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Veronese minimizes normal curvatures

Anton Petrunin

Abstract

Suppose M is a closed submanifold in a Euclidean ball of sufficiently
large dimension. We give an optimal bound on the normal curvatures,
guaranteeing that M is a sphere. The border cases consist of Veronese
embeddings of the four projective planes.

1. Introduction. Let M ⊂ Rd be a closed smooth n-dimensional submanifold.
Assume that d is large and M is contained in a ball of radius r. What can be
said about the maximal normal curvature of M? In other words, what can be
said about the maximal curvature of geodesics in M when considered as curves
in Rd?

First, note that the curvatures cannot be smaller than 1
r

at all points. More-
over, the average value of |H | must be at least n· 1

r
[2, 28.2.5], [8, 3.1]; here H

denotes the mean curvature vector. This statement is a straightforward gener-
alization of István Fáry’s result about closed curves in a ball [3, 14].

On the other hand, the n-dimensional torus can be embedded into an r-
ball with all normal curvatures equal to

√

3·n/(n+ 2)· 1
r
. This embedding was

discovered by Michael Gromov [6, 2.A], [5, 1.1.A]. This bound is optimal; that
is, any smooth n-dimensional torus in an r-ball must have normal curvature at
least

√

3·n/(n+ 2)· 1
r

at some point [8].
Gromov’s examples easily imply the following: any closed smooth manifold

M admits a smooth embedding into an r-ball of sufficiently large dimension with
normal curvatures less than

√
3· 1

r
[6, 1.D], [5, 1.1.C].

But what happens between 1
r

and
√
3· 1

r
?

In this note, we consider embeddings into an r-ball with normal curvatures
at most 2√

3
· 1
r
. We show that if the inequality is strict, the manifold must be

homeomorphic to a sphere (see § 2). For the non-strict inequality, in addi-
tion to spheres, the possible cases include the real, complex, quaternionic, and
octonionic planes mapped by rescaled Veronese embeddings (see § 4).

2. Sphere theorem. Let M be a closed smooth n-dimensional submanifold

contained in a closed r-ball in Rd. Suppose the normal curvatures of M are
strictly less than 2√

3
· 1
r
. Then M is homeomorphic to the n-sphere.

In the proof we will use the following version of Axel Schur’s lemma [12].

Bow lemma. Let γ1 : [a, b] → R2 and γ2 : [a, b] → Rd be two C1,1-smooth
unit-speed curves. Suppose that curvature of γ1 does not exceed the curvature of

∗This work was partially supported by the National Science Foundation, grant DMS-

2005279.

1



γ2 at any time moment and the curve γ1 is an arc of a convex curve; that is,
it runs in the boundary of a convex plane figure. Then the distance between the
endpoints of γ1 cannot exceed the distance between the endpoints of γ2; that is,

|γ1(b)− γ1(a)| 6 |γ2(b)− γ2(a)|.

Moreover, in case of equality, γ2 = ι ◦ γ1 for some isometry ι from R2 to a
plane in Rd.

The first part of the lemma follows from [13, Theorem 5.1], and the equality
case follows from its proof.

Proof of the sphere theorem. We may assume that n > 2; otherwise, there is
nothing to prove.

Denote the r-ball by Bd. We can assume r = 1√
3
, meaning r is the cir-

cumradius of an equilateral triangle with unit side. Consequently, the normal
curvatures of M are less than 2.

Choose a unit-speed geodesic γ : [0, π
2 ] → M ; let x = γ(0) and y = γ(π2 ). By

assumption, the curvature of γ in Rd is less than 2. Applying the bow lemma,
we obtain |x− y| > 1.

Let Π be the perpendicular bisector of [x, y]. Since the curvature of γ is less
than 2,

∡(γ′(t0), γ
′(t)) < 2·|t− t0| and 〈γ′(t0), γ

′(t)〉 > cos(2·|t− t0|),

if t 6= t0. Therefore,

〈y − x, γ′(t0)〉 >

π

2
∫

0

cos(2·|t− t0|)·dt > 0.

In particular, the derivative of the function f : t 7→ 〈y − x, γ(t)〉 is positive.
Therefore, γ intersects Π transversely at a single point; denote this point by s.

Choose a unit vector u ∈ Tx. Let γu : [0,
π
2 ] → M be the unit-speed geodesic

starting from x in the direction of u, and let z = γu(
π
2 ). The argument above

shows that |x− z| > 1.

x y

s

z

Π

Hx Hy

γ

γu γ̂u

Denote by Hx and Hy the closed half-spaces
bounded by Π containing x and y, respectively. As-
sume z ∈ Hx. Then |y − z| > |x − z| > 1. Since
|x−y| > 1, the triangle [xyz] has all sides greater than
1, which is impossible because x, y, z ∈ Bd. Therefore,
γu meets Π before π

2 ; denote by r(u) the first such
time.

Let us show that the function u 7→ r(u) is smooth.
In other words, γu intersects Π transversely at time
r(u). Assume this is not the case, then γu is tangent
to Π at r(u). Let γ̂u be the concatenation of the reflec-
tion of γu|[0,r(u)] across Π and γu|[r(u),π

2
]. Note that

γ̂u is C1-smooth and C∞-smooth everywhere except
at r(u). Therefore, the bow lemma applies to γ̂u, and hence |y− z| > 1. Again,
all sides of the triangle [xyz] are greater than 1; hence, it cannot lie in Bd — a
contradiction.
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It follows that the set

Vx = { t·u ∈ Tx : |u| = 1, 0 6 t 6 r(u) }

is diffeomorphic to the closed n-disc. Denote by Wx the connected component
of M ∩Hx that contains x.

By the Gauss formula [9, Lemma 5], the sectional curvatures of M are less
than 4. In particular, the exponential map expx : Tx → M is a local diffeo-
morphism within the π

2 -ball centered at the origin in Tx. It follows that the
exponential map defines a local diffeomorphism Vx → Wx. In particular, Wx is
a smooth manifold with boundary. Since Vx is simply connected, expx defines
a diffeomorphism between Vx and Wx. Thus, Wx is a closed topological n-disc,
and ∂Wx is a smooth hypersurface in M .

Let us swap the roles of x and y and repeat the construction. We obtain
another closed topological n-disc Wy ⊂ M , bounded by a smooth hypersurface
∂Wy.

Observe that ∂Wx intersects ∂Wy at s. Furthermore, both ∂Wx and ∂Wy

are connected components of s in M ∩ Π. Therefore, ∂Wx = ∂Wy. That is,
M can be obtained by gluing two n-discs by a diffeomorphism between their
boundaries. Hence M is homeomorphic to the n-sphere.

3. Veronese embeddings. The real, complex, and quaternionic projective
spaces of dimension n, along with the octonionic projective plane, are denoted
by RPn, CPn, HPn, and OP2, respectively. We assume that each of these spaces
is equipped with the canonical metric; in particular, all the spaces have closed
geodesics of length π.

Proposition. There are smooth isometric embeddings
⋄ RPn →֒ Rd for d > n+ 1

2 ·n·(n+ 1);
⋄ CPn →֒ Rd for d > n+ n·(n+ 1);
⋄ HPn →֒ Rd for d > n+ 2·n·(n+ 1);
⋄ OP2 →֒ Rd for d > 26;

that map each geodesic to a round circle.
Moreover,

(i) all normal curvatures of the images under these embeddings are equal to 2,
(ii) the images of these embeddings lie on a sphere of radius rn =

√

n/(2·n+ 2)
(for OP2, we assume n = 2).

This proposition, along with a detailed proof, is given in Kunio Sakamoto’s
paper [11, § 2]. These embeddings will be referred to as Veronese embeddings
. Note that rn is the circumradius of a regular n-simplex with unit edge
length, and r2 = 1/

√
3. Thus, the second part of the proposition implies that

our sphere theorem is optimal.
The Veronese embeddings have an explicit algebraic description and possess

several remarkable geometric properties. In particular, these embeddings are
equivariant, and their images are minimal submanifolds in the rn-spheres. All
of these properties are discussed in the cited paper by Kunio Sakamoto.

We will need the following claim, which is a special case of John Little’s
theorem [7] and the more general results of Kunio Sakamoto [11, Theorem 3].
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Claim. Let M be a closed submanifold in Rd. Suppose that every geodesic in
M is a planar circle of radius 1

2 . Then M is either a round sphere of radius 1
2

or one of the Veronese embeddings described above.

4. Rigidity theorem. Let M be a closed smooth n-dimensional submanifold

in a closed r-ball in Rd. Suppose the normal curvatures of M are at most 2√
3
· 1
r
.

If M is not homeomorphic to a sphere, then up to rescaling, it is congruent
to the image of a Veronese embedding of a projective plane: RP2, CP2, HP2,
or OP2.

Proof. Assume that M is not homeomorphic to a sphere; in this case, n > 2.
As before, let Bd denotes the r-ball in Rd, where we assume r = 1√

3
; therefore,

the normal curvatures of M are at most 2.
By the proposition in § 3, the images of the Veronese embedding of the

projective planes satisfy the assumptions of the theorem. It remains to show
that no other embeddings of this type exist.

Choose a unit-speed geodesic γ : [0, π2 ] → M ; let x = γ(0) and y = γ(π2 ).
The argument in our sphere theorem implies that |x− y| = 1. The rigidity case
in the bow lemma implies that γ is a half-circle of curvature 2. Since any two
points in M can be connected by a geodesic, we conclude that all geodesics in
M are circles of curvature 2 in Rd.

Since M is not a sphere, the claim in § 3 implies that M is given by one of
the Veronese embeddings of RPn, CPn, HPn for n > 2, or OP2.

It remains to show that n 6 2. Assume the contrary. Note that if n > 3,
then each space RPn, CPn, and HPn contains four points at a distance π

2 from
one another. The corresponding points would lie at a distance 1 in Bd, which is
impossible.

5. Final remarks. Recall that the Veronese embeddings map RPn, CPn,

and HPn into balls of radius rn =
√

n/(2·n+ 2), which is the circumradius of
a regular n-simplex with unit edge length.

This note is motivated by the following question; see [8, 1.4] and [10].

Question. Is it true that the Veronese embedding minimizes the maximum
normal curvature among all smooth embeddings of RPn into an rn-ball in a
Euclidean space of sufficiently large dimension?

The same question can be posed for CPn and HPn. A keen reader might
have noticed that the case n = 2 is already solved.

Gromov’s construction provides numerous smooth immersions of the torus
Tn into r-balls with all normal curvatures

√

3·n/(n+ 2)· 1
r
. The proof of the

theorem in [8] implies that such immersions map the torus to the boundary of
the ball; it also precisely describes its second fundamental form. Nevertheless,
the following question remains open.

Question. Can one characterize all smooth immersions of the n-torus into
r-balls with all normal curvatures equal to

√

3·n/(n+ 2)· 1
r
?

Question. Let M be as in our sphere theorem. Must it be diffeomorphic to
the standard n-sphere?
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I suspect that the answer to the previous question is yes. If M lies on the
boundary of the r-ball, then by the Gauss formula [9, Lemma 5], M has strictly
quarter-pinched curvature. Therefore, in this case, the answer is yes by the
differentiable sphere theorem [1].
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