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Unlike manifolds with controlled sectional and Ricci curvatures, those with
their scalar curvatures bounded from below are not configured in specific rigid
forms but display an uncertain variety of flexible shapes similar to what one
sees in geometric topology.

Yet, there are definite limits to this flexibility, where determination of such
limits crucially depends, at least in the known cases, on two seemingly unrelated
analytic means: index theory of Dirac operators and the geometric measure
theory,1

The emergent picture of spaces with Sc.curv ≥ 0, where topology and geom-
etry are intimately intertwined, is reminiscent of the symplectic geometry,2 but
the former has not reached yet the maturity of the latter.

The mystery of the scalar curvature remains unsolved.
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1Spaces of metrics with Sc ≥ σ on 3-manifolds are amenable to the global study with the
Hamilton’s Ricci flow, which also applies, at the present moment only C0-locally, in higher
dimensions. Also, much topological and geometrical information on 4-manifolds with Sc ≥ σ,
for positive as well as negative σ, is obtained, exclusively, with the Seiberg-Witten equations.

2Geometric invariants associated with the scalar curvature, such as the K-area, are
linked with the symplectic invariants (see [G(positive) 1996], [Polterovich(rigidity) 1996], [En-
tov(Hofer metric) 2001], [Savelyev(jumping) 2012[), but this link is still poorly understood.
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1 Curvature Formulas for Manifolds and Sub-
manifolds.

We enlist in this section several classical formulas of Riemannian geometry and
indicate their (more or less) immediate applications.

1.1 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannian metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A

∗
(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) = ∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A
∗
) = ∑

i

A∗
(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Sign Convention. The first derivative of h changes sign under reversion

of the t-direction. Accordingly the sign of the quadratic form A∗(Y ) of a hyper-
surface Y ⊂X depends on the coorientation of Y in X, where our convention is
such that
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the boundaries of convex domains have positive (semi)definite second funda-
mental forms A∗, also denoted IIY , hence, positive mean curvatures, with respect
to the outward normal vector fields.3

(2.1.B) First Variation Formula. This concerns the t-derivatives of the
(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) =
dht
dt
voln−1(Ut) = ∫

Ut
mean.curv(Ut)dyt

4

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for C1-smooth

functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt
ψ(y)mean.curv(Yt)dyt

5

Now comes the first formula with the Riemannian curvature in it.

1.2 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ ⊂ Ty(Y ) ⊂ T )y(X)

y ∈ Y , satisfy
κ(Y, τ) = κ(X,τ) + ∧2A∗

(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧
2A∗

(τ) = α∗1(τ) ⋅ α
∗
2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α

∗
j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a

unit (defined up to ±-sign) normal vector to Y ;
● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

3At some point, I found out to my dismay, that this is opposite to the standard convention
in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

4This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].

5This remains true for Lipschitz functions but if ψ is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U ⊂ Y , then the derivative ∂ψνvoln−1(Yt)
may become (much) larger than this integral.
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(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)

2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2

for ∣∣A∗(Y )∣∣2 = ∑i(α
∗
i )

2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))
2
−∣∣A∗

(Y )∣∣
2
+(n−1)(n−2) ≥ (n−1)(n−2)−nmax

i
(c∗i )

2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =

0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape that is the symmetric on T (Y ) associated
with A∗ via the Riemannian scalar product g restricted from T (X) to T (Y ),

A∗
(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).

1.3 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry.6 Let Yt be a
family of hypersurfaces t-equidistant to a given Y = Y0 ⊂ X. Then the shape
operators At = A(Yt) satisfy:

∂νA =
dAt
dt

= −A2
(Yt) −Bt,

where Bt is the symmetric associated with the quadratic differential form B∗ on
Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently

6The first main formula is Gauss’ Theorema Egregium.
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than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannian geometry. 7

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(
dAt
dt

) = −∣∣A∗
∣∣
2
−Riccig (

d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗

∣∣
2
−Ricci(ν, ν),

where
∣∣A∗

∣∣
2
= ∣∣A∣∣

2
= trace(A2

),

where, observe,

trace(A) = trace(A∗
) =mean.curv = ∑

i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the B) on
the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α∗i α
∗
j − ∑i κν,i can be

rewritten as

Ricci(ν, ν) =
1

2

⎛

⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α

∗
j

⎞

⎠
=

=
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2)

where, recall, α∗i = α
∗
i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of

Y ⊂X, where mean.curv(Y ) = ∑i α
∗
i and where ∣∣A∗∣∣2 = ∑i(α∗i )

2.

1.4 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let Y = (Y,h) be a smooth Riemannian (n-1)-manifold

and ϕ = ϕ(t) > 0, t ∈ [0, ε] be a smooth positive function. Let g = ht + dt
2 =

ϕ2h + dt2 be the corresponding metric on X = Y × [0, ε].
7Thibault Damur pointed out to me that this formula, along with the rest displayed on

the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.
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Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal
curvatures of Yt equal to α∗i (t) =

ϕ′(t)
ϕ(t) , i = 1, ..., n − 1 for

A∗
t =

ϕ′(t)
ϕ(t) ht for ϕ

′ = dϕ(t)
dt

and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(
ϕ′

ϕ
)

′
= −(n − 1)2

(
ϕ′

ϕ
)

2

−
1

2

⎛

⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(

ϕ′

ϕ
)

2
⎞

⎠
.

Therefore,

Sc(g) =
1

ϕ2
Sc(h) − 2(n − 1)(

ϕ′

ϕ
)

′
− n(n − 1)(

ϕ′

ϕ
)

2

=

(⋆) =
1

ϕ2
Sc(h) − 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)
ϕ′(t)
ϕ(t)

.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.

(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

(c) What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,

then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation8

Cylindrical Extension Exercise. Let Y be a smooth manifold, X = Y ×R+, let
g0 be a Riemannian metric in a neighbourhood of the boundary Y = Y × {0} =
∂X, let h denote the Riemannian metric in Y induced from g0 and let Y has
constant mean curvature in X with respect to g0.

Let X ′ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension

8See §12 in [GL(complete) 1983].
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n as X, let Y ′ = ∂X ′ be its boundary sphere, let, let Sc(h) > 0 and let the mean
and the scalar curvatures of Y and Y ′ are related by the following (comparison)
inequality.

[<]
∣mean.curvg0(Y )∣2

Sc(h, y)
<

∣mean.curv(Y ′)∣2

Sc(Y ′)
for all y ∈ Y.

Show that
if Y is compact, there exists a smooth positive function ϕ(t), 0 ≤ t < ∞, which

is constant at infinity and such that the the warped product metric g = ϕ2h+dt2

has
the same Bartnik data as g0, i.e.

g∣Y = h0 and mean.curvg(Y ) =mean.curvg0(Y ),

Then show that
one can’t make Sc(g) ≥ Sc(X ′) in general, if [<] is relaxed to the corresponding

non-strict inequality, where an example is provided by the Bartnik data of Y ′ ∈X ′

itself.9

Vague Question. What are "simple natural" Riemannian metrics g on X =

Y ×R+ with given Bartnik data (Sc(Y ),mean, curv(Y )), where Y ⊂X is allowed
variable mean curvature, and what are possibilities for lower bound on the scalar
curvatures of such g granted ∣mean.curv(Y, y)∣2/Sc(Y, y) < C, e..g. for C =

∣mean.curv(Y ′)∣2/Sc(Y ′) for Y ′ being a sphere in a space of constant curvature.

1.4.1 Higher Warped Products

Let Y and S be Riemannian manifolds with the metrics denoted dy2 (which
now play the role of the above dt2) and ds2 (instead of h), let ϕ > 0 be a smooth
function on Y , and let

g = ϕ2
(y)ds2

+ dy2

be the corresponding warped metric on Y × S,
Then

(⋆⋆)

Sc(g)(y, s) = Sc(Y )(y) +
1

ϕ(y)2
Sc(S)(s) −

m(m − 1)

ϕ2(y)
∣∣∇ϕ(y)∣∣2 −

2m

ϕ(y)
∆ϕ(y),

where m = dim(S) and ∆ = ∑∇i,i is the Laplace on Y .
To prove this, apply the above c (⋆) to l × S for naturally parametrised

geodesics l ⊂ Y passing trough y and then average over the space of these l, that
is the unit tangent sphere of Y at y.

The most relevant example here is where S is the real line R or the circle S1

also denoted T1 and where (⋆) reduces to

(⋆⋆)1 Sc(g)(y, s) = Sc(Y )(y) −
2

ϕ
∆ϕ(y).10

9It follows from [Brendle-Marques(balls in Sn)N 2011] that the the cylinder Sn−1 × R+
admits a complete Riemannian metric g cylindrical at infinity which has Sc(g) > n(n−1), and
which has the same Bartnik data as the boundary sphere X′

0 in the hemisphere X′ in the unit
n-sphere. But the non-deformation result from [Brendle-Marques(balls in Sn) 2011], suggests
that this might be impossible for the Bartnik data of small balls in the round sphere.

10The roles of Y and S = R and notationally reversed here with respect to those in (⋆)
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For instance, if the L = −∆ + 1
2
Sc on Y is strictly positive, that is the

lowest eigenvalue λ is strictly positive and if ϕ equals to the corresponding
eigenfunction of L, then

−∆ϕ = λ ⋅ ϕ −
1

2
Sc ⋅ ϕ

and
Sc(g) = 2λ > 0,

The basic feature of the metrics ϕ2(y)ds2 + dy2 on Y × R is that they are
R-invariant, where the quotients (Y × R)/Z = Y × T1 carry the corresponding
T1-invariant metrics, while the R-quotients are isometric to Y .

Besides R-invariance, a characteristic feature of warped product metrics is
integrability of the tangent hyperplane field normal to the R-orbits, where Y ×

{0} ⊂ Y ×R, being normal to these orbits, serves as an integral variety for this
field.

Also notice that Y = Y × {0} ⊂ Y × R is totally geodesic with respect to
the metric ϕ2(y)ds2+dy2, while the (R-invariant) curvature (vector field) of the
R-orbits is equal to the gradient field ∇ϕ extended from Y to Y ×R. coordinates

In what follows, we emphasize R-invariance and interchangeably speak of
R-invariant metrics on Y ×R and metrics warped with factors ϕ2 over Y .

Gauss-Bonnet g⋊-Exercise. Let the above S be the Euclidean space RN
(make it Tn if you wish to keep compactness) with coordinates t1, ..., tN , let

Φ(y) = (ϕ1(y), ..., ϕi(y), ..., ϕN(y))

be anN -tuple of smooth positive function on a Riemannian mnanifold Y = (Y, g)
and define the (iterated t warped product) metric g⋊ = g⋊Φ on Y × S as follows:

g⋊ = g(y) + ϕ2
1(y)dt

2
1 + ϕ

2
2(y)dt

2
2 + ... + ϕ

2
N(y)dt2N

Show that the scalar curvature of this metric, which, being RN -invariant, is
regarded as a function on Y , satisfies:

Sc(g⋊, y) = Sc(g) − 2
N

∑
i=1

∆g logϕi −
N

∑
i=1

(∇g logϕi)
2
− (

N

∑
i=1

∇g logϕi)

2

,

thus
∫
Y
Sc(g⋊, y)dy ≤ ∫

Y
Sc(g, y)dy,

and, following [Zhu(rigidity) 2019], obtain the following
"Warped" Gauss-Bonnet Inequality for Closed Surfaces Y :

∫
Y
Sc(g⋊, y)dy ≤ 4πχ(Y )

for the (iterated) warped product metrics g⋊ = g⋊φ for all positive N -tuples of Φ of
positive functions on Y . 11

11See [Zhu() 2019] and sections ??, ?? for applications and generalizations.
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1.5 Second Variation Formula
The Weyl formula also yields the following formula for the second derivative of
the (n − 1)-volume of a cooriented hypersurface Y ⊂ X under a normal defor-
mation of Y in X, where the scalar curvature of X plays an essential role.

The deformations we have in mind are by vector fields directed by geodesic
normal to Y , where in the simplest case the norm of his field equals one.

In this case we have an equidistant motion Y ↦ Yt as earlier and the second
derivative of voln−1(Yt), denoted here V ol = V olt, is expressed in terms of
of the shape At = A(Yt) of Yt and the Ricci curvature of X, where, recall
trace(At) =mean.curv(Yt) and

∂νV ol = ∫
Y
mean.curv(Y )dy

by the first variation formula.
Then, by Leibniz’ rule,

∂2
νV ol = ∂ν ∫

Y
trace(A(y))dy = ∫

Y
trace2

(A(y))dy + ∫
Y
trace(∂νA(y))dy,

and where, by Weyl’s formula,

trace(∂νA) = −trace(A2
) −Ricci(ν, ν)

for the normal unit field ν.
Thus,

∂2
νV ol = ∫

Y
(mean.curv)2

− trace(A2
) −Ricci(ν, ν),

which, combining this with the above expression

Ricci(ν) =
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2) ,

shows that

∂2
νV ol = ∫

1

2
(Sc(Y ) − Sc(X) +mean.curv2

− ∣∣A∗
∣∣
2) .

In particular, if Sc(X) ≥ 0 and Y is minimal, then,

(∫ Sc ≥ 2∂2Vol) ∫
Y
Sc(Y, y)dy ≥ 2∂2

νV ol

(compare with the (Sc ≥ −2Ric) in 2.2).
Warning. Unless Y is minimal and despite the notation ∂2

ν , this derivative
depends on how the normal filed on Y ⊂ X is extended to a vector filed on (a
neighbourhood of Y in) X.

Illuminative Exercise. Check up this formula for concentric spheres of radii
t in the spaces with constant sectional curvatures that are Sn, Rn and Hn.

Now, let us allow a non-constant geodesic field normal to Y , call it ψν, where
ψ(y) is a smooth function on Y and write down the full second variation formula
as follows:

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R(y)ψ2

(y)dy
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for

[○○] R(y) =
1

2
(Sc(Y, y) − Sc(X,y) +M2

(y) − ∣∣A∗
(Y )∣∣

2) ,

where M(y) stands for the mean curvature of Y at y ∈ Y and ∣∣A∗(Y )∣∣2 =

∑i(α
∗)2, i = 1, ..., n − 1.

Notice, that the "new" term ∫Y ∣∣dψ(y)∣∣2dy depends only on the normal field
itself, while the R-term depends on the extension of ψν to X, unless

Y is minimal, where [○○] reduces to

[∗∗] ∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ∣∣2 +

1

2
(Sc(Y ) − Sc(X) − ∣∣A∗

∣∣
2)ψ2.

Furthermore, if Y is volume minimizing in its neighbourhood, then ∂2
ψνvoln−1(Y ) ≥

0; therefore,

[⋆⋆] ∫
Y
(∣∣dψ∣∣2 +

1

2
(Sc(Y ))ψ2

≥
1

2
∫
Y
(Sc(X,y) + ∣∣A∗

(Y )∣∣
2
)ψ2dy

for all non-zero functions ψ = ψ(y).
Then, if we recall that

∫
Y
∣∣dψ∣∣2dy = ∫

Y
⟨−∆ψ,ψ⟩dy,

we will see that [⋆⋆] says that

the ψ ↦ −∆ψ + 1
2
Sc(Y )ψ is greater than12 ψ ↦ 1

2
(Sc(X,y) + ∣∣A∗(Y )∣∣2)ψ.

Consequently,
if Sc(X) > 0, then the −∆ + 1

2
Sc(Y ) on Y is positive.

Justification of the ∣∣dψ∣∣2 Term. Let X = Y ×R with the product metric and
let Y = Y0 = Y × {0} and Yεψ ⊂X be the graph of the function εψ on Y . Then

voln−1(Yεψ) = ∫
Y

√
1 + ε2∣∣dψ∣∣2dy = voln−1(Y ) +

1

2
∫
Y
ε2

∣∣dψ∣∣2 + o(ε2
)

by the Pythagorean theorem
and

d2voln−1(Yεψ)

d2ε
= ∣∣dψ∣∣2 + o(1).

by the binomial formula.
This proves [○○] for product manifolds and the general case follows by

linearity/naturality/functoriality of the formula [○○].
Naturality Problem. All "true formulas" in the Riemannian geometry

should be derived with minimal, if any, amount of calculation – only on the
basis of their "naturality" and/or of their validity in simple examples, where
these formulas are obvious.

Unfortunately, this "naturality principle" is absent from the textbooks on
differential geometry, but, I guess, it may be found in some algebraic articles
(books?).

Exercise. Derive the second main formula 2.3.A by pure thought from its
manifestations in the examples in the above illuminative exercise.13

12A ≥ B for selfadjoint operators signifies that A −B is positive semidefinite.
13I haven’t myself solved this exercise.
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1.6 Conformal Laplacian and the Scalar Curvature of Con-
formally and non-Conformally Scaled Riemannian Met-
rics

Let (X0, g0) be a compact Riemannian manifold of dimension n ≥ 3 and let
ϕ = ϕ(x) be a smooth positive function on X.

Then, by a straightforward calculation,14

G# Sc(ϕ2g0) = γ
−1
n ϕ−

n+2
2 L(ϕ

n−2
2 ),

where L is the conformal Laplace on (X0, g0)

L(f(x)) = −∆f(x) + γnSc(g0, x)f(x)

for the ordinary Laplace (Beltrami) ∆f = ∆g0f = ∑i ∂iif and γn = n−2
4(n−1) .

Thus, we conclude to the following.
Kazdan-Warner Conformal Change Theorem. 15 Let X = (X,g0) be

a closed Riemannian manifold, such the the conformal Laplace L is positive.
Then X admits a Riemannian metric g (conformal to g0) for which Sc(g) >

0.
Proof. Since L is positive, its first eigenfunction, say f(x) is positive16 and

since L(f) = λf, λ > 0,

Sc(f
4
n−2 g0) = γ

−1
n L(f)f−

n+2
n−2 = γ−1

n f
2n
n−2 > 0.

Example: Schwarzschild metric. If (X0, g0) is the Euclidean 3-space,
and f = f(x) is positive function, then

the sign of Sc(f4g0) is equal to that of −∆f .

In particular, since the function 1
r
= (x2

1 + x
2
2 + x

2
3)
− 1

2 , is harmonic, the

Schwarzschild metric gSw = (1 + m
2r

)
4
g0 has zero scalar curvature.

If m > 0, then this metric is defined for all r > 0 and it is invariant under the
involution r ↦ m2

r
.

If m = 0, this the flat Euclidian metric.
If m < 0, then this metric is defined only for r >m with a singularity ar r =m.

Non-Conformal Scaling. Let X = (X,g) be a smooth n-manifold, and
let R×

x ⊂ GLx(n), x ∈ X, be a smooth family of diagnosable (semisimple) 1-
parameter subgroups in the linear groups GLx(n) = GLn that act in the tangent
spaces Tx(X).

Then the the multiplicative group of functions φ ∶ X → R× acts on the
tangent bundle T (X) by

τ ↦= φ(x)(τ) for φ(x) ∈ R×
= R×

x ⊂ GLx = GL(Tx(X))

and, thus on the space of Riemannin metrics g on X.
14There must be a better argument.
15[Kazdan-Warner(conformal) 1975]: Scalar curvature and conformal deformation of Rie-

mannian structure.
16We explain this in section 1.9.
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The main instance of such an action is where the tangent bundle is orthog-
onally split, T (X) = T1 ⊕ T2, and φ acts by scaling on the subbundle T2.

It is an not hard to write down a formula for the scalar curvature of g1+φ
2g2,

but it is unclear what, in general, would be a workable criterion for solvability
of the inequality Sc(gϕ) > 0 in ϕ, e.g. in the case where X = X1 × X2 and
the subbundles T1 and T2 are equal to the tangent bundles of submanifolds
X1 × x2 ⊂X, x2 ∈X2, and x1 ×X2 ⊂X, x1 ∈X1.

Yet, in the case of rank(T2) = 1, this equation introduced, I believe, by
Robert Bartnik in [Bartnik(prescribed scalar) 1993] was successfully applied to
extension of metrics with Sc > 0 (see section ??)17

1.7 Schoen-Yau’s Non-Existence Results for Sc > 0 on SYS
Manifolds via Minimal (Hyper)Surfaces and Quasisym-
plectic [Sc ≯ 0]−Theorem

Let X be a three dimensional Riemannian manifold with Sc(X) > 0 and Y ⊂X be
an orientable cooriented surface with minimal area in its integer homology class.

Then the inequality (∫ Sc ≥ 2∂2V ) from section 1.5, which says in the present
case that

∫
Y
Sc(Y, y)dy > 2∂2

νarea(Y ),

implies that
Y must be a topological sphere.

In fact, minimality of Y makes ∂2
νarea(Y ) ≥ 0, hence ∫Y Sc(Y, y)dy > 0, and

the sphericity of Y follows by the Gauss-Bonnet theorem.
And since all integer homology classes in closed orientable Riemannian 3-

manifolds admit area minimizing representatives by the geometric measure the-
ory developed by Federer, Fleming and Almgren, we arrive at the following
conclusion.

☀3 Schoen-Yau 3d-Theorem. All integer 2D homology classes in closed
Riemannian 3-manifolds with Sc > 0 are spherical.

For instance, the 3-torus admits no metric with Sc > 0.
The above argument appears in Schoen-Yau’s 15-page paper [SY(incompressible)

1979], most of which is occupied by an independent proof of the existence and
regularity of minimal Y .

In fact, the existence of minimal surfaces and their regularity needed for
the above argument has been known since late (early?) 60s18 but, what was,
probably, missing prior to the Schoen-Yau paper was the innocuously looking
corollary of Gauss’ formula in 2.2,

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν)

and the issuing inequality

Sc(Y ) > −2Ricci(ν, ν)

17Other special cases of this are (implicitly) present in the geometry of Riemannin warped
product, in the process of smoothing corners with Sc ≥ σ and in the transversal blow up of
foliations with Sc > 0.

18Regularity of volume minimizing hypersurfaces in manifolds X of dimension n ≤ 7, as we
mentioned earlier, was proved by Herbert Federer in [Fed(singular) 1970], by reducing the gen-
eral case of the problem to that of minimal cones resolved by Jim Simons in [Simons(minimal)
1968].
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for minimal Y in manifolds X with Sc(X) > 0.
For example, Burago and Toponogov, come close to the above argument,

where, they bound from below the injectivity radius of Riemannian 3-manifolds
X with sect.curv(X) ≤ 1 and Ricci(X) ≥ ρ > 0 by

inj.rad(X) ≥ 6e−
6
ρ ,

where this is done by carefully analysing minimal surfaces Y ⊂X bounded by, a
priori very short, closed geodesics in X, and where an essential step in the proof
is the lower bound on the first eigenvalue of the Laplace on Y by

√
Ricci(X).19

Area Exercises. Let X be homeomorphic to Y × S1, where Y is a closed
orientable surface with the Euler number χ.

(a) Let χ > 0, Sc(X) ≥ 2 and show that there exists a surface Yo ⊂ X
homologous to Y × {s0}, such that area(Yo) ≤ 4π.20

(b) Let χ < 0, Sc(X) ≥ −2 and show that all surfaces Y∗ ∈ X homologous to
Y × {s0} have area(Y∗) ≥ −2πχ.

(c) Show that (a) remains valid for complete manifolds X homeomorphic to
Y ×R.21

☀codim1 Schoen-Yau Codimension 1 Descent Theorem, [SY(structure)
1979]. Let X be a compact orientable n-manifold with Sc > 0.

If n ≤ 7, then all integer homology classes h ∈ Hn−1(X) are representable
by compact oriented (n − 1)-submanifolds Y in X, which admit metrics with
Sc > 0.

Proof. Let Y be a volume minimizing hypersurface representing h, the ex-
istence and regularity of which is guaranteed by a Federer 1970-theorem22 and
recall that by [⋆⋆] in 1.5 the −∆ + 1

2
Sc(Y ) is positive. Hence, the conformal

Laplace −∆ + γnSc(Y ) is also positive for γn = n−2
4n−1

≤ 1
2
and the proof follows

by Kazdan-Warner conformal change theorem.
☀Tn Mapping to the Torus Corollary. If a closed orientable n-manifold

X admits a map to the torus Tn with non-zero degree, then X admits no metric
with Sc > 0.

Indeed, if a closed submanifold Y n−1 is non-homologous to zero in this X
then it (obviously) admits a map to Tn−1 with non-zero degree. Thus, the
above allows an inductive reduction of the problem to the case of n = 2, where
the Gauss-Bonnet theorem applies.

SYS-Manifolds. Schoen and Yau say in [SY(structure) 1979] that their
codimension 1 descent theorem delivers a topological obstruction to Sc > 0 on
a class of manifolds, which is, even in the spin case, 23 is not covered by the
twisted Dirac operators methods.

19[BurTop(curvature bounded above)1973],On 3-dimensional Riemannian spaces with cur-
vature bounded above.

20See [Zhu(rigidity) 2019] for a higher dimensional version of this inequality.
21I haven’t solved this exercise.
22[Federer(singular) 1970]: The singular sets of area minimizing rectifiable currents with

codimension one and of area minimizing flat chains modulo two with arbitrary codimension.
23A smooth connected n-manifolds X is spin if the frame bundle over X admits a double

cover extending the natural double cover of a fiber, where such a fiber is equal to the linear
group, (each of the two connected components of) which admits a a unique non-trivial double
cover G̃L(n) → GL(n).
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This claim was confirmed by Thomas Schick, who defined, in homotopy
theoretic terms, integer homology classes in aspherical spaces, say h ∈ Hn(X)

and who proved using the codimension one descent theorem that these h for
n ≤ 7 can’t be dominated by compact orientable n-manifolds with Sc > 0.

In more geometric terms, the n-manifolds X, to which Schick’s argument
applies, we call them Schoen-Yau-Schick, can be described d as follows.

A closed orientable n-manifold is Schoen-Yau-Schick if it admits a smooth map
f ∶X → Tn−2, such that the homology class of the pullback of a generic point,

h = [f−1
(t)] ∈H2(X)

is non-spherical, i.e. it is not in the image of the Hurewicz homomorphism
π2(X) →H2(X).

Then Schick’s corollary to Schoen-Yau’s theorem reads.
☀SY S Non-existence Theorem for SYS Manifolds. Schoen-Yau-Schick

manifolds of dimensions n ≤ 7 admit no metrics with Sc > 0.
(b) Exercises. (b1) Construct examples of SYS manifolds of dimension n ≥ 4,

where all maps X → Tn have zero degrees.
Hint: apply surgery to Tn.
(b2) Show that if the first homology group H1(X) of a SYS-manifold has no

torsion, then a finite covering of X admits a map with degree one to the torus
Tn.

(c) The limitation n ≤ 7 of the above argument is due a presence of singu-
larities of minimal subvarieties in X for dim(X) ≥ 8.

If n = 8, these singularities were proven to be unstable by Nathan Smale;
this improves n ≤ 7 to n ≤ 8 in ☀SY S

More recently, as we mentioned earlier, the dimension restriction was re-
moved for all n by Lohkamp and by Schoen-Yau; the arguments in both papers
are difficult and I have not mastered them.24

Although the Dirac operator arguments don’t apply to SYS-manifolds, they
do deliver topological obstructions to Sc > 0, which, according to the present
state of knowledge, lie beyond the range of the minimal surface techniques. Here
is an instance of this.
⊗∧kω̃ Quasisymplectic Non-Existence Theorem. Let X be a compact

⊗∧kω̃-manifold of dimension n = 2k, i.e. X is orientable and it carries a closed
2-form ω (e.g. a symplectic one), such that ∫X ω

k ≠ 0, and such that the lift ω̃ of
ω to the universal covering X̃ is exact, e.g. X̃ is contractible.25

Then X admits no metric with Sc > 0.
This applies, for instance, to even dimensional tori, to aspherical 4-manifolds

with H2(X,R) ≠ 0 and to products of such manifolds26 but not to general SYS-
manifolds.

24See [Smale(generic regularity) 2003], SY(singularities) 2017], [Lohkamp(smoothing) 2018]
and section ??.

25It’s enough to have X̃ spin.
26Recently, Chodosh and Li proved that
compact aspherical manifolds of dimensions 4 and 5 admit no metrics with positive scalar

curvatures. (See [Chodosh-Li(bubbles) 2020], [G(aspherical) 2020] and section??)
But this remains problematic for products of pairs of aspherical 4-manifolds.
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Idea of the Proof. Assume without loss of generality that ω serves as the
curvature form of a complex line bundleL→Xand let L̃→ X̃ be the lift of L to
the universal covering X̃ →X.

Since the curvature ω̃ of L̃, is exact the bundle L̃is topologically trivial,
hence it can be represented by k-th tensorial power of another line bundle,

L = (L
1
k )

⊗k,

where the curvature of L
1
k is 1

k
ω̃. By Atiyah’s L2-index theorem, there are non-

zero harmonic L2-spinors on X̃ twisted with L
1
k for infinitely many k, but the

twisted Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner) formula applied to
large k doesn’t allow such spinors for Sc(X̃ ≥ σ > 0.27

Exercise. Show that if X is ⊗∧kω̃, then the classifying map X → B(Π),
where B(Π) = K(Π,1) is the classifying space for the group Π = π1(X), sends
the fundamental homology class [X] to a non-torsion class in Hn(B(Π)).

Problem. Is there a unified approach that would apply to SY S-manifolds
and to the above ⊗∧kω̃-manifolds X, e.g. symplectic ones with contractible
universal coverings?

For instance,
do products of SY S and ⊗∧kω̃-manifolds ever carry metrics with positive
scalar curvatures?

1.8 Warped T⋊-Stabilization and Sc-Normalization
Many geometric properties of Riemannian manifolds X = (X,g) implied by the
inequality Sc(g) ≥ σ follow (possibly in a weaker form) from the same inequality
for a larger manifold, say X∗, that, topologically, is the product of X with the
a torus, X∗ =X ×TN for some N = 1,2, ..., where the Riemannian metric g∗ on
X∗ is invariant under the action of TN and where X∗/TN is isometric to X.

Surface Examples. Let X = (X,g) be a closed surface and g∗ be a TN -
invariant metric on X ×TN , such that

(X ×TN , g∗)/TN = (X,g).

(a) Sharp Equivariant Area Inequality. If Sc(g∗) ≥ σ > 0, then a special
case a theorem by Jintian Zhu,28 says that

the area of X is bounded the same way as it is for Sc(g) ≥ σ,

area(X) ≤
8π

σ
.

Moreover,
the equality holds only if X∗ is the isometric product X ×TN .

27Atiyah’s theorem from [Atiyah(L2) 1976] needs a slight adjustment here, since the action
of the fundamental group Γ = π1(X) on X̃ doesn’t lift to L

1
k ; yet the fundamental group of the

(total space) of the unit circle bundle of L does naturally act on L
1
k . Also, there is no difficulty

in extending Lichnerowicz’ vanishing argument to the L2 case, see §9 1
8
in [G(positive) 1996].

28See [Zhu(rigidity) 2019] and ??, ?? for related inequalities.
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(b) (Weakened) T∗-Stable 2d Bonnet-Myers Diameter Inequality. If
Sc(g∗) ≥ σ, then

[BMD] diam(X) ≤ 2π

√
N + 1

(N + 2)σ
<

2π
√
σ
.

Proof. Given two points x1, x2 ∈ X, take two small ε-circles Y−1 and Y+1

around them, let Xε ⊂ X be the band between them and and apply (the rela-
tively elementary TN -invariant case of) the 2π

n
-Inequality from section ??.29

Non Trivial Torus Bundles. The inequality [BMD] is valid for (all) Rieman-
nian (N + 2)-manifolds X∗ with free isometric TN -actions:

if Sc(X∗) ≥ σ > 0, then diam(X∗/TN) ≤ 2π
√

(N + 1)/(N + 2)σ.
In fact, the above proof applies, since, topologically, the part of X∗ that lies

over the band Xε ⊂X is the product, Xε ×TN .
It is unclear, however, if the areas of X∗/TN are bounded in terms of Sc(X∗)

for all such X∗.
And, as we shall see later, possible non-triviality of torus bundles create

complications for other problems with scalar curvature.
General Question. The above examples suggests that quotients X of man-

ifolds X∗ with Sc(X∗) ≥ σ under free isometric actions of tori have similar
geometric properties to those of manifolds which have Sc ≥ σ themselves. But
it is unclear how far this similarity goes.

Example. let X be a closed surface and X⋊ = X ⋊ T1 be a warped product
as described below.

Does the inequality Sc(X⋊) ≥ 2 yield an upper bound on all of geometry of X?
For instance,

is there a bound on the number of unit discs needed to cover X?
(If Sc(X) ≥ 2, then X admits a distance decreasing homeomorphism from

the unit sphere S2, that can be constructed using the family of boundary curves
of concentric discs with center at some point in X.)

Warped Products. As far as geometric applications are concerned, the rel-
evant X∗ are (iterated) warped products, we denote them X⋊ and call warped
TN -extensions of X, that are characterized by the existence of isometric sections
X →X⋊ for X⋊ →X =X⋊/TN .

Clearly, metrics g⋊ on these X⋊ are

g⋊ = g + ϕ2
1(x)dt

2
1 + ϕ

2
2(x)dt

2
2 + ... + ϕ

2
N(x)dt2N

for some positive functions ϕi on X.
Among these we distinguish O(N)-invariant warped extensions, where the

ZN covering manifolds X̃⋊ =X ×RN , where

X̃⋊
/ZN =X⋊,

are invariant under the action of the orthogonal group O(N). Thus, X̃⋊ are
acted upon by the full isometry group of RN , that is RN ⋊O(N).

29Also see §2 in [G(inequalities) 2018] and the proof of theorem 10.2 in [GL(complete) 1983].
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Equivalently, the metric in such an X⋊ is a "simple" warped product: g⋊ =
g +ϕ2d∣∣t̄∣∣2 for t̄ = (t1, t2, ..., tN), the scalar curvature of which, as we know, 1.4
is

Sc(g⋊)(x, t̄) = Sc(X)(x) −
2N

ϕ(x)
∆gϕ(x) −

N(N − 1)

ϕ2(x)

and which is most simple (and useful) for N = 1, where

[⋊ϕ] Sc(g⋊)(x, t̄) = Sc(X)(x) −
2

ϕ(x)
∆gϕ(x).

for the Laplace (Beltrami) ∆g on X = (X,g).

[⋊ϕ]
N -Symmetrization Theorem. Let X = (X,g) be a closed oriented

Riemannian manifold of dimension n =m +N and let

X ⊃X−1 ⊃ ... ⊃X−i ⊃ ... ⊃X−N ,

be a descending chain of closed oriented submanifolds, where each X−i ⊂X is equal
to a transversal intersection of X−(i−1) with a smooth closed oriented hypersurface
Hi ⊂X,

Hi ∩X−(i−1) =X−i.

If n ≤ 7, then
there exists a closed oriented m-dimensional submanifold Y ⊂X homologous

to X−N and a warped product TN -extension Y ⋊ of Y = (Y,h) for the Riemannian
metric h on Y induced from g on X, such that the scalar curvature of Y ⋊, that
is, being TN -invariant, is represented by a function on Y , is bounded from below
by the Scalar curvature of X on Y ⊂X,

Sc(Y ⋊, y) ≥ Sc(X,y), y ∈ Y.

Proof. Proceed by induction on codimension i = 1,2, , ....N and construct
submanifolds

X ⊃ Y1 ⊃ ... ⊃ Yi ⊃ ... ⊃ YN = Y ⊂X

as follows.
At the first step, let Y1 ⊂ X be a volume minimizing, hence stable, hyper-

surface homologous to X−1 where, the positivity of the second variation implies
the positivity of the

−∆ +
1

2
(Sc(Y1) − Sc(X)∣Y1 ,

for the Laplace ∆ = ∆h1 on Y1 with the metric h1 induced from X and let ψ1 > 0
be the first eigenfunction of this with the positive eigenvalue λ1, thus

−∆ψ = (λ −
1

2
(Sc(Y,h1) − Sc(X))) ⋅ ψ1.

Here, let h⋊1(y) = h1(y)+ψ
2dt2 be the warped product metric on Y1×T1 and

observe
Sc(h⋊1 , y) = Sc(h1, y) −

2

ψ
∆ψ1 = Sc(X,y) + 2λ1.
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Then, at the second step, let Y2 ⊂ Y1 be a hypersurface, such that Y2 ×T1 ⊂

Y1 ×T1 is volume minimizing for the metric h⋊1 , which is equivalent for Y2 to be
volume minimizing in Y1 with respect to the metric ψl11 h1 for l1 = 2

n−1
.

Thus we obtain Y ′
2 , where the corresponding metric on Y ′

2 ×T2 is

h′2 + ψ
2
1dt

2
1 + ψ

2
2dt

2
2.

Repeating this N − 2 more times, we arrive at Y ′
N and an (iterated) warped

product metric

h′N +
N

∑
i=1

ψ2
i dt

2
i on Y ′

N ×TN ,

which can be symmetrised further to the required h⋊ by applying the above
infinitely many times to hypersurfaces Y ′

N × TN−1 ⊂ Y ′
N × TN for all subtori

TN−1 ⊂ Y ′
N × TN .30 (The luxury of the extra O(N)-symmetry is unneeded for

most purposes.)
Exercise. Apply [⋊ϕ]N -symmetrization to n-manifolds with isometric Tn−2-

actions and prove the above equivariant area inequality by reducing it to the
warped product case that was already settled in section 1.4.1.

Symmetrization by Reflections and Convergence Problem. Let Y be a closed
minimal co-orientable (i.e. two sided) hypersurface in a Riemannian manifold. If
Y is locally volume minimizing, then it admits arbitrarily small neighbourhoods
Vε ⊃ Y in X with smooth strictly mean convex boundaries. Then by reflecting
such a varepsilon in the two boundary components, one obtains manifolds V̂ε
with isometric actions of Z ⋊Z2.

If these Y are non-singular, e.g. if dim(X) ≤ 7, then one can take solutions of
the isoperimetric problem for these Vε, where one minimize the volumes of both
components of the boundaries of Vε per given (small) volume contained between
them and Y . In this case, V̂ε, ε→ 0, converge to smooth Riemannian manifolds
V ⋊ with isometric actions of R and with their scalar curvatures bounded from
below by Sc(X)∣Y .

If Y is singular, the boundaries of these Vε, even if singular, 31 can be
smoothed with positive mean curvatures, but it is unclear if they converge to a
reasonable object for ε → 0: what is missing for convergence is a Harnack type
inequality for the boundary components of ∂1, ∂2 ⊂ ∂Vε, that is a uniform bound
for the ratios of the distances

dist(y, ∂i)

dist(y′, ∂i)
, y, y′ ∈ Y,

i = 1,2, and /or of distances dist(x,x′, Y ), x,x′ ∈ ∂i.
Notice, that "symmetrization by reflections", albeit open to generalizations

to singular Y , is not, apparently, applicable, to stable µ-bubbles Y , where the
warped product construction does apply. 32

30See in, §12[GL(complete)1983], [G(inequalities) 2018] and also the sections ??, ?? for
details of this argument and for generalizations.

31If n = 8, then, by adapting Nathan Smale’s argument, one can show that these Vε are
non-singular for an open dense set of values of ε; but this is problematic for n ≥ 9.

32See §8 in [G(billiards) 2014], §4.3 in [G(inequalities) 2019] and section ?? for more about
all this.
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Symmetrization versus Normalization. T⋊-Symmetrization of metrics g typ-
ically) makes their scalar curvatures constant by paying the price of modification
of the topology of the underlying manifolds, X ;X ×T1.

As far as sets of "interesting" maps between Riemannian manifolds are con-
cerned a similar effect effect is achieved by keeping the same manifold X but
modifying the metric by g = g(x) ; g○ = g○(x) = Sc(X,x)g(x).

In fact, we shall see later in many examples, that
there is a close (but not fully understood) similarity between the sets of λ○-

Lipschitz maps (X,g○) → (Y,h○) and of T1-equivariant λ⋊-Lipschitz maps (X ×

T1, g⋊) → (Y ×T1, h⋊) for λ○ and λ⋊ related in a certain way.

1.9 Positive Eigenfunctions and the Maximum Principle
Let X be a compact connected Riemannian manifold and let

∆f = ∑
i

∇iif = traceHessf = div gradf

denote the Laplace (Beltrami) on X, which, recall, is a negative , since

∫
X
⟨f,∆f⟩dx = −∫

X
∣∣gradf ∣∣2dx ≤ 0

by Green’s formula.
Non-Vanishing Theorem. Let s(x) be a smooth function, such that the

L = Ls ∶ f(x) ↦ −∆f(x) + s(x)f(x)

is non-negative, that is ∫X⟨f(x), Lf(x)⟩dx ≥ 0 for all f or, equivalently, if L the
lowest eigenvalue λ = λmin is ≥ 0.33

Then
the eigenfunction f(x) associated with λ doesn’t vanish anywhere on X.
Start with two lemmas.
1. C1-Lemma. If the minimal eigenvalue of the f(x) ↦ Lf(x) = −∆f(x) +

s(x)f(x) on a compact Riemannian manifold is non-negative, λ = λmin ≥ 0, then
the absolute value ∣f(x)∣ of the eigenfunction f associated with λ is C1-smooth.

2. ∆-Lemma. Let f(x) be a non-negative continuous function on a Riemannian
manifold, such that

(i) f(x) vanishes at some point in X,

f(x0) = 0, x0 ∈X,

(ii) f(x) is not identically zero in any neighbourhood of the point x0 ∈X,
(iii) f(x) is everywhere C1-smooth and it is C2-smooth at the points x where
it doesn’t vanish.

Then there exists a sequence of points x1, x2, ... ∈ X convergent to x0, where
f(xi) > 0 and such that

∆f(xi)

f(xi)
→ ∞, for i→∞.

33This is equivalent since our L has discrete spectrum.
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Derivation of Non-vanishing Theorem from the Lemmas. Since ∣f ∣ is C1 by
the first lemma, the ∆-lemma, applied to ∣f(x)∣, shows that there exists a point
x, where f(x) ≠ 0 and

∆f(x)

f(x)
=

∆∣f(x)∣

∣f(x)∣
> ∣s(x)∣,

that is incompatible with −∆f(x) + s(x)f(x) = λf(x) ≥ 0 for λ ≥ 0.
Proof of C1-Lemma. Recall that the eigenvalues of the L = Ls = −∆ + s are

equal to the critical values of the energy functional

E(f) = ∫
X
(∣∣gradf(x)∣∣2 + s(x))f2

(x)dx

on the sphere
∣∣f ∣∣2 = ∫

X
f2

(x)dx = 1

in the Hilbert space L2(X) and the critical points of E are represented by
eigenfunctions

Indeed,
E(f) = ⟨f,Lf⟩ = ∫

X
⟨f(x), Lf(x)⟩dx

by Green’s formula and the differential of the quadratic function f ↦ ⟨f,Lf⟩ on
the sphere ∣∣f ∣∣2 = 1 is

(dE)f(τ) = ⟨τ,Lf⟩ for all for all τ normal to f.

Thus, vanishing of dE at f on the unit sphere says, in effect, that Lf is a
multiple of f , i.e. Lf = λf .

All this makes sense in the present case, albeit the space L2(X) is infinite di-
mensional and L an unbounded, because L is an elliptic operator, which implies,
for compact X, that

the spectrum of L is discrete, bounded from below and all eigenfunctions are
smooth.

In particular – this is all we need,
all minimizes of E(f) on the unit sphere, that are, a priori, only Lipschitz

continuous, are smooth.34

Now, observe that,
taking absolute values of smooth functions f(x) ↦ ∣f(x)∣ doesn’t change their

energies, as well as their L2-norms,

∥∣f ∣∥ = ∥f∥ =

√

∫
X

∣f ∣2(x)dx,

E(∣f ∣) = E(f) = ∫
X
(∣∣grad∣f ∣(x)∣∣2 + s(x))∣f ∣2(x)dx,

34Recall that our "smooth" means C∞ and all our Riemannian manifolds are assumed
smooth.
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Indeed, absolute values ∣f ∣(x) are Lipschitz for Lipschitz f , hence, they are
almost everywhere differentiable functions, such that grad∣f ∣(x) = ±gradf(x) at
all differentiability points x of ∣f ∣.

It follows that the absolute value of the eigenfunction f with the smallest
energy E(f) = λmin is also a minimizer; hence, this ∣f ∣ is smooth. QED.

Poof of ∆-Lemma. The common strategy for locating points x ∈ X with
"sufficiently positive" second differential of a function f(x) is by using simple
auxiliary functions e(x) with this property and looking for minima points for
f(x) − e(x).

The basic example of such a function e(x) in one variable is e−Cx, x > 0, for
large C, where e′′

e
= C2, and where observe that the ratio e′′

e′
= C also becomes

large for large C.
It follows that that the Laplacians of the corresponding radial functions in

small R-ball By(R) in Riemannian manifolds X,

e(x) = eC(x) = ey,C(x) = e−C⋅ry(x) for ry(x) = dist(y, x) ≤ R

satisfy

∆e(x) ≥ C2e(x) −C ⋅mean.curv(∂By(r), x) for r = ry(x) = dist(y, x)

Now, in order to find a point x close to a given x0 ∈X where f(x) = 0, take
y ∈X very close to x0, where f(y) > 0, let By(R) ⊂X be the maximal ball, such
that f(x) > 0 in its interior, let

e(x) = eC(x) = e−C⋅ry(x) − e−C⋅R

and observe that e(x) vanishes on the boundary of the ball By(R) and is strictly
positive in the interior. Moreover

e(x) ≥ ερ,

for all x on the geodesic segment between y and x0 within distance ≥ ρ from x0

for all ρ0 ≤ R.
Notice that this ε = εC albeit strictly positive, tends to zero for C →∞.
Assume without loss of generality that x0 is the only point in Bx(R) where

f(x) vanishes (if not, move y closer to x0 along the geodesic segment between
the two points), let C be very very large and see what happens to f(x) and e(x)
in the vicinity of x0 ∈ ∂By(R), say in the intersection

U0 = By(R) ∩Bx0(R/3).

Observe the following.
● Since f(x) > 0 for x ∈ By(R), x ≠ x0, and since eC(x) → 0 for C → ∞ for

ry(x) = dist(y, x) ≥ r0 > 0, the function e(x) = eC(x), for large C, is bounded
by f(x) on the boundary of U0,

e(x) ≤ f(x), x ∈ ∂U0,

where e(x) < f(x) unless x = x0.
● Since f is differentiable at x0 and assumes minimum at this point, the

differential df vanishes at x0, which makes f(x) = o(ρ) for ρ = dist(x,x0), there
is a part of (the interior of) U0, where e(x) > f(x).
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Hence, the difference f(x) − e(x) assumes minimum at an interior point
x = xy,C ∈ U0, such that x = xy,C → x0 for C →∞ and

∆f(x)

f(x)
≥

∆e(x)

e(x)
→ ∞.

The proof of the ∆-lemma and of the non-vanishing theorem are thus concluded.

Discussion. The non-vanishing theorem, which, probably, goes back to
Rayleigh, is often used without being even explicitly stated as, for instance,
by Kazdan and Warner in their "conformal change" paper. But I couldn’t find
an explicit reference on the web, except for the paper by Doris Fischer-Colbrie
and Rick Schoen, where they prove such a non-vanishing for non-compact man-
ifolds needed for their

non-existence theorem for non-planar stable minimal surfaces in R3.
Their argument relies on the "strong maximum principle" for the L, for which

they refer to pp. 33-34 of the canonical Gilbarg-Trudinger textbook, where the
relevant case of this principle is stated (on p. 35 in the 1998 edition which is
available on line) after the proof of theorem 3.5 as follows.

"Also, if u = 0 at an interior maximum (minimum), then it follows from the
proof of the theorem that u = 0, irrespective of the sign of c."

(The assumptions of the theorem specifically rule out c with variable signs,
where this c = c(x) is the coefficient at the lowest term in the equation Lu =

aij(x)Diju + b
iDiu + c(x)u = 0 introduced on p. 30.)

What is actually proven in this book on about twenty lines on p. 34, is a
version of "∆-lemma" for L.

In our proof, we reproduce what is written on these lines, except for "direct
calculation gives" that is replaced by an explicit evaluation of ∆e(x) 35

The following (obvious) corollary to the non-vanishing theorem will be used
for construction of stable symmetric µ-bubbles in sections ??, ??.

Uniqueness/Symmetry Corollary. If X is compact connected, then the
lowest eigenfunction f of the L is unique up to scaling. Consequently, if L
is invariant under an action of an isometry group on X, then, even if X is
disconnected, there exists a positive f invariant under this action.

Exercises. (a) Multi-Dimensional Morse Lemma. Show that two non-
coinciding volume minimizing hypersurfaces in the same indivisible homology
integer homology class of an orientable manifold X have empty intersection and

35In truth, the only non-evident aspect of the argument resides with the identities
(e−Cx)′ = −Ce−Cx and (e−Cx)′′ = (−Ce−Cx)′ = C2e−Cx with the issuing inequalities
(e−Cx)′′ >> e−Cx and (e−Cx)′′ >> ∣(e−Cx)′∣, which can’t be done by just staring at the ex-
ponential function. (The appearance of ex, that is an isomorphism between the additive R
and multiplicative R×

+
with all its counterintuitive properties, is amazing here – there is noth-

ing visibly multiplicative in ∆; besides, the geometric proof of the existence of ex via the
conformal infinite cyclic covering map C→ C ∖ {0} and analytic continuation is non-trivial.)
The rest of the proof is geometrically effortless: you just look at the graph Γe of the function

e(x) = exp−C ⋅ dist(y, x) in a small R-ball B ⊂ X outside zero set of f with the center of your
choice, such that B touches this set at x0, and let C = Ci →∞. Then you see a tiny region in
this ball close to x0, where Γe mounts above Γf , and you take the point in X just under the
top of this mountain, i.e. where the distance measured vertically between the two graphs is
maximal, for you x = xi.
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that, consequently, volume minimizing hypersurfaces must be invariant under
symmetries of X.36

(b) Generalize this to µ-bubbles, that are boundaries of domains V in a
Riemannian manifold X that minimize the functional

V → voln−1(∂V ) − ∫
V
µ(x)dx

for a smooth function µ(x). (Unit spheres Sn−1Rn are not minimizing µ-bubbles
for µ = (n − 1)dx.)

(b) Courant’s Nodal Theorem. Show that the that is the number of
connected components of the complement to the "k-th nodal set", i.e. the zero
set of the k-th eigenfunction of L = Ls = ∆+s on a compact connected manifold,
can’t have more than k connected components.

Question. Is there a counterpart to this for non-quadratic functionals in
spaces of functions, or, even better, spaces of hypersurfaces?

36This was used by Marston Morse to show that
if the (n−1)-dimensional homology group of some covering of a compact Riemannian n-manifold,

doesn’t vanish then the universal covering X̃ of X contains an infinite minimal hypersurface the
image of which under the covering map X̃ → X is compact.

Morse was concerned in his paper "Recurrent Geodesics on a Surface of Negative Curvature"
with the case of n = 2 but his argument, transplanted to the environment of the geometric
measure theory, applies to manifolds of all dimensions n.
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