally constant at infinity, or more generally, to
have the limit set of codimension≥ 2 in Sn−1(R).
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is bounded by

RadSn−1(Y ) ≤
n − 1

µ
.

In fact, the proof of this indicated in section 3.5 (also see [G(boundary)
2019]) together with the above ☀ yields the following more general theorem.

☀mean Non-Compact Mean Curvature Inequality. Let X and X0

be connected orientable Riemannin spin manifolds of dimensions n and n0 with
boundaries, whereX is complete andX0 is compact, and let the curvature operator
of X0 be non-negative.

Let
f = (f0, f1) ∶X →X0 ×Rm, m = n − n0,

be a smooth proper map, which sends ∂X → ∂X0 × Rm and which has non-zero
degree.

Let X0 be simply connected, let the Euler characteristics of X0 don’t van-
ish, χ(X0) ≠ 0, let the map f1 ∶ X → Rm be area non-increasing and let the
restriction of this map to the boundary of X, be distance non-increasing, i.e.

∣∣df1(x)∣∣ ≤ 1 for x ∈ ∂X.

If

scal≥ Sc(g, x) − ∣∣ ∧
2 df(x)∣∣ ⋅ Sc(g, f(x)) ≥ 0

then

mean≤ inf
x∈∂X

(mean.curv(∂X,x) − ∣∣df(x)∣∣ ⋅mean.curv(∂X0 ×Rm, f(x))) ≤ 0.

Remarks. (a) If Sc(X0) = 0, (hence, X0 is Riemannian flat) then the condi-
tion scal≥ reduces to Sc(X) ≥ 0.

(b) The inequality mean≤ also yields some information for manifolds X with
negative scalar curvatures bounded from below.

For instance, if X is compact and Sc(X) ≥ −2), then mean≤, this is achieved
by applying ☀mean to maps from X × S2 to the unit balls Bn+2 ⊂ Rn+2 (see
[G(boundary) 2019]).

However, the sharp inequalities for Sc(X) < 0, such, for instance, as opti-
mality of the hyperspherical radii of the boundary spheres of balls Bn(R) in the
hyperbolic spaces Hn−1, remain conjectural.333

(c) It is unknown if the spin condition onX is necessary, but it can be relaxed
by requiring the universal cover of X, rather than X itself is spin.(This done
with the L2-version of the Goette-Semmelman theoremGoette-Semmelmann

And if one is content with a non-sharp bound

RadSn−1(Y ) ≤
constn

infmean.curv(Y )
,

333 This "optimality" means that if Sc(X) ≥ −n(n − 1) and mean.curv(∂X) ≥
mean.curv(∂Bn(R)) than RadSn−1(∂X) ≤ RadSn−1(∂Bn(R)).
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then one and can prove this without the spin assumption by the by a capillary
version of the (iterated) warped product argument for manifolds with boundaries
5.6. 5.8.1.

(d) Unavoidable approximation error terms in the smoothing of the corners
in the doubles DDX and DDX0 make our proof of ☀mean poorly adjusted for
establishing rigidity of X0 ×Rm.

For this purpose, it would be better to use Lott’s index theorem for manifolds
with boundary.

In fact, Lott himself proves in [Lott(boundary)2020] a non-normalized rigid-
ity theorem for compact manifolds X0 of even dimension n.

Apparently, Lott’s argument extends to the Sc- and mean.curv- normalized
case and non-compactness of X0 also causes no serious problem. But it is
unclear how handle the case of odd n without an approximation argument.

The simplest case, where this difficulty arises is for maps from compact
manifolds X to odd dimensional balls Bn ⊂ Rn and to products of such balls by
tori, X0 = B

2k+1 × Tn−2k−1, where ☀mean applies to the universal coverings of
these manifolds.

Possibly on can resolve the problem with a generalized Bourguignon-Kazdan
-Warner perturbation theorem or with (also generalized) Burkhart-Guim’s reg-
ularized Ricci flow argument.

4.4 Lower Bounds on the Dihedral Angles of Curved Poly-
hedral Domains

We want to generalise the above ☀mean to manifolds X with non-smooth
boundaries with suitably defined mean curvatures bounded from below, where
we limit ourself to manifolds with rather simple singularities at their boundaries.

Namely, let X and X be Riemannian n-manifolds with corners, which means
that their boundaries Y = ∂X and Y = ∂X are decomposed into (n − 1)-faces
Fi and F i correspondingly, where, locally, at all points y ∈ Y , and y ∈ Y these
decompositions are is diffeomorphic to such decomposition of the boundary of
a convex n-dimensional polyhedron (polytope) in Rn.

Let f ∶ X → X be a smooth map, which is compatible with the corner
structures in X and X:

f sends the (n − 1)-faces Fi of X to faces F i of X.
Assume as earlier that

scal≥ Sc(X,x) ≥ ∣∣ ∧
2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X

and replace mean≤ by the opposite inequalities applied to for all faces Fi ⊂ Y
individually,

mean≥ mean.curv(Fi, y) ≥ ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi .

Let ∠i,j(y) be the dihedral angle between the faces Fi and Fj at y ∈ Fi ∩Fi
and let us impose our main inequality between these ∠i,j(y) for all Fi and F )j
and the dihedral angles between the corresponding faces faces F i and F j at the
points f(y) ∈ F i ∩ F j :

[≤]∠ij ∠i,j(y) ≤ ∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .
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Besides the above, we need to add the following condition the relevance of
which remains unclear.

Call a point y ∈ Y = ∂X suspicious if one of the following two conditions is
satisfied

(i) the corner structure of X at y is non-simple (not cosimplicial), where
simple means that a neighbourhood of y is diffeomorphic to a neighbourhood of
a point in the n-cube, which is equivalent to transversality of the intersection
of the (n − 1)-faces which meet at y;

(ii) there are two (n − 1)-faces in X which contain y, say Fi ∋ y and Fj ∋ y ,
such that the dihedral angle ∠ij = ∠(Fi, Fj is > π

2
;

Then out final condition says that

[≡]∠ij ∠i,j(y) = ∠i,j(f(y)).

for all suspicious points y.
p∠ij Compact Dihedral Extremality Theorem. . Let X and X

be compact connected orientable Riemannin spin manifolds of dimension n with
corners, where the curvature operator of X be non-negative, all faces F i ⊂ ∂X are
mean convex. Let f ∶ X → X be a smooth proper corner map, (it respects the
corner structure) of non-zero degree and let f satisfy the four conditions scal≥
and mean≥, [≤]∠ij and [≡]∠ij

If the universal covering of X has non-zero the Euler characteristics χ(X̃) ≠

0, then f satisfies the equalities corresponding to the inequalities scal≥, scal≥,
[≤]∠ij :

Sc(X,x) = ∣∣ ∧
2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X,

mean.curv(Fi, y) = ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi,

∠i,j(y) = ∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .

About the Proof. This is shown by smoothing the boundaries of X and of X
and applying ☀mean from the previous section, to the universal covering of X
and the corresponding (induced) covering of X 334 where an essential feature of
non-suspicious points follows from the following

Elementary Lemma. Let ∆ ⊂ Sn be a spherical simplex with all edges of
length ≥ l ≥ π

2
. Then there exists a continuous family of simplices ∆t ⊂ S

n, t ∈ [0,1]
with the following properties.

● ∆0 = ∆ and ∆1 is a regular simplex with the edge length l;
● all ∆t have the edges of length ≥ l;
● ∆t2 ⊂ ∆t1 for t2 ≥ t1;
● for each t < 1 there exists an ε > 0, such that n (out of n + 1) vertices of

∆t+ε coincide with those of ∆t.335

334 If, instead of "X is spin" we only assume "the universal covering of X is spin", then we
pass to this universal covering of X and use there the L2-index theorem.
335This Lemma explains the role of the condition [=]∠ij in our proof. The conclusion of
the Lemma fails, in general to be true for obtuse angles (it seems OK if there is a single obtuse
angle at each vertex , e.g, as it is for products of convex polygons) but it remains unclear if
this condition is needed for the validity of the theorem itself.
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The proof of the lemma is a high school exercise while construction of ad-
equate smoothing of X with the help of this lemma, which is straightforward
and boring, will be given elsewhere.

Notice that the ×▲i-Inequality from section 3.18, which says that
convex polyhedra X ⊂ Rn with the dihedral angles ≤ π

2
admit no deformations

which would decrease their dihedral angles and simultaneously increase the mean
curvatures of their faces,
is an immediate corollary of p∠ij .

Two Problems. 1. There is little doubt that the above extremal manifolds
with corners X are rigid, but our argument, as we explained this in the previous
section is, technically, not good enough for proving it, and no index theorem
theorem for general manifolds with corners is available, at least not at the
present moment.

2. It remains unclear what is the full class of extremal polyhedra and mani-
folds with corners in general, but the following generalization of p∠ij is easily
available.

Fundamental Domains of Reflection Groups. What underlies the double DD-
construction, X ; DDX in the proof of the p∠ij theorem is the doubling Sn=
DDSn+ , which is associated with the reflection of Sn with respect to the equatorial
subsphere.

With this in mind, one can generalise everything from this section to general
reflection groups, including spherical, Euclidean and hyperbolic ones, (such as
we met in section 3.1.1) and also to products of these.

Example of Corollary. Let X be a compact manifold with corners, where
the (combinatorial) corner structure is isomorphic to that of the product of an
(n − m)-simplex ▲ with the rectangular fundamental domain ∎ (orbifold) of a
cocompact reflection group in an aspherical m-manifold.336

If X is spin, than it admits no Riemannian metric g, such that Sc(g) ≥ 0,
where all faces have mean.curvg ≥ 0 and where the dihedral angles are smaller
than the corresponding angles in the product of the regular Euclidean simplex
▲ by ∎ with π

2
dihedral angles.

Problem with Rigidity. If not for

4.5 Stability of Geometric Inequalities with Sc ≥ σ and
Spectra of Twisted Dirac Operators.

Sharp geometric inequalities, as we explained in section 3.19, beg for a company
of their nearest neighbours.

For instance, the Euclidean isoperimetric inequality for bounded domains
X ⊂ Rn, which says that

voln(X) ≤ γnvoln−1(∂X)
n
n−1 for γn =

vol(Bn)

voln−1(Sn−1)
n
n−1

,

goes along with the following.

A. Rigidity. If voln(X) = γnvoln−1(∂X)
n
n−1 , then X is a ball.

336These exist for all m ≥ 4 by Michael Davis 1983 theorem, see his lectures [Dav(orbifolds)
2008] and references therein.
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B. Isoperimetric Stability. Let X ⊂ Rn be a bounded domain with
voln(X) = voln(B

n) and vol(∂X) ≤ voln−1(S
n) + ε.

Then there exists a ball B = Bnx (1 + δ) ⊂ Rn of radius δ with center x ∈ X,
where δ →

ε→0
0, such that the volume of the difference satisfies

voln(X ∖B) ≤ δ1,

and, moreover,

voln−1(∂B ∩X) ≤ δ2, and voln−2(∂B ∩ ∂X) ≤ δ3,

where
δ1, δ2, δ3 →

ε→0
0.

(Unless n = 2 and X is connected, there is no bound on the diameter of
X, but the constants δ, δ1, δ2, δ3 can be explicitly evaluated even for moderately
large ε.)

In the case of sharp scalar curvature inequalities, their poofs by Dirac theo-
retic methods337(more or less) automatically deliver rigidity. For instance,

⋆ if a manifold X homeomorphic to Sn, besides having curv.oper(X) ≥ 0
has Ricci(X) > 0 and if X is a closed orientable spin Riemannian manifold with
Sc(X) ≥ n(n− 1) then, all smooth 1-Lipschitz maps X →X of non-zero degrees
are isometries. 338

What we want to understand next is what happens if the inequality Sc(X) ≥

n(n−1) is relaxed to Sc(X) ≥ n(n−1)−ε for a small ε > 0, where an application
of thin surgery1.3 delivers the following.

Example.339 Let Σ ⊂ Sn be a compact smooth submanifold of dimension
≤ n − 3. Then there exists an arbitrary small ε-neighbourhood Uε = Uε(Σ) ⊂ Sn

with a smooth boundary ∂ε = ∂Uε and a family of smooth metrics gε,ε on the
double

DD(Sn ∖Uε) = (Sn ∖Uε) ∪∂ε (S
n ∖Uε),

where Sc(gε,ε) ≥ n(n− 1) − ε− ε and which, for ε→ 0, uniformly converge to the
natural continuous Riemannian metric on DD(Sn ∖Uε(Σ).

Moreover, if Σ ⊂ Sn is contained in a hemisphere, then – this follows from the
spherical Kirszbraun theorem – the (double) manifolds DD(Sn ∖ Uε, gε,ε) admit
1-Lipschitz maps to the sphere Sn with degrees one, for all sufficiently small
ε > 0 and , ε = ε(ε) →

ε→0
0.

For instance, if n ≥ 3 and Σ consists of a single point, then DD(Sn ∖ Uε),
that is the connected sum Sn#Sn = Sn#Sn−1(ε)S

n of the sphere Sn with itself

337See [Llarull(sharp estimates) 1998], [Min-Oo(Hermitian) 1998], [Goette-
Semmelmann(symmetric) 2002], [Listing(symmetric spaces) 2010], [Zeidler(width) 2020],
[Zhang(area decreasing) 2020], [Lott(boundary) 2020], [Guo-Xie-Yu(quantitative K-theory)
2020].
338Even if Ricci vanishes somewhere, one still may have a satisfactory description of the
extremal cases. For instance, if X = (Sn−m × Rm)/Zm, e.g. X = Sn−m × Tm, then all
(orientable spin) X with Sc(X) ≥ Sc(X) = (n −m)(n −m − 1), which admit maps f ∶ X → X
with deg(f) ≠ 0, are locally isometric to X (albeit the map f itself doesn’t have to be a local
isometry.
339Compare with [GL(classification) 1980], [BaDoSo(sewing Riemannian manifolds) 2018]
and section 2 in [G(101) 2017].
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(where the ε-sphere Sn−1(ε) serves as ∂ε and Sn#Sn is homeomorphic to Sn),
admits, for small ε, a 1-Lipschitz map to Sn with degree 2.

Furthermore, iteration of the connected sum construction, delivers manifolds
(topologically spheres)

(Sn)k#ε = Sn#Sn−1(ε)S
n#...#Sn−1(ε)S

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

m

which carry metrics with Sc(Sn)k#ε ≥ n(n − 1) − ε − ε and, at the same time,
admit maps to Sn of degree k, where these maps are 1-Lipschitz everywhere and
which are locally isometric away from

√
ε-neighbourhoods of k − 1 ε-spherical

"necks" in (Sn)k#ε .
(For general Σ and even k one has such maps f with deg(f) = k/2.
Conjecturally, this example faithfully represents possible geometries of

closed Riemannian n-manifolds X with Sc(X) ≥ n(n − 1) − ε, which admit
1-Lipschitz maps to the unit sphere Sn, but only the following two, rather
superficial, results of this kind are available.

1. Let X = (X,g) be a closed oriented Riemannian spin n-manifold with
Sc(X) ≥ n(n − 1) − ε and let f ∶ X → X = Sn be a smooth 1-Lipshitz map of
degree d ≠ 0 and let Jf(x) = ∧ndf denote the Jacobian of f .

Let X≤λ ⊂X denotes the subset, where ∣Jf(x)∣ ≤ λ, for some λ < 1.
Then the signed f -volume of X≤λ satisfies

[∣X≤λ∣ ≤] ∣volf(X≤λ)∣ =def ∣∫
X≤λ

Jf(x)dx∣ ≤ cλ,n,Ṽ (ε) →
ε→0

0.340

(Observe that since f is 1-Lipschitz, ∣Jf ∣ ≤ 1 and 1 − ∣Jf(x)∣
−1 measures the

the distance from the differential df(x) ∶ Tx(X) → Tf(x)(X) to being isometry.)
Sketch of the Proof. Since the twisted DiracD⊗ in Llarull’s rigidity argument

from [Llarull(sharp estimates) 1998] has non-zero kernel, its square D2
⊗ is non-

positive (we assume here that n = dim(X) = dim(X) is even), and, by the
Bochner-Schrödinger-Lichnerowicz-Weitzenböck formula (that is above [D2

⊗]f ),
this implies non-positivity of

∇
2
+

1

4
Sc(X) +R⊗.

Consequently, −∆g −
1
4
(ε + (1 − l(x))), where ∆g is an ordinary Laplace on

X = (X,g), also non-positive, since the coarse (Bochner) Laplacian ∇2 is "more
positive" than the (positive) Laplace(-Beltrami) −∆ as it follows from the Kac-
Feynman formula and/or from the Kato inequality.

(In general, this applies in the context of the above rigidity theorem ⋆
and yields non-positivity of −∆g −

1
4
(ε +C(1 − lf(x)) with C depending on the

smallest eigenvalue of Ricci(X).)
In order to extract required geometric information concerning the metric g̃

from this property of the metric g, we observe that the essential part of X, that
340This was incorrectly stated in an earlier version of this text for non-signed volume of f ,
that is ∫ ∣Jf (x)∣dx; the error was pointed out to me by Bernhard Hanke.
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is the one, where we need to bound from below the L2-norms of the g-gradients
of functions φ(x) (to which the above ∆g applies) is where

λ ≥ lf(x) ≥ λṼ > 0

for some λṼ > 0, and where the geometries of g and of g̃ are mutually (λṼ )−1-
close.

Thus, the relevant lower g-gradient estimate for φ(x) comes from the isoperi-
metric inequality for g̃ which, in turn, follow from such an inequality in X, that
is the sphere in the present case. (Filling in the details is left to the reader.)

Remark. (a) The above example shows that the g-volume of X≤λ ⊂ X can
be large and that the bound on Ṽ concerns not only the subset X≤λ but its
complement X ∖X≤λ as well.

Corollary + Question. (a) Let X be a closed orientable Riemannian spin
n-manifold with Sc(X) ≥ n(n − 1) and let f ∶ X → Sn a (possibly non-smooth!)
1-Lipshitz map of degree ≠ 0.

If the map Y is a homeomorphism, then it is an isometry.
(b) Is this remain true for all 1-Lipshitz maps?

The inequality [∣X≤λ∣ ≤] doesn’t take advantage of deg(f) when this is large,
but the following proposition does just that.

2. Let X be a compact oriented Riemannian spin n-manifold with a boundary
Y = ∂X, such that Sc(X) ≥ n(n − 1) + ε, ε > 0.

Let f ∶ X → Sn be a smooth map, which is constant on Y , which is area
contracting away from the a neighbourhood U ⊂X of Y = ∂X ⊂X,

∣∣ ∧
2 df(x)∣∣ ≤ 1 for all x ∈X ∖U,

and where

∣∣ ∧
2 df(x)∣∣ ≤ Co for all x ∈X ∖U and some constant Co > 0.

Then the degree of f is bounded by a constant d depending only on U and on
Co,

∣deg(f)∣ ≤ d = constU,Co .

Sketch of the Proof. (Compare with §§5 1
2
and 6 in [G(positive) 1996].) Let

s(x) be the (Borel) function on X which equals to ε away from U and is equal
to E = −Cn ×Co on U for some universal Cn ≈ nn.

Then arguing (essentially) as in the first part of the above proof, we conclude
that the spectrum of the −∆ + s(x) on the (smoothed) double DD(X) contains
at least d = deg(f) negative eigenvalues.

This an easy argument would deliver d eigenvalues λi of the −∆ on DD(U),
where the corresponding eigenfunctions vanish on the two copies of the boundary
of U in X (but not, necessarily on Y ), and such that λi ⪅ E.

This would yield the required bound on d. (Here again, the details are left
to the reader.)

Remark + Example + Two Problems. (a) If the boundary of Y = ∂X admits
an orientation reversing involution, then the constancy of f on Y can be relaxed

231



to dim(f(Y )) ≤ n−2, where the constant d will have to depend on the geometry
of this involution and of the map Y → Sn.

(It is unclear if the existence of such an involution is truly necessary.)
(b) This (a) apply, for instance, to coverings X = Σ2

d,δ of the 2-sphere minus
two δ-discs as well as to the products of these Σ2

d,δ with the Euclidean ball
Bn−1(R) of radius R > π.

(c) What are the sharp and/or comprehensive versions of these 1 and 2?
(d) Let Y be a homotopy sphere of dimension 4k−1, which bounds a Riemannian

manifold X with Sc ≥ ε > 0. Give an effective bound on the Â-genus of X in terms
of the geometry of Y and its second fundamental form h = II(Y ⊂ X) and study
the resulting invariant

Invε(Y,h) = sup
X

∣Â(X)∣, where ∂X = Y, Sc(X) ≥ ε, II(Y ⊂X) = h.

4.6 Dirac Operators on Manifolds with Boundaries
When I was delivering these lectures in the Spring 2019, all known relevant for us
index theorems for (twisted) Dirac operators D directly applied only to complete
Riemannian manifolds. 341 But then Cecchini, Guo-Xie-Yu and Zeidler 342 have
developed

an index theory for manifold with boundary including the solution of the
long neck problem for spin manifolds by Cecchini (see section ??).
Even though, much(all?) what is presented in this and the following sections

4.6.1-4.6.5 may follow from the recent results of these authors, we keep it as it
was originally written, since this suggests an additional perspective on the role
of the Dirac operator in the geometry of scalar curvature.

As far as the scalar curvature is concerned, all the index theorems are needed
for is delivering non-zero harmonic or approximately harmonic (often twisted)
spinors on Riemannian manifolds X under certain certain geometric/topological
conditions on X, which, a priori, have nothing to do with the scalar curvature
but which are eventually used to obtain upper bounds on Sc(X) via the (usually
twisted) Bochner-Schrödinger-Lichnerowicz-Weitzenböck formula.

The index theorems for Dirac operators on closed manifolds can yield a
non-trivial information on existence of approximately harmonic spinors on non-
complete manifolds as well as on manifolds with boundaries, where the main
issue, say for manifolds with boundaries, can be formulated as follows.

Spectral D2-Problem. Let X be a compact Riemannian spin manifold with
a boundary and L → X be a (possibly infinite dimensional Hilbert) vector bundle
with a unitary connection.

Under which geometric/topological conditions does the first eigenvalue of the
twisted Dirac D⊗L on X with the zero boundary condition is ≤ λ > 0?
341This is not quite true: Roe partitioned index theorem and its generalization do allow
boundaries, see [Roe(partial vanishing) 2012], [Higson( cobordism invariance) 1991], [Schick-
Zadeh(multi-partitioned) 2015], [Karami-Zadeh-Sadegh(relative-partitioned) 2018] and sec-
tion 3.14.3.
342[Cecchini(long neck) 2020], [Guo-Xie-Yu(quantitative K-theory) 2020], [Zeidler(bands)
2019], [Zeidler(width) 2020], [Cecchini-Zeidler(generalized Callias) 2021], [Cecchini-
Zeidler(scalar&mean) 2021].
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In other words, when does X support a smooth non-zero twisted spinor s ∶X →
S(X) ⊗L, which vanishes on the boundary of X and such that

�λ ∫
X
⟨D

2
⊗L(s(x)), s(x)⟩dx ≤ λ

2
∫
X

∣∣s(x)∣∣2dx

for a given constant λ ≥ 0?343

Motivating Example. If X is obtained from a complete manifold X+ ⊃X by
cutting away X+ ∖X, and if X+ carries a non-vanishing (twisted) L2-spinor s+
delivered by applying the relative index theorem, then the cut-off spinor s = φ⋅s+,
for a "slowly decaying" positive function φ with supports in X satisfies�λ with
"rather small " λ.

Potential Corollary. Since

D
2
⊗L(s) ≥ ∇

2
⊗L(s) +

1

4
Sc(X)(s) − const′n∣curv∣(L)

by the Bochner-Schrödinger-Lichnerowicz-Weitzenböck formula and since

∫ ⟨∇
2
⊗L(s), s⟩ = ∫

X
⟨∇⊗L(s),∇⊗L(s)⟩ ≥ 0

for s∣∂X = 0, the inequality�λ implies

�Sc inf
x
Sc(X,x) ≤

4constn
ρ2

+ 4const′n∣curv∣(∇).

for some universal positive constants constn and const′n.
From a geometric perspective, the role of above is to advance the solution

of the following.
Long Neck Problem. Let X be an orientable (spin?) Riemannian n-

manifold with a boundary and f ∶ X → Sn be a smooth area decreasing map.

What kind of a lower bound on Sc(X,x) and a lower bound on the "length
of the neck" of (X,f), that is
the distance between the support of the differential of f and the boundary of X,

would make deg(f) = 0?
An instance of a desired result344 would be

[Sc(X) ≥ n(n − 1)]&[dist(supp(df), ∂X) ≥ constn] ⇒ deg(f) = 0,

but it is more realistic to expect a weaker implication

[Sc(X) ≥ n(n − 1)]&[dist(supp(df), ∂X) ≥ constn⋅ sup
x∈X

∣∣∣df(x)∣∣] ⇒ deg(f) = 0.

343Recall that the first eigenvalue of the Dirichlet problem is the infimum of
∫X ∣∣D⊗L(s(x))∣∣2dx taken over all L-twisted spinors s(x), such that s∣∂X = 0 and ∫X ∣∣s∣∣2dx =
1.
344This is settled for spin manifolds in [Cecchini(long neck) 2020].
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In fact, Roe’s proof of the partitioned index theorem as well as the proof
of the relative index theorem, e.g. via the finite propagation speed argument,
combined with Vaffa-Witten kind spectral estimates (see 6 1

2
in [G(positive)

1996]) suggest that
if a compact orientable Riemannian spin manifold of even dimension n with

boundary admits a a smooth map f ∶ X → Sn, which is locally constant on the
boundary of X and which has non-zero degree, then there exists a non-zero spinor
s, twisted with the pullback bundle L = f∗(S(Sn)) such that s vanishes on the
boundary ∂X and which satisfies�λ,

∫
X
⟨D

2
⊗L(s), s⟩ ≤ λ

2
∫
X

∣∣s∣∣2dx,

where
λ ≤ constn

supx∈X ∣∣df(x)∣∣

dist(supp(f), ∂X)
.

This still remains problematic, but we prove in the sections below some
inequalities in this regard for manifolds X with certain restrictions on their
local geometries.345

4.6.1 Bounds on Geometry and Riemannian Limits

Some properties of manifolds X with boundaries trivially follow by a limit ar-
gument from the corresponding properties of complete manifolds as follows.

A sequence of manifolds Xi marked with distinguished points xi ∈Xi is said
to Lipschitz converge to a marked Riemannian manifold (X∞, x∞), if

there exist (1+ εi)-bi-Lipschitz maps 346 from the balls Bxi(Ri) ⊂Xj to the
balls Bx

∞

(Ri) ⊂X∞, say

αi ∶ Bxi(Ri) → Bx
∞

(Ri + 1),

which send xi → x∞ and where

εi → 0 for i→∞.

Observe that if
dist(xi, ∂Xi) → ∞ for i→∞,

then the limit manifold X∞ is complete.
☀ Cheeger Convergence Theorem. If the (local) Ck-geometries of Riemannian

manifolds Xi at the points xi ∈ Bxi(Ri) for Ri →∞ are bounded (as defined below)
by c(dist(xi, xi)) for some continuous function b(d), d ≥ 0 independent of i, then
some subsequence of Xi converges to a Ck−1-smooth Riemannian manifold X∞.

See [Boileau(lectures) 2005] for the proof and further references.
Definition of Bounded Geometry. The Ck-geometry of a smooth Riemannian

n-manifold X is bounded by a constant g
¯
eq0 at a point x ∈ X, if the ρ-ball

Bx(ρ) ⊂X for ρ = 1
b
admits a smooth (1+ b)2-bi-Lipschitz map β ∶ Bx(ρ) → Rn,

345An influence of the metric geometry of a Riemannian manifold X on the spectra of twisted
Dirac operators on X is briefly duscussed in §6 of [G(positive) 1996].
346Here and below "λ-bi-Lipschitz" is understood as the λ-bound on the norms of the dif-
ferentials of our maps and their inverse.
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such that the norms of the kth covariant derivatives of β in Bx(ρ) are bounded
by b.

Notice that the traditionally defined bound on geometry in terms of the cur-
vature and the injectivity radius of X, implies the above one:

if the norms of the curvature tensor of X and its kth-covariant derivatives
are bounded by β2 and there is no geodesic loop in X based at x of length ≤ 1

β
,

then (the proof is very easy) the Ck+1-geometry of X at x is bounded by b(β)
for some universal continuous function b(β) = bn,k(β).
: Application of ☀ to Scalar Curvature. Let b = b(d) ≥ 0, d > 0, be

a continuous function and let (X,x ∈ X) be a marked compact Riemannian n-
manifold with a boundary, such that the local geometry of X at x ∈ X is bounded
by b(dist(x,x)) and let

R = dist(x, ∂X).

Let d0 be a positive number and let f ∶ X → Sn be a smooth area decreasing
map which is constant within distance ≥ d0 from x ∈ X and which has non-zero
degree.

A. If X is spin and n = dim(X) is even, then there exists a spinor s on X
twisted with the induced spinor bundle L = f∗(S(Sn)) →X, such that s vanishes
on the boundary ∂X of X and such that

∫
X
⟨D

2
⊗L(s), s⟩ ≤ λ(R)

2
∫
X

∣∣s∣∣2dx

where λ = λn,b,d0(R) is a certain universal function in R, which asymptoti-
cally vanishes at infinity,

λ(R) →
R→∞

0.

B. The scalar curvature of X is bounded by

inf
x∈X

≤ n(n − 1) + λ′n,b,d0(R),

where, similarly to the above λ, this λ′(R) → 0 for R → ∞.(One can actually
arrange λ′ = λ.)

Proof. According to Cheeger’s theorem, if R = dist(x, ∂X) is sufficiently
large , then X can be well approximated by a complete manifold X∞, where
such an X∞ supports a non-zero L-twisted harmonic spinor s∞ by the relative
index theorem.

Then this s can be truncated to si by multiplying it with a slowly decaying
function on X with compact support and then transporting it to the required
spinor on X.

This takes care of A and B follows by Llarull’s inequality.
Remarks. (a) The major drawback of : is an excessive presence and non-

effectiveness of the bounded geometry condition.
We don’t know what the true dependence of λ on the geometry of X is, but

we shall prove several inequalities in the following sections that suggest what
one may expect in this regard.
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(b) If the "area decreasing" property of the above map f ∶ X → Sn is
strengthened to "1-Lipschitz", then a version of B follows from the double punc-
ture theorem (see sections 3.9 and 5.5), which needs neither spin nor the bounded
geometry conditions.

4.6.2 Construction of Mean Convex Hypersurfaces and Applications
to Sc > 0

Since doubling of manifolds with mean convex boundaries preserves positivity
of the scalar curvature (see section 1.4), some problems concerning Sc > 0 for
manifoldsX with boundaries can be reduced to the corresponding ones for closed
manifolds by doubling mean convex domains X∯ ⊂ X across their boundaries
∂X∯ .

To make use of this, we shall present below some a simple criterion for the
existence of such X∯ and apply this for establishing effective versions of the
above B.

Let X be a compact n-dimensional Riemannian band (capacitor), that is the
boundary of X is divided into two disjoint subsets, that are certain unions of
boundary components of X,

∂X = ∂− ∪ ∂+

and let us give a condition for the existence of a domain X∯ ⊂X which contains
∂− and the boundary of which is smooth and has positive mean curvature.

Lemma. Let the boundaries of all domains U ⊂ X, which contain the d0-
neighbourhood of ∂X− for a given d0 < dist(∂−, ∂+), satisfy

[∗1] voln−1(∂U) > voln−1(∂−)

and let all minimal347 hypersurfaces Y ⊂X, the boundaries of which are contained
in ∂+ and which themselves contain points y ∈ Y far away from ∂+, namely, such
that

dist(y, ∂+) ≥ dist(∂−, ∂+) − d0,

satisfy

[∗2] voln−1(Y ) > voln−1(∂−).

Then there exists a domain X∯ ⊂ X which contains ∂− and such that the
boundary of which is smooth with positive mean curvature.

Proof. Let X0 ⊂ X minimises voln−1(∂X0) among all domains in X which
contain ∂− and observe that, because of [∗1], the boundary of X0 contains a
point y ∈ ∂X0 with dist(y, ∂+) ≥ dist(∂−, ∂+) − d0 and, because of [∗2], this X0

doesn’t intersect ∂+.
Then, by an elementary argument (see [G(Plateau-Stein) 2014]) the hyper-

surface ∂X0 can be smoothed and its mean curvature made everywhere positive.

[⋆⋆] Two Words about [∗2]. There are several well known cases of manifolds
where the lower bound on the volumes of minimal hypersurfaces Y ⊂ X, where
∂Y ⊂ partialX and where dist(y, ∂)X ≥ R for some y ∈ Y , are available.
347Here "minimal" means "volume minimizing" with a given boundary.
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For instance if X is λ-bi-Lipschitz to the R-ball in the simply connected
space Xn

κ with constant curvature κ, then the volume of Y is bounded from
below in terms of the volume of the R-ball Bn−1

0 (R) ⊂Xn−1
κ as follows.

Let g = dr2+φ2(r)ds2, r ∈ [0,R], be the metric in the ball B(R) = Bn−1
0 (R) ⊂

Xn−1
κ in the polar coordinates where ds2 is the metric on the unit sphere Sn−1

and let gλ = dr2 + φ2
λ(r)ds

2 be the metric (which is typically singular at R = 0),
such that the volumes of the concentric balls and of their boundaries satisfy

[⋆]
volgλ,n−1B(r)

volgλ,n−2(∂B(r))
= Ψλ(r) = λ

2n−3 volg,n−1B(r)

volg,n−2(∂B(r))
.

Then the standard relation between vol(Y ) and the filling volume bound in
X says that,

the volume of the above Y is bounded by volgλ,n−1(B(R)).348

Notice that [⋆] uniquely and rather explicitly defines the function φλ.
In fact, since

volgλ,n−2(∂B(r)) = φn−2
λ σn−2

for σn−2 = vol(S
n−2), and since

dvolgλ,n−1(B(r)

dr
= volgλ,n−2(∂B(r))

this [⋆] can be written as the following differential equation on φλ

φn−2
λ =

d(φn−2
λ Ψλ)

dr
,

where our φλ satisfies φλ(0) = 0. .

Examples of Corollaries.
A. Let X be a complete Riemannian n-manifold with infinite (n − 1)-volume

at infinity, which means that the boundaries of compact domains which exhaust
X,

U1 ⊂ U2 ⊂ ... ⊂ Ui ⊂ ... ⊂X,

have voln−1(Ui) → ∞.
If X contains no complete non-compact minimal hypersurface with finite

(n − 1)-volume, then X can be exhausted by compact smooth domains the
boundaries of which have positive mean curvatures.

Notice that according to [⋆⋆],
no such minimal hypersurface exists in manifolds with uniformly bounded,

or even, slowly growing, local geometries.
Also notice that
infinite non-virtually cyclic coverings X̃ of compact Riemannian manifolds X,

besides having uniformly bounded local geometries, also have infinite (n − 1)-
volumes at infinity; hence they can be exhausted by compact smooth mean convex
domains.
348The quickest way to show this is with a use of Almgren’s sharp isoperimetric inequality.
But since this still remains unproved for κ < 0, one needs a slightly indirect argument in this
case, which, possibly – I didn’t check it carefully – gives a slightly weaker inequality, namely
V ol(Y ) ≥ cn ⋅ volgλ,n−1(B(R)) for some cn > 0.
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And even the virtually cyclic coverings X̃ admit such exhaustions unless
they are isometric cylinders Y ×R.

Also notice that if X̃ is a Galois (e.g. universal) covering with non-amenable
deck transformation (Galois) group, then it can be exhausted by Ui with
mean.curv(∂Ui) ≥ ε > 0. (See 1.5(C) in [G(Plateu-Stein) 2014].)

Exercises. (a) Show that if a complete connected non-compact Riemannian
n-manifold X has uniformly bounded local geometry, then X × R has infinite
n-volume at infinity.

(b) Show that if X has Ricci(X) > −(n − 1), then X × H2
−1 has infinite

(n + 1)-volume at infinity and that it can be exhausted by compact smooth
mean convex domains.

B. Let A be λ-bi-Lipschitz to the annulus A = A(r, r+R) between two concentric
spheres of radii r and r +R in the Euclidean space Rn. 349

If R ≥ 100λr, then A contains a hypersurface Y which separates the two
boundary components of A and such that

mean.curv(Y ) ≥
100

r
.

C. Let X be a complete simply connected n-dimensional manifold with non-
positive sectional curvature and such that Ricci(X) ≤ −(n− 1), e.g. an irreducible
symmetric space with Sc(X) = −n(n − 1).

Let A be a compact Riemannian manifold which is λ-bi-Lipschitz to the annulus
between two concentric balls B(r) and B(r +R) in X.

There exists a (large) constant constn > 0, such that if R ≥ constn ⋅ logλ,
then there exists a smooth closed hypersurface Y ⊂ A, which separates the two
boundary components in A and such that

mean.curv(Y ) ≥
n − 1

λ + constn(λ − 1)
.350

About the Proof. If κ(X) ≤ −1 this follows from [∗∗], while the general case
needs a minor generalization of this.

First Application to Scalar Curvature. Since

RadSn−1(Y ) ≥ λ−1RadSn−1(∂B(r)) ⪆ exp r,

the above inequality together with Remark (b) after #n−1 from section 4.3.
yields the following.

If a Riemannian manifold X is λ-bi-Lipschitz to the ball B(R) ⊂ X, where
R ≥ constn logλ, then the scalar curvature of X is bounded by:

inf
x∈X

Sc(X,x) ≤ −
1

constn ⋅ λ2
.

349This means the existence of a λ-Lipschitz homeomorphism from A onto A, the inverse of
which A→ A is also λ-Lipschitz.
350The sign convention for the mean curvature is such that the mean convex part of V
bounded by Y is the one which contains the boundary component corresponding to the sphere
∂B(r) in X.
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Second Application to Scalar Curvature. It may happen that a man-
ifold X with Sc(X) > 0 itself contains no mean convex domain, but it may
acquire such domains after a modification of its metric that doesn’t change the
sign of the scalar curvature. Below is an instance of this.

Let X = (X,g) be a compact n-dimensional Riemannian band, as in the
above Lemma, where the boundary of a compact Riemannian manifold X =

(X,g) with Sc(X) ≥ 0 is decomposed as earlier, ∂X = ∂− ∪ ∂+.
Let Sc(X) > 0 and let us indicate possible modifications of the Riemannian

metric g, that would enforce the conditions [∗1] and [∗2] in the Lemma, while
keeping the scalar curvature positive.

We will show below that this can be achieved in some cases by multiplying
g by a positive function e = e(x) , which is equal one near ∂− ⊂ X and which is
as large far from ∂− as is needed for [∗1] and where we also need the Laplacian
of e(x) to be bounded from above by εnSc(X,x) in order to keep Sc > 0 in
agreement with the Kazdan-Warner conformal change formula from section 2.6.

The simplest case, where there is no need for any particular formula, is where
the sectional curvatures of X are pinched between ∓b2, no geodesic loop in X
of length< 1

b
exists, while the scalar curvature of X is bounded from below by

σ > 0.
In this case, let

e0(x) = c

√
σ

b + 1
distg(x, ∂−0)

and observe that if c = cn > 0 is sufficiently small, then e0(x) has a small
(generalized) gradient ∇(e0) and, because the the geometry of X is suitably
bounded, the function e0 can be approximated by a smooth function e(x) with
second derivatives significantly smaller than σ,

thus, ensuring the inequality Sc(eg) > 0.
On the other hand, if

dist(∂−, ∂+) ≥ C(b + 1)∣∣∇(e)∣∣−1vol(∂−)
1
n−1 ,

for a large C = Cn,
then

the condition [∗1] is satisfied, say with d0 =
1
2
dist(∂−, ∂+),

and, due to the bound on the geometry of X,
the condition [∗2] is satisfied as well.

Now let us look closer at what kind e(x) we need and observe the following
[1] The bound on the geometry of X is needed only, where the gradient of e

doesn’t vanish.
Thus, it suffices to have the geometry of X
bounded only in the 1

b
-neighbourhoods of the boundaries of domains Ui,

∂− ⊂ U1 ⊂ ... ⊂ Ui ⊂ ... ⊂ Uk ⊂X,

where dist(Ui, ∂Ui+1) ≥
1
b
and where k

b
is sufficiently large.

[2] Since, the by the standard comparison theorem(s),
Laplacians of the distance-like functions are bounded from above in terms of the

Ricci
curvature,
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the b-bound on the full local geometry can be replaced by Ricci(X,x) ≥ −b2g.
Summing up, this yields the following refinement of B in: from the previous

section.
Let X = (X,g) be a, possibly non-complete Riemannian n-manifold, such that

Sc(X) ≥ 0,

and let
f ∶X → Sn

be an area non-increasing map, such that the support of the differential of f is
compact and the scalar curvature of X in this support is bounded from below by
that of Sn,

inf
x∈supp(df)

Sc(X,x) ≥ n(n − 1).

Let Ai be disjoint "bands" in X, that are ai-neighbourhoods of the boundaries
of compact domains Ui, such that

supp(df) ⊂ U1 ⊂ ... ⊂ Ui... ⊂ Uk ⊂X.

Let us give an effective criterion for vanishing of the degree of the map f in
terms of the geometries of Ai.

Proposition. Let the scalar and the Ricci curvatures ofX in Ai for i = 2, ...k−1
be bounded from below by

Sc(Ai) ≥ σi and Ricci(Ai) ≥ −b2g, 2 ≤ i ≤ k − 1,

and set

βi =

√
σi
bi

.

Let the sectional curvatures of Uk outside Uk−1 be bounded from above by

κ(Uk ∖Uk−1) ≤ c
2, c > 0,

and let the complement Uk ∖Uk−1 contains no geodesic loop of length ≤ 1
c
.

If the following weighted sum of ai (that are half-widths of the bands Ai) is
sufficiently large,

∑
1<i<k

βiai ≥ constn
(voln−1(∂U1))

1
n−1

ak
c

,

and if X is orientable spin, then

deg(f) = 0.

Proof. Arguing as above, one finds a smooth function e(x), the differential
of which is supported in the union of Ai, 1 < i < k, such that Sc(e ⋅ g) remains
nonnegative (and even can be easily made everywhere positive) and such that
Uk satisfy the assumptions [∗1] and [∗2] of the above Lemma, that yields a
subdomain

X∯ ⊂ Uk,

240



which is mean convex with respect to the metric eg and to a smoothed double
of which compact Llarull’s theorem applies.

Remarks. (a) Even in the case of complete manifolds X, this doesn’t (seem
to) directly follow from Llarull’s theorem, since the latter, unlike the former,
needs uniformly positive scalar curvature at infinity.

(b) The above proposition, as well construction of mean-convex hypersur-
faces in general, doesn’t advance, at least not directly, the solution of the spec-
tral D2-problem formulated in section 4.6.

Let X = (X,g) be a complete Riemannian n-manifold, let f ∶ X → Sn be a
smooth area contracting map the differential df of which has compact support.

Let
∣d∣ = sup

x∈X
∣∣df(x)∣∣

and
r = r(x) = dist(x, supp(df)).

Let the Ricci curvature of X outside supp(df) be bounded from below by

Ricci(x) ≥ −b(r(x))2g(x)

for some continuous function b(r), r ≥ 0.
If the function b(r) grows sufficiently slowly for r → ∞, e.g. σ(r) ≤ 3

√
r for

large r, then there is an effective lower bound

Sc(X,x) ≥ σ(r(x)),

which implies that
the map f has zero degree,

where σ(r), r ≥ 0, is a certain "universal" function, which is "small negative"
at infinity.

More precisely, there exists a universal effectively computable family of func-
tions in r,

σ(r) = σb,∣d∣,N,(r), r ≥ 0, N = 1,2, ....,

with the following five properties
(i) the functions σ(r) are monotone decreasing in r ≥ 0,
(ii) σb,∣d∣,N,(r) is monotone decreasing in N ,
(iii) σb,∣d∣,N,(r) is monotone increasing in b and in ∣d∣,

(iv) σ(0) = N(N − 1), while σ(r) →
r→∞

−∞

(v) σN(r) = σb,∣d∣,N,(r) →
N→∞

−∞ for fixed b, |d| and r > 0,

such that
[⨉#N−n] if Sc(X,x) ≥ σb,∣d∣,N,(r(x)) for all x ∈ X and some N ≥ n + 2,

then, assuming X is orientable and spin, the degree of f is zero.351

351Compare with "inflating balloon" used in 7.36 of [GL(complete) 1983].
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Proof. The bound on ∆ϕ(x) for Ricci ≥ −b2 (compare with [2] from the
previous section) shows that there exists σb,∣d∣,N,(r) with the above properties
(i)-(v) and a positive function ϕ(x) on X, such that

(a) ϕ is equal to ∣d∣ on the support supp(df) ⊂X
and such that

(b) σ(r(x))+
m(m − 1)

ϕ(x)2
−
m(m − 1)

ϕ2(x)
∣∣∇ϕ(x)∣∣2−

2m

ϕ(x)
∆ϕ(x) ≥ ε > 0 for r(x) > 0.

Therefore, by the formula (⋆⋆) from section 2.4.1 for the scalar curvature of
the warped product metrics gϕ = g + ϕ2ds2 on X × Sm, m = N − n,

Sc(gϕ)(x, s) = Sc(g)(x) +
m(m − 1)

ϕ(x)2
−
m(m − 1)

ϕ2(x)
∣∣∇ϕ(x)∣∣2 −

2m

ϕ(x)
∆ϕ(x),

the metric gϕ has uniformly positive scalar curvature and because of (a) the
map f ∶ X → Sn suspends to an area decreasing map (X × Sm, gϕ) → Sn+m of
the same degree as f . Then Llarull’s theorem applies and the proof follows.

On Manifolds with Boundaries. If X is a compact manifold with a bound-
ary, the above can be applies to the smoothed double X ∪∂X X , where the
scalar curvature of such a double near the smoothed boundary can be bounded
from below by the geometry of X near the boundary and the (mean) curvature
of the boundary ∂X ⊂X.

Thus, the above yields a condition for deg(f) = 0 in terms of the lower bound
on Sc(X,x) and on dist(x, supp(df)), which is similar to, yet is different from
such a condition from the previous section.

Dirac operators with Potentials. The recent
relative index theorem for the Dirac operators with potentials
by Weiping Zhang352,

which applies to complete manifolds X with non-negative scalar curvatures at
infinity and which is more efficient in many (all?) cases than multiplication of
X by spheres, makes most (all?) of the above redundant.

4.6.3 Amenable Boundaries

If the volume of the boundary of a compact manifold X is significantly smaller
than the volume of X and if it is additionally supposed that the manifold is not
very much curved near the boundary, then we shall see in this section that

the index theorem applied to the double of such an X with a smoothed
metric, yield geometric bounds on the area-wise size of X in terms of the lower
bound on the scalar curvature of X.

Elliptic Preliminaries. Let V be a (possibly non-compact) Riemannian man-
ifold with a boundary, and let l be a section of a bundle L → V with a uni-
tary connection ∇, such that l satisfy the following (elliptic) Gårding (δ○,C○)-
inequality: the C1-norm of l at v ∈ V is bounded at by the L2-norm of l in the
352See [Zhang(area decreasing) 2020], [Zhang(deformed Dirac) 2021].
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δ○-ball B = Bv(δ○) ⊂ V as follows

∣∣l(v)∣∣ + ∣∣∇l(v)∣∣ ≤ C○

√

∫
B
∣∣(l)∣∣2dv

for all points v ∈ V , where
dist(v, ∂V ) ≥ δ○.

Let
ρ(v) = dist(v, ∂V ) and β = sup

v∈V
vol(Bv(δ○))

Lemma. If l vanishes on an ε-net Z ⊂ V , then

∣∣l(v)∣∣ + ∣∣∇l(v)∣∣ ≤ (10C○εβ)
ρ(x)−2δ○

√

∫
V
l2(v)dv

Moreover, if V can be covered by 2δ○-balls with the multiplicity of the covering
at most m, then the L2-norms of l and ∇l on the subset V−ρ ⊂ V of the points
ρ-far from the boundary, that is

V−ρ = V ∖Uρ(∂V ) = {v ∈ V }dist(v,∂V )≥ρ,

satisfies

[�]
√

∫
V−ρ

∣∣l∣∣2(v)dv ≤ ε

√

∫
V
∣∣l∣∣2(v)dv

for ε =m (10C○εβ)
ρ(x)−2δ○ .

Proof. Combine Gårding’s inequality with the following obvious one:

∣∣l∣∣ ≤ ε∣∣∇∣∣l

and iterate the resulting inequality i times insofar as ρ − iδ○ remains positive.
Remark. A single round of iterations suffices for our immediate applications.
Corollary. Let X be a complete orientable Riemannian manifold of dimension

n with compact boundary (e.g. X is compact or homeomorphic to X0 ×R+, where
X0 is a closed manifold), and let, y for some ρ > 0 and 0 < δ○ <

1
4
ρ,

the ρ-neighbourhood of the boundary of X, denoted U = Uρ(∂X) ⊂X, has
(local) geometry bounded by 1

δ○
,

where we succumb to tradition and define this bound on geometry as follows:
the sectional curvatures κ of U are pinched between − 1

δ2
○

and 1
δ2
○

and the injectivity
radii are bounded from below by δ○ at all points x ∈ U , for which dist(x, ∂X) ≥ δ○,
that is, in formulas,

∣κ(X,x)∣ ≤ 1
δ2
○

for dist(x, ∂X) ≤ ρ and injrad(X,x) ≥ δ○ for δ○ ≤ dist(x, ∂X) ≤ ρ.

Let the scalar curvature of X be non-negative 1
2
ρ-away from the boundary,

Sc(X,x) ≥ 0 for dist(x, ∂X) ≥
1

2
ρ.
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Let f ∶ X → Sn(R), where Sn(R) is the sphere of radius R, be a smooth area
decreasing map , which is constant on Uρ, and, if X is non-compact, also locally
constant at infinity.

Let the degree of this map be bounded from below by the volume of Uρ =

Uρ(∂X) as follows.
d > Cvol(Uρ) for some C ≥ 0.

If δ○, ρ and C are sufficiently large, then, provided X is spin, the scalar
curvature of the complement

X−ρ =X ∖Uρ = {x ∈X}dist(x,∂X>ρ

can’t be everywhere much greater than Sc(Sn(R)) =
n(n−1)
R2 . Namely

[ ] inf
x∈X−ρ

Sc(X,x) ≤ σ+
n(n − 1)

R2
+ σ,

where σ = σn(δ○, ρ,C) is a positive function, which may be infinite for small δ○
and/or ρ and/or C and which has the following properties.

● the function σ is monotone decreasing in δ○, ρ and C;
● σn(δ○, ρ,C) → 0 for C →∞ and arbitrarily fixed δ○ > 0 and ρ > δ○.
Proof. Let 2X =DDX be a smoothed double of X and L → 2X the vector

bundle induced from S+(Sn) by f applied to a copy (both copies, if you wish)
of X ⊂ 2X.

Assume n = dim(X) is even, apply the index theorem and conclude that the
dimension of the space of L-twisted harmonic spinors on 2X is ≥ d.

Therefore, there exists such a non-zero spinor l that vanishes at given d − 1
points in 2X.

Let such points make a ε-net on the subset 2Uρ○ = DDUρ○ ⊂ 2X with a minimal
possible ε.

If d is much larger then vol(2Uρ) ≈ 2vol(Uρ), then this ε becomes small
and, consequently, ε in the above inequality [�] also becomes small. Then, the
inequality [�] applied to the domain 2Uρ ⊂ 2X, shows that the integral

∫
2Uρ

∣∣l∣∣2(x)dx

is much smaller then the integral of ∣∣l∣∣2 over the complement 2X0 = 2X ∖ 2Uρ.
Therefore, if σ+ is large then the sign of the full integral

∫
2X

Sc(X,x)∣∣l∣∣2(x)dx = ∫
2Xρ

Sc(X,x)∣∣l∣∣2(x)dx + ∫
Uρ
Sc(X,x)∣∣l∣∣2(x)dx

is equal to the sign of ∫2Xρ Sc(X,x)∣∣l∣∣
2(x)dx, which contradicts the Schroedinger-

Lichnerowicz-Weitzenboeck formula for harmonic l.
Thus, modulo simple verifications and evaluations of constants left to the

reader, the proof is completed.
Example 1. Let a complete non-compact orientable spin Riemannian n-manifold

X with compact boundary admits smooth area decreasing maps fi ∶ X → Sn of
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non-zero degrees,353 such that the "supports" of fi, i.e. the subsets where these
maps are non-constant, may lie arbitrarily far from the boundary of X,

dist ("supp"fi, ∂X) → ∞ for i→∞.

Then the scalar curvature of X can’t be uniformly positive at infinity:

lim inf
x→∞

Sc(X,x) ≤ 0.

Moreover, the same conclusion holds, if
there exist i-sheeted coverings X̃i → X, which admit smooth area decreasing

maps fi ∶ X̃i → Sn, such that

deg(fi)

i
→∞ for i→∞.

Example 2. Let Yk be a k-sheeted covering of the unit 2-sphere S2 = S2(1)
minus two opposite balls of radii 1

km
, for some m ≥ 1.

Then the product manifold X0 = Yk × S
n−2(k) admits an area decreasing

map f ∶X0 → Sn(R) constant on the boundary and such that

deg(f) ≥
k

10d

and it follows from the above corollary that the Riemannian metric on X0

can’t be extended to a larger manifold X ⊃ X0, with bounded geometry and
Sc ≥ 0 without adding much volume to X0, say in the case m = n − 1, although
voln−1(∂X0) remains bounded for R →∞.

Melancholic Remarks. Rather than indicating the richness of the field, the
diversity of the results in the above sections 4.6.1- 4.6.4 is due to our inability
to formulate and to prove the true general theorem(s).

4.6.4 Almost Harmonic Spinors on Locally Homogeneous and and
Quasi-homogeneous Manifolds with Boundaries

Let X be a complete Riemannian manifold with a transitive isometric action of
a group G, let L → X be a vector bundle with a unitary connection ∇ and let
the action of G equivariantly lifts to an action on (L,∇).

Let the L2-index of the twisted Dirac operator D⊗L (see [Atiyah(L2) and
[Connes-Moscovici(L2 − index for homogeneous) 1982], be non zero. For in-
stance, if X admits a free discrete isometry group Γ ⊂ G with compact quotient,
then this is equivalent to this index to be non-zero on X/Γ.

The main class of examples of suchX are symmetric spaces with non-vanishing
"local Euler characteristics (compare with [AtiyahSch(discrete series) 1977]) i.e.
where the corresponding (G-Invariant) n-forms, n = dim(X) don’t vanish.

The simplest instances of these are hyperbolic spaces H2m
−1 , where the indices

of the Dirac operators twisted with the positive spinor bundles don’t vanish. In
353Here as everywhere in this paper, when you you speak of deg(f) the map f is supposed
to be locally constant at infinity as well as on the boundary of X.
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fact, such an index for a compact quotient manifold H2m
−1 /Γ is equal to ±one half

of the Euler characteristics of this manifold by the Atiyah-Singer formula (compare
[Min(K-Area) 2002]).

Let (X,L) be an above homogeneous pair with ind(D⊗L) ≠ 0 and letXR ⊂X
be a ball of radius R. Then the restrictions of L2-spinors on X (delivered by
the L2-index theorem) to XR can be perturbed (by taking products with slowly
decaying cut-off functions) to ε-harmonic spinors that vanish on the boundary
of XR, where ε→ 0 for R →∞ and where "ε-harmonic" means that

∫
XR

⟨D
2
⊗L(s), s⟩ ≤ ε

2
∫
XR

∣∣s∣∣2dx

as in c�λ in section 4.6.
In fact, it follows from the local proof of the L2-index theorem in [Atiyah(L2)

1976] or, even better, from its later version(s) relying on the finite propagation
speed, that these ε-harmonic spinors can be constructed internally in XR with
no reference to the ambient X ⊃XR.

Moreover, a trivial perturbation (continuity) argument shows that
similar spinors exist on manifolds X ′

R with these metrics close to these on
XR.

but it is unclear "how close" they should be. Here is a specific problem of
this kind.

Let XR be a compact Riemannian spin manifold with a boundary, such that

sup
x∈X

dist(x, ∂XR) ≥ R

and let the sectional curvatures of X are everywhere pinched between −1 and −1−δ.

(A) Under what conditions on R, δ and ε does XR support a non-vanishing
ε-harmonic spinor twisted with the spin bundle S(XR)?

Besides, one wishes to have
(B) similar spinors on manifolds X mapped to XR with non-zero degrees and

with
controlled metric distorsions
in order to get bounds on the scalar curvatures of such X
(See section 6.4.3)for continuation of this discussion to fibrations with quasi-

homogeneous fibers.)

4.7 Topological Obstructions to Complete Metrics with
Positive Scalar Curvatures Issuing from the Index The-
orems for Dirac Operators

Obstruction on homotopy types of compact manifolds X implied by the exis-
tence of metrics of positive scalar curvature on X, obtained by Dirac theoretic
methods usually (always?) generalize to non-compact completemanifolds, where
"homotopy" means "proper homotopy", i.e. the maps being "homotopies" as
well as the maps establishing homotopies must be proper: infinity-to-infinity.

Moreover, such obstructions not only rule out metrics with positive scalar
curvatures on n-manifolds X ′ which are homotopy equivalent to X, but also
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on n-manifolds X̂ that dominate (the fundamental homology class of) X, i.e.
admits maps f ∶ X̂ → X with deg(f) = ±1 to X in the orientable cases, and
often, even with any deg(f) ≠ 0.

Dimension+m-Domination. The above also applies to smooth proper maps
of (n +m)-dimensional manifols to n-dimensional X, say f ∶ X̂+m → X, such
that the pullbacks of generic points under f and by all smooth maps X+m →X
homotopic to f – these pullbacks (but not necessarily all m-manifolds homotopy
equivalent to these pullbacks) admit no metrics with Sc > 0.

Example 1: Maps of non-zero Â-degree to Enlargeable354 Manifolds and
Similar Maps. If a compact spin (n+m)-manifolds X̂+m admits a smooth map
f to compact enlargeable n-manifolds X, (see section 3.10.1 e.g. to the torus
Tn, or, more generally, to a Riemannian manifold with non-positive sectional
curvature, such that the pullback f−1(x) ⊂ X̂+m of a generic point x ∈ X has
non-zero α̂-invariants, e.g. Â(f−1(x)) ≠ 0 in the case m = 4k, then X̂+m can’t
carry a metric with Sc > 0.

About Relevance of Spin. Probably, the same non-existence conclusion holds
if only the pullback "X̂+m is spin, for instance, where X̂+m is diffeomorphic to
X ×Xm, where Xm (but not necessarily X) is spin.

In fact, if m+n ≤ 8 this follows from the the µ-bubble separation theorem in
section 3.7, and if mn ≥ 9, this might follow from Lohkamp’s desingularization
results. (Schoen-Yau’s 2017 theorem is non-sufficient for this purpose.)

On the other hand, the Dirac theoretic method has an advantage of being
applicable to ∧2-enlargeable manifolds X defined in example 4 below.

Also Dirac operators serve well if the underlying X is a quasisymplectic
⊗∧kω̃-manifolds as in section 2.7, e.g. a closed aspherical 4-manifolds X with
H2(X;Q) ≠ 0.355

"Positive" versus "Uniformly Positive". If X is non-compact, one has to
distinguish "just (strict or not) positivity" of the scalar curvature, Sc(X) > 0
along with Sc(X) ≥ 0 – the existence of the former implies the existence of the
latter except for a few exceptional "rigid" examples, such as Riemannian flat
manifolds and Ricci flat Kähler (Calabi-Yau) manifolds, from "uniform uniform
positivity", where Sc(X) ≥ σ > 0.

Example 2: Metrics with Positive Curvatures in the Plane and their High
Dimensional Warped Descendants. The products of tori Tn−2 by the plane R2

(obviously) admit metrics with Sc > 0, but no metric with Sc ≥ σ > 0, where the
latter follows from Roe’s partitioned index theorem.

Also one can do it with Zeidler’s-Cecchini’s Dirac theoretic 2π
n
-inequality for

Riemannian spin bands, while our non-Dirac theoretic proof needs Lohkamp-
Schoen-Yau desingularization theorem(s) for n ≥ 9.

More generally, by the same token the product manifolds X = X0 × R2,
support complete metrics with Sc > 0, but if X0 admits no domination by a
354A compact Riemannian n-manifold X is enlargeable if it admits (finite or infinite) cover-
ings X̃ with arbitrarily large hyperspherical radii, i.e. for all R > 0, there exists a covering X̃,
which admits a locally constant at infinity distance decreasing map X̃ → Sn with non-zero
degree.

Notice that this condition doesn’t depend on the Riemannian metric in X, moreover it is a
homotopy (even domination) invariant.
355One should note, however, that no example is known of a compact non-enlargeable mani-
fold that is ∧2-enlargeable or quasisymplectic ⊗∧kω̃ or a manifold with infinite K-area.
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manifold with a complete metric with positive scalar curvature, then X ad-
mits no domination by a manifold with a complete metric with with uniformly
positive scalar curvature.356

Exercise.357 Show that products X1 ×X2 of non-compact manifolds X1 and
X2 admit complete metrics with Sc > 0, while such triple products, X1×X2×X3

admit complete metrics with Sc ≥ σ > 0.
Example 3: Simply Connected Manifold Dominated by Sc > 0. There only

instance of a Dirac theoretic obstruction for Sc > 0 on topology of compact
simply connected manifolds, which is (this is an accident) a homotopy theoretic
one, is Lichnerowicz’ Â[X] ≠ 0 for n = dim(X) = 4. (If n ≥ 5 there is no
constraints on rational Pontryagin classes of X except for the signature and
none of higher α̂-invariants used in Hitchin’s theorem is homotopy invariant
either.)

But even this obstruction is not "domination invariant": connected sums
X#± = X# − X have Â[X# − X] = 0 for all X and, by Milnor’ homotopy
classification theorem, these X#± are homotopy equivalent to manifolds which
admits metrics with Sc > 0, namely to connected sums of CP 2 and S2 × S2

by Milnor’s 1958 theorem and by adding more copies of S2 × S2 these become
diffeomorphic to connected sums of CP 2 and S2 × S2 by Wall’s 1964 theorem.

All (known) Dirac theoretic non-domination results of compact n-manifolds
X by compact X̂ with Sc(X̂) > 0 apply only to spin manifolds X̂358 and rely
on existence of flat or almost flat (generalized, e.g. virtual Fredholm) unitary
vector bundles over X (or over X ×T1) with non-zero Chern numbers.

In fact, the limit of applicability of such results would be (essentially) reached
if one could resolve the following.

Problem A. Let B be a Riemannian manifold, let X ⊂ B be a compact
relatively aspherical submanifold, i.e. the inclusion homomorphisms of the higher
homotopy groups, πi(X) → πi(B), vanish for all i ≥ 2.

Prove (or disprove) that for all complex vector bundles L → B and all ε > 0
there exist vector bundles Lε →X with unitary connections, such that

(i) the bundles Lε are isomorphic to multiples of L restricted to X

Lε = k ⋅L∣X for k ⋅L = L⊗L⊗ ...⊗L
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

;

(ii) The curvature operators RLε of Lε satisfy

∣∣RLε ∣∣ ≤ ε.

In fact, as we know, that if X is spin, then the index theorem applied to the
twisted Dirac operators D⊗Lε (that act on spinors with values in the bundles Lε)
shows that the (untwisted) Dirac operators D on certain covering manifolds X̃ε

contain zero in their spectra; thus Sc(X) ≯ 0 by the Schroedinger-Lichnerowicz-
Weitzenboeck-(Bochner) formula.
356This follows from the µ-bubble separation theorem (section 3.7) that relies on Lohkamp-
Schoen-Yau desingularization for n ≥ 9 , but I am not certain how much of this can be proven
for by Dirac theoretic methods in the case of spin manifolds.
357I haven’t solved this exercise.
358In all known examples it suffices that the universal covering of X̂ is spin.
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In this in mind, one asks another question.
B. Suppose, an even dimensional compact spin submanifold X in an aspherical

space B represents a non-torsion homology class in B. 359

Does then the spectrum of the Dirac operator on some covering of X contain
zero in the spectrum?

Now, let us look more systematically at what of the above generalizes to
complete manifolds with Sc > 0 and with Sc ≥ σ > 0.

Originally, the results for Sc(X) > 0 were derived from these, where Sc ≥
σ > 0, namely applied to X × S2(R) for suitably large R.

Nowadays, one has at one’s disposal index theorems for Dirac operators with
potentials proved in [Cecchini(Callias) 2018], [Cecchini(long neck) 2020] and in
[Zhang(area decreasing) 2020].

Example 4: ∧2-Enlargeability against Sc > 0. A Riemannian metric g on a
manifold X is ∧2-enlargeable if, for all R > 0, there exists coverings X̃, which
admit locally constant at infinity g-area non-increasing maps with non-zero
degrees to the R-spheres Sn(R), where, a priori, such a covering may depend
on R.

A smooth manifold ? is ∧2-enlargeable if all Riemannian metrics on it are
enlargeable.

For instance,
metrics with infinite areas on connected surface are ∧2-enlargeable,
while
connected surfaces are enlargeable if they have infinite fundamental groups.
Exercises. (4a) Show that the products X = X1 ×X2, where both X1 and

X2 are connected non-compact are not ∧2-enlargeable.
(4b) Show that the products of enlargeable manifolds by ∧2-enlargeable are

∧2-enlargeable.
(4c) Show that the product X = X0 × R, where X0 is enlargeable, is ∧2-

enlargeable.
Probably the converse is also true: if X0 × R is ∧2-enlargeable, then X0 is

enlargeable. (This is close in spirit to stabilization conjecture in section 7.3)
Also it is not impossible that (b) also admits a converse: if the productX1×X2

is ∧2-enlargeable, then one of the two manifolds is ∧2-enlargeable and another one
is enlargeable.

(4d) Show that if X dominates (a multiple of the fundamental class of) a
∧2-enlargeable manifold X, i.e. if there is a quasi-proper map f ∶ X → X of
non-zero degree,360 then X ∧2-enlargeable.

For instance, complements to Cantor (closed zero-dimensional) subsets in
enlargeable manifolds X and connected sums of X with arbitrary manifolds are
∧2-enlargeable.

Theorem 4e. ∧2-Enlargeable manifolds X, the universal coverings X̃ of
which are spin, admit no metrics with Sc > 0.

This is proven in §6 in [GL(complete)1983] for spin manifolds X with a use
of the relative index theorem applied to X ⋊S2(R), where in the case of X̃ spin,
one does it with relativized Atiyah’s L2-index theorem.
359One has little idea of what to expect for non-zero torsion classes.
360A map f is quasi-proper if it extends to a continuous map between the compactified
spaces, from X+ends ⊃ X to X+ends ⊃ X.
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Example 5: Obstruction on Sc > 0 of Complete Metrics for Manifolds
with Infinite relative K-areas and for Quasisymplectic ⊗∧kω̃-Manifolds. Let
us formulate two special cases of general non-existence theorems for complete
metrics with Sc > 0 from [Cecchini-Zeidler(generalized Callias) 2021]and from
[Zhang(deformed Dirac) 2021] proved with a use of Dirac operators with poten-
tials.361

Theorem 5a. Let X be an orientable manifold of even dimension n and let
X0 ⊂ X be a compact subset, such that X has infinite K-area relative to the
complement X ∖X0.

This means that for some, hence for every, Riemannian metric g0 on X the
following holds.

For all ε > 0, there exist complex vector bundles L1, L2 → X with unitary
connections, such that:

● the norms of the curvature operators of these connections with respect to g0

are everywhere ≤ ε;
● these norms vanish outside X0, i.e. the connections are flat over X ∖X0;
● There exists a parallel, i.e, connections preserving, isomorphism between the

bundles L1 and L2 over X ∖X0.
● some (relative) Chern number cI[X], cI ∈ Hn(X,X ∖ X0), of the virtual

bundle L1 −L2 doesn’t vanish.
If the universal covering of X is spin, then X admits no complete Rieman-

nian metric g with Sc(g) > 0.
Theorem 5b. Let X be an orientable manifold of dimension n = 2k and let

X0 ⊂X be a compact subset.
Let h ∈H2(X,X ⊂X0) be a relative cohomology class, such that hk ≠ 0, while

the lift of h to the universal covering of X, say h̃ ∈H2(X̃; X̃ ∖X0), vanishes.
If the universal covering X̃ of X is spin, then X admits no complete metric

with Sc > 0.

Example 6. Topology at Infinity of Complete Manifolds with Uniformly
Positive Scalar Curvatures. If instead of Sc > 0 we want to rule out complete
metrics Sc ≥ σ > 0, we need the above topological conditions on X satisfied only
at infinity. Below is a specific formulation of this.

Theorem/Conjecture 6a. Let X be an orientable manifold of even dimen-
sion n, let X○ ⊂ X be an open subset with a compact complement in X and let
X○
i ⊂X

○, i = 1,2, ... , be a sequence of compact subsets that tend to infinity in X,
i.e. every compact subset in X intersects only finitely many X○

i .
Let one of the following two conditions be satisfied.
●area The relative K-areas of X○ with respect to X○ ∖X○

i are infinite for all i.
●sympl There exists cohomology classes hi ∈H2(X○,X○∖X○

i ), such that hki ≠ 0,
while the lifts h̃i ∈ H2(X̃○; X̃○ ∖X○

0), where X̃
○ denotes the universal covering of

X○, vanish.
If the universal covering X̃ of X is spin, then X admits no complete Rie-

mannian metric with Sc ≥ σ > 0.
The proof of this must follow from a suitable version of Cecchini’s long neck

principle and from [Guo-Xie-Yu(quantitative K-theory) 2020] but I haven’t care-
fully checked this. Nor am I certain that that the same conclusion holds under
361I want to thank Simone Cecchini and Weiping Zhang for explaining their results to me.
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more general condition(s), where the subset X○ is not fixed but dependent on
(decreasing with) i = 1,2, ... .

But we do know for sure that Roe’s partitioned index theorem shows (in
agreement with what follows from the µ-bubble separation theorem) that if a
spin manifold X is enlargeable at infinity, i.e.

if there exists an exhaustion of X by compact domains Xi ⊂X with smooth
boundaries Yi ⊂ ∂Xi, such that the complements of all Xi admit sequences of
coverings, say X̃⊥ij →X∖Xi, where the hyperspherical radii of the corresponding
coverings Ỹij = ∂X̃⊥ij of Yi tend to infinity for j →∞,

then X admits no complete metric with Sc ≥ σ > 0.

Remarks, Problems, Conjectures.

Question 7. LetX be an open aspherical n-manifold. Does non-contractibility
of X to the (n − 1)-dimensional skeleton X[n−1] ⊂ X imply that X is ∧2-
enlargeable?

(It is not even clear, in the case where X admits a complete metric with
non-positive sectional curvature, whether X admits a metric with positive scalar
curvature.)

Question 8. Are there "topological conditions at infinity", which prevent
complete metrics with Sc > 0?

Or, conversely, given an open n-manifold X, there exists a n-manifold X ′,
such that

(i) X ′ "contains X at infinity", i.e. a complement in X to a relatively compact
open subset, admits a proper imbedding X ∖U ↪X ′;

(ii) X ′ admits a complete metric with Sc > 0, or, at least, can be dominated by
a complete manifold with Sc > 0.

Probably, the minimal surface argument from [Wang(Contractible) 2019]
shows that

3-manifolds X ′, which "contains ends" of contractible non-simply connected
at (their single ends at) infinity manifolds X, can’t be dominated by manifolds
with positive scalar curvatures.

But no such result is in sight for manifolds of dimensions n ≥ 4.
(Over)Optimistic Existence Conjecture 9,. All open simply con-

nected manifolds of dimensions n ≥ 4 admit complete metrics with Sc > 0.
Questionable Case. If Xn−1 is a simply connected manifold, which admits

no metric with Sc > 0, e.g, where n = 4k + 1 and Â[X4k] ≠ 0 or where Xn−1

is Hitchin’s sphere, the results by Cecchini, Zeidler and Zhang may imply that
X =Xn =Xn−1 ×R1, admits no complete metric with Sc > 0. (Unquestionably,
these X admit no metrics with Sc > σ > 0, )

In view of this, it is safer to reformulate 9, as follows.
More Realistic Conjecture 9/. All open simply connected manifolds X

of dimensions n ≥ 4 with Hn−1(X) = 0 (which is equivalent to "connected at
infinity" for π1(X) = 0) admit complete metrics with Sc > 0.

Example. The products X = Y ×R2, as we know do admit complete metrics
with Sc > 0 for all Y and these can be made simply connected by thin surgery
for dim(X) ≥ 4.

Non-Example 10/. . There is no instance of a compact contractiblemanifold
X̄ with aspherical boundary, where we know whether the interior X of X̄ admits
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a complete metric with Sc > 0.

Codimension one Optimistic Reduction Conjecture 10,. Let X be
a complete orientable n-manifold with Sc(X) > 0. If X is orientable, then all
(n − 1)-dimensional homology classes in X are realizable by by smooth closed
oriented hypersurfaces Y ⊂X, which support metrics with Sc > 0.

But this contradicts to 4B, in the questionable case. Maybe, it would be
better to stick to a weaker conjecture, e.g. as follows.

Codimension one more Realistic Conjecture 10/. All (n − 1)-
dimensional homology classes in X are realizable by the images of the funda-
mental homology classes of smooth closed n − 1-manifolds Y under continuous
maps Y →X, where these Y support metrics with Sc > 0.

If X is compact, one knows that deg ±1 dominants of SYS-manifolds XSY S

and manifolds Xκ≤0 with non-positive sectional curvatures, as well as their prod-
ucts XSY S × Xκ≤0 have this Sc ≯ 0 property: they have no dominants with
Sc > 0;362 we shall prove in section obstructions5 a similar property for open
manifolds, thus confirming the following conjecture in special cases.

Non-compact Domination Conjecture 11/ If a compact orientable
n-manifold (or pseudomanifold) X0 can’t be dominated (with maps of degree
1) by compact manifolds with Sc > 0, then it can’t be dominated by complete
manifolds with Sc > 0.

Despite the validity of this is known in a variety of specific cases, including
complete manifolds X0, where non-domination by complete X with Sc(X) > 0
via propermaps implies this property with quasi-proper ones(see section 1.5), one
can’t even rule out in general domination by complete manifolds with Sc ≥ σ > 0.

5 Variation, Stabilization and Application of µ-
Bubbles

Given a a Borel measure µ on an n-dimensional Riemannian manifold X, µ-
bubbles are critical points of the following functional on a topologically defined
class of domains U ⊂X with boundaries called Y = ∂U :

(U,Y ) ↦ voln−1(Y ) − µ(U).

Observe that in our examples, µ(U) = ∫U µ(x)dx for (not necessarily posi-
tive) continuous functions µ on X and that µ(U) can be regarded as a closed
1-form on the space of cooriented hypersurfaces Y ⊂X. Then voln−1(Y )−µ(U)

also comes as such an 1-form which we denote vol[−µ]n−1 (Y )(+const).

5.1 Second Variation Formula and Pointwise Scalar Cur-
vature Estimates for T⋊-Stabilized Bubbles

The first and the second variations of vol[−µ]n−1 (Y )(+const) are the sums of these
for V ol−1(Y ) and of vol(U) where the former were already computed in section
2.5.
362I am inclined to think that products of SYS-manifolds may, in general, carry metrics with
Sc > 0, but I am not certain about it.
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And turning to the latter, it is obvious that the first derivative/variation of
µ(U) under ψν, where ν is the outward looking unit normal normal field to Y
and ψ(y) is a function on Y , is

∂ψν ∫
U
µ(x)dx = ∫

Y
µ(y)ψ(y)dy

and the second derivative/variation is

∂2
ψν ∫

U
µ(x)dx = ∂ψν ∫

Y
µ(y)ψ(y)dy = ∫

Y
(∂νµ(y) +M(y)µ(y))ψ2

(y)dy,

where the field ν is extended along normal geodesics to Y , (compare section 2.5)
and where M(y) denotes the mean curvature of Y in the direction of ν.

It follows that µ-bubbles Y , (critical points of vol[−µ]n−1 (Y ) = voln−1(Y )−µ(U))
have

mean.curv(Y ) = µ(y)

and that
second variation of locally minimal bubbles Y ⊂X,

∂ψν(vol
[−µ]
n−1 (Y )) = ∂ψν (voln−1(Y ) − ∫

U
µ(x)dx)) ,

is non-positive.
Then we recall, the formula [○○] from section 2.5

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R−(y)ψ

2
(y)dy

for

R−(y) = −
1

2
(Sc(Y, y) − Sc(X,y) +M2

(y) −
n−1

∑
i=1

αi(y)
2
) ,

where αi(y) are the principal curvatures of Y at y, and where ∑α2
i is related

to the mean curvature M = α1 + ... + αn−1, by the inequality

∑α2
i ≥

M2

n − 1
.

Thus, summing up all of the above, observing that

∂νµ(x) ≥ −∣∣dµ(x)∣∣

and letting

[R+ =] R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x),

we conclude that
if Y locally minimises vol[−µ]n−1 (Y )(= voln−1(Y ) − µ(U)), then

∫ ∣∣dψ∣∣2dy + (
1

2
Sc(Y ) −

1

2
R+(y))ψ

2
(Y )dy ≥ ∂ψνvol

[−µ]
n−1 (Y ) ≥ 0

for all functions ψ on Y .
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Hence,
(≥0 the −∆ + 1

2
Sc(Y, y) − 1

2
R+(y), for ∆ = ∑i ∂

2
ii is positive on Y .

Examples. (a) Let X = Rn and µ(x) = n−1
r
, that is the mean curvature of

the sphere of radius r. Then

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 =

(n − 1)(n − 2)

r2
= Sc(Sn−1

(r)).

(b) LetX = Rn−1×R be the hyperbolic space with the metric ghyp = e2rgEucl+
dr2 and let µ(x) = n − 1. Then

R+(x) = n(n − 1) − 0 + (−n(n − 1)) = 0 = Sc(Rn).

(c) Let X = Y × (−π
n
, π
n
) with the metric ϕ2h + dt2, where the metric h is a

metric on Y and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
.

Then a simple computation shows that

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 =

(n − 1)(n − 2)

r2
= Sc(Sn−1

(r)).

nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + n(n − 1) = 0.

Furthermore, if Sc(h) = 0, than Sc(X(= n(n − 1) and R+ = 0.
Two relevant corollaries to (≥0 are as follows.
Let X be a Riemannian manifold of dimension n, let µ(x) be a continuous

function and Y be a smooth minimal µ-bubble in X.
(conf If

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x) > 0,

then by Kazdan-Warner conformal change theorem (see section 2.6) Y admits
a metric with Sc > 0.
(warp There exists a metric ĝ on the product Y ×R of the form gY + φ2dr2

for the metric gY on Y induced from X, such that

Scĝ(y, r) ≥ R+(y).

which implies that Scĝ(y, r) ≥ R+(y), since λ ≥ 0. QED.

5.2 On Existence and Regularity of Minimal Bubbles
Let X be a compact connected Riemannian manifold of dimension n with boundary
∂X and let ∂− ⊂ ∂X and ∂+ ⊂ ∂X be disjoint compact domains in ∂X.

Example. Cylinders Y × [−1,1] naturally come with such a ∂∓-pair for ∂− =
Y × {−1} and ∂+ = Y × {1}, where, observe, ∂− ∪ ∂+ = ∂(Y × [−1,1]) if and only
if Y is a manifold without boundary.
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Let us agree that the mean curvature of ∂− is evaluated with the incoming
normal field and mean.curv(∂+) is evaluated with the outbound field.

For instance, if the boundary of X is concave, as for instance for X equal
to the sphere minus two small disjoint balls, t then mean.curv(∂−) ≥ 0 and
mean.curv(∂+) ≤ 0.

Barrier [≷ ∓mean]-Condition. A continuous function µ(x) on X is said to
satisfy [≷ ∓mean]-condition if

[≷ ∓mean] µ(x) ≥mean.curv(∂−, v) and µ(x) ≤mean.curv(∂+, x)

for all x ∈ ∂− ∪ ∂+.
It follows by the maximum principle in the geometric measure theory that
⋆ the [≷ ∓mean]-condition ensures the existence of a minimal µ-bubble

Ymin ⊂X. which separates ∂− from ∂−+.
If this condition is strict, i.e. if µ(x) >mean.curv(∂−) and µ(x) <mean.curv(∂+)

and if X has no boundary apart from ∂∓, then Ymin ⊂X doesn’t intersect ∂∓; in
general, the intersections Ymin∩∂∓ are contained in the side boundary of X that
is the closure of the complement ∂X ∖ (∂− ∪ ∂−). (This, slightly reformulated,
remains true for non-strict [≷ ∓mean].)

If dim(X) = n ≤ 7, then, (this well known and easy to see) Federer’s regu-
larity theorem(see section 2.7) applies to minimal bubbles as well as to minimal
subvarieties and the same can be said about Nathan Smale’s theorem on non-
stability of singularities for n = 8. Thus, in what follows we may assume our
minimal bubbles smooth for n ≤ 8.

Then, by the stability of Ymin (see section 5.1 above),
●ϕ○ : there exits a function φ○ = φ○(y) > 0 defined in the interior ○Y of Y ,

i.e. on Y ∖ ∂X, such that the metric

gϕ○ = ϕ
2
○gY + dt2 on the cylinder ○Y ×R,

where gY is the Riemannian metric on Y induced from X, satisfies

e Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣

for all y ∈ ○Y .363

What if n ≥ 9?.

The overall logic of the proof indicated in [Lohkamp(smoothing) 2018] leads
one to believe that, assuming strict [≷ ∓mean], there always exists a smooth
Yo ⊂X, which separates ∂∓ and and which admits a function φ○ with the prop-
erty e.

The proof of this, probably, is automatic, granted a full understanding
Lohkamp’s arguments. But since I have not seriously studied these arguments,
everything which follows in sections 5.3-5.8 should be regarded as conjectural
for n ≥ 9.364

363Since the metric gϕ○ is R-invariant its scalar curvature is constant in t ∈ R.
364In some cases, a generalization of Schoen- Yau’s theorem 4.6 from [SY(singularities) 2017]
can be used instead of Lohkamp’s theory; namely, this is possible in those applications, which
don’t depend on the Dirac operators on these bubbles, but can be obtained by relying only
on the geometric measure theory.
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Barrier [≷mean = ∓∞]-Condition. Let X be a non-compact, possibly non-
complete, Riemannian manifold X and let the set of the ends of X is subdivided
to (∂∞)− = (∂∞)−(X) and (∂∞)+ = (∂∞)+(X), where this can be accomplished,
for instance, with a proper map from X to an open (finite or infinite) interval
(a−, a+) where "convergence" xi → (∂∞)∓, xi ∈X, is defined as e(xi) → a∓.

For example, if X is the open cylinder, X = Y × (a, b), where Y is a
compact manifold, possibly with a boundary, this is done with the projection
Y × (a−, a+) → (a−, a+).

Obvious Useful Observation. If a function µ(x) satisfies

µ(xi) → ±∞ for xi → (∂∞)∓

then X can be exhausted by compact manifolds Xi with distinguished domains
(∂∓)i ⊂ ∂Xi, such that

● these (∂∓)i separate (∂∞)− from (∂∞)− for all i and

(∂∓)i → (∂∞)∓;

● restrictions of µ to (Xi, (∂∓)i) satisfy the barrier [≷ ∓mean]-condition.
This ensures the existence of locally minimising µ-bubbles in X which sepa-

rate (∂∞)− from (∂∞)+.

5.3 Bounds onWidths of Riemannian Bands and on Topol-
ogy of Complete Manifolds with Sc > 0

Let us prove the following version of the 2π
n
-inequality from section 3.6.

2π
n -Inequality∗. Let X be an open, possibly non-complete Riemannian man-

ifold of dimension n and let
f ∶X → (−l, l)

be a proper (i.e. infinity → infinity) smooth distance non-increasing map, such that
the pullback f−1(to) ⊂X of a generic point to the interval (−l, l) is non-homologous
to zero in X.

If Sc(X) ≥ n(n−1) = Sc(Sn) and if the following condition Sc≯0 is satisfied,
then

l ≤
π

n
.

Sc≯0 No smooth closed cooriented hypersurface in X homologous to f−1(to)
admits a metric with Sc > 0.

Proof. Assume l > π
n
. and let µ(t) denote the mean curvature of the hy-

persurface Y × {t} in the warped product metric ϕ2h + dt2. on Y × (−π
n
, π
n
)

for
ϕ(t) = exp∫

t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n

as in example (c) from the previous section.
Since µ(t) → ±∞ for t → ∓π

n
, the barrier [≷mean = ∓∞]-condition from the

section 5.2 guaranties the existence of a locally minimizing µ-bubble in X for µ
being a slightly modified f -pullback of µ to X.

Let us spell it out in detail.
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Assume without loss of generality that the pullbacks Y∓ = f−1 (∓π
n
) ⊂X are

smooth, and let µ(x) be a smooth function on X with the following properties.
●1 µ(x) is constant on X on the complement of f−1 (−π

n
, π
n
) for (−π

n
, π
n
) ⊂

(−i, i);
●2 µ(x) is equal to µ ○ f in the interval (−π

n
+ ε, π

n
− ε) for a given (small)

ε > 0;
●3 the absolute values of the mean curvatures of the hypersurfaces Y∓ are

everywhere smaller than the absolute values of µ;
●4

nµ(x)2
n−1

− 2∣∣dµ(x)∣∣ + n(n − 1) ≥ 0 at all points x ∈X.
In fact, achieving ●3 is possible, since µ(t) is infinite at ∓π

n
, while the mean

curvatures of the hypersurfaces Y∓ and what is needed for ●4 are the inequality
∣∣df ∣∣ ≤ 1 and the equality

nµ(t)2

n − 1
− ∣
dµ(t)

dt
∣ + n(n − 1) = 0

indicated in example (c) from section 5.1).
Because of ●3, the submanifolds Y∓ serve as barriers for µ-bubbles (see the

previous section) between them; this implies the existence of a minimal µ-bubble
Ymin in the subset f−1 (−π

n
, π
n
) ⊂X homologous to Yo. by⋆ in section 5.2.

Due to ●4, the ∆ + 1
2
Sc(Y ) is positive by (≥0 from the section 5.1.

Hence, by (conf the manifold Ymin admits a metric with Sc > 0 and the
inequality l ≤ π

n
follows.

On Rigidity. A a close look at minimal µ-bubbles (see section 5.7) shows
that

if l = π
n
, then X is isometric to a warped product , X = Y ×(−π

n
, π
n
) with the

metric ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
.

Exercises. (a) Let X be an open manifolds with two ends, Show that if no
closed hypersurface in X that separates the ends admits a metric with positive
scalar curvature then X admits no metric with Sc > 0 either.365

(b) Let X be a complete Riemannian manifold, and let

S(R) = min
B(R)

Sc(X)

denote the minimum of the scalar curvature (function) of X on the ball B(R) =

Bx0(R) ⊂X for some centre point x0 ∈X. Show that
ifX is homeomorphic to Tn−2×R2, then there exists a constant R0 = R0(X,x0),

such that

[≍ 4π2

R2 ] S(R) ≤
4π2

(R −R0)
2
for all R ≥ R0.

366

365This, for a class of spin manifolds X, was shown in [GL(complete) 1983] by applying a
relative index theorem for suitably twisted Dirac operators on X × S2(R).
366 A rough version of this for a class of spin manifolds X can be proved by Dirac operator
methods.
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Hint. Since the bands between the concentric spheres of radii r and r +R,
call them X(r, r + R) = B(r + R) ∖ B(r), are, for large r, quite similar to the
cylinders TN−1×[0,R], the 2π

n -Inequality∗ applies to them and says that their
scalar curvatures satisfy

S(R) = inf Scx(X(r, r +R), x) ≤
4(n − 1)π2

nR2
.

Question. What are topological obstructions, if any, for the existence of a
complete Riemannian metric g on an open manifold X (possibly with a boundary),
such that Sc(g) > 0 and/or Sc(g) ≥ 0 at infinity, i.e. outside a given compact
subset in X. mple

We describe obstructions on topology implied by positivity of the scalar
curvature in sections 4.7 and 5.10; 367 here we make a couple of preparatory
remarks concerning this issue.

(a) If the sectional curvature of a complete Riemannian manifold X is non-
negative at infinity, then, by the standard argument, X admits a proper con-
tinuous function f ∶ X → [0,∞), where the levels f−1(r) ⊂ X are convex hyper-
surfaces for all r ∈ [1,∞). Thus,

X is topologically cylindrical at infinity.
(b) Similarly to (a), if Ricci(X) ≥ 0 at infinity, then X admits a proper

continuous function f ∶ X → [0,∞), where the levels f−1(r) ⊂ X have non-
negative (generalized) mean curvatures for all r ∈ [1,∞). Thus,

X has finitely many ends.
(c) Let X = Y0 × Tn−2, where Y0 is connected surface of infinite topological

type, e.g. with infinitely many ends.
Then "the first "-Torical symmetrization from section 3.6.1, at least if n ≤ 8,

brings us to a complete surface Y ⊂ X of infinite topological type, such that a
(generalized) warped product g○ metric on Y × Tn−2 has Sc > 0 at the points
x ∈ Y , where Sc(X,x) > 0.

Now, to prove that g○ can’t have Sc(g○) > 0 at infinity, one needs to find a
complete Tn−2-invariant volume minimizing hypersurface that doesn’t intersect
a given compact subset K ⊂ Y × Tn−2, where such a hypersurface can be seen
as a minimizing geodesic in the surface Y with the metric, which is conformally
equivalent to the metric dy2 induced from X, and where the conformal factor
is equal to (vol(Tn−2

y )2.
In general, the volumes of the tori Tn−2

y = Tn−2 × {y} may grow very fast
for y → ∞, such that all minimal hypersurfaces intersect the subset K, where
Sc ≤ 0, but there is a limit to such a growth due to the differential inequality
satisfied by the conformal factor (see section 2.4.1. Besides, a significant growth
of this factor, may allow stable µ-bubbles away from K.

But it is unclear if this can be made rigorous and
non-existence of complete metrics with Sc > 0 on the above Y0 ×Tn−2 remains

conjectural.
367Also see [GL(complete) 1983], [Cecchini(Callias) 2018], [Wang(Contractible) 2019]) for
the existence of complete metrics with everywhere positive scalar curvatures, where the tech-
niques from [Cecchini(long neck) 2020] and/or from [Zhang(Area Decreasing) 2020] may be(?)
applicable to Sc > 0 at infinity.
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On the other hand, this kind of reasoning rules out complete metrics with
Sc > 0 everywhere on many manifolds with sufficiently complicated topologies,
which may include manifolds considered in [Cecchini(Callias) 2018] and/or in
[Wang(Contractible) 2019].368

5.4 Equivariant Separation and Bounds on Distances Be-
tween Opposite Faces of Cubical Manifolds with Sc > 0

Recall the following general purpose proposition from section ??.
III↺ Equivariant Separation Theorem. Let X be an n-dimensional, Rie-

mannian band, possibly non-compact and non-complete.
Let

Sc(X,x) ≥ σ(x) + σ1, ,

for a continuous function σ = σ(x) ≥ 0 on X and a constant σ1 > 0, where σ1 is
related to d = width(X) = distX(∂−, ∂+) by the inequality

σ1d
2
>

4(n − 1)π2

n
.

(If scaled to σ1 = n(n − 1), this becomes d > 2π
n
.)

Then there exists a smooth hypersurface Y ⊂X, which separates ∂− from ∂+,
and a smooth positive function φ on Y , such that the scalar curvature of the
metric gφ = gY−1 + φ

2dt2 on Y ×R is bounded from below by

Sc(gφ, x) ≥ σ(x).

Furthermore
if X is isometrically acted upon by a compact connected group G, then the

separating hypersurface Y ⊂X and the function φ on Y can be chosen invariant
under this action.

Proof. The general case of this reduces to that of σ = n(n−1) by on obvious
scaling/rescaling argument and when σ = n(n − 1) we use the same µ as above
associated with ϕ(t) = exp ∫

t
−π/n − tan nt

2
dt, − π

n
< t < π

n
. Then, as earlier, since

Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣

bye from the previous section, the above equality
nµ(t)2

n−1
− ∣

dµ(t)
dt

∣ +n(n−1) = 0
implies the requited bound Sc(go) ≥ σ1. QED.

Example of Corollary Let X be an orientable spin manifold, let ∂− ∪ ∂+ = ∂X
and let f ∶X → Sn−1 × [−l, l] be a smooth map, such that ∂∓ → Sn−1 × {∓l}.

Let the following conditions be satisfied.
● deg(f) ≠ 0,
● the map X → Sn−1, that is the composition of f with the projection Sn−1 ×

[−l, l] → Sn−1, is area decreasing;
368Cecchini’s proof, which applies to spin manifolds of all dimensions, depends on the in-
dex theory for Dirac-type operators, while Wang’s argument, which relies on specifically 2-
dimensional properties of minimal surfaces, shows that certain contractible 3-manifolds admit
no metrics with Sc > 0.
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● Sc(X) ≥ (n − 1)(n − 2) + σ1 for some σ1 ≥ 0.
Then in conjunction with the (stabilised) Llarull theorem shows that

dist(∂−, ∂+) ≤
2π

n

n(n − 1)
√
σ1

=
2π(n − 1)

√
σ1

.

Remark. This inequality if it looks sharp, then only for σ1 → 0, while
sharp(er) inequality of this kind need different functions µ.

◻n−m-Theorem. Let X be a compact connected orientable Riemannian
manifold of dimension n with a boundary and let X● is a closed orientable manifold
of dimension n −m, e.g. a single point ● if n =m.

Let
f ∶X → [−1,1]m ×X●

be a continuous map, which sends the boundary of X to the boundary of [−1,1]m×
X● and which has non-zero degree.

Let ∂i± ⊂ X, i = 1, ...,m, be the pullbacks of the pairs of the opposite faces of
the cube [−1,1]m under the composition of f with the projection [−1,1]m ×X● →
[−1,1]m.

Let X satisfy the following condition:
m
Sc≯0 No transversal intersection Y−m⋔ ⊂X of m-hypersurfaces Yi ∈X which

separates ∂i− from ∂i+, admits a metric with Sc > 0; moreover, the products Y−m⋔×
Tm admit no metrics with Sc > 0 either.369

If Sc(X) ≥ n(n−1), then the distances di = dist(∂i−, ∂i+) satisfy the following
inequality (which generalise ◻n-inequality from section 3.8).

◻∑
m

∑
i=1

1

d2
i

≥
n2

4π2

Consequently

◻min minidist(∂i−, ∂i+) ≤
√
m

2π

n
.

Proof. Let

σ′i = (
2π

n
)

2 n(n − 1)

d2
=

4π2(n − 1)

nd2

and rewrite ◻∑ as
∑
i

σ′i ≥ n(n − 1).

Assume ∑i σ′i < n(n − 1) and let σi > σ′i be such that ∑i σi < n(n − 1).
Then, by induction on i = 1,2, ...,m and using Ri−1-invariant ◻-Lemma on

the ith step, construct manifolds X−i = Y−i × Ri with Ri-invariant metrics g−i,
such that

Sc(X−i) > n(n − 1) − σ1 − .. − σi.

369This "moreover" is unnecessary, since the relevant for us case of stability of the Sc ≯ 0
condition under multiplication by tori is more or less automatic. (The general case needs some
effort.)
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The proof is concluded by observing that this for i = m would contradict to
m
Sc≯0.
Remarks. (a) As we mentioned earlier, this inequality is non-sharp starting

from m = 2, where the sharp inequality

◻2
min mini=1,2dist(∂i−, ∂i+) ≤ π.

for squares with Riemannian metrics on them with Sc ≥ 2 follows by an elemen-
tary argument.

(b) One can show for all n that

minidist(∂i−, ∂i+) ≤
√
m

2π

n
− εm,n,

where εm,n > 0 for m ≥ 2.
(c) A possible way for sharpening ◻∑, say for the case m = n, is by using

n− 2 inductive steps instead of n and then generalizing the elementary proof of
◻2

min to Tn−2-invariant metrics on [−1,1]2 ×Tn−2.
In fact, all theorems for surfaces X with positive (in general, bounded from

below) sectional curvatures beg for their generalisations to Tm−2-invariant met-
rics on X ×Tm−2 with positive (and/or bounded from below) scalar curvatures.

5.4.1 Max-Scalar Curvature with and without Spin

It remains a big open problem of making sense of the inequality Sc(X) ≥ σ,
e.g. for σ = 0, for non-Riemannian metric spaces, e.g. for piecewise smooth
polyhedral spaces P .

But lower bounds on Lipschitz constants of homologically substantial maps
X → P entailed by the inequality Sc(X) ≥ σ > 0, that, for a fixed P , tell you
something about the geometry of X, can be used the other way around for
the definition of scalar curvature-like invariants of general metric spaces P as
follows.

Given a metric space P 370 and a homology class h ∈Hn(P ) define Scmax(h)
as the supremum of the numbers σ ≥ 0, such that H can be dominated with
Sc ≥ σ. Here (slightly unlike how it is in 1.5) this means that

there exists a closed orientable Riemannian n-manifold X and a 1-Lipschitz map
f ∶X → P , such that the fundamental homology class [X] goes to h,

f∗[X] = h.

Similarly, one defines Scmax
sp (h) by allowing only spin manifolds X, where,

for instance, the discussion in section 4.1.1 shows that

Scmax
sp (h) ≤ constn ⋅K-waist2(h).

Below are a few observations concerning these definitions.
●1 Sc

max[X] ≥ infx Sc(X,x) for all closed Riemannian manifolds X, where
the equality Scmax[X] = Sc(X,x), x ∈X, holds for what we call extremal mani-
folds X.
370To be specific we assume that P is locally compact and locally contractible, e.g. it is
locally triangulable space

261



●2 More generally, the product homology class h ⊗ [X] ∈ Hn+m(P × X),
m = dim(X), where P ×X is endowed with the Pythagorean product metric,
satisfies

Scmax
(h⊗ [X]) ≥ Scmax

(h) + inf
x
Sc(X,x).

●3 Possibly,

Scmax
(h⊗ [Sm]) = Scmax

(h) +m(m − 1),

but even the rough inequality

Scmax
(h⊗ [Sm]) ≤ Scmax

(h) + constm.

remains beyond splitting techniques from section 5.3. 371

●4 If F ∶ X1 → X2 is a finitely sheeted covering between closed orientable
Riemannian manifolds, then

Scmax
sp [X1] ≥ Sc

max
sp [X2] as well as Scmax

sp [X1] ≥ Sc
max
sp [X2],

but the equality may fail to be true, e.g. for SYS-manifolds X2 defined in
section 2.7

(It is less clear when/why this happens to infinitely sheeted coverings, where
the problem can be related to possible failure of contravariance of K-waist2, see
section 4.1.4)

Non-Compact Spaces and Scmax
prop. The above definitions naturally extends to

homology with infinite supports in non-compact spaces , e.g. to the fundamental
classes [P ] of open manifolds and pseudomanifolds P , where the Riemannian
manifolds X mapped to these spaces are now non-compact and not even com-
plete.

Also we use the notation Scmax
prop for fundamental classes of (psedo)manifolds

P with boundaries, where proper maps X → P are those sending ∂X → ∂P .
Stabilized max-Scalar Curvatures. These for a space P are defined as

stabScmax... (P ) = Scmax... (P ×TN)

where TN is flat torus that may be assumed arbitrarily large (this proves im-
material at the end of day), where N is also large and where the implied metric
in the product is the Pythagorean one:

dist((p1, t1), (p2, t2)) =
√
dist(p1, p2)

2 + dist(t1, t2)2.

Examples. (a) Llarull’s and Goette-Semmelmann’s inequalities from section
4.2 can be regarded as sharp bounds on Scmax

sp for (the fundamental homology
classes of) spheres and convex hypersurfaces.

(b) The ◻-inequalities from the previous section provide similar bounds on
stabilised Scmax

prop(P ) for the fundamental homology classes of the rectangular
solids P = ⨉

n
i=1[0, ai].

371These techniques deliver such an inequality for the stabilized max-scalar curvature:
Scmaxstab(h) = limm→∞(h ⊗ [Tm]), where one may additionally require the manifolds X
mapped to P × Tm to be isometrically acted upon by the m-tori
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(It seems, there are interesting examples in the spirit of SYS-spaces from
section 2.7 where one needs to allow f∗[X]Z/lZ ≠ 0, at least for for odd l.

Also one may ask in this regard if Scmax
prop of the universal covering of a closed

orientable manifold X with a residually finite fundamental group is equal to the
limit of Scmax

prop of the finite coverings of X.)
(c) Spaces with S-Conical Singularities and Sc ≥ σ. Let us define classes

S n
≥σ, n = 2,3, ... of piecewise Riemannian spaces with Sc ≥ σ > 0 by induction

on dimension n ≥ 2 as follows.
Let Y = Y n−1 from S n−1

≥σ be isometrically realized by a piecewise smooth
(n − 1)-dimensional subvariety in a (N − 1)-dimensional sphere, N >> n, that
serves as the boundary of the N -dimensional hemisphere,

Y ⊂ SN−1
(R) = ∂SN+ (R),

where the radius of the sphere satisfies,

R ≥

√
(n − 1)(n − 2)

σ

and where "isometrically" means preservation of the lengths of piecewise smooth
curves in Y .

Then the spherical cone of Y , that is the union of the geodesic segments
which the center of the spherical n-ball SN+ ⊂ SN to all y ∈ Y is, by definition,
belongs to S n

≥σ′ for
σ′ = σ

n

n − 2

and, more generally, a piecewise smooth Y is in S n
≥σ′ if its scalar curvature at

all non-singular points is ≥ σ′ and near singularities Y is isometric to a spherical
cone over a space from S n−1

≥σ .
To conclude the definition, we agree to start the induction with n − 1 = 1,

where our admissible spaces are circles of length ≤ 2π and, if we allow boundaries,
segments of any length.

Y ⊂ SN−1 be a closed submanifold of dimension n − 1 ≥ 2, and let S(Y ) ⊂

SN ⊃ SN−1 be the spherical suspension of Y , that is the union of the geodesic
segments which go from the north and the south poles of SN to Y .

Notice that this S(Y ) with the induced Riemannian metric is smooth away
from the poles, where it is singular unless the induced Riemannian metric in Y
has constant sectional curvature +1 and Y is simply connected (hence, isometric
to Sn−1).

Let Y be a space from S n
≥σ with k isolated singular points yi ∈ Y where X is

locally isometric to S-cones over (n − 1)-manifolds, call them Vi, i = 1, ...k such
that every such Vi bounds a Riemannian manifold Wi, where Sc(Wi) > 0 and
the mean curvature of Vi = ∂Wi is positive. Then

Scmax
prop(Y ) ≥ σ.

Sketch of the Proof. Arguing as in [GL(classification) 1980], one can, for all
ε > 0, deform the metric in X near singularities keeping Sc ≥ σ−ε, such that the
resulting metric on Y minus the singular points yi becomes complete, where its
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k ends are isometric to the cylinders εVi × [∞), where εV stands for an V with
its Riemannian metric multiplied by ε2.

This complete manifold, call it Yε, admits a locally constant at infinity 1-
Lipschitz map Yε → Y of degree 1, and then the closed manifold Ȳε, obtained
from Yε by attaching εWi to εVi × {ti}, for large ti ∈ [0,∞] admits a required
1-Lipschitz map to Y as well. QED

Remark. Instead of filling Vi by Wi individually it is sufficient to fill in their
(correctly oriented!) disjoint union V = ⊔i Vi by W . For instance, if there are
only two singular points, where V1 and V2 are isometric and admit orientation
reversing isometries then V1 ⊔ −V2 bounds the cylinder W between them.

This kinds of "desingularization by surgery" also applies to Y , where the
singular loci Σ ⊂ Y have dimensions dim(Σ) ≥ 1, similarly to how it is done
to manifolds with corners (see section 1.1 in [G(billiard0 2014]) but the filling
condition becomes less manageable.

In fact even if dim(Σ) = 0, it is unclear how essential our filling truly is,
especially for evaluation Scmax of a multiple of the fundamental class of an Y ;
yet, the spaces Y ∈ S n

≥σ with isolated singularities seem to enjoy the same metric
properties as smooth manifolds with Sc ≥ σ filling or no filling.

For instance, if the non-singular locus of such an Y is spin then the hyper-
spherical radius Y is bounded in the same way as it is for smooth manifolds:

RadSn(Y ) ≤

√
n(n − 1)

σ
,

as it follows from Llarull’s theorem for complete manifolds.
In fact, the construction from [GL(classification) 1980] for connected sums of

manifolds with Sc > 0, when applied to Y ∖Σ, achieves a blow-up of the metric
g of Y on Y ∖Σ to a complete one, say g+, such that g+ ≥ g and infx Sc(g+, x) ≥
infx Sc(g, x) − ε for an arbitrarily small ε > 0.

Also mean convex cubical domains U in Y with none of the singular yi ∈ Y
lying on the boundary ∂U satisfy the constraints on the dihedral angles similar
to those for smooth Riemannian manifolds with Sc ≥ σ

But the picture becomes less transparent for dim(Σ) > 0, as it is exemplified
by the following.

Question. Does the inequality Rad2
Sn(Y ) ≤ constn

n(n−1)
σ

hold true for all
Y ∈ S n

≥σ?
Perspective. In view of [Cheeger(singular) 1983], [GSh(Riemann-Roch) 1993]

and[AlbGell(Dirac operator on pseudomanifolds) 2017 ], it is tempting to use
the Dirac operator on the non-singular locus Y ∖Σ with a controlled behavior for
y → Σ, but it remains unclear if one can actually make this work for dim(Σ) > 0.

The only realistic approach at the present moment is offered by the method
of minimal hypersurfaces (and/or of stable µ-bubbles), which may be addition-
ally aided by surgery desingularization, such as multi-doubling similar to that
described in [G(billiards) 2014] for manifolds with corners.

Max-Scalar Curvature Defined via Sc-Normalized Manifolds . Given a Rie-
mannian manifold X = (X,g) with positive scalar curvature, let g∼ = Sc(g) ⋅ g,
consider Lipschitz maps f of closed oriented Riemannian manifolds X = (X,g)
with Sc(X) > 0 to P , such that f∗[X] = h, for a given h ∈ Hn(P ), let λmin∼ be
the infimum of the Lipschitz constants of these maps with respect to the metrics
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g∼ and let

Scmax
∼ (h) =

1

(λmin∼ )2
.

And if P is a a piecewise smooth polyhedral space (e.g. a Riemannian mani-
fold), define Scmax

∧2
∼

(h) by taking the infimum inff supx∈X ∣∣ ∧2 df(x)∣∣ instead of
the λmin∼ (as in ∧2-inequality from section 4.2372):

Scmax
∧2
∼

(h) =
1

inff supx∈X ∣∣ ∧2 df(x)∣∣
.

Clearly,
Scmax

≤ Scmax
∼ ≤ Scmax

∧2
∼

.

(Similar inequalities are satisfied by the spin and by proper versions of
Scmax), where most bounds on Scmax we prove and/or conjecture below can
be more or less automatically sharpened to their Scmax

∼ and Scmax
∧2
∼

(as well as to
their spin and proper) counterparts.)

Problem. Evaluate Scmax
prop of (the fundamental classes of) "simple" metric

space, such as products of mi-dimensional balls of radii ai where ∑imi = n and the
product distance is lp, i.e. distlp((xi), (yi)) =

p
√
∑i dist(xi, yi)

p, e.g. for p = 2.
This is related to the problem of a general nature of evaluating Scmax(h1⊗h2)

of h1 ⊗ h2 ∈ Hn1+n2(P1 × P2) in terms of Scmax(h1) ∈ Hn1(P1) and Scmax(h2) ∈

Hn2(P2).
It follows from the additivity of the scalar curvature (see section 1) that

Scmax
(h1 ⊗ h2) ≥ Sc

max
(h1) + Sc

max
(h2),

but it is unrealistic (?) to expect that, in general

Scmax
(h1 ⊗ h2) ≤ constn1+n2 ⋅ (Sc

max
(h1) + Sc

max
(h2)),

albeit the geometric method from the section 5.4 does deliver non-trivial bounds
on Scmax

prop of product spaces whenever lower bounds on the hyperspherical radii
of the factors are available.373

5.5 Extremality and Rigidity of log-ConcaveWarped prod-
ucts

The inequalities proven in section 5.3 say, in effect, that the metric

gφ = φ
2gflat + dt

2 on Tn−1 ×R for φ(t) = exp ∫
t
−π/n − tan nt

2
dt

is extremal: one can’t increase gφ without decreasing its scalar curvature,374

372The definition of ∣∣ ∧2 df(x)∣∣ makes sense for Lipschitz maps (at almost all x) but the
arguments with Dirac operators need smoothness of the maps. But it may be interesting to
go beyond smooth manifolds and maps to general continues maps with bounded area dilations,
where, probably, the most adequate definition of "area" in non-smooth metric spaces P is the
Hilbertian one in the sense of [G(Hilbert) 2012].
373One may define RadSn(h), h ∈ Hn(P ), as the suprema of the radii R of the n-spheres,
for which P admits a 1-Lipschitz map f ∶ P → Sn(R), such that f∗(h) ≠ 0.
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where the essential feature of φ
(implicitly) used for this purpose was log-concavity of φ:

d2 logφ(t)

dt2
< 0.

We show in this section that the same kind of extremality (accompanied by
rigidity) holds for other log-concave functions, notably for ϕ(t) = t2, ϕ(t) = sin t
and ϕ(t) = sinh t which results in

rigidity of punctured Euclidean, spherical and hyperbolic spaces.
More generally, let X = Y × R comes with the warped product metric gφ =

φ2dgy + dt
2. Then the mean curvatures of the hypersurfaces Yt = Y × {t}, t ∈ R,

satisfy (see 2.4)

mean.curv(Yt) = µ(t) = (n − 1)
d logφ(t)

dt
=
φ′(t)

φ(t)
,

and, obviously, are these Yt ⊂X are locally (non-strictly) minimizing µ-bubbles.
375

Now, clearly, φ is log-concave, if and only if

dµ

dt
= − ∣

dµ

dt
∣ .

Thus, R+ defined (see section 5) as

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x)

is equal in the present case to

nµ(t)2

n − 1
+ 2µ′(t) + Sc(gφ(t)) =

2(n − 1)φ′′(t)

φ(t)
+ (n − 1)(n − 2)(

φ′

φ
)

2

+ Sc(gφ(t))

which implies (see section 5) that

(R+)Yt =
1

φ2
Sc(gYt) = Sc(gYt) for gYt = φ

2gY .

Here our −∆Yt +
1
2
Sc(gYt) − (R+)Yt from section 5.1) is equal to −∆Yt , the

lowest eigenvalue which is zero with constant corresponding eigenfunctions and
the corresponding (T1-invariant warped product) metrics on Yt × T1 are (non-
warped) gYt + dt

2 for Yt = Y × {t} ⊂X = Y ×R and all t ∈ R.
This computation together with (warp in section 5.1 yield the following.

374To be precise, one should say that
one can’t modify the metric, such that the scalar curvature increases but the metric itself

doesn’t decrease.
The relevance of this formulation is seen in the example of X = Sn × S1, where one can

stretch the obvious product metric g in the S1-direction without changing the scalar curvature,
but one can’t increase the scalar curvature by deformations that increase g.
375If Y is non-compact, the minimization is understood here for variations with compact
supports.
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Comparison Lemma. Let X = Y × [a, b] be an n-dimensional warped prod-
uct manifold with the metric

gX = gφ = φ
2gY + dt2, t ∈ [a, b],

where φ(t) is a smooth positive log-concave function on the segment [a, b].
Let X be an n-dimensional Riemannian manifold, with a smooth function µ(x)

on it and let Y = Yµ ⊂X be a stable, e.g. locally minimising µ-bubble in X.
Let g⋊ = gφ⋊ = φ

2
⋊gY + dt2 be the metric on Y × T1 where gY is the metric on

Y induced from X, and where φ⋊ is the first eigenfunction of the

−∆ + 1
2
Sc(gY , y) −R+(y) for R+(x) =

nµ(x)2
n−1

− 2∣∣dµ(x)∣∣ + Sc(X,x)

(φ⋊ is not assumed positive at this point).
Let f ∶ X → X be a smooth map let fY ∶ X → Y denote the Y -component of

f , that is the composition of f with the projection X = Y × [a, b] → Y .
Let

f[a,b] ∶X → [a, b]

be the [a, b]-component of f , let

µ∗(x) = µ ○ f[a,b](x) for µ(t) = (n − 1)
d logφ(t)

dt
=mean.curv(Y t), t = f[a,b](x)

and let

µ′∗ = µ′ ○ f[a,b](x) where µ′ = µ′(t) =
dµ(t)

dt
.

Let

R∗
+(x) =

nµ∗(x)2

n − 1
− 2∣∣dµ∗(x)∣∣ + Sc(X,f(x))

If
R+(x) ≥ R

∗
+(x),

then the function φ⋊ is positive and the scalar curvature of the metric g⋊ = gφ⋊
on Y ×T1 satisfies

Scg⋊(y, t) ≥
1

∣∣df[a,b](y)∣∣2
Sc(Y , fY (y)) = Sc(Y t, f(y)) for Y t ∋ f(y).

The main case of this lemma, which we use below, is where
(●df[a,b]) the function f[a,b] ∶X → [a, b] is 1-Lipschitz, i.e. ∣∣df[a,b]∣∣ ≤ 1,

and
(●µ) µ(x) = µ ○ f[a,b], that is µ(x) =mean.curv(Y t, f(x)) for Y t ∋ f(x)
and where the conclusion reads:

[Sc ≥]. Scgφ(y, t) ≥
1

(f[a,b](y))2
Sc(Y , fY (y)) + Sc(X,y) − Sc(X,f(y)).

Corollary. Let X⋊ denote the above Riemannian (warped product) manifold
(Y ×T1, g⋊ = gφ⋊) and let f⋊ ∶X⋊ → Y be defined by (y, t) ↦ fY (y).
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If besides ●df[a,b] and ●µ,

∣∣ ∧
2 df ∣∣ ≤ 1, e.g. ∣∣df ∣∣ ≤ 1

and if
Sc(X,y) ≥ Sc(X,f(y)),

then the map f⋊ satisfies

Sc(X⋊, x⋊) ≥ ∣∣df⋊∣∣
2Sc(Y , f⋊(x⋊)) ≥ ∣∣ ∧

2 df○∣∣Sc(Y , f⋊(x⋊)).

Now, the existence of minimal bubbles under the barrier [≷ mean = ∓∞]-
condition (see section 5.2) and a combination of the above with the Llarull
trace ∧2 df -inequality from section 4.2 yields the following.
⊙Sn. Extremality of Doubly Punctured Spheres. Let X be an ori-

ented Riemannian spin n-manifold, let X be the n-sphere with two opposite points
removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.

If Sc(X) ≥ n(n − 1) = Sc(X) = Sc(Sn), then
(A) the scalar curvature of X is constant = n(n − 1);
(B) the map f is an isometry.
Proof. The spherical metric on X = Sn ∖ {s,−s} is the warped product

Sn−1 × (−π
2
, π

2
) where the warping factor φ(t) = cos t which is logarithmically

concave, where µ(t) =
d logφ(t)

dt
→ ±∞ for t→ ∓π

2
. 376

This implies (A) while (B) needs a little extra (rigidity) argument indicated
in section 5.7.

1-Lipschitz Remark. As it is clear from the proof, the 1-Lipshitz condition
can be relaxed to the following one.

The radial component f[−π2 ,π2 ] ∶ X → [−π
2
, π

2
] of f , which corresponds to the

signed distance function from the equator in Sn ∖ {s,−s} is 1-Lipschitz and (the
exterior square of) the differential of the Sn−1 component fSn−1 ∶X → Sn−1 satisfies

∧
2dfSn−1 ≤

1

(cos f[−π2 ,
π
2
](x))

2
.

Non-Spin Remark. If n = 4, one can drop the spin condition, since µ-bubbles
Y ∈X, being 3-manifolds, are spin.

Similarly to ⊙Sn one shows the following.
⊙Rn. Let Let X be as above, let X be Rn with a point removed and let

f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.
If Sc(X) ≥ n(n − 1) ≥ 0 and if X is an isometry at infinity, then
(A) Sc(X) = 0;
(B) the map f is an isometry.

376If a log-concave function φ on the segment [−l, l] is positive for −l < t < l and it vanishes
at −l, then the logarithmic derivative of φ goes to ∞ for t→ −l; similarly,

φ′

φ
→
t→l

−∞,

if φ vanishes at t = l.
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⊙Hn. Let Let X be as above, let X be the hyperbolic space with a point
removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.

If Sc(X) ≥ −n(n − 1) and if X is an isometry at infinity, then
(A) Sc(X) = −n(n − 1);
(B) the map f is an isometry.
Question. Let d0(x) = dist(x,x0) be the distance function in X (used in

⊙Rn and/or in ⊙Hn) to the point x0, which was removed from Rn or from
Hn, and let df(x) = d0(f(x)).

Can one relax the 1-Lipschitz condition in the propositions ⊙Rn and in ⊙Hn

by requiring that not f but only the function df(x) is 1-Lipschitz?
We conclude this section with the following proposition, that is proven (in

a different form) in [Richard(2-systoles) 2020] (compare [Zhu(rigidity) 2019])
and which provides a useful geometric information on manifolds with scalar
curvature ≥ σ > 0 on the scale ∼ 1√

σ
.

Richard’s Lemma. Let X be an oriented m-dimensional Riemannian manifold
(possibly non-compact and non-complete) with compact boundary and X0 ⊂X be
an open subset with smooth boundary such that the complementX∖X0 is compact.
Let h ∈ Hm−2(∂X) and h0 ∈ Hm−2(X0) be homology classes, which have equal
images under the homomorphisms induced by the inclusions ∂X ↪ X ↩ X0, that
are

h ∈Hm−2(∂X) →Hm−2(∂X) ←Hm−2(X0) ∋ h0.

Let
Sc(X) ≥ σ > 0,

and

dist2(X0, ∂X) ≥
m(m − 1)π2

σ
.

Then (we can vouch 100% here, as everywhere in this text, only for n ≤ 8)
the image of the homology class h in Hm−2(X) can be realized by a closed

smooth (m−2)-dimensional submanifold Y ⊂X, on which there exists a smooth
positive function φ(y), such that the metric g∗ = dy2 + φ(y)2dt2 on the product
manifold Y ×R2 satisfies

Sc(g∗) ≥
m − 2

m
σ,

where dy2 denotes the Riemannian metric on Y induced from X ⊃ Y and dt2

is the Euclidean metric in the plane R2.
Proof. Use the codimension 2 argument as in the proof of the quadratic decay

theorem in section 1 in [G(inequalities) 2019] (see also section 7 in [GL(complete)
1983] and §9 3

11
in [G(positive) 1996]) together with the above comparison lemma

combined with the equivariant separation theorem from section 5.4.
(A version of Richard’s lemma is also established in [Chodosh-Li(bubbles)

2020] in the course of their proof of non-existence of metric with Sc > 0 on
aspherical 4- and 5-manifolds; also, this lemma is used for a similar purpose in
[G(aspherical) 2020].)
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5.6 On Extremality of Warped Products of Manifolds with
Boundaries and with Corners

We explained in section 4.4 how reflection+ smoothing allows an extension of the
Llarull and Goette-Semmelmann theorems from section 4.2 to manifolds with
smooth boundaries and to a class of manifolds with corners. This, combined with
the above, enlarges the class of manifolds with corners to which the conclusion
of the extremality p∠ij theorem applies. example.

Let △n−1 ⊂ Sn−1 be the regular spherical simplex with flat faces and the
dihedral angles π

2
and let S∗∗△

n−1 ⊂ Sn ⊂ Sn−1 be the spherical suspension of
△n−1 and let X = Sba(△

n−1) ⊂ S∗∗△
n−1, a, b ∈ (−π

2
, π

2
), be the region of S∗∗△

n−1

between a pair of (n − 1)-spheres concentric to our equatorial Sn−1 ⊂ Sn.
Let X be an n-dimensional orientable Riemannian spin manifold with corners

and let f ∶ X → X be a smooth 1-Lipschitz map which respects to the corner
structure and which has non-zero degree.

Spherical Sba(△)-Inequality. If Sc(X) ≥ Sc(X) = n(n−1), if all (n−1)-
faces Fi ⊂ ∂X have their mean curvatures bounded from below by those of the
corresponding faces in X, 377

mean.curv(Fi) ≥mean.curv(F i),

and if all dihedral angle of X are bounded by the corresponding ones of X,

∠ij ≤ ∠ij
=
π

2
,

then
Sc(X) = n(n − 1),

mean.curv(Fi) =mean.curv(F i)

and
∠ij =

π

2
.

Exercise. (a) Recall ∎-hyperbolic comparison theorem for cubical manifolds
diffeomorphic to

V = [0,1] ⋊ [0,1]n−1
⊂ Hn = (R1

×Rn−1, dt2 + e2tdx2
)

from section 3.1 and generalize it to all compact cubical manifolds V (to be
sure, of dimension n ≤ 8).

(b) Formulate and prove (for n ≤ 8) the Euclidean and hyperbolic versions
of the Sba(△)-inequality for spin manifolds V with corners.378

Question. Do the counterparts to the Sba(△)-inequality hold for other sim-
plices and polyhedra?
377All these but two have zero mean curvatures.
378See [Li(parabolic) 2020) for further results in this direction.
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5.7 On Rigidity of Extremal Warped Products
Let us explain, as a matter of example, that

doubly punctured sphere X = Sn ∖ {±s} is spin-rigid.
This means that
if an oriented Riemannian spin n-manifold X with Sc(X) ≥ n(n − 1) =

Sc(X = Sc(Sn) admits a smooth proper 1-Lipschitz map f ∶ X → X such that
deg(f) ≠ 0, then, in fact, such an f is an isometry.

Proof. We know (see the the proof of⊙Sn in 5.5) that X contains a minimal
µ-bubble Y , which separates the two (union of) ends of X, where µ(x) is the
f -pullback of the mean curvature function of the concentric (n − 1)-spheres in
X = Sn ∖ {±s} between the two punctures and that this m-bubble must be
umbilic, where we assume at this point that Y is non-singular, e.g. n ≤ 7.

What we want to prove now is that these bubbles foliate all of X, namely
they come in a continuous family of mutually disjoint minimal µ-bubbles Yt,
t ∈ (−π

2
, π

2
), which together cover X.

Indeed, if the maximal such family Yt wouldn’t cover X, then the would
exists a small perturbation µ′(x) of µ(x) in the gap between two Yt in the
maximal family, such that ∣µ′∣ > ∣µ∣ in this gap, while ∣∣dµ′∣∣ = ∣∣dµ∣∣ in there and
such that there would exist a minimal µ′-bubble Y ′ in this gap.

But then, by calculation in section 5.5, the resulting warped product met-
ric on Y ′ × S1 would have Sc > n(n − 1), thus proving "no gap property" by
contradiction.

Therefore, X itself is the warped product, X = Y × (−π
2
, π

2
) with the metric

dt2 = (sin t)2gY , where Sc(gY ) = n(n−1) and which by Llarull’s rigidity theorem,
has constant sectional curvature. QED.

Remarks (a) On the positive side, this argument is quite robust, which makes
it compatible with approximation of bubble and metrics. For instance it nicely
works for n = 8 in conjunction with Smale’s generic regularity theorem and,
probably, for all n with Lohkamp’s smoothing theorem.

But it is not quite clear how to make this work for non-smooth limits of
smooth metrics.

For instance,
let gi be a sequence of Riemannian metrics on the torus Tn , such that

Sc(gi) ≥ −εi →
i→∞

0

and such that gi uniformly converge to a continuous metric g.
Is this g, say for n ≤ 7, Riemannian flat?379

(The above argument shows that, given an indivisible (n−1)-homology class
in Tn, there exists a foliation of Tn by g-minimal submanifolds from this class.
But it is not immediately clear how to show that these submanifolds are totally
geodesic.)

let gi be a sequence of Riemannian metrics on the torus Tn , such that

Sc(gi) ≥ −εi →
i→∞

0

and such that gi uniformly converge to a continuous metric g.
379Yes, according to [Burkhart-Guim(regularizing Ricci flow) 2019].
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The above argument shows that, given an indivisible (n − 1)-homology class in
Tn, there exists a foliation of Tn by g-minimal submanifolds from this class, but it
is not clear how to show that these submanifolds are totally geodesic, that is needed
for the proof of flatness of g,

Yet,
the Ricci flow argument from [Burkhart-Guim(regularizing Ricci flow) 2019]
does show the metric g is flat.

5.8 Capillary Surfaces: µ-Bubbles with Measures µ∂ Sup-
ported on Boundaries

In order to extend extremality and other results to more general manifolds with
boundaries, such, e.g. as conical domains in Rn, one shouldn’t limit oneself to the
definition of a µ bubble from section 5, where the admissible measures µ on X are
of the form µ(x)dx for continuous functions µ(x).

In fact the definition of µ-bubbles makes sense for more general measures, where
a geometrically interesting case is that of a manifold X with boundary, here denoted
S = ∂X, and our measure is of the form µ●(x)dx + µ∂(c)ds, where µ● and µ∂ are
continuous (or measurable) functions on X and on S = ∂X, and where we let

∣µ∂ ∣ < 1

for a reason that becomes clear later on.
Let Y be the set of cooriented hypersurfaces Y ⊂X with boundaries contained

in S,
Z = ∂Y ⊂ S = ∂X,

where the unit field normal to Y , which defines the coorientation is called the
upward field and denoted ν = νY ↑ and let

µ = µ●(x)dx + µ∂(s)ds.

Then a hypersurface Y ∈ Y is called a µ-bubble (compare 5.1), if it is extremal
or, at least, stationary for

Y ↦ vol
[−µ]
n−1 (Y ) =def voln−1(Y ) − µ(X<),

where X< ⊂X is the region in X "below" Y ⊂X, where

µ(X<) = ∫
X<

µ●(X)dx + ∫
S<
µ∂(s)ds

for
S< = S ∩X< ⊂ S = ∂X.

This kind of (2-dimensional) Y for constant functions µ● and µ∂ are called
capillary surfaces.

An essential for our geometric purposes feature of such surfaces and of (µ●+µ∂)-
bubbles in general is a particular algebraic property of the second variation formula
for stationary Y , similar to that for µ-bubles with continuous µ(x) on manifolds
without boundary that is proved and used at the beginning of section 5; the deriva-
tion of this formula for capillary surfaces was given in [Ros-Souam(capillary) 1997]
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and used in [Li(comparison) 2017] for the proof of extremality of certain polyhedra.
380

In what follows we present a geometrically transparent derivation of this formula
with an eye on further applications. 381

Example. Let

X = Bn ⊂ Rn = Rn−1
×R, S = ∂Bn = Sn−1,

be the unit ball, with the boundary sphere S = Sn−1 and let Yt = Y n−1
t ⊂ Bn, be

the horizontal discs, that are the intersections

Yt = B
n
∩ (Rn−1

× {t}), − 1 < t < 1.

Let
∠t = ∠Zt(Yt, S

n−1
)

be the dihedral angles between the hypersurfaces Yt and Sn−1 along their intersec-
tion

Zt = ∂Yt = Yt ∩ S
n−1

where, we agree that this angle is measured "below" Yt; thus ∠−1 = 0 and ∠1 = π,
i.e. it is related to the height t = t(s) of Zt ⊂ Sn−1 by

t = cos(∠t − π/2).

Next, let µ● = 0 and let

µ
∂
= µ

∂
(s) = cos∠t(s),

where t is regarded here as the height function t ∶ Sn−1 → [−1,1] for
Sn−1 ⊂ Rn−1 × [−1,1] ⊂ Rn−1 ×R.

Then the normal derivative ∂ν = d
dt

of the volume of the discs Yt ⊂ Bn is
expressed in terms of

∣Zt∣ = voln−2(Zt), and the angle ∠t ∈ (0, π)

as follows
∂νvoln−1(Yt) = ∣Zt∣ cot∠t,

while the derivative of the µ
∂
-measure of the region S≤t ⊂ S

n−1 below Zt =

∂Yt ⊂ S
n−1 for µ = µ

∂
(s) = cos∠t(s) is

∂νµ∂(S≤t)) =
∣Zt∣µ∂(s)

sin∠t
= ∣Zt∣ cot∠t.

Thus,
380Necessary existence and regularity of capillary hypersurfaces follow from [Simon-
Spruck(capillary) 1976], [Gerhard(capillarity) 1976], [Liang(capillarity) 2005], [Philippis-
Maggi(capillary) 2015] as it is indicated in [Li(comparison) 2017] and [Li(rigidity) 2019].
381The first version of this manuscript contained a computational error that lead to a most
disappointing conclusion. I am thankful to Mike Anderson who encouraged me to double
check my computation.
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the derivatives of voln−1(Yt) and of µ
∂
(S≤t) by the field ψν for all C1-smooth

functions ψ = ψ(y), y ∈ Yt satisfy

∂ψνvoln−1(Yt) = ∂ψνµ∂(S≤t)

and
∂ψνvol

[−µ]
n−1 (Y ) = 0,

which says that
Yt are µ-bubbles for this µ = µ

∂
(s),

since they are stationary for the the functional Y ↦ vol
[−µ]
n−1 (Y ).

Exercise. Let

Yρ ⊂ B
n
(1) = {x ∈ Rn}∣∣x≤1∣∣, 0 < ρ < 2,

be the intersections of the concentric ρ-spheres Sn−1
x0

(ρ) ⊂ Rn around x0 = (0,0, ..,−1) ∈
Rn with the unit ball Bn ⊂ Rn.

Determine the measure µ = µ●(x)dx + µ∂(s)dy, for which these Yρ serve as
µ-bubbles.

Let us return to the general Riemannian manifold X with boundary S = ∂X, a
hypersurface Y ⊂ X, where Z = ∂Y ⊂ S = ∂X and let µ be a measure of the form
µ = µ●(x)dx + µ∂(s)ds for continuous functions µ●(x) on X and µ∂(s) on S.

First Variation Formula for vol[−µ]n−1 (Y ). In order to define ∂ν one needs to
choose a vector field extending the "upward" normal field to Y , denoted, as earlier,
ν, from Y to a neighbourhood of Y in X, that we do as follows.

Smoothly extend X beyond its boundary by a slightly greater Riemannian man-
ifold X+ of the same dimension and extend Y by a hypersurface Y+ ⊂X+.

Move Y+ in both normal directions by distance ∣t∣ to Y+,t ⊂X+, −ε ≤ t ≤ ε for a
small ε > 0 and let Yt ⊂X be the intersection of the so moved Y+ with X ⊂X+

Yt = Y+,t ∩X ⊂X,

where, observe, Y0 = Y , and where Y±t are t-equidistant hypersurfaces to Y0 in X,
except, maybe, for the ∣t∣-neighbourhood of S = ∂X, where we agree that Yt with
t < 0 lies below Y i.e. in the domain X< ⊂X and Yt>0 are positioned over Y in X.

Now ∂ν is understood as d
dt
∣t=0 and ∂ψν and ∂2

ψν are understood accordingly.
Let ∠z ∈ (0, π) denote the angle between (the tangent spaces of) Y and S at

z ∈ Z = ∂Y = Y ∩ S measured below Y , i.e. in X<.
Then, clearly, for all smooth functions ψ = ψ(y),

∂ψνvoln−1(Y ) = ∫
Y
ψ(y) ⋅mean.curv(Y, y)dy + ∫

Z
ψ(z)

cos∠z

sin∠z
dz,

∂ψνµ●(Y ) = ∫
Y
ψ(y) ⋅ µ●(y)dy

and
∂ψνµ∂(S−) = ∫

Z

ψ(z)

sin∠z
µ∂(z)dz,

where µ(S<) stands for ∫S< µ∂(s)ds, where the "Y "-integrals are the ones we met
earlier in section 5 for X without boundary and where the shape of the Z-integrals
can be seen by looking at the above example.
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Thus, the first variation ∂ψνvol
[−µ]
n−1 (Y ) equals the sum of two integrals, one

over Y and the other one over Z = ∂Y ,

∫
Y
ψ(y)(mean.curv(Y, y) − µ●(y))dy + ∫

Z
ψ(z) (

cos∠z

sin∠z
−

1

sin∠z
µ∂(z))dz,

Therefore, ∂ψνvol
[−µ]
n−1 (Y ) vanishes for all smooth functions ψ(y) and Y is a

(stationary) µ-bubble, if and only if

mean.curv(Y ) = µ● and cos∠z = µ∂(z), z ∈ Z = ∂Y.

∂Y -Contribution to the Second Variation Formula for vol[−µ]n−1 (Y ). Let
us compute the second derivative (variation) ∂ψν∂ψνvol

[−µ]
n−1 (Y ) on a stationary

Y = Y0, where the first variation vanishes and, thus,

cos∠z = µ∂(z).

To make it clear, we do it for the normal deformation Yt of Y = Y0 with ψ = 1,
we ignore the contribution from the Y -integral and observe, that because of the
identity cos∠z = µ∂(z) on Y0, the only non-zero term in the (Leibniz formula for
the ) derivative ∂ν − d

dt
of the above Z-integral is

∫
Z

1

sin∠z
(∂ν cos∠z − ∂νµ∂(z))dz = −∫

Z
∂ν∠zdz + ∂νµ∂(z)dz,

where the derivative of the angle ∠z = ∠z(t) is determined as follows.
Intersect S = ∂X and Y = Y0 with (a germ at z of ) a surface Ez ⊂ X+ ⊃ X,

which is normal to Z = S∩Y = ∂Y at z ∈ Z and is geodesic at z, e.g. being the image
of the local exponential map from the normal plane T ⊥z (Z) ⊂ Tz(X) = Tz(X+) to
X+, where X+ is the above extension of X.

Let
Y = Y (z) = Y ∩Ez and S = S(z) = S ∩Ez

be the intersection curves in this surface Ez, where we identify Ez with a small
ball in the Euclidean plane R2 = T ⊥z (Z) and let Y t ⊂ R2 be t-equidistant curves to
Y = Y 0.

Let zt = Y t ∩ S, (thus z0 = zt=0 = z) let yt ∈ Y 0 be the normal projection of
zt ∈ Y t to Y 0, which means that the straight segment [yt, zt] ⊂ R2 is normal to the
curve Y 0, (also normal to Y t and having length ∣t∣, since Yt is equidistant to Y0).

There are two summands that contribute to the difference ∠zt − ∠z0 between
the angles between our curves at their intersection points.

(1) The first summand is due to the turn of the tangent lines to S along the
segment Sz0,zt ⊂ S between the points z0 and zt, which is equal to the integral of
the curvature κS of S over this (curved) segment, where

∫
Sz0,zt

κS(s)ds = κS(z0)∣z0 − zt∣ + o(t) = κS ⋅ (z0)
1

sin∠z0

+ o(t), t→ 0.

(2) The second contribution to ∠zt −∠z0 comes from the curvature of the curve
Y = Y 0 integrated over the segment Y yt,z0 ⊂ Y ,

∫
Y yt,z0

κY (y)dy = κY (z0) cot∠z0 + o(t).
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Summing up, the normal derivative of the the Z-integral in the first variation
formula is expressed in terms of the curvatures of Y and S and the angle between
them as follows.

∂ν ∫
Z
(

cos∠z

sin∠z
−

1

sin∠z
µ∂(z))dz = −∫

Z

κS(z)(z)

sin∠z
dz+κY (z)(z)⋅cot∠zdz+∂νµ∂(z)dz,

where, recall,
(i) S is the boundary the ambient n-manifold X,
(ii) Y ⊂X is a hypersurface with boundary Z = ∂Y = Y ∩ S,
(iii) S(z) ⊂ S and Y (z) ⊂ Y are intersections of S and Y with a germ of a

surface Ez ⊂ X normal to Z at z and geodesic at z382, where κS and κY denote
the curvatures of these curves in Ez with the following sign convention:

(±) if the boundary S = ∂X is convex, then κS ≥ 0; if the the "lower region"
X< ⊂X bounded by Y is convex, then κY ≥ 0.

(iv) ∠z is the angle between the tangent spaces Tz(S) and Tz(Y ) in Tz(X),
which is measured in X< under Y ,383

(v) the above formula is supposed to hold if Y is stationary for the functional

Y ↦ vol
[−µ]
n−1 (Y ) = voln−1(Y ) − ∫

X<

µ●(x)dx − ∫
S<
µ∂(s)ds

where µ●(x) and µ∂(s) are continuous functions on X and on S and where X< ⊂X
is the just mentioned "lower region" in X bounded by Y and S< = S ∩X<.

The above formula for ∂ν ∫Z ... can be neatly rewritten in terms of the mean
curvatures MS of S, MY of Y and MZ of Z in Y by invoking the following.

Algebraic Identity.384

MZ(z) =
MS(z)

sin∠z
+ (cot∠z)MY (z) −

κS(z)(z)

sin∠z
− (⋅ cot∠z) ⋅ κY (z)(z).

(What is significant is that the coefficients on the right hand side here are the same
as in the above expression for the Z-term in the second variation formula.)

To prove this identity, let us express everything in terms of the traces second
fundamental forms IIS , IIY and IIZ , where

IIS is taken with outward normal field denoted νS = ←Ðν ⊥S
IIY is taken with the upward field ν = νY = ν⊥Y ↑
and where
IIZ will be evaluated with two unit normal fields to Z, one of them νY restricted

to Z and the other one is tangent to Y and facing outward, call it νZ = ←Ðν ⊥Z . (If Y
is normal to S at z, i.e. ∠z = π/2, then νZ(z) = νS(z).)

Observe that
νY is normal to νZ and that
the angle between νS and νY is complementary to the angle ∠z between S and

Y at all z ∈ Z = S ∩ Y ,
∠z(νS , νY ) = π −∠z.

382It is better, as earlier, to think of Ez in X+ ⊃ X and take the image of the exponential
map from a small disc in the normal plane T ⊥z (Z) ⊂ Tz(X+) to X+ for this Ez .
383 This "under", together with (±), determines the signs of the integrants in the above
formula that is crucial for our (potential) applications.
384Compare with 3.8 in [Li(comparison) 2017].
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Therefore,
νS(z) = (sin∠z) ⋅ νZ(z) − (cos∠z) ⋅ νY (z)

and, by the linearity of the form IIZ and its trace in the normal vectors,

traceZ(IIS) = (sin∠z) ⋅ traceνZ (IIZ) − (cos∠z) ⋅ traceZ(IIY ),

or

[1/ sin] MZ = traceνZ (IIZ) =
1

sin∠z
traceZ(IIS) + (cot∠z) ⋅ traceZ(IIY ),

where traceZ(IIS) denotes the trace of the restriction of the form IIS to (the
tangent bundle of) Z ⊂ S, that is the same as the trace of the form IIZ with
respect to the vector field νS restricted to Z, where traceZ(IIY ) is understood
similarly and where traceνZ (IIZ) denotes the trace with respect to the field νZ ,
where, indeed, it is equal to the mean curvature MZ of Z in Y ,

traceνZ (IIZ) =MZ .

Finally, we observe that the curvatures of the curves S(z) and Y (z) in Ez are
equal to the traces of the form IIS and IIY restricted to S(z) ⊂ S and Y (z) ⊂ Y,

κS(z)(z) = traceS(z)IIS(z) and κY (z)(z) = traceY (z)IIY (z),

while
traceS(z)IIS(z) + traceZIIS(z) = traceSIIS(z) =MS(z)

and
traceY (z)IIY (z) + traceZIIY (z) = traceSIIY (z) =MY (z)

These, combined with [1/ sin] yield the required algebraic identity which we write
now as

−
κS(z)(z)

sin∠z
− (⋅ cot∠z) ⋅ κY (z)(z) =MZ(z) −

MS(z)

sin∠z
+ (cot∠z)MY (z)

Substitute this into the above formula for the ∂ν-derivative of the integral

∫Z ...dz in the first variation formula for vol[−µ]n−1 (Y ) and express this derivative
by the following

Mean Curvature Stability Relation.

∂ν ∫
Z
...dz = ∫

Z
(MZ(z) −

MS(z)

sin∠z
+ (cot∠z)n ⋅MY )(z) − ∂νµ∂(z)dz.

Thus, for instance, if µ∂(z) is constant and Y is a local minimizer for
vol

[−µ]
n−1 (Y ), then, this formula, which necessarily holds for the integrals over

all subdomains U ⊂ Y , shows that

[≥] MZ(z) −
MS(z)

sin∠z
+ (cot∠z)n ⋅MY ≥ 0,

which us most informative (and quite useful) if µ● =MY = 0.
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About the Signs. Consistency in the choices of signs in the definitions of
the curvatures, and/or of normal vectors for the second fundamental forms is
crucial for applications.

There is hardly a problem here with the sign of the MS/ sin-term, since it is
clearly visible by looking at the case where Y is normal to S, i.e. ∠z = π/2; it
is also instructive to go through the full calculation in the following.

Example/Exercise 1. Let f(t) > 0, 0 < t < ∞ be a smooth function and
X ⊂ Rn−1 ×R+ be the rotation body of the subgraph of the function f (i.e. the
region below the graph) around the t-axes.

Let µ● = 0 and µ∂ is a constant, say µ∂(t) = c.
Let Yt =⊂ X be the (n − 1)-balls of radii f(t) normal to the t-axes and

let us compute the the second variation, of vol[−µ]n−1 (Yt), at t where this ball is
stationary, that is the second derivative

(bRn−1
− c ⋅ voln−1(S<t)

′′,

where b = bn−1 denotes the volume of the unit ball Bn−1 ⊂ Rn−1 and where
S<t ⊂ S = ∂X is the part of this boundary below (or to the left from) t, where
the stationary Yt is where the first derivative vanishes, i.e.

(bRn−1
− c ⋅ voln−1(S<t))

′
= (n − 1)bR′Rn−2

− bc(n − 1)Rn−2
√

1 +R′2 = 0,

that is √
1 +R′2 = R′

/c.

Then an elementary calculation show that

(bRn−1
− c ⋅ voln−1(S<t)

′′
= −vol(Sn−2

(R))
kf(t)

sin∠t
= −voln−2(∂Yt)

kf(t)

sin∠t
,

for kf(t) being the curvature of the graph of f(t) which, according to our
convention, is negative for f(x) = x2, since the subgraph of x2 is concave.

The computation becomes messier if Y is non-flat but it still durable in
simple cases.

Example/Exercise 2. Let f and X be as above and let Yt ⊂ X be the
intersections of X with the spheres of radii t centered at 0 that is the zero on
the z-axes, where we assume that the intersections Zt of these t-spheres with
S = Sf = ∂X are non-empty connected transversal for t ≥ 1.

Let µ●(t) be equal to the mean curvature of Yt, i.e. µ●(t) = n−2
t

and let µ∂
be constant, denoted µ∂ = c.

We invite the reader to evaluate the second variation of vol[−µ]n−1 (Yt) at sta-
tionary Yt.

5.8.1 Capillary Warped Products Inequalities

Most (all?) extremality/rigidity properties of warped products proved in the
earlier sections, as well as Gauss-Bonnet kind inequalities from the following
section, have their counterparts for manifolds with boundaries, which are proven
with "capillary" µ-bubbles with a use of the above inequality [≥].

We formulate below a a few examples and postpone a more thorough analysis
and applications, e.g. to manifolds with corners 385 until another occasion.
385See [Li(comparison) 2019] in this regard.
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Spherical Suspension Inequality. Let X0 ⊂ Sn−1 ⊂ Sn be a smooth
convex domain in the equatorial sphere Sn−1 ⊂ Sn and let X±1 = X±1(r) ⊂ S

n

be the the union of the geodesic segments between the north and the south poles
of Sn through this domain. Remove the poles ±1 ∈ X±1 ⊂ Sn from X±1 and
denote

X =X±1 ∖ {−1,+1} ⊂ Sn ∖ {−1,+1}

Let X be a (non-compact) Riemannian manifold with a boundary and let
f ∶ X → X be a smooth proper (boundary-to-boundary, infinity-to-infinity) 1-
Lipschitz map f ∶X →X of non-zero degree.

Let the scalar curvature of X is bounded from below by

Sc(X) ≥ n(n − 1) = Sc(Sn).

If X is spin, if n ≤ 7, and if either n is odd or X0 is a ball,386 then there exists
a point x ∈ ∂X, where the mean curvature of X at x is bounded by that of X at
f(x),

mean.curv(X,x) ≤mean.curv(X,f(x)).

Moreover,
ifmean.curv(X,x) ≥mean.curv(X,f(x)) at all x ∈X, thenmean.curv(X,x) =

mean.curv(X,f(x)) and the map f is an isometry.
About the Proof. The "right sign" [≥] at the boundary, allows carrying

through the µ-bubble argument from 5.5 in the proof of the extremality/rigidity
of double punctured spheres. This reduces the problem to the c-comparison
theorem for Sc(V ) ≥ 0 of log-concave warped products from section 3.1 and the
proof follows.

About n ≥ 8. Probably, the case n = 8 follows by a Natan Smale’s kind
of perturbation argument and if n ≥ 9 generalizations of Lohkamp’s and/or of
Schoen-Yau’s arguments would work, but singularities at capillary boundaries
need additional care.

About Corners. The above theorem remains valid for non-smooth domains
X0 ⊂ S

n−1 with properly understood generalized mean curvature, e.g. for con-
vex k-gons in S2, where the proof can be obtain by properly smoothing the
corners.(See the next section.)

In general, the density function µ∂(s) on the boundary S = ∂X from the pre-
vious section may be (and typically is) discontinuous along the corners. In this
case the smoothing argument introduces an unpleasant error and the behaviour
of µ∂-bubbles at the corners needs an additional care.387

Spin-Extremality of Doubly Punctured Balls. Let X be a compact
manifold with non-negative scalar curvature and a mean convex boundary S = ∂X
, let P−, P+ ⊂ ∂X be two closed subsets and let f ∶ S → S = Sn−1 be a 1-Lipschitz
map of non-zero degree , such that the subsets P± go to the North and the South
poles of the unit sphere S = Sn−1 = ∂Bn ⊂ Rn.

If X is spin and if n = dim(X) ≤ 8,388 then the mean curvature of S = ∂X

386Probably these "if" are unnecessary.
387In the case of µ∂(s) constant on the faces of 3-dimensional domains, the proof of C1,α-
regularity of capillary surfaces at the corners is indicated in [Li(rigidity) 2019], see next section.
388Both conditions are, probbaly, redundant, where dropping the the latter could be possible
with the recent Lohkamp’s techniques, while removing the former remains beyond the range
of the present day knowledge.
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outside P− and P+ can’t be greater than that of Sn−1,

inf
s∈S∖(P−∪P+)

mean.curv(S, s) ≤ n − 1.

Sketch of the Proof. Let µ
∂
(s) = cos∠t(s), s ∈ S = Sn−1, be the function

on Sn−1 as in example from the previous section (where ∠t(s) are the angles
between Sn−1 and the (parallel) hyperplanes Rn−1 × {t}) and let µ∂ = µ∂(s) be
the composed function

S
f
→ S

µ
∂
→ R on S = ∂X, that is µ∂(s) = µ∂(f(s), s ∈ S.

.
Then, arguing as in the proof of the double puncture theorem for spheres

Sn in sections 3.9 5.5, we conclude to the existence of a stable µ-bubble Y ⊂X
for µ = µ∂ds, which is smooth up to the boundary for n ≤ 8. (if n = 8 one needs
a version of Nathan Smale’s generic regularity theorem.)

Next, the mean curvature stability relation from the previous section show
that the mean curvature M = MZ of the boundary Z = ∂Y ⊂ Y in Y and the
norm of the differential of the natural map φ ∶ Z → Sn−2 satisfy the inequality

M(Z, z)

∣∣dφ(z)∣∣
≥ n − 2.

(Hopefully, there is no silly error in the computation)
Finally, the mean curvature spin-extremality theorem 389 from section 3.5

applies to T⋊-stabilized Y , that is to Y ⋊T1, and the proof follows.
Remarks. (a) It is not hard to prove, as in the cases we encountered earlier,

that the balls are rigid in this regard:
if

inf
s∈S∖(P−∪P+)

mean.curv(S, s) = n − 1,

then X is isometric to Bn.
(b) The above argument generalizes to complete non-compact manifolds X,

but, probbaly, completeness can be replaced by a weaker condition.
Corollary to the Proof:] Multi-Width Mean Curvature Inequality

for non-Spin Manifolds.
Let X be a compact Riemannin n-manifold with a boundary, and let f be a

continuous map from ∂X to the boundary of the n-cube with non-zero degree,

f ∶ ∂X → ∂[−1,1]n,

such that the distances between the pullbacks of the opposite faces of the cube
are all ≥ π,

dist(∂−,i, ∂+,i) ≥ π, i = 1, ..., n.

389One needs here this theorem for maps to the convex hypersurfaces not only in Euclidean
spaces but also in other Riemannian flat manifolds, specifically in Rm × TN in the present
case.
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If X has non-negative scalar curvature, Sc(X) ≥ 0, and if n = dim(X) ≤ 8390

then
inf
x∈∂X

mean.curv(∂X,x) ≤ n − 1.

Proof. Apply the above argument to the f -pullbacks of a pair of opposite
faces of the cube, say to

P∓ = f
−1

(∂∓,1) ⊂ ∂X

let Y ⊂ X be the corresponding stable µ-bubble which separates P− from P+.
Then apply the same argument to Y ⋊T1 and continue inductively as in the proof
of the multi-width ◻n-Inequality ∑ni=1

1
d2i

≥ n2

4π2 in section3.8 thus reducing the
problem to the case of X2 ⋊ Tn−2, where X2 is a surface with curv(∂X2) ≥ 1,
where Sc(X2 ⋊Tn−2) ≥ 0, and where the proof follows by the proof of the mean
curvature spin-extremality theorem.

Remarks (a) The above inequality improve non fill-is results 4(A) and (5) in
section ??

(b) IfX is spin this inequality follows from the mean curvature spin-extremality
theorem.

(c) One can improve this inequality with a better (iterated) warped product
model manifold S, and, probbaly, with the best such S the improved inequality,
will not follow from the mean curvature extremality of spheres, even for spin
manifolds S. (It is not impossible, that the the sphere Sn−1 radially mapped to
∂[−1,1]n is extremal this inequality.)

Capillary Mean Curvature Separation Theorem. Let X be a compact
manifold with boundary S∂X and let , let P−, P+ ⊂ ∂X be two closed subsets sich
that,

●σ the scalar curvature of X is bounded from below by a given non-positive
number,

Sc(X) ≥ σ, σ ≤ 0;

●M the values of mean curvature of S in the subset P− ⊂ S and in its complement
are bounded from below as follows

mean.curv(S, s) ≥M−, s ∈ P− and mean.curv(S, s) ≥M+, s ∈ S ∖ P−,

for some M−, M+, where M+ is positive while M− can be negative.
Let M+ be bounded from below in terms of −σ and −M− according to the

following inequality

M2
+ ≥ max(

n − 1

−nσ
,−M−) ,

and let the distance D between P− and P+ measured in S, with respect to the
induced Riemannian metric in S ⊂X be bounded in terms of M+ as follows,

D ≥ constn
1

M+
for constn ≥ 100π.

LetM ′ > 0 be a given number and let the numbers =M+ andD be sufficiently
large depending on n, σ, M− and M ′ – specific inequalities are indicated below.
390One can drop this if one extend Schoen-Yau’s "desingularization" theorem for capillary
hypersurfaces
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Then, assuming n = dimX ≤ 8, there exists a smooth compact hypersur-
face Y ⊂ X with boundary ∂Y ⊂ S = ∂X, such that the mean curvature of the
boundary of Y is bounded from below by 1

2
M+,

mean.curv(∂Y ) ≥
1

2
M+,

and the scalar curvature of some warped T⋊-extension of Y is non-negative,

Sc(Y ⋊T1
) ≥ 0.

Sketch of the Proof. Let

µ = µ●(x)dx + µ∂(s)dx

where µ●(x) = M+ and where µ∂(s) is "induced" as earlier from the function
µ
∂
(s) = cost(s) on Sn by a π

D
-Lipschitz map S → Sn−1, which sends P+ to the

North pole and P+ to the South pole of Sn−1. (The existence of such a map is
obvious.)

Then our conditions on the mean curvatures guarantee the existence of a
stable µ-bubble Y ⊂ X, which separates P− and P+ and has (free) boundary
in S and where the second variation formula along with the mean curvature
stability relation from the previous section imply the desired properties of this
Y .

Remarks. (i) Our bound on D is very rough. We suggests the reader would
find a better estimate.

(ii) If one takes into account, besides D = distS((P−, P+), the distance d =
distX(P−, P+) then, one can prove, with some µ∂ds + µ●(x)dx for a suitable
function µ●(x), a comprehensive separation theorem incorporating the above
with III from section 3.7 for closed manifolds.

Problem. Find adequate version of the "log-convexity" condition on µ∂ds +
µ●(x)dx and find all "interesting" sharp capillary extremality/rigidity inequal-
ities including all such inequalities presented in the previous sections.

5.9 3D Gauss Bonnet Inequalities
The simplest inequality of this kind, which applies to closed connected coori-
ented stable minimal surfaces Y in orientable Riemannian 3-manifolds X =

(X,g), is a bound on the integral of the scalar curvature of X over Y , that
reads:

(A) ∫
y
Sc(X,y)dy ≤ 8π,

where the equality holds for Riemannian products Y0 × S
1, for sufaces Y0 =

(Y0, h0) homeomorphic to S2. (Compare with area exercises in section 2.7.)
Proof. Combine the inequality [⋆⋆] involved in the second variation formula
(section 2.5) with the Gauss-Bonnet theorem.

Corollary. If X is compact with Sc(X) > 0, then the 2-systole of X with the
metric g∗(x) = Sc(g, x)g(x) satisfy is bounded by 8π. Moreover
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The 2-dimensional homology of X admits a basis represented by closed sur-
faces Y ⊂X with areag∗(Y ) ≤ 8π.

Question. Can one directly bound the areas of g∗-minimal surfaces in X?
Using the Dirac Operator. Let us give a Dirac theoretic proof of this corol-

lary, where, observe, this is the only known case where the Dirac operator goes
in parallel with minimal surfaces.

To simplify, let X be homeomorphic to S2×S1 and to keep track of constants
let us compare the metric g∗ on this X with the Riemannian product X = (X,g)

of the circle S1 the unit sphere S2 with it’s usual metric with Sc = 2.
Let X4 = X × S1 and X4

= X × S1 be the corresponding 4-manifolds, where
the Dirac operator will be employed, let L∗ → X4 be the line bundle induced
from the Hopf bundle by the natural map X4

→ S2 and let L○ε → X4 be an
ε-flat bundle induced by the natural map X4 → S1 × S1 from an ε-flat bundle
Lε → S1 × S1, such that the first Chern class of Lε doesn’t vanish

Then the twisted Dirac D⊗L∗⊗L○ on X4 has non-zero index, and this nonva-
nishing of ind(D⊗L∗⊗L○) persists for all Riemannian metrics c′ on X4.

On the other hand, if a line bundle L → X4 = (X4, g′∗ = g
′Sc(g′)) has the

the norms of its curvature ω bounded by curvature ω of L∗ according to the
inequality

∣∣ω∣∣g′∗ = ∣∣ω∣∣g
′
(x)/Sc(g, x) < ∣∣ω∣∣g(x)/Sc(g, x) =

1

8π
,

then ind(D⊗L∗⊗L○) = 0 as it follows from the twisted Lichnerowicz-Weitzenboeck-
formula (and a little computation).

Now let us assume that the g∗-areas of all non-homologous to zero 2-cycles
in X are bounded from below by 8π + ε.

Then, by the Morse lemma for mass in codimension 1, the mass of the
generator of H2(X,R is also bounded from below by 8π + ε, which, by duality,
bounds the comass of the corresponding generator of H2(X;R by (8π + ε)−1.
Hence, there exists a 2-form ω0 onX with g∗-norm ≤ (8π+ε)−1 in the cohomology
class of the curvature form of the line bundle induced from the Hopf bundle.

ω0 by the curvature of a line bundle over X, lift this bundle X4 = X × S1

and, confront its properties with the above discussion.
Then, by contradiction, we conclude that the g∗-areas of certain non-homologous

to zero 2-cycles in X must be arbitrarily close to 8π. (One could go to the limit
and get such cycles with areas ≤ 8π, but doing this, which needs an additional,
let it be a well known, argument, is unnecessary for our purpose.)

Let us return to minimal surfaces and formulate a version of the above (A)
for (compact orientable Riemannian) 3-manifolds X with boundaries, denoted
S = ∂X, which involves the integral of the mean curvatureM(S) over boundary
curves of surfaces Y ⊂X with Z = ∂Y = Y ∩ S. Namely,

connected cooriented cooriented surfaces Y ⊂ X with non-empty boundaries
Z = ∂Y = Y ∩Z which are stable minimal for the free boundary condition, satisfy:

1

2
∫
Y
(Sc(X,y)dy + ∫

Z
M(S, z)dz ≤ 2π.

About the Proof. This can be obtained by applying the above (A) to the
double of X, or, alternatively, with a use of the second variation formula for
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manifolds with boundaries from section??, (where only the simplest case of µ = 0
is needed here).

Corollary. Let S ⊂ R3 be a smooth embedded non-simply connected closed
surface. Then there exists a closed non-contractible curve Z ⊂ S. such that
∫ZM(S, z)dz ≤ 2π.

Question. Can one find such a curve in S without using minimal surfaces in the
domain bounded by S?

Gauss-Bonnet Extremality of Truncated Cones. Let X ⊂ R3 be a round
truncated cone, the essential invariant of which is the angle β between the side
surface S of this cone and the bottom, where as in section 5.8 we prefer do
deal with the complementary angle α = π −β and where the inequality [≥] from
section 5.8

[≥] MZ(z) −
MS(z)

sin∠z
+ (cot∠z)n ⋅MY ≥ 0,

become an equality, where the curvature M(Z) of the horizontal circles Z ⊂ S
is related to the mean curvature of of S along these circles by

M(Z) =
M(S)

sinα
.

Now let X be a compact Riemannian 3-manifold with boundary which is
divided in 3 parts bottom B, top T and the side surface S, which separates B
from T and such that

the angle between B and S is everywhere ≤ β and the angle between S and
T is everywhere ≤ α.
Let, moreover, B and S be mean convex, i.e. their mean curvatures with

respect to the outward normals are positive.
Under this condition the functional Y ↦ area(Y ) − cos(α)area(S<) defined

on surfaces Y ⊂ X with boundaries Z = ∂Y ⊂ S and separating B from T
necessarily assumes minimum at a surface Y ⊂ X with ∂Y ⊂ S, which satisfies
according to [≥]:

∫
Y
Sc(X,y)dy +

1

sinα
∫
Z
M(S, z)dz ≤ π.

As earlier, the most interesting case is for Sc(X) ≥ 0 and M(S) ≥ 0, already
for domains X ⊂ R3, where the existence of a curve Z ⊂ S separating the top
from the bottom and having 1

sinα ∫ZM(S, z)dz ≤ π seems non-obvious. (Am I
missing a direct obvious proof?)

Also note that similar inequalities hold for manifolds X with more compli-
cated corners (see section 5.4 in [G(billiards) 2014] and [Li(comparison) 2017])
but many such inequalities still reman conjectural.

Besides manifolds with Sc ≥ 0, the above type Gauss-Bonnet inequalities
yield geometric information for manifolds with scalar curvatures bounded from
below by negative constants σ, where this information is somewhat opposite to
that for manifolds X with Sc(X) ≥ σ > 0.

Namely, in the later case one conclude that X must have representatives of
non-zero homology classes by surfaces of area bounded by const ⋅ σ. On the
contrary, the bound Sc(X) ≥ σ for σ < 0, implies, under additional topological
conditions, that X can’t have such surfaces with small area.
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Example. Let X be homeomorphic to Sχ ×S1, where Sχ is a closed connected
orientable surface with the Euler characteristic χ < 0.

If Sc(X) ≥ −2, then all surfaces Y ⊂X in the homology class of Sχ×{s0} ⊂X
have

area(Y ) ≥ 2π∣χ(Y )∣.

This is, of course, obvious. What is slightly more interesting is a similar
inequality for "area minimizing" families of 2d-foliations in X, but these in-
equalities are inherently non-sharp in the key example of hyperbolic manifolds
X (see [G(foliated) 1991]) for more about it).

What looks more promising are foliations by µ-bubbles using horospheri-
cal foliations for models, but the corresponding inequalities here is yet to be
properly formulated and proved.

5.10 Topological Obstructions to Sc > 0 Issued from Min-
imal Hypersurfaces and µ-Bubbles

Start with recalling the proof of Schoen-Yau’s Non-Existence&Rigidity Theo-
rem by T⋊-stabilization argument (see section 1.6.4) applied to complete non-
compact manifolds as follows.

0. Let a smooth open orientable manifold X contain a decreasing chain (flag)
of oriented properly embedded (infinity-to-infinity) submanifolds

X ⊃X−1 ⊃ ... ⊃X−i ⊃ ... ⊃X−(n−2), dim(X−i) = n − i,

such that the homology classes [X−i ∈Hi,inf(X) of X−i with infinite supports are
non-zero for all i and the class [X−(n−2)] ∈ H2,inf(X) is not representable by a
simply connected surface (i.e. by S2 or R2).

If X supports a complete metric with Sc ≥ 0, then X is isometric to the
product X =X0 ×R1, where X0 is a flat manifold.391

Proof. By Jerry Kazdan’s perturbation theorem and Cheeger-Gromoll split-
ting theorem, the case Sc ≥ 0 reduces to that of Sc > 0, where the T⋊-symmetrization
shows that X contains a properly embedded surface Y ⊂ X in the( infinite)
homology class of X−(n−2), such that some warped product Y ⋊ Tn−2 = (Y ×

Tn−2, g⋊ = dy2 + φ2(y)dt2) has positive scalar curvature,

Sc(Y ⋊Tn−2
) = Sc(g⋊) > 0.

Hence, Y must be simply connected. Otherwise a covering Ỹ of Y with infi-
nite cyclic fundamental group π1(Ỹ ) = Z would allow an extra T⋊-symmetrization,
and turn into a complete manifold R × Tn−1 with a (warped product) metric
g̃⋊ = dx2 + ϕ(x)2dt̃2, for xR1 and t ∈ Tn−1, on R × Tn−1 invariant under the
action of the torus and such that Sc(g̃⋊) = 0.

Thus, impossibility of this follows by the formula

Sc(g)(x, t̃) = −
(n − 1)(n − 2)

ϕ2(y)

XXXXXXXXXXX

dϕ(x)

dx
⋅

1

ϕ

XXXXXXXXXXX

2

−
2(n − 1)

ϕ(y)

d2ϕ(x)

dx2
,

391As usual, if n ≥ 8, one has to appeal to "desingularization" results from
[Lohkamp(smoothing) 2018] or from [SY(singularities) 2017]. (If X is spin and H1(X) has no
torsion, then the results from section 6 in [GL(complete) 1983] apply.)
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since no function ϕ > 0 can have negative second derivative.

Manifolds with Spines. Let us now turn to more general open manifolds X,
including infinite coverings of compact enlargeable (e.g. admitting metrics with
non-positive sectional curvatures) manifolds with punctures and on products of
SYS-manifolds by enlargeable ones, where geometry depends on the distance to
a distinguished closed subset S ⊂X called the spine of X.

Example. If X comes with a covering map to a compact manifold minus a
point, X → X0 ∖ x0, then relevant spines S ⊂ X are the pullbacks of compact
subsets S0 ⊂X0 ∖ x0.

S-Quasiproper Maps. Given a spine S in X, a continous map from X to a
metric space, say f ∶ X → X, is called uniformly S-quasi-proper if it is constant
on the connected components of the complement X ∖ S and if the restriction of
f to S,

f∣S ∶ S →X

is uniformly proper, i.e. the diameters of the f∣S-pullbacks of subsets from X
are bounded in terms of the diameters of these subsets,

diam(f−1
(U) ∩ S) ≤ ξ(diam(U)),

for some continuous function ξ(d), d ≥ 0 and all U ⊂X.
Bounded Geometry along Spine. A Riemannian manifold X with a spine S

is said to have bounded C∞-geometry along S if there are continuous functions
ξi(d) and ξo such the i-th covariant derivatives of the curvature tensor of X
satisfy

◻bnd ∣∣∂icurv(X,x)∣∣ ≤ ξi(dist(x,S)) and
1

inj.rad(Xi, x)
≤ ξo(dist(x,S)).

Lemma: R⋊-Symmetrization of Manifolds with Spines. Let X be a
complete connected orientable Riemannian n-manifold with a spine S ⊂ X and let
f ∶X →X = Y ×R1 be a uniformly S-quasi-proper 1-Lipschitz map.

Let the scalar curvature of X be bounded from below in terms of the distance
function d(x) = dist(x,S),

Sc(X,x) ≥ σ(d(x))

for some continuous monotone decreasing function σ(d) d > 0.
If n = dim(X) ≤ 7 and if X has bounded C∞-geometry along S,392 then

there exists a smooth connected complete Riemannian warped product n-manifold
X1 = (Y1 × R1, dy2 + φ(y)2dt2) with a R1-invariant spine S1 ⊂ X1 and with a
uniformly S1-quasi-proper R1-equivariant 1-Lipschitz map

f1 ∶X1 = Y1 ×R→X = Y ×R1

for the obvious action of the group R1 on both spaces, such that
●bnd X1 has bounded C∞ geometry along S1;

392This C∞ is a minor technicality: the geometry which is actually used in the proof below
is that of the curvature itself and of the injectivity radius, where even these maybe redundant.
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●Sc the scalar curvature of X1 is bounded from below by the same function
σ(d) as the the scalar curvature of X,

Sc(X1, x1) ≥ σ(dist(x1, S1)).

●f1 the topology of the map f1 is "essentially the same" as that of f , where, in
our case, we shall need two specific instances of this:

●deg if dim(X) = dim(X), then the map f1 has the same degree as f ;
●SY S if dim(X) = dim(X) + 2 and if the homology class of the f -pullbacks

of generic points, f−1(x) ⊂ X, x ∈ X, is spine detectably non-spherical, i.e. all
surfaces Σ ⊂ X in this class contain closed curves in the intersection Σ ∩ S, which
are non-contractible in X then the the homology class of f -pullbacks of generic
points, f−1

1 (x) ⊂X1, is also spine detectably non-spherical.
Proof. Apply µ-bubble separation theorem from section 3.7 to the bands

X[−d,d] ∈X that are the pullbacks of the bands Y × [d, d] ⊂ Y ×R1,

X[−d,d] = f
−1

(Y × [d, d]

for the segments [d, d] ⊂ R1, d > 0, and thus obtain hypersurfaces Y = Y (d) ⊂
X[−d,d] ⊂ X and warping functions φd(y), such that the manifolds X⋊(d) =

(Y (d) ×R1, dy2 + φd(y)
2dt2) (obviously) satisfy all requirements of the lemma,

except for ●Sc which is replaced by an εd-weaker inequality,

Sc(X1, x1) ≥ σ(dist(x1, S1)) − εd,

where εd → 0 for d→∞.
Now, the C∞ -geometry ofX is bounded along the spine S ⊂X, the standard

elliptic estimate implies that the C∞-geometries of all X⋊(d) are uniformly, (i.e.
independently of d) bounded along the spines of these manifolds; hence, some
sequence X⋊(di) Hausdorff converges to the required X1. QED.

Then we recall the "symmetry appendix" to the separation theorem and
conclude that the R⋊-symmetrization is also compatible with extra symmetries
and with the warper product structures as follows.

R⋊-Symmetrization in a Presence of a Group Action. If the manifolds
X and Y are isometrically acted upon by a group G, and if the map f ∶ X →

X = Y ×R1 is G-equivariant, then X1 comes with an isometric action of G×R1

and the map f1 ∶X1 →X =X = Y ×R1 is G ×R1-equivariant.
Furthermore, if
● G = Rm;
● Y = Z ×Rm;
● X = (Z ×Rm, dz2 + ψ(z)2dt2,
then X1 = Z ×Rm+1dz2 + ϕ(z)2dt2.
(dt2 stands for the Riemannian metric in both Euclidean spaces Rm and Rm+1.)

Corollary A. Let X be a complete Riemannian n-manifold with a spine S ⊂X
and f ∶ X → Rn be a uniformly S-quasi-proper 1-Lipschitz map. Then the scalar
curvature of X can’t be uniformly positive along S, i.e.

there is no positive function σ(d) > 0, such that Sc(X,x) ≥ σ(dist(x,S)),
x ∈X.
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Non-Existence/Rigidity Sub-Corollary A′. If a complete orientable
-n-manifold X̂, n ≤ 7, dominates with non-zero degree a compact orientable
enlargeable manifold X0,sf e.g. X̂ is homeomorphic to X0 minus a point, then
X̂ is a compact flat manifold.

Corollary B. Let X be a complete Riemannian n-manifold with a spine S ⊂X
and f ∶X → Rn−2 be a smooth uniformly S-quasi-proper 1-Lipschitz map, such that
the homology class of the f -pullbacks of generic points, f−1(x) ⊂X, x ∈X, is spine
detectably non-spherical.

Then the scalar curvature of X can’t be uniformly positive along S.
Non-Existence/Rigidity Sub-Corollary B′. If a complete orientable n-manifold

X̂, n ≤ 7, dominates with degree one the product of an orientable enlargeable
manifold by a SYS-manifold, then X̂ is a compact flat manifold.

Remarks on Rigidity, n > 7, and on SYS-Enlargeable manifolds.
(a) Corollaries A and B also extend to the case of Sc ≥ σ(dist(x,S), where

the function σ is not strictly positive, σ(d) ≥ 0, where the conclusion is that X
is Riemannian flat: it is isometric to Rn , in the case A, and to Rm−2 × T 2, for
a flat (possibly non-split) torus T 2 for B.

This can be proven either by adapting Jerry Kazdan’s perturbation argument
or arguing as in the proof of the rigidity of warped products in section 5.7

(b) If n = 8, then the conclusion of A and B remain intact, since the per-
turbations from Nathan Smale’s argument are controlled by the bound on the
C∞ geometry.

Also, the rigidity sharpening of A and B remans valid, since the warped
product rigidity proof compensates for Smale’s perturbations.

(c) Probably – IF I understand the logic of Schoen-Yau’s "desingularization"
proof correctly – it, similarly to Smale’s proof, extends to the present case and
implies as much of the lemma as is needed for A and B, but proving rigidity for
n ≥ 9 seems technically more involved.

(d) It is unclear if the non-domination corollary B′ for SYS-enlargeable man-
ifolds (defined below) that are significantly more general then those in B’ follows
from the R⋊-symmetrization lemma, because of to the "spine detectability" con-
dition in this lemma that can (can it?) fail to be satisfied in the general case.

Definition. A Riemannian manifold X is SYS-enlargeable, if, for all d > 0,
there exists a proper compact n-dimensional Riemannian band Xd with width
width(Xd) > d, which admits a locally isometric immersion Xd → X and such
that all compact hypersurfaces Y ⊂ X, which separate ∂−(Xd) ⊂ ∂Xd from
∂+(Xd) ⊂ ∂Xd, are SYS, i.e. Schoen-Yau-Schick manifolds.

(A more general class of such manifolds is defined in [g(inequalities] 2018],
but I admit, finding the "true definition" remains problematic.) definition.)

6 Generalisations, Speculations
The most tantalizing aspect of scalar curvature is that it serves as a meeting
point between two different branches of analysis: the index theory and the geo-
metric measure theory,

Each of the this theories, has its own domain of applicability to the scalar
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curvature problems (summarized below) with a significant overlaps and distinc-
tions between the two domains.

This suggests, on the one hand,
a possible unification of these two theories

and, on the other hand,
a radical generalization, or several such generalizations,

of the concept of a space with the scalar curvature bounded from below.
This is a dream. In what follows, we indicate what seems realistic, something

lying within the reach of the currently used techniques and ideas.

6.1 Dirac Operators versus Minimal Hypersurfaces
Let us briefly outline the relative borders of the domains of applicability of the
two methods.

1. Spin/non-Spin. There is no single instance of topological obstruc-
tion for a metric with Sc > 0 on a closed manifold X, the universal coverings
X̃ of which is non-spin393 that is obtainable by the (known) Dirac operator
methods.394

But the minimal hypersurface method delivers such obstructions for a class
manifolds X, which admits continuous maps f to aspherical spaces X, such that
such an f doesn’t annihilate the fundamental class [X] ∈ Hn(X), n = dim(X),
i.e. where the image f∗[X] ∈Hn(X) doesn’t vanish.

Example. The connected sum X = Tn#Σ, where Σ is a simply connected
non-spin manifold are instance of such X with the universal coverings X̃ being
non-spin.)

2. Homotopy/Smooth Invariants. The minimal hypersurface method
alone can only deliver homotopy theoretic obstructions for the existence of met-
rics with Sc > 0 on X.

But α̂(X), non-vanishing of which obstructs Sc > 0 according to the results
by Lichnerowicz and Hitchin proven with untwisted Dirac operators is not ho-
motopy invariant. (Non-vanishing of α̂ is the only obstruction for Sc > 0 for
simply connected manifolds of dimension ≥ 5, see section 3.2.)

Here, observe, the spin condition is essential, but when it comes to twisted
Dirac operators, those obstructions for the existence of metrics with Sc > 0,
which are essentially due to twisting are also homotopy invariant, and, for all
we know, the spin condition is redundant there.

Furthermore, minimal hypersurfaces can be applied together with that Dirac
operators.

For example the product manifold X = X1 × X2, where α̂(X1) ≠ 0 and
X2 = Tn#Σ, doesn’t carry metrics with Sc > −0 , which for dim(X) ≤ 8 follows
from Schoen-Yau’s [SY(structure) 1979] (with a use Nathan Smale’s generic
non-singularity theorem for n = 8), while the general case needs Lohkamp’s
[Lohkamp(smoothing) 2018].

Notice that the twisted Dirac operator method also applies to these, X =

X1 ×X2, provided that Σ is spin, or at least, the universal covering Σ̃ is spin.
393Relaxing the condition "X is spin" to "X̃ is spin" is achieved with (a version of) the Atiyah
L2-index theorem from [Atiyah(L2) 1976], as it is explained in §§9 1

9
,9 1

8
of [G(positive) 1996].

394Never mind Seiberg-Witten equation for n = 4
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3. SYS-Manifolds. The most challenging for the Dirac operator meth-
ods is Schoen-Yau’s proof of non-existence of metrics with Sc > 0 on Schoen-Yau-
Schick manifolds (see section 2.7), where the known Dirac operator methods,
even in the spin case, don’t apply.

And as far as the topological non-existence theorems go, the minimal hyper-
surface method remains silent on the issue of metrics with Sc > 0 on quasisym-
plectic manifolds X as in section 2.7, (e.g. closed aspherical 4-manifolds X with
H2(X;Q) ≠ 0.) And we can’t rule out metrics with Sc > 0 on the connected
sums X#Σ with any one of the present day methods, if the universal coverings
Σ̃ are non-spin.

4. Area Inequalities. The main advantage of the twisted Dirac operator
over minimal hypersurfaces is that geometric application of the latter to Sc > 0
depend on lower bounds on the sizes of Riemannian manifolds X, where these
sizes are expressed in terms of the distance functions on X, while the twisted
Dirac relies on the area-wise lower bounds on X.

The simplest (very rough) result in this regard says that every (possibly
non-spin) smooth manifold X admits a Riemannian metric g0, such that every
complete395 metric g on X, for which

areag(S) ≥ areag0(S)

for all smooth surfaces S ⊂X, satisfies:

inf
x∈X

Sc(g, x) ≤ 0

(see section 11 in [G(101) 2017]). More interestingly, there are better, some of
them sharp, bounds on the area-wise size of manifolds with Sc ≥ σ > 0, such as
sharp area inequalities in section 3.4 and Cecchini’s long neck theorem for maps
of manifolds with boundaries to spheres 3.14.3.

These can’t be obtained, in general, with the (present day) techniques of
minimal hypersurfaces and stable µ-bubbles, but the following area bounds do
follow by these techniques, yet they are unapproachable with Dirac operators.

(a) Marcus-Neves’ S3 by S2-Sweeping Theorem [Marques-Neves(min-max
spheres in 3d) 2011]] (section 3.10).

(b) Zhu’s S2 × Tn-Systole Theorem [Zhu(rigidity) 2019], (see footnote in
section 4.1)

(c) Richard’s S2×S2-Systole Theorem [Richard(2-systoles) 2020], (same foot-
note in section 5.5).

5. Inequalities for Metrics Normalized by Sc. Dirac operator
arguments that yield geometric bounds on Riemannian manifolds X = (X,g)
with Sc(X) ≥ σ > 0, e.g. on their spherical radii, in terms of σ, automatically
deliver in most (all?) cases similar bounds on Sc(X) ⋅X = (X,Sc(X,x) ⋅ g(x)).

For instance, Llarull’s algebraic inequality (see section 4.2) not just implies
that

RadSn(X/σ) = RadSn(X)/
√
σ ≤ 1/

√
n(n − 1)

395 "Complete" is essential as it is seen already for dim(X) = 2. But if areag(S) ≥ areag0(S)
is strengthened to g ≥ g0 one can drop "complete", where the available proof goes via minimal
hypersurfaces and where there is a realistic possibility of a Dirac operator proof as well.
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for σ = infx∈X Sc(X,x), but in fact, that

RadSn(Sc(X) ⋅X) ≤
√
n(n − 1) = RadSn(Sc(S

n
) ⋅ Sn))

for all compact spin manifolds X with positive scalar curvatures.
But it is unclear if such inequalities, let them be non-sharp ones, can be

obtained with techniques of minimal hypersurfaces and stable bubbles and, the
bound RadSn(Sc(X)⋅X) ≤ constn remains problematic for non-spinmanifolds
X, while the inequality RadSn(X/σ) ≤ constn follows with minimal hypersur-
faces (see section 12 in [GL(complete) 1983] and section 5.5, augmented by the
regularity results from [Lohkamp(smoothing) 2018] and/or [SY(singularities)
2017] for n ≥ 9.

6. Families of Manifolds, Foliations and Homotopies of
Metrics with Sc > 0. Individual index formulas typically (always?) ex-
tends to families of operators and deliver harmonic spinors on members of ap-
propriate families. But there is no (apparent?) counterpart of this for minimal
hypersurfaces and/or for stable µ-bubbles that is partly due to discontinuity of
minimal subvarieties under deformation of metrics in the ambient manifolds.

Consequently, non-triviality of homotopy groups (except for π0) of spaces
of metrics with Sc > 0 is undetectable by minimal hypersurfaces. Also the Sc-
normalized (in the sense of 2.8) distance inequalities, as well as topological and
geometric obstruction for Sc > σ on foliations, escape the embrace of minimal
hypersurfaces.396

7. Non-Completeness and Boundaries. Until recently, the ma-
jor drawback of the Dirac operator methods was reliance on completeness of
manifolds X it applied to,397 but recent results by Zeidler, Cecchini, Lott and
Guo-Xie-Yu on index theorems for manifolds with boundaries398 have effectively
extended the Dirac operator index theory to such manifolds.

Also minimal hypersurfaces and especially stable µ-bubbles in conjunction
with twisted Dirac operators, fare better in non-complete manifolds, especially
in manifolds with controlled mean curvature of their boundaries, as it is demon-
strated in section ?? of this paper, but the recent articles by John Lott [Lott(boundary
2020] and Christian Bär with Bernhard Hanke [Bär]-Hanke(boundary) 2021]
open here new possibilities for Dirac operators.

8. Sc ≥ σ for σ < 0. Both methods have more limited applications here
than for σ ≥ 0, where the most impressive performance of the Dirac operator
is in the proof of the Ono-Davaux spectral inequality (stated in section 3.13),
which also may be seen from a more geometric perspective of stable µ-bubbles,
as it is suggested by the Maz’ya-Cheeger inequality.

9. Singular Spaces. Unlike Dirac operators, minimal varieties and µ-
bubbles cn be defined for many relevant singular spaces, such as

(i) pseudomanifolds with piecewise linear or piecewise smooth metrics,
(ii) Alexandrov spaces with sectional curvatures bounded from below,
(iii) singular minimal hypersurfaces and related spaces, e.g. doubles of

smooth manifolds over such hypersurfaces.
396Possibly, this can be remedied by an extension of the Schoen-Yau inductive descent method
to a class of discontinuous families.
397Our attempts to alleviate this limitation in section 4.6, remains unsatisfactory.
398See [Cecchini-Zeidler(Scalar&mean) 2021], [Guo-Xie-Yu(quantitative K-theory) 2020.
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However, despite the recent progress in the papers [SY(singularities) 2017]
and [Lohkamp(smoothing) 2018], there is neither a concept of Sc ≥ σ for such
spaces X nor comprehensive theory of minimal hypersurfaces in X.

And it is not clear at all if there is room for Dirac operators on this kind of
singular spaces X.

6.1.1 13 Proofs of non-Existence of Metrics with Sc > 0 on Tori

The present-day proofs can be divided according the techniques they are achieved
with; these are

A. Dirac operators.
B. Minimal hypersurface and stable µ-bubbles.
C. Combination of A and B.
D. Harmonic maps in dimension 3.
E. Ricci flow in dimension 3.
(I am not certain if one can do something with the Seiberg-Witten equa-

tions.)
In what follows, X is a Riemannin manifold diffeomorphic to Tn. We agree

that two A-proofs of Sc ≯ 0 on X are different if they rely on different variants
of the index theorems and which deliver different harmonic spinors for generic
metrics in X. Similarly, B-proofs are regarded different if the relevant minimal
surfaces or µ-bubles are, generically, different. 399

Here one notice that all proofs based on index theorems on compact man-
ifolds X and relative index theorems on complete manifolds have their L2-
counterparts on Galois coverings X∗ → X that result in different harmonic
spinors400 if the fundamental groups π1(X1) and π1(X2) are non-commensurable.

Shall we regard such proofs different?

Six A-Proofs with Variations

1. Lusztig’s Kind of Proof. This, for n even, goes with the family of Dirac
operators D on X twisted with unitary line bundles lτTn parametrized by the
dual torus hom(H1(X) → T1) ∋ τ .

This proof can be rendered in the language of C∗-algebras (here this is the
algebra of continous function on the dual torus) but, probbaly, the harmonic
spinors will be the same.

If n is odd, besides the reduction to the even case, either for X × T1 or or
X × X (are these two proof different?) one, probably can proceed with the
odd dimensional spectral flow argument. (I am not certain if, in a general C∗-
algebraic K-theoretic setting, there is a distinction between what happens to
even and to odd n.)
399Difference between spinors and minimal hypersurfaces often disappears for flat metrics on
tori and also two seemingly different spaces of spinors may, in fact, be canonically isomorphic,
such as the space of spinors on the universal covering X̃ of an X and the space of spinors on
X twisted with the flat bundle over X with the fiber L2(π1(X)) associated with the covering
X̃ → X via the regular representation of π1(X).

I must admit I haven’t systematically traced such isomorphisms in all cases and some proofs
in our list can be not different after all.
400To compare spinors on different coverings of X we lift them all to the universal covering
X̃ of X. (For general X, this L2 has an advantage of allowing one to relax the spin condition
on X to that on X̃.)
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2. ∧2-Hypersphericity of X̃. Here, never mind odd n, one uses the relative
index theorem for the Dirac operator on the universal covering X̃ twisted with
almost flat bundles Lε → X̃ on X̃ with compact supports .

3. InfiniteK-Area/Cowaist2. Since K-cowaist2(X) = ∞, can use the ordinary
index theorem on X for D on X̃ itself twisted with almost flat bundles over X.

This is close to but different from D twisted with Mishchenko’s infinite di-
mensinal Fredholm bundles which also yields Sc ≯ 0 on tori.

4 Quasi-symplectic Proof. This depends (n is even) on the L2-index theorem
applied D on X̃ twisted with fractional powers of a lift of a line bundle from X
to X̃/ (I am not certain how to arrange a spectral flow argument for odd n in
this case.)

5. Roe’s Index Theorems. Since X̃ is hypereuclidean, the Roe’s algebra
index theorem applies to X̃. Also one may use Roe’s partitioned index theorem
applied to the half-cyclic cover of X (homeomorphic to Tn−1 ×R1

+ in our case)
6. Bounds on Widths of Bands. All infinite coverings X∗ of X contains

arbitrarily wide torical bands to which the index theorem by Zeidler-Cecchini
and by Guo-Xie-Yu apply and yield Sc ≯ 0

Fife B-Proofs

All these proofs rely on Schoen-Yau’s Inductive Descent with Minimal Hypersurfaces
or with µ-Bubbles. This is a list of these.

1. S-Y ID with Minimal Hypersurfaces in X and with Conformal
Modification of Metrics via Kazdan-Warner’s Theorem.
2. MH Inductive Descent in X with T⋊-Symmetrization.
(Both 1 and 2 apply to all SYS manifolds.)
3. ID in X̃ with T⋊-Symmetrization of Minimal Hypersurfaces
in large balls in X̃ with prescribed boundaries.
(This proof applies to all, possibly non-complete) manifolds with large hy-

perspherical radii.)
4. Proofs via Bounds on Width of Bands in infinite Coverings of X
either with MH or with µ-B. (Compare with A8.)
5. Exhaust X̃ by domains Ui ⊂ X̃ bounded by µ-Bubbles Yi = ∂Ui and Apply

either 3 or 4 to Yi ⋊ T1. (One can also use here ID with 5 itself applied in all
dimension.)

Two C-Proofs

1. The above Yi have their hyper-spherical radii RadSn−1(Yi) → ∞, that is
incompatible with Sc(Yi ⋊T1) ≥ σ > 0 by the index theorem for the Dirac operators
on Yi ⋊ T1) twisted with bundles induced from a complex vector bundle L → Sn−1

with a non-zero top Chern class. (You know what to do if n is odd.)
2 Exhaust Ṽ by domains Y ′

i with mean.curv(∂U ′
i) > 0 and apply Lott’s in-

dex theorem for maps from these U ′
i to the hemisphere Sn+ , or use the Goette-

Semmelmann’s theorem for smoothed doubles of U ′
i mapped to Sn.

(There are also variations of these proofs with exhaustions of Ṽ by cubical
domains but these, albeit especially useful in dimension 9, where 1 and 2 don’t
apply, are unbearably artificial.)

All these proofs, have different possibilities for generalizations to non-torical
X and different ranges of applications. It would be pleasant to find a unifying
framework for them.
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6.1.2 On Positivity of −∆+const ⋅Sc, Kato’s Inequality and Feynman-
Kac Formula

1. Question. What are effects on the topology and/or metric geometry of a
Riemannian manifold X played by positivity of the

Lγ ∶ f(x) ↦ −∆f(x) + γ ⋅ Sc(X,x)f(x)

for a given constant γ > 0?
Observe that the greater the constant γ is, the stronger this effect should

be. Indeed, since −∆ is a positive ,

−∆ + γ1 ⋅ Sc(X) ≥ 0⇒ −∆ + γ2 ⋅ Sc(X), for γ1 ≥ γ2.

If γ = 1
2
, then the product X ×T1 admits a T1-invariant metric with Sc ≥ 0,

namely the warped product metric g⋊(x, t) = φ2dx2 + dt2, where φ is the lowest
eigenfunction of the −∆f(x) + 1

2
Sc(X) (see section 1.6.5).

Thus, all we know about geometry and topology of T⋊-stabilized manifolds
with Sc ≥ 0 applies to manifolds with positive −∆f(x) + 1

2
Sc(X).

Yet, there can be (maybe not?) a difference between metric geometries of
manifolds X with positive −∆f(x) + γ ⋅ Sc(X) for different γ ≥ 1

2
.

Now, turning to small γ, observe the following.
2. All compact smooth manifolds X of dimension n ≥ 3 admit Riemannian

metrics g for which the −∆g + εSc(g) is positive for some ε = ε(X) > 0.
Idea of the Proof. Make a "thin connected sum" of (X,g0) with a huge

(volume-wise huge) topologically spherical manifold X○, where Sc(X○) ≥ 1 and
apply the following.

Lemma/Exercise. Let s(x) be a continuous function on a compact connected
manifold X, such that ∫X s(x)dx > 0, then the −∆+εs is positive for all sufficiently
small ε > 0.

3. Conjecture. There is a universal ε̄ = ε̄n > 0, such that all compact n-
manifolds admit Riemannian metrics gε, for all 0 ≤ ε < ε̄, such that

−∆gε + εSc(gε) ≥ 0.

One knows in this respect that if such ε̄n does exist, then it can’t be greater
than the conformal Kazdan-Warner constant,

ε̄n ≤ γn =
n − 1

4(n − 2)

and, for all we know, εn, may be equal to this γn.
But it would be more interesting to have ε̄ = ε̄(X) as a topological invariant

which takes infinitely many different values on n-dimensional manifolds X.
If the −∆g + γnSc(X), where γn = n−1

4(n−2) then, by Kazdan-Warner theorem
X admits a (conformal) metric with Sc ≥ 0. hen

Moreover, there may exist a universal ε > 0 that serves all manifolds X or
at least all X of a given dimension n, but all one can say at this point is that
thisε must be < n−2

4(n−1) .
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Remark. If −∆+γnSc(X) > 0, then, by Kazdan-Warner theorem,X =X, (g0)

admits a metric g (conformal to g0 with Sc(g) > 0. In particular, if X is spin, it
admits no g-harmonic spinors by Lichnerowicz-Hitchin vanishing theorem; thus,
α̂(X) = 0 by the Atiyah-Singer index theorem.

In fact, regardless of the sign of the scalar curvature, the existence of har-
monic spinors is a conformal invariant by Hitchin’s theorem, and this, applied
to Dirac operators twisted with infinite dimensional unitary (almost) flat bun-
dles, allows an extension of most (all) Dirac operator topological obstructions
to Sc > 0 to manifolds with positive operators −∆ + γnSc(X).

But it feels a bit strange (have I confused the values of the constants?) that a
natural alternative argument with the refined Kato’s inequality (see below) and
the Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner) formula delivers such a
conclusion only with γ′n =

n−1
4n

> γn =
n−2

4(n−1) .

4. Kato’s Inequality [Hess-Schrader-Uhlenbrock(Kato) 1980]. Let V →X be
a vector bundle with a unitary connection ∇ over a Riemannian manifold and let
f ∶X → V be a smooth section.

Then, an elementary calculation shows that the gradient of the norm of f is
bounded by the norm of the covariant derivative of f ,

RRRRd∣f ∣
RRRR ≤ ∣∇f ∣,

where this inequality at the zero points of f is understood in the distribution
sense.

5. Corollary. Let S ∶ V → V be a selfadjoint endomorphism, i.e. a family
of selfadjoint operators in the fibers, S(x) ∶ Vx → Vx, and let s(x) be the lowest
eigenvalue of S(x).

Then the lowest eigenvalue of the f ↦ ∇2f(x) + S(x)f(x) is bounded from
below by the lowest eigenvalue of the scalar −∆ + s(x) on X.

Equivalently,
if the −∆ + sλ(x) on X for sλ = s − λ is positive for some real number λ,

then the ∇2 + Sλ(x) for Sλ = S − λ is also positive.
In fact, non-positivity of a selfadjoint means that there exists a test vector

φ, such that ⟨Aφ,φ⟩ < 0.
Thus , if ∇2 +Sλ is non-positive, then there exists a section f ∶X → V , such

that

0 > ∫
X
(⟨∇

2f(x), f(x)⟩+⟨Sλf(x), f(x)⟩)dx = ∫
X
(∣∇f(x)∣2+⟨Sλf(x), f(x)⟩)dx ≥

≥ ∫
X
(∣∇f(x)∣2 + sλ∣f(x)∣

2
)dx,

and, by Kato’s inequality, the norm ∣f(x)∣ serves as the test function for non-
positivity of −∆ + sλ, for

∫
X
(−∆∣f(x)∣ + sλ(x)∣f(x)∣)dx = ∫

X

RRRRd∣f(x)∣
RRRR
2
+ sλ(x)∣f(x)∣

2
)dx ≤

≤ ∫
X

∣∇f(x)∣2 + sλ(x)∣f(x)∣
2
)dx < 0.

Bundles V relevant for applications to scalar curvature are spinor bundles
S(X) →X twisted with unitary bundles L with "small" curvatures, such as the
following.
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6. Example. Let X be a compact orientable Riemannian n-manifold, which
admits a distance (or area) decreasing map to the unit sphere Sn with non-zero
degree.

If X is spin, then the lowest eigenvalue λ1(X,
Sc
4
) of the f(x) ↦ −∆f(x) +

1
4
Sc(X,x)f(x) is bounded by that for Sn,

λ1 (X,
Sc

4
) ≤

1

4
n(n − 1).

Exercise. Formulate and prove similar generalizations of other bounds on
the size of Riemannian manifols X by inf Sc(X), such as area (non)-contraction
inequalities from sections 3. 3 and 3.4.

7. Conjecture. Probably, the Dirac operator proofs of geometric inequalities
for non-complete manifolds with Sc ≥ σ > 0 by Cecchini, Zeidler and Guo-Xie-Yu
also extend to manifolds X with lower bounds on (properly defined) eigenvalues
λ1 (X, Sc

4
).

Remark. No single results of this kind is available by the methods of the
geometric measure theory, where one faces the following

8. Open Problem. Find counterexamples to the following claim.
Let X = (X,g0) be a compact Riemannian n-manifolds X = (X,g0), n ≠ 4.
If the universal covering of X is non-spin, then for all γ < 1

2
and λ > 0, there

exists a Riemannian metrics g = gγ,λ on X, such that g ≥ g0, and such that the
−∆g + γ ⋅ Sc(g) − λ is positive.

9.Exercises. Denote by λ1(X,γSc) = λ1(X,γg) the bottom of the spectrum
of the −∆g +

1
2
Sc(g) on a Riemannian manifold X = (X,g).

(a) Show that λ1(X,γSc) is invariant under finite covering X̃ → X of com-
pact Riemannian manifolds,

λ1(X̃, γSc) = λ1(X,γSc).

(b) Show that λ1(X,γSc) is additive under Riemannian products of mani-
folds,

λ1(X1 ×X2, γSc) = λ1(X1, γSc) + λ1(X2, γSc).

(c) Let X = (X,g0) be a compact (possibly non-spin) Riemannian manifold.
Show that there is a constant λ = λ(X), such that all Riemannian metrics g on X,
which are area wise greater than g, i.e. such that areag(S) ≥ areag0(S) for all
smooth surfaces S ⊂X satisfy λ1(g,

1
2
Sc) ≤ λ.

(d) Show that λ1(g, γSc) is semicontinuous under C0-limits of Riemannian
metrics:

if Riemannian metrics gi uniformly converge to g then

λ1(g, γSc) ≥ lim supλ1(gi, γSc) for all γ.

Also prove this for other eigenvalues of the operators −∆g + γSc.
10. Questions. (a) Is there a geometric definition of λ1(g, γSc) (and of

higher eigenvalues of −∆g + γSc) applicable to continuous Riemannian metrics
similarly to ∎ and c from section 3.1.
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(b) Is there any kind of semicontinuity of the spectra of Dirac operators
D ∶ S(X) → S(X) under "weak" limits of Riemannian metrics g on X = (X,g)
and/or under "weak" limits of connections of "twisting" vector bundles L in
D⊗L ∶ S(X) ⊗L→ S(X) ⊗L?

11. Refined Kato’s Inequality [Herzlich(Kato) 2000)], [Davaux(spectrum)
2003]. This improves 4 in the case where V is a twisted spin bundle and f is in
the kernel of the twisted Dirac operator as follows.

RRRRd∣f ∣
RRRR ≤

√
n − 1

n
∣∇f ∣.

Accordingly, the above 6 and 7 should hold for λ1(X,
(n−1)Sc

4n
, but I didn’t

check it carefully.
12. Feynman- Kac Formula. The Kato inequality, implies further bounds

on the spectrum of the ∇2 that acts on sections of the bundle V → X, by the
spectrum of −∆, namely the inequality

trace(exp−t∇2
) ≤ rank(V ) ⋅ trace(exp t∇2

), t > 0,

which follows from the point-wise inequality between the corresponding heat
kernels.

Remarkably, the latter (trivially!) follows from an identity – Feynman-Kac
formula, that says that

the heat value H∇2(x0, x1) ∶ Vx0 → Vx1 is equal to the average of the parallel
transport s from the fiber Vx1 to Vx1 along "all" paths between these points, where
this average is taken with respect to the Wiener measure on the space of paths
between x0 and x1 in X.

13. Question. Can geometric inequalities on scalar curvatures of Riemannian
manifolds X, at least those proven with Dirac operators, be derived from integral
identities for natural measures in spaces of maps from graphs to X?

6.2 Logic of Propositions about the Scalar Curvature
Propositions/properties P∣Sc concerning the scalar curvatures of Riemannian
manifolds or related invariants, makes a kind of an "algebra", vaguely similar
to how it is in algebraic topology, where properties of invariants P∣Sc can be
modified, generalized, stabilized in a systematic manner, e.g. those concern-
ing X and Y , can be coupled to corresponding propositions, let them be only
conjectural, concerning the Riemannian products X × Y .

Then these hybridised propositions can be developed/generalized to state-
ments on

fibrations over Y with X-like fibers
and then further to

foliations with X-leaves, where a properly understood (non-commutative?)
space of leaves is taken for Y .
Conjectural Example: Lichnerowicz × Llarull × Min-Oo. Let X be

the product of the the hyperbolic space by the unit sphere,

X =Hn
× Sn.
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Let X be a complete orientable spin Riemannian manifold, such that Sc(X) ≥ 0.
Let f ∶X →X be a smooth proper map with the following two properties.

●Sn The Sn-component fSn ∶ X → Sn of f , that is the composition of f with
the projection X =Hn × Sn → Sn, is an area contracting, e.g. 1-Lipschitz map.

●Hn The Hn-component of f is a Riemannian submersion at infinity:
the map fHn ∶X →Hn is a submersion outside a compact subset in X, where

the differential dfHn ∶ T (X) → T (Hn) is isometric on the orthogonal complement
to the kernel of dfHn .

Then either Sc(X) = 0, or the Â-genera of the pullbacks f−1(x) ⊂ X of
generic points x ∈X vanish.

In particular, if dim(X) = 2n and Sc(X,x0) > 0 at some x0 ∈ X, then
deg(f) = 0.

Theorem Generalisation. There other avenues for generalizations of results
on scalar curvature. Below we indicate directions of some of these "avenues"
mentioned in the previous sections.

● from manifolds to distance and area controlled maps between manifolds ●
from closed manifolds to manifolds with boundaries, where the mean curvature
is bounded from below;

● from manifolds to manifolds with boundaries to manifolds with corners;
● from (X,g), where Sc(g) > 0 to to (X,Sc(g) ⋅ g;
● from X to X ×RN ;
● from complete to non-complete manifolds with long necks;
● from properties of compact manifolds Y with Sc(X) ≥ σ to similar proper-

ties of generic point-pullbacks Y = f−1(x) of smooth proper distance decreasing
maps f ∶X →X, Sc(X) ≥ σ and X is a "large" manifold, e.g. X = Rm.

Suggestions to the Reader. Hybridize/generalize various theorems/inequalities
from the previous as well as of the following sections. More specifically, for-
mulate and prove whenever possible counterparts of results for n-dimensional
manifolds with Sc ≥ σ to n −N dimensional ones with Sc ≥ σ and which admit
an isometric (possibly non-free) action of the torus TN .

6.3 Almost flat Fibrations, K-Cowaist and max-Scalar Cur-
vature

Much of what follows in this section and in 6.4 and 6.5 represents an attempt to
find geometric counterparts to the foliated Sc ≥ 0 non-existence theorems based on
the Connes’ fibration idea.401

Let let P and Q be Riemannian manifolds, let F ∶ P → Q be a smooth
fibration. and let ∇ be the connection defined by the horizontal tangent (sub)
bundle on P that is the orthogonal complement to the vertical subbundle of
T (P ), where "vertical" means "tangent to the fibers" called Sq = F −1(q) ⊂ P ,
q ∈ Q.

401See [Connes(cyclic cohomology-foliation) 1986], [Bern-Heit(enlargeability-foliations)
2018], [Zhang(foliations) 2016] and also [Zhang(foliations:enlargeability) 2018], [Su(foliations)
2018] and [Su-Wang-Zhang(area decreasing foliations) 2021] for a definite results in his direc-
tion.
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Problem. Find relations between the K-cowaists2 and between max-scalar
curvatures of P , Q and the fibers F −1(q) for fibrations with "small" curvatures
∣curv∣(∇).402

We already know in this regard the following
(A) If P → Q is a unitary vector bundle with a non-trivial Chern number,

then, by its very definition, K-cowaist2(Q) is bounded from below by constn
∣curv∣(∇) .

(B) There is a fair bound on Scmax of product spaces P = Q×S, such as the
rectangular solids, for instance, as is shown by methods of minimal hypersurfaces
and of stable µ-bubbles in section 5.4.

In what follows, we say a few words about (A) for non-unitary bundles in the
next section and then turn to several extensions of (B) to non-trivial fibrations.

6.3.1 Unitarization of Flat and Almost Flat Bundles.

Let Q be a closed oriented manifold and start with the case where L→ Q is a flat
vector bundle with a structure group G, e.g. the orthogonal group O(N1,N2).

Let some characteristic number of L be non-zero, which means that the
classifying map f ∶ Q → B(G) sends the fundamental class [P ]Q to a non-zero
element in Hn(B(G);Q).403

Then X admits no metric with Sc > 0.
First Proof. Let Γ ⊂ G be the monodromy group of L and recall (see sec-

tion 4.1.2) that Γ properly and discretely acts on a product X of Bruhat-Tits
building. Since this X is CAT (0) and Sc(P ) > 0, the homology homomorphism
Hn(P ;Q) →Hn(B(Γ);Q) induced by the classifying map fΓ ∶ P → BΓ is zero.

Since the classifying map f ∶ Q→ B(G) factors through fΓ ∶ P → BΓ via the
embedding Γ↪ G, the homomorphism Hn(P ;Q) →Hn(B(G);Q) is zero as well
and the proof follows.

Second Proof? Let K ⊂ G be the maximal compact subgroup and let S be
the quotient space, S = G/K endowed with a G-invariant Riemannian metric.

Let S∗ be the space of L2-spinors on S twisted with some bundle L∗ → S
associated with the tangent bundle of S and let S∗ → Q be the corresponding
Hilbert bundle over Q with the fiber S∗.

Apparently, an argument by Kasparov (see below) implies that, at least
under favorable conditions on G, a certain generalized index of the Dirac op-
erator on Q twisted with S∗ → Q is non-zero; hence, Q carries a non-zero
harmonic (possibly almost harmonic) spinor and the proof follows by revoking
the Schroedinger-Lichnerowicz-Weitzenboeck formula.

Kasparov KK-Construction. Let G be semisimple, and observe that the
quotient space S = G/K carries a G-invariant metric with non-positive sectional
curvature.
402Recall that the K-cowaists2 defined in section 4.1.4 measure area-wise sizes of spaces,
e.g. K-cowaist2(S) = area(S) for simply connected surfaces and K-cowaist2(Sn) = 4π, while
max-scalar curvature of a metric space P defined in section 5.4.1 is the supremum of scalar
curvatures of Riemannian manifolds X that are in a certain sense are greater than P .
403If G is compact, or if G = GLN (C), thenHn(B(G);Q), then the homology homomorphism
f∗ ∶ Hi(Q,Q) → Hi(B(G);Q), i > 0, for flat bundles L, but it is not so, for instance, if
G = O(N1,N2) with N1,N2 > 0.
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Take a point s0 ∈ S and let τ0(s) = τs0(s) be the gradient of the distance
function s↦ dist(s, s0) on S regularized at r0 by smoothly interpolating between
r ↦ dist(s, s0)

2 in a small ball around s0 with dist(s, s0) outside such a ball.
Let τ ●0 ∶ S∗ → S∗ be the Clifford multiplication by τ0(r), that is τ ●0 ∶ s ↦

τ0(r)●s, s ∈ S∗.
Discreetness Assumption. Let the monodromy subgroup Γ ⊂ G be discrete

and let us restrict the space S∗ and the τ ●0 to a Γ orbit Γ(s) ⊂ S for a point
r ∈ R different from r0

Then, according to an observation by Mishchenko [Mishchenko(infinite-dimensional)
1974] the resulting on the space of spinors restricted to Γ(s),

τ ●s0,Γ = τ ●s0∣Γ(s) ∶ S∗∣Γ(s) → S∗∣Γ(s),

has the following properties:

(⋆) τ ●s0,Γ is Fredholm;

(⋆⋆) τ ●s0,Γ commutes with the action of Γ modulo compact operators in
the following sense: the operators

τ ●γ(s0),Γ − τ
●
s0,Γ ∶ S∗∣Γ(s) → S∗∣Γ(s)

are compact for all r ∉ Γ(s0) and all γ ∈ Γ.

These properties and the contractibility of S, show, by an elementary exten-
sion by skeleta argument [Mishchenko(infinite-dimensional) 1974], that

(⋆⋆⋆) the (graded) Hilbert bundle S∗∣Γ → Q admits a Fredholm endomor-
phism homotopically compatible with τ ●s0,Γ.

Finally, a K-theoretic index computation in [Kasparov(index) 1973], [Kas-
parov(elliptic) 1975] and/or in [Mishch 1974] yields

(⋆ ⋆ ⋆⋆) non-vanishing of the index of the Dirac operator on Q twisted
with S∗∣Γ in relevant cases (which delivers non-zero harmonic spinors on Q and
the issuing Sc(Q) ≯) conclusion in our case). 404

Now, let us drop the discreetness assumption and make the above (Γ-equivariant)
construction(s) fully G-equivariant.

The (unrestricted to an orbit Γ(s) ⊂ S) τ ●0 ∶ S∗ → S∗ seems at the first sight
no good for tis purpose:

the properties (⋆) and (⋆⋆) fails to be true for it, since the space S∗ of
L2-spinors on S is too large and "flabby".

On the positive side, the space S∗ may contain a G-invariant subspace,
roughly as large as S∗∣Γ, namely the subspace of harmonic spinors in it. But
the τ ●0 doesn’t, not even approximately, keeps this space invariant. However –
this is an idea of Kasparov, I presume, – one can go around this problem by
invoking the full Dirac D ∶ S∗ → S∗, rather than its kernel alone.

404 The properties (⋆) and (⋆⋆), however simple, establish the key link between geometry
and the index theory. These were discovered and used by Mishchenko in the ambience of the
Novikov higher signatures conjecture and the Hodge, rather than the Dirac, operator on
manifolds with non-positive sectional curvatures.

It seems, no essentially new geometry-analysis connection has be been discovered since,

while (⋆ ⋆ ⋆⋆) grew into a fast field of the KK-theory of C∗-algebras in the realm of the
non-commutative geometry.
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Namely, we add the following extra structure to S∗:
(A) the action of the Dirac operator D or rather of the technically more conve-

nient first order operator

E = D(1 −D2
)

1
2 ∶ S∗ → S∗

:
(B) the action of continuous functions φ with compact supports in S.
These functions φ(s) act on spinors by multiplication, where this action,

besides commuting with the action by G,
commute with E modulo compact s.

Now, because of (A) and(B), a suitably generalized index theorem applies,
I guess, and, under suitable topological conditions, yields non-zero (almost)
harmonic spinors on Q.405

Problem. Does the above (assuming it is correct) generalises to non-flat bun-
dles L→ Q?

Namely,
is there a natural Hilbert bundle S → Q associated with L and having its

curvature bounded in terms of that of L and such that S carries an additional
structure, such as a (graded) Fredholm endomorphism, that would yield, under
some topological conditions, non-zero harmonic (or almost harmonic) S -twisted
spinors on Q via a suitable index theorem?406

Generalized Problem. Does the above generalizes further to fibrations with
variable fibers with nonpositive sectional curvatures?

Namely, let F ∶ P → Q be a smooth fibrations between complete Riemannian
manifolds, where the fibers Sq = f−1(q) ⊂ P are simply connected and the
induced metrics in which have non-positive sectional curvatures.

Let a connection in this fibration be given by a horizontal subbundle Thor ⊂
T (P ), that is the orthogonal complement to the vertical bundle – the kernel of
the differential dF ∶ T (P ) → T (Q).

Let [q, q′] ⊂ Q be a (short) geodesic segment between q, q′ ∈ Q and let
[p, p′]∼ ⊂ P be a horizontal lift of [q, q′].

We don’t assume that the holonomy transformations Sq → Rq′ are isometric
and let

(1) maxdilp(ε) be the supremum of the norm of the differentials of the
transformations Sq → Sq′ at p ∈ Sq for all horizontal path [p, p′]∼ ⊂ P of length
≤ ε issuing from p ∈ P ;
and

(2) maxholp(ε, δ) be the supremum of dist(p, p′) for all horizontal paths
[p, p′]∼ of length≤ ε, where p′ lies in the fiber of p, i.e. F (p′) = F (p) = q and
where there is a smooth surface S ⊂ P the boundary of which is contained in
the union of the path [p, p′]∼ and the fiber Fq which contains p and p′ and such
that area((S) ≤ δ2.
405I couldn’t find any explicit statement of this kind in the literature, but it must be buried
somewhere under several layers of KK-theoretic formalism, which fills pages of the books and
articles I looked into.

(In my article [G(positive) 1996]), §8 1
2
, I mistakenly use a simplified argument of composing

τ●0 with a projection on ker(D))
406"Almost flat" generalizations of the "flat" Lusztig signature theorem are given in §§8 3

4
,8 8

9
of [G(positive) 1996].

301



Can one bound infq Sc(Q, q), or, more generally, max-Sc(Q) in terms of bounds
on the functions logmaxdilp(ε) and maxholp(ε, δ), for all (small) ε, δ > 0 and all
p ∈ P?

6.3.2 Comparison between Hyperspherical Radii and K-cowaists of
Fibered Spaces

A. The methods of minimal hypersurfaces and of stable µ-bubbles from section
5.4 that deliver fair bounds on Scmax of product spaces P , such as the rectangu-
lar solids, for instance, dramatically fail (unless I miss something obvious) for
fibrations with non-flat connections because of the following.

Distortion Phenomenon. What may happen, even for (the total spaces of)
unit m-sphere bundles P with orthogonal connections ∇ over closed Riemannian
manifolds Q, where the hyperspherical radius is large, and the curvature is small,
say

RadSn(Q) = 1, n = dim(Q), and ∣curv∣(∇) ≤ ε,

is that, at the same time,

RadSm+n(P ) ≤ δ, m + n = dim(P ),

where ε > 0 and δ > 0 can be arbitrarily small.407

This possibility is due to the fact that, in general, P admits no Lipschitz
controlled retractions to the spherical fibers of our fibration, even if the fibration
is topologically trivial and continuous retractions (with uncontrollably large
Lipschitz constants) do exits, where

non-triviality of monodromy, say at q ∈ Q can make the distance function distP
on the fiber Smq ⊂ P significantly smaller than the (intrinsic) spherical metric.

Example. Let Q be obtained from the unit sphere S2 by adding ε-small
handles at finitely many points which are together ε-dense in S2 and such that
Q goes to S2 by a 1-Lipshitz map of degree one.408

Let P → Q be a topologically trivial flat unit circle bundle, such that the
monodromy rotations α ∈ T1 of he fiber Sq = S1 around the loops at q ∈ Q of
length ≤ δ are δ-dense in the group T1 for all q ∈ Q.

Then, clearly, RadS3(P ) ≤ 10δ, where δ can be made arbitrarily small for ε→
0, whilst the trivial fibration has large hyperspherical radius, namely, RadS3(Q×
S1) = 1.

B. Metric distortion of the fibers of the fibration P → Q has, however, little
effect on the K-cowaist of P , that can be used, instead of the hyperspherical
radius, as a measure of the size of P and that allows non-trivial bounds on
Scmax(P ) for spin manifolds P with a use of twisted Dirac operators.

In practice, to make this work, one needs vector bundles with unitary con-
nections over the base Q and over the manifold S isometric to the fibers Sq ⊂ P ,
call these bundles LQ → Q and LS → S = Sq, where the following properties of
these bundles are essential.
407This doesn’t happen if the action of the structure group on the fiber of our fibration has
bounded displacement, see (2) in section 6.3.1.
408E.g. let the handles lie outside (the ball bounded by) the sphere S2 ⊂ R3 and let our map
be the normal projection Q→ S2.
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●I Monodromy Invariance of LS . The bundle LS → S, where S is isometric
to the fibers Sq of the fibration P → Q, must be equivariant under the action of
the monodromy group G of the connection ∇ on the fibers Sq of the fibration
P → Q.

(Recall that an equivariance structure on a bundle L over a G space S is an
equivariant lift of the action of G on S to an action of G on L.)

If a bundle LS → L is G-equivariant, it extends fiberwise to a bundle over
P , call it L↕ → P .

(An archetypical example of this is the tangent bundle T (S) which extends
to what is called call the vertical tangent bundle for all fibration with S-fibers.
But, in general, actions of groups G on S do not lift to vector bundles L → S.
However, such lifts may become possible for suitably modified spaces S and/or
bundles over them.)

●II Homologically Substantiality of the two Vector Bundles. Some Chern
numbers. of the bundles LS and LQ must be non-zero.

●III Non-vanishing of F ∗[Q]○Q ∈ Hn(P ;Q). The image of the fundamental
cohomology class [Q]○ ∈ Hn(Q), n = dim(Q), under the rational cohomology
homomorphism induced by F ∶ P → Q doesn’t vanish,

F ∗
[Q]

○
≠ 0.

(This is satisfied, for instance, if the fibration P → Q admits a section Q→ P .)
Granted ●I-●II-●III, there exists a vector bundle L⋊ → P , which is equal

to a tensor product of exterior powers of the "vertical bundle" L↕ → P and
F ∗(LQ) → P (that is F -pull back of LQ) and such that a suitable Chern number
of L⋊ doesn’t vanish.

Here "suitable" is what ensures non-vanishing of the index of the twisted
Dirac operators D⊗f∗(L⋊) on manifolds X mapped to P by maps f ∶ X → P

with non-zero degrees. (Compare with 5 1
4
in [G(positive) 2016].)

Then bounds on curvatures of the bundles LS and LQ together with such
a bound for ∇ and also a bound on parallel displacement of the G action on S
(see below) yield a bound on ∣curv∣(L⋊), which implies a bound on Scmax(P )

according to the twisted Schroedinger-Lichnerowicz-Weitzenboeck formula ap-
plied to the operators D⊗f∗(L⋊) on manifolds X mapped to P by (smoothed)
1-Lipschitz maps f ∶X → P , used in the definition of Scmax(P ).

Parallel Displacement. The geometry of a G-equivariant unitary bundle
L = (L,∇) over a Riemannian G-space S is characterized, besides the (norm
of the) curvature of ∇, by the difference between the parallel transform and
transformations by small g ∈ G.

To define this, fix a norm in the Lie algebra of G and let ∣g∣, g ∈ G denote the
distance from g to the identity in the corresponding "left" invariant Riemannian
metric in G.

Then, given a transformation g ∶ S → S and a lift ĝ ∶ L → L of it to L,
compose it with the parallel translate of it back to L along shortest curves
(geodesics for complete S) between all pairs s, g(s) ∈ S. Denote by ĝ÷∇ ∶ L→ L
the resulting endomorphism and let

∣Ĝ ÷∇∣ = lim sup
∣g∣→0

∣∣(ĝ ÷∇) − 1∣∣

∣g∣
,
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where 1 ∶ L→ L is the identity endomorphism () and ∣∣...∣∣ denotes the norm.
Notice at this point that the curvature of the connection ∇ takes values in

the Lie algebra of G and the norm ∣curv∣(∇), similarly to the above "parallel
displacement", depends on a choice of the norm in this Lie algebra.

If S is compact, we agree to use the norm equal to the sup-norms of the
corresponding vector fields on S, but one must be careful in the case of non-
compact S. (Compare with (2) in section 6.3.1.)

6.3.3 Scmax and Scmax
sp for Fibrations with Flat Connections

Let P and Q be closed orientable Riemannian manifolds and let us observe
that what happens to the non-spin and spin max-scalar curvatures and of the
K-cowaists409 of fibrations P → Q with flat connections, follows from what we
know for trivial fibrations over covering spaces Q̃→ Q. 410

(A) If the monodromy group of a flat fibration of) F ∶ P → Q is finite and
the map F is 1-Lipschitz, then

⋆waist2 Scmax
sp (P ) ≤ constm+n ⋅max(

1

K-cowaist2(Q)
,

1

K-wast2(S)
) ,

⋆Rad2 Scmax
(P ) ≤ const′m+n ⋅max(

1

Rad2
Sn(Q)

,
1

Rad2
Sm(S)

)

and

⋆sp,Rad2 Scmax
sp (P ) ≤ (m + n)(m + n − 1) ⋅max(

1

Rad2
Sn(Q)

,
1

Rad2
Sm(S)

)

for n = dim(Q) and m = dim(S), where S is the fiber of our fibration P → Q.
In fact, these reduce to the corresponding inequalities for the product P̃ =

Q̃ × S for the finite(!) covering P̃ of P , induced from the monodromy covering
Q̃→ Q, where

● in the case ⋆waist2 , one uses the tensor product of the relevant vector
bundles over Q̃ and S and where the ⊗-product bundle can be pushed forward
from P̃ back to P , if one wishes so;
409 K-cowaist2(P ) is the reciprocal of the infimum of the norms of the curvatures of unitary
bundles over P with non-zero Chern numbers.
Scmax(P ) is the supremum of σ, such that P admits an equidimensional 1-Lipschitz map

with non-zero degree from a closed Riemannian manifold X with Sc ≥ σ, and where X in the
definition of Scmaxsp must be spin).

The hyperspherical radius RadSN (P ), N = dimP , the supremum Rmax of radii of the
spheres SN (R), which receive 1-Lipshitz maps from P of non-zero degree.
It is (almost) 100% obvious that RadSN (SN ) = 1, it is not hard to show that K-cowaist2(P )

is 4π, that the equality Scmaxsp (SN ) = Sc(SN ) = N(N − 1) follows from Llarull’s’ inequality
for twisted Dirac operators and it remains unknown if Scmax(SN ) = Scmaxsp (SN ) = Sc(SN ) =
N(N − 1) for N ≥ 5 (see section 5.5 for N = 4).
410 A flat structure (connection) in a fibration F ∶ P → Q with S-fibers is defined for arbitrary
topological spaces Q,S and P , as a Γ-equivariant splitting F̃ ∶ P̃ = Q̃ × S → Q̃ for some Γ-
covering Q̃→ Q and the induced covering P̃ → P .
In the present case we assume that our Q and S, hence P , are compact orientable pseudo-

manifolds with piecewise smooth Riemannian metrics, where P̃ = Q̃×S carries the (piecewise)
Riemannian product metric and the action of Γ on P̃ is isometric.
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● in the case ⋆Rad2 , the (obvious) inequalities

RadSn+m(P̃ ) ≥ RadSn+m(P )

– the finiteness of monodromy is crucial in this one – and

RadSn+m(Q̃ × S) ≥min(RadSn(Q̃),RadSm(S))

allows a use of the "cubical bounds" from the previous section, which need
no spin condition, while the corresponding sharp inequality ⋆sp,Rad2 for spin
manifolds P follows from Llarull’s theorem.

(B) If the monodromy group Γ of the fibration P → Q is infinite, then the
above argument yields the following modifications of the inequalities ⋆sp,Rad2 ,
⋆sp,Rad2 and ⋆waist2 .

⋆∞Rad2 The two Rad2 inequalities ⋆Rad2 and ⋆sp,Rad2 for spin manifolds P
remain valid for infinite monodromy, if RadSn(Q) is replaced in these inequali-
ties by RadSn(Q̃) for a (now infinite) Γ-covering Q̃ of Q.

(The universal covering ofQ serves this purpose but the monodromy covering
gives an a priori sharper result.)

⋆∞waist2 One keeps ⋆waist2 valid for infinite ∇-monodromy by replacing K-
cowaist2(Q) by K-waist2(Q̃).411

Remarks. (a) Sharpening the Constants. Our argument allows improvements
of the above inequalities as we shall see, at least for ⋆sp,Rad2 , in the following
sections.

(b) On Displacement and Distortion. None of the above inequalities contains
corrections terms for parallel displacement defined earlier in section 6.3.2, albeit
it may result in a decrease of the hyperspherical radii of P due to distortion of
the fibers S ⊂ P as the example in section 6.3.2 shows.

Notice at this point that the presence of large distortion is inevitable for
fibrations with non-compact fibers, where the monodromy along short loops
has unbounded displacement.

Example. Let Q be a surface and P → Q an R2-bundle with an orthogonal
connection, the curvature form of which doesn’t vanish, and let g be a Rieman-
nian metric on P which agrees with the Euclidean metrics in the R2-fibers and
such that the map P → Q is a Riemannian fibration, i.e. it is isometric on the
horizontal subbundle in T (P ) corresponding to the connection.

The the Euclidean distance between points in the fibers,

p1, p2 ∈ R2
q ⊂ P , q ∈ Q

is related to the g-distance in P as follows

distR2(p1, p2) ∼ (distP (p1, p2))
2 for distR2(p1, p2) → ∞.

(This is the same phenomenon as the distortion of central subgroups in two-
step nilpotent groups.)
411It is known [Brun-Han(large and small) 2009] that the hyperspherical radius can drasti-
cally decrease under infinite coverings but the situation with K-cowaist2 remains unclear.
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6.3.4 Even and Odd Dimensional Sphere Bundles

Scmax
sp -Bound for Sphere Bundles. Let P andQ be closed orientable spin manifolds,

where P serves as the total space of a unit m-sphere bundle F ∶ P → Q with an
orthogonal connection ∇.

If the map F ∶ P → Q is 1-Lipschitz412 and if the cohomology class

F ∗[Q]○Q ∈Hn(P ;Q), n = dim(Q),

doesn’t vanish (as in ●III in section 6.3.2), then the spin max-scalar curvature
of P (defines with spin manifolds X mapped to P ) is bounded in terms of the
hyperspherical radius R = RadSn(Q) and of the norm of the curvature of ∇ as
follows:

[⋊Sm] Scmax
sp [P ] ≤ const ⋅ (1 + ε) ⋅ (Sc(Sn(R)) + Sc(Sm)) ,

where, recall, Sc(Sn(R)) =
n(n−1)
R2 , Sc(Sm) =m(m−1), where const = constm+n

is a universal constant (specified later) and where ε is a certain positive function
ε = εm+n(c), for c = ∣curv∣(∇), such that

εm+n(c) → 0 for c→ 0.

Proof. Start by observing that if either m = 0 or n = 0, then [⋊Sm] with
const = 1 reduces to Llarull’s inequality, which says in these terms, e.g. for Q,
that

Scmax
(Q) ≤

n(n − 1)

Rad2
n(Q)

= Sc(Sn(R)).

What we need in the general case if we want const = 1 is a complex vector
bundle L → P with non-zero top Chern number and such that the normalised
curvature (defined in section 2.8.) satisfies

∣curv∣⊗S(L) ≤
Sc(Sn(R)) + Sc(Sm(1)

4
+ const′ ⋅ ε.

Now, let m = dim(S = Sm) and n = dim(Q) be even and observe that the
non-vanishing condition F ∗[Q]○Q ≠ 0 always holds for even dimensional sphere
bundles.

Also observe that Sm and Q support bundles needed for our purpose, call
them LS and LQ, where LS is the positive spinor bundle S+(Sm) → S = Sm and
LQ → Q is induced from the spinor bundle S+(Sn(R)) by a 1-Lipschitz map
Q→ Sn(R) with non-zero degree.

One knows that the top Chern numbers of these bundle don’t vanish and,
according to Llarull’s calculation,

∣curv∣⊗S(LS) =
1

4
Sc(Sm) =

1

4
m(m − 1)

and
∣curv∣⊗S(LQ) ≤

1

4
(Sc(Sn(R)) =

n(n − 1)

4R2
.

412The role of this "1-Lipschitz" is seen by looking at the trivial fibrations P = Q × S → Q
and also at Riemannian fibrations F ∶ P → Q (the differentials of) which are isometric on
the horizontal (sub)bundle. In general, when the metrics in the horizontal tangent spaces
may vary, estimates on Scmax(P ) should incorporate along with , besides curv(∇), (a certain
function of) these metrics. (Observe, that the scalar curvature of P itself is influenced by the
first and second "logarithmic derivatives" of these metrics.)
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Since the (unitary) bundle LS → Sm is invariant under the action of the spin
group, that is the double covering of SO(m), 413 it defines a bundle L↕ → P ,
the curvature of which satisfies

∣curv∣(L↕) = ∣curv∣(LS) +O(ε).

Then all one needs to show is that the tensor product of

L = L⋊ = L↕ ⊗ F
∗
(LQ),

satisfies
∣curv∣⊗S(L) ≤

Sc(Sn(R)) + Sc(Sm(1)

4
+ const′ ⋅ ε.

This follows by a multilinear-algebraic computation similar to what goes on
in the paper by Llarull, where, I admit, I didn’t carefully check this computation.

But if one doesn’t care for sharpness of const, then a direct appeal to the
⊗ε-Twisting Principle formulated in section 3.3 correctedsuffices.

Remark. Even the non-sharp version of [⋊Sm], unlike how it is with a non-
sharp bound RadSn(X) ≤ constn(infx Sc(X,x))

− 1
2 , n = dim(X), can’t be proved

at the present moment without Dirac operators, which necessitate spin as well
as compactness (sometimes completeness) of our manifolds.

Odd Dimensions. If n = dim(Q) is odd, multiply P and Q by a long circle,
and then either of the three arguments, used in the odd case of Llarull’s theorem
which are mentioned in section 3.4.1 and referred to [Llarull(sharp estimates)
1998], [Listing(symmetric spaces) 2010] and [G(inequalities) 2018], applies here.

Now let n be even and the dimensionm of the fiber be odd. Here we multiply
the fiber S, and thus P by R, and endow the new fiber, call it S′ = Sm ×R with
the bundle LS′ over it, which is induced by an O(m+1)-equivariant 1-Lipschitz
map Sm ×R → Sm+1, which is locally constant at infinity. Since the curvature
of the new fibration P ′ = P ×R → Q is equal to that of the original one of ∇ in
P → Q, the proof follows via the relative index theorem.

Remarks/Questions. (a) Is there an alternative argument, where, instead of
R, one multiplies the fiber S with the circle T, and uses, in the spirit of Lusztig’s
argument, the obvious T-family of flat connection in it.

(b) Is there a version of the inequality [⋊Sm], which is sharp for ∣curv∣(∇)

far from zero?
(c) What are Scmax

sp of the Stiefel manifolds of orthonormal 2-frames in the
Euclidean Rn, Hermitian Cn and quaternion Hn?414

6.3.5 K-Cowaist and Scmax of Iterated Sphere Bundles, of Compact
Lie Groups and of Fibrations with Compact Fibers

Classical compact Lie groups are equivariantly homeomorphic to iterated sphere
bundles.
413This bundle is not SO(m) -invariant, but I am not certain if this is truly relevant.
414Notice that St2(C2) = S3 and St2(H2) = S7, but not all invariant metrics on Stiefel
manifolds are symmetric.

Also notice that the corresponding (Hopf) fibrations F ∶ P = S3 → Q = S2 and F ∶ P =
S7 → Q = S4 have F ∗[Q]○ = 0 in disagreement with the above condition ●III; this makes one
wonder whether this condition is essential.
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For instance, U(k) is equal to the complex Stiefel manifold of Hermitian
orthonormal k-frames Stk(Ck), where Sti(Cn) fibers over Sti−1(Cn) with fibres
S2(k−i)−1 for all i = 1, ..., k.

Since the rational cohomology of U(k) is the same as of the product S1 ×

S3 × ... × S2k−1, these fibrations satisfy the above non-vanishing condition ●III,
which implies by the above [⋊Sm] that

the product U(k) ×Rk carries a U(k)-invariant bundle, which is trivialized
at infinity, such that the top Chern number of it is non-zero.

This, by the argument from the previous section, delivers
complex vector bundles with curvature controlled unitary connections and non-

vanishing top Chern classes over total spaces P of principal U(k)-fibrations F ∶

P → Q, provided F ∗[Q]○Q ≠ 0 (that is the above ●III).
This yields

a lower bound on the K-cowaist of P ×Tk,
which, in turn, implies, the following.
Corollary 1. Let F ∶ P → Q be a principal U(k)-fibration with a unitary

connection ∇, where the map F is 1-Lipschitz and F ∗[Q]○Q ≠ 0.415

Then

[⋊U(k)], Scmax
sp [P ] ≤ constm+k ⋅ (1 + ε) ⋅ (

n(n − 1)

RadSn(Q)2
+ constk) ,

where ε is a certain positive function ε = εk+n(c), for c = ∣curv∣(∇), such that

εk+n(c) → 0 for c→ 0.

Now let us state and prove a similar inequality for topologically trivial fibra-
tions with arbitrary compact holonomy groups G.

Corollary 2. Let S and Q be compact connected orientable Riemannian mani-
folds of dimensions m = dim(S) and n = dim(Q) and let G be a compact isometry
group of S endowed with a biinvariant Riemannian metric.416

Let Fpr ∶ Ppr → Q be a principal G-fibration with a G-connection ∇ and with
a Riemannian metric on Ppr, which agrees with our metric on the G-fibers, for
which the action of G is isometric and for which the differential of the map Fpr is
isometric on the ∇-horisontal tangent bundle Thor(Ppr) ⊂ T (Ppr).

Let F ∶ P → Q be an associated S-fibration that is

P = (Ppr × S)/G

where the quotient is taken for the diagonal action of G.
Endow P with with the Riemannian quotient metric.
[⋊SG] Let Fpr ∶ Ppr → Q be a topologically (but not, in general geometrically)

trivial fibration (i.e. Ppr = Q ×G with the obvious action by G).
There exists a positive constant c0 and a function ε = εm+n(c), 0 ≤ c ≤ c0,

where ε → 0 for c → 0, and such that if ∣curv∣(∇) = c ≤ c0, then the spin max-
scalar curvature of P is bounded by
415For a principal fibration, this is a very strong condition, saying, in effect, that the fibration
is "rationally trivial".
416If G is disconnected "Riemannian" refers to the connected components of G.
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Scmax
sp [P ] ≤ const∗ ⋅ (1 + ε) ⋅ (

n(n − 1)

RadSn(Q)2
+

m(m − 1)

RadSm(S)2
+ constG) .417

Proof. Embed G to a unitary group U(k) and let FU ∶ PU → Q be the
fibration with the fiber U = U(k) associated to Fpr ∶ Ppr → Q.

Let PU → Q be the fibration with the fibers Sq ×Uq, q ∈ Q and observe that
this PU fibers over P with U -fibers and over PU with S-fibers, where the latter
is a trivial fibration.

To show this it is enough to consider the case, where P is the principal
fibration Ppr for which PU = Ppr × U and PU is the quotient space, PU =

(Ppr ×U)/G for the diagonal action of G.
Then the triviality of the principal G-fibration PU → PU is seen with the

map PU → U = U(k) for {Gq ×Uq} ↦ Uq = U which sends the diagonal G-orbits
from all Gq ×Uq to G ⊂ U(k) = U .

Thus, assuming m = dim(S) is even (the odd case is handled by multiplying
by the circle as earlier) we obtain an upper bound on spin max-scalar curvature
of PU = PU × S in terms of the K-cowaist of PU and RadSm(S).

On the other hand, if the fibration P → Q has curvature bounded by c,
the same applies to the induced fibration PU → P with U -fibers, and since the
(biinvariant metric in the) unitary group U = U(k) has positive scalar curvature,
the max-scalar curvature of PU is bounded from below by one half of that for
P for all sufficiently small c and when c → 0 these estimate converge to what
happens to Riemannian product P = Q × S.

Confronting these upper and lower bounds yields a qualitative version of
[⋊SG], while completing the proof of the full quantitative statement is left to
the reader.

About the Constants. A Llarull’s kind of computation seems to show that
the above inequalities hold with constm+n = const∗ = 1.

6.4 K-Cowaist and Max-Scalar Curvature for Fibration
with Non-compact Fibers

Let P → Q be a Riemannian fibration where the fiber S is a complete con-
tractible manifold with non-positive sectional curvature and such that the mon-
odromy of the natural connection ∇ in this fibration (defined by the horizontal
tangent subbundle Thor ⊂ T (P )) isometrically acts on S.

Problem. (Compare with "Generalized Problem" in section 6.3.1.) Is there
a lower bound on the K-cowaist2(P ) in terms of such a bound on K-cowaist2(Q)

and on an upper bound on the norm of the curvature of ∇ that can be represented
by the function maxholp(ε, δ) as in (2) of section 6.3.1?

6.4.1 Stable Harmonic Spinors and Index Theorems.

Our primarily interest in such a lower bound is that it would yield an upper
bound on the proper spin max-scalar curvature of P .
417I apologise for the length of this statement that is due to so many, probably redundant,
conditions needed for the proof.

309



This "proper spin max-scalar" is defined via proper 1-Lipschitz maps of open
spin manifolds X to P , section 5.4.1 where following recipes ●I, ●II, ●III, from
B in section 6.3.2 one has to construct a (finite or infinite dimensional graded)
with a unitary connection vector bundle L → S, which is

⋆I invariant (modulo compact operators?) under isometries of S (compare
with ●I in section 6.3.2).

and
⋆II homologically substantial, where this substantiality must generalize that

of ●II by properly incorporating the action of the isometry group G of S. (An
inviting possibility is the above L⊗N .)

What one eventually needs is not such a bundle L → S per se, but rather
some Hilbert space of sections for a class of related bundles over P , where

(i) a suitable index theorem, e.g. in the spirit of our the second "proof" in
section 6.3.1 (with a Hilbert C∗-module H over the reduced C∗-algebra of the
group G being utilized),

and where
(ii) the Schroedinger-Lichnerowicz-Weitzenboeck formula applies to twisted

harmonic L2-spinors delivered by such a theorem and provides a bound on the
scalar curvature of P .

Who is Stable? Harmonic spinors delivered by index theorems (and also
spinors with a given asymptotic behaviour as in Witten’s and Min-Oo’s argu-
ments) are stable under certain deformations (and some discontinuous modifica-
tions, such as surgeries) of the metrics and bundles in questions, albeit the exact
range of these perturbation on non-compact manifolds is not fully understood.

But the Schroedinger-Lichnerowicz-Weitzenboeck formula doesn’t use, at
least not in a visible way, this stability, which is unlike how it is with stable
minimal hypersurfaces and stable µ-bubbles.

One wonders, however,
whether there is a common ground for these two stabilities in our context.

6.4.2 Euclidean Fibrations

Let us indicate an elementary approach to the above problem in the case where
the fiberes S of the fibration F ∶ P → Q are isometric to the Euclidean space.

(1) Start with the case where the (isometric!) action of the (structure)
group G on the fiber S of the fibration P → Q has a fixed point, then assume
m = dim(S) is even and observe that radial maps S → Sm, which are constant
at infinity and have degrees one, induce homologically substantial G-invariant
bundles L = LS bundles on S.

Since S = Rm, such maps can be chosen with arbitrarily small Lipschitz
constants, thus making the curvatures of these bundles arbitrarily small, namely,
(this is obvious) with the supports in the R-balls Bs0(R) ⊂ S, around the fixed
point s0 ∈ S for the G-action and with curvatures of our (induced from S(Sm))
bundles LS = LS,s0,R → S bounded by 1

R2 .418

Then we see as earlier that in the limit for R → ∞, the curvature of the
bundle L↕ → P , which is on the fibers S = Sq ⊂ P is equal to LS → S, (see ●I

418It suffices to have the universal covering S̃ of S isometric to Rm, where radial bundles on
S̃ can be pushed forward to Fredholm bundles on S.
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in B of section 6.3.2) will be bounded by the curvature of the connection ∇ on
P → Q, provided the map P → Q is 1-Lipschitz.419

Consequently,
the K-cowaist2 of P is bounded from below by the minimum of the K-

cowaist2 of Q and the reciprocal of the curvature ∣curv∣(∇)

(2) Next, let us deal with the opposite case, where the structure group
G = Rm, i.e. the Euclidean space Rm acts on itself by parallel translations.

Then, topologically speaking, the fibration F ∶ P → Q is trivial, but the
above doesn’t, apply since this P → Q typically admits no parallel section.

But since the ∇-monodromy transformations, that are parallel translations
on the fiber S = Rm, have bounded displacements, there exists a continuous
trivialization map

G ∶ P → Q ×Rn,

which, assuming Q is compact, (obviously) has the following properties.
(i) The fibers Rmq ⊂ P are isometrically sent by G to Rm = {q}×Rm ⊂ Q×Rm

for all q ∈ Q.
(ii) The composition of G with the projection Q ×Rm → Rm, call it

GRm ∶ P → RM

is 1-Lipshitz on the large scale,

dist(GmR (q1, q2)) ≤ dist(q1, q2) = cost.

It follows by a standard Lipschitz extension argument, that, for an arbitrary
ε > 0, there exists a smooth map

G′
ε ∶ P → Q ×Rm, ε > 0,

which is properly homotopic to G and such that the corresponding map

G′
ε,Rm ∶ P → Rm

is λ-Lipschitz for λ ≤m + n + ε, where, recall, m + n = dim(P )

Now, the concern expressed in A of section 6.3.2 notwithstanding, the µ-
bubble splitting argument from section 5.3 applies and shows that

(a) the stabilized max-scalar curvature of P defined via products of P with
flat tori is bounded, up to a multiplicative constant, by that of Q.

Besides, the existence of fiberwise contracting scalings of P , which fix a given
section Q→ P , show that

(b) if Q is compact and if m is even, then the K-cowaist2 of P is bounded
from below, by that of Q.

Notice here, that
unlike most previous occasions, neither a bound on the curvature of the fibration

P → Q is required, nor the manifold X in the definition of the max-scalar curvature
mapped to P need to be spin.

And besides dispensing of the spin condition, one may allow here
419The parallel displacement contribution to the curvature of L↕ (see B of section 6.3.2))
cancels away by an easy argument.
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non-complete manifolds Q and X and/or manifolds in (a) and compact mani-
folds Q with boundaries in (b).

(3) Finally, let us turn to the general case where the structure group of a
fibration P → Q with the fiber S = Rm is the full isometry group G of the
Euclidean space Rm.

Recall that G is a the semidirect product, G = O(m) ⋊ Rm, let PG → Q be
the principal bundle with fiber G associated with P → Q and let PO → P be the
associated O(m) bundle. Let

PO ← PG → P

be the obvious fibrations.
Now, granted a bound on the Lipschitz constant of F ∶ P → Q and the

curvature of this fibration, we obtain
(i) a bound on the max-scalar curvature of the space PG in terms of such a

bound on P
In fact, the curvature of the fibration PG → P as well as its Lipschitz constant

are bounded by those of F ∶ P → Q and our bound (i) follows from non-negativity
of the scalar curvature of the fiber O(m) of this fibration by the (obvious)
argument used in section 6.3.5.

Then we look at the fibrations PG → PO → Q and observe that
(ii) the fibration PO → Q has O(m)-fibers and, thus the K-cowaist2(PO) is

bounded from below by that of Q as it was shown in section 6.3.5;
(iii) the fibration PG → PO has Rm-fibers and the structure group Rm and,

by the above (2), the K-cowaist2 of PG is bounded from below by that of Q;
hence

K-cowaist2(PG) of PG is bounded by K-cowaist2(Q).
We recall at this point the basic bound on Scmspax(PG) by the reciprocal of

the K-cowaist2(PG), confront (i) with (iii) and conclude (similarly to how it
was done in section 6.3.5) to the final result of this section.

�� Let F ∶ P → Q be a smooth fibration between Riemannian manifolds with
fibers Sq = Rm and a connection ∇, the monodromy of which isometrically acts on
the fibers. If the map F is 1-Lipschitz, then

the proper spin max-scalar curvature of P is bounded in terms of the curva-
ture ∣curv∣(∇) and the reciprocal to K-cowaist2(Q).

Corollary. Let Q admit a constant at infinity area decreasing map to Sn,
n = dim(Q), of non-zero degree.

Let the norm of the curvature of (the connection ∇ on) a bundle P → Q with
Rm-fibers is bounded by c.

Let a complete orientable Riemannian spin manifold X of dimension m + n
admit a proper area decreasing map to P .

Then
inf
x∈X

Sc(X,x) ≤ Ψ(c),

where, Ψ = Ψm+n is an effectively describable positive function; in fact, the above
proof of �� shows that one may take

Ψ(c) = (m + n)(m + n − 1) + constmc

and where, probably, (m + n)(m + n − 1) can be replaced by n(n − 1).
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6.4.3 Spin Harmonic Area of Fibrations With Riemannian Symmet-
ric Fibers

Let S be a complete Riemannian manifold with a transitive isometric action of
a group G which equivariantly lifts to a vector bundle LS → S with a unitary
connection, such that the integrant in the local formula for the index of the
twisted Dirac D⊗L doesn’t vanish. Then a certain generalized analytic L2-
index of D⊗L doesn’t vanish as well,420 which implies the existence of non-zero
harmonic L-twisted square summable spinors on S.

Example: Hyperbolic and Hermitian Symmetric spaces.
(a) The hyperbolic space S = H2m

−1 admits a non-zero harmonic L2-spinors
twisted with the spin bundle LS = S+(H2m

−1 ) (compare with section 4.6.4).
(b) Hermitian symmetric spaces S, e.g. products of hyperbolic planes or the

quotient space of the symplectic group Sp(2k,R) by U(k) ⊂ Sp(2k,R), admit
non-zero harmonic L2-spinors twisted with tensorial powers of the canonical line
bundles.

Questions. (a) What are (most) general local conditions on pairs (X,L), where
X421 is complete Riemannian manifold and L→X is a vector bundle with a unitary
connection, such that X would support non-zero L-twisted harmonic L2-spinors,
or, at least, the D2

⊗L would contain zero in its spectrum?422

(b) What happens, for example, to non-vanishing (twisted) harmonic L2-spinors
on homogenous spaces X under (small and/or big) non-homogeneous deformations
of the metrics on X?

(c) Do non-vanishing harmonic L2-spinors twisted with the spinor bundle S(X)

exist on Riemannian manifolds X which are bi-Lipschitz homeomorphic to even
dimensional hyperbolic spaces with constant sectional curvatures?

(d) Do complete simply connected Riemannian manifolds X of even dimension
n with their sectional curvatures pinched between −1 and −1−εn for a small εn > 0
carry such spinors?

Example of an Application. Let a complete oriented Riemannian n-dimensional
spin manifold X admit a smooth area decreasing map to the unit sphere, f ∶ X →
Sn, such that the pullback of the oriented volume form ωSn is non-negative on X,

f∗(ωSn)

ωX
≥ 0,

and the pullback of the Riemannian metric from Sn to X is complete, that is the
f -images of unbounded connected curves from X have infinite lengths in Sn.

Conjecture. The scalar curvature of X is bounded by that of Sn,

inf
x∈X

Sc(X,x) ≤ n(n − 1).

420As we have already mentioned in section 4.6.4, if S admits a free discrete cocompact
isometric action of a group Γ, this is equivalent to the non-vanishing of the index of the
corresponding on S/Γ [Atiyah (L2) 1976]; in general, this index is defined by Connes and
Moscovici in[Connes-Moscovici(L2 − index for homogeneous) 1982].
421 We return to the notation X instead of S, since, in general, this X doesn’t have to be
anybody’s fiber.
422Possibly, the answer is in [NaSchSt(localization) 2001], but I haven’t read this paper and
the book with the same title.
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Remark. If area-decreasing is strengthened to ε-Lipschitz for a small ε = εn >
0, then this conjecture (without the spin assumption) might follow in many
(all?) cases by the geometric techniques of section 5.

Back to Fibrations. Let F ∶ P → Q be a fibration with the fiber S and the
structure group G, let P be endowed with a complete Riemannian metric and
let L↕ → P be the natural extension of the (G-equivariant!) bundle LS to P
(compare with section 6.3.2).

Let LQ → Q be a vector bundle with a unitary connection. and let

L⋊ = F ∗
(LQ) ⊗L↕ → P

.
Conceivably there must exist (already exists) an index theorem for the Dirac

operator on P twisted with the bundle L⋊ that would ensure the existence of
non-zero twisted harmonic L2-spinors on P under favorable topological and
geometric conditions.

For instance, if Q is a complete Riemannian of even dimension n, if the
bundle LQ is induced from the spin bundle S+(Sn) by a smooth constant at
infinity map Q → Sn of positive degree, if P is spin and if the map F ∶ P → Q
is isometric on the horizontal subbundle in T (P ), then, conjecturally,

the manifold P supports a non-zero L⋊-twisted harmonic L2-spinor.
In fact this easy if the fibration is flat, e.g. if the fibration P = Q × S and,

if the curvature of this fibration is (very) small, then a trivial perturbation
argument as in section 4.6.4 yields almost harmonic spinors on large domains
PR ⊂ P .

But what we truly wish is the solutions of the following counterparts to (A)
and (B) from section 4.6.4.

Let F ∶ PR → QR be a submersion between compact Riemannian manifolds
with boundaries, where

R = sup
p∈P

dist(p, ∂P )

and where the local geometries of the fibers are δ-close (in a reasonable sense)
to the geometry of an above homogeneous S and let L⋊,R → PR be a vector
bundle, also δ-close (in a reasonable sense) to an above L⋊.

(AF ) When does PR support a ε-harmonic L⋊,R-twisted spinor which vanishes
on the boundary of P?

(BF ) When does a similar spinor exist on a manifold PR, which admits a map
to PR with non-zero degree and with a controlled metric distorsion? (See section
4.6.4 for a specific conjecture in this direction.)

6.5 Scalar Curvatures of Foliations
Let X be a smooth n-dimensional manifold and L a smooth foliation of X that
is a smooth partition of X into (n − k)-dimensional leaves, denoted L.

Let T (L ) ⊂ T (X) denote the tangent bundle of L and Recall that the
transversal (quotient) bundle T (X)/T (L ) carries a natural leaf-wise flat affine
connection denoted ∇⊥L, where the parallel transport is called monodromy.
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This∇⊥L can be (obviously but non-uniquely) extended to an actual (non-flat)
connection on the bundle T (X)/T (L ) →X, which is called Bott connection.

Two Examples (1) Let L admit a transversal k dimensional foliation, say K
and observe that the bundle T (X)/T (L ) → X is canonically (and obviously)
isomorphic to the tangent bundle T (K ).

Thus, every K -leaf-wise connection in the tangent bundle T (K ), e.g. the
Levi-Civita connection for a leaf-wise Riemannian metric in K , defines a K -
leaf-wise connection, say ∇K of T (X)/T (L )

Then there is a unique connection on the bundle T (X)/T (L ) → X, which
agrees with ∇⊥L on the L -leaves and with ∇K on the K -leaves, that is the Bott
connection.

(2) Let the bundle T (X)/T (L ) → X be topologically trivial and let ∂i ∶
X → T (X), i = 1, ..., k, be linearly independent vector fields transversal to L .
Then there exists a unique Bott connection, for which the projection of ∂i to
T (X)/T (L ) is parallel for the translations along the orbits of the field ∂i for
all i = 1, ..., k.

In what follows, we choose a Bott connection on the bundle T (X)/T (L ) →

X and denote it ∇⊥X .
Also we choose a subbundle T ⊥ ⊂ T (X) complementary to T (L ), which,

observe, is canonically isomorphic to T (X)/T (L ), where this isomorphism is
implemented by the quotient homomorphism T ⊥ ⊂ T (X) → T (X)/T (L ).

With this isomorphism, we transport the connections ∇⊥L and ∇⊥X from
T (X)/T (L to ∇⊥X keeping the notations unchanged. (Hopefully, this will bring
no confusion.)

6.5.1 Blow-up of Transversal Metrics on Foliations

Let g = gL be a leaf-wise Riemannian metric on the foliation L , that is a
positive quadratic form on the bundle T (L ), let g⊥ be such a form on T ⊥ and
observe that the sum of the two g⊕ = g ⊕ g⊥ makes a Riemannian metric on the
manifold X.

This metric itself doesn’t tell you much about our foliation L , but the family

g⊕e = g ⊕ e2g⊥, e > 0,

is more informative in this respect, especially for e→∞. For instance,
[a] if the metric g = gL has strictly positive scalar curvature, i.e. Scg(L) > 0

for all leaves L of L , and, this is essential, if the metric g⊥ is invariant under the
monodromy along the leaves L – foliations which comes with such a g⊥ are called
transversally Riemannian, – then, assuming X is compact,

Sc(g⊕e ) > 0

for all sufficiently large e > 0.
Proof of [a]. Let x0 ∈ X, let L0 = Lx0 ⊂ X be the leaf which contains

x0 and observe that the pairs pointed Riemannian manifolds (Xe,L0 ∋ x0) for
Xe = (X,g⊕e ) converge to the (total space of the) Euclidean vector bundle T ⊥

restricted to L0 with the metric

[⊕] glim = gL0 ⊕ g
⊥
Eu,
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where gL = gL ∣L0, where g⊥Eu = g⊥Eu(l), l ∈ L0, is the a family of the Eu-
clidean metrics in the fibers of the bundle T ⊥∣L0 corresponding to g⊥ on L0, and
where "⊕" refers to the local splitting of this bundle via the (flat!) connection
∇⊥L ∣L0.423 The scalar curvature of the metric gL0 ⊕ g

⊥
Eu is determined by

the scalar curvature of the leaf L0 and the first and second (covariant)
logarithmic derivatives of g⊥Eu(l),

where g⊥Eu(l) is regarded as a function on L0 with values in the space of (positive)
quadratic forms on Rk, which in the case g⊥Eu(l) = ϕ(l)

2g0 reduces to the "higher
warped product formula" from section 2.4.1:

(⋆⋆L) Sc(ϕ(l)2g0)(l, r) = Sc(L0)(l) −
k(k − 1)

ϕ2(l)
∣∣∇ϕ(l)∣∣2 −

2k

ϕ(l)
∆ϕ(l),

where (l, r) ∈ L0 ×Rk and ∆ = ∑∇i,i is the Laplace on L0.
Since, in general, these "logarithmic derivatives" denoted g⊥Eu(l)

′/g⊥Eu(l) and
g⊥Eu(l)

′′/g⊥Eu(l) are the same as of the original (prelimit) metric g⊥(l), it follows,
that
(⋆⋆Sc)

Sc(gL0 ⊕ g
⊥
Eu) ≥ Sc(gL0) − constn (∣∣(g⊥(l)′/g⊥(l))2

∣∣ + ∣∣g⊥(l)′′/g⊥(l)∣∣) .

In particular, if g⊥ is constant with respect to ∇⊥L ∣L0, then the limit metric
glim locally is the Riemannian product (L , gL ) ×Rk with the scalar curvature
equal to that of L . QED.

However obvious, this immediately implies
[a1] vanishing of the Â-genus as well as of its products with the Pontryagin

classes of T ⊥ for transversally Riemannian foliations on closed spin manifolds X,
where the "product part" of this claim follows from the twisted Schroedinger-
Lichnerowicz-Weitzenboeck formula for the Dirac operator D⊗T ⊥ , since the cur-
vature of the (Bott connection in the) bundle T ⊥ → X converges to zero for
e→∞.

(This is not formally covered by Connes’ theorem stated in section 3.15,
where the spin condition must be satisfied by L rather than X itself as it is
required here; but it can be easily derived from Connes’ theorem.)

Another equally obvious corollary of [⊕] is as follows.
[a2] If Sc(L ) > n(n − 1) and if X is closed orientable spin, then X admits

no map f ∶X → Sn, such that deg(f) ≠ 0 and such that the restrictions of f to
the leaves of L are 1-Lipschitz.

But this is not fully satisfactory, since it it remains unclear
if one truly needs the inequality Sc(L ) > n(n − 1) or
Sc(L ) > (n − k)(n − k − 1) for n − k = dim(L ) will suffice?
Exercise. Show that Sc(L ) > 2 does suffice for 2-dimensional foliations.
Flags of Foliations. Let

L = L0 ≺ L1 ≺ ... ≺ Lj ,

423The limit space (T ⊥, glim) can be regarded as the tangent cone of X at L0 ⊂ X, where
the characteristic feature of this cone is its scale invariance under multiplication of the metric
glim normally to L0 by constants.
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where the relation Li−1 ≺ Li signifies that Li refines Li−1, which means the
inclusions between their leaves,

Li ⊂ Li−1,

and where L0 is the bottom foliation with a single leaf equal X.:
Let T ⊥i = T ⊥i ⊂ T (Li−1), i = 1,2, ..., j be transversal subbundles isomorphic

to T (Li−1)/T (Li), let gj = gLj be a Lj-leaf-wise Riemannian metric, let g⊥i ,
i = 1...j,, be Riemannian metrics on T ⊥i and let

g⊕e1,...,ej = g0 ⊕ e1g
⊥
1 ⊕ ...⊕ ejg

⊥
j , ei > 0, .

[b] If the metrics in the quotient bundles T (Li−1)/T (Li), i = 1, ..., j, which
corresponds to g⊥i , are invariant under holonomies along the leaves of Lj , if
ei →∞, then

Sc(g⊕e1,...,ej) → Sc(gj),

where this convergence is uniform on compact subsets in X.
Proof. Since
the logarithmic derivatives of maps from Riemannian manifolds to the
Euclidean spaces tend to zero as the metrics in these manifolds are
scaled by constants →∞,
the above (⋆⋆Sc) implies the following.

[blim] The pair of pointed Riemannian manifolds (Xe1,...,ej ,Lj ∋ xj), for all
leaves Lj of Lj and all xj ∈ Lj , converges to the (total space of the) flat Euclidean
vector bundle T ⊥1 ⊕ ...⊕ T ⊥j → Lj , where

the limit metric on (the total space of) T ⊥1 ⊕ ...⊕ T ⊥j locally splits as

[⊕i⊥], glim = gLj ⊕ gEu ⊗ gEu,1(l),

where gEu is the Euclidean metric on Rk2+...ki+...+kj for ki = rank(T ⊥i ) and gEu,1(l),
l ∈ Lj is a family of Euclidean metrics in the fibers of the bundle T ⊥1 →X restricted
to Lj , where the logarithmic derivatives of these metrics are equal these for the
original (prelimit) metrics in the bundle T ⊥1 over Lj .

Now, we see, as earlier, that [blim] ⇒ [b] and the proof follows.
Thus, the above [a1] and [a2] generalize to transversally Riemannian flags

of foliations

6.5.2 Connes’ Fibration

Let the "normal" bundle T ⊥ → X to a foliation L on X admits a smooth G-
structure for a subgroup G of the linear group GL(k), k = codim(L ), which
(essentially) means that the monodromy transformation for the above canonical
flat leaf-wise connection ∇⊥L are contained in G.

For instance, being Riemannian for a foliation is the same as to admit G =

O(k) and G = GL(k) serves all foliation.
Let G isometrically act on a Riemannian manifold S and let P → X be a

fibration associated to T ⊥ →X.
Then the monodromy of ∇⊥L is isometric on the fibers Sx ⊂ P .
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Principal Example.[Con(cyclic cohomology) 1986] Let

G = GL(k) and S = GL(k)/O(k)

and let us identify the fiber Sx, for all x ∈ X, with the space of Euclidean
structures, i.e. of positive definite quadratic forms, in the linear space T ⊥x .

Clearly, this S canonically splits as

S = R ×R for R = SL(k)/SO(k),

where, observe, R carries a unique up to scaling SO(k)-invariant Riemannian
(symmetric) metrics with non-positive sectional curvature and where the R-
factor is the logarithm of the central multiplicative subgroup R×

+ ⊂ GL(k).
Thus, S = R ×R carries an invariant Riemannian product metric, call it gS ,

which is unique up-to scaling of the factors.
Next, observe that the tangent bundle T (P ) splits as usual

T (P ) = T vert ⊕ Thor

where T vert consists of the vectors tangent to the fibers Sx ⊂ P , x ∈ X, and
where Thor

is the horizontal subbundle corresponding to the Bott connection, and where
the splitting T (X) = T (L ) ⊕ T ⊥ lifts to a splitting of Thor, denoted

Thor = T̃ (L ) ⊕ T̃ ⊥.

Thus, the tangent bundle T (P ) splits into sum of three bundles,

T (P ) = T vert ⊕ T̃ (L ) ⊕ T̃ ⊥,

where, to keep track of things, recall that

rank(T̃ (L )) = dim(L ) = n − k, rank(T̃ ⊥) = codim(L ) = k

and
rank(T vert) = dim(GL(k)/O(k)) =

k(k + 1)

2
.

Let us record the essential features of these three bundles and their roles
in the geometry of the space P (see [Connes(cyclic cohomology-foliation) 1986]
and compare with §1 7

8
in [G(positive) 1996]).

(1) Metric g̃⊥ in T̃ ⊥. The (sub)bundle T̃ ⊥ ⊂ T (P ) carries a tautological
metric call it g̃⊥, which, in the fiber T̃ ⊥p ⊂ T̃ ⊥ for p ∈ P over x ∈ X, is equal to
this very p ∈ Px regarded as a metric in T ⊥x ⊂ T ⊥ →X.

(2) Foliation L + of P . The leaves L+ ⊂ P of this foliations are the pullbacks
of the leaves L of L under the map P →X. These L+ have dimensions n − k +
k(k+1)

2
and the tangent bundle T (L +) is canonically isomorphic to T̃ (L )⊕T vert.

(3) Foliation L̃ of P . This is the natural lift of the original foliation L of
X:

the leaf L̃p of L̃ through a given point p ∈ P over an x ∈X is equal to the set
of the Euclidean metrics in the fibers T ⊥l ⊂ T ⊥ → X for all l ∈ Lx ⊂ X, which are
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obtained from p, regarded as such a metric in T ⊥x ⊂ T ⊥ → X, by the monodromy
along the leaf Lx of the foliation L of X.

This foliation can be equivalently defined via its tangent (sub)bundle, that
is

T (L̃ ) = T̃ (L ) ⊂ T (P ).

Also observe that this L̃ refines L , written as L̃ ≻ L +, where, in fact, the
leaves of L + are products of the monodromy covers of the leaves of L by S.

(4) L̃ -Monodromy Invariance of the Metric g̃⊥. The bundle T̃ ⊥ ⊂ T (P ),
where the metric g̃⊥ resides, is naturally isomorphic to the "normal" bundle
T (P )/T (L +), but this metric is not invariant under the monodromy of the
foliation L +.

However, g̃⊥ is invariant under the monodromy of the sub-foliation L̃ ≻ L +

with the leaves L̃ ⊂ L+ as it follows from the above description of the leaves L̃p
of L̃ .

(5) L̃ -Monodromy Invariance of g̃S in the Bundle T vert. Since the fibration
P →X with the fiber S = GL(k)/O(k) is associated with T ⊥ →X, every GL(k)
metric gS on S gives rise to a monodromy invariant metric in the fiberes of
this fibration, which is denoted g̃S and regarded as the metric in the subbundle
T vert ⊂ T (P ), which made of the vectors tangent to the S-fibers and which is
canonically isomorphic to T (L +)/T (L̃).

Clearly,
this metric g̃S is invariant under the monodromy along the leaves of the

foliations L̃ on P .
(6) Scalar Curvature under Blow-up of Metrics in T (P ). Let g = gL be a

Riemannian metric in the tangent bundle T (L ) ⊂ T (X) of a foliation L of X
as earlier and let g̃ be its lift to the bundle T̃ (L ) = T (L̃ ) ⊂ T (P ).

Let g̃eS ,e⊥ , eS , e⊥ > 0, be the Riemannian metric on the manifold P that is
the metric in the bundle

T (P ) = T̃ (L ) ⊕ T vert ⊕ T̃ ⊥.

where this g̃eS ,e⊥ is split into the sum of the metrics from th above (5) and (4).
which are taken here with (large) positive e-weights as follows.

g̃eS ,e⊥ = g̃ + eS g̃S + e⊥g̃
⊥.

Then it follows from the above [b], that if

eS , e⊥ →∞,

then
[⇑Sc] the scalar curvature of the metric g̃eS ,e⊥ at p ∈ P over x ∈ X converges

to that of g on the leaf Lx ∋ x at x, where
this convergence is uniform on the compact subsets in P .424

424This convergence property, which is implicit in [Connes(cyclic cohomology-foliation)
1986], is used in §1 7

8
of [G(positive) 1996] and in "adiabatic" terms in Proposition 1.4 of

[Zhang(foliations) 2016], where it is required that e⊥/eS is large, since the shape of the com-
pact domain in P where the scalar curvature of the metric g̃eS ,e⊥ becomes ε-close to that of g,
depends on the ratio e⊥/eS , (see section 6.5.4.)
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Generalizations. Much of the above (1) - (6) applies to foliations with mon-
odromy groups G not necessarily equal to GL(k) and with fibrations with the
fibers that may be different from G/K, which we will approach in the following
sections on the case-by-case basis.

6.5.3 Foliations with Abelian Monodromies

Let a foliation L of an orientable n-dimensional Riemannian manifold X admit a
smooth G-structure invariant under the monodromy, where the group G is Abelian
and let the scalar curvatures of the leaves with the indices Riemannian metrics are
bounded from below by σ > n(n − 1).
◻#. The hyperspherical radius of X is bounded by one,

RadSn(X) ≤ 1.

That is, if R > 1, then
X admits no 1-Lipschitz map to the sphere Sn(R), which is constant
at infinity and which has non-zero degree.
Prior to turning to the proof, that is an easy corollary of what we discussed

about Rk-fibration in section 6.4.2, we’ll clarify a couple of points.
1. We don’t assume here that the manifold X is compact or complete, nor

do we require it is being spin.
2. We don’t know if our Abelian assumption on G is essential. It is conceiv-

able that
◻# holds for all foliations, i.e. for G = GL(k), k = codim(L ), and, moreover,

with the bound Sc(L ) ≥ (n − k)(n − k − 1).
2. Examples of foliations with Abelian G, include:
foliations with transversal conformal structure, e.g. (orientable) foliations of

codimension one, where G is the multiplicative group R×;
flags of codimension one foliations (where G = (R×)k) and/or of foliations with

transversal conformal structures.
Proof of ◻#. Let P → X be the principal fibration associated with the

bundle T (X)/T (L ) and by blowing up the metric of P transversally to the lift
L̃ to P as in the previous section, make the scalar curvature of P on a given
compact domain Pε ⊂ P greater than n(n − 1) − ε for a given ε > 0.

Also with this blow-up, make the Lipschitz constant of the map P → X as
small as you want.

(A possibility of this formally follows from the above (1) - (6) for foliations
of codimension one, while the proof in general case amounts to replaying (1) -
(6) word-for-word in the present case.)

Next, let G = Rm, observe as in (2) in section 6.4.2 that Pε admits a (1+ ε)-
Lipschitz map of degree one from P0 to X × [0, L]k for an arbitrary large L and
apply the maximality/extremality theorem for punctured spheres from sections
3.9 and 5.5.

This concludes the proof for G = Rm and the case of the general Abelian G
follows by passing to the quotient of G by the maximal compact subgroup.

To get an idea why one can control the geometry of the blow-up only on
compact subsets in P, look at the following.
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Geometric Example. Let (Y, g) be a Riemannian manifold and let PY → Y
be the fibration, with the fibers Sy, y ∈ Y , equal to the spaces of quadratic forms
in the tangent spaces Ty(Y ) of the form c ⋅ gy, c > 0. Thus, PY = Y × R, for
R = logR×

+ with the metric e2rdy2 + dr2.
When r → +∞ and the curvature of e2rg tends to zero, then the metric

e2rdy2 + dr2 converges to the hyperbolic one with constant curvature −1, but
when r → −∞, then the curvatures of e2rg and of e2rdy2 + dr2 blow up at all
points y ∈ Y , where the curvature of g doesn’t vanish.

And if apply this to the fibration P = PY ×L →X = Y ×L with the same R-
fibers, then we see that the convergence of the scalar curvatures of the blown-up
P to those of L is by no means uniform.

6.5.4 Hermitian Connes’ Fibration

Let L be a foliation on X of codimension k as earlier with a transversal
(sub)bundle T ⊥ ⊂ T (X) and a Bott connection in it. Let T & be the sum of
T ⊥ with its dual bundle and endow T & with the natural, hence monodromy
invariant, symplectic structure.

Let Sx denote the space of Hermitian structures in the space T &x , for all
x ∈ X, and let P → X be the corresponding fibration, that is the fibration
associated with T &x with the fiber S = Sp(2k,R)/U(k).

Equivalently, this fibration P → X is associated to T ⊥ → X via the action
of GL(k) on S = Sp(2k,R)/U(k) for the natural embedding of the linear group
GL(k) to the symplectic Sp(2k,R)

Besides sharing the properties (1)-(6) of the original Connes’ bundle formu-
lated in section ??, this new P →X has, a lovely additional feature: >??

S is a Hermitian (irreducible) symmetric space, which implies (see section
6.4.3) non-vanishing of the index of some twisted Dirac on S that is invariant
under the isometry group (that is Sp(2k,R) of S.

This, as it was stated in section 6.4.3 must imply the existence of twisted
harmonic L2-spinors on fibrations with S-fibers, which we formulate below in the
form relevant to foliations positive scalar curvatures and which, besides being
interesting in its own right, would simplify the proof by Connes in [Connes(cyclic
cohomology-foliation) 1986] as well as the arguments from [Zhang(foliations)
2016].

L et Y = (Y,ω) be a closed symplectic manifold of dimension 2k and let F ∶

PY → Y be the fibration associated with the tangent bundle T (Y ) with the fiber
S = Sp(2k,R)/U(k).

Observe that the quotient bundle T (P )/T vert carries a tautological Hermitian
metric g&, and a granted Sp(2k,R)-connection in the tangent bundle T (Y ), that
is a horizontal subbundle Thor ⊂ T (P ), one obtains a Riemannian metric gP in the
tangent bundle T (P ) = T vert ⊕ Thor that is

gP = gS + g&

where gS is a Sp(2k,R)-invariant Hermitian metric in S, which is unique up to
scaling.

Let the symplectic form ω be integer and thus serves as the curvature of a
unitary line bundle L→ Y .
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Conjecture 1 The bundle of spinors on P twisted with some tensorial power
of the bundle F ∗(L) → P admits a non-zero harmonic L2-section on P .

Remarks and Examples. (a) The geometry of this P , unlike of what we met
in section 6.4.3, is as far from being a product as in PY from the geometric
example in section 6.5.3.

(b) The simplest instance of Y is that of an even dimensional torus T2k with
an invariant symplectic form ω and trivial flat symplectic connection.

In this case, the universal covering P̃Y of the manifold PY is Riemannian
homogeneous; moreover, the (local) index integrant is homogeneous as well. It
is probable, that a version of the Connes-Moscovici theorem applies in this case
and yields twisted harmonic L2-spinors on P̃Y and, eventually, on PY .

(c) It would be most amusing to find a link between the symplectic geometry
of (Y,ω). and twisted Dirac operators on PY or their non-linear modifications.

Let us modify the above conjecture to make it applicable to foliations.
Let S = G/K be a symmetric space, where the index of the Dirac twisted

with some bundle LS → S associated with the K-bundle G→ S doesn’t vanish,
e.g. S = Sp(2k)/U(k).

Let F ∶ P → X be a smooth S-fibration with a smooth G-connection ∇ and
let Thor ⊂ T (P ) be the corresponding horizontal subbundle.

Let L↕ → P be the bundle the restriction of which to the fibers S = Sx ⊂ P ,
x ∈X are equal to LS .

Let ghor be a smooth Riemannian metrics (positive quadratic forms) in Thor
and gP = shor + gS be the sum of this metric with a G-invariant metric in the
fiber.

Let LX →X be a vector bundle with a unitary connection ∇X trivialized at
infinity (which is relevant for non-compact manifoldsX) and let L∗ = (L∗,∇∗) →
P be the bundle pulled back by F from LX along with the connection ∇X , that
is L∗ = F ∗(LX ,∇X).

Conjecture 2. If X is complete and if some Chern number of LX doesn’t
vanish, then P supports a non-zero harmonic L2-spinor s = s(p) twisted with L↕
and with (i.e. (tensored with) some bundle associated with L∗.

Moreover, there exists such a non-zero spinor s(p), the rate of the decay of
which at infinity is independent of the metric ghor:

given an exhaustion of P by compact domains, P1 ⊂ ... ⊂ Pi ⊂ ...P , then

(L2↘)
∫P ∣∣s(p)∣∣2dp

∫Pi ∣∣s(p)∣∣
2dp

≥ 1 − ε(i) →
i→∞

1,

where the function ε(i) > 0 may depends on Pi, X, F , ∇, ∇X and gS , but which
is independent of the metric ghor.

6.5.5 Hermitian Connes’ Fibrations over Foliations with Positive
Scalar Curvature

Let F ∶ P → X be the Hermitian Connes’ fibration with the S-fibers, S =

Sp(2k)/U(k), over a Riemannian manifold X = (X,g) with a foliation L of
codimension k on it , as in the previous section, let the subbundle Thor ⊂ T (P )

corresponds to a Bott connection on the bundle T ⊥ →X normal to the tangent
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subbundle T (L ) ⊂ T (X) and let us lift the splitting T (X) = T (L ) ⊕ T ⊥ lifts
to the corresponding splitting Thor = T̃ (L ) ⊕ T̃ ⊥.

Recall that the points p ∈ P correspond to Hermitian structures in the sym-
plectic spaces T &F (p) ⊃ T

⊥
F (p), the real parts of which give Riemannian/Euclidean

structures to T ⊥F (p) and which then pass to the spaces Thorp via the the differ-
entials dFp ∶ Tp(P ) → TF (p)(X) which are isomorphic on the fibers of Thorp ⊂

Tp(P ).
Thus, the bundle T̃ ⊥ → P carries a canonical Riemannian metric, which we

call g̃⊥.
Next, let g̃L be the metric on the bundle T̃ (L ) that is induced from the

Riemannian metric gL that is the metric g on X restricted to the bundle T (L )

and let us endow the bundle T (P ) = T̃ (L )⊕ T̃ ⊥ ⊕T vert, where T vert ⊂ T (P ) is
the bundle tangent to the S-fibers of the fibration F ∶ P → Q, with the metrics

g̃eS ,e⊥ = g̃L + e⊥ ⋅ g̃
⊥
+ eS ⋅ gS , eS , e⊥ > 0,

as this was done in (6) of section 6.5.2, except that now the fibers S are isometric
to Sp(2k)/U(k) with a (unique up to scaling) Sp(2k)-invariant metric gS , rather
than to GL(k)/O(k) as in section 6.5.2.

Now as in [⇑Sc] of section 6.5.2, we observe the following.
Effect of gS-Blow-up . If the constant eS is much greater than 1

σ
, then the

scalar curvatures of the leaves L+ ⊂ P , which are the pullbacks of the leaves
L ⊂X under the map P →X (see (2) in section 6.5.2), become close to those of
the underlying leaves L, hence ≥ σ − ε > 0, while the norms of the logarithmic
covariant derivatives ∇L+(log g̃⊥) of the transversal metric g̃⊥ along the leaves
L+ with respect to the metrics g̃L + eS ⋅ gS , becomes ≤ ε on the leaves L+ ⊂ P ,
where observe, that, given an ε > 0,

if eS = eS(ε) is sufficiently large, then these two ε-bounds hold on all of P .
g̃⊥S-Blow-up. This has two effects on the geometry of P .
1Sc If the scalar curvatures of the leaves L+ are bounded from below by σ − ε

and if the norm of ∇L+(log g̃⊥) is bounded by ε, then

Sc(P ) →
e⊥→∞

σ − ε

where
ε →
ε→0

0

and where the convergence Sc(P ) → σ−ε is uniform on compact subsets in P (but
not on all of P ).

2Lip If e⊥ → ∞, then (regardless of es) the Lipschitz constant of the map
F ∶ P →X tends to zero uniformly on compact subsets in P .

Conclusion. Granted Conjecture 2 from the previous section, we see
that, as far as the the Dirac operators are concerned, the positivity of the scalar
curvature of g∣L has the same effect as of the metric g on X itself.

For example, Conjecture 2 implies the following.425

425Here we use the fact that if X is spin then P is also spin, where, if you are in doubt, this
implication can be achieved by taking S × S instead of S.
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☀ Let X = (X,g) be a complete orientable spin Riemannian n-manifold
and let L , be a smooth foliation on Xof codimension k, such that the scalar
curvature of g restricted to the leaves of L satisfies

Sc(g∣L ) > n(n − 1).

Then every 1-Lipschitz map X → Sn locally constant at infinity has zero degree.

Let us spell it all out again.
Let D be a Dirac operator on P , which is
(a) twisted with an S-fiber bundle that makes the local index of the corre-

sponding Dirac operator on S non-zero;
(b) on the top of that the D is twisted with a bundle induced from a bundle

LX on X, with a non-zero Chern number, where one may assume that the
integrant in the local formula for the index of D doesn’t vanish on P .

The above shows, that if Sc(L ) ≥ σ > 0 and the curvature of LX is small,
then, given a compact domain P0 ⊂ P , the spectrum of the D2

eS ,e⊥
on P0 (that

is D2 for the metric g̃eS ,e⊥ on P0) with the zero boundary condition can be
made uniformly separated away from zero, that is λ1 ≥ δ = δ(n,σ) > 0 by taking
sufficiently large eS and e⊥.

But this contradicts Conjecture 2, which implies that
given eS ≥ 1 and δ > 0, there exists a compact domain P0 ⊂ P , such that the

first eigenvalue of D2
eS ,e⊥

on P0 satisfies

λ1 = λ1(P0,D
2
eS ,e⊥

) ≤ δ.

To prove such a bound on λ1, one needs to construct an almost , D-harmonic
spinor with support in P0, where a natural pathway to this end goes along the
lines of the local proof of the index theorem, roughly, as follows.

Let K be an that is a function of the (unbounded self-adjoint) D (we suppress
the subindices eS and e⊥), which can be represented by a smooth kernel K(p, q),
p, q ∈ P supported in a d-neighbourhood of the diagonal, where this the values
of K(p, q) at all pints (p, q) ∈ P × P , depends on the metric in P only in the
ball of Bp,q(4d) ⊂ P ×P and such that the super-trace of K and of all its powers
Ki is equal to the index of D , whenever this construction is applied to compact
manifolds P .

Then, as i → ∞, this converges to the projection to the kernel of D , that
is the space of harmonic L2-spinors, and the only issue to settle in the present
case is certain uniformity of this convergence, for e⊥ →∞.

What may facilitate the estimates needed for the proof of this is the uni-
form bound on geometries of the metrics g̃eS ,e⊥ for eS , e⊥ → infty, probably,
where, possibly, one can get a fair representation/approximation of Kies,e⊥ by a
(singular) perturbation argument at e⊥ = ∞.

Remark. Even if the above argument is carried thought it, as we mentioned in
section 3.15, it will be not deliver what, probably, follows by Connes’ argument:

"no 1-Lipschitz map f ∶ X → Sn with deg(f) ≠ 0" for Sc(g∣L ) > (n − k)(n −
k − 1). 426

426According to what was explained to me by Jean-Michel Bismut, the same may apply to
Zhang’s argument.
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But it seems beyond the present day methods to drop the spin assumption
in ☀ for k ≥ 2.

On Non-Integrable Generalization. Let X = (X,g) be a Riemannian mani-
fold, let Θ ⊂ T (X) be a smooth subbundle of codimension k and let

Λ = Λ(Θ) ∶ ∧
2Θ→ Θ⊥

be its curvature, that is the 2-form on Θ with values in the normal subbundle
(identified with the quotient bundle T (X)/Θ), which is defined by the normal
components of commutators of pairs of tangent fields X → Θ. x Sc(g∣Θ, x),
x ∈ X, be the sum of the sectional curvatures over the pairs of vectors in an
orthonormal basis in Θx.

It seems probable, that most (all?) we know and/or conjecture about (tan-
gent subbundles of) foliations with Sc ≥ σ > 0

extends to Θ with Sc(g∣Θ) ≥ σ > 0, if ∣∣Λ(Θ)∣∣ is much smaller than σ.
(Homogeneous Θ, e.g. on spheres of dimensions 2m+1 and 4m+1 may serve

as extremal cases of the corresponding inequalities.)

6.5.6 Geometry and Dynamics of Foliations with Positive Scalar
Curvatures

Let us formulate a few versions of the width/waist conjecture from section 3.10
for foliations with Sc > 0.

Let X be a complete Riemannian n-manifold with a foliation L of codimension
k, where n − k ≥ 2 and where the scalar curvatures of the induced Riemannian
metrics in the leaves satisfy Sc ≥ (n − k)(n − k − 1).

⋆⋆ (Unrealistically?) Strong Foliated Width/Waist Conjecture.
There exists a continuous map from X to an (n− 2)-dimensional polyhedral space,
say F ∶X → Pn−2, such that

the pullback F −1(p) ⊂X is contained in a single leaf of L for all p ∈ P and

diam(F −1
(p)) ≤ constn and voln−2(F

−1
(p)) ≤ const′n for all p ∈ Pn−2,

where, conceivably, these constants don’t even depend on n, e.g. with a possi-
bility const′ = 4π.

An Impossible Proof of ⋆⋆. Ideally, one would like to have a continuous
family of metrics in the leaves that would eventually simultaneously collapse all
leaves this factorizing X to something n − 2-dimensional.

But the obvious candidate for this – Hamilton’s Ricci flow, even if it is defined
for all time, doesn’t collapse X fast enough to bound widthn−2 or waistn−2.

In fact, what happens is better seen for the mean curvature flow, where the
collapsing map for ellipsoids with the principal axes of the lengths 1,1, d, moves
this ellipsoid by distance ∼ d, which may be arbitrary large.

Here is another way to look at this problem.
(Provisional) Bounded Distance Deformation Question. Let (X,g1) be a

complete Riemannian manifold with Sc ≥ 1σ > 0.
Does there exist a Riemannian metric g2 on X, such that Sc(g2) ≥ 2 and

∣distg1(x, y) − distg2(x, y)∣ ≤ constn
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for all x, y ∈X and some constn < ∞?
3D-Foliations. Let X = (X,g) be a complete Riemannian manifold and L

be a smooth 3-dimensional foliation such that the restrictions of g to all leaves
L of 3D-Foliations. Let X = (X,g) be a complete Riemannian manifold and L
have Scg(L) ≥ σ > 0.

Then there exist continuous maps from L to locally finite 1-dimensional
polyhedra, say F ∶ L → P 1, such that diam(F −1(p)) ≤ c < ∞ for all leaves L of
L .

(Such maps exist with c = 2π
√

36
σ
, see section 3.10, but what is relevant at

the moment is the universal bound c = c(σ) < ∞.)
Moreover, since such maps also exist for the universal coverings of the leaves,

the maps F can be coherently chosen on all leaves simultaneously by adapting
the geometric proof of the Stallings Ends of the Groups Theorem to foliations
(compare with §2 2

3
of [G(positive) 1996]).

Let us recall this proof in the simplest case where X is a smooth manifold
with a discrete cocompact action of a group Γ 427 and show that

Proof. (Compare [G(infinite) 1984]) Let Y ⊂ X be a connected volume
minimizing compact hypersurface which separates two ends ofX. Then, because
of minimality, no γ-translate γ(Y ) ⊂X, intersects Y unless γ(Y ) = Y .

Then the proof easily follows, since, due to the the end separation property,
the complement to the set of the translates of Y , that is

X ∖ ⋃
γ∈Γ

γ(Y ),

is the union of mutually non-intersecting subsets of diameters ≤ const.
Similar argument applies to foliations where one similarly achieves invariance

of the relevant maps under the monodromy groupoid instead of Γ (see §2 2
3
of

[G(positive) 1996]) 428

which implies, for instance the following.

(⋆3) If a compact orientable Riemannian n-manifold X = (X,g) carries a
3-dimensional foliation, where the leaves have positive scalar curvatures,

Scg(L) > 0,

then X admits no maps of non-zero degrees to aspherical n-manifolds.
Conclude with the following purely foliation theoretic question, the positive

answer to which, that, I think, is unlikely, motivated the above conjectures.
Is it true that no smooth foliation on Rn of positive dimension invariant under

the action of Zn429 can have the diameters of all leaves bounded by a common
constant C < ∞?
427Contrary to the statements found sometimes in the literature, all versions of Stallings’
theorem, as well as of its refinements and generalizations, effortlessly follow with a proper use
of minimal hypersurfaces.
428 The argument from [G(positive) 1996] becomes more transparent, if one makes the metric
g onX generic by a small perturbation, for which all compact locally minimizing hypersurfaces
Y in the leaves are isolated; hence stable under small transversal deformations of leaves.

This allows a sufficient quantity of compact volume minimizing hypersurfaces Ỹ with
diam(Ỹ ) ≤ const in the leaves L̃ of the lift L̃ of L to the universal covering X̃, such that the
intersections of the leaves L̃ with the complement of the union of these Ỹ have the diameters
of all their connected components also uniformly bounded, say by ≤ const′.
429Ideally, one would like to drop this invariance condition.
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(An approach to counterexamples may be found in [EM(wrinkling) 1998].)

6.6 Moduli Spaces Everywhere
All topological and geometric constraints on metrics with Sc ≥ σ are
accompanied by non-trivial homotopy theoretic properties of spaces of
such metrics.

A manifestation of this principle is seen in how topological obstructions for
the existence of metrics with Sc > 0 on closed manifolds X of dimension n ≥ 5
give rise to

pairs (h0, h1) of metrics with Sc ≥ σ > 0 on closed hypersurfaces Y ⊂X which
can’t be joined by homotopies ht with Sc(ht) > 0.
The elementary argument used for the proof of this (see section 3.17) also

shows that (known) constraints on geometry, not only on topology, of manifolds
with Sc ≥ σ play a similar role.

For instance, assuming for notational simplicity, σ = n(n − 1), and recalling
the 2π

n
-inequality from section 3.6, we see that

(a) if l ≥ 2π
n
, then the pairs of metrics h0 ⊕ dt

2 and h1 ⊕ dt
2 on the cylinder

Y × [−l, l], for the above Y and l ≥ 2π
n
, can’t be joined by homotopies of metrics

ht with Sc(ht) ≥ n(n − 1) and with distht(Y × {−l}, Y × {l}) ≥ 2π
n
.

This phenomenon is also observed for manifolds with controlled mean curva-
tures of their boundaries, e.g. for Riemannian bands X withmean.curv(∂∓X) ≥

µ∓ and with Sc(X) ≥ σ, whenever these inequalities imply that dist(∂−X,∂+X) ≤

d = d(n,σ,µ∓). (One may have σ < 0 here in some cases.)
Namely,
(b) certain sub-bands Y ⊂X of codimension one with ∂∓(Y ) ⊂ ∂∓(X) admit

pairs of metrics (h0, h1), such that mean.curvh0,h1(∂∓Y ) ≥ µ∓ and Sch0,h1(Y ) ≥

σ while disth0,h1(∂−, ∂+) ≥D for a givenD ≥ d. But these metrics can’t be joined
by homotopies ht , which would keep these inequalities on the scalar and on the
mean curvatures and have distht(∂−, ∂+) ≥ d for all t ∈ [0,1].

(c) This seems to persist (I haven’t carefully checked it) for manifolds with
corners, e.g. for cube-shaped manifolds X: these, apparently contain hyper-
surfaces Y ⊂ X, the boundaries of which ∂Y ⊂ ∂X inherit the corner structure
from that in X, and which admit pairs of "large" metrics h0, h1, which also
have "large" scalar curvatures, "large" mean curvatures of the codimension one
faces Fi in Y and "large" complementary (π − ∠ij) dihedral angles along the
codimension two faces Fij , but where these h0, h1 can’t be joint by homotopies
of metrics ht with comparable "largeness" properties.

It is unclear, in general, how to extend the π0-non-triviality (disconnected-
ness) of our spaces of metrics to the higher homotopy groups, since the tech-
niques currently used for this purpose rely entirely on the Dirac theoretic tech-
niques (see [Ebert-Williams(infinite loop spaces) 2017] and references therein),
which are poorly adapted to manifolds with boundaries. But some of this is
possible for closed manifolds.

For instance, let Y be a smooth closed spin manifold, and hp, p ∈ P , be
a homotopically non-trivial family of metrics with Sc(hp) ≥ σ > 0, where,
for instance, P can be a k-dimensional sphere and non-triviality means non-
contractibility.
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Let Smσ (Sm × Y ) denote the space of pairs (g, f), where g is a Riemannian
metric on Sm × Y with Sc(g) ≥ σ and f ∶ (Sm × Y, g) → Sm is a distance
decreasing map homotopic to the projection fo ∶ Sm × Y → Sm.

If non-contractibility of the family hp follows from non-vanishing of the index
of some Dirac operator, then (the proof of) Llarull’s theorem suggests that the
corresponding family (hp + ds

2, fo) ∈ S
m
σ+(S

m × Y ) for σ+ = σ +m(m − 1) is non-
contractible in the space

S
m
m(m−1)(S

m
× Y ) ⊃ S

m
σ+(S

m
× Y ).

This is quite transparent in many cases, e.g. if hp = {h0, h1} is an above
kind of pair of metrics with Sc > 0, say an embedded codimension one sphere
in a Hitchin’s homotopy sphere.

Remarks. (i) If "distance decreasing" of f is strengthened to "εn-Lipschitz"
for a sufficiently small εn > 0, then the above disconnectedness of the space of
pairs (g, f) follows for all X with a use of minimal hypersurfaces instead of
Dirac operators.

(ii) The above definition of the space Smσ makes sense for all manifolds X
instead of Sm × Y , where one may allow dim(X) <m as well as >m.

However, the following remains problematic in most cases.
For which closed manifolds X and numbers m, σ1 and σ2 > σ1 > 0 is the

inclusion Smσ2
(X) ≤ Smσ1

(X) homotopy equivalence?

Suggestion to the Reader. Browse through all theorems/inequalities
in the previous as well as in the following sections, formulate their possible
homotopy parametric versions and try to prove some of them.

6.7 Corners, Categories and Classifying Spaces.
It seems (I may be mistaken) that all known results concerning the homotopies
of spaces with metrics Sc > 0 are about iterated (co)bordisms of manifolds with
Sc > 0 and/or about cobordism categories with Sc > 0 in the spirit of [EbR-
W(cobordism categories) 2019], rather than about spaces of metrics per se.430

To explain this, start with thinking of morphisms a → b in a category as
members of class of labeled (directed) edges/arrows [0,1] with the 0-ends labeled
by a and the 1-end labeled by b.

Then define a cubical category C (I guess there is a standard term but I
don’t know it) as a class of labeled combinatorial cubes of all dimensions, [0,1]i,
i = 1,2, ..., where all faces are labeled by members of some class and which
satisfied the obvious generalisations of the axioms of the ordinary categories:
associativity and the presence of the identity morphisms.

Example. Let C = A◻ consist of continuous maps from cubes to a topological
space A, e.g. to the space A = G+ = G+(X) of metrics with positive scalar
curvature on a given manifold X, where these maps are regarded as labels on
the cubes they apply to.

If we glue all such cubes along faces with equal labels, we obtain a cubical
complex, call it ∣C∣, which is (weekly) homotopy equivalent to A, where possible
430See [Kaz(4-manifolds) 2019] for a computation of such cobordisms in dimension 3.
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degeneration of cubes.e.g. gluing two faces of the same cube, is offset by possi-
bility of unlimited subdivision of cubes by means of cubical identity morphisms.

Next, given a smooth closed manifold X, consider "all" Riemannian mani-
folds of the form (X ×[0,1]i, g), i = 0,1,2, ..., such that Sc(g) > 0, and such that
the metrics g in small neighbourhoods of all "X-faces" X × Fj , where Fj is are
((i− 1)-cubical) codimension one faces in the cube [0,1]i), split as Riemannian
products: g = gX×Fj ⊗ dt

2. Denote the resulting cubical category by XG◻
+ and

observe that there is a natural cubical map

Ξ ∶ ∣G+(X)
◻
∣ ↪ ∣XG◻

+ ∣.

Now we can express the above "iterated cobordism" statement by saying
that the only part of the homotopy invariants of G+(X) (which is homotopy
equivalent to G+(X)), e.g of its homotopy groups, which is detectable by the
present methods is what remains non-zero in ∣XG◻

+ ∣ under Ξ.
Similarly one can enlarge other spaces of Riemannian metrics on non-closed

manifolds from the previous section with lower bounds on their curvatures and
their sizes, where the latter can be expressed with maps f ∶ (X,g) → X, with
controlled Lipschitz constants with respect to g, or with respect to the Sc-
normalised metric Sc(X) ⋅ g.

There is yet another way of enlarging the cubical category XG◻
+ , namely by

B∗G◻(D), where D is topological, e.g. metric space and where
●0 closed oriented Riemannian manifolds X of all dimensions n along with

continuous maps X → D stand for 0-cubes - "vertices",
●1 "edges" ; i.e 1-cubes are cobordismsWn+1 between X0,X1, with Rieman-

nian metrics split near their boundaries ∂Wn+1 = X0 ⊔ −X1, and continuous
maps to D extending those from X0andX1,

●2 "squares", are (rectangularly cornered (n + 2)-dimensional) cobordisms
between W -cobordisms with maps to D, etc.

The actual cubical subcategory of B∗G◻(D), which is relevant for the study
of the space ∣XG◻

+ ∣ (that is, essentially, the space of metrics with Sc > 0 on X) is
where all manifolds in the picture are spin, the scalar curvatures of their metrics
are positive, D is the classifying space of a group Π and where one may assume
the fundamental groups of all X to be coherently (with inclusion homomor-
phisms) to be isomorphic Π 431 (compare [Ebert-Williams(infinite loop spaces)
2017], [BoEW(infinite loop spaces) 2014], [HaSchSt(space of metrics)2014] ,

Question. What are possible generalizations of the above to manifolds with
corners, which are far from being either cubical or rectangular?

For instance, prior to speaking of spaces of metrics and of categories of
cobordisms, let X be an individual manifold with corners, say a (smoothly)
topological n-simplex or a dodecahedron, let (∞ < σ < ∞), let (∞ < µi < ∞)

be numbers assigned to the codimension one faces Fi of X and 0 < βij < π be
assigned to the codimension two faces of the kind Fi ∩ Fj .

When does X admit a Riemannian metric g such that

Scg ≥ σ, mean.curvg(Fi) ≥ µi and ∠g(F1, Fj) ≤ π − βij?

431This "assume" relies on the codimension two surgery of manifolds with Sc > 0, which is
possible for making the fundamental groups of n-manifolds isomorphic to Π if n ≥ 4 and where
more serious topological conclusions need n ≥ 5.

329



Let moreover, D ⊂ RN+ , where the N Euclidean coordinates are associated
with the faces Fi of X, be a closed convex subset, introduce the following addi-
tional condition on g:

the N - vector of distances {di(x) = distg(x,Fi)} is in D for all x ∈X.
We ask when does there exist a g with this additional condition and also

what is the homotopy type of the space of metrics g on X, such that

Scg ≥ σ, mean.curvg(Fi) ≥ µi, ∠g(F1, Fj) ≤ π − βij and {di(x)} ∈D?

(For instance, if X is a topological n-simplex, then an "interesting" D is
defined by ∑i di(x) ≥ const.)

One may also try to generalize the concept of cubical category by allowing
all kinds of combinatorial types of manifolds X with corners and of attachments
of X to X ′ along isometric codimension one faces X ⊃ F ↔ F ′ ⊂ X ′, where the
isometries F ↔ F ′, must match the mean curvatures of the faces:

mean, curv(F ′) = −mean.curv(F ) which is equivalent to the natural metric
on

X ∪
F↔F ′

X

being C1-smooth.
Is there a coherent category-style theory along these lines of thought?

6.8 Scalar Curvature under Weak Limits of Manifolds
We show in this section by means of examples how the scalar curvature may behave
under limit of sequences of Riemannian manifolds.432

We saw in section 3.19 how a Riemannian manifold X "emerges" as "bubble-
limit" from a "foam" (sequence) Xi obtained by taking thin connected sums of
X with compact Riemannin manifolds Xi,○, where this "emergence" becomes
Hausdorff or intrinsic flat Sormani-Wenger convergence under suitable condi-
tions imposed on Xi,○ and where the scalar curvatures of Xi subconverge to
that of X in these cases.

Counter examples. The inequality Sc(Xi) ≥ σ is not always preserved by the
Hausdorff and by the intrinsic flat limits.

In fact,
all Riemannian manifolds X of dimensions n ≥ 3 can be approximated by n-

dimensional Xi with Sc(Xi) ≥ 1
(a) in the Hausdorff metric,
(b) in the intrinsic flat metric. (Here on speaks of closed oriented manifolds.)

Proof of (a). All Riemannian manifolds X can be Hausdorff approximated
by graphs Γ and boundaries of suitable small neighbourhoods of these graphs
embedded to Rn+1 for n ≥ 3, have arbitrarily large scalar curvatures (see section
1.3).
432Our examples a similar to these from [Sormani(scalar curvature-convergence) 2016] and
[Lee-Naber-Neumayer](convergence) 2019].
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Proof of (b) Assume X bounds an orientable (n + 1)-manifold V (otherwise
take the connected sum of X with a small copy of X with reverse orientation)
and endow V with a Riemannian metric and let for which the embedding X → V
is distance preserving.

Let U ⊂ V be a union of small balls, or just of small "sufficiently convex"
subsets Uj , the scalar curvatures of the boundaries of which satisfy Sc(∂Uj) ≥ 2.

If vol(U) ≥ vol(V )−ε, that is easily achievable, then the flat distance between
X and the boundary ∂U = ∪j∂Uj is also ≤ ε.

What remains in order to satisfy the definition of the intrinsic flat distance
from [Sormani-Wenger(intrinsic flat) 2011] is to modify ∂U and the metric in V
in order to have the embedding from ∂U to the complement of the interior of
U , denoted W = V ∖ int(U), isometric.

To do this, let δ = distV (X,U) > 0 and this, take a finite δ′-dense subset
K ⊂ ∂U for δ′ much smaller than δ and let {[k, k′]} ⊂ V , be the set of those
geodesic segments in V between the points k ∈ K andK ≠ k′ ∈ K which don’t
intersect the interior of U .

Assume that the segments [ki, kj] are mutually disjoint and that their length
are much smaller that δ, say of order δ′; other wise , add extra small ball to U .

Now, perform the (very) thin surgery along [ki, kj], that is attach thin 1-
handles to U , keeping the scalar curvature of the boundary of the resulting U ′

essentially as positive as that of ∂U , let W ′ = V ∖ U ′ and observe that the
oriented boundary of W ′ is

∂W ′
=X − ∂U ′

and that vol(W ′) ≤ ε.
Since δ′ << dist(U ′,X) ≈ δ, and since the additive difference between the

"intrinsic" metrics in ∂U ′ and the "extrinsic" one, both defined by shortest
paths, the former in in ∂U ′ and inW respectively, is of order δ′, one can enlarge
the metric of W that would make it equal to the intrinsic metric in ∂U ′ without
changing the metric on X ⊂ W , and also only slightly changing the volume of
W .

This makes the intrinsic flat distance between X and ∂U ′ smaller than 2ε
and the proof of (b) is concluded.

The examples (a) and (b) suggest the following.
Definitions. A Riemannian (α,β)-cobordism between closed oriented Rie-

mannian n-manifolds X1 and X2 is an oriented Riemannian (n + 1)-manifold

W =Wα,β =
←→
Wα,β

with oriented boundary ∂W =X1−X2,such that the Hausdorff distance between
X1 and X2 in W satisfies

distHau(X1,X2) ≤ α

and the volume of W is
vol(W ) ≤ β.

Such a cobordism can be regarded as a morphism W ∶X1 →X2 with an obvious

composition for X1

Wα1,β1
→ X2

Wα2,β2
→ X3:

Wα1,β1 ○Wα2,β2 =Wα1+α2,β1+β2 ∶X1 →X3.

331



A Riemannian (α,β, λ)-cobordism between X1 and X2, denoted

W =Wα1,β1,λ =
Ð→
Wα1,β1,λ,

is an (α,β)-cobordism with a λ-Lipshitz retraction W →X ⊂W .
Here, the arrows are not invertible and the composition for X1 → X2 → X3

is multiplicative in λ,

Wα1,β1,λ1 ○Wα2,β2,λ2 =Wα1+α2,β1+β2,λ1⋅λ2 ∶X1 →X3.

Two Observations.
(i) Given a Riemannian manifold X (which corresponds to X2 from our

definition), there exists an ε = ε(X) > 0 such that the ε-neighbourhood Uε(X) ⊂

W of X in W admits a continuous retraction F ∶ Uε → X, which is (1 + 4ε)-
Lipschitz on the scale >> ε. Moreover,

dist(F (u1), F (u2)) ≤ dist(u1, u2) + 5ε for all u1, u2 ∈ Uε(X).

Indeed, there is such an F which sends each u ∈ Uε to an almost nearest
point x = x(u) ∈X, namely, such that dist(u,x(u)) ≤ 2ε.

(Probably irrelevant)Remark. It is not hard to show (an exercise to the
reader) that there exist such retractions F ∶ Uε(X) →X, that are (

√
N +CX ⋅ε)-

Lipschitz on all scales, where CX is a constant which depends only on X. (If ε
were allowed to depend onW ⊃X,the map F could be made 1+CW ε-Lipschitz.)

(ii) From (α,β) to (α ≤ ε, β). A regularized ε-neighbourhood Wε ⊂ W of
X ⊂W is not quite a (ε, β)-cobordism, since the embedding of the new boundary
component to Wε, say Xε ⊂Wε is not isometric.

But if β is much smaller than ε, this error can localized, by making ε smaller
if necessary, on a small part X ′

ε ⊂Xε, namely on the difference X ′
ε =Xε ∖ ∂W =

∂Wε ∖ ∂W , since, by the coarea formula

∫

ε

0
vol(X ′

ε)dε ≤
β

ε
.

Moreover, if most of the volume of X1 = ∂W ∖X(=X2) is concentrated near
X, namely,

vol(X1 ∖Wδ) << ε for δ << ε,

e.g. if
vol(X1) − vol(X2) << δ,

then, by the coarea inequality, the boundary of X ′
ε can be also made small.

Then, by filling in ∂X ′
ε by aX ′′

ε of small volume according to the filling inequality
and then by applying the filling inequality to X ′

ε ∪X
′′
ε , one modifies the metric

in Wε such that the embedding Xε →Wε becomes distance preserving.433

(α,β, λ, σ)-Problem. Given a closed oriented Riemannian n-manifold X and
numbers (α > 0, β > 0, λ ≥ 1, σ > −∞). Does there exist a cobordism Wα,β ∶ X1 →

X or Wα,β,λ ∶X1 →X, where Sc(X1) ≥ σ?
Open Manifolds The definitions of (α...) cobordismsW ∶X1 →X2 generalize

to open manifolds and manifolds with boundaries, where in the latter case W
433I didn’t check the details.
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comes with a corner structure, organized as that of cylinders X ×[1,2] regarded
as cobordisms between X ×1 and X ×2, where the flat distance between X1 and
X2 defined by such a W incorporates, besides voln+1(W ), the n-volume of the
"side boundary" of W , that is ∂sideW = ∂W ∖ (X1 ∪X2).

Two Conjectures. (1) Let the sequence Wαi,βi ∶ Xi → X defines a α,β-
convergence of Xi to X, for

αi, βi →i→∞ 0.

If the scalar curvatures of all Xi satisfy Sc(Xi) ≥ σ, then also Sc(X) ≥ σ.
(2) Let Xi converge to X via (α,β, λ)-cobordisms, that is a sequenceWαi,βi,λ ∶

Xi →X,
βi → 0 and λi → 1.

(The Hausdorff distance distHau(X,Xi) and its bound α play no role here.)
If Sc(Xi) ≥ σ for all i = 1,2, ..., then Sc(X) ≥ σ as well.
How to prove and how to improve, how to modify, and how to generalize. A

natural approach to the proof of (1) and (2) could be as follows.
Let σ ≥ 0, assume Sc(X,x0) < 0, take a ∎-neighbourhood ∎n ⊂ X of x0 that

violates the ∎ criterion for Sc ≥ 0, and then approximate ∎n by neighbourhoods
∎ni ⊂Xi, which violate the ∎ criterion as well.

To appreciate the issue, let Y ⊂ X be a closed volume minimizing hyper-
surface and try to find minimizing hypersurfaces in Xi that converge to Y for
i→∞ .

To do this, start with Yi ⊂ Xi that approximates Xi for i → ∞ and which
can’t be fully moved away from their small neighbourhood in Xi, but, in the
course of volume minimization, these Yi may, a priori, develop"thin fingers"
protruding far away from the original Yi and carrying tiny, yet definite positive,
amounts of volume.

The latter problem can be ruled out by imposing additional geometric con-
dition(s) on Xi (which is automatic in the case of C0-convergence, as in section
10 of [G(Hilbert) 2012] and section 4 of [G(billiards) 2014]), but in general, one
has to accept these fingers that would allow only weak approximation of Y by
Yi,min. (This doesn’t seem to create a serious problem for closed manifolds X,
but may need a modification of the ∎ criterion for open ones.)

Possibly, the validity of these conjectures needs additional conditions on Xi.
e.g. the convergence of volumes vol(Xi) → vol(X) as in section 10 of [G(Hilbert)
2012].

On the other hand, the bubble example suggests that even a more general
convergence may preserve positivity of the scalar curvature.

About Singular X and W . The above "convergence assisted by cobordisms"
makes sense for pseudomanifolds X, Xi and Wi with piecewise smooth metrics
on them.434

This suggests a provisional definition of Sc?(X), where Sc?(X,x) > σ, x ∈X,
if and only if

there exists a closed neighbourhood U ∈X of x with piecewise smooth boundary,
where U admits an (α,β)-approximation by Riemannian manifolds Ui, i→∞, with
Sc(Ui) ≥ σ

′ > σ.

434When it come to proofs, one needs to deal with integral current spaces, (see [Allen-
Sormani(convergence) 2020], [Sormani(conjectures on convergence) 2021] and references
therein) but as far as our geometric statements are concerned, pseudomanifolds will do.
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Namely,
there exist cobordisms Wi =Wαi,βi =WU,αi,βi , which are pseudomanifolds with

"cornered" boundaries

∂Wi =X ∪Xi ∪ ∂sideW with ∂∂sideW = ∂X ∪ ∂Xi,

where
● Sc(Xi) ≥ σi → σ,
● distHau(Xi,X) ≤ αi → 0,
● distflat(Xi,X) = voln+1(W ) + voln(∂sideW ) ≤ βi → 0.
Observe that psedomanifold X, obtained, by ε-thin surgery with ε → 0 (see

[BaDoSo(sewing Riemannian manifolds) 2018] and [BaSo(sequences) 2019]) may
have nasty singularities of codimensions k ≥ 3, such e.g. as in joins X1 ∨X2,
which are limits of thin connected sums of manifolds of dimensions n ≥ 3.

Nevertheless, singularX with Sc? ≥ σ in these example satisfy the ∎-criterion
and for all we know, enjoy all essential geometric properties known for smooth
manifolds with Sc ≥ σ.

But none of this is known at the present moment for general limit spaces X
with the following questions remaining unresolved.

1. Does the inequality Sc?(X) ≥ σ, that is local approximability of X at all
points x ∈ X by (small open) manifolds Xi = Xi(x) with Sc(Xi) ≥ σ, imply the
existence of global approximation of X by manifolds with Sc ≥ σ?

2. Is Sc? satisfy the additivity relation Sc?(X × Y ) = Sc?(X) + Sc?(Y )?
3. Do X which admit global approximations by manifolds with Sc ≥ σ satisfy

the ∎-criterion?
Notice that spaces X, which do admit global approximation by manifolds Xi

with Sc ≥ σ > 0, satisfy (essentially) the same geometric bounds as Xi, because
the retractionsWi →X indicated in he above (i) defines mapsXi →X of degrees
1, which are λi-Lipschitz on the scale ≥ εi, where λi → 1 and εi → 0 for i → ∞.
(If not for "scale>0", these X would have Scmax ≥ σ, see section 5.4.1.)

It is unproven at the present moment that the limits g of in measure conver-
gence sequences gi → g inherit positivity of scalar curvature from gi, but, prob-
ably, the ∎-criterion can be used to do this. (This must be easy, if ∣ log g/gi∣ ≤
const < ∞, that is if the Lipschitz constants Lipg(gi) and Lipgi(g) of the identity
maps (X,gi) →X,g) and (X,g) →X,gi) are uniformly bounded.)

6.9 Scalar Curvature beyond Manifolds Limits
There (at least) three different avenues of thought on generalization the concepts
Sc ≥ σ.

I. Finding workable classes of (singular) metric spaces that share their prop-
erties with smooth manifolds with Sc ≥ σ, e.g. for σ = 0.

I.A. An attractive class of such spaces X, that have been already mentioned
in section 3.19, is where the generalized sectional curvatures in the sense of
Alexandrov satisfy sect.curv(X) ≥ κ > −∞, and where Sc ≥ σ at all C2-smooth
points of these X.435

435Alexandrov spaces with sect.curv(X) ≥ κ seem to provide a perfect playground for the
geometric measure theory in all dimensions and codimensions as examples with conical sin-
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Conjecturally, the basic properties of minimal subvarieties of all codimen-
sions extend to these spaces, where such subvarieties of codimension one, as well
as stationary µ-bubbles, serve for proving geometric inequalities similar to the
ones we have for smooth manifolds.

In fact, this is not hard to prove for spaces X with isolated conical singular-
ities, where, as far as minimal hypersurfaces are concerned, the positivity of the
sectional curvatures of the the links (bases) of the singularities can be relaxed
to positivity of the Ricci curvatures.

I.B. Another class, that immediately jumps to one’s mimd is that of piece-
wise smooth, e.g. spaces with iterated conical singularities, such as piecewise
flat spaces, where the key issue is working out a condition for Sc ≥ σ at conical
singularities, where it may prudent to to require these spaces to be rational
homology manifolds.

I.C. It seems plausible that (stationary?) minimal hypersurfaces in smooth
manifolds have some generalized scalar curvatures ≥ −∞.

Also doubles DDof domains bounded by (possibly singular) minimal hypersur-
faces in smooth manifolds X must have (generalized) scalar curvatures bounded
from below by

Sc(DD) ≥ ScX.
I.D. Topologies in Spaces of Riemannian Manifolds Associated with Scalar

Curvature It remains unclear what is the weakest topology in the space of
isometry classes of Riemannian manifolds for which the condition Sc ≥ σ is
closed under limits. 436

Besides, properly defined weak limits X∞ of spaces Xi with Sc ≥ σ, even for
singular X∞ must have a suitably defined scalar curvature ≥ σ as well, where
the following may be instructive.

Example 1. Infinite geometric connected sums

X∞ = lim
i→∞

Xi#Yi+1,

where Yi are closed Riemannian n-manifolds with Sc(Yi) > σ, such that

∞
∑
i=1

diam(Yi) < ∞,

must have (possibly under extra conditions on the geometries of Yi)

Sc(X∞) ≥ σ.

Recollection. A thin (geometric) connected sum (see section 1.3) X1#X2 is an
abbreviation for a family of Riemannian manifolds Xε =X1#εX2, for small positive
ε→ 0, which Hausdorff converge to the joinX = (X,x) = (X1, x1)∨(X2, x2), where
the tube T = Tε ⊂ X (homeomorphic to Sn−1 × [1,2]) joining the two manifolds is

gularities show. Thus, for positive κ, they probably enjoy Almgren’s sharp isoperimetric
inequality in all codimensions and Almgren’s waist estimate.
And as far as the scalar curvature and minimal hypersurfaces are concerned one may try

more general singular spaces with the Ricci curvatures bounded from below.
436See [Sormani-Wenger(intrinsic flat) 2011], [Sormani(scalar curvature-convergence) 2016],
[Allen-Sormani(convergence) 2020], [Sormani(conjectures on convergence) 2021] and section
10.1 in [G(Hilbert) 2012] for something about it.
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based on small, say of radii ε
10
, spheres in X1 and X2 around x1 and x2, and such

that
● the complement to the ε

2
-neighbourhood of T in X,

X ∖U ε
2
(T ) ⊂X

is isometric to the disjoint union of the complements to the ε-balls Bx1(ε) ⊂ X1

and Bx2(ε) ⊂X2,
and where – this can be arranged –
● the scalar curvature of Sc(X1#εX2) ≥ σ − ε, in this neighbourhood is almost

bounded from below by the scalar curvatures of X1 and X2 at the points x1 and
x2,

Sc(U ε
2
((T ) ≥ min(Sc(X1, x1), Sc(X2, x2)) − ε.

Accordingly Xi#Yi+1 stands for Xi#εiYi+1 say with εi = 1
2i
.

Question 2. Let X be a compact smooth Riemannian n-manifold and let Xi

be a sequence of Riemannian n-manifolds with Sc(Xi) ≥ σ and let Ui ⊂ Xi be
domains with smooth boundaries ∂Ui, such that

Ui admit (1 + εi)-bi-Lipschitz embeddings to X, where εi → 0 for i→∞.
What bound on the sizes of the boundaries ∂Ui for i→∞ would imply that

Sc(X) ≥ σ?
Partial Answer. If σ = 0, then the following bound on the diameters of

the connected components compij ⊂ ∂Ui, which says that the limit Haussdorf
dimension of of ∂Ui is <1, is sufficient:

∑
j

diam(compij) → 0 for i→∞.

In fact, this follows from the ∎-criterion in section 3.1.
If n = 3, this may be close to the necessary condition, but if n ≥ 3 the

sufficiency of the similar strict bound on the limit Haussdorf dimension by n−2,
which says that all ∂Ui can be covered by subsets Bij , such that

∑
j

diam(Bij)
n−2
→ 0 for i→∞,

remains problematic.
Remark (a) We make no assumption on geometries of the complements Xi ∖

Ui. Thus, the relationship between X andXi are, unlike any kind of distance,
non-symmetric. (If n = 3, one imagines Xi ⊂ Ui as kind of white holes universes
emerging from X, where they are seen as black holes.)

Remark (b) The Penrose inequality suggests that if n = 3, then requiring
that the areas of ∂Ui tend to zero, for i → ∞,h would have little effect (if ar all)
on the geometry of the limit space X. But it is unclear what should be the
corresponding condition for n ≥ 3. (Could the areas be replaced by something
like 2-waists of ∂Ui?)

I.E. Since the scalar curvature is additive under finite Riemannian products
it is tempting to extend the idea to infinite products and iterated fibrations,
and to find geometric meaning of the inequality Sc ≥ σ for infinite dimensional
Hilbertian manifolds, such as spaces of maps between Riemannian manifolds.
But no plausible conjecture is known in this direction.
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II. Instead of the spaces one may focus on analytic techniques used for the
study of Sc ≥ σ, in particular the index theory for the Dirac operator and the
geometric measure theory and search for generalisations (unification?) of these
that would be applicable to singular spaces.

III. One may think of manifolds with Sc ≥ σ and the methods used for
their study as as geometric/analytic embodiment of certain algebraic formulae
behind these, such as the GaussTheorema Egregium coupled with the second
variation formula and the Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner)
formula coupled with the formula(s) involved in the local proof of the index
theorem.

Conceivably, there may exist alternative implementations of these formu-
las in categories which are quite different from those of manifolds and/or of
metric spaces, where, e.g. the objects are represented by functors from a cate-
gory of "decorated graphs" to that of measure spaces as in the last section of
[G(billiards) 2014] or

something else, something far removed from the present day idea
of what a geometric space is.

7 Metric Invariants Accompanying Scalar Cur-
vature

Many invariants of metric spaces X can be expressed in (quasi)-category theo-
retical language, e.g. in terms of λ-Lipschitz maps between X and a "measuring
rod" space (or spaces) X. 437

In fact, the distance function in X is fully encoded by the sets of 1-Lipschitz
functions, i.e. distance non-increasing maps X → R:

(distcnrt) the distance dist(x0, x1) is (obviously) equal to the supremum of
numbers d ≥ 0, such that X admits a 1-Lipschitz map f ∶ X → R, such that
f(x0) = 0 and f(x21 = d.

Alternatively, dist(x0, x1) can be defined covariantly via maps of two point
subsets from R to X, as follow:

(distcov)the distance dist(x0, x1) is equal to the infimum of d ≥ 0, such that
{0, d} admits a 1-Lipschitz map to X with the image {x0, x1} ⊂X.

Similarly, one can define the volume of a connected Riemannian n-manifold
X as

(volcov) the infimum of numbers v = dn, such that that X receives a smooth
locally volume non increasing map f (i.e. ∣∣∧n df ∣∣ ≤ 1) from the cube [0, d]n onto
X.

And – this is closer to invariants used in the study of scalar curvature – one
can define vol(X) of a closed connected manifold X contravariantly as

(volcntr) the supremum of volumes v = (2n)dn of the boundaries of the cubes
[0, d]n, which receive non-contractible locally volume non increasing piecewise
smooth maps from X.

Exercise. Prove (volcov) and (volcntr).
437There are also some questionable, albeit sometimes coming in handy, ad hoc invariants,
such as the "injectivity radius", but these are useless as far as the scalar curvature is concerned.
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7.1 Multi-Spreads of Riemannianan Manifolds: ◻⊥ and ◻̃
⊥

Let Ũ be a compact n-dimensional manifold possibly with a boundary, let g be
Riemannian metric on Ũ and let h̃ ∈Hn−k(Ũ) be a homology class of codimen-
sion k.

The ◻n-inequality from section 3.8 for widths of cubes with metrics with
Sc ≥ σ motivates the following.

Definition. The ◻⊥-spread of a homology class h̃ ∈Hn−k(Ũ), denoted

◻
⊥
(h̃) = ◻⊥g(h̃),

is the supremum of the numbers d ≥ 0, for which there exists
a continuous proper (boundary-to-boundary) map ψ = (ψ1, ...ψi, ...ψk) ∶ U →

[−1,1]k, ψi ∶ Ũ → [−1,1], such that
(a) the homology class of the ψ-pullback of a point438 is equal to h̃, symbolically

ψ∗[t] = h̃,

where [t] ∈H0([−1,1]k), t ∈ [−1,1]k, is the homology class of a point in [−1,1]k;
(b) the distances between the pullbacks of the opposite faces in the cube

[−1,1]k,
di = distg(ψ

−1
i (−1), ψ−1

i (1)), i = 1, ..., k,

are bounded from below by the following inequality

(
1

k

k

∑
i=1

1

d2
i

)

− 1
2

≥ d,

that is
1

k

k

∑
i=1

1

d2
i

≤
1

d2
.

(Equivalently, one could require the maps ψi to be d−1
i -Lipschitz.)

Next define ◻̃⊥(h) ≥ ◻⊥(h) of a homology class of codimension k in a Rie-
mannian n-manifold X, possibly non-compact and with a boundary, denoted
h ∈Hn−k(X), as the supremum of the numbers d ≥ 0, such there exist

(i) a Riemannian manifold Ũ ,
(ii) a homology class h̃ ∈Hn−k(Ũ) with ◻⊥(h̃) = d,
(iii) a locally isometric map φ ∶ Ũ → X, for which the induced homology

homomorphism φ∗ ∶Hn−k(Ũ) →Hn−k(X̃) sends h̃ to h, in writing: φ∗(h̃) = h.
(This definition make sense for an arbitrary metric dist on Ũ .)
Topological Remark. The ◻̃⊥-spread of h vanishes if and only if none of h̃

is homologous to any point-pullback, that is the case, for instance, if h has
non-zero self intersection h ⌢ h ≠ 0.

On the other hand, by a theorem of Serre on cohomotopy groups, If k is odd,
or if h ⌢ h = 0, then some non-zero multiple of h, say Nh, has ◻⊥(Nh) > 0.

Say that h is ◻̃⊥-spread infinite or that h has infinite ◻̃⊥-spread if ◻̃⊥(h) = ∞.
Define ◻⊥-spread and ◻̃⊥-spread of a compact connected orientable n-dimensional

Riemannian manifold X, possibly with a boundary, denoted ◻⊥(X) and ◻̃⊥(X),
438If ψ is smooth this an actual pullback of a generic point.
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as the ◻⊥- and ◻̃⊥-spreads of the zero dimensional homology class [x] of a single
point x ∈X.

If X is non-compact define ◻⊥(X) as lim sup◻⊥(Xi), i ∈ I, for all compact
n-submanifolds Xi exhausting X and let

◻⊥(j ⋅X) and ◻̃⊥(j ⋅X) denote these spreads of the j-multiple j ⋅ [x] ∈H0(X)

of the homology class of x ∈X.
Observe that if X is compact without boundary then ◻⊥(X) = 0 and that the

◻̃
⊥-spread, unlike the ◻⊥-spread, of the universal covering X̃ is equal to that of
X.

Thus, for instance, the n-torus Tn is ◻̃⊥-infinite,

◻̃
⊥
(Tn) = ◻⊥(Rn) = ∞, while ◻

⊥
(Tn) = 0.

And, in general, if a homology class h is representable by a simply connected
cycle in X, that is if h is equal to the image of a class h̃ ∈ Hn−k(X̃) under (the
homology homomorphism induced by) the universal covering map X̃ →X, then

◻̃
⊥
(̃h) = ◻̃

⊥
(h).

Say that X is ◻̃⊥-spread infinite or that X has infinite ◻̃⊥-spread if ◻̃⊥(X) =

∞, and observe that this property is equivalent to iso-enlargeability from [G(inequalities)
2018];

As far as the scalar curvature is concerned, we are interested in lower bounds
on ◻̃⊥(h), which are usually easily available, e.g. in the examples (1)-(4) below.

(1) The ball Bn(R) ⊂ Rn has

◻(Bn(R)) ≥
2R
√
n
.

(2) Closed connected surfaces X with infinite fundamental groups π1(X) are
(obviously) ◻̃-spread infinite, i.e. ◻̃(X) = ∞.

(3) The spread of an n-manifold X with non-empty boundary is (obviously)
related to the inradius inrad(X) = supx(dist, (x, ∂X) by the following inequal-
ity.

◻̃(X) ≤ 2
√
n ⋅ inrad(X),

where the equality holds for X = [0,2r] ×Rn−1.
Furthermore, if n = 2, then

◻̃(X)(X) ≥
√

2 ⋅ inrad(X).

This is seen with the universal covering Ũ of X minus the furthest point from
the boundary, where inrad(Ũ) = 1

2
⋅ inrad(X).

In particular, complete non-compact surfaces X are ◻-infinite.
(4) Surfaces X homeomorphic to the 2-sphere have ◻̃ ⊥ (X) ≥

√
2 ⋅diam(X),

that is seen by evaluating ◻ of the universal cover Ũ of X minus two furthest
points in it.

And since the cut loci to all points x in this X contain conjugate points to x,
the inradii of surfaces Ũ , which locally isometrically immerse to X are bounded
by diam(X); hence, ◻̃ ⊥ (X) ≤ 2 ⋅ diam(X).
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(All compact simply connected manifolds X have ◻̃ ⊥ (X) ≤ C < ∞, but no
bound on C by the diameter is possible for n > 2.

In fact, an arbitrary closed n-manifold X, n ≥ 3, e.g. X = S3, admits,
by geometric surgery argument, Riemannian metrics gC for all C > 0, with
diamgC (X) = 1, with sect.curv(g) ≤ 1

100n2C2 and, thus, with ◻̃ ⊥ (X) > C,
where Ũ is the R-ball in the tangent space Tx0(X) for R = nC, sent to X by the
exponential map and endowed with the Riemannian metric induced from that
on X.)

(5) Product Inequality. Let Xi, i = 1,2, ...,m, be Riemannian manifolds of
dimensions ni , possibly with boundaries, non-compact and non-complete and let
fi ∶X →Xi be proper (infinity-to-infinity boundary-to-boundary) maps and let

f = (f1, ..., fm) ∶X →X =X1 × ... ×Xm.

Then the ◻̃
⊥-spread of the homology class h = f∗[x]) ∈ Hn−k(X), k =

dim(X) − dim(X) of the point-pullback f−1(x) of f is bounded from below by
the ◻̃⊥-spreads of Xi as follows.

◻̃
⊥
(f∗[x]) ≥ (

1

n

m

∑
i=1

ni
◻̃(Xi)

2
)

− 1
2

that is
1

◻̃
⊥
(f∗[x])2

≤
1

n

m

∑
i=1

ni
◻̃(Xi)

2
.

In fact, the ◻⊥-spread of intersection of cycles h1 and h2 of codimensions k1

and k2, denoted d = ◻⊥(h1 ⌢ h2), satisfies

1

d2
≤

1

k1 + k2
(

k1

(◻⊥(h1))
2
+

k2

(◻⊥(h2))
2
) .

Then the the proof for ◻⊥ follows by induction on m and the corresponding
inequality for ◻̃⊥ follows.

For instance, the ◻-spread of the rectangular solid, d = ◻(⨉
n
i=1[0, di]) satis-

fies
1

d2
≤

1

n
∑
i

1

d2
i

.

(6) Connected sums of compact connected ◻̃
⊥-spread infinite manifolds X

with complete manifolds are (obviously) ◻̃⊥-infinite.
In particular, complete metrics on a ◻̃⊥-spread infinite compact manifold X

minus a point are ◻̃⊥-infinite.
(7) Let X be a complete connected non-compact manifold and Y ⊂ X be a

compact connected submanifold of codimension 1.
If the inclusion homomorphism π1(Y ) → π1(X) is injective, then

◻̃
⊥
(X) ≥ ◻̃

⊥
(Y ).

In particular, if Y is ◻̃⊥-spread infinite then also Y is ◻̃⊥-spread infinite.
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(8) Let X be a connected complete non-compact manifold and Y ⊂ X be a
compact connected ◻–spread infinite submanifold of codimension 2, such that
the inclusion homomorphism π1(Y ) → π1(X) is injective.

If the real homology class of the ε-circle S1
y(ε) ⊂ X ∖ Y in the normal plane

to Y doesn’t vanish, then
◻̃
⊥
(X) ≥ ◻̃

⊥
(Y ).

Unlike lower bunds, upper bounds on ◻̃ find no, at least, no immediate,
applications to scalar curvature. What make them amusing is an unexpected
complexity of sharp evaluation of ◻̃, and even of ◻ ≤ ◻̃, in simple examples
indicated below, where there are more questions than answers.

(A) The d-cube [0, d]n satisfies

◻[0, d]n = d.

Proof. The inequality ◻[0, d]n ≥ d is obvious. (It is the simplest case of the
product inequality.)

The lower bound follows from Besicovich-Derrick & geometric/arithmetic
means inequalities, which shows that (◻(X))n ≤ vol(X), n = dim(X), for all
Riemannin manifolds X.

Probably, ◻̃[0, d]n is equal to d as well, and the following more general prop-
erty of ◻̃ also looks plausible.

(B) Conjecture. All convex domains X ⊂ Rn satisfy ◻̃(X) = ◻(X).
(C) The universal covering Ũ of the 2-ball B(r) ⊂ R2 minus the center

(obviously) satisfies:
◻̃(Ũ) = ◻(Ũ) =

√
2r,

which is equal to the ◻-spread of the (inscribed) square [− r√
2
, r√

2
] ⊂ B(r).

(D) Conjecture. The rectangular solid ⨉ni=1[0, di] ⊂ Rn satisfies

◻̃ (
n

⨉
i=1

([0, di]) ≤ (∑
i

1

d2
i

)

− 1
2

.

(It is obvious that ◻̃ (⨉
n
i=1([0, di]) ≥ (∑i

1
d2i

)
− 1

2
.)

(E) Conjecture. The ◻̃-spread of the ball B(r) ⊂ Rn is equal to the (conjec-
tural) ◻̃-spread of the inscribed cube (where, obviously, the latter is bounded
by the former):

◻̃(B(r)) = ◻(B(r)) =
2r
√
n
.

Moreover, if a Ũ admits a locally isometric immersion to B(r), if

◻̃(B(r)) = ◻(B(r)) =
2r
√
n
=

2r
√
n

and if n ≠ 2, then Ũ = B(r).
The following is a step toward a weaker, also conjectural, inequality

◻(⨉
n
i=1([0, di]) ≤ (∑i

1
d2i

)
− 1

2
.

(F) Proposition. Let X = ⨉
n
i=1[0, di] ⊂ Rn and X ′ = ⨉ni=1[0, d

′
i] ⊂ Rn be

rectangular solids, such that either
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(i) there exists a proper (boundary to boundary) 1-Lipschitz map of odd
degree439 X ′ →X,

or
(ii) there exists a smooth locally expanding (non-decreasing the lengths of

smooth curves) embedding X →X ′.
Then

(∑
i

1

d2
i

)

− 1
2

≤ (∑
i

1

(d′i)
2
)

− 1
2

.

This is an immediate corollary of the following (a) and (b) pointed out to
me by Roman Karasev,440 where (a) depend on the concept of a k-dimensional
Z2-waist, denoted waistk(X), of a Riemannian manifold X (possibly with a
boundary). This is a numerical invariant, which is (almost by definition, see
next section) is

non-increasing under proper 1-Lipschitz map of odd degree X ′ → X and
non-decreasing under locally expanding embedding X → X ′,i. e. waistk(X ′) ≥
waist.(X) in these cases

(The ◻-spread may decrease under locally isometric embedding X →X ′. For
instance, concentric R-balls in the unit sphere, satisfy: ◻(B(R)) ≥ ◻(B(R′))
for π

2
≤ R ≤ R′ ≤ π.)

(a)The Z2-waists of the solids ⨉i[0, di], d1 ≤ ... ≤ di ≤ ... ≤ dn, satisfy

waistk(⨉
i

[0, di]) = d1 × ... × dk for all k = 1, ..., n.

This is stated, in a slightly different form in corollary 5.3 in [Klartag(waists)
2017] (also see [Akopyan-Karasev(non-radial Gaussian) 2019] ).

(b) If positive numbers d1 ≤ ... ≤ di ≤ ... ≤ dn, and d′1 ≤ ... ≤ d′i ≤ ... ≤ d
′
n

satisfy
d1 × ... × dk ≤ d

′
1 × ... × d

′
k

for all k = 1, ..., n, then

∑
i

1

d2
i

≥ ∑
i

1

(d′i)
2
.

Indeed, since the numbers li = −2 log di dominate l′i = −2 log d′i, i.e.

k

∑
i

li ≥
k

∑
i

l′i, k = 1, ..., n.

the Karamata inequality applied to to (convex !) function exp l yields the re-
quired inequality:

∑
i

1

d2
i

=
n

∑
i

exp li ≥
n

∑
i

exp l′i = ∑
i

1

(d′i)
2
.

(G) Generalizations. The above argument yields similar monotonicity of
Σα = (∑i d

α
i )

1
α for all negative α, but it is unclear which (if any) of these Σα

439Non-zero degree should be OK, but I only vaguely see how to prove this.
440Besides (a) and (b) Roman has made a few other illuminating remarks, including counter
examples to some of my naive suggestions on this subject matter.
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is increasing under (globally) non-one-to-one locally expanding maps between
solids. (This monotonicity may fail for small ∣α∣.)

Also, waist evaluation in in [Akopyan-Karasev(tight estimate) 2016] (corol-
lary 4) yields similar monotonicity for maps between ellipsoids with principal
axes di and d′i, and between solids and ellipsoids.

(H) Questions. Is there an "effective" set of inequalities between the num-
bers di and d′i necessary and sufficient for the existence of an (affine) isometric
embedding from solid to solid, ⨉i[0, di] → ⨉i[0, d′i], and from ellipsoid to solid
or to ellipsoid?

(From a geometric perspective, one would rather have this kind of inequal-
ities for (non-affine) locally injective and/or non-injective locally expanding
maps, while from the convexity point of view it is natural to study the convex
set of all affine embeddings between convex sets, with a special consideration of
affine self-embeddings of such sets.)

(I) Conjecture. The manifolds Xi from the above product inequality satisfy the
equality:

◻̃
⊥
(f∗[x]) = (

1

n

m

∑
i=1

ni
◻̃(Xi)

2
)

− 1
2

.

(This generalizes the above conjectural formula ◻̃ (⨉
n
i=1([0, di]) ≤ (∑i

1
d2i

)
− 1

2 ,
and, in fact, may follow from such a formula.)

7.2 Manifolds with Distinguished Side Boundaries and Gauss-
Bonnet/Area Inequalities

Let ∂side ⊂ ∂X be an open subset in the boundary of our Riemannian n-manifold
X and let us generalize the definitions of ◻⊥ and ◻̃⊥ for a relative homology class
h ∈Hn−k(X,∂side), as earlier but with side-proper rather than just proper maps
ψ.

Namely:
● the auxiliary n-manifold Ũ also comes with a distinguished side boundary,

denoted ∂̃side ⊂ ∂Ũ ;
● continuous maps

ψ = (ψ1, ...ψi, ...ψk) ∶ U → [−1,1]k, ψi ∶ Ũ → [−1,1],

must be side-proper, which means that they send the complement ∂X ∖ ∂side to
the boundary of the cube,

ψ(Ũ ∖ ∂̃side) ⊂ ∂[−1,1]k;

● locally isometric maps φ ∶ Ũ →X must send ∂̃side → ∂side ⊂ ∂X.
Theorem: G-B-Inequality. Let X be a Riemannian manifold of dimension

n and with a distinguished open subset ∂side ⊂ ∂X and let h ∈ H2(X,∂side) be a
relative homology class.

Then h can be represented by an immersed smooth surface Σ ⊂X, the bound-
ary of which is contained in ∂side and such that the integrals of the scalar cur-
vature of X over all connected components S of Σ and of the mean curvature441

441Our sign convention is such that the boundaries of convex domains have positive mean
curvatures.
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of ∂side over Θ = ∂S are related to the multi-spread ◻̃ of the pair (X,∂side) by
the following inequality.

satisfy:

∫
S
Sc(X,s)ds + 2∫

Θ
mean.curv(∂side, θ)dθ ≤ 4πχ(S) +C◻̃ ⋅ area(S),

where χ(S) is the Euler characteristics of S and

E C◻̃ =
4(n − 1)(n − 2)π2

n
(◻̃(X,∂side))

−2
.

The proof of this given in [G-Z(area) 2021]) combines (a version of) the the
◻n-inequality for widths of cubes (see sections 3.8 and 5.4) with the argument
similar to that in [Zhu(rigidity) for the proof of the sharp equivariant area
inequality (see section 2.8), where we consider only the case of n ≥ 7.

The case n = 8, which needs a version of Natan Smale’s generic regularity
result we postpone till another paper, while n ≥ 8 needs a generalization of
Lohkamp’s or of Schoen-Yau’s regularization theorems.

Remarks.(a) This theorem, as stated, is non-vacuous only if Sc(X) ≥ 0 and
mean.curv(∂X) ≥ 0; otherwise, all relative homology classes can be represented
by surfaces with arbitrarily small integrals, ∫S Sc(X,s)ds or ∫Θmean.curv(∂side, θ)dθ.

(b) If Sc(X) ≱ 0 or mean.curv(∂X) ≱ 0, a rough, (but meaningful)Ekind
inequality is possible if, for instance, Sc(X) ≥ −1, mean, curv(∂X) ≥ −1 and

the sectional curvature of X is bounded by +1 in the 1-neighbourhood of the
region in X, where Sc(X,x) < 0 and/or mean.curv(∂Xx) < 0;

the principal curvatures of ∂X are bounded by 1 in the 1-neighbourhood of
the region in ∂X, where mean.curv(∂Xx) < 0.

(c) If the boundary of X is mean convex, mean.curv(∂Xx) ≥ 0 and Sc(≥ −1,
then the proof ofE, which delivers area minimizing surface in the class h ∈

H2(X,∂side, provide a non-trivial lower bound on the area-norm of this class.
But , it is unclear what should be a correct version ofEfor n ≥ 3, where

Sc(X) ≱ 0 and/or mean.curv(∂X) ≱ 0.

(d) If we allow C◻ =
4(n−1)(n−2)π2

n
(◻(X,∂side))

−2instead of C◻̃ inE, then
the required surface Σ↪X may be assumed embedded.

(e) A kind ofE(systolic) inequality for metrics with Sc > 0 on S2 ×S2 was
established in [Richard(2-systoles) 2020; also a version of Zhu’s sharp equivariant
area inequality for manifolds with Sc ≥ 0 and with mean convex boundaries is
proven in [Barboza-Conrado](disks) 2019].

Examples of Corollaries. A. Let X be a Riemannian manifold diffeomorphic
to the product D × Rn−2, where D is a planer j-gon, or, more generally, let X
be a manifold with j corners, which admits a proper (boundary-to-boundary,
infinity-to-infinity) map of positive degree f ∶ X → D × Rn−2, such that the
images of these corners in ∂D×Rn−2 have non-zero intersection indices with the
circles ∂D × t ⊂ ∂D ×Rn−2, t ∈ Rn−2.

If Sc(X) ≥ 0, if the mean curvature of ∂X away from the corners is ≥ 0 and
if the dihedral angles ∠i, i = 1, ...j, of X at the corners satisfy ∠i ≤ αi ≤ π,
where

j

∑
i=1

π − αi > 2π,

344



then the map f can’t be (globally) Lipschitz.
Moreover,

there exist sequences of points xi, yi ∈X, such that

dist(xi, yi) ≤ const < ∞, and dist(f(xi), f(yi)) → ∞ for i→∞.

In fact the inequalityEholds for manifolds with non-smooth boundaries
(here ∂X = ∂sideX), if the mean curvature understood in a suitable distribution
way. But to fully make sense of this one needs additional data on regularity of
the boundary S = ∂Σ.

However, for just keeping track of the inequality ∑ji=1 π − αi > 2π in the
integral ∫Θmean.curv(∂side, θ)dθ, one can simply smooth the boundary ∂X in
an obvious manner and thus approximate X by domains Xε ⊂ X with smooth
boundaries. ThenE, applied to these Xε, yields the corollary for ε → 0. (We
suggests the reader would fill in the details of this argument.)

B. Let S be compact connected surface with a boundary, 7 be a planar k-gon,
X be a Riemannian n-manifold and let

f ∶X →X = S ×7 ×Rn−4

be a diffeomorphism. (A continuous proper map of degree one will do).
Define the side boundary of X as the one corresponding to the boundary ∂S,

∂side(X) = f−1
(∂S ×7 ×Rn−4

),

(this ∂side is smooth) and let ∂∠X ⊂ ∂X be the "cornered part" of the boundary
of X, that is

∂∠X = f−1
(S × ∂7 ×Rn−4

),

where the faces and the "corners" of ∂∠X correspond to the edges and the
vertices of 7.

Let the following four conditions be satisfied.
(●) The map f is roughly asymptotically Lipschitz-like:

dist(f(x)f(y)) ≤ L(dist(x, y))

for some continuous function L(d) = Lf(d), d ≥ 0, and all x, y ∈ X with
dist(x, y) ≥ 1, e.g. ∣∣df ∣∣ ≤ const < ∞.

(●●) The faces of ∂∠X are mean convex, i.e have positive mean curvatures.
(● ● ●) The dihedral angles ∠i, i = 1,2, ...k, between the faces of ∂∠X at all

points in the "corners" are all bounded as follows.

∠i ≤
2π

l

where l is a positive integer, such that
if k = 3, then l ≥ 6 i.e. ∠i ≤

π
3
,

if k = 4,5, then l ≥ 4 i.e. ∠i ≤
π
2
,

if k ≥ 6, then l ≥ 3, i.e. ∠i ≤
π
2
.

(● ● ●●) Either l is even or let, for every pair of adjacent (n− 1)-faces in ∂∠,
say ∂i and ∂i+1 there exist an isometric, i.e. preserving the induced Riemannian
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metric, involution of ∂∠, which interchanges these faces, ∂i ↔ ∂i+1, and fixes
the corner ∂i ∪ ∂i+1 between them.442

Then X contains a surface Σ as in the above theorem. In fact, there exists a
smooth compact connected oriented surface S ⊂X with ∂side(X) which represent
a non-zero homology class in H2(X,∂side(X) and such that

∫
S
Sc(X,s)ds + 2∫

Θ
mean.curv(∂side, θ)dθ ≤ 4πχ(S).

About the Proof. Develop X by reflections in the faces, divide the resulting
manifold X̃ (diffeomorphic to S × R2 × Rn−4) by a non-torsion subgroup Γ0 of
finite index in the reflection group Γ (that isometrically acts on X̃ with X̃/Γ =X)
and smooth the (natural continuous) Riemannian metric on X/Γ0 with almost
no decrease of its scalar curvature.

This reduce the problem to the case, where 7 is replaced by a closed surface
of positive genus and where G-B-inequality applies.

Exercises (a) Fill in the details in this argument.
(b) Extend the proof to the case of higher dimensional "reflection polyhe-

dra"instead of 7,e.g. for m-cubes [0,1]m.
(c) Apply (b) to X = S × [0,1]n−2 and work out yet another criterion for

Sc ≥ 0 additionally to these in section 3.1.
(d) Formulate and proof the hyperbolic version (i.e. for Sc ≥ σ < 0) of this

criterion in the spirit (2≤0) in section 3.1.1.
(e) Formulate and proof the version of this for Sc ≥ σ < 0 by taking into

account the area of S ⊂X .

7.3 Width, Waist and other Slicing Invariants
Given numerical invariant INV of k-dimensional spaces Y , one defines the "slic-
ing version " of INV for n-dimensional X, n ≥ k, as the infimum of the num-
bers I, such that X can be "sliced" into k-dimensional subspaces Y = Yx ⊂ X,
parametrized by an (n − k)-dimensional space X ∋ x, such that INV ≤ I.

Example 1: Uryson’s Width. If INV stands for "diameter" then the cor-
responding slicing invariant of a, say locally compact metric space X, called
k-width is defined, via slicings of X by, where pullbacks of points under con-
tinuous maps f ∶ X → X for polyhedral (triangulated) spaces X of dimensions
dim(X) =m = dim(X) − k..

If the dimension of X is unspecified of if X is infinite dimensional, we speak
of codimension m width.)

Exercises.443 (a) Evaluate the widths of balls, ellipsoids simplices and rect-
angular solids in Euclidean spaces.

(b) Decide whether the k-width is (essentially) non-increasing under proper
1-Lipschitz maps of non-zero degrees between Riemannian n-manifolds for all
442Although, the existence of this involution is probbaly unneeded in the present case, it
suggests a generalisation of the D-problem from section 3.1.1 by adding to the structure of
the manifold V an action of a compact group G∂ on its boundary, where the metric g in this
problem must be required to be G∂ -invariant.

In fact, the persistence of T⋊-stabilization also suggests an addition of an action of a compact
group G on V with requirement of g being G-invariant as well.
443I haven’t done these exercises.
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k ≤ n: the existence of such a map X1 →X2 should(?) imply that widthk(X2) ≤

widthk(X1), or at least, that widthk(X2) ≤ constn ⋅widthk(X1).

Below, as a matter of instance, we formulate a quantified version of the clas-
sical bound on Lebesgue covering dimension by the Hausdorff dimension conjec-
tured in [Guth(volumes of balls-width) 2011], proved in [Lio-Li-Na-Ro(filling)
2019] and refined in [Papasoglu(width) 2019], where also a (relatively) direct
proof was found.

Theorem A. There exists a universal constant ε = εn > 0, such that all proper
(closed bounded subsets are compact) metric spaces X admit the following bound
on the codimension n − 1 Uryson width.

Let, for some R = RX > 0, all pairs of concentric balls R-balls,

Bx(R) ⊂ Bx(10R) ⊂X, x ∈X,

admit closed subsets S pinched between the boundaries of these balls,

S ⊂ Bx(10R) ∖Bx(R),

such that
●1 S separates the ballBx(R) from the complementX∖Bx(10R), i.e. no con-

nected component of this complement intersects both Bx(R) and X ∖Bx(10R);
●2 S can be covered by countably many balls

S ⊂ ⋃
i

Bxi(ri),

such that
∑
i

rn−1
i ≤ εR.

Then X admits a continuous map into an (n − 1)-dimensional polyhedral
space, f ∶X →X, such that

diam(f−1
(x)) ≤ R, for all x ∈X.

(A significant instance is
of this, proven by Guth, is that of Riemannian n-manifoldsX, where the inequal-
ity volx(B(1)) ≤ εn for sufficiently small ε = εn > 0, implies that width1(X) ≤

constnε.
For example,
all Riemannian n-manifolds X satisfy: width1(X) ≤ constnvol(X)

1
n .)

Another basic property of Uryson width, now in relation to curvature, is the
following.

Theorem B. [Perelman(width) 1995] The the volumes of all Riemannian
n-manifolds (and singular Alexandrov spaces) X with non-negative sectional
curvatures are bounded by their Uryson width (essentially) the same way as it
is for rectangular solids

1

constn

n

∏
k=1

widthk(X) ≤ vol(X) ≤ constn
n

∏
k=1

widthk(X).
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(Probably, there are similar bounds for the waists of these manifolds:

1

constn

l

∏
k=1

widthk(X) ≤ waistl(X) ≤ constn
l

∏
k=1

widthk(X), l = 1, ..., n.)

Example 2: From Volumes to Waists. If INV represents the k-volume of
k-dimensional Riemannian manifolds, then the corresponding slicing invariant
of Riemannian n-manifolds is called the k-wast, denoted waistk(X), which,
in the simplest case, can be defined with slicings of X by pullbacks of points
under continuous maps f ∶ X → X = Rn−k with volk(f

−1(x)) understood as
k-dimensional Hausdorff measure.

It is known (see section 1.3 in [G(singularities) 2009]) that all Riemannian
n-manifolds have strictly positive k-waists for k ≤ n:

Every continuous map f ∶X → Rn−k admits a point x ∈ Rn−k, such that

Hauk(f
−1

(x)) ≥ δ = δX > 0.

However, (non-trivial) sharp bounds on the waist, such as waistk(Sn) = volk(Sk)
for unit spheres, have been proved only under annoying, probably unnecessary,
assumptions on f , such, e.g. as being smooth generic or piece-wise real ana-
lytic.444

Z2-Waist and the Even Degree Problem. The known proof of the lower
bounds on waists of manifolds X, such as rectangular solids, for example, which
depend on a Borsuk-Ulam topological lemma, apply to the Z2-waists defined
in terms of the Morse spectrum of the k-volume function on the space of Z2-
cycles of dimension k (see [Guth(Steenrod) 2007], [G(Morse Spectra) 2017]),
where this waist is monotone decreasing under smooth maps f ∶X1 →X2 of odd
degree:

if the map f is k-volume non-increasing, ∣∣∧k df ∣∣ ≤ 1, and deg(f) is odd, then
Z2-waistk(X2) ≤ Z2-waistk(X1).

But it is unclear if such monotonicity holds for all k-volume non-increasing
maps with non-zero degree.

Almgen’s Min-Max Theorem. There is an alternative proof of the sharp lower
bound on waistk(Sn), that relies on Almgen’s min-max theorem, which delivers
minimal subvarifolds of volume ≤ v in Riemannian manifolds sliced into cycles
of volumes ≤ v (see [Guth (waist) 2014]).

this Although proof, doesn’t (seem to) apply to rectangular solids, it does
yield

sharp lower bounds for the k-waists of compact manifolds with sectional cur-
vatures ≥ κ > 0 (see G(singularities) 2009]).

However, the following remains unsettled.
Problems. A. Extend Almgen’s method to singular Alexandrov spaces with

sect.curv ≥ κ.
B. Develop a unified method that would yield, for instance, sharp inequalities

for products of spaces Xi with sect.curv(Xi) ≥ κi > 0.

444 See [G(filling) 1983], [G(waist) 2003], [Guth (waist) 2014], [Akopyan-Karasev( tight esti-
mate) 2016], [Akopyan-Karasev(non-radial Gaussian) 2019], [Klartag(waists) 2017].
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Spherical Waists with the the Dirac operator. The sharp parametric area
contraction theorem from section 3.4.3 implies the sharp lower bound on the
spherical waists of N -spheres:

the space of smooth strictly area decreasing maps f ∶ S2 → SN is contractible
in the space of all continuous maps S2 → SN for all N ≥ 2.

Moreover,
Let X = (Xg) be a compact Riemannian N -manifold with positive curvature

operator, e.g. a convex hypersurface in RN+1 and let g○ = g○(x) =
1

N(N−1)Sc(X,x)g○(x).

Then the argument used in the proof of the sharp parametric area contraction
theorem yields the bound on the spherical waist of X○ = (X,g○) from below:

Sc(X) > 0, then the space F○ of smooth strictly area decreasing maps f ∶ S2 →

X○ is contractible in the space of all continuous maps S2 →X○ for all N ≥ 2.
Questions. (a) Does the space F○ is contractible?
(b) Is the ordinary 2-waist of X○ is similarly bounded from below as

waist2(X○) ≥ 4π?

In particular, is the space of maps f ∶ Σ → X○, where Σ is surface of genus>0
and where area(f(Σ)) < 4π, also contractible in the space of all continous maps
Σ→X○?

(c) Is there a counterpart of the above for n > 2, e.g. for maps Sn → (X,g?),
n > 2, in the spirit of Almgren’s style proof of the lower waist bound for manifolds
with sect.curv > 0?

7.4 Hyperspherical Radii, their Parametric and k-Volume
Multi-contracting Versions

From a category/homotopy theoretic point of view the main role of Riemannian
metrics on manifolds X and Y is a definition of a "norm" on smooth maps
f ∶X → Y , where we distinguish the following.

●ksup The sup-norm on the kth exterior power of the differential of f , denoted

∣∣ ∧
k df ∣∣ = sup

x∈X
∣∣ ∧

k df(x)∣∣
1
k .

For instance, the inequality ∣∣ ∧k df ∣∣ < 1 means that f strictly decreases the
k-volumes of smooth k-submanifolds in X.

●ktrace The normalized trace norm on ∧kdf(x),

∣∣ ∧
k df ∣∣trace = sup

x∈X

1

(
n
k
)
(trace ∧k df(x))

1
k ,

(In terms of an orthonormal frame e1, ...en ∈ Tx(X), for which the vectors
df(ei) ∈ Ty(Y ), y = f(x) are orthogonal

trace ∧k df(x) = ∑
1≤i1<i2<...<ik≤n

λi1 ⋅ λi2 ⋅ ... ⋅ λik .

for λi = ∣∣df(ei)∣∣.)
Such a "norm" defines a "norm" on homotopy and/or other classes [f] of

maps f , by
”norm”[f] = inf

f∈[f]
”norm”(f),
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where a relevant example is where [f] = [f]h,h consists of the maps that send a
given homology class h ∈H∗(X) to a given set {h} or a set of classes h ∈H∗(Y ).

For instance if Y = Sn and the set {h} consists of non-zero multiples of the
fundamental class [Sn] ∈Hn(S

n), we define various hyperspherical radii of h as
the reciprocals of such norms,

RadnormSn (h) =
1

”norm”[f]
,

where "norm" may stand for ∣∣ ∧k df ∣∣ and ∣∣ ∧k df ∣∣trace.
And if the class [f] consists of the maps f ∶X → Sn with non-zero homology

homomorphism ∶Hn(X) →Hn(S
n) = Z, we write

RadnormSn (X) =
1

”norm”[f]
= sup

0≠h∈Hn(X)
RadnormSn (h).

In particular, if X is a connected orientable n-manifold and [f] is the class
of locally constant at infinity maps f ∶ X → Sn of non-zero degrees, i.e. which
dominate non-zero-multiples of the fundamental class [Sn] ∈Hn(S

n), we speak
of hyperspherical radii of X,

RadnormSn (X) = RadnormSn [X] =
1

”norm”[f]
,

with an emphasis on the norms" Lip = ∣∣df ∣∣, ∣∣ ∧k df ∣∣ and ∣∣ ∧k df ∣∣trace, k = 1,2,
where non-trivial bounds on these radii for manifolds X with Sc(X) ≥ σ > 0,
are given (in different terms) in section 3.4.1.

Exercise (a) Show that the hyperspherical radius of the R-sphere Sn(R)

defined with any of the norms ●ksup and ●ktrace is equal to R.
(b) Evaluate these radii for the (open) Euclidean ball Bn(R) and the cube

[0,R]n.445

(c) Show that if X is a (Riemannian product) cylinder, X = X0 × R1, and
[f]h is the class of maps f ∶ X → Y , which send the fundamental class of X to
h ∈ Hn(Y ), n = dim(X), then the "norms" of the multiples of h are bounded
by the corresponding "norms" of h,

”norm”(j ⋅ h) ≤ ”norm”(h), j = 0,±1,±2, ... .

Spaces of Maps and Parametric Radii. A norm on maps f ∶ X → Y can be
regarded as a function on the space F of maps X → Y (not only on the set of
homotopy classes of maps).

Call such a function Ψ ∶ F → [0,∞) and define a (Morse-kind) filtration on
the homology H∗(F), by the images of the homology homomorphisms induced
by the sublevels of Ψ to F ,

H∗(Ψ
−1[0, λ]) →H∗(F), 0 ≤ λ < ∞,

where these images are denoted

H∗(F∣≤
Ψ
λ) ⊂H∗(F).

445I haven’t done this exercise for the cube.
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Equivalently, Ψ defines a function on H∗(F), call it

Ψ∗ ∶H∗(F) → [0,∞),

where Ψ∗(h) is the infimum of λ∣geq0 for which h ∈H∗(F ≤
Ψ
λ).

In other words,
the inequality Ψ∗(h) ≤ λ for h ∈HiF) signifies that
h is representable by a family P of maps fp ∶ X → Y , p ∈ P , where P is an

oriented i-pseudomanifold and Ψ(fp) ≤ λ for all p ∈ P .
Example: Stabilized Radii. Let X be an orientable n-manifold and Y be

the unit sphere Sn+m. Then the homology of the space F of continuous maps
f ∶ X → Sn+m vanishes for 0 < k < m and Hm(F) = Z. Define the (stabilized)
spherical radii of X, by

RadnormSn+m(X) = RadnormSn+m(X ×Rm),

and observe that such a radius is equal to the infimum of the "norms" of the
non-zero classes in Hm(F).

Remark. If the above "norm" is associated with ∣∣ ∧n df ∣∣, n = dim(X),
(where the maps with ”norm”(f) = ∣∣ ∧n df ∣∣ ≤ 1 are volume non-increasing),
then, according the the sharp waist inequality from the previous section, the
stabilized radii are equal to the basic one:

Rad∧
n

Sn+m(X) = Rad∧
n

Sn for all m = 1,2, ... .

Stabilization Conjecture . If k < n then the stabilized radii satisfy:

Rad∧
k

Sn(X) ≥ Rad∧
k

Sn ≥ cn,m,kRad
∧k
Sk(X),

for all k = 1, ..., n − 1 and universal constants cn,m,k, such that

1 > cn,1,k > cn,2,k > ... > cn,m,k > ... ≥ cn > 0.

Admission. I haven’t proved that either c2,3,1 > 0 or that c2,3,1 = 1, that is a
possible decrease (if any) of minimal Lipschitz constants for maps X ×R1 → S3

with non-zero degrees compared to such maps X → S2 of oriented surfaces X.
Diagrams and Multiple Norms. All of the above definitions can be gen-

eralized by replacing single maps between Riemannian manifolds by diagrams
D = fI of maps fi with homotopy commutativity relations imposed on some
sub-diagrams in D.

We have met simple instances of such diagrams for distance and area multi-
contracting maps to products,

f = (f1, f2, ...fk) ∶X →X1 ×X2 × ... ×Xk

(see section 3.4.4), where a "total norm" of such an f related to scalar curvature
is

(
1

k

k

∑
i=1

1

(”norm”(fi))2
)

− 1
2

.

Problem Find constraints on norms Lip(fi) = ∣∣dfi∣∣ and on ∣∣ ∧2 dfi∣∣ for more
complicated diagrams fI = {fi} of maps between manifolds with Sc-normalized
and/or T⋊-stabilized (see section 2.4) manifolds with positive scalar curvatures.
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7.5 m-Radii of Uniformly Contractible Spaces
Define the m-radius with an above "norm" of a Riemannian manifold X as the
supremum of the hyperspherical radii of all m-cycles in X, or, more formally as

Radnormm (X) = sup
V ⊂X

RadnormSm (V ).

where the supremum is taken over all relatively compact open (not to worry
about pathologies) subsets V in X.

Exercise. Show that if X is an n-dimensional Riemannian manifold with
Hn−1(X) = 0, then

RadLipn−1(X) ≤ constnRad
Lip
Sn

for constn < 10n.
IfX is uniformly contractible (see section 3.10.3) then – it is (almost) obvious

– that RadLip1 (X) = ∞. But it is unclear, in general, if this true for RadLipm , for
m ≥ 2.

Below is a partial result in this direction slightly generalizing that in §9 3
11

[G(positive) 1996].
Lipschitz Suspension Lemma. Let a Riemannian manifold X contain a double

sequence of triples of disjoint (m − 1)-cycles, i.e. of oriented (m − 1)-dimensional
sub-pseudomanifolds, Aij ,Bij ,Cij ⊂X, and let

[0,Aij], [Aij ,Bij], [Bij ,Cij] ⊂X

be m-chains represented by oriented m-sub-pseudomanifolds with boundaries −Aij ,
Ai ∪ −Bij and Bij ∪ −Cij .

Let
●1 Rij = RadSm−1(Aij) ≥ Ri →∞ for i→∞;
●2 the diameters diam[0,Aij] ≤ dj for some constants dj and all i;
●3 [Aij ,Bij] is contained in the δ ⋅Ri-neighbourhood of Bi,j , i.e. dist(x,Aij),

x ∈ [Aij ,Bij], is bounded by n δ ⋅Ri, for δ ≤ 1
10n

, n = dim(X);
●4 dist([Bij ,Cij], [0,Aij]) ≥ ri →∞ for i→∞.
●5 dist(Ci,j , [0,Ai,j] ≥ d

+
j →∞ for j →∞.

Then, if X is uniformly contractible (or uniformly rationally acyclic) and
n = dim(X) >m, then

RadLipm (X) = ∞.

Proof. To keep track of these ●1-●5, visualize Ai,j , Bij and Cij as con-
centric circles of radii i, 41

40
i and 2i + j in R2 ⊂ X = R3, where the chains

[0,Aij], [Aij ,Bij], [Bij ,Cij] ⊂X are the annuli between these circles.
Then proceed with the proof by observing that uniform contractibility of

X implies that the cycle Cij for j >> i (much greater) bounds chain, call it
[Cij ,∅ij] with the the support far from [0,Ai,j], say

dist([Cij ,∅ij], [0,Ai,j]) ≥ 10Ri.

Then the union Dm
ij of these four chains

Dm
ij = [0,Aij] ∪ [Aij ,Bij] ∪ [Bij ,Cij] ∪ [Cij ,∅ij]
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makes a m-cycle, such that

RadLipSm (Dm
ij ) ≥ εRi,

say, for ε = 1
1000n3 .

This is shown by constructing a λ-Lipschitz map Dm
ij → Sm(Ri) with non-

zero degree and with λ < 100n2, such that [0,Aij] ⊂ D
m
ij goes to the south pole

of Sm(Ri) and [Bij ,Cij] ∪ [Cij ,∅ij] to the north pole and where the two main
ingredients of this construction are the following:

(i) a λ1-Lipschitz extension of the 1-Lipshitz map Aij → Sm−1(Ri) to the
δRi-neighbourhood of Aij ⊂X, for δ = 1

10n
;

(ii) distance function x→ dist(x,Aij), x ∈X.
(Fitting all this together is left to the reader.)
Large Scale Lipschitz Uniform Embeddings. A map between metric spaces,

φ ∶ Z →X is LSL if there exist positive constants λ and e, such that

dist(φ(z1z), f(z2)) ≤ λ ⋅ dist(z1, z2) + e.

A map φ ∶ Z → X is LSUE if there exists a function ∆(D) = ∆φ(D), such
that ∆(D) → ∞ for D →∞ and

dist(φ(z1), f(z2)) ≥ ∆(dist(z1, z2)).

A map f ∶ Y →X is LSLU embedding if it is LSL as well as LSU.
LSLUE-Lemma. Let X and Z be Riemannian manifolds, Aij ,Bij ,Cij ⊂ Z and

[0,Aij], [Aij ,Bij], [Bij ,Cij] ⊂ Z be (m − 1)-cycles and m-chains satisfying the
above conditions ●1-●5 and let Z →X be an LSLU embedding.

If X is uniformly contractible (uniformly rationally acyclic will do) then X
also contains (m − 1)-cycles and m-chains cycles, which satisfy ●1-●5.

Thus, for instance,
[⋆] if dim(Z) = m, if RadLipSm (Z) = ∞, if X is uniformly contractible and if

dim(X) >m, then
RadLipm (X) = ∞.

[⋆⋆] Example of Corollary. Let X be a compact aspherical manifold of
dimension six.

If the fundamental group π1(X) contains a surface group Γ (e.g. Γ = Z2) as
a subgroup, then X admits no metric with Sc > 0.

Proof. The inclusion Γ ⊂ π1(X) implies that the universal covering Z of
the surface with the fundamental group Γ admits an LSLU embedding to the
universal covering X̃ of X. Hence, RadLip2 (X̃) = ∞.

On the other hand, an easy argument (see §9 3
11

[G(positive) 1996] and
[G(aspherical) 2020] shows that if a uniformly contractible n-manifold X̃ )
satisfies RadLipm = ∞, then it contains compact submanifolds Y of dimension
n −m − 1, which have arbitrarily large filling radii, while, if Sc(X) ≥ σ, then
T⋊-stabilizations Y⋊ of Y have their scalar curvatures bounded from below by
σ/2 > 0.

This, in the present 6d-case, contradicts to the bound fillrad(Y ) ≤ const ⋅σ
for dim(Y ) = 3. QED.
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Exercise. Extend all 5d-results from section 3.10.3 to (5 +m − 1)-manifolds
X, which admit maps of non-zero degree to uniformly contractible (and uni-
formly rationally acyclic) manifolds X (and pseudomanifolds with at most 2-
dimensional singularities), where the fundamental groups π1(X) contains sub-
groups Γ, which serve as fundamental groups of compact m-pseudomanifolds
the universal coverings Z of which have RadLipSm (Z) = ∞.
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