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The editors are happy to make the famous 1946 and 1956 seminar
lectures of Heinz Hopf on Geometry and Differential Geometry in the
large available to the mathematical community. They are pleased to
have this fine volume carry the number 1000 of the Lecture Notes in
Mathematics series. They express their sincere thanks to all those
who have contributed to the project: To Peter Lax and John Gray who
wrote the original class notes; to the Mathematics Institutes of
N.Y.U. and of Stanford University for the permission to rewrite and
publish the notes; to §.S. Chern for suggesting the volume and writing
a preface; to Konrad Voss and Karl Weber for carefully checking the
old versions and correcting errors, partly using error lists made by
Heinz Hopf himself; and to Rachel Boller for her excellent job in

typing the final manuscript and drawing all illustrations.

Albrecht Dold
Beno Eckmann



PREFACE TO THE SECOND EDITION

The text of the Hopf Lecture Notes remains nearly unchanged. A
number of misprints has been corrected, for which considerable help was
given by WU TA-JEN of Nankai University at Tianjin, China, who also
contributed a great number of valuable remarks.

One of the main guestions discussed in Part-Two of the Hopf
Lectures is the problem of finding all closed surfaces in E> with
constant mean curvature (c.m.c.), the solution being given in these
Lecture Notes for the genus O case and for the case of all simple
closed surfaces of arbitrary genus (in which cases the round spheres
are the only solutions), while "the question whether there exist closed
surfaces of genus > 1 with H=C and with self intersections ... remains
unanswered" (p. 131). An exciting development began in 1986 with
H.C. WENTE's proof of the existence of c.m.c. tori; this proof starts
exactly at the point, where Heinz Hopf left the problem in 1950. In
the meantime, not only have the c.m.c. tori been classified, but
N. KAPOULEAS (1987) has also proved the existence of c.m.c. surfaces
of arbitrary genus > 3. The case of genus 2 still seems to make siffi-
culties. For references see the paper of U. PINKALL and I. STERLING:
On the classification of constant mean curvature tori, to appear in
Annals of Mathematics (1989).

K. Voss
March 1989



PREFACE

These notes consist of two parts:

1) Selected Topics in Geometry, New York University 1946,
Notes by Peter Lax.

2) Lectures on Differential Geometry in the Large, Stanford

University 1956, Notes by J.W. Gray.

They are reproduced here with no essential change.

Heinz Hopf was a mathematician who recognized important mathema-
tical ideas and new mathematical phenomena through special cases. In the
simplest background the central idea or the difficulty of a problem
usually becomes crystal clear. Doing geometry in this fashion is a
joy. Hopf's great insight allows this approach to lead to serious ma-
thematics, for most of the topics in these notes have become the star-
ting-points of important further developments. I will try to mention a
few.

It is clear from these notes that Hopf laid the emphasis on poly-
hedral differential geometry. Most of the results in smooth differen-
tial geometry have polyhedral counterparts, whose understanding is both
important and challenging. Among recent works I wish to mention
those of Robert Connelly on rigidity, which is very much in the spirit
of these notes {(cf. R. Connelly, Conjectures and open questions in ri-
gidity, Proceedings of International Congress of Mathematicians, Hel-
sinki 1978, vol. 1, 407-414).

A theory of area and volume of rectilinear polyhedra based on de-
compositions originated with Bolyai and Gauss. Gauss realized the de-
licacy of the problem for volumes, and Hilbert proposed in his famous
"Mathematical Problems" that of "constructing two tetrahedra of equal
bases and equal altitudes which can in no way be split into congruent
tetrahedra..." (Problem no. 3). This was immediately solved by Max Dehn
whose results, with some modifications, are presented in Part 1, Chap-
ter IV of these notes. This work has been further pursued and treated
by algebraic methods. For the modern developments I refer to C.H. Sah,
Hilbert's third problem: Scissors congruence (Research Notes in Mathe-

matics 33, Pitman, San Francisco 1979).



vi

The main content of Part 2 consists of the study of Weingarten
surfaces in the three-dimensional Euclidean space, particularly those
for which the mean curvature or the Gaussian curvature is a constant.
Important progress was recently made by Wu~-Yi Hsiang, as he constructed
many examples of hypersurfaces of constant mean curvature in the Eucli-
dean space which are not hyperspheres; cf. Wu-Yi Hsiang, Generalized
rotation hypersurfaces of constant mean curvature in the Euclidean
spaces I (J. Differential Geometry 17 (1982), 337-356), and his other
papers. But the simplest question as to whether there exists an immersed
torus in the three-~dimensional Euclidean space with constant mean cur-

vature remains unanswered (the "soap bubble" problem).

Hopf's mathematical exposition is a model of precision and clarity.

His style is recognizable in these notes.
S.S8. Chern

March 1983
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PART ONE

Selected Topics in Geometry

New York University 1946
Notes by Peter Lax
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CHAPTER I

The Euler Characteristic and Related Topics

Section 1. The first topic to be discussed will be Euler's famous re-
lation between the number of faces, edges and vertices of a convex

polyhedron.

Definition. A convex 2-cell is a convex point set whose boundary .con-
sists of a finite collection of straight line segments (edges) which
meet at points (vertices). A convex 3-cell is a convex point set whose

boundary consists of a finite collection of convex two-cells.

Number of vertices of a three-cell will be denoted by e ;
Number of edges of a three-cell will be denoted by k ;
Number of two-cells of a three-cell will be denoted by £ .

Euler's theorem states that for convex three~cells the following

relation holds.
(1.1) e~k +£f=2.

A number of proofs of this theorem will be presented.

Section 2. First Proof (Legendre)

We are given P , a convex polyhedron; project its surface from
an interior point into the surface of the unit sphere around that
point. This may be done from theorems in the general theory of convex
sets. This way we obtain a network on the surface of a sphere consist-

ing of convex spherical polygons.

A Theorem on Spherical Polygons. The sum of the angles of a convex

spherical polygon on the surface of a unit sphere is equal to
(n~2)x+A3 , where n is the number of sides of the polygon and &

itg area.

This theorem can be proved by induction: for n = 3 it reduces
to a well-known theorem in spherical trigonometry. To proceed from n
to n+l we subdivide the polygon into a triangle and a polygon of
(n=1) sides by means of a diagonal, which lies completely inside the
original polygon because of its convexity.

The theorem holds for non-convex polygons as well but we shall
not bother to prove it.

We return to our network consisting of convex spherical polygons.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 3-29, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989



For each polygon we write down the equation
Zai =nn -~ 2n + A where oy is an angle of the polygon.

We sum over all polygons, P: . Then

3
Z oy = 2ne , since each vertex contributes a total angle
i,j
of 2% .
Zﬁnj = 27k , since each edge bounds two polygons and will be
counted twice in summation of edges of the polygon.
£
% 2x = 2nf , since j goes from 1 to £ .
j=1
§:Aj = 4w , since every point of the sphere is covered once
and only once, and the area of a unit sphere = 4x . But
fa,. =Zn.nw - I 27 + A.
A | . \ z j
1] J J J

2ne = 21k - 2xnf + 47w

dividing by 2% we get e~k + f =2 .

Section 3. Corollaries of Euler's Theorem

Let fn denote the number of two-cells bounding the polyhedron

which have n sides; obviously

(3.1) £= T £ .

Since each edge bounds two polygons:

[ee]
(3.2) 2k = I nf_ ,
n
n=3
the total number of edges of all the polygons.
Let e be the number of vertices of the polyhedron at which m

edges meet, obviously

(o]
(3.3) e = 1e_ .

Since each edge contains two vertices:

[ee]
(3.4) 2k = 1 me_
m=3
the total number of edges emitted from all vertices.
Multiplying both sides of equation (1.1) by two and first substituting
(3.14) and (3.2), (3.3), then (3.1), (3.3) and (3.4) we obtain



nf
n

(1.17") Z2e + 12f - 4
m n

(1.1") 2e  + I2f -
m n

IS
1]

Zme
m

4 + ¥4 - =
hx em = fn 8 ann + Zmem ,

or

w© fse]

0=8+ 3% (m4)e + 3 (n-4)f
m=3 m n=3 n

Putting all negative terms on the left side:
£ T md)e + 3
e. + =8 4+ ¥ (m4)e + ¥ (n-4)f .
3 3 =5 noo s n

Since all terms on the right are non-negative, it follows from

this last expression that

>
(3.5) e3+ f3,.B

In particular (3.5) implies that

a) every convex polyhedron possesses either trianqular faces, or ver-

tices with exactly three edges, or possibly both.

Multiply (1.1') by two and add it to (1.1"):
Z6e + 26f - 12 = i2nf + Ime ,
m n n m
or © ©
-12 =3 (2n-6)f + z(m-6)e .
3 noo3 m

Arranging this equation so that both sides will contain positive

terms only:

<« [ee]
3e3 + 2e4+ e = 12 + E (2n-6)fn + (m—6)em .
n=4 m=7

Since all terms on the right side are non-negative

>
3ey +2e, + e >12 .

Similarly we can derive the inequality

z12 .

3f3 + 2f4 + fS’

These last two inequalities imply that:

b} Every convex polvhedron must contain three, four or five-edged

vertices.

c¢) Every convex polvhedron must contain triangles, or quadrilaterals

or pentagons as faces.




Reqular polvhedra. A regular polyhedron has the property that all

its faces have the same number of sides n , and all its vertices have

the same number of edges m . Therefore

By the previously derived results either m = 3 and
3¥5n€5 or n=3, and 3sms$5 must hold.

Furthermore, the three equations:
2k =me =nf , and e -k + £ = 2

determine e , k and £ completely in terms of m and n . We tabu-

late all possible combinations

n m e £ k

3 3 4 4 6 Tetrahedron

3 4 6 8 12 Octahedron

3 5 12 20 30 Icosahedron

4 3 8 6 12 Hexahedron {cube)
5 3 20 12 30 Dodecahedron

We have thus proved that the five common regular polyhedrons are unigue.

Section 4. Second Proof of FEuler's Theorem (Steiner)

Consider in the plane a two-cell € with N sides subdivided
into two-cells ¢, - Let e , k , £ denote the total number of ver-
tices, edges and two-cells in C . e' , k' and £' denote the number
of interior vertices, edges and two-cells (i.e. those edges and ver-
tices not on the boundary of C ).

For each two-cell we have the well-known formula for the sum of
the angles of a two-cell c; with n sides and n angles each of

«, radians.
J n
(4.1) Za,~-nnw+2x =0 .
j=1 1

We sum over all two-cells Ci and, as previously, we have

b a, = 2net + Za , each interior vertex yields 2x to which
ij c
we add Za.
C
Inx= 27k! + 7N , each interior edge is on two 2-cells to which
i

we add N .

% 2r = 2nf' , since £ = f£' .,

Hence summing we get



(4.2) 2net - 27k! + 2xf!' + Toa- AN = O
C

Since (4.1) holds for ¢ too, écx— aN + 2w = O . Substituting
this into (4.2} and dividing it by 27 , we obtain the equation
(4.3) et - k' + £' =1 .
But, e =e' + N , k=k* + N, £ = £' ; substituting these into (4.3)
we obtain
(4.31%) e -k + £ =1.
Let us consider next a subdivision of a straight line segment into sub-

segments, e, k, e', k' being defined as before. Since k', the number

of subsegments is always one greater than the number of interior ver-

tices et,
(4.4) et- k' = -1
holds.
Similarly
(4.4") e~k =1.

(4.3%) and (4.4') may be considered as Euler's Theorem for 2 and 1

dimensional cases.

Section 5. General Notion of Polyhedron

A polyhedron is a finite collection of two-cells with the follow-
ing properties: Two 2-cells must be in one of the following three re-

lations to each other:

a) They have no points in common;
b) They have one vertex in common;
¢} They have one edge in common.
The characteristic x(P) of a polyhedron P is defined as

follows:
x(P) =e -k + £ .

Subdivision of a polvhedron: By the subdivision of a polyhedron we

mean a division of its two-cells by networks of edges and vertices in
such a manner that when two 2~cells have an edge in common, any new

vertex formed by the network of one cell on that edge of the original
two-cell must coincide with a new vertex found in such a manner in the

other two-cell.

Theorem: Let Pl’ P2 be two polyhedra, P2 being a subdivision of Pl'



Then
(5.1) x(Py) = x(P,) -

Proof: Consider an edge of P1 on wvhich new vertices are introduced;
the contribution of this open edge to x(Pz) is, in view of (4.4), -1;
the contribution of the same edge originally to x(Pi) was also -1

Consider an open two-cell of P1 which is subdivided into two-
cells; the contribution of the new vertices, edges and two-cells to
x(Pz) is, in view of (4.3), +1 . The contribution of that same two-
cell originally to x(Pl) is +1 also. Since these are the only pos-

sible changes made by a subdivision, we see that the characteristic
remains invariant.

The fact that the characteristic is invariant under subdivision

is one of the most important tools in the classification of surfaces.

Section 6. We have shown that the characteristic is invariant under
subdivision; this fact will be the basis of our third proof of Euler's
theorem.

consider two convex three-cells and project both of them from an
interior point onto the surface of a sphere. This way we obtain two
networks P and Q on the surface of the sphere. Consider &5 , the
v"eombination"” of P and Q . The two-cells of § are the non-empty
intersections of two-cells of P and Q ; the edges of S are the
subdivision of edges of P and Q by points of intersections of P
and @ ; the vertices of S are the vertices of P and Q plus the

points of intersections of P and Q . Thus S 1is a subdivision of

both P and O . By our previous result x(8) = x(P) and also
x(S) = %x(Q) , hence

x(P) = x(Q) .

Hence all convex polyhedra have the same characteristic % ; specifi-~
cally the characteristic of the tetrahedron is 4-6+4 = 2 ; but then
x(P) =2 or e-k+f =2

'
must hold for all convex three-cells. This proves Euler's Theorem.

Section 7. Surfaces of Hidher Genus

The previocus considerations can be carried over to networks drawn
on closed surfaces which are said to have different genus than the
sphere. A surface of genus p can be obtained by cutting out 2p
small circles from the surface of a sphere and connecting the punctures
pairways so that they do not intersect. The surface shown in the dia-

gram is of genus 2. A surface of genus 1 is called a torus. It may be



Q
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shown that all topologically equivalent closed orientable surfaces are
of the same genus, and every closed orientable surface falls into a

genus class.
All networks P drawn on a surface of genus p have the same

characteristic x(p) .

This important theorem can be proven the same way we proved the
special case p = O (sphere). Given networks P and Q , we obtain 8
by "combining® P and Q . Thus S 1is a subdivision of both P and
Q , hence

x(8) = x(P) = x(Q) .

Thus we have shown that a characteristic % can be associated
with each surface of genus p . We wish to determine x as a function
of p . This we do inductively.

First we Jetermine the characteristic of a torus. Two cuts in the

manner indicated on the diagram will separate the torus into two parts;

each of the parts will be equivalent to a sphere with two two-cells re-
moved, therefore each part will have the characteristic zero. Putting
the two parts together will not alter the characteristic since there
were the same number of edges and vertices along the cut which will

cancel themselves out. Thus we have shown that y(torus) = 0.

In case of a surface of genus p we cut it into two parts: One
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will be a torus, minus one two-cell, the other a surface of genus (p-1),
minus one two-cell. The characteristic of the former is -1 , and that
of the latter x(p-1) ~1 . As before putting the two parts together will

not alter the characteristic, hence

(7.1) x(p) = x(p-1) - 2
Since
(7.2) % (0) = % (sphere) =2 ,

it follows by induction from (7.1) and (7.2) that
(7.3) x(p) =2-2p .

Section 8. Application to the theory of Riemann sur faces

A surface I of genus p is represented by a single-valued con-
tinuous function on the sphere S .

All but a finite number of points (branch points) of 3 have a
small neighborhood mapped in a one-to-one manner into a small region
on S .

Furthermore we assume that each point which is not an image of a
branch point is covered by the same number of sheets, let's say s
times.

Let the number of branch points of order m be W oo and put
W=§1mwm.

The problem is to express p in terms of s and W .

Draw a net on S , stipulating that all branchpoints of the Rie-
mann surface should be vertices of the net. Project the net on the Rie-
mann sur face.

Let e,k,f and ¢€,x,9 be the number of vertices, edges and faces

on S and on the Riemann surface respectively.

¢ =sf , x =58k, € =es -W

p=1-x({p/2=1

(8.1) =1

(¢p-k+e)/2 = 1 - s(f-k+e)/2 + W/2

s + (1/2)W

which is the desired result.

One interesting consequence of (8.1) is that W is always even.

consider the Riemann surface which the function

‘vqg—ai)(g—az)...(g—azn) gives rise to; here W =2n and s =2 .
Hence the Riemann surface can be represented on a surface of genus
1-2+n=n~-1.
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Problem 1. If instead of a sphere we relate the point transformation

between a surface of genus p and one of genus q , how would formula
(8.1) change?

Section 9. Role of the Euler Characteristic in the Theory of

Vector Fields

Definition of Plane Vector Fields: To each point with a finite number

of exceptions a direction is given; this direction is a continuous
function of the plane except at the exceptional points; these points

are called singular points.

Index of a Singular Point: Draw a circle around the singular point which

is so small that it contains no other singularities of the vector field

in its interior or on its circumference. Take an arbitrary point on the

Y

Y

circumference of the circle and let « be the angle the vector at
that point makes with the direction of the positive x axis. a« is
uniquely determined mod 2n . After fixing the value of « , the angle
of a vector at any subseguent point on the circumference with the
direction of x axis can be determined uniquely if we require that it
be a continuous function of the arc length on the circumference of the
circle. We consider the changing direction at each point and finally
the total change of the « until we reach the original point. This
will be a multiple of 2w .

a(2n) -~ a{0) = 2xj ,

where j 1s the integral multiple called the index.

a) The value of j is finite and it does not depend upon our initial

point on the circumference of the circle.

b) The value of 3j does not depend upon the particular circle we
choose as long as the region is free of other singular points. (Since

two circles can be deformed into each other, and j changes con-
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tinuously, hence remains a constant under such a deformation.)

Examples of singular points in vector fields:

(a) % (b) (c) .
4
(@) —ﬁ (e) g ; >

<

(£) =

)

- N

If we regard these fields as gradient fields,

(a)
(b)
(c)
(@)
(e)
(£)

The indices of these configurations are as follows:

(a)
(b)

source corresponds to a maximum,
sink, to a minimum,

center,

simple saddle-point,

monkey-saddle,

TR I R A

dipole.

[N

(c¢) 1 (e) =2
(a) -1 (£) 2

-

The index was defined as 1/2 m® times the change of direction of
the vector field with respect to a horizontal parallel vector field in
going around a singular point x 1in a positive sense.

We observe that this change of angle in going around a regular
point is zero. From this it follows that in the definition of the index
the horizontal parallel vectorfield can be replaced by an arbitrary
vector field which has no singular points in a sufficiently small
neighborhood of x .

This generalized definition of the index is useful in studying

Vectorfields on Closed Sur faces.

Definition: Let =T be a closed surface possessing continuous first
derivatives at every point; then a tangent plane exists at every point
whose normal will vary continuously on the surface. Consider a field of

tangent vectors (of unit length) defined and continuous at all but a
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finite number of points of this surface. These exceptional points are
called singular points. A field with such properties will be called a

requlaxr vectorfield.

Index of a Singular Point: Take a small region around a singular point
which contains no other singularities of the vectorfield; let the
boundary of this region be a simple closed curve. Since the surface has
continuous first derivatives at every point in every sufficiently small
region we can define a non-singular tangent vector field. The index is
defined as 1/2 ® the change in direction of the original vectorfield
with respect to the local non-singular vectorfield.

We observe that the difference of the indices of two vectorfields

F and F' on I at a point x can be defined without any reference

to a local non-sinqular vectorfield. Namely the difference of the in-

dices of P and F!' at x is times the change in the angle

between the directions of the vecigrfield F and F' 1in going around
x in a positive sense. (The contribution of the local non-singular
vectorfield cancels out.)

This observation will be of great importance in proving the follow-
ing theorem:

The sum of the indices of all singularities of a reqular vector-

field is equal to the characteristic of the surface.

(9.1) ] =x(3) .
r ¥

Proof: The proof consists of two parts; first we show that i jr has
the same value for all regular vectorfields on z .

We consider two regular vectorfields F and F' . We then sub-
divide I by a network in such a manner that there will be no singu-
larities of either of the two fields on the edges or vertices of the
network. Furthermore we make the two-cells of the network small enough,
so as to have at most one singularity of F or F' in any one of them.

Since there are a finite number of singularities this may easily be

done.
The difference of indices jF— jF' of the singularity in each
two-cell is 7% times the change in the difference of the direc-

tions of F and F' in going around the boundary of the two-cell in

a positive sense. But if we sum , over all two-cells, we find

= 3
F F'
that this total sum is zero since every edge bounds two two-cells and

in the course of calculating E(jF— j_,) each will be traversed in

jokd
two opposite senses. Thus its contribution to z(jF— jF,) is zero.
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Hence ZjF =2jF, » and the sum of indexes is independent of the vec-
torfield.

The second part of the proof of (9.1) will consist of construc-
ting a special vectorfield whose I j will be calculated.

As in the first part divide I by a network in such a manner

that all two-cells of the network are triangles.

In each triangle we introduce 4 additional points. The centers of the
three sides and a point in the interior. The point in the interior is
connected with the vertices of the triangle and the centers of the
sides; these connecting lines are given a direction which points to-
ward the interior point. Each half of the edges of the triangle are
directed away from the vertex, from which it emanates (see diagram).
The original triangle is now broken up into six triangles; it is

easy to see that it is possible to define a continuous vectorfield in

the interior of the triangles which will coincide on the boundary with
the already prescribed directions.

Thus we have defined a vectorfield on £ which has one singular
point in each vertex, on each edge and in each two-cell of a network
on I and all other points are regular points. Furthermore the index
of the singularities in the vertices and in the two-cells are +1 ,
since they are respectively sources and sinks while the index of the
singularities on the edges is -1 , since they are of simple saddle~
point type. If e,k and f denote the numbers of vertices, edges and
two-cells of the network, we have
(9.1) b jr =e+ £ -k = 4(3)

r Q.E.D.

With the aid of (9.1) we can answer the following important
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guestion: On which surfaces exist vectorfields free of sinqularities?

If there are no singularities, er =0 .
By (9.1) %(2) = 0 must hold. Therefore the only possible surface with
the above mentioned property is the torus. By a simple construction

(see diagram) we can show that such a vectorfield actually exists.

7
Cr

Section 10. In this lecture a purely combinatorial proof of Euler's
theorem (due to Cauchy) will be presented.

Definition of network: A network in n-dimensional Euclidean space
consists of a finite number of points (vertices) p and of straight
line segments (edges) connecting some of these vertices, where no two
edges have an interior point in common. An edge will be denoted by its
endpoints pipj .

A network on the surface of a sphere consists of a finite number
of points (vertices) and of arcs of great circles (edges) connecting
some of the vertices, where every pair of vertices is connected by at
most one edge and no two edges have an interior point in common.

We introduce the following notation:

= number of vertices
number of edges

= number of open connected regions

0O th A ®
1

= number of components of the network

(A component is a connected part of the network which is not connected
with the remainder of the network.)

Then the following equality holds:
(10.1) e-k+£f=1+c¢ .

In proving this theorem at some stage of the proof we must essen-
tially use the hypothesis that the network is situated on the surface
of a sphere (and not on a surface with genus # 0). We do this by using

Jordan's theorem on polygonal arcs:

Jordan's Theorem: On the surface of a sphere every closed simple

non-self intersecting polygonal arc divides the surface of the sphere
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in exactly two open regions. Furthermore points on the opposite side
of a boundary arc in a sufficiently small neighborhood of the arc be-
long to different regions.

The proof of (10.1) will be done by induction on the number of
edges.

For k =0 (10.1) holds because in that case the network con-

sists of e 1isolated vertices; for this configuration
f=1 and c =e ,

and we obtain
e-k+f=e~0+1 =14+e =1+c .

We now show that if (10.1) holds for k = n then it holds for
k =n+1 . This will be done by removing an edge from a network with
(n+1) edges. We will then show that in all cases the right and left
side of (10.1) has decreased by the same amount. But first we must
introduce the concept of a free vertex. A free vertex is one from which

one edge emanates.

Lemma: If a network Q containing some edges does not contain free
vertices then there exists at least one simple closed polygonal arc

made up of edges of Q .

Proof of Lemma: Since Q contains edges, by hypothesis there exists a
vertex p, in Q@ with an edge P,Py emanating from Py 3 since P,
cannot be free, there will be an edge PoP3 different from p,p, ema-
nating from it. By the same process we get a chain of vertices
PysPyseessPy in which two consecutive vertices are connected by an
edge and any three consecutive vertices are distinct. Since there are
but a finite number of vertices in Q , we shall eventually come to a
vertex p_ for which P, =P, » E<n . We consider the first vertex

r
that satisfies this condition: we then have a closed polygonal arc

ProPryqPrya =°- Py

with at least 3 distinct edges in it. This proves the lemma.
Now we proceed with the induction.
Assume that (10.1) holds for all networks with k = n edges and

consider a network Q with n + 1 edges. We distinguish two cases:

(I) Q has a free vertex

(II) Q doesn't have free vertices

In case (I) let p be a free vertex, connected by an edge to another



17

vertex b' . If p' is also a free vertex, then the removal of the

edge p , p' will

leave e unchanged,

p leave £ unchanged,
decrease k by one,
p! increase ¢ by one.
We can verify that the right and left hand side of (10.1) changed
by the same amount. - The case where p' 1is not free is trivial.

In case (II) we have no free vertices hence by our lemma there

exists a closed polygon. Removing an edge of this polygon will

leave e unchanged,
decrease k by one,
leave ¢ unchanged,

decrease f by one.

(Since points on opposite sides of the edge we have removed belonged

to two different open regions.)

This completes the proof of (10.1).
Using (10.1) we shall derive two classical results of combinato-

rial topology.

Section 11. General notion of one-dimensional complex

A one dimensional complex is a finite collection of elements
{vertices) Py Pgys Py and pairs of elements (edges) pipj so that

each vertex is situated on at least one edge.

Imbedding of a one dimensional complex: A one-dimensional complex C

is said to be imbedded in an n-dimensional Euclidean space En {fon S,
the surface of a sphere) if there exists a network Q in E_ (on 8)
with the following properties: To every vertex p of C there corre-
sponds one and only one vertex p' of Q ; to all edges pipj of ¢
correspond simple disjoint polygonal arcs whose endpoints are p{ and
Py -

If E and K denote the number of vertices and edges of C , e
and k the number of vertices and edges of Q , we notice that it
follows from the definition that e - k = E - K .

In the following discussion we shall construct two complexes and

prove that they cannot be imbedded on the surface of a sphere.

() Consider the complex A consisting of five vertices P;
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i=1,...,5 and 10 edges pipj » i =1,...,5 , 3 =2,...,5, i<q .
Assume that it is possible to imbed it on the surface of a sphere;

then we have a network Q for which (10.1) holds:

(11.1) f=2-(e-k)(c =1, since Q is obviously connected)
e-k=E~-K=5- 10 = -5 ; substituting this into (11.1)-
we obtain
£f=2- (=5 =7 .

Let 1 denote the total number of incidences of edges of the
complex with the open regions of the network. Since every edge of A
lies on some closed simple plygonal path, by Jordan's theorem each edge

*
bounds two regions:
i = 2K .

On the other hand each open region has at least three edges of the
complex on its boundary:

3f<i .

Substituting the values £ =7 , K = 10. into

2K

3fSi

we obtain 21<i = 20

which is a contradiction. Hence the complex A cannot be imbedded on

a sphere.

(B) Consider the complex B consisting of six vertices
pl,pz,p3,q1,q2,q3 and nine edges piqj , 1,7 = 1,2,3 . In this case we

have E=6 ,K=9, £f=2- (6-9) =5 .

Let i denote the total number of incidences of edges of the complex

with regions of the network. As before
i=2K.

There are no triangular regions because if there were, at least two of
the three vertices of the triangle would both be a p or both a g
However, no two p or ¢ are connected by an edge while in a triangle
all vertices are connected with each other. Hence each region has at
least four edges on its boundary:

4£51i .,

*) Actually all that we need here is that i< 2K .



Substituting the values f =5 , K =9 into

we obtain

Hence the complex B cannot be imbedded on the surface of a sphere
since the assumption that it can lead to a contradiction.

We call a one-dimensional complex that cannot be imbedded in the
surface of a sphere sinqular; a singular complex is called irreducible
if eliminating any one of its edges would make it non-singular.

Kuratowski has shown that the only two irreducible singular com-

plexes are A and B .

Section 12. The second result that we shall derive with the aid of
(10.1) is a theorem of Cauchy that is of great importance in his proof
of the rigidity of convex polyhedra.

Given a network Q on S (the surface of a sphere) not containing
any free or isolated vertices. We divide its edges into two groups X
and Y to form a network. The order of a vertex of Q 1is defined as
the number of instances in which two neighboring edges emanating from
the vertex belong to different groups. The order is always an even,

non-negative number.

edges of group X

j = order of vertex

____________ edges of group Y

call o« the number of vertices of order O , g the number of
vertices of order 2 and r,, v= 1,2,... the number of vertices of
order (2 +2v) , Two adjacent emanating edges from the vertex form an

angle. Let w be the total number of angles at all vertices, w1 the

number of angles whose two edges belong to the same group X or Y ,

and v, the angles whose edges are in different groups. Since there

are no free vertices, each edge is on 4 angles and each angle has 2
edges
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(12.1) 2k = w = w, + w2 .

Since at least two of the three edges of a triangle belong to the
same group it follows that

v, Z number of triangles = f3 .
By formulas derived in section 3
(8] [e0]
2k = T nf ,and £ = 3T £ ; we see that
n=3 ™ n=3
= + e 2 ces) =
2k 3f3+ 4f4 5f5 + P 3f3+ 4(f4+ f5+ f6 + )
= + - = - > -
3f3 A(f f3) Af f3 > Af W,
Adding this equality to (12.1) we obtain
2k Z 4Af - w,
2k = W, + W,
4k = 4f + w2 , or
(12.2) wy € 4(k-£) .
By (10.1) k~-f=e-1-cfe=~2 and substituting this into
(12.2) we obtain
(12,3) W, S 4e - 8 .

By definition -
w, = 2 + 3 (2+2n)rn s
n=1

while the total number of vertices
(23]
e =a +p+ =
- n=1
Substituting this into (12.3) we obtain
(o8]
8 4+ 2 + I (2+2n)1"n < 4o + 4 + 4
n=1 n
or after rearrangement and division by 2
[a2]
(12.4) 20 +p24 + % (n-1)rn >4 .
n=1
A vertex whose order is = 4 is called (for obvious reasons) a cross-—
point. Inequality 12.4 means then that if the edges of a network Q

on S are divided into two groups X and Y there will always be at

least two vertices which are not crosspoints.

There is an analogy between this theorem and the theorem on the
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sum of indices of singularities of a vector field on §

Section 13. Generalization of Euler's theorem to n dimensions

Before we attempt to establish and prove the generalization of
Euler's theorem we would like to generalize the notions and lemmas
that were used for proving it in 2 dimensions. In Legendre's and
Steiner's proof we operated with theorems on the sums of angles of
spherical and plane triangles and polygons. These theorems can be ge-
neralized to n dimensions; the results are elegant but are not as
widely known as they should be.

A formula connecting the sum of the solid angles and dihedral

angles of a tetrahedron was discovered by de Gua (1783).

Denote the solid angles at the vertices of the tetrahedron by ay

(i =1,2,...,4), the dihedral angles by Bi (i =1,2,...,6). Trihedral

angles will be measured by the area cut off on a unit sphere with the

vertex of the angle as origin. Dihedral angles will be measured in the
usual way and are therefore equal to the spherical angles shown in the
diagram. By the well known formula on the sum of angles of a spherical

triangle (see section 2) we have for each vertex

(13.1) 1t+ai=213

where the summation is to be taken over all edges emanating from ver-

tex i .
Summing (13.1) over all vertices (i = 1,2,...,4) we obtain (since

each dihedral angle contributes to two vertices)

Za-2Z2p =-4x .

Dividing this last equation by 47T we obtain

1 1
(13.2) HZG-EZB=—1'

This is de Gua's Formula.
If we change the unit of the solid angle so that the solid angle

associated with the whole surface of a sphere is 1 , and the unit of
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the dihedral angle so that the angle between two planes at an angle

of 2% is 1, (13.2) can be written in the more symmetrical form
(13.2") IZa - Ip = -1 .

Furthermore, if we artificially associate with each face of the tetra-
hedron an angle Y; (i =1,...,4) , v, = 1/2 , {the solid angle of an
internal hemisphere whose center is any point on the face), and with
the interior another angle & = 1 , (the solid angle of an internal

sphere whose center is any interior point) (13.2') can be written in

the still more symmetrical form

(13.2") fa = I + Xy - £6 =0 .

It is this form that will be the easiest to generalize to n dimen-
sions.

Section 14. Definition of an n dimensional simplex.

Given n+l1 points in an n dimensional Euclidean space E
where these n+l points do not lie on any hyperplane of dimension
lower than n , we introduce the following system of coordinates: One
of the (n+l) given points is chosen as the origin O ; each point X
of En can be written as a linear combination of the remaining n
points PRLP RN N n

X = aixi
i=1
where the x; are real numbers. The set of points X whose coordi-~

nates satisfy the inequalities

xD;O, v =1,2,...,n
(14 .1) n
:x, $1
v=1 ?
is called an n-dimensional simplex with the vertices O,ai,az,...,an .

The boundary of the simplex is the set of points X for whose co-
ordinates the inequalities (14.1) will be satisfied, with the sign of
equality holding in at least one case. Consequently, the boundary con-
sists of n+l faces ((n-1) dimensional simplices), each of these
faces is contained in an (n-1) dimensional hyperplane.

We pass n+l hyperplanes parallel to the (n+1) hyperplanes con-
taining the faces of the simplex through a point of the space which

may for sake of convenience coincide with the vertex O .
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a3

Each of these hyperplanes Pi , i =1,2,...,n+1 divides the whole
space into two parts. The half space which, after a parallel trans-
lation of the plane into a position where it will contain one of the
faces, contains the simplex is called the positive halfspace, the

other the negative one.

Lemma I: No point of the space is on the positive (or negative) side

of all hyperplanes Pi through ©

Proof of Lemma I: The positive halfspaces of each of the planes con-

taining the n faces of the simplex passing through the vertex O

are defined by the inequalities

(14.2) xv:>0 , v =1,2,.0.,0 .

The positive halfspace of the plane parallel to the plane containing
the remaining face is defined by the ineguality

n
(14.2%) Ix <O .

v

v=1

Obviously (14.2) and (14.2') cannot be satisfied simultaneously.
Q.E.D.

The intersection of (n-r) faces of the simplex is an r-cell of
the simplex. We define the angle associated with this r-cell as the
solid angle of that part of the (n-1) dimensional unit sphere about
the origin which is on the positive side of the (n-r) planes parallel
to the faces whose intersection defines the r-cell. (The unit of solid
angle is chosen so that the solid angle of the full sphere is 1).

We introduce the following functions:

1 if X 1is on the positive side of Pi s

fi(x) “ 0 otherwise.

S denotes the total surface area of the (n-1)-dimensional unit
sphere.

Let o be the angle associated with the intersection of
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We defined a, as
1
(14.3) a. =3 Kfi (x)fi (x)...fi (x) as
1 2 n-x

where the integration is extended over the unit sphere.

Let o, be the sum of the angles on all r-cells, i.e. 0,= Za..

Lemma I of this section formulated in terms of the functions fi(X)
states that the products
n+l n+1

o £, (x) , I (1—fi(x))
i=t * i=1
are zero for all values of X .

Expanding the second one of these products and using the fact that
the first one vanishes identically we obtain
(14 .4) 1= TE+DE £+t (-n)" TE, £, ...f, =oO.

1 *2 1 *2 n

Integrating (14.4) term by term over the surface of the (n-1)-
dimensional unit sphere and using (14.3) and the definition of o, we
obtain

n
(14.5) T (=1) rar =0 .
r=0Q

This proof is due to Poincaré.

: 1 :
Since O™ 3(n+1) and o, = 1 , due to their degeneracy, we have
n-2
the corollary z
r=

r n,n-1
0o = C0TEE

Section 15. Definition of n-dimensional convex polvhedron

An n-dimensional convex polyhedron is a convex point set whose
boundary consists of a finite number of (n~1) dimensional convex poly-
hedra where any two (n-1) dimensional convex polyhedra have either no
point or an r-cell in common.

Given an n-dimensional convex polyhedron we take an r-cell (r <n)
of it and about a point of this r-cell we construct an n-dimensional
sphere. The n~dimensional solid angle of that part of the sphere which
is inside the polyhedron is the angle associated with this r-cell.

Let o, denote the sum of the angles of all r-cells.

Let er , £ =0,1,...,n , denote the number of r~cells of a convex
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polyhedron P . We define x(P) , the characteristic of P by

(15.1) x(P) = ;(-1)%r .
=0

(This is a natural extension of the Euler characteristic in three
dimensions.)

s* denotes an r-dimensional sphere.

Let T be a convex r-cell whose interior is subdivided into
r-cells. Let e, denote the total number of t-dimensional elements,

t

e, the number of interior t-~dimensional elements. We define

Lot Tt
(15.2) x(C¥) = x(-1) e xt(ch) = x(-1) et(thzO) .
t=0 t=o0

By the subdivision of an r-dimensional convex polyhedron we mean
a subdivision of its (r-1) cells in such a manner that if two (r~1)
cells have a t-cell in common, the subdivision of the two (r-1) cells

on this t-cell must coincide. Let P' stand for a subdivision of P .

After these preliminaries we state and shall prove the following
four theorems:

(1) x(8%) =1+ (-1)T , where x(5°) = the characteristic of any
network on an r-dimensional sphere,

(11) x(€®) =1,

(111) 2 (€)= (1%,

(zv) %(P) = x(P') .

These four theorems will be proven by induction applied simultane-
ously to (I) and (III).

For r =1 we can easily verify that (I) and (III) hold.

Agsume that (I) and (III) hold for all r <n ; we shall show that
(), (xI), (11I), (IV) follow for r =n .

Let o« denote an angle associated with an r-cell of a convex

n-cell, and Yy = %--a the corresponding exterior angle; o is the

sum of the angles of its r-cells, and we let T be the sum of the ex-
terior angles of its r-cells. (Tn_1= o) .

n n-2
o= 2(-0%_ , r= z (-1)r7r .
r=o r=o

We define

Lemma II. For every convex n-cell

n
1+(=1
(15.3) o+ r=itEL
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(15.4) Q=0
Proof of Lemma II. By summing the angles of all r-cells, on which by
. 1
definition y = 3 -« we see that
=1 _ =1 _ .
Ty =38 T Opr Op =387 T}
r n-1 r , 1 n
= (-0, = z (-1 (3 e-7) + (~1)" , since o, =1,
r=0 r=0
n-1 n-1 r
=1/2 3% (—1)rer— z (=1) T+ (-
r=o r=0

and since the boundary of a convex n-~cell can be considered as a net-
work on an (n-1) sphere

n-1

Q=172 x(s"™ -r+ (-1)7

since we assumed that (I) holds for r = n-1 ,
-1
Q+r=1/2 (14(-1)""7) + (-1)% = 172 (14(-1)™)
which proves (15.3).

We subdivide the (n-1)-cells of the convex n-cell into simplices
(a possibility of such a subdivision is shown by the induction). The
angle of any y-cell introduced on an r-cell CF¥ (n>r2y) of the n-cell
= o, the angle of ¢¥ ; since III is assumed to hold for r <n , the
contribution of the y-cells on C' to @ is x'(Cr)ar = (—1)rar =
contribution of CY¥ to @ ; hence @ remains invariant under a subdi-
vision of the boundary.

We take a point interior to this subdivided convex n-cell and by
connecting this point with all vertices on the subdivided boundary we

subdivide the convex n-cell into n-dimensional simplices.

An interior r-cell of any of the simplices into which the original
n-cell is subdivided consists of an (r-1)-cell of the boundary of the
n-cell plus the interior point. Therefore if we denote by e, the
number of interior r-~cells of the simplices, by e; the number of
r-cells on the boundary, the following equation holds:

(15.5) e°=1,er=e;_1,1$r5n.

By (14.5), (15.4) holds for each of the simplices:
n

(15.6) z(-1)g, =0 .
r=o

We sum (15.6) over all n-dimensional simplices and since each
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interior r-cell contributes a total angle 1, we obtain

Ig_ =€ + g*
r r r’

where U; is the sum of angles of the r-cells of the subdivided n-cell;

hence

n n~1
(15.7) s(-%_+ z (-D¥ex =0 .
r=o £ r=0 r
Substituting (15.5) into (15.7) we obtain
n~-1 n-1
(15.8) 1- (—l)re; + 3 (-1)7er =0 .
r=o r=0

The boundary of a convex n-cell can be regarded as a network on an
(n-1) sphere, and since (I) holds for r = n-1 , the first sum in (15.8)
-1 :
can be replaced by 1 +(—1)n ; hence we have by definition of ¢
n r n-1 r n
Q = z(-1) U; = 1 {=1) ao* + (-1)

r=o0 r=o o
which by (15.8)

s+ -0 ot (P =0

which proves (15.4).
Using Lemma II we are able to prove (III) for r =n .
Let C" be subdivided into convex n-cells C; s by Lemma II for
each C? (15.4) holds:
n .
(15.9) z (-1)%e =0 .
xr=0
Let e; denote the number of interior r-cells, a: the sum of the
angles of the r-cells of c™ . since each interior r-cell contributes

a total angle 1 we obtain by summing (15.9) over all i :

n r n-1 r
- ' - * =
r (-1) er + 3z (=1} crr o ,
r=o r=o
nence n n r n-1 r n n
x'(c) = z (-1)7el =~ 1 (-1) o¥ = (-1)7 - g = (-1}
r=o r=o

which proves (III) for r =n .

To prove (II) we observe that

n-1

a(@ =t + (8™ = (1P (g - =1

To prove (IV) we observe that the contribution of an r-cell to
x(P) is (—1)r , while the contribution of the same r-cell after sub-

division to «(P!') 1is, by (III), also (—1)r .



28

Since any two networks on S§° possess a common subdivision (see
section 6), it follows that the characteristic of any network on S®
has the same value. Computing this value for the network defined by an

(n+1) Jdimensional simplex, where

n+2
e. = (r+1} s r =0,.04,n
n n+2
n, _ rfm+2\ _ n+2 rn+2
(M = 20 () 1w )™ -y T(R)
r=o r=o
=1+ ()"

which proves (I) and completes the induction.

Section 16. n-dimensional spherical simplices

Given an n-dimensional sphere of radius R , and (n+1) hyperplanes
P, which pass through its center. Each of these hyperplanes divides
the whole space into two parts, one of which, arbitrarily chosen, will
be designated as the positive, the other one as the negative half-space.

We define the functions

£ (X) = 1 if X 1is on the positive side of Pi }i=1,2,..,n+1.
1 0 otherwise,

The closure of the set of points X on the surface of the sphere
for which £4(X) = ... = fn+1(X) =1 1is called an n-dimensional sphe-
rical simplex.

The set of points X on the surface of the sphere for which
£, (X) = £,(X) = ... = £ .,
podic to the first one and therefore congruent to it.

(X) = 0 is another spherical simplex, anti-

The intersection of (n-r) hyperplanes P, ,Pi ""’Pi with the
n-r
surface of the sphere defines an r-cell of :

the spherical simplex. An angle of this simplex ay. is defined as

(16.1) o = 1n [fii(x)fi (X)...£. (x)ds ,

C_R 2 ln-r
n

where can is the surface area of the n dimensional sphere.

We consider the value of the product
(1—f1(X)(1—f2(X))...(1_fn+1(X))
which is =1 if X 1is in the antipodic simplex, and zero for all

other values of X . If A denotes the area of the spherical simplex

(= the area of the antipodic spherical simplex), we obtain
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[(1-£, ) (1-£,(0) ... (A-£_ (X)) a5 = A_ .

Evaluating the same integral term by term we obtain

(16.2) [(1-z£,(0 +x g, Mg (K.t 0 zE E (X ...f )
1 1 2 n

n+1

+ (-1) fi(X)fz(X)...fn+1(X))dS = An .

The value of the integral jfi(x),..fn+1(x)ds is = An , Since
the value of the product is 1 if X 1is in the spherical simplex, O
otherwise. Using this fact and (16.1) we can rewrite (16.2) as

n
n r n
(16.3) R r>:=é.1) o = (1+(-0)Ma_ .

We distinguish two cases:

(i) n is even.
(ii) n is odd.
Using our previous symbols
n n-2

r r
= zz(~) o, = g (-1)" 7
r r
X=0 r=0

in case (i), (16.3) can be rewritten as

c R q = 2a

n

or A
(16.4) Q = 2/Cn ;; .

We can write (16.4) in terms of I' : Substituting (15.3) into (16.4)
we obtain

2
C
n
Replacing An by its definition as an integral we rewrite this last
identity as
das
(16.5) —~=4+c/2r=c/2.
]" n n

(16.5) is the Gauss-Bonnet formula for n-dimensional spherical simplices.
(ii) For n odd (16.3) and (15.3) yield
(16.6) Q=r=0 .,
The forgoing derivation is due to Poincaré. He used (16.4) and
(16.6) to obtain (15.4) by letting R -+ o .
Using (16.4) and (16.6) we can easily generalize Legendre's proof
of Euler's formula to n dimensions.



CHAPTER IIX

Selected Topics in Elementary Differential Geometry

Section 1. Curvature

Let X(t) = (x(t), y(t), z(t)) be a parametric representation of
a curve in three-dimensional Euclidean space; assume that the functions
x{t), y(t), z(t) possess continuous second derivatives. The spherical
image of X(t) 1is constructed as follows: With any point X(to) on
the curve X(t) we associate the point of intersection of the directed
half-ray from the origin parallel to the directed tangent to X(t) at
x(to) with the unit sphere about the origin. It follows from the dif-
ferentiability properties of the curve X(t) that its spherical image
will possess continuous first derivatives.

We introduce s , the arc length of X from a fixed point s, as
parameter. If A¢ dJdenotes the arc length of the spherical image bet-
ween s and s+As , the limit = lim %§=-§§
called the absolute curvature As=o at s , or just curvature at s.
ig the length

=k exists and k 1is

The total curvature between two points s and s

1 2

of the spherical image,

st J-Uz

K = kds = pa do
51 1
The spherical image of a plane curve obviously lies on a great

circle. We can give an orientation to this great circle by defining

Ao as positive or negative according to the sense of rotation from

s to s+ As . Directed curvature is defined as 1lim 4ag g _ kl(s) .

as-o A8 A8
Obviously |k,| =k = absolute curvature.

Again for the three dimensional case denote the angle which two

tangent vectors at sl and S,

C)Su(sl,sz)s n . This angle is equal to the spherical distance of the

» respectively subtend by u(s,,s)) ,

spherical images of the points X(sl), X(sz) on the unit sphere. By
the geodesic property of arcs of great circles it follows that

S2
(1.1) u(s,,s )s.[ kds .
1’72 sy

The sign of equality holds only in case of plane curves with a
monotonically turning tangent if the total curvature of the arc is € =.
For plane curves we can define k1 as above and the equation

S2
1.1t =
( ) u(sl,sz) 5, kids

holds if the total curvature of the arc between s, and s, is € .

Lemma I: If two plane curves Xl(s) and X2(s) satisfy the following

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 30-46, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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conditions
(a) They have the same curvature for all values of s ,
(b) For one point s , Xl(so) = X2(s°), Xl(so) = Xz(so)
then Xi(s) = Xz(s) for all values of s , i.e. the two curves

are identical.

Proof: Since the curvature is the derivative of the angle enclosed by
the tangent and the x axis, it follows from (a) that

tan~1(§1/§1) = tan~1(§2/§2) for all values of s . This yields
§1/i1= ?2/§2 and since §i+ ii = i§+ §§ = 1 , it follows that at any

points s one of the equations

(1.2) X, =X, X, = -x2

must hold. Since the vectors X1 , X2

one of the equations (1.2) holds for one value of s , it must hold for

never vanish it follows that if

all values of s ; but ii(so) = iz(so) by (b), hence ﬁl(s) = iz(s)
holds for all s . Integrating this equation from s, to s and using

from (b) the initial values Xl(so) = Xz(so) we establish Lemma I.

We note that for curves in three dimensions the identity of the

curvature does not imply the congruence of the curves:

Theorem A. (A. Schur) Let C and C' be two arcs of the same length
with the endpoints a,b,a',b' respectively, d = 3b and 4'= a'b!

denoting the distance of the endpoints; furthermore let k(s) and

k' (s) denote the respective curvatures of C and C' , where the pa-

rameter s 1is the arclength on ¢ and C' measured from a and a'

respectively.

If ¢ 1is a plane curve and together with the chord connecting
its endpoints forms a simple closed convex curve, and if at every
point s , 0Sssl , k'(s)< k(s) holds, then

arzada ,

the sign of equality holding if and only if c =c' .

Proof: (E. Schmidt) Since C possesses a continuously turning tangent

g+ 0<8< f , where the direction of the tan-

gent to C is parallel to the chord through a and b ; let us call

there exists a point s

the point C(sl) =p .

By hypothesis ¢ together with the chord connecting a and b
form a simple closed convex curve; therefore the angle enclosed by the
tangent at C(s) with the line through a and b is a monotonic

function of s and its variation on the arcs O0<s< S, sls s<f is
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€ ® . Therefore (1.1') is applicable:

S
1
u(s,,s) =| [ k(s)as| , osss<t .
S

We apply (1.1) to the curve C' :
s

1
u'(s,,s)< IS k' (s)ds|
g

and by the hypothesis k'(s) < k(s) it follows that the last expression
is 8,
< I! k(s)ds| = u(s,,s)
s
Taking the cosine of both sides of this last inequality we obtain

(since cos © 1is decreasing between 0 and w ):
(1.3) cos u'(si,s)B'cos u(sl,s) .

We integrate both sides of (1.3) from O to [ ; the integral of
the right side is the length of the projection of the chord ab on the
tangent at p ; since this tangent was chosen to be parallel to the
chord, the length of the projection is equal to the length of the
chord = d . The integral of the left side is the length d" of the
projection of the chord a'b' on the tangent at p' ; therefore
d" < the length of a'b' = &' ; since the inequality (1.3) is preserved

under integration, it follows that

(1.4) atz d
The sign of equality holds if and only if:

(a) (1.1) as applied to C' the sign of equality holds, which
—~ —~
implies that the two arcs a'p' and p'b' constituting c!

are plane arcs.

(b) in k'(s) < k(s) the sign of equality holds for all s, i.e.
k'(s) = k(s) for all s .

(¢) 4" =4*' .

By lemma I the equality of the curvature for plane curves implies

the congruence of the curves. Therefore it follows from (a) and (b)
/'—\,\',\ /_‘\N/\ P ram
that a'p' Tap , p'b' = pb . We want to show that a'p' and p'b?
lie in the same plane.
— ~ . . R

Assume that a'p' and p'b' lie in two different planes; then

their common tangent at p' must coincide with the line of intersection

of these planes. But it follows from (c) that the tangent at p' must
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be parallel to the chord a'b' which is possible only if both a' and
b' 1lie on the line of intersection of the two planes. That means that
the line through a', b' intersects the arc QT;‘ at the point p!
and since ;T;\ x 35 , the line through the points a,b intersects
C at p . This is contrary to the hypothesis that C together with
the chord connecting its endpoints is a convex curve.

Thus we have shown that C' 1is a plane curve, consequently by
(b) and Lemma I C = cC' . 0.e.d.

Section 2. Applications of Theorem A

Given two points a'b' whose distance is a'b' = d' . If we choose
a value r so that r=>d/2 , it is possible to pass a circle of radius
r through a' and b' . The two arcs connecting the points a' and
b' both have a constant curvature = 1/r .

We consider now all curves (' connecting a' and b' whose
curvatures k(s) satisfy the inequality k(s)< 1/r . A theorem of
H.A. Schwarz states that the arclength f of such curves <C' is
either £ the length of the lesser arc or 2 the length of the greater

arc of the circle of radius r connecting a' and »h' .

Proof: If 2 2nr , then [ 1is certainly > the length of the greater
arc; therefore we can restrict ourselves to the case € < 2xr . Let
a,b be two points on a circle of radius r such that the length of
one of the arcs ab =f ; taking this arc as € in Theorem A, we ob-
tain from (1.4) that

This means that if we draw the chord a'b' parallel to ab, this chord

will be nearer to the center of the circle than ab ; this implies that
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the length of the major arc QTB' is £ the length of the major arc
3B  and the length of the minor arc ;TE' is 2 the length of the minor
arc ab . The length of one of the arcs connecting a and b being =}
we see that the above statement is identical with Schwarz's theorem.

Q.e.d.

Section 3. Now we discuss the following problem: Of all arcs whose
endpoints coincide and whose curvature k(s) satisfies the inequality
k(s) £ k0 , which one has the smallest arc length? This question is
motivated by the physical problem of finding the shortest piece of
wire the endpoints of which can be brought together without breaking
the wire, i.e. without increasing its curvature at any point beyond

k. .

o)
. . . 1
We shall show that this curve is the circle of radius — . To

prove this we assume that there exists a curve C' whose arzolength
¢ is < 21r/ko . Let a,b be two points on the circle of radius i/k0
such that the length of one of the arcs ab =f . Taking this arc as
C in Theorem A, we verify that the hypothesis of that theorem are
satisfied, the circle being a convex arc and having a constant curva-

ture = ko 2 k(s) . Then we obtain that d = ab < distance of

a b

endpoints of C' =0 . But if [ < ZE/kO , the points a and b are
distinct, i.e. ab >0 ; hence the assumption that there exists a ¢C!
whose arc length is < 27r/kO leads to a contradiction which proves the

minimal property of the circle with radius 1/ko .

Section 4. Four vertex theorems

Take in the plane two closed simple convex curves CC,,C, which

1'72
have the same arc length L, = L2 = L . We make a one-to-one correspon-
dence between points of Cy and c, by taking one initial point arbi-

trarily on each of the two curves and introducing the arc lengths



35

. 1
measured from those points as a parameter. The curvatures k (s) and
2 . : . . . .
k" (s) are continuous and periodic functions of s with period L .

Since the total cuxrvature of closed simple convex curves is = 27 ,

L L L
ot () -k*(s))ds = [k (s)ds - [¥*(s)as = 2x - 2x = 0
[e) o o]

?

from which it follows that unless kl(s) = kz(s) , in which case

c, =cC

1 5 s ki(s) - kz(s) has to change sign at some point.

We shall prove that unless the two curves are congruent in which
case there are no changes of sign there are at least four changes of
sign of kl(s) - kz(s) in the interval 0<s<L .

Proof: kl(s) - kz(s) being a periodic function it follows that if the
number of changes of signs is finite, it must be an even number; since

the vanishing of S(ki(s)~k2(s))ds shows that the number of changes
o)

of signs is > 0 , to prove our theorem .all we have to show is that it
is impossible to have exactly two changes of sign.

Assume that there are exactly two changes of sign occurring at

s =0 and s = Sq i.e.
1 2
(4.1) k" (s) 2 k" (s) for 0<s< So
(4.2) k'(s) < K*(s) for s_sssL
If in Theorem A we identify Cl(s) , 0% s:SsO , with C , C2(s),
0<sg s, with ¢C' , from the conditions of simplicity and convexity

imposed on cy and (4.1) we can verify that the hypotheses of Theorem

A are satisfied. Hence from (1.4) we obtain
(4.3) atz a ,

where P S
a' = cz(so)c2(0) , d = Ci(so)cl(o)

On the other hand it follows from (4.2) that Theorem A is appli-
cable with cz(s) , sos s$L as C and Cl(s) , 535 s<L , as C' ;
for this case (1.4) yields an inequality which is the exact opposite
of (4.3):

(4.3%) daz 4’

(4.3) and (4.3') are at variance unless in both of them the sign of
equality holds. But this is the case if and only if in both (4.1) and
(4.2) the sign of equality holds, i.e. k' (s) = k°(s) for all s

which by Lemma I implies ¢, = C, .
1 2
Q.e.d.



36

Given any closed convex curve C of arc length L , we draw
a circle R with radius L/2n and identify ¢ and R with ¢y and
o)

k(s) - 21/L changes sign at least four times; since between two changes

of the previous theorem. The theorem states that kl(s)- kz(s) =

of sign a continuous function always has an extremal value, it follows

)

N O

N

>

0 S L

that the curvature of a closed simple convex curve has at least four
extremals. This theorem is known as the four vertex theorem (Vierschei-

tel Satz).

Section 5. Curves with discontinuously turning tangents

Our discussion up to now applies only to curves which possess
two continuous derivatives. The class of such curves will be referred
to as class I . We shall now generalize some of our results to the
class of curves which possess continuous second derivatives except at
a finite number of points where a jump discontinuity in the first deri-
vative may occur. The exterior angle formed by the right and left tan-
gents at a point of discontinuity s will be denoted by a«(s) . This
class of curves will be referred to as clagss II. A curve of class II
is the sum of a finite number of curves of class I ; its spherical
image is defined as the sum of the spherical images of the curves of
class I that constitute it plus those minor arcs of great circle which
connect the two different spherical images of the points where the
first derivative has a discontinuity. The length of these connecting
arcs is egual to the angles a enclosed by the right and left tangents;

from this and the results of Section 1 of Chapter II, it follows that
s

(5.1) u(sl,sz) < K do = length of spherical image between
s

1 sy and s2 ,

the sign of equality holding for and only for plane curves with mono-

tonically (though not necessarily continuously) turning tangents, if
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S
I2 do € n . The length of the spherical image can be written in the
s
1 form: s s s<s
(5.2) dg = k(s)ds + a(s)
s, S, s>s,

where ZIa(s) 1is the sum of all exterior angles enclosed by the right

and left tangents at points of discontinuities between Sy and s

5 -
From (5.1) and (5.2) the following generalization of Theorem A follows:
Theorem A': If C and C' are curves having the same length, belong-
ing to class II, and at every point of continuity k(s) = k'(s) , at
points of discontinuity o(s) Za'(s) holds, furthermore, if C together

with the chord connecting its endpoints is a simple convex curve, then
(5.3) da* =2 d

where 4 and d' are the distances of the endpoints of ¢ and C!

respectively. The sign of equality holds if and only if C 2 C'.

We shall apply Theorem A' to prove an important lemma. We first
introduce the following notation: Let G and G!' be two corners in
three-dimensional space with n faces each, F, and F; respectively,
v =1,2,,..,n ; denote the face angles of Fv and F; by 9, and
) denotes the edge of G(G') bound by the two

= 21);

1 ; '
?}, respectively. 2v+1(2v+1
' 1 _
faces Fv’ Fv+1(Fv’Fv+1)’ v=1,2,...,n (where €n+1 = F1, £n+1

let the dihedral angle on zv and 2; be a, and o, respectively.

0 and O!' denote the apexes of G and G' respectively.
Lemma II: If the following conditions are satisfied:

(a) ¢ = ¢L for v =1,2,...,n-1
(b) a! Z a

(¢) & 1is convex, i.e. any straight line cuts the faces of the

for v = 2,3,...,n-1

corner in at most two points.
then
ol Z e,
the sign of equality holding if and only if the sign of equality holds

in (&), v =2,3,...,n-1 .

Proof: We construct a plane P which cuts all edges of G but does
not go through O©0 ; let us denote the point of intersection of P

with { by A, , v =1,2,...,n . We construct the points A} ,

v v
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v =1,2,...,n on the edges YL of G' so that 639 = O'AL .
C and C' denote the polygons whose vertices are A, and AL
respectively, v = 1,2,...,n , and whose edges are the straight line

segments connecting Al with A and AL with A;+ respectively,

+1 1

v o= 1,2,...,1’1—1
It follows from (a) and the construction that the triangles
total
ADOAu+1 and AUO A R
= Al
ADAD+1 ADA v+
angles of C are 2z the corresponding angles of C'. Purthermore, it

1 are congruent for v =1,2,...,n-1 , hence

. - By simple trigonometry it follows from (b) that the

follows from (c) that C , taken together with the chord connecting its
endpoints is a simple convex curve. Hence C and C!' satisfy all the

hypotheses of Theorem A' ; (5.3) yields

tat >
(5.4) AnAl = AnA1

from which it follows by simple trigbnometry that

L totat > =
Pn {Ano Al > g:l’AnOA1 9, -
The sign of equality holds if and only if o = o' for

v %

v = 2,3,...,1’1"1 r 1.e. G ;G' 0.e.d.

Let G and G' be two convex corners with n faces each such

that 9, = wL for v = 1,2,...,n . We divide the edges of G into

three classes

(a) The class of edges EK for which a > a;
(b) The class of edges FA for which a, < ui
{(c) The class of edges Fp for which ap = a; .

We define the function I(v)

1 if f_ belongs to (a)
I(v) =-1 if {_  belongs to (b)

0 if f. belongs to (c¢) .

The number of changes of sign of I(v) as v assumes its values
1,2,...,n~1, n, 1 consecutively is called the index of (G,G') and is

denoted by j . Obviously j is a non-negative even integer.

Lemma III: j= 4 wunless G = G' .
Proof: All we have to show is that
j =0 and j =2 implies G = G' .
(i) j = 0 means that either (a) or (b) is empty. If (a) is empty,

Lemma II implies ¢; > Py where the sign of equality holds if and only
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if (b) is empty also. But ¢; = 9, by hypothesis, hence (b) is empty.
Similarly upon the application of Lemma II the emptiness of (b) implies
the emptiness of (a) ; but if all edges belong to (¢), G = G' .

{il) 3j = 2 means that

(5.5) aL P a holds for v =1,2,...,m
and
(5.6) GL < o holds for v =m+l , m+2,...,n

where m 1is some integer between 1 and n .

By identifying the corner formed by the edges BV , v o=1,2,...,m
with G , and the corner formed by the edges f; , v = 1,2,,.,,m with
G' , of Lemma II we obtain by that Lemma that

(5.7) 4 AT 4 A

where < ti[é and §:E1Pm , denote the angles enclosed by E; and

fé , and f1 and fm respectively.

By identifying the corner formed by ED , vV =m+l, mt2,...,n
with @' , and the corner formed by the edges f; , v =m+l, m+2,...,n
with G , of Lemma II we obtain by that lemma

(5.8) 0 o=« .

(5.7) and (5.8) are at variance unless in both of them the sign of
equality holds. But then the corners identified with G and G' in
Lemma II are congruent, hence G and G' of Lemma III are congruent

also. Q.e.d.

This last result is an essential lemma in Cauchy's famous theorem

on Rigidity of convex polvhedra: Given P1 and P2 , two convex poly-

hedra whose faces are in a one-to-one correspondence, corresponding

faces being congruent and joined in the same order. Then the correspon-

ding dihedral angles are equal, i.e. 1 and P2 are congruent.

Proof: We consider two classes of edges of P1 :

(a) Those where the dihedral angle is > the dihedral angle at the
corresponding edge of P, -
(b) Those where the dihedral angle is < the dihedral angle at the

corresponding edge of Py, .

We project P from an interior point into the surface of a sphere

1
about the interior point; the projection of those edges which belong
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either to (a) or to (b) forms a network Q on the sphere. This network
will be empty if (a) and (b) are empty.

According to Sec.12 of Chapter I if the edges of a non-empty network
Q are divided into two classes there always exist at least two vertices
whose order j is < 4. Since by Lemma III j 2 4 for every vertex, Q is
empty. Hence {(a) and (b) are empty also, i.e. all corresponding dihedral

angles are equal. Q.e.d.

Section 6. We shall now present a shorter proof of the four vertex
theorem, due to Herglotz.

First we shall state without proof an elementary lemma from the
theory of functions of real variables.

Lemma IV. If a continuous function has no extremal values in the inter-
val (a,b) , then it is monotonie in this interval.

Now let the simple closed convex curve C be represented in some
rectangular coordinate system:

{x(s) ,y(s)) , O<s<L

where L is the total arc length.
Let 9(s) denote the angle of the tangent at s : then

X =cos 6 , ¢y =sino .

pDifferentiating the first equation and substituting the second expres-
sion in the formula we obtain

¥ = -sin 6. 6 = -yk

since o=k by definition. This last expression shows that vk is
the derivative of a continuous, periodic function, hence its integral
over the period vanishes:

L .. L
{6.1) S vk ds = [-x]° =0

o
Now let us assume that k(s) has, beside a maximum at s =0 and a
minimum at s = s, » no other extremals. We choose our coordinate axes
so that the x-axis coincides with the line through (x(0), y(0)) and
(x(so), y(so)) . C being convex this line doesn't intersect the curve
at any other point, therefore for O<x<s  : y(s) >0 , and for

s°<s <L : y(s) <0 ; furthermore by Lemma IV k(s) is monotonic non-

decreasing from s =0 to s = Sy and monotonic non-increasing from
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S=0 X

§ = so to s = L . By the second mean value theorem there exists

£, » 0 <§1 < s such that
5, €1 s,
[ xsas = x0 I 7ds + k(s) | yas = k(O)y(t))
£
] 1

+ k(s )ly(s )-y(g,)] = [k(0) - k(s ))]y(e,) .

Similarly there exists a §2 , so«<g2'<L such that

L £2 ?

Xkyds = k(so) i vds + k(L) ! yds = k(so)y(g2)+
o

So 2

s

+ Ry (L) - y(5,) ] = [K(s) - k(L) Iy(g,) = [k(s ) -%(0) Iy(t,) .
Adding these two equations we obtain

L
(6.2) i kyds = [k(0) - k(s ) I[y(t,) - y(£))]

and by (6.1) this last expression is zero. But the first factor of the
right side of (6.2) # 0 unless max k(s) = min k(s) 4i.e. k(s) 1is a
constant. The second factor is always > O , since y(g1)> 0>-y(g2) for
the values of £y and &y that were chosen. Hence their product
cannot be zero which shows that the assumption that k(s) has only
two extremals and k(s) £ constant leads to a contradiction.

Q.e.d.

The four-vertex theorem holds for all simple closed curves but we

shall not give a proof of this generalization.

Section 7. The total curvature of a simple closed convex curve is = 27;

we shall generalize this result.
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For a plane curve C we have defined kl as the oriented curva-
ture; we are going to show that for simple closed plane curves

L
(7.1) I k,ds = $d8 = 2x ,
o)

if the curve is oriented so that the order of its interior is +1 .

Proof: For 0% sl<s2 <L we define V(sl,sz) as the argument of the

vector pointing from c(sl) to C(sz) ; since C has no double points
and it possesses a continuous tangent, V(sl,sz) is continuous in the
closure of its domain of definition. We choose s = 0 so that the ho-
rizontal supporting line touches € at C(0) . In view of the positive
orientation of C the positive direction of the tangent at C(0} is
as indicated by the arrow on the accompanying diagram. The vector field

V(s is defined in the triangle indicated on the diagram and is

1752)

continuous there. Since the variation of the argument of a con%}nuous
S=

vector field around a closed path is zero, it follows that f de = the

S5 5=0

A

Y

s=0 1

variation of V(Sl’sz) from (0,0) to (L,L) along the hypothenuse
is = the sum of the variation of V(sl,sz) from (0,0) to (0,L) and
(0,L} to (L,L) along the legs of the triangle.

To evaluate the variation of V(sl,sz) from (0,0) to (O,L)
along the leg of the triangle we observe that,since the tangent at
c(0) 1is a sﬁpporting line of c, > 0£V(0,s) £ r ; since V(0,s)
is thus restricted to this sector, its variation as s goes from O
to L is =V(0,L) - Vv(0,0) =% ; similarly we find that the variation
of V(sl,sz) along the other leg is also = m . Adding these quantities
we establish the validity of (7.1).

Section 8. It follows from (7.1) that for plane curves

L L L
Ik ds = XIkllds 2 I klds = 2% . We shall now demonstrate that the in-
o e} o

equality
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(8.1) fk ds2 2=
(o]

holds for all closed curves, i.e., the total curvature of any closed
curve is = 2w

Given any curve belonging to class I of total length L ,
(x(s) ,y(s) ,z(s)) , 0<$s<L , we consider its spherical image
S(s) = (x(s), y(s), z(s)) , 0<s<L ; S(s8) 1is a closed rectifiable
spherical curve. Furthermore

L L
(8.2) [st)as = | (x(s), y(s), z(s))ds =0
[e] o

because x,y and =z are periodic functions of s with period L .

Lemma V: Given a set of k vectors in m dimensional space

XXy eenX satisfying the following equation:
k

(8.3) £ aX., =¢C
: 171
i=1

where the a, are positive numbers, then: It is possible to select n

vectors Xil,xi yeoosXy from the given k vectors and determine n
positive numbers bi’bz""’bn such that
n k n k
2bh.Xy, = XaX.,, b, = Ia,
and
(8.4) n<m+l .

Proof: We shall prove Lemma V by induction on k . Lemma V holds
for k = 1 . Assume that Lemma V holds for all values of k:Eko ; we
shall show that then it holds for k = ko+ 1 also.

If kOSH\, then Lemma V is trivially satisfied by bj= aj ,
j = 1,...,k°+ 1, since n = ko+ 1 satisfies (8.4).

1f ko:>m , we consider the system of m+l homogeneous equations
for ko+ 1 unknowns AI’A2""’AKO+1 :

Ko+l
(8.5) T OAX, =0

Since the number of unknowns, ko+ 1 , is greater than the number of
equations m+l , the system (8.5) will always have a non-trivial set

of solutions.
A ,AZ.,...,AKO_‘_:L .
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Of these numbers some -~ let us say the first p - will be positive, the

others non-positive:

Ai>0 for i =1,2,...,p , AiSO for 1 =p+1,...,ko+ 1.
We choose )\V , 1 €vS 4 so that
au a.

(8.6) 0 <t =X-sr} for  § = 1,2,.e..p .

. v J
We write al =a.- At 3

i i

then

al', =a, - Avt =0, aJ'. = aj- Ajtao for j=1,2,...p
because of (8.6) and

a! =a,~ A.t>0 holds for j = p+l,...,k + 1
J J J o

since for these values of j , hjso .

Multiplying the first of equations (8.5) by t and subtracting it from

(8.3) we see that Ko+

(8.7) b
i=1

and from the second of equations (8.5) we see that

t =
aiXi (4

k_+1 k_+1
(8.8) ? a. = % a' .
i=1 Y i=1 *

Of the set of non-negative numbers {a]!_} we select those a' which

are positive; since al = 0 , the number of positive a%-s is < ko .
Since equations (8.7) and (8.8) remain unchanged if we omit those aj
which are zero, we have succeeded in selecting from the original k°+1

vectors n vectors, nSk0 , such tha]% a_linear combination of these

+1
vectors with positive coefficients = % aix.1 and the sum of the co-
i=1
k_+1
efficients in this linear combination = i-z-l a; . Thus we have reduced

the case k = k°+ 1 to the case k =n$ko, for which Lemma V holds by

the assumption of the induction. Q.e.d.

From (8.2) and the definition of Riemann integral it follows that

to any given € we can f£ind N such that
N
L vL
(8.9) |u£1Ns(N)| <e .

n

Then by the special case m 3 of Lemma V we can find n<4 points
v.L
S(—%—) , 1=1,...,n and n positive numbers b, , 1 =1,...,n such

N n v.L
L g(2L) - (_1..)
that z £s(EF) =zps(=),
V= 1
N n
L_ -
z N—L ibi .

v=1 i
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We let € assume a sequence of values tending to zero; we shall
correspondingly have a sequence of values N_ , n(e) €4 , bi(e) and
vi(s) such that

n(g) (vi(E)L n(e)
(8.10) |i:1 bi(e)S ~ETET—>I <e, 121 bi(e) =1 .

From this sequence of values we select a subsequence such that the
limit lim n(e) =n
ui(a)L

llm—N(T)=si ,

8
]

1,2,...,n

lim bi(a) = bi

, i =1,2,...,n
shall exist as € - O through this particular subsequence. The exi-
stence of such a subsequence follows from the local compactness of

finite dimensional spaces. Passing to the limit in (8.10) we obtain

n n
(8.11) s b.S(s,) =0, =Th, =L .
i=t * 1 i=1 *
We introduce the abbreviation S(si) = Si , 1 =1,2,...,n .

From the minimal property of minor arcs of great circles it
follows that

—~~
|s;s,

(8.12) { = length of s(s) = (514l (S 4= 5

-~

e S

i=1
P N ~~
where isisjl denotes the length of the minor arc §,S. connecting

1]
Si and Sj .

o~ N
sisi+1 , 1 =1,2,...,n

two antipodic points (i.e. two points on the opposite ends of a dia-
meter of the unit sphere ).

We shall show that there exist on the arcs

The necessary and sufficient condition for two points S and &!

to be antipodic is that a relation of the form
(8.13) bS + b'St =0, >0, b*'>0

be satisfied.

We distinguish 3 cases.

(a) n=2 .

In this case it follows from (8.11) and (8.13) that S, and 52
are antipodic.
(b) n=3.

In this case it follows from (8.11) that the‘ggfnts—nfi,sz,ss

—
lie on a great circle made up of the arcs 5,8, 8253 , 8.8, ; conse-

371
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quently the antipode of Sy will lie on s, 3

(c) n=4.

In this case we define

by, = |b8;+ b5}, by, = |byS,+ s |

(|X] stands for the distance of X from O , the center of the unit

sphere) .
if b12 = 0 (or b34= o), S1 and S, {or S3 and 84) satisfy a
relation of the form (8.13), therefore they are antipodiec.
If b12,b34>'0 , we define
- = -— + = --—— .
(8.14) 812 5 (b S b SZ) . 534 B (b S3+ b,S ) H
12 34
substituting this into (8.11) we obtain
D181 ¥ P83 =0
which is a relation of the form (8.13), hence 812 and S34 are anti-
. . . — —
podic. But it follows from (8.14) that §,, ison s Sz, 834 on S3S4.

This completes our denonstration that there always exist antipodic

points S and S' on the arcs S S, i=1,2,...,n . Then from the

i+l
minimal property of minor arcs of great circles it follows that

n
N
- lsst +stsl <z B3|

which by (8.12) is £¢ . 0.e.d

It can be easily verified that the sign of equality holds for and

only for plane convex curves.



CHAPTER III

The Isoperimetric Inequality and Related Inequalities

Section 1.

In this chapter the isoperimetriec inequality and related inequa-
lities will be discussed.

The isoperimetric inequality states that the area enclosed by a
simple closed curve C is £ the area of the circle with the same

circumference, the two areas being equal if and only if € 1is a circle.

There are numerous geometrical proofs of the isoperimetric inequa-
lity varying in elegance and simplicity. Of the analytical proofs, the
first one was given by Hurwitz in 1901, We shall discuss it later. We
shall first consider a strikingly simple demonstration due to E. Schmidt
(1939) .

Let C be a simple closed plane curve possessing a continuous
tangent, which is cut by any straight line at most a finite number of
times. Let A denote the area, L the total arc length of C .

We represent C parametrically by {x(t), y(t))}, tos t< t1 y
{x(to),y(to)} = {X(ti)'y(ti)} . The formulas

131
(1.1) A = S xytdt
t
[o]
ty
(1.2) A== { yx'dt ,
o

(y* = dy/dt, x' = gx/dt)
hold for all parametric representations where the variation of the arc
length s , measured from {x(to),y(to)} , as t goes from to to t1
is equal to L . This amounts to saying that {x(t),y(t)} goes around

C just once as t goes from t, to t, . It is important to note

that it is not required that the representation {x(t),y(t)} be one-to-
one.

We enclose C between two vertical supporting lines touching the
curve in P and Q respectively as shown on the following diagram.
We draw a circle C having the same two vertical supporting lines. Let
the radius of C be ¢ and the center O of C be the origin of our

coordinate system. Let s Dbe the arc length measured counterclockwise

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 47-57, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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from P , C = (x(s),y(s8)) ; then Q = (x(so),y(so)) for some s_ .

=]
Y

Ig!

ol .

We introduce the following parametric representation for
C = (x(s),y(s)) :

x(s) = x(s)
(1.3) v(s) =l®-x(s) , 0% <5,
= ~Yo?-x%(s), s_ss<L

(This parametric representation amounts to coordinating points of ¢C
to those of C by vertical projection of the arcs PQ, QP of C on
the arcs PQ, QP of C respectively; it is easy to see that as s
varies from O to L , (x(s),y(s)) goes around C once. We apply
(1.1) to ¢, (1.2) to C :

L _ 2 L L_
A= S xy'ds , A =g = - K yxt'ds = - j yx'ds .
o o o

Adding these two expressions we obtain

L L
(1.4) A+ o’ = | (xy'-¥xt)as < | Vx2+§2 {X'2+Y'st
(o] o

where the inequality on the right of (1.4) was obtained by applying

Cauchy's ineguality for the integrand. But x'2+y'2= 1 since s is

the arc length on C , and x2+§2 = Qz by (1.3). Hence (1.4) gives
L
2
(1.5) A+qxsjqu=LQ .
°

Applying the inequality between the arithmetic and the geometric mean

of two numbers A and an we obtain from (1.5)

2Vo%xa = 20¥ma € A + ®n S 1o



49

and after dividing by ¢ and squaring both sides we obtain

(1.6) Arp < L2

which is the celebrated isoperimetric inequality.

We shall show now that the sign of equality can hold if and only
if ¢ 1is a circle:

Assume that the sign of equality holds in (1.6); then the arith-
metic and geometric means of A and an must be equal, which is the
case if and only if A = an s but since the choice of the y direction
is arbitrary, this implies that the width (2¢) of € is a constant
for all directions.

For the sign of equality to hold in (1.4) we have to have {x,y)
proportional to (y'-x') with ¢ as the constant of proporticnality,
i.e. x = Qy' , g = -0ox' ;3 squaring the first of these equations we

t

2

obtain x2= ey , and by interchanging the x and y axes and using

the fact that ¢ is independent of the direction of the coordinate
axes we obtain y2= sz'z . Adding these equations we obtain

2 2

2 y? = s p?d) = 2,

which means that € is situated on a circle of radius ¢ , hence it is

identical with the circle.
Q.e.d.

Section 2. Generalization to n dimensions.

The generalization of the isoperimetric inequality to n dimension
is an estimate of the volume A enclosed by a closed surface in terms
of its surface area L . Since we expect the sign of equality to hold
for and only for n dimensional spheres, and since for an n dimen-
sional sphere of radius r , A = Cnrn , L = ncnrn-'1 (cn is the volume
of the n-dimensional sphere of unit radius), we conjecture the inequa-
lity

(2.1) Cnn A <L .

We shall prove (2.1) for the special class of bodies whose ortho-
gonal projection on an (n-1) dimensional plane is an (n-1) dimen-
sional sphere, by methods similar to those used in the previous para-
graph.

Let S be the surface of an n-dimensional body with a continuously
turning tangent plane whose projection on the plane formed by the
Xy sXgpeeerX, 4 axes is an n-1 dimensional sphere; we assume further-

more that any straight line parallel to any of the axes cuts § a
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finite number of times. Denote the direction cosines of the normal at
any point of S by cos gv y, v =1,2,...,n . Then, under the condi-

tions imposed on S it is easy to show that

(2.2) A= Ix cos £ds , v =1,2,...,n
S v v

where the surface integral is extended over the surface §S .

We construct an n-dimensional sphere § whose projection on the

hyper plane of the Xy oXgaeeonX o axes coincides with that of § .

The center of S5 1is chosen as origin of the coordinate system. Then
n_z _ K-

(2.3) CnQ = A X, cos gnds ,

S
where A denotes the volume of § and ¢ its radius.
We substitute v =1,2,...,n=-1 into (2.2) and add these equations
to (2.3); we obtain:
P
{n-1) A +CnQ = S(xlcos g1+ x,cos 52 + ...+ X, _,€0S gn—l +

+ X_cos ds ;
,cos &)ds ;

estimating the integral on the right side by Schwarz's inequality we

obtain

(2.4)  (o-1)a+co” < Xp4§f4-x§+...+ oy + %) Y leosTe, +

AY
+ coszg2 +ooot coszgv)ds = I Vdes = oL .

Since the arithmetic mean of n numbers is 2 their geometric mean,

n
the left side of (2.4) is > n \[c 2" o™ , hence by (2.4)

e n-1 n
n CpA P <L

raising both sides to the nth power we obtain (2.1). By a reasoning

similar to the one used in the two-dimensional case we can show that
the sign of equality holds if and only if S is the surface of an n-

dimensional sphere. O.e.d.
Section 3.

We shall now consider the older proof of Hurwitz for the isoperi-
metric inequality in two dimensions. Our presentation is the one given

in Hardy—Littlewood—Pélya's "Inequalities".

Lemma I. (Wirtinger's inequality): If £(t) 1is a continuous function



51

*
of period 2w , possessing a continuous derivative f‘(t)( ) , and
2x
| £(t)dt =0 ; then
© 2% 2
(3.1) [ £%at 2 | fat
fe) o]

the sign of equality holding if and only if f£(t) =a cos t +b sin t .
The condition If(t)dt = 0 1is not superfluous since otherwise we could
make the right side of (3.1) arbitrarily large without altering the left
side, by adding any constant to £(t) .

Hurwitz in his original proof resorts to the theory of Fourier
series; namely f£(t) and £'(t) both being continuocus the Fourier

series of the latter is the term-by-term derivative of that of £(t) :

[eo]
m ~ 2 + 3
f(t) ao/ + % (ancos nt bn51n nt)

(3.2) n=1
TE£Y{t) ~ Z{nb cos nt-na_sin nt)
2 n n
hold. Since aj = [ £(t)dt , it follows from the hypothesis that
a =0 . °©
o
Applying Parseval's formula to the Fourier expansions (3.2) we
obtain @
{£2ar = S @2+ b9
n=1
@ 2
[£12ac =Fn? a2+ b .
n=l n n
Then

[eo]
[e2ar - Te2ac = $ (n2-1) @2+ D),
=1 n n

n
and this expression is always 2 O . Its value is zero if and only if
a=b=0 for all n>1 , i.e. £ =a, cos t + b1 sin t . This proves
n n

Lemma 1. Q.e.d.

pProof of the isoperimetric inequality: Let C be a simple closed curve

with piecewise continuous tangent; we denote its area by A and its
total arc length by L . Without loss of generality we can take L = 2%,

We choose our rectangular coordinate system so that the center of
gravity of the circumference falls on the y axis, i.e.

27
ds = O
on s

(*) It is enough to assume that f£'(t) is square integrable and £(t)
can be represented as the integral of its derivative.
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where the parameter s is the arc length. By (1.1)
(1.1) A= lxy'ds .

Also, since x'2+ y'z =1,

L

2
(3.3) 2x = [ (x'%+ y*¥)as .
o

We multiply (1.1) by 2 and subtract it from (3.3):

2x 2 2
2(n-n) = j (x'""+ y'"~= 2xy") ds
(3.4) °
27 2%
= I (x‘z—xz)ds + 5 (x—y')zds .
o o

The first term on the right side is > 0 by Wirtinger's inequality;
the second term is Z O because it is the integral of a non-negative

guantity; hence
(3.5) 2(x-2)20 or ASTx

i.e. the area enclosed by the curve C having the circumference 2x
is £ n = the area of the circle having the circumference 2x . If the
sign of equality holds in (3.5), it must hold in Lemma I as applied to
£ = x(s) , which is the case if and only if x(s) = a cos s +b sin s ;
in addition x - y' = O must hold, i.e. y = a sin s -b cos s+¢ ; it
is easy to see that this is a parametric representation of a circle.
This proof of the isoperimetric inequality is not as elementary
as the one given in section 1 since in the proof of Lemma I it makes
use of the more sophisticated theory of Fourier series. It is therefore
desirable to find an elementary proof of Wirtinger's inequality; such a
proof is suggested by the procedure of section 1. (*)

2m
If f£(t) satisfies the condition of I £(t)dt = 0 , it follows for

E(t) = £(t) +C °
2x_, 2x 5 2

(3.6) I F°(t)at = I £°at + 2nc” .
(o] [«]

If M20 denotes max £(t) , m<0 denotes min £(t) ,
ostL2x Osts2x

{(*) For yet another proof see Hardy-Littlewood-Pdlya "Inequalities".



the function

x(t) = £(t) - LB
will have the property max x(t) = -min x(t) = M%E) = ¢ . Assume that

a maximum occurs at t =0 , a minimum at t = to , O <to<<2n .
Construct in the x,y plane a circle of radius @ . We introduce

t as a parameter for the circle by the equation

x(t) = x(t)
v =Ye2x(®) , ostst,
7 ==Y, e stsax .
It can be easily verified that as t goes from O to 2n , the point

(x(t) ,y(t)) goes around the circle once.

If we assume for sake of simplicity that x(t) takes up the same
value in its range for a finite number of different values of t ,
then it is easy to show that the area of the circle is given by the
well known formula

2 27w _
(3.7) e = ~ I yxtdt .
o
We estimate the right side of (3.7) by Schwarz's inequality: we intro~
duce the abbreviation ?n xzdt =2a f“ x'zdt =B :
o o

an < J[ }-lzdtI )_c'zdt = VI(QZ—xz)dtjx'zdt = }/(2JrQ2—A)B .

Multiplying both sides by\/; we obtain

(3.8) R VA(2uQ2—A)B

and since the product A(anz-A) , being maximum for A = nqz , is
always < I2Q4 , (3.8) yields after division by sz
2x 2w
(3.9) V;\_S‘VB , i.e. A<B or Ixzdt < _[ (x')zdt
o o]
Q.e.d.

Discussion of the sign of equality: If the sign of equality holds
in (3.9), then it must hold in Schwartz's inequality as applied to
(3.7), i.e.

(3.10) y = kx' = kx!
Also
2x 21
- 2 2 2 2
J det = I (e =x")dt =20 - A = ®Q ,
2 ° 24 ©
since A(2wme"-A) = n°@ must hold if in (3.9) the sign of equality



holds. By (3.10)
I?zdt = nQZ = kzjx'zdt = kZB = kznqz ,
hence k2 =1 .
Squaring (3.10) and substituting §2 = Q2—X2 we obtain for x

the differential equation

02 2 .
X ==X , l.e. X =acos t+ b sgin t

as a necessary (and sufficient) condition for the sign of equality to
hold.

Substituting (3.9) into (3.6) we obtain

2xn 27

2
[ fat s | £r2ar - (@)2%
[e] (o]

which is a slightly sharper inequality than (3.1).
Section 4.

This method of proof of Wirtinger's inequality can be applied to
the following more general type of inequality: Let f£(t) be a function
defined for O0<t <1 having a continuous derivative in this interval

which satisfies the condition
max £{(t) = £(0) = -min £(t) = —f(to) =0 .

Let a,b be two numbers satisfying the conditions a >0 , b>1 ;
define B by the equation 1/b + 1/ = 1 . Then

1 1
1/a b .. \1/b
(4.1) £|%at <c £1]°a
(Ll ) ab(%l Pat)
vhere [ - S c.ﬁ_)i/a(_ﬂ_)l/ﬁ
Cab = TB(1/p+1,1/3) ‘p+a e

(B(p,g) 1is the Beta function.) The sign of equality holds for the
function £(t) which satisfies the differential equation

pa—bab

(4B (1/p+1,1/a)) P

s a
‘a+p

b b a a
(4.2) YolEr(e) | =" - [E(R)]T .
Proof: For the curve defined by

(4.3) Ix% + |y]® = °

we introduce the parametric representation
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£(t) ,

Y =\‘3/Qa-|f(‘c)]a for OStgt,
—€/Qa-|f(t)]a for t_<tsl .

The curve (4.3) encloses an area = qu+a/ﬁ where u = 4/aB(1/p+1,1/a) .

>
1]

By formula (1.2) for the area enclosed by a curve:

1
(4.4) qu’LH/‘3 = - I yx'dt
o

we estimate the right hand side of (4.4) by HSlder's inequality; intro-
ducing the abbreviation,

1 1
<[|f(t)ladt)1/a =a ,(Ilf'(t)[b)l/b = B
o o

1 1
(4.5) uett/P ¢ (j det>1/'3 (3 x'bdt) b L (2a? VB
o o
We multiply both sides of (4.5) by A and replace the factor
(AB(Qa-Aa))l/ﬁ by its maximum value = Ql+a/ﬁ(ﬁ/ﬁ+a)1/a(a/p+a)1/ﬁ s
assumed for A = Q(ﬁ/ﬁ+a)1/a :

2 P ¢ M P issp4a) Y2 (asatp) Y P .

Dividing by qu+a/B

we obtain (4.1). The sign of equality holds
if and only if:
(a) In HOlder's inequality as applied to (4.4) the sign of equa-
lity holds;
/a

1
(b) A = q(p/p+a) .
From {a) it follows that
b
(4.6) ly1? = x[x']

for some constant k ; by integrating (4.6) and using condition (b) we
£find that %k has the value Qa—b(a/aﬂa)b/ub ; substituting this value
of k into (4.6) we obtain the differential equation (4.2). The demon-
stration that (4.2) has a continuous solution for O<t <1 whose maxi-

(*)

mum and minimum are respectively +q and -g will be omitted.

(*) Compare E. Schmidt "Ueber die Ungleichung welche die Integrale
iiber eine Potenz einer Funktion und iber eine andere Potenz ihrer
Ableitung verbindet", Math. Ann. 117, 301-326, (1940).
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Section 5.

In this paragraph we shall complete the proof of the three-dimen-
sional isoperimetric inequality by constructing to an arbitrary body of
surface area L and volume A a rotational body of the same surface
area and greater volume, or, what is equivalent, a rotational body of
the same volume and lesser surface area. *)

We assume that all surfaces considered in this paragraph have con-

tinuous derivatives,

Lemma IXl:
T
T
(5.1) j V1+D2 (tyat = ]/rr2+(j Ddt)2
° o
holds for all piecewise continuous functions D(t) , the sign of equa-

lity holding if and only if D(t) is a constant.

Proof: If x(t), y(t), OSt<T are two arbitrary functions with piece~
wise continuous derivatives x'(t) = £(t), y'(t) = g(t) , the arc

[ (x(t) ,y(t)] connecting the points [x(0),y{0)] and (x(T),y(T)) 1is
rectifiable and its length f =

T T
I‘Vx'2+y'2dt = U £21g%ae .
[«]

The length of the chord connecting the same two points

T T
= Yix () -x(0)) %+ (y(m)-y(0))? = ‘/(Jf(t)at)2+ (faman? ,
(o] [o]

hence the ineqguality

T T T
(5.2) ]Vf2+g2dt > )/(] £at) >+ ([ g at)?
o] o

[=]

holds for all piecewise continuous functions f and g ; by putting
£(t) =1 , g(t) = D(t) we obtain (5.1) as a special case of (5.2). If
we are given any three-dimensional body we consider its intersection
with the planes z = const. The arc length o of the boundary of this
intersection and z are now taken as parameters for the surface of the
body.(**) If D{(z,0) denotes the Jacobian

ment is aL = Y1 +p? azdo .

(*) The following proof is due to H.A. Schwarz (1884).

(**) We assume that the only horizontal tangent planes are the two
supporting planes; otherwise difficulties arise as =z and o
are introduced as parameters.

6(: o) the surface ele-
’
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Q(z)

N

Denote the area of the intersection of the plane parallel to the (x,y)
plane at height 2z with the body by 0(z) ; since %%Efﬁ% dzdg 1is the
infinitesimal area of the projection of the surface element dL on
the x,vy plane, g% = jE(Z)Ddc , where f{(z) is the circumference of
o(z) . °

In the formula t(z) 3
L = Idz J 1+D"dao
o

we estimate the integral with respect to do by Lemma II:

£(z) o
(5.3) L ;Hﬂz(z) + (J Ddc) 24z =[ g (z)+(%§) %4z
o

In (5.3) the sign of equality holds if D does not depend upon o j;

this will certainly be the case for rotational surfaces.

Given an arbitrary body F of surface area L and volume A
and cross sectional area Q(z) for any 2z , we construct another
body F*' whose horizontal cross section at height =z is a circle of
area Q(z) having its center on the z-axis. Let A' and L' denote
the volume and surface area of F' . By cavalieri's principle A' =24 .
Since F' 1is a rotational body, in (5.3) as applied to F' the sign

of equality holds:
(5.31) L= Ve e s (@92,

where ['(z) denotes the circumference of the circle of area Q(z)
(i.e. ['(z) = VanQ(z)) . The isoperimetric inequality for two dimen-
sions asserts that

(5.4) gt(z) < f(z) .

Combining (5.3), (5.3') and (5.4) we obtain L>2L',
with the sign of equality holding if and only if F has rotational
symmetry about an axis parallel to the =z axis. Q.e.d.



CHAPTER IV

The Elementary Concept of Area and Volume

Section 1.

In elementary geometry area (volume) is defined in the following
manner:

(i} A rectangle (right rectangular prism) with sidelengths
1,0, (2,1,/) wunits is called a normal rectangle with an area (volume)

of [ square (cubic) units.

(ii) The area (volume) of any polygon (polyhedra) P which can be
decomposed into a finite number of parts so that these parts can be re-
arranged to form a normal rectangle (rectangular prism) R 1is equal to
the area (volume) of R .

This definition, in order that it be useful, must be:

(a) consistent

(b) applicable to a sufficiently wide class of (preferably all)
polygons (polyhedra) P .

The consistency of (i) and (ii) means that if a polygon can be de-
composed and rearranged into two normal rectangles R and R' then
R = R' . This consistency could be demonstrated,(*) for example, by
means of Jordan measure theory.

In this chapter we shall investigate point sets to which this de-
finition is applicable. We shall start our investigations by scrutini-
zing the derivations of the formulas for the area of a triangle and the
volume of a tetrahedron.

Given a triangle (abe), denote by h the length of the altitude
to side ab , by [ the length of side ab , and by A the area of the
triangle. Then
(1.1) A =-;-’hf

Proof: Decompose and rearrange the triangle as shown on the accompanying

diagram, to form a rectangle (a b bfa') of sidelengths f and h/2 .

a b
(*) Por a systematic treatment see: D. Hilbert, "Grundlagen der Geome-
trie”, Chapter IV.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 58-75, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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If we assume - and this assumption will be proved in section 2, Lemma
II - that the area of any rectangle is the product of the lengths of
its sides, then this rearrangement proves (1.1).

Given a tetrahedron (1 2 3 1'), denote by h the length of the
altitude to the face (1 2 3) whose area we denote by A ; V denotes
the volume of (1 2 3 1t') .

(1.2) V = 1/3 hA .

Proof: Construct the triangular prism (1 2 3 1'2'3') ; assume - and
this assumption will be proved in section 6, Theorem V - that the vo-
lume of the prism is = base area times altitude = hAa .

The prism is the sum of three tetrahedra: (1 2 3 1t%'), (1'2 3 2')

and (1'2'3'3) ; any two of these tetrahedra have congruent faces

with equal altitudes to these faces. (E.g. (1 2 3 1') and (1'2 3 21)
have the congruent faces (1 1'2) and (1'2'2) with the opposite ver~
tex 3 in common.)

If we assume that

(iii) Two tetrahedra with the same base and equal altitudes have
the same volume.
Then it follows that the three tetrahedra (1 2 3 1'), (1'2 3 2*') and
(1'2'3'3}) have the same volume = one third of the volume of the prism
=1/3 ha. Q.e.d.

In this proof in addition to (i) and (ii) we had to use postulate
(iii) ; therefore in view of our present definition of volume this proof
is invalid unless (iii) can be derived from (i) and (ii) . Whether this
is possible or not was for a long time one of the outstanding unsolved
problems of(gfometry, proposed by Gauss and solved for the first time
*

by M. Dehn in the negative.

(*) M. Dehn, Math. Ann., 55, 465-478 (1902).
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Section 2. Definition:

Two polygons (polyhedra), A and B , are equivalent if there
exist polygons (polyhedra) Ai‘Bi’ i=1,2,...,n such that

n
A = T A,
i=1 *
.1
(2.1) -
B = ZBi
i=1
(2.2) AiSBi ., i =1,2,...,n
and Ai,A. , and Bi’B' » have no interior point in common for

i,j =1,2,...,n i # 3 . Equivalence will be denoted by A ~B .

Remark: The elementary definition of area (volume) is applicable to a
point set P if and only if P~R , where R 1is a normal rectangle
(rectangular prism). In all subsequent paragraphs, unless otherwise

specified, the words area and volume will be used in the Jordan sense

and the elementary notion of area and volume will be replaced by the

idea of equivalence.
Lemma I: Equivalence is transitive, i.e. A~B and B~C imply A ~C.

Proof: By hypothesis A~B and B ~C . Therefore there exist Ai’Bi’
i=1,2,...,m and B'.,Cj , 3 =1,2,...,n such that no two Ai’Bi or

Bg’cj have an interior point in common and

m m
A = I A. y B = % B.
i=1 i=1 *
n n
B = X B! , cC= zcC
j=1 - j=1 7
AiSBi , i=1,2,...,m
BJ!Scj , 3 =1,2,...,n .
We define S.lj as the common part of Bi and B! , i=141,2,...,m ,

j =1,2,...,n . Since B, and Bg are themselves polygons (polyhedra),
so are the Sij . All common points of Sij and SkB are common
points of B, , By , B5 ) Bé ; since the first two and the last two
polygons (polyhedra) have inner points in common only if i =k ,
5 =f , it follows that Sij and SkE have no interior points in
common unless i =%k, j =0 .

From the definition of sij it follows that
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n
B, = %6,. ,i=1,2,...,m
i j=1 ij
(2.3) n
B! = £6S,. , 3 =12,2,.0.,n .
i=1 *J

Then, since Ai = Bi and C. = B! , we can carry the subdivision (2.3)
of Bi over to Ai and similarly that of B! over to C. , i.e.

there exist Rij and Tij y 1 =1,2,.,.,mm , jJ =1,2,...,n such that

e

(2.4) R.. T.. S.. ,
ij ij ij
(2.5) z
.5 A, = IR,. , i=1,2,...,m
i jo1 13
( m
2.6 C. = ZT,. , J =1,2,...,n .
) 3oi=1 M ? ’

Summing (2.5) and (2.6) over all i and j respectively we find

m m n
A= T A = % Z R,.
i=1 b =1 g=1 PI

(2.7) n n m
C= ZC. = Z z Ti.

(2.7) provides a subdivision of A and C into a finite number of
polygons (polyhedra) which are pairwise congruent and such that no two
of the Rij or Tij have an interior point in common (this follows

from the similar property of the Sij). Hence A ~C . Q.e.d.

It follows from the transitivity of equivalence that we can put
all equivalent polygons (polyhedra) into one class and thus divide all

polygons (polyhedra) into equivalence classes.

Theorem I: All polygons with the same area belong to the same equiva-

lence class.

Corollary: (i) and (ii) define an area in the elementary sense for
every polygon.

Lemma II: Every polygon is equivalent to a normal rectangle.

Proof of Lemma IT: Every polygon is the sum of a finite number of tri-

angles. Since normal rectangles can be joined to form one normal rec-
tangle, it is sufficient to prove Lemma II for triangles. This will be
done in four steps:

a) Every triangle of altitude a and base b 1is equivalent to
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a parallelogram with altitude a/2 and base b .

This has already been demonstrated by the construction given in

the proof for formula (1.1).

b) Two parallelograms which have one side and the altitude on
this side in common are equivalent.

Let (1 2 3 4) and (1 2 3'4%*) be the two parallelograms. Since
the altitudes on {1 2) are the same in both parallelograms, the
points 3,4,3' and 4' lie on a straight line. We distinguish two

cases:

(A) 3% lies in the closed interval (3,4) . Then

(1 23 4) = (1 3 3*') + (2 3'4 2) , (1 2 3%4*) = (2 4 4*) + (1 3'4 2)
and since (1 3 3') = (2 4 4%') , we have (1 2 3 4) ~(1 2 3t4') .

3 g 4o
A 2

(B) 3' lies outside of (3,4). We construct a finite sequence of

points 3(1), 3(2{...,3(n) on the line through 3 and 4' such that
(n)
3

3(i+1)3(l) = 314", 3(1) coincides with 3', and lies in the
closed interval (3,4). The existence of such a sequence is guaranteed

by the axiom of Archimedes.

3 4 3 y

1 2
By (a) (12 3 3@y g, 30Dy e 5 22,3,...,n-1 and
also (1 2 313y g 2 3140, and (1 2 33y 1234 .
Since equivalence is transitive, we have
(1 234) ~ (12 3%4Yy ,

c) Two triangles with the same base and altitude are by a} both
equivalent to two parallelograms with one side and an altitude in

common. These parallelograms are, by b) equivalent, hence the transiti-
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vity of equivalence shows that the original triangles were also equi-
valent.

d) Given a right triangle (1 2 3) we select on the halfray (1,3}
the point 3' whose distance from 1 is two units. We suppose
{1,3} = {1,3'} although the case {1,3'} 2> {1,3} can be demonstrated
in exactly the same manner. Then we select the point 2' so that the

line through 3 and 2' is parallel to the line through 3' and 2 .

Y R
(2.8) (1 2%3%) = (1 2 3') + (2 213"
and
(2.9) (12 3) = (22 3% + (23 3') ;

(2 2' 3') and (2 3 3') are triangles with the same base (2 3') and

equal altitudes on this base; hence by c) they are equivalent and by
(2.8) and (2.9)

(2.10) (1 2 3) ~ (1 213"

But to any given triangle we can construct a right triangle
(1 2 3) with the same base and altitude which, by ¢) will be equiva-
lent to the original triangle. This, together with (2.10), shows that
every triangle is equivalent to a right triangle one of whose legs is
two units long. Combining this statement with a) we have completed our

proof of Lemma II for triangles, and consequently for all polygons.

If P and P' are two polygons, then by Lemma II there exist two
I£f P and P!
R' . Transiti-

normal rectangles R and R! so that P~R , P'~R' .
have equal areas, so do R and R' , consequently R =
vity of equivalence shows then that P ~P' . This completes the proof

of Theorem I.
Section 3.

In the previous paragraph we have shown that if two polygons have

the same area then both of them can be built up from the same finite
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collection of polygons. It is of some interest to find out (at least in

some special cases) what is the least number of polygons that are needed.

Example: Pythagorean Theorem: If a,b , and ¢ are the two legs and

the hypotenuse of a right triangle respectively, then the area of the
square with side~length ¢ = the sum of the areas of the squares with
sidelength a and b . The accompanying diagram shows how a2+ b2 and
c2 can be built up from the same five polygons. It can be shown that
a subdivision into at least five parts is necessary for a demonstration

of the Pythagorean theorem.

4 3
y
s
\
2 c 4
- \\;\\\\\\\\*
- b c

Section 4.

Before discussing the problem of equivalence of polyhedra we

shall discuss the much simpler problem of equivalence with respect to

regqular subdivision.

Two polyhedra A and B are equivalent with respect to regular
subdivision (denoted by A=®B ) if

n n
= . = . =B, i =1,2,... , .
A iilAl , B iiiBl , Ai Bl , 1 22, ,n , where Al and Bl

are polyhedra such that any two Ai or Bi either have no point in
common or just one vertex, edge or face in common. (Compare this defi-

nition with the notion of subdivision in Chapter I.)

We have shown in Chapter I that two regularpolyhedral subdivisions
of a polyhedron always have a common regular polyhedral subdivision.
From this it follows that A=B and B#~C imply A ®C , consequently
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we can define equivalence classes with respect to reqular subdivision.

Lemma IT. A necessary condition for A xB. Let A and B be two poly-

hedra and let o i=1,2,...,r and Bj , 3 =1,2,...,s , denote

their dihedral angles. If A ®%B , then there exist positive integers

mi,nj , i =1,2,...,r , j =1,2,...,s , and an integer k such that
r s

(4.1) Im.a, = zn,p. + kx .
=ttt 5= 773

Proof: Assume that AXB . Then there exist A,,B., A, B, , such

—— M M i’71 i i

that A = I Ai’ B = I B, is a regqgular subdivision of A and B .

i=1 i=1
Denote the dihedral angles of the Ai , i =1,2,...,M, by Py

k=1,2,...,N. N

We shall evaluate the sum -Eiwk by grouping together all dihe-~
dral angels P that lie aroundl— a single edge of the sum z:Ai .
The sum of those P that lie around an interior edge of the sum EAi
is 2w , while the sum of those P which lie about a boundary edge
is equal to the dihedral angle of that edge of A on which this boun-
dary edge lies. Thus

N r

(4.2) kilwk = i§1miai + 2k1n ,
where m, is the number of intervals into which the edgﬁ with the
dihedral angle o is divided by the subdivision A = oz Ai and k1

the number of interior edges in this subdivision. i=1

Since Ai = Bi , 1 =1,2,...,M , the ¢ can be regarded as di-
hedral angles of the polyhedra B, . Then by a reasoning identical to
the one by which (4.2) was derived we derive

N s
(4.3) k£1¢k = iilnjpj + 2k2x .
Therefore equating (4.2) and (4.3) ,and setting k = 2k2— 2k1 ,
r s
iilmiai = jilnjﬁj + kn ., 0.c.d.

Theorem II:(*) fThere exist polyhedra with the same volume which are

not equivalent with respect to regular subdivision.

(*) This theorem and proof are due to Bricard.
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Proof: Let X denote the regular tetrahedron with unit volume and Y

the unit cube. We shall prove Theorem II by showing that X # Y .

Let oy i=1,2,...,6, Bj ,» J =1,2,...,12 , denote the dihe-
dral angles of X and Y respectively. By an elementary calculation
-1 '

we have ai = Yy = COS 1/3 s i = 1,2’...,6 5
Bj = /2 , jo=1,2,...,12 .,
If X®Y were true then by Lemma II
6 6 12
(4.4) fm,a, =yIm, =%¥n.f, +knr = /2 T n, + kx
i= * % 1 * 33 j=1 J

would hold for some positive integers m., N, and some integer k .

We shall show that y and =« are incommensurable, hence a relation

of the form (4.4) cannot hold, consequently X=Y cannot hold either.
Define

t = eV = cos y +1isiny =1/3 + %~Vg :

t 1is the root of the following quadratic equation
(4.5) 3¢%- 2t +3 =0 .

We shall first show that for all positive integer exponents m
(4.6) M — a4 b,
where a,b are integers depending on m satisfying the following con-
dition:
(4.7) ago (mod 3} .
We prove this by induction.

(4.6) holds for m = 2 by virtue of (4.5). If we assume that
(4.6) holds for m , then multiplying it by 3¢ and substituting for
3;2 = 2t - 3 we obtain

m m+l

3¢ = 3ag_2 + 3bg = a(2¢-3) + 3bg = (2a+3b)¢ - 3a .

Since a satisfies (4.7), the new coefficient 2a + 3b will
evidently also satisfy (4.7) since 2a + 3b Z 0 (mod 3) .
Suppose now to the contrary that y is a rational multiple of

n ;3 then ¢ would be a root of unity, i.e. for some positive integer

(4.6) yields for m =N
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LN C g e p =3
Equating the coefficients of the imaginary parts on both sides a =0
follows, contrary to (4.7). Hence the assumption that y is a rational
multiple of =x leads to a contradiction. This shows that the unit cube
and unit regular tetrahedron are not equivalent with respect to regular

subdivision. Q.e.d.

Section 5.

In this paragraph we shall prove
Theorem III: There exist two polyhedra with the same volume which are
not equivalent.

It follows from Theorem III - and this is the main problem to be
discussed in this chapter - that it is not possible to develop an ele-
mentary theory of volume in three dimensions.

We shall prove Theorem III by a lemma analogous to Lemma II:

Lemma ITII: Let A and B be two polyhedra and let ag s i=1,2,...,r,
and ﬁj , 3 =1,2,...,s , denote their dihedral angles.
If A~B , then there exist positive integers m,o, N,
i=1,2,,..,v , j =1,2,...,5 , and an integer k such. that
r s
(5.1) fma, = I n.p. +kr .

i=t Y g=1 3D

Equation (5.1) 1is of the same form as (4.1); since in section 4
we have demonstrated that the dihedral angles of the polyhedra X and
Y defined there cannot satisfy an equation of this form, it follows
from Lemma III that not only X=®Y does not hold, but X ~¥Y does not
hold either, which proves Theorem III.

The crux of the matter then is to prove Lemma IIXI. This cannot be
done in the simple and straightforward manner in which Lemma II was
proved because there the regularity of the subdivisions was essentially

used.

Preparatory remarks: We could attempt to show that A ~B implies ARXRB

and thus reduce Lemma III to Lemma II by obtaining from the irregular
subdivisions A = % A, , B =1B, regular ones. This can be attempted
by introducing on A, as new edges and vertices all incidences of

edges and vertices of the other A, with A in the sum 3 Ai ; let

us denote the polyhedron thus obtained from Ai by A{ ; then we have

to introduce corresponding new edges and vertices on Bi obtaining B{.
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Since the subdivision B = XB{ is in general not a regular one, we
have to introduce all incidences of edges and vertices of B% with B{
as new edges and vertices on B{ , obtaining the new polyhedra B; .
This subdivision has to be transferred to the A{—s , and so on. Only
if this process terminates in a finite number of steps will be obtain

a common regular subdivision of A and B . In the following (for sake
of simplicity two-dimensional) example the process terminates after the
second step:

Al

A' '
/—'_ .

AN
AN N

We will give a proof of Lemma III which works with a common subdivision

only on the edges of the polyhedra By and Bi'

(*)

Proof of Lemma III: Assume that A ~B . Then there exist polyhedra
ci , 1L =1,2,...,n , such that
n n
A= ®A ,B= IB ,A B, =¢C,, i=1,2,...,n.
joq b j=1 t i i i

(*} This proof is due to Kagan, Math. Ann., Bd. 57.
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In the sum

N M3

Ai we consider all incidences of vertices of A,
i=1

with edges of Ai , 1, 3 =1,2,...,n , and denote the corresponding

points on the congruent polyhedra ¢ by aj . We define the points

bj in a similar manner. These points a. , b. divide the edges of

c; into intervals which will be denoted by e - The points aj also

divide the edges of ci into intervals e: , and each e; is the sum

of a finite number of ey - We define the intervals et in a similar
H

manner. We assign to each e, a positive integer Py having done

ay e ql ey b4 eq a! eq bl

o

e e

I ™
e,‘f el
i fa m b_
+ pr2+ ces + prm and similarly to each ej- e. +

Sq
=ps +tp. t s +pP_ .
2 n J 51 52 ®n

this we can assign to each e? =e +te + ... +e the positive
: a
integer . =

9er Py = Py,

+eg + ...+ oeg positive integer p.

Lemma IV: It is possible to assign a positive integer to each e

Px k

so that whenever e2 and e2 coincide in the sum = A,
k1 k2 i
a a
(5.2) P, =P
k1 k2
holds, and similarly whenever e: and ei coincide in the sum ZB1
1 2
b
(5.3) Py = pﬁ
1 2
holds.

Proof: We shall prove Lemma IV by making use of the following algebraic
lemma:

Lemma V: If a system of homogeneous equations

n
(5.4) ZC,.x. =0 , 1=1,2,...,m
jop 1373
with integer coefficients Cij has a solution X = (xl,xz,...,xn) for

which xi>-0 holds for i = 1,2,.,.,n , then there exists another
solution Q = (ql,qz,...,qn) such that 9 is a positive integer,

i=1,2,...,n .

Proof of Lemma V: According to the established theory of systems of

linear equations all solutions of (5.4) can be written as the linear
combination of a finite number of rational vectors xh , h=1,...,H,

H<n . Consequently the solution X = (xl,xz,...,xn) can be written
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in the form

X = (xi’xz""’xn) = }\1}(1 + ... + }\HXH :

consider

(xi,xé,...,xé) = AX, tolt AﬁXH
where the Aﬁ are rational numbers. Since we assumed xi>-0 for
i =1,2,...,n we can choose lAh~ Aﬁ] , h =1,2,...,H , so small that
x{> O for i =1,2,...,n . Since the vectors Xh are rational vectors
and ! were chosen to be rational, the numbers x{ will also be ra-
tional. Since a constant multiple of a set of solutions of homogeneous
equations is also a solution, we can multiply the x{ by their least
common denominator and obtain a set of positive integer solutions.

Q.e.d.

We observe that equations (5.2) and (5.3) are linear and homoge-
neous with integer coefficients in the Py 3 if we write Xy for Py

in these equations we can immediately verify that X = length of e,

is a solution of them. Since these %, are >0 , it follows from

Lemma V that (5.2) and (5.3) possess positive integer solutions. This

completes the proof of Lemma IV if we choose these values as our Py -

To each ek, ei, and eﬁ we assign an angle ¢k,m:, and ¢£ = the
dihedral angle of that edge of Ci on which ek,e;, or eﬁ lies.

It follows from the definition that if e, and ey are parts of
1

2
a
ek3’ then a

%y T TRy g

and similarly if ee and ef are parts of e? , then
1 3

Pp =9 =<9b2
P Y~
Consider the sum

(5-5) z pkq’k

where the summation is extended over all k . We divide the set of

" into subsets by grouping together all e that are part

of the same e? . We group together all terms Prex in the sum (5.5)

intervals e

that are associated with intervals e belonging to the same subset.

k
This rearrangement shows that (5.5) can be written in the form

a a
(5.6) thkpk .

We shall evaluate (5.6) by grouping together all terms w;.p;
i ™
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which are associated with intervals e; that are coincident in the
- . i
sum ZAi . The positive integers p;' are, by Lemma III, equal for
i
all these intervals, therefore the sum Zwi.pi. around each edge is
i ™M

equal to:

(a) xp; if the intervals ei lie on a face of one of the Ai.
i i
. a . . . .
(b) 2Hp; if e lie on an interior edge in the sum zAi
i i
which does not lie on a face.
(c) pi o, if ei lie on an edge of A the dihedral angle of
i i
which is «a, .
i
Therefore we see that the sum (5.6) is equal to
(5.7) Ima ¥+ kqm -,
i
the summation extending over all dihedral angles of A , where m de-
note positive integers and k1 an integer.

Repeating this reasoning with the polyhedron B instead of A we
get for the value of the sum (5.5)

5.8 In.p. + k1,

(5.8) 384 * Ky

the summation extending over all dihedral angles of B , where n. de-
note positive integers, k2 an integer. (5.1) follows from equating
(5.7) and (5.8) and setting k = kz- k1 . Q.e.d.

corollary to Theorem III: We divide the set of all polyhédra of volume

one into equivalence classes; the number of classes is at least 2.

*
Dehn and recently Sydler ) obtained a sharper result:

Theorem IV: The power of the class of equivalent polyhedra of unit

volume is that of the continuum.

No proof of this theorem will be given here.

Section 6.

In the last paragraph we have shown that not all polyhedra of the
same volume are equivalent; this brings up the following important and
interesting problem: Characterize all polyhedra that belong to the

same equivalence class.

(*) sydler, J.P.: Sur la décomposition des polyedres. Comment. Math.
Helv. 16, 266-273 (1944) .
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This is a difficult problem and it has not been completely solved
yet. Partial results in the form of necessary conditions for equiva-
lence which are stronger than Lemma III have been cbtained by Dehn.

We shall prove

Theorem V: All prisms of the same volume belong to the same equivalence

class.

Proof: We divide the base of the prism P into polygons so that the
diameter (i.e. the maximum distance of any two points) of each polygon
is < % cos a , where h is the altitude, a the angle enclosed by the

altitude and the generator.

We divide P into prisms Pi having as base the polygons into
which the base of P was divided, and the same altitude and generator
as P . We take any point of Pi at the altitude h/2 and construct
a plane passing through this point and normal to the generator of Pi .
This plane divides the prism into two parts P; and Pi .

Since the diameter of the base of P.l Yas assumed to b; < % Cos o
this plane will not intersect the base B, or the top By of Pi'
Therefore we put Pi and Pi together so that Bi and Bi coincide
and obtain a right prism P{ with altitude h'= h/cos a . It follows
from the construction that Pi"'pi . By Theorem I the base Bi of P{
is equivalent to a normal rectangle. Therefore, since Pi is a right

prism, Pi - and consequently Pi - is equivalent to a right rectangular

2
BY

B!
i

Bl
i

prism P] two sides of which have the length 1 and h' wunits. Putting
these prisms P; together so that their 1 by h' face coincides we
obtain a prism P" , two sides of which have the length 1 and ht' ,
such that P~ P" ., Using Theorem I once more we find a normal rectangu-
lar prism P"™ such that P~P"™ . Since the length of the third side

of P™ is determined by the volume of P , we see that all prisms P
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having the same volume are equivalent to the same prism P"™ , hence
by the transitivity of equivalence they belong to the same egquivalence

class. Q.e.d.

A generalized notion of equivalence: Two polyhedra A and B are

equivalent with respect to decomposition and completion, denoted by
AGB , Lf there exist two polyhedra C and ¢! , such that ¢ and A4,

C' and B have no interior point in common and
c~c' , A+C~B+cC' .
Obviously A~B implies AGB .

Sydler (*) has shown that A®GB implies A ~B , i.e. the notion
of equivalence with respect to decomposition and completion is not more
general than equivalence with respect to decomposition alone. The only
advantage of the former is that A~B can be demonstrated, if true,

without the use of the axiom of Archimedes.

Two polyhedra A and B are equivalent and equally oriented if

n n
A= I Ai ;, B.= % Bi s
i=1 i=1
Ai and Aj , Bi and Bj , 1 #3 , having no interior point in common,

and Ai is congruent and equally oriented to Bi for i = 1,2,...,n .

Gerling has shown that two tetrahedra that are mirror images of
each other can always be decomposed into a finite number of polyhedra
that are pairwise congruent and equally oriented. Hence A ~B always

implies that A and B are equivalent and equally oriented.

For a full discussion of equivalence and related topics we refer

the reader to Sydler's paper.

(*) sydler, J.P.: Sur la décomposition des polytdres. Comment. Math.
Helv., 16, 266-273 (1944) .
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PROBLEMS

Chapter 1

(1) The polar G' of a corner G 1is defined as the corner whose
edges are the positive normals to the faces of G . Derive Euler's
relation for a convex polyhedron P by constructing the polars
of the corners at all vertices of P and using the formulas for
the area of plane and spherical polygons. (Hint: Find connection

between face angles of G and dihedral angles of GU)

(2) Generalize this proof for polyhedra of genus p .
(3) Generalize this proof to n-dimensional convex polyhedra.

(4) Construct on a special surface of genus p vector fields which

have

(a) two singularities of index +1 , and 2p singularities of
index -1 . (Hint: Consider the field as the gradient of a
function with one maximum, one minimum and 2p saddlepoints)

(b) two singularities, each with index 1-p .

(c) one singularity, with index 2-2p .

(d) k singularities with prescribed indices ji’ jz""’jk ,

where j1+ j2+...+ jk = 2-2p .
{5) Consider the product

(1—fr1(x))(1-fr2(x)) (1-frs(x))
where the fr(x) are the functions defined in section 14. Expand
the product, integrate over the n-dimensional unit sphere and sum
over all combinations of s functions fi(x) . Express this re-
sult as a linear homogeneous relation between o, » T = 0,1,...,n
where o, is the sum of the angles on all r dimensicnal faces
of the simplex.

How many of these n+2 relations are linearly independent?

Chapter II

(1) Formulate and prove a theorem analogous to the four vertex theo-

rems for polygons.

(2) Show by means of an explicit example that the four vertex theorem
does not hold for self-intersecting curves. Consider the proof of

the four vertex theorem given in Bieberbach's "Differentialgeo-
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metrie" and show why it doesn't apply to self-intersecting curves.

Chapter IV

(1) (a) Show tetrahedron 1231' is not equivalent to a cube.
{(b) Show tetrahedron 1233%' is equivalent to a cube, and demon-

strate this by decomposing the tetrahedron into no more than

five parts.

3¢
"
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1 2
(2) A theorem of Euclid states that in the areas of rectangles

I, I', and II, II' are equal. By theorem I we have
I~1I' , II ~IXI' .

I
II

II

Demonstrate this directly by decomposing these regions into
pairwise congruent polygons. What is the least number of
parts, I and II respectively have to be decomposed into to
demonstrate equivalence? (Express it in terms of the angles
oa,p) .

(3) Prove that two tetrahedra which are mirror images of each

other are equivalent and equally oriented.
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INTRODUCTION

Thig series of lectures will deal exclusively with the global geo-
metry of two~dimensional surfaces. The intrinsic Riemannian geometry of
sur faces will be considered only to a small extent, while the major
concern will be with surfaces, especially closed ones, in three dimen-

sional Euclidean space.

The first chapter will be a review of classical differential geo-
metry in the small, and the second will be devoted to some general re-
marks on closed, differentiable surfaces, not necessarily in E3 .
These will be followed by a short chapter on the Riemannian geometry of
closed surfaces in which will be considered the relation between the
Gauss curvature of a surface, the singularities of fields of directions
on the surface and the topological structure of the surface. The re-
mainder of the lectures will deal with surfaces in E3 .

The material covered in the first chapter can be found in greater

detail in the following texts:

Struik, D.J., Classical Differential Geometry
Darboux, G., Legons sur la théorie générale des surfaces

Blaschke, W., Vorlesungen ilber Differentialgeometrie, Vol. I.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 81, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989



CHAPTER 1

Differential Geometry of Surfaces in the Small [summary sketch]

0. Notation

The following notation will be used:

2

There will be a "parameter plane", E° , with Cartesian coordinates

(s,v) or (ul,uz) and a Euclidean space E3 with Cartesian coordi-
1 .2 3
nates (x,v,z) or (x ,x",x7) .
Vectors (usually in E3 ) will be denoted by Roman Capital letters,
X, Y, etc. However, such letters will be used also for things which are
not vectors. The meaning should be clear from the context. Juxtaposi-
tion of vectors denotes scalar product and x denotes vector product.

du

If u = u(t) , where t 1is a parameter, then u' = St * If
X _ ox . _ 12
x = x(u,v) , then X = ou and X, = 3% and similarly if x = x{u ,u”),
(0,4 o o8x . -
then x, = —— and x, =-—5 . If, further, u =u(t) and v = v(t) ,
1 1 2 2
du [o.8)
then x' = x u' + x v' .
u v
If X = (x,y,2z) and x,y, and 2z are functions of u and v ,
then Xu = (xu,yu,zu) and Xv = (xv,yv,zv) . The definitions of X1 ,
and X2 are similar to those given above. If X(t) = (x(t),y(t),z(t))
is a curve, then X' = (x',y',2') . If t = s 1is the arc length, then

X' 1is denoted by X or X.

Warning. Existence and continuity of derivatives will be assumed
(without explicit mention) wherever this will expedite the statements
and proofs of results. No special attempt will be made to always give
the "best" results with respect to minimum conditions on derivatives.
However, whenever analyticity is necessary, this will be stated expli-
citly. In general, most expressions which will be considered will re-
quire that the functions appearing in them be twice continuously diffe-
rentiable to be meaningful and three times continuously differentiable

to be provable.

1. Elementary Concepts

1.1 Definition. A surface in E3 is a map of a region R in the

u-v-plane (called the parameter plane) into E3 subject to the follow-
ing conditions: If the mapping is given by specifying the functions
x(u,v),y(u,v), and z(u,v) then

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 82-99, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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1) all first partial derivatives exist and are continuous (strong-
er assumptions will be made when necessary)
2) Xg ¥y 2

u u
rank

H
[S)
.

z
VyV v

The map will be denoted by X(u,v)

]

(x(u,v) ,ylu,v),z(u,v)) .

1.2 Theorem. A map of a region R in the u-v-plane into E3 which
defines a surface is a local homeomorphism; i.e., the map gives a homeo-~
morphism between a neighborhood of each point and the image of the
neighborhood under the map.

Proof: We may assume X, Yy,

£0 .
Xy Yy
But then the projection of the surface into the x-y-plane is a local
homeomorphism, of the u-v-plane into the =x-y-plane, since the Jaco-
bian of this map is not zero. Therefore the map into the surface is

locally 1~1 and open, and hence a local homeomorphism.

1.3 Definition. If X = (x{u,v),y{u,v),z(u,v)) 1is a surface, then Xu

and Xv are tangent vectors to the surface. The plane spanned by Xu
and X, is called the tangent plane.

X XX
u

X xX_|
uv

The vector X =l

is the normal to the surface.

condition 2) of 1.1 can be stated X %X, #0 3 i.e. X, and X do

not vanish and have different directions.

1.4 Definition. A motion is a translation, a rotation, a reflection,

or any combination of these three.

An admitted parameter transformation is a one-to-one map of a

region R in the u-v-plane into a region R in the u-v-plane such

that 28l 2
a(u,¥v)
Under such a transformation, it is often necessary to decrease
the region in which certain expressions are valid. This, in a sense,
is characteristic of classical differential geometry, and is precisely
the sort of argument which is not allowed in differential geometry in
the large.

If X(u,v) is a surface, then clearly under an admitted parameter
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transformation, X[u{G,v),v(T,¥)] is also a surface whose image is the
If 91%4§L > 0 , then

) o olu,v)

and XuxXv have the same direction; otherwise, they have

same point-set as the image of X(u,v) .
xﬁxxv
opposite directions.

2. First Fundamental Form

2.1 Definition. If X(u,v) 1is a surface, then the expression

P LA

2

x%au? + 2% X du dv + Xldv2
u u v v

is called the first fundamental form of the surface. If E = Xi ,

F = Xuxv , and G = Xi , then it can be written

E du2 + 2F du dv + G dv2 .

If coordinates (ul,uz) are used instead of (u,v) , then the

first fundamental form will be written

i J —_— - = -
gijdu du” where g,, =E , g4, =gy =F , g,,=G .

2.2, Let u(t), v(t) define a curve in the u-v-plane. Then, if
X(u,v) 1is a surface, X(u(t),v(t)) is a curve in the surface. The
length of this curve is defined to be SV(X')Zdt . Since

X! = qu' + va‘ we have immediately that

H(x') 2at

j\/E(u')z + 2F utv' + G(v!) %at

I VE du2 + 2F dudv + G dv2 -

fl

Hence, in the surface, the element of arc length, ds, is given by

2
ds” = E du2 + 2F dudv + G dv2 .

It follows from this that the first fundamental form is positive de-
finite.

2.3. If two intersecting curves are given, then the angle between the
curves is defined to be the angle between the tangents to the curves.
Using coordinates (ulzuz) » their tangent vectors can be expressed as
linear combinations, alxi and bjxj respectively, of the tangent
vectors X and X

1

2 - If y 1is the angle between the tangents to the
curves, then j
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2.4. The area A of a region on a surface X 1is given by

A= IgVEG-FZdudv = ff det(gij)duldu2 .

2.5. In the preceding discussion, it was shown that the first fundamen-

tal form of a surface essentially determines the metric properties of

that surface. It is easily seen that these notions are invariant with

respect to motions and admitted parameter transformations. In fact, if

934
2 - . -1 -2

(a”,u”) and SR the components with respect to (u ,u”) then

are components of the first fundamental form with respect to

j k

- -h .-
= ghkdu du

i
gijdu du
i.e., the gij transform like a second order, covariant symmetric
tensor. If X and Y are two surfaces which can be transformed into
each other by a motion, then they have the same first fundamental forms,

but the converse is not true.

2.6 Definition. Let X and Y be two surfaces. If there is a diffe-
rentiable homeomorphism between X and Y , which preserves the length
of curves, then X and Y are said to be isometric. The map is called

an isometry.

If parameters u and v are introduced so that X{u,v) and
Y(u,v) are corresponding points under a given homeomorphism h , then
h is an isometry if and only if the first fundamental forms of X and

Y with respect to u and v are the same.

3. Geodesic Lines

3.1 Definition. Let X be a surface and let X(s) be a curve on the
surface where s 1is arc length. If X = AX then X(s) 1is called a
geodesic. If u and v are the surface parameters, then this condition
is eguivalent to ixu = 0 and ixv = 0 . By eliminating arc length bet-
ween these two equations and taking v as the parameter along the
curve, it can be shown that the curve satisfies a second order differen-—

tial eguation " = £(u’',u,v) .

Thus, the following theorem follows trivially.

3.2 Theorem. Given a point on a surface and a direction in the surface,
there exists exactly one geodesic line through the point in the given

direction.
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3.3 Theorem. A curve X(s) is a geodesic if and only if for each pair
of points a and b on X(s) , the length g of X(s) between a
and b 1is stationary with respect to variation of the curve between

a and b .

Proof: Let X(s,7) be a family of curves such that X(s,0) = X(s) ,
and let b

e = | Yz %

a

We wish to show that ¢'(0) =0 .

A simple computation shows

b .-
v - [
a X

But (}’()2 =1 since s is arc length. Since (ﬁx')'= XXt + XX' , by
integration by parts, we get

b

g (0) = (x> - ] kxtds .

a
Now X is the tangent to the curve X(s) and X' is the vecteor in
the direction of the variation. Since we are keeping the end points,

b

aand b , fixed, [ix']a = 0 . Further, since X' 1is a tangent vector,

if Y is a tangent vector orthogonal to X , we may write

X' = p(s)X + q(s)Y . Finally, since iz =1, XX =0 . Hence

b s
g'(0) = - j(XY)q(S)ds .
a

If 2£'(0) is to be 0 for every function ¢(s) , which vanishes
at a and b , then by the Fundamental Principle of the Calculus of

Variation, we must have XY =0 . But, since trivially %X = 0 , this

is equivalent to the condition X = aAX .

On the other hand, if X = AX , then XY = AXY = 0 , and hence
g'(0) =0 .
3.4 Definition. Let C be an arbitrary curve on a surface X . Let
v be arc length along C . By 3.2 through each point of C , there is
a unique geodesic orthogonal to C . By well-known properties of diffe-
rential equations, these geodesics depend continuous on their point of
intersection with C . Hence if u measures arc length along these
geodesics, then u and v give an admitted parameter system in a
neighborhood of C where the geodesics do not intersect. This coordi-

nate system is called a gecdesic coordinate system, and u and v
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are called geodesic parameters.

3.5 Theorem. If u and v are geodesic parameters on X , then

2 2 2,2 -
ds” =du + g dv . Conversely, if d52 = du2 + gzdv2 , then the curves
v = constant are geodesics.
2 2 2
Proof: In general ds. =E du + 2F dudv + G dv. . If u and v are

. 2 R .
geodesic parameters, then E = Xu = 1 since u 1is arc length. We must

show that F(u,v) = quv =0 . Now F(O,v) =0 by definition.
It is sufficient to show that Fu = 0 . But

F =X X + XX .
u uu’ v uuv
1 . I . .
However, X X ==E =0, since E =1 , and X = X which is
uuv 2 v uu

normal to the surface since the u-~curves are geodesics. Since Xv is
a tangent vector, X X =0 . Therefore F, =0 . Finally if g = +e ,
then

ds? = au? + g2av .

Conversely, let a and » be two points on a curve v = constant

and let D Ye any curve joining them. Then

2(D) = ib Yau?+ g2av? > fau = s
a

where U 1is the curve v = constant. Therefore U 1is a curve of mini-

mum length between a and b , and hence a geodesic.

4. Parallel Displacement

4.1 Definition. Let s be arc length along a curve C in a surface
X . Let 2Z(s) be a tangent vector field along C . Then Z 1is called

a parallel vector field if the tangential component of % is zero;

i.e., Ztang = 0 . More precisely, this is parallelism in the sense of

Levi-Civita.

Example: If C 1is a geodesic, then itang =0 since X is normal to

the surface. Hence the tangent vectors, X , to a geodesic form a

parallel vector field.

4.2 Theorem. If Z1 and 22

Z122 = constant.
Proof: (lez) = 2122+A2122 = 0 since 32, and z, are normal, while
are tangential.

are two parallel vector fields, then

z1 and 22
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Since 22 = constant is a special case of the theorem, the length
of a parallel vector field is constant. Also, the angle between two
parallel vector fields is constant. Hence it is meaningful to speak of
the parallel displacement of the whole vector bundle at a point, since

this displacement is rigid.

. 1
4.3 Theorem. Given a curve C on a surface X(u ,u2) and a vector at

a point of C , there exists exactly one parallel vector field along

C containing the given vector.

Proof: If Z(s) is a parallel vector field along C , we wish to show

that the condition Ztang = 0 1is equivalent to a system of first order
differential equations. Clearly 2tang = 0 is equivalent to
éXk =0, k=1, 2 . Since 2Z 1is a tangent vector,

Z = zlx.

1

i
where z are the components of 2Z . Hence

7 = 2'X, + z'X,
i i
=2, +x,.07%z" .
1)
Therefore, we must have
i g i
0O =2z Xixk + (Xink)u Z .
Now X.X, = ¢g., . Thus if (ghj) denotes the inverse matrix of (g.,),
17k ik hk ik
multiplying by g gives
_ .h hk L3 i
0=z +g Xink“ z5 .
h hk
If we let Pij =g 'Xijxk , then
0 = zh + Fb.ﬁj .
1]

which is the desired system of first order differential equation. Hence
existence and uniqueness follow by well-known properties of such
systems.

4.4 Theorem. In the special case that (u,v} 1is a geodesic coordinate

2

system, i.e., ds2 = du2 + gzdv , then the differential eguations re-

duce to
a = -guv

where o 1is the angle between xu and 2 .
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proof: For a geodesic coordinate system we may write

. -1
= +
4 cos « Xu sin o g Xv

since Xi =1 and 'Xi = 92 and since we know from 4.2 that |z] = 1.

Then . N R ) . -1 .
Z = cos a(Xu+ &g Xv) + sin a (-& X, * (g Xv) ) .

-1, -1 .. . 2 _ -1, 2
But xuxu =0 and g Xv(g X,)" =0 since X, =1 and (g "X )"=1;
and xuxv =0 , since (u,v) 1is a geodesic coordinate system. Hence

. . . ~1 .

= -0 =

z X, sina (-&+ (g Xv) Xu) o

. - | _

Z ng = cos a{a + Xu(g Xv)) =0 .

However ﬁug-lxv+ Xu(g~1xv)' = (Xug—lxv)' = 0 since Xug_lxv =0 .
Hence the coefficients of sina and cosa are the same. But
sina and cosa are never simultaneously zero. Therefore we conclude
that . . -1
& + Xu(g Xv) =0 .

Or, in terms of u and v ,

. -1 . - .
a+g X Xu-+g Xv=0.
uu’v uv'v
Now quxv + Xuxuv = (XuXv)u = 0 . But, szn;e nguv =0 alio,zlt
follows that XXy =0 - Finally, since X, =9°, Xuvxv = 3(9 )u= 99, -
Therefore
& =-g.v .

We see from this result, that for a geodesic coordinate systenm,
the equation for parallel displacement depends only on the first funda-
mental form. Since parallel displacement does not depend on the coordi-
nate system, this is true in any coordinate system. However, we shall
give a formal proof of this fact, in order to be able to use the re-

sults in Section 5.

4.5 Theorem. The equations for parallel displacement of a vector de~

pend only on the first fundamental form.

Proof: It is sufficient to show that I?j is determined by the first

fundamental form. Since r?j = gthink , it suffices to consider the
quantities
r =

iy,k = X% -

Since 9ix = Xixk , the Pij,k satisfy the following properties,
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=I‘_

Tijc = Tyix
og.
2a) r.. + T, . = }k
i3,k - ki, i 03
89.. .
K, s3] au
o9y,
= ki
) Mgt Tk ol

Adding equation 2a, b, and ¢, making use of 1) gives

(% | By %945
r.. = 7 + S -
ij,k 2 au] aul auk

5. Riemannian Space

]

5.1 Definition. Let ds2 = gijduldu be a Riemannian metric in a

region of the u-v-plane. (i.e., the g form a positive definite

ij
quadratic form). Then as in Section 4, we define

_1(°‘3m 2 e agi-])

.. = n

ij,k 2 auj oUl auk
h _ hk

Ti3 79 Tijx -

i ; .
If z are the components of a field of contravariant vectors on a

curve which satisfies the equations

then the field is called a parallel field. The equations are called the

equations of parallel displacement.

A curve is called a geodesic if the tangent vectors to the curve

satisfy the equation of parallel displacement.

5.2 Theorem. Let A and B be vectors with components ai and bi
respectively. Then the scalar product AB = gijaibj is invariant under
parallel displacement. This property is characteristic in the sense
that if the Fij,k are allowed to be arbitrary functions of u and v
which are symmetric in the first two indices and which preserve scalar

products, then they must be the Pij x given in 5.1.

Exercise: Prove Theorem 5.2.

5.3 Theoremn. Geodesics satisfy a second order differential equation and
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the distance along a geodesic between two of its points is stationary

with respect to variations of the curve between the two points. As in

Section 3, geodesic coordinates can be introduced along a curve.

6. Curvature in Two Dimensional Riemannian Geometry

6.1. Let the closed curve C be the boundary of a region R on a
Riemannian manifold, U a continuous field of directions on RucC ,

zo a vector (# 0) in a point of C , Zt {(0£ t £1) the field gene-
rated by parallel displacement of Zo around C , « =<4{U,Zt] . Then
the variation qca along C equals mod. 2% the angle«{[zo,zll .

It is easily shown that o6, a does neither depend on the choice of U

nor on the choice of Z0 .

6.2 Theorem. Let R be a region small enough to be contained in the
region of validity of a geodesic coordinate system and let C be the

boundary of R . Then

where dA is the surface element, and hence daA = gdudv .

Proof: By applying 4.4, we get & a = & ads = - g v ds = - & g .dv
_— C & u ¢ v
9
S R 1 -
R R
AR CY
6.3 Definition. K(a) = - IO is called the Gauss—Riemann curva-

ture. SI K dA is called the total curvature of the region R . By

R .
6.2, the total curvature of a region R 1is equal the change in angle

of a vector displaced parallely around the boundary of R .

6.4 Theorem. K(a) 1is independent of the coordinate system at a .

guu(a) o
Proof: K(a) = - —gT;T— = lim - where A is the area bounded by
C-a

¢ and lim means limit as the curve C 1is shrunk to the point a .
C—a
Since A and 6Ca are independent of the coordinate system, the

theorem follows.

6.5 Theorem. If K is constant, then, subject to initial value condi-
tions, there is exactly one Riemannian metric with the given X . The
cases K>O, K<O, and K = 0 are called respectively elliptical, hyper-
bolic, and Euclidean.
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Proof: The proof follows easily since g satisfies the differential

equation Juu +Kg =0 .

6.6 Theorem. In an orthogonal coordinate system (i.e., F =0 ), if
=2 SeteR

=e and G = gz » then
e g
K = - A} (e
eg 9 /v € u

1 < Ev Gu
- —ZL) &
2VEG VE_G> , \VEe

t

u

7. The Gauss Curvature of Surfaces in E3

7.1. In order to motivate the discussion of the curvature of a surface
. 3 . ..

in E° , we shall review the definition of the curvature of a plane
curve. If C(s) is a plane curve, where s 1is the arc length and if

T is the angle between the tangent to the curve and the positive

x-axis, then the curvature, k , is defined by k = ¢ = gﬁ . Clearly

could as well be defined to be the angle between the normal to the
curve and the positive x-axis. Let o be the unit circle in the
x~y-plane and consider the mapping of cC(s) into r given by mapping
C(so) into the point on  which is the intersection of r with a
unit vector through (0,0) parallel to the normal to c(s) at s, -
Let n(s,so) be the length of C(s) between s and Sy » and let
E(s,so) be the length of the image of the arc between s and S,
under the map given above. Then

_ s s
g(s,s ) = I dr = X k ds .
s s
o o
Hence E(S.so)
k(so) = lim ;—(——s——)-
s—’so 8.5,

7.2. For a surface X(u,v) in E3 , we have a similar map into the unit
sphere, X , defined by mapping the point X(uo,vo) into the point on

Z which is the intersection of 3 with a unit vector through (0,0,0)

parallel to the normal to X(u,v) at (uo,vo) - This map is called the
spherical map of X . Let A(uo,vo) be the area of a small region con-

taining X(uo,vo) and let 9 be the area of the image of this region

under the spherical map. Then the curvature, K , is defined by

- 1in £ _ 42
K(uo,vo) = lim 2 =G -

A-o
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Gauss proved (Theorema Egregium) that this K depends only on the first
fundamental form of the surface. It can be shown, in fact, that this X
and the K defined in 6.3 are the same. From this, it follows immedi-
ately that if X and Y are surfaces which are isometric, then they

have the same curvature at corresponding points.

8. The Second Fundamental Form

8.1 Definition. Let X(u,v) be a surface. Then the second fundamental

form of X 1is

X % au® + 2X_X dudv + X_X av® .
uu uv vv

Since Xui = 0 and therefore xuui = -Xuiu , the second fundamental

form can be written

X % du® - 2X % dudv - X X dv® .
uu u v v Vv

If L=-XX,M=-XX ,and N =-XX_ then it can also be written
uu u v v Vv

L du® + 2M dudv + N dv® .

: 1 2 .
If coordinates (u ,u’}) are used instead of (u,v) , then the second
fundamental form is written

f..dulduJ
1]

=5 ,0,,=0,, =M ,and .. =x .

where ¢ 12 21 22

11

The second fundamental form will be used to derive detailed infor-

mation about the curvature in the neighborhood of a point. We shall also

be concerned with the entities E? = Qikgkh , because of the following
theorem.
8.2 Theorem. ii = - Eixj , i.e., the Ei are the components of the

linear transformation which gives the rate of change of the normal to

the surface.

Procf: Since X, is a tangent vector, X, = aix& . Taking the scalar

product with X gives - § kh

. N
ik i9% and hence, multiplying by g

gives ho_p P __gn
3 7T Mk Ty

8.3. Since (Ei) is a linear transformation we may consider its inva-

riants under linear transformations; i.e., the determinant, the trace
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and the eigenvalues. It can be shown that
det(?iJ

= det(glj) =K ,

3
det (f i)

where K 1is the Gauss—-Riemann curvature.

We define the mean curvature H by

=L 3
H=7 tr(Bi)

where tr denotes trace. It can be shown easily that

GL-2FM+EN

EG-F2

2H =

If we choose parameters at a point so that E =G =1 and F =0

= -1 3y = Coh 4
then (gij) = (éij) and (gij) = (éij) . Then (?i) = (?ij) which is
gymmetric. Therefore (?i) has real eigenvalues, which will be denoted

by ki and k2 - k1 and k2 are called the two principle curvatures

and satisfy the following equations:

k1k2 = K and k1 + k2 = 2H

and therefore ki =H + VHz—K . If the corresponding eigenvectors are
uniquely defined (i.e., k1 #~ kz) , then the directions of the eigen-

vectors are called the principle directions. Points where k1= k2 are

called umbilical points. In the first case it is possible to find two

families of curves such that the tangents to the curves are in the
principle direction at each point. These curves are called the lines

of curvature.

8.4. The equations satisfied by the lines of curvature can be derived
as follows:

Let (ul.uz) be a coordinate system and (dul,duz) one of the
principle directions. Then, since the direction is not changed by the
spherical map, (dul,duz) must be proportional to (e§du3, fiduj) .

Hence
du1 du2

f 1aud 244]
jau fju

=0 .

Expanding this in terms of (u,v) rather than (ui,uz) gives
2.2 2 1 1.2
Pldu + (fz- el)dudv ?zdv =0 .

Glearly, parameters can be introduced along these lines in the neigh-

borhood of any point which is not an umbilical (or flat) point. It can
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be shown that a necessary and sufficient condition for the constant
lines of a coordinate system to be lines of curvature is that
F=M=0.

8.5 Definition. Let (u,v}] be a Euclidean orthogonal coordinate system.
in the tangent plane to the surface, with (0,0) corresponding to the

point on the surface. The conics given by
2
Lu2 + 2Muv + Nv© = + 1
are called the Dupin indicatrix. There are several cases to consider:

1) The second fundamental form is definite; i.e. LN - M2> o .

Then only one choice of sign gives a real curve, which is an ellipse.

In this case the tangent plane is entirely on one side of the surface.
In a neighborhood of such a point, the spherical map is 1-1 and pre-

serves orientation.

2) The second fundamental form is indefinite; i.e. 1IN - M2~<0

The locus is two conjugate hyperbolas. In this case the tangent plane
intersects the surface. In a neighborhood of such a point the spherical
map is 1-1 and reverses orientation

3) IN-M =0 .

a) (L,M,N) # (0,0,0) . In this case the locus is two parallel
straight lines since the left side of the equation is the square of a
linear form.

b) (L,M.N) = {0,0,0) . There is no locus. Such a point is
called a flat point.

No general statement can be made about the location of the tangeht

plane and the spherical map may not even be 1-1 .

8.6. The principle curvatures can be given a more geometric interpre-
tation. For, given a point on the surface and a direction in the tangent
plane to the surface at the point, a unique plane is determined by this
direction and the normal to the surface at the point. The intersection
of this plane with the surface is a plane curve whose curvature k can
be shown to be

o o Ldu’+ 2M dudy + N av?

E du2+ 2F dudv + G dv2

X is a function of the direction in the tangent plane and it can be

1 . : A : :
shown that |k| =—% where r 1is distance from the origin to the indi-

r . »
catrix. Hence, in general, k has one maximum and one minimum. These
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are precisely the eigenvalues k, and k, , and the directions in
which they occur coincide with the directions of the eigenvectors.
Exceptions to this behavior occur when the point is an umbilical (or
flat) poiﬂt; then all directions are eigenvectors. In cases 2) and 3a)

the asymptotic directions are given by

Lu2 + 2M uv + sz =0

8.7. The curvature K was introduced by means of the spherical map as
a generalization of the curvature k of a plane curve. The mean curva-
ture H is also a natural generalization of k , where this generali-
zation is given by considering the variation of arc length of a curve

between two points.

Let X be a curve in the plane between two points a and b of
length ¢ . If X 1is varied, then, as in Section 3, the rate of change
of £ 1is given by

b b
g = - S XX'ds + [}b{']a .
a
Let Y be the unit normal to the curve and let + be the angle bet-

ween the tangent to the curve and the positive x-axis. Then

X = (cost,8in 1) .

So X

k(-sin 1 ,cos 1) = kY
Since X' can be written
X' = tX + nY

it follows that for an arbitrary variation X' ,
b
b
! = -
2 ;nkds+[t]a.

If X' is a normal variation of constant magnitude 1 ; i.e. t =0

and n =1 , then
b
e = - X k ds .
a
If the analogous argument is carried out for a region of a sur-
face X in E3 , then the result is in terms of H . Let p be the
variation parameter and let A(p) be the area of the varied surface.

If X' is the derivative in the direction of the variation, then

X' = nX + X! .
tang

It can be shown that
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AY = -2 HnH da + @(i,x' ,dx)

where (X,Y,2) denotes the determinant of the vectors X,Y, and 2

L = =
If Xtang O and n 1 , then

at = -2{{n aa .

Exercise: Derive the above formula for A' .

9. The Relation between the two Fundamental Forms

9.1 Theorem. Let X and Y be two surfaces such that there is a 1-1
map of X onto Y . Let (u,v) be a coordinate system such that
X(u,v) and Y(u,v) are corresponding points under the map. Then the
first and second fundamental forms of X and Y with respect to u
and v are the same, if and only if the map is produced by a proper
motion. (Under a reflection, the first fundamental form is the same,

while the second fundamental form changes sign).

9.2 Definition. Let E du2+ 2F dudv + G dv2 and L du2+ 2M dudv+ N dv2
be two differential forms. Let F?j be defined as in 5.1. Then the

equations
1 2 1 2
Ly~ My = Tyl + {ryp= Iy ) M- TN
1 2 1 2
M= N, = Tyl +(Ty,- Ty ) M-y N

are called the Codazzi equations.

9.3 Theorem. Given two forms, E du2+ 2F dudv + G dv2 and
L du2+ 2M dudv + N dv2 , there exists a surface with these as first

and second fundamental forms respectively if and only if

1) E du2+ 2F dudv +G dv2 is positive definite

2) LN - M2 = f£(E,F,G) where f is the operator given by Gauss'
Theorema Egregium.

3) The forms satisfy the Codazzi equations (i.e., the Codazzi
equations are essentially integrability conditions for the

forms.)

Proof: We will sketch the proof of necessity. 1) and 2) are obvious.
To prove 3) consider the following formulas:
k

..o =a,.Xx +F¢..X .
Xl] alJXk Pljx
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Taking the scalar product with xh gives

- = K
Tisn = %i5% = %5%n -

Hence atj = P?j . Therefore

X5 7 P]i(jxk ARFTE
We also know that ii = -Etxk . Now, assuming continuity of the third
derivatives, xijk = xikj = inj , ete. By computation, one shows that

these equations just reduce to the Codazzi equation and Gauss' theo-
rema egregium.

10. Miscellaneous Remarks

10.1. We have seen that the coefficients of the first fundamental form

gij

g = (gij) in one coordinate system and g = (aij) in another coordi-

are the components of a covariant symmetric tensor; i.e., if

nate system, then g = T'ET , where T 1is the Jacobian of the coordi-

nate transformation and T' 1is the transpose of T .

However, the situation is not quite the same for the coefficients
ij f xijx , the ?ij
would be the components of a covariant tensor if X was invariant

of the second fundamental form, Ei' . Since ¢

under a change of coordinates. But, by our definition, X changes sign
under a coordinate transformation which reverses orientation. Hence, in
general, if [ = (Bij) in one coordinate system and ¢ = (fij) in
another coordinate system, then 7= UTT'ET where UT is the sign of
the determinant of T .

Now, the curvature K 1is not affected by this property, but the
mean curvature H 1is, and in fact changes sign under an orientation
reversing transformation, since tr(-f) = -tr(f) . Therefore the mean
curvature of a surface is well-determined only if an orientation is
chosen, or equivalently, only if the direction of the normal is speci-
fied.

10.2. In Section 3 it was shown that parameters could be introduced

so that
d52 = du2 + gzdv2 .

A second convenient parameter system which can be introduced is an iso-
thermal parameter system, which satisfies E =G and F =0 . If a co-
ordinate system is given such that

d52 =E du2 + 2F dudv + G dv2
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then a simple proof of the possibility of introducing isothermal para-
meters, u* and v* can be given providing E, F, and G are analytic,
where the proof is given by continuing E, F, and G into the complex
domain. The theorem is true under much weaker conditions - for example,
if E, F and G are only twice continuously differentiable - but the

proof is much more difficult.

Clearly such a mapping of the u*- v* - plane into a surface pre-
serves angles and hence is conformal. In this case, when it is con-

venient we can introduce new parameters

w=u* + iv* and w = u* - iv* .

10.3. In the special case that the surface is given by z = z(x,y) ,
the basic quantities can be explicitly calculated. Let p, g, r, s,

and t denote respectively =z , and zyy . Then

2 12,2
%%y “xx " “xy

E = 1+p° F = pq 6 = 1+q°

L = —f— M=— N = —o
14p24q? Ji+p2+q? 14p2+q?
rt—52 - (1+q2)r—2pqs +(1+p2)t

K="=z 2= 2. 2.3/2 .
(14p7+q") (14p~+g")



CHAPTER II

Some General Remarks on Closed Surfaces in Differential Geometry

As a general reference to the topological material covered in

this chapter, see Seifert-Threlfall: Lehrbuch der Topologie.

1. Simple Closed Surfaces in E3

1.1 Definition. A simple, closed (i.e., compact) surface or 2-manifold

——

i E3 is a set 8 cE3 such that:

1) S 1is compact (i.e., closed and bounded)

2) S 1is connected. (A compact set S 1is not connected if
S = AUB where A and B are compact and non-empty, and
ANB is empty.)

3) Each point pe S has a neighborhood N(p) ¢S which is homeo-
morphic to the interior of a disk in the plane.

S 1is called differentiable if in addition the following con-

ditions are satisfied:
4) Let N(p) be a neighborhood of p satisfying 3) above and

let the homeomorphism be given by
X(u,v) = {x{u,v), ylu,v), z(u,v)) ,

where (u,v) are Euclidean coordinates in the plane and
(x,v,z) are Euclidean coordinates in E3 . Then x,¥, and =z

are differentiable and
rank =2 .,

5) If reN(p)nN(g) where N(p) is homeomorphic to a disk in
the u-v-plane and N(g) is homeomorphic to a disk in the
U-v-plane, then the natural map u = a(u,v), v = v{u,v) de-
termined in N(p) N N(q) is differentiable in both directions

and therefore:

a(u,v) 40
o(u,v) :
. : . 3
1.2 Theorem. (Jordan-Brouwer) If S 1is a simple, closed surface in E-,

then E3\ S = IUE where I and E satisfy

1) I and E are open, connected, non-empty sets
2} INE is empty
3) I 4is bounded

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 100-106, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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4) E 1is not bounded

I 1is called the interior of S8 and E is called the exterior
of S .

1.3 Theorem. If S is a simple, closed surface in E3 , then 8 is

homeomorphic to a sphere with g handles (g2 0) as illustrated be-
low. The number g is called the genus of the surface.

" <::ffiiiifi::>
Surfaces with zero Surfaces with one Surfaces with two
handle handle handles

2. Abstract Closed Surfaces

2.1 Definition. An abstract closed surface is a Hausdor £f space

—— S

satisfying the second axiom of countability and such that conditions

1), 2) and 3) of 1.1 are satisfied. If in addition, condition 5) of

1.1 is satisfied, then the surface is called differentiable.

Let S be a differentiable surface and let f be a real-valued
function on S . Let p€S and let N(p) be homeomorphic to a disk
in the u-v-plane with p corresponding to (0,0) . Then £ 1is diffe~
rentiable at p if £(u,v) is differentiable at (0,0) . This notion

is clearly invariant under a differentiable change of coordinmates.

2.2 Definition. An abstract closed, differentiable surface is called
orientable if all of the parameter disks can be chosen so that all of

the Jacobians of condition 5) of 1.1 are positive.
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If the surface is a subset of a Euclidean space then an equivalent
condition is that it be possible to assign a coherent orientation to
the tangent planes to the surface. Since an orientation in a tangent
plane at p determines an orientation in a neighborhood of p , this
is equivalent to requiring that the orientations assigned in the inter-

section of two neighborhoods are the same.

2.3 Theorem. A simple closed surface in E3 is orientable.

Proof [Sketch]: It is easy to see heuristically that this must be true,
since, by 1.2, at each point of the surface we can distinguish the
normal directed towards the interior. If a definite orientation is
chosen for E3 , then at each point the tangent plane can be oriented
so that this orientation and the direction of the interior normal gives
the chosen orientation of E3 . This process clearly gives a coherent

orientation of the whole surface.

2.4 Theorem. An orientable abstract closed surface is homeomorphic to
a simple closed surface in E3 , and hence, by 1.3, is homeomorphic to
a sphere with g handles (g2 0) . Hovever, as the following two

examples illustrate, there are non-orientable abstract closed surfaces.

2.5 Example. The real projective plane. Let (u,v,w) be an orthogonal

coordinate system in E and let p be the point (0,0,0) . Let L
be the plane w = 1 , Then each straight line through p , not parallel
to L determines exactly one point on L , and conversely. In fact,
(u,v,w) may be considered as homogeneous coordinates of the point

u v
(;; "‘;r 1) ¢L .

Clearly, the lines parallel to L correspond to the "points at infi-
nite" in the projective L plane; i.e,, the points with homogeneous
coordinates (u,v,0) . Hence the real projective plane is in 1-1 cor=-
respondence with the bundle of straight lines through a point in B> .
This bundle of straight lines has a natural 1-1 correspondence with
the pairs of antipodal points on the 2-sphere. The set of these pairs
of points is in 1-1 correspondence with the upper hemisphere where the

antipodal points on the bounding, equatorial circle are identified.

In the above construction, if the unit sphere is taken as the
2-sphere with center at p , then a point on the projective L plane

with homogeneous coordinmates {(u,v,w) maps into the pair (%, %, %) ,
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u v w \/2 2
(- ;, - =, = =) , vhere = yu~ + v + w2 , under the first corre-

n
n n
. u v |w .
spondence; and into (§, 7, IEI) if w#0 or (ﬁ, %, 0} and
u v .
(- Py 0) , where m = u2+ v if w =0 , under the second cor-

respondence.

This last set is clearly homeomorphic to a closed disk in the plane
with diametrically opposite boundary points identified. For neighbor-
hoods of points interior to the disk, we take ordinary Euclidean neigh-
borhoods. For boundary points, two half disks are taken as illustrated.

4

Using this last model, it is clear that the projective plane is
non-orientable, since if an orientation is chosen at the center, then
the orientation is determined at all interior points. However, because
of the identifications of boundary points, each point on the boundary
of the disk must have opposite orientations, depending on the direction

from which the boundary is approached.

2.6 Example. The Klein Bottle. A Klein bottle can be represented as a

rectangle with sides identified as in figure 1). Figure 2) is a picture

3

of a model of a Klein bottle in E with self-intersections.

1) 2)

2 ‘
N
4

2.7 Theorem. A non-orientable abstract closed surface is homeomorphic
to a real projective plane with p handles (p 20) or a Klein bottle
with p handles (p20) .

3. General closed Surfaces in E3

3.1 pDefinition. Let S° be an abstract closed surface with a differen-
tiable structure. Let X be a differentiable map of So into E3 H

i.e., X(p) = (x(p),y(p) .2z(p))
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where x(p),y(p), and z(p) are differentiable functions on So ,

such that, with respect to local parameters u and v ,
rank =2 .

Then X 1is called a general closed surface in B . Strictly speaking,

a general closed surface is an ordered couple {SO,X} . However, if
g = X(So) is the image of S° under X , we will also call § the
general closed surface when no confusion will arise from this conven-

tion.

The condition on the rank implies that X is locally 1-1 ; how-
ever, the image may have self-intersections. If So is non-orientable

then the image will necessarily have self-intersections, by 2.3.

3.2 Theorem. Every non-orientable closed surface can be imbedded diffe-

rentiably and locally 1-1 as a general closed surface in E3 .

Proof: Illustration 2) of 2.6 gives such an imbedding of the Klein
bottle in E3 . The Boy surface is an imbedding of the projective plane
in E3 . For a description of this surface, see Hilbert-Cohn-Vossen:

Geometry and the Imagination. By 2.7, all others are these with handles.

3.3 Problem. The above imbeddings are geometrical of necessity since no
explicit formulas are known for the imbedding of the Klein bottle and
the projective plane in E3 . For the projective plane, this could be
done, for example, by specifying three functions on the 2-sphere which
are even and such that the rank of their Jacobian is 2 . It is conjec-
tured that this can be done with homogeneous forms of even degree. How-~
ever, it is impossible with quadratic forms and is conjectured to be

impossible with quartic forms.

With respect to imbedding surfaces in e , an explicit parametric
representation of the projective plane is given in Hilbert-Cohn-Vossen.
(However, the equational characterization given there is incorrect as
can be easily seen by the fact that (in their notation) the plane
z =t =0 also satisfies the given equations.) In general, if Mk is
a k-dimensional, non-orientable manifold, then it is impossible to re-~

present Mk in E" by giving n-k equations of the form

f.=0,1=1,,..,n~k
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with maximal functional rank. The proof consists essentially in obser-
ving that if such equations could be given, then their gradients would

be independent at every point, and hence determine an orientation of
Mk ; which is a contradiction.

3.4 Remark. In the remainder of these lectures we shall restrict our
considerations to orientable surfaces.

4. Riemannian Geometry

4.1. Let S° be an abstract closed surface. Then a Riemannian geometry

is determined on So by giving a covariant, symmetric, second order

tensor, gij , on S° » such that the quadratic form gijdulduJ is po-
sitive definite. By 2.4 and 3.2, since every abstract closed surface

can be realized as a general closed surface in E3 , the induced metric

given by considering So as a subset of E3 provides an example of a
Riemannian metric for an arbitrary surface So . The question then

arises are such metrics the only possibilities; i.e., given a Riemann
metric 955 x
isometric imbedding of S° as a general closed surface in E” . The

on an abstract closed surface SO , does there exist an

following theorem and example show that the answer is no!

4.2 Theorem. Let S be a general closed surface in E3 . Then there
are points p in 5 such that K(p)>o0 .

Proof: Since S 1is compact, S is contained in a sphere with given
center of minimum radius R , with the property that § 1is tangent to
the sphere at at least one point. At this point,

the curvature of S22 the curvature of the sphere >0 .

Exercise. Show that XIK dA2 4n for every general closed surface S

P

in E3 , where P ¢S is the set where K>0 .

£ torus of revolution and let
4.3 Example. Let So be the surface of a

o« and f be parameter angles as indicated.




108

Define
as® = aa’+ apg® .

Then K= 0 , since in this metric, So is locally like the Euclidean
plane. Hence by 4.2, S, cannot be imbedded isometrically in E3 . How-

ever, S° can be isometrically imbedded in E4 s the functions

X, =cosa , X, = sina , x

1 2 = cosp, X

4, = sinp

3

give such an imbedding since

2 2

2 2 2 _ 2 2
ds = dx1 + dx2 + dx3 + dx4 = da + dp R

This counterexample, since it uses the curvature K , is relevant
only to the problem of isometries which are three times continuously

differentiable; i.e., of class C3 .

4.4. In the above example, we saw that the given metric could be
realized in et . In general it is known that a k-dimensional, compact,
Hausdor ff space satisfying the second axiom of countability can be im-

E2k+1

bedded homeomorphically in . If the space in addition is a mani-

fold, then it can be realized in E2k . Hence any abstract closed sur-
faceface can be realized in E4 . The question remains, can every Rie-
mann metric be realized in E4 ? J. Nash has shown that this is true

if one is content with a Ci—imbedding. (See Annals of Mathematics, 60

(1954) p. 383-396) . His results can be summarized as follows:

If an abstract, closed, differentiable manifold M® , of dimension
n , admits a topological imbedding of class ® in Ek , k=2n+2 , then
every Riemann metric (of class c®) on M' can be realized on a simple

closed manifold of class C1 in Ek .

Nash has also obtained results on ¢© isometric imbeddings, (See
Annals of Mathematics 63 (1956) p. 20-63), but here the bound on the

dimension is much worse. His main theorem here is:

A compact n-manifold with a Ck positive metric has a ck iso-
metric imbedding in any small volume of Euclidean c%)(3n+11)-space,
provided 3£kSw .

No definite results have been given for the case k =2 .



CHAPTER III

The Total Curvature (Curvatura Integra) of a Closed Surface with

Riemannian Metric and Poincaré's Theorem on the Singularities of

Fields of Line Elements

1. Sinqularities of Families of Curves

1.1 Definition. A line element on a surface S 1is determined by a

non-zero tangent vector to the surface. The same line element is de-
termined by all non-zero multiples of the vector. Hence there is no
distinguished direction on a line element. Strictly speaking, a line
element is a one dimensional linear subspace of the tangent vector
space.

A reqular (integrable) field of line elements in a region corre-

sponds to a family of curves in the region such that at each point of
the region the line element at that point is tangent to the curve
through that point.

If a regular field of line elements is given everywhere in a re-
gion except at a single point p and if it is impossible to extend the

field(uniquely)to p Dby continuity, then the field is said to have a
singularity at p .

1.2 Definition. The index Jj of an isolated singularity is defined as
follows:
Let p be an isolated singularity of a field of line elements

and let C be a simple closed curve such that

1) p 1is the only singularity in the interior of C .

2) There are no singularities on C .

Then the given field induces a field F of line elements on C . Let
C be given as a function of a parameter t , C =C(t) , 0€t<1 .
Choose one of the two possible directions along the line element at
C(0) . This determines a direction at cC(t) for every t , 0gtg 1l ,
by continuity. We wish to measure the total change in angle of this
field of directions in going once around C . In order to do this, we
must have something to measure angles with respect to. Assume, for the
moment, that C 1is small enough to be contained in the region of vali-
dity of a fixed local coordinate system. Within such a region there is
defined a field with no singularities; e.g., the lines v = constant.

This determines a direction at each point, which will be denoted by U.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 107-118, 1983, 1989.
c Springer-Verlag Berlin Heidelberg 1983, 1989



108

Let X[U,F] be the angle between the U direction and the chosen F
direction, and let écg[[U,F] be the total change in this angle in

going around C once in the positive direction. Then we define

21y = oC{[U,F] .
It is easy to see that j = % where n 1is an integer.

1.3 Theorem. j does not depend on U or C . Hence the restriction

of C to small curves in the definition is unnecessary.

Proof: 1) Let V be another field without singularities. Then
b K[U,F] = 0o XIULVI + 6, LIV,F] .

However, by choosing C small enough, we can make écﬂi[U,V] arbi-
trarily small since they are both continuous fields without singulari-
ties. Hence, since OCZL[U,V] is an integer multiple of x,

o, Llu,v] =0 .

2) Since %bc depends continuously on C , while 2j is an

integer, it is clear that 3j does not depend on C .

2 . . . . .
1.4 Theorem. If ds is a Riemannian metric and the angle in 1.2 is
measured with respect to this metric, then the index doesn't depend on

the metric used.

Proof: Let (gij) and (hij) be the matrices of the positive definite
forms of two Riemannian metrics. Then
- = (1- Lot s £l
flj(t) ( t)glj thlJ o<t
is also positive definite and hence determines a Riemannian metric for
each t . But the angles change continuously with t , and 2j 1is an

integer. Hence, J does not depend on the metrie.

1.5 Examples. The following examples show that for each 3 = % , there
is a field with a singularity with index Jj .
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1.6 Theorem. Given a surface of genus g , there is a field of line
elements defined on the surface with a finite number of singularities

such that the sum of the indices of the singularities is 2-2g .

Proof: We will sketch the desired differentiable fields with this pro=-
perty.

la) g = 0 . Take the great circles
through the poles. There are two
singularities each of which is like
4) of 1.5 and hence has index +1 .
Therefore X j =2 = 2- 2.0 .

ib) g = 0 . The stereographic
projection of a family of parallel

streight lines in the plane. There

is one singularity at the north
pole which looks like 6) of 1.5,

and hence has index +2 .

1c) g = O . Take the level lines 6 e z

of 2z . There are three singularities
like 3) of 1.5 with index +1 , and
one like 10) of 1.5 with index -1 .

Hence X j =2 .

2a) g =1 . Take circles of revo-
lution. There are no singularities,
and Xj =0 =2-=2-1 .,

2b) g = 1 . Take level lines of

x . Then there are 2 singularities
like 3) of 1.5 with index +1 and
two like 10) of 1.5 with index -1 .
Hence 3j =0 .

B0
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3a) For arbitrary g , if the

surface is imbedded as shown, take
the level of x . Then there are %(
2g saddle points like 10) of 1.5
with index
vae

-1 and 2 singularities

like 3) of 1.5 with index +1 .
Hence Xj = 2-2g .

3b) 1If the surface is represented ; \
as two plane figures with boundaries \ !
identified as shown, then the indi-

cated field has 2(g-1) singularities

like 10) of 1.5 with index -1 .

Hence I3j =2-2g .

Exercise: Construct a field of line elements with exactly one singula-
rity on a surface of genus g =2 . Check that the index of the singu-
larity equals 2- 2g . (The singularity can be, but is not necessarily,
like 11) of 1.5) (p. 209).

1.7 Historical Remark. Poincaré originally considered singularities of

differential equations of the form

a(u,v)du + b(u,v)dv = 0 .

If a and b have a common zero, then the integral curves near the
common zero may look like some of the figures of 1.5. For example

a) udu + v dv =0 gives figure 3)

b) v du +udv =0 gives figure 10)

¢) vdu-udv =0 gives figure 4) .

However, it is easy to see that not all the figures of 1.5 correspond
to this type of differential equation; for, on an integral curve of
adu+bdv =0, the vector (a,b) is normal to the curve. But (a,b)
is a vector with a definite direction. Hence in going around a curve

C , it must change by n-2x where n is an integer. Hence the half-

integer values for 3j do not correspond to differential eguations.
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2. The Main Theorems

2.1 Theorem I: Let S be a closed, orientable surface of genus g
with a Riemann metric defined on S so that the curvature K 1is de-
fined on S . Let there be given a field F of line elements on §
with at most a finite number of singularities. Then the sum of the
indices j of the singularities of the field is defined and

Ixan =2n35 .

S

Proof: If C 1is a simple arc on S which does not contain a singula-
rity of F , then F induces a field of directions F, on C. If

ZC is a parallel field on C , then we define

¢(C) = 6, XI[2Z,.F.] -

Clearly, given F and given the metric, ¢{C) does not depend on the

chosen parallel field and depends only on C . Since the definition of
a parallel field does not depend on the direction in which a curve is

traversed, if -C denotes the curve C traversed in the opposite

direction, then
g(-c) = -g(C)

It is a well-known thecrem in the theory of surfaces that a sur-
face can be subdivided into 2-cells, where a 2-cell is the topological
image of a closed cell in the plane. Clearly, this can be done in such
a way that:

1) There are no singularities of F on the boundary of any cell.

2) Each cell contains at most one singularity.

3) Every cell can be covered by a geodesic parameter system.

call these cells Y 1Yo o and let j(y) be the index of the singu-
larity in y if there is one and 0 otherwise,.

Let y be a fixed cell, let U be the direction of the geodesics
in the geodesic coordinate system, and let b(y) be the boundary of
y . Then, by 1.2 and 1.3 ,

1 273 =95 U, .
) iy b(y) N [U-F]
However, we saw in I, 6.2, that if 2 is a parallel field on bh{y)
then Wxan=s_, xiv,z] .
v b(y)

This can be rewritten
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2) - I}; Kaa = o KI2,0] .

Adding equations 1) and 2) gives
27 ~ K da = ,
i =~ by, (y) £ [2Z:F]

b 4
2 elc)

ciEb {y)

where the sum is taken over all arcs ¢ in b(y) . If this equation

is summed over all 2-cells Yy then

2nziy) - {{xan =0
s

since each arc ci appears in the boundary of exactly two Y » once
as +Ci and once as —Ci .

This is the desired result.

2.2 Theorem II: (Poincaré). If F is a field of line elements on §

with at most a finite number of singularities, then
Ij =2-2g
where g 1is the genus of S .

Proof: Since 2nZIj = “ K dA and S! K dA does not depend on the field,
Zj 1is the same for 5 all fields ° with at most a finite number of
singularities. But in 1.6 we gave an example where Xj = 2-2g . Hence

the equality holds for all such fields.

2.3 Theorem III: (The Curvature Integral). If S is a closed orientable
surface of genus g with a Riemann metric, then

| x aa = 2n(2-29) .

S
Proof: By 1.6, there exists a field of line elements on S with at
most a finite number of singularities. Hence the proof is immediate by

2.1 and 2.2,

2.4 Applications
a) g =0 . Then Ej Kda =4n . If P is the set of points where

if s
K>0 , then b K daz4dn .

(al) Any field on such a surface has at least one singularity; and,
if it has at most a finite number of singularities, then at least one

singularity has a positive index.
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b) g =1 . Then S] K dA =0 . This is the only case where it is
possible to define a SRiemannian metric such that K = 0 , and the

only case in which it is possible to define a field of line elements

without singularities.

c) g2 2 . Then there is at least one singularity for any field of

line elements. If there are at most a finite number

then at least one singularity has a negative index.

d) g very large. Then K is negative on most

2.5 Buler's Formula. Let S be a closed orientable

given subdivision into 2-cells. Let

of sinqularities,

of the surface.

surface with a

a, = number of vertices

a, = numbex of edges

a, = number of 2-cells.
Then a- a,+a, = 2 - 2g . (This result will not be needed in what
follows.)

Proof: We will construct a field where
it is obvious that a- a1+ a,= zj ,
which will prove the theorem. We make a
barycentric subdivision of the given
subdivision by taking as new vertices
the original vertices, an interior
point of each edge, and an interior
point of each cell. New edges are added
as indicated. In each triangle of the
barycentric subdivision construct a
field as shown, where bo is an ori-~
ginal vertex, b, the interior point of
an edge and b2 the interior point of
a 2~-cell. Then at bo and b2 there is
a singularity like 4) of 1.5 with index
+1 and at b1 there is a singularity
like 10) of 1.5 with index -1 . But
each bo corresponds to an original
vertex, each b1 to an original edge
and each b2 to an original 2-cell.

Hence o _ =2 -
Ij =a - a,t a, 2-2g .
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Notation; The number x = 2 - 2g , which appears in the Euler formula,
the curvature integral, and the Poincaré theorem, is called the charac-

teristic of the surface.

3. The Degree of the Spherical Map

3.1 Definition: Let {SO,X} be a general, closed, differentiable
sur face in E3 (See 11, 3.1), where So is oriented, and S = X(So) .
Then to each point Pg € So , there corresponds a well determined normal
of S at the point p = x(po)e S . The direction of this normgl de-
termines a point f(po) on the sphere 3 of directions in E (see I,

7.2). This map £ : So + % is called the spherical map of {SO,X} .

Let K be the Gauss curvature and dA the element of surface
area of S in the Riemannian metric induced by the imbedding X . Then
K and dA may be considered as Gauss curvature and surface element
respectively on the parameter surface S, - Then by I, 7.2, dQ =K dA
is the surface element of f(So) on I (measured in the ordinary
spherical metric of X) . The sign of dQ is determined by the sign of
K since on So , we always have dA >0 . A region Roc So where
K>0 is said to cover I positively under f . Similarly if K<O ,
Ro covers I negatively. Since the spherical image of the set on So
where K = 0 has area 0 , it follows that

g‘ Kda =29

o
where Q 1is the algebraic area of f(So) on X% ; i.e., the sum of the

areas covered positively minus the sum of the areas covered negatively.
Since 3{ K dA = 2n(2-2g) we get the result
So
Q = (1-g)4n .
Since 4n is the area of Z , 1-g represents the algebraic proportion
of £ that is covered by f(So) .

3.2 Definition. Let g € I satisfy the following conditions:

1) g 1is the image of only a finite number of points of So ,
Qureeerdy » under the spherical map £ .

2) In a neighborhood of each of these points, £ is 1-1 . Then

g 1is said to be in general position with respect to f .

If q 1is in general position with respect to £ , let P(q) be

the number of positive coverings of a neighborhood of q and let N{(q)
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be the number of negative coverings. Let d(q) = P{(q) - N(q) .

3.3 Theorem. If g and g' are in general position then
d{q) =d{g") =4 .

Proof: [Sketch]. To see heuristically that d(q) is constant, we argue
as follows:

f essentially defines So as a covering surface of x and hence
f(so) may have branch points or fold lines. If g and ' are two
points in general position, they may be joined by an arc which ‘avoids
the branch points. P and N are constant along this arc except where
the arc crosses a fold line. But at such a crossing both P and N
either increase by 1 or decrease by 1. Hence P-N remains constant.

The theorem below shows that d is independent of the imbedding func-
tion X .

3.4 pefinition: The number d = P-N is called the deqree of f .

Theorem. The degree d of the spherical map of a general closed sur-

face of genus g satisfies 4 = 1-g .

Proof: In 3.1 we saw that 1-g is the proportion of 35 covered by
f(so) . But d 1is clearly also the proportion of 3z covered by f(so).
Hence

d = 1-g
3.5. The definition d = P-N of the degree which we have sketched
above can be given quite rigorously in terms of point-set topology.
(This definition is the original one given by Brouwer) . However, in
terms of algebraic topology, a rigorous definition can be given rather

easily as follows:

Let MP and Nn be two n-dimensional manifolds and let £ be

a continuous.map of M” into N" . Let M® and N" denote the n-dimensio-
nal fundamental cycles on M and n" respectively; i.e., they generate
the n-dimensional homology groups of M" and ¥ . Then £(M™) is a
integer is the degree 4 . '

3.6 Theorem. If 5o is a simple closed surface in E3 , then f(SO)

covers all of X . If So is a general closed surface and g # 1

1

then also f(So) covers all of T .

Proof: If So is a simple closed surface in E3 , choose the inner
normal as the positive normal. Then a given point p on I 4is covered

since there is a plane perpendicular to the direction determined by p
which just touches the surface from the outside.
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If So is a general closed surface, then the above consideration
shows that at least one of every pair of antipodal points of I is
covered. If g #1 , then d # 0 , and hence every point is covered
since if some points were not covered at all, then P-N = 0 which is

a contradiction.

Remark. The above theorem does not hold if g = 1 . Consider the sur-

face generated by rotating the curve € about the axis A . This

generates a general closed surface in E3 of genus 1 . But, as the
figure on the right side illustrates, the normal never points directly

upwards, and hence a neighborhood of the north pole is not covered.

4. Generalizations to Higher Dimensions

4.1 The Euler number, the Poincaré number, and the index. Let Pn be

an n-dimensional polyhedron, subdivided into simplices. Let a. be the

number of r-simplices and let P be the r'th Betti number. Then the
n
Euler number is X (—1)rar . The Poincaré number, which generalizes

o . n r
the number 2-2g, is X (-1) P, -
o
The Euler-Poincaré identity states that

z(-%a_ = z(-1)%p_ .

This number is called the characteristic « of " .

Furthermore, if P" is a differentiable manifold then it is
possible to consider vector fields on P” and to define the index of
a singularity of such a field. It can be shown that for every field
with at most a finite number of singularities, zj =y .

4.2 The degree. Let M be a general closed, differentiable, oriented,

n-dimensional manifold in En+1 . Then the spherical map and the degree

d are defined. Then is it true that 4 = %:c? This is false for a
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circle in the plane, since there, d =1 and X =0 . Also d is not
independent of the imbedding, since for the figure on the right side,
d=2.

Theorem. If n is even, then 4 = %ac. If n is odd and > 1 , then
there exist simple closed manifolds which are homeomorphic but which
have different degrees.

4.3 The Gauss Curvature. If n 1is even and a Riemannian metric is de-

fined on M® , then a scalar function K can be defined in terms of
the first fundamental tensor such that c, K...S K dv = ¢ , where <,
is a constant depending on n . This has been established by Allen-
doerfer, Weil, and Chern. If n 1is odd, then ¢ = O , so no such
formula can exist.



CHAPTER IV

Hadamard's Characterization of the Ovaloids
3

1. ovaloids in E

1.1 Definition. If p and q are points in E" , then Pqd denotes
the line segment between p and gq . A set 8 ¢E"™ is convex if for
every p€S and qe€S , Ppq ¢S . A convex body is a compact convex set
with a non-empty interior. It is easy to show that a convex body is
homeomorphic to a solid sphere (but we will not need this fact). In
these notes we will assume in addition that the boundary surface of a

convex body in E3 is several times differentiable.

1.2 Theorem. The surface of a convex body in E3 satisfies K20 .

Proof: Suppose K<O at some point p of the surface. The one of the
principle curvatures, say kz , is negative (where the inner normal is
chosen to be the positive normal in order to determine the signs of the
curvatures) . Hence the intersection of the surface with the plane de-
termined by the eigenvector corresponding to k2 and the normal to

the surface is a curve with negative curvature. Let q and ¢' be two
points on this curve near p . Then clearly EET is not contained in

the convex body; which is a contradiction.

1.3 Definition. An ovaloid is a closed surface which is the boundary

of a convex body and which satisfies K>0 .

1.4 Theorem (Hadamard). Let so be a general closed surface of genus

g in E3 satisfying K>O0O . Then
1) g =0
2) The spherical map is 1-1 and onto
3) 5, is simple
4) S, is the boundary of a convex body
Proof: 1) If K>0 , then
S[K dA = 4n(i-g)> 0 .
Hence g <1 . But since g 1is a non-negative integer, g = 0 .

2) We shall give three essentially different proofs that the

spherically map is 1-1 and onto.

a) Let £ : So -+ ¥ be the spherical map and let d be the degree
of £ . Then

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 119-122, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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Since K> 0 , every point of z 1is in general position. Let ge T be
covered by £ . Then the number of positive coverings is at least one
and there are no negative coverings. Therefore P- N2 1 . On the other
hand 1-gS$1 . Hence d =1 and every point is covered exactly once.
(This gives another proof that g =0 .)

b) "The 0fficial Proof". Let £ : So -+ = be the spherical map.
Since K>0 , £ 1is a local homeomorphism and hence f(So) is an open
subset of £ . On the other hand, since So is compact and £ 1is con-
tinuous, f(So) is a closed subset of 3 . Therefore, since I is con-
nected, f(so) =3 .

To prove £ is 1-1 , suppose f(qo) = f(ql) =qgel , where
q, # q; - Then there is a neighborhood U of q, such that
£(s -U)
of f(SO-U) is 2 4n .

£ . Since there are only positive coverings of I , the area

Hence “ K daz4n , and, therefore,
S -U
o

H K da>4n
S
o

which is a contradiction, since by 1),

&SK dA = 4w .
5o

¢) This proof is based on the following analogue of the Monodromy
Theorem:.

Let £ be a map of So into I which is single valued and local-
ly 1-1 . Then £ is 1-1 in the large and onto. The proof is as
follows:

Let ae€ s0 and f(a) =a€ I . Since £ 1is locally 1-1, there
is a neighborhood U(a) which is in 1-1 correspondence with a neigh-
borhood U(a) . Let ¢ : U{a) -+ U(a) be this mapping. Then £fo.¢ 1is the
identity map on U{a) . call ¢ a "function element" at o . We wish
to extend ¢ to all of I .

Let ' be a curve on I from o to @ . Then there is a curve
C on So such that f maps C onto r . For suppose there is no
such curve. Since ¢ 1is 1-1 there is a curve in U(a) which covers
rnu(a) . Hence there is a first point a* #a on o beyond which C
does not exist. Let {ai} be a sequence of points on I between «

and a* converging to g* . The oy correspond to a sequence on C

which, by compactness, converges to a point a*, satisfying f(a*) = o*,
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But by the above argument C can be continued in a whole neighborhood
of a* , which is a contradiction. Therefore, the function ¢ can be
continued along I and satisfies fog = identity in a neighborhood

of T .

If TI' is another curve from o to B sufficiently close to r,
then ¢ can be continued along TI''* , given the same function element
at f . Hence if 1™ 1is any curve from « to g homotopic to r, the
continuation of ¢ along TI'" results in the same function element at
B . However, since the sphere is simply connected, all curves from «
to P are homotopic. Therefore, the function element at g is inde-
pendent of the curve T . Thus we have defined ¢ at every point of
L to satisfy fee = identity. Consequently, £ is 1-1 and onto. Note
that this proof of statement 2) of our theorem does not make use of the
formula SSK dA = 4x , in contrast to the two other proofs. This is
important for Section 2. (For a general treatment of this type of argu-
ment, see Chevalley: Theory of Lie Groups, and Steenrod: The Topology
of Fibre Bundles.)

3) To prove that the image S of SO in E3 is simple, we will
show that if T, is the tangent plane to S at an arbitrary point
a €S corresponding to a, ¢ So , then there is no point bo )3 ag such
that the corresponding b ¢S is on T, . Hence in particular there

o
will be no bo b4 a such that b = a and therefore S is simple.

Let Tao be the tangent plane at a€¢ S corresponding to a, ESO .
Then there is a point a'e¢ S at a maximum distance from Tao. Let aé
be a corresponding point in 8y - Then the tangent plane Taé is
parallel to Tao and the normals at a and a' have opposite direct-
ions since the spherical map is 1-1 . By the same argument, there is no

other point b # a_,al such that Ty is also parallel to T

o 8
Now suppose there is a bo #~ ao such that b 1is on Tao . Then,
since Tbo is not parallel to Tao , it intersects Tao . But this
implies that there are points of S on the opposite side of Tao from
Taé . Hence by compactness there is a point ¢ on this side of '1‘ao

with maximum distance from T, . This is a contradiction since the

o
tangent plane at c¢ must be parallel to T, -
o

4) Since 5 is simple it has a well defined interior and exterior.
Let aeS and let T, be the tangent plane to S at a . We have seen
in 3) that no point b of S different from a 1is on Ta . Therefore,

S 1lies entirely on one side of T, - It also follows from 3) that all
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of T, except a lies in the exterior of S . Suppose for simplicity
that Ta is horizontal and S 1is below Ta . Then from 3) we have in
fact that the entire half space above Ta is in the exterior. Now
suppose p and q are two points in the interior of S . Then Pq§ is
below Ta and hence a ¢ Pq . Since a 1is an arbitrary point of 8§
it follows that no line segment joining two points of the interior of
S intersects S . Therefore, the interior of § 1is convex, so S is

the surface of a convex body.

1.5 Remark: In the above theorem the hypothesis can be formally
weakened to require only that X # O , since we already know that there
are points where KX>O0 . In fact if the part 2) of our theorem is
suitably modified then it is sufficient to require only that K20 to

be able to conclude at least that S is the surface of a convex body.

2. Generalizations to Higher Dimensions

2.1 Theorem. Let M be a general closed manifold in En+1 , n22 ,

such that K>O , where K is defined as in two dimensions by the

spherical mapping. Then the spherical map is 1-1 and onto and M” s
a simple closed manifold which is the boundary of a convex body in
En+1 .

Proof: The proof is the same as in 2) and 3) of 1.4 above, the essen-

tial fact being that the n-sphere is simply connected for all n2 2 .

2.2 Remark. The theorem is obviously not true for a curve in the plane
(see example) . Our proof ¢} of statement 2) above fails since on the
circle S1 , two points a and 8 may be joined by two curves T

and TI' which are not homotopic.



CHAPTER V

Closed Surfaces with Constant Gauss Curvature (Hilbert's Method) -

Generalizations and Problems -~ General Remarks on Weingarten Sur faces

1. A Characterization of the Sphere

1.1 Introduction. Our aim in this section is to prove that the spheres

—_—

are 1) the only closed surfaces with constant Gauss curvature K , and

2) the only ovaloids with constant mean curvature H . We will actually
prove the stronger result that if the principle curvatures k1 and k2
of an ovaloid satisfy a relationship k2 = f(kl) where £ is a de-~
creaiing function, then the ovaloid is a sphere. Since K = k1k2 and
H = 5(k1+ kz) , the two results, 1) and 2) stated above will follow
from this theorem. The difference in the formulation of 1) and 2) is
due to the fact that on any closed surface there are points where
K>0 (See II, 4.2). Therefore if K is constant, then K is a posi-
tive constant and hence by IV, 1.4, the surface already is an ovaloid.
The problem of characterizing arbitrary closed surfaces for which H
is constant is much more difficult. It will be considered in Chapter
VI and VII.

The proof of the above theorem depends on several preliminary
lemmas and theorems, the first of which is an important characteriza-

tion of the spheres.

1.2 Lemma. The spheres are the only closed surfaces for which all

points are umbilics.

Proof: Let X be the normal to the surface. Then, by I, 8.2,

X, = -3x, .
i i%y
At an umbiliec point, ?1 = kéi , S0

X. = -kX, .
1 1

In terms of coordinates u and v ,

1)
2)

X+kX =0
“u u
X+ kX =0.
v v
Differentiating 1) with respect to v, 2) with respect to u , and
subtracting gives
kX ~-kX =0.
viua uv

But, since X, and X, are independent,

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 123-135, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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Therefore, k = constant.

Hence from 1) and 2) we conclude that
X+ kX =c¢

where C 1is a constant vector. If k = 0 , then X=¢C and X is a

plane, which is not a closed surface. Thus k # O and

1 = 1
kX--kC—X.
Finally, since X is a unit vector,
1

Ix-c*l =157

which is the equation of a sphere of radius T%T .

Remark. As the proof shows, this result holds in the small. Hence pieces

of spheres and pieces of planes are the only possible regions for which
all points are umbilics.

1.3 Lemma. Let R be a region of a surface where K>0 . Suppose p ¢R
is not an umbilic point and at p , k1:>k2 . Then it is not possible

that k1 has a maximum at p , and k2 has a minimum at p

Proof: Let u and v be parameters such that F =0 . Then, by I, 6.6,
Koo L (_E_z) . (.G_u)
25 |\Tes/, ~ \TES),
This can be rewritten as
1) -2(EG)K = E_ + G_ + mE_ + nG

where m and n are some bounded functions. Since p is not an um-

bilic point, the parameters u and Vv can be chosen so that the lines

v constant correspond to the lines of curvature given by k1 and

u constant to those of k2 . Then M =0 also. In this coordinate

system the Codazzi equations are

E E
v({L N}y __v
2) Ly =T(E +a) =3 (kg+ k)
G G
=2 (L N} _u
3) Ny =72 (E+G)_ 2 (ki+ ky) .

Now, in general, if (du,dv) 1is a tangent direction, then the curva-

ture k in that direction is given by
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_ L du’+ 2M dudv+ N dv°

k 2 2
E du + 2F dudv+ G dv

Since the directions du = 0 and dv = 0 correspond respectively to

k and k1 , we have

2

L = B
k1 =% and k2 S °

The first relation says L = Ek, . Hence differentiation gives

Lv = Evk1+ E(ki)v .
By 2) above, EVk1+ E(kl)v } E;kl . E‘zlk2 -
Thus BE(k,) = E!(—k + k.)
1'v 2 1 20 ¢
> B, = - 2= B0k, .
v ki_kZ 1%y
Similarly G = 2

- G(k,) .
u k1 k2 2'u

Substituting these relations in equation 1) gives

- o 2E__ 26__
-2EGK = - (ky) o+ K-, (

k
k -k,

2)uu
+mt(k,) + 0t (k)
Or
-(kl—kz)EGK = 'E(ki?vv + G(kz)uu

+ m"(ki)v + n"(kz)u .

Since K>O and (ki—k2)>-o , the left side of the above equation is
negative (and not zero). On the other hand if we have a maximum of k1 s

then
= >
(k,} = O and E(kl) 20

and if we have a minimum of k2 then

m£u=0 and Gmﬁwao.

Hence if both occur simultaneously, the right hand side of the above

equation is non-negative; which is a contradiction.

1.4 Theorem. Let S Dbe an ovaloid such that there is a point pe S

satisfying
>
1) kl”kz
2) k1 has a maximum at p

3) k2 has a minimum at p .
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Then S 1is a sphere.

Proof: Since S 1is an ovaloid, K> 0O , and hence by Lemma 1.3, p is

an umbilic point. Therefore,
ki(p) = kz(p).
But for all x€¢ S , by hypothesis
ky (P)Z ky () 2k, () 2 ky(p) = K, (p) .
Hence kl(x) = kz(x) . Therefore, all points are umbilics and conse-
quently, by Lemma 1.2, S is a sphere.

1.4' Theorem. The above theorem can be formulated as follows: If § is

an ovaloid which is not a sphere and if

1) k12 k2
2) k, has its maximum at p
3) k, has its minimum at g

then p #q .

1.5 Theorem. Let S be an ovaloid such that k2 = f(kl) where £ is

a decreasing function of k1 . Then S is a sphere.

Proof: If k1 has a maximum at p then k, has a minimum at p

since f is decreasing. Hence by 1.4, S 1is a sphere.

1.6 Historical Remark. The original problem in this connection was to

show that the surface of a sphere is rigid; i.e., it is not possible
to "bend" a sphere without changing lengths. Since K 1is invariant
under bendings, this fact is an easy consequence of our theorem that
the spheres are the only closed surfaces with constant X . Liebmann
gave the first proof of this in 1899. A short time after that Hilbert
gave another proof in which he showed that on a closed piece of a sur-
face with constant positive K , which is not a piece of a sphere, if
k1>-k2 , then the maximum of k1 and the minimum of kz must lie on
the boundary. Our Lemma 1.3 is only a slight generalization of Hilbert's
principle lemma. (See the appendix to Hilbert: Grundlagen der Geometrie).
Liebmann proved also (1900) that the spheres are the only ovaloids
with constant H . Our theorem 1.5 is included in papers by A.D. Alexan-
drov (1938) and S.S. Chern {1945).

H. Weyl also proved (1916) a lemma similar to our Lemma 1.3. He
showed that on surfaces with XK>O , it is not possible for H to have

a maximum and K a minimum at the same point. This is an easy conse-
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quence of Lemma 1.3.

1.7 Exercise. Give an example of a surface, not a sphere, with K =
constant>0 , k,> k2 , and such that in some interior point of a region

of the surface, k1 has a minimum, and therefore, k2 a maximum.

Hint: Consider surfaces of revolution with constant K (see

Struik for examples). On the equator there are such points.

2. Weingarten Surfaces

2.1 The curvature Diagram. Let S be a region of a surface. Then at

each point pe S , the principle curvatures are uniquely defined by
the

\\\

kl(P)? k, {p)

requirement that

(i.e., ky(p) =8 + VE2-K , ky(p) = 8 - VE-i) .
Hence the functions kl and k2 map S into the indicated closed
half plane below the main diagonal in the kl' k2 -~ plane. We call the

image of S wunder this mapping the curvature diagram of S . Sectioni

above gives some information about the curvature diagrams of surfaces
with K>0 .

1) A segment of the diagonal line is not a possible curvature
diagram since points which map into the diagonal are umbilics. But, by
1.2, the only such surfaces are pieces of spheres for which the curva-

ture diagram is a single point.

2) The cases illustrated in a), b), and ¢) are not possible for

surfaces with K>O since in each case there is a point where k, has

1
a maximum and k2 has a minimum, contradicting Lemma 1.3. Case ¢) gives

k2 as a decreasing function of k1 which is forbidden by Theorem 1.5.

a) ‘@
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3) The level lines of H are lines perpendicular to the main
diagonal, while the level lines of K are hyperbolas with the main
diagonal as axis. Hence Weyl's result, quoted in 1.6 and illustrated
in d), is included in our results as can be easily seen from figures
a) and 4) .

d)

/1

It should be remarked that general sufficient conditions for an

arbitrary point-set to be the diagram of a surface are not known.

2.2 Definition. A Weingarten surface {(or W-surface) is a surface whose

curvature diagram is a curve given by an equation W(kl’kz) =0 . We
will assume that W is differentiable. Since k1 and k2 are func-
tions of K and H , W(ki,kz) = 0 1implies that there is a relation
U(K,H) = O . However, because differentiability of W with respect to
k1 and k2 does not imply differentiability of U 1in the points
k1= k2 , we make the additional assumption that U is also differen-
tiable.

Example. A surface of revolution is a Weingarten surface, since the
image of a meridian curve covers the whole curvature diagram, which is

therefore a curve.

Bxercise. Show that the curvature diagram of an ellipsoid of revolution
is an arc of a curve k2= ckz , where kz is the curvature of a meri-
dian curve and k1 =,% , where ¢ is the distance from the meridian

curve to the axis of rotation along the normal to the curve.

2.3 Question. Are the surfaces of revolution the only ovaloids which

are Weingarten surfaces?

2.4 The differential equation of a Weingarten surface: Choose a coordi-

nate system for a region of a Weingarten surface so that the surface

is given by z = z(x,y) .

Then using the equations forr K and H given in I, 10.3, we get
U(K,H) = ¢(r,s,t,p,q) =0 .

Hence the Weingarten relation becomes a second order differential
equation for =z .
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The discriminant of this differential equation is computed as
follows: Let P = 1-+p2+ q2 . Then

2
¢ = Ug ;tf * UH %75
—21; ¢s = Ug ? * UH -2-—;%%
2
#p T UK':E T Uy ﬁf :
Hence 2,9, - ;11. <v§ = ;% [U12<K+UKUHH+% UfI]
= ;% (UKk2+ % UH)(UKk1+ % UH)
=;1'2'wkiwk2 .

Since Wk dk1+ Wk dk2 = 0 along the diagram curve W = 0 , the sign of
1 dky
W L b : . R . . _
K1k, is gﬁp051te to the sign of the differential quotient Eﬂ; . There

fore, if Eiﬁ”:gké then ¢r¢t-% ¢i > 0 and the equation is elliptic,
while if 'aT'>° , then PP 7 q)s<0 and the equation is hyper-
bolic. Strictly speaking, the function =z(x,y) of our surfaces is an
elliptic solution of ¢ = g if gﬁ%-<0 along the diagram curve, and
a hyperbolic solution if HE%>-O . Under the hypothesis of Theorem
1.5, if we add the condition that £ 1is differentiable and £'<0 , we
are therefore in the elliptic case. These remarks may show that in any
case the sign of g;% on the curve W =0 plays an important role for
the properties of a Weingarten surface.

It should be remarked that in terms of parameters u and v , all

Weingarten surfaces are characterized by the equation %{%‘%% =0 .
»

2.5 Closed Analytic Weingarten Sur faces

a) The sphere is a closed analytic Weingarten surface.
b) The surfaces of revolution illustrated below are closed ana-

lytic Weingarten surfaces.
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RS

These surfaces are of genus 0O or 1 .

c) Let C be a curve in space. At each point of the curve, put a
disk of fixed radius r orthogonal to the curve, with the center of
the disk on the curve. The surface generated this way is called a tube.
If C is closed, analytic and r sufficiently small, then the tube on
C is a closed analytic Weingarten surface. It is of genus 1. The dia-

gram of a tube is illustrated below.

e

It is not known if these are the only closed analytic Weingarten

sur faces.

Exercise. Show that the tubes are the only surfaces with one principle

curvature k a constant.

2.6 Examples of c¢° closed Weingarten surfaces

a) A surface of genus g can be constructed by gluing g handles to

a sphere as illustrated

surfaces
» of
revolution}) « tube
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b) A non-orientable surface can ¢} One can also have surfaces as

be constructed as illustrated illustrated
aTN
— surfaces of
tubes revolution
N

-

2.7. The most interesting and important case of the general problem of
what types of W-surfaces exist is the question whether there exist
closed W-surfaces with constant mean curvature H which are not spheres,
In the language of the curvature diagram the questions reads as follows:

Are there closed W-surfaces whose diagrams are straight line segments

N
h N

perpendicular to the diagonal k1= k2 ? The answer to this question is

certainly "no" if we restrict the investigation to ovaloids; this is a

special case of Theorem 1.5 above.

We shall prove in Chapters VI and VII the following two theorems:

1) The only (general) closed surfaces of genus O with H = C
are the spheres.

2) The only simple closed surfaces (of arbitrary genus) with H=C
are the spheres.

The question whether there exist closed surfaces of genus > 1 with
H = C and with self-intersections (i.e., not simple) which are not
spheres remains unanswered.

Before we enter into Chapters VI and VII, we wish to justify the
statement that the knowledge of all closed surfaces with constant H
really would be important. We shall in fact show in the following para-
graph that this problem is closely related to a classical chapter of

geometrys; namely, the isoperimetric theorem.
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3. The Isoperimetric Problem and Surfaces with Constant H

3.1 Introduction. The isoperimetric problem in two dimensions is to

£find the shortest simple, closed curve enclosing a fixed area. The so-
lution is a circle.

The analogous problem in three dimensions is to find the region
of fixed volume with minimal surface area. Here again the classical
answer is the sphere. This problem is related to the discussion of sur-
faces with constant H as follows: We will prove that a surface has
constant mean curvature if and only if its area A is stationary (in
a sense to be defined) with respect to volume preserving variations.
Hence the conjecture that all simple closed surfaces with constant mean
curvature are spheres is equivalent to the conjecture that A , con-
sidered as a function on the set of all simple closed surfaces enclo-
sing a fixed volume, has exactly one stationary value; namely, its ab-

solute minimum.

3.2. Let V(S) denote the volume of the interior of a simple closed
surface S .Let % be the collection of all simple closed surfaces S
such that V(S) =1 . Let A(S) be the area of S . Then A 1is a
function on % which has exactly one absolute minimum; namely, when S
is a sphere. Let S be a fixed surface and consider a one parameter
family of continuous and differentiable variations of S5 , indexed by
a parameter t . Let §,_ denote the varied surface. Then we require
that So = 8§ and that for each t , S_e¢ % . These variations are

t
called volume preserving variations. Let A(t) = A(St) . Then A is

a differentiable function of t . If A'(0) = 0 for all volume pre-

serving variations, then 8 1is called a stationary surface.

We shall prove in 3.4 that a simple closed surface is stationary

if and only if its mean curvature H is constant.

3.3 Some Formulas. Let S be a surface given by the vector X and
let X(t) Dbe a variation of S where X(0) =X . Let ¢ = X'(0)X de-
note the normal component of the variation vector X'(0) . We indica-
ted in I, 8.7 that

1) a'(0) = -2 U(pH aa .

This was an immediate consequence of the formula



133

1%) at(0) =-2[{o m aa + §&,x*,ax)

which holds for surfaces with boundaries.

Similarly, it can be shown that
2) vi(o) =-llean .

This is a consequence of the general formula
2% vr(o) = -fscpdAJr% bx ,x,ax%)

where the volume V is given by

3) 3V = -“xi aa .

aa "‘
Zm

Equation 3) can be derived by considering the figure at the left. -XX
is the height of the cone of base dA . Hence -XX dA is 3 times the
volume of this cone. Therefore 3V = ~S§Xi dA , For a non-convex region,
the right figure indicates how the proof is carried out.

Exercise. Derive formulas 2') and 2) above using formula 3).

3,4 Theorem. Let S be a simple closed surface, Then S has constant

mean curvature H if and only if S 1is a stationary surface.

Proof: Let S be given by the vector X and suppose for simplicity
that V(S) = 1 . Sufficiency is trivial; for, suppose H 1is constant

and X(t) is a volume preserving variation of § . Then

vt (0) =-{lpan =0

and hence
at(o) = -2{lon aa = —2ullpan = o .

Conversely, suppose A!'(0) = O for every volume preserving trans-
formation. Then we must show that H is constant. Let ¢ be an arbi-
trary function defined on § such that Ig¢dA = 0 . We wish to show
first that then ¢ 1is in fact the normal component of a volume pre-

serving variation. Consider the family of surfaces
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X, (t) =X+ toX .
Let Vl(t) denote the volume of Xl(t) . Then
v1(0) =v(s) =1

Now the normal component of xi(o) is clearly given by

Xi(O)i = ¢XX = ¢ . Hence, by equation 2} of 3.3,
vi(0) = '“X{(O)i da = - “(pdA =0

by hypothesis. However, the variation x1(t) need not be volume pre-

serving. This is remedied by taking the family of surfaces

x(t) = VZ

3z o) .
Then, clearly, by equation 3) of 3.3
v(it) = 1 .

Hence X(t) 1is a volume preserving variation of S . Now, since
v{(o) =0 , it follows that

X' (0) = x](0) = X .
Hence taking the scalar product with the unit vector X gives
¢ = X (O)X .
Therefore ¢ is not only the normal component of xi(o) but is also
the normal component of X'{(0} ; and thus ¢ is the normal component
of a volume preserving variation.
By hypothesis, S is stationary; so

ar(o) = -2llom aa =0 .

Thus Ii¢ HdA =0 .
Also if h 1is an arbitrary constant
lon aa =0

and hence for any function ¢ such that Ii¢dA = 0 and for any con-
stant h ,
Ho@m-nyaa =0 .

Now let h be the mean value of H ,
=4
h—AﬂH da .
Then II(H—h)dA = 0 and consequently (because we may put ¢ = H-h)

i} (m-n)%aa = o .

Therefore H=h , which concludes the proof.
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3.5. The condition that H is constant occurs in another connectionj
namely, a free soap bubble is in equilibrium (no matter how unstable)
if and only if H is constant. Of course, the only experimentally

known examples are spheres. But, for example, there may very well be

cases of soap bubbles of positive genus which are in equilibrium.

3.6 General Closed Surfaces

In order to discuss Theorem 3.4 for non-simple closed surfaces, it is
necessary to generalize the notion of volume. For a closed curve C in
the plane, the "order" of a point x ¢ ¢ with respect to C is de-
fined to be the algebraic number of times C winds around x . I.e.,

1 , s .
orderc(x) = 5n 6Ce where 6 is the angle in a set of polar coordi-
nates with origin at x . Clearly the order depends only on the connec-
ted component of the complement of ¢ as indicated in the figure,

For a closed surface S <E3 and a point x ¢ 8 , take a small
sphere about x and project S onto this sphere from x . The degree
of this map is defined to be the order of x . As above, the order de-
pends only on the connected component of the complement of § in which
the point is located. Hence we can attach an integer di to each such
connected component R, . Define

v = Zdi Vol(Ri) .

Then it can be shown that with this definition of V , again
3v=—ﬂx>'ch.

Our Theorem 3.4 and its proof hold also in this situation. T. Rado has

shown that the isoperimetric inequality also remains true.



CHAPTER VI

General Closed Surfaces of Genus 0O with Constant

Mean Curvature - Generalizations

The main theorem of the chapter has already been formulated in V,
2.7. The proof will be given in Section 2 and some generalizations will
be made in Section 3. The first paragraph is devoted to some preparatory

formulas and computations.

1. Isothermic Parameters

1.1. In I, 10.2 we discussed the introduction of isothermic parameters;

i.e., parameters u, v which satisfy

d52 = E(du2+ dvz) .
The basic entities in such a parameter system are as follows:
LN-—M2
1) K =kky =%~
E
_1 _ L4N
2) H= 2(k1+ kz) =35 -
The lines of curvature are given by
3) -M du2+ (L-N) dudv + M dv2 =0 .

The Codazzi equations are

E
- -
LV— Mu_ 2E(L+1\I) EVH
Ey
Mv- Nu—- - EE(L+N) = —EuH .
. +
But, since EH = 235 LV Nv
E H= -EH + -~ + -5=
v \' L2 2
N
i u
%ﬁ_-m%+2 + 3 .

Hence the Codazzi equations can be written

4) (3'2113) + M = EH_
u

v

1.2 complex Parameters: If u and v are isothermic parameters, we

can introduce the complex parameters

w =u-+iv , w=u-1iv .

One verifies easily the rules for differentiation

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 136-146, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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LA « P « B
2% T Tt
2._a-:=-—a-+i—0_
O ou v
i.e., for an arbitrary complex function F(w,w) = P+ iQ

2F,= (B + Q) - i(P - Q)
2F = (Pu- Q) + i(Pv+ Qu) -
Let &(w,w) =1“—§-13 - iM .

Then from 1.1.1 and 1.1.2 it follows that

1) Lo _ I¥gKl

E 2 *

Hence the umbilic points of a surface S are the zeros of 3 . A
simple computation shows that the equation 1.1.3 for the lines of cur-
vature can be written

2) Im{é(dw)z} =0 .

This is equivalent to

arg ¢+ 2 arg(dw) = mnr (m an integer)
or
1
21) arg dw = %} -5 arg e

where dw is the tangent element of a line of curvature.

By multiplying the second equation of 1.1.4 by 1 and adding it

to the first, the Codazzi equations can be written

3) Qw = EHW .

1.3 The Index of an isolated umbilic point: Let p be an isolated

umbilic point. Then p is an isolated singularity of each of the two
families of lines of curvature (the one family corresponding to kg
and the other to k2 , where we retain the convention klarkz) . There-
fore p has an index with respect to each of these families (see III,
1.2) ; but, because the lines of one family are orthogonal to the lines
of the other family, it follows immediately from the definition of the
index that these two indices are equal. Therefore the index of an iso-
lated umbilic point is well defined and satisfies

Lo L
o= 2xé (arg dw)

where & means the variation if one goes once around p on a small
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curve in the positive sense and where dw has the same meaning as in
1.2.2', From 1.2.2' it follows, since the integer m remains unchanged,

. 1 1
that j = 3;-56 (arg o) .

1.4 Parameter Transformations: If the isothermic parameters u, v are

replaced by other regular parameters x , ¥ , then these new parameters
are also isothermic if and only if 2z = x+1iy 1is an analytic function

of w = u +iv with non-vanishing derivative, i.e., we have
z = z(w) , z' £0 .

This means that the correspondence between the w-plane and the z-plane
is conformal.

We are interested in how our function &(w,w) introduced in 1.2
changes under such a parameter transformation. Now, from the definition
of @ and the definitions of L, M, and N, it follows by an easy cal-
culation that -

¢ = --2waw
where, as always, X is the position vector and X the normal vector
of our surface. Similarly, if ¥(z,z) denotes the function analogous

to ¢&(w,w) for the parameters x, y, then

Z
But, since
- x 4z x =3x 9z
X=X aw 0 X T X Gw
we have dz, 2
¢ =viz)" -

ox elaw) 2 = v(az)? .

This formula describes the transformation of ¢ . In the terminology
which is usual in the theory of Riemann surfaces, the rule of trans-
formation may be formulated as follows: With respect to conformal para-
meter transformations, we»z , Q(dw)2 transforms like a complex
quadratic differential (where the coefficient ¢ 1is a function of w

and w ).

2. The Main Theorem

2.1 Theorem: Let S be a general closed surface of genus O (i.e.,
the parameter surface So is of genus O0) with constant mean curva-
ture H . Then S 1is a sphere.

We shall give two distinct proofs of this theorem, both of them
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using the characterization of the spheres given in V, 1.2. Thus we
shall prove that all points of the surface S are umbilics. Both
proofs will depend on Lemma 2.2 below and the first proof will also

require Theorem 2.3.

2.2 Lemma. The condition H = constant is equivalent to the condition

that ¢ be an analytic function of w (Notation as in 1.2).

Proof: H = ¢ 1is equivalent to H o= Hv = 0 and hence by 1.1.4 is
equivalent to the real and imaginary parts of @& satisfying the Cauchy-

Riemann equations. (The lemma also follows from 1.2.3).

2.3 Theorem. Let R be a region of a surface with constant H and

let U be the set of umbilic points. Let pe U . Then

1) either p 1is an interior point of U
2) or p 1is an isolated point of U and the index of p is

negative.

Proof: By 1.2.1, U 1is the set of zeros of the function ¢ which, by
Lemma 2.2, is an analytic function of w . Thus, either & = O and all
points belong to U , or ¢ # 0 and p 1is an isclated point of U .

In this case we can apply 1.3. Since ¢ 1is analytic

o(w) = cw” +... where c A0 , n21

and hence o6(arg @) = 2mn .
Consequently, 1 1
j=-55-38(arge) = - % <0 .

2.4 First proof of the Main Theorem: We can interpret the lines of cur-

vature and the umbilic points of S as lines and points of S, - Let
U be the set of umbilic points of S, - Since So has genus zero, by
Poincaré's theorem (IIX, 2.2, and III, 2.4 ai) U is non-empty and if
U is finite, then at least one point of U has positive index. Hence
by Theorem 2.3, U 1is infinite. Since So is compact, U has a point
of accumulation, p . But U is the set of zeros of the continuous
function k2- k1 and consequently is closed. Hence pe U , and, again
by Theorem 2.3, p 1is an interior point of U . Let U* denote the
set of all interior points of U .

Now, suppose there exists a point g g U* . Then a continuocus path
from p to g would have a first common point with the closed non-
empty set So- U* . This point, being a point of accumulation of U ,
would belong to U but would be neither an interior point of U nor
an isolated point of U , contradicting Theorem 2.3. Therefore q does
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not exist; i.e. U* = S, =U ., and S 1is a sphere.

2.5 Second Proof of the Main Theorem: The metric of § induces on S

a Riemannian metric, and therefore a measure of angle. Thus § induces
the structure of an (abstract) Riemann surface on S (as defined in
the theory of complex analytic functions). On this Riemann surface we
have the quadratic differential <I>dw2 = ‘lldz2 as discussed in 1.4. By
Lemma 2.2, this differential is analytic. Since the zeros of this dif-
ferential are the umbilic points, the proof would be complete if we
could show that &=0 . Therefore our main theorem may be considerad

as a corollary of the following theorem about Riemann surfaces.

2.6 Theorem: On a compact Riemann surface So 20f genus O , there
exists no analytic quadratic differential odw~  except the trivial
one, =0 .

Proof: One way to prove this theorem is to follow exactly the lines of
our "first proof" given above in 2.3 and 2.4. One considers on SO the
curves defined by 1.2.2 and their singularities. As in 2.3 one shows
that the indices of the singularities are negative and as in 2.4, one

finally proves, using Poincaré's theorem, that &=0 .

However, the theorem can also be proved without using the Poincaré
Theorem and using instead the fact (which is a part of the general uni-
formization theorem) that there exists only one conformal type of com-
pact Riemann surface of genus O . For.this reason we may assume that
our surface So is the ordinary sphere of complex numbers which can be
covered by two parameter neighborhoods; one of them in terms of w co-
vering all of the sphere except the point w = , and the other in
terms of =z = w-1 covering all of the sphere except the point w =0 .
The coefficients of the differential @dw2= \de2 are connected by the

relation
atw) = ¥(z) §32 = v(2)wt = vzt .

But @ is an entire function of w and ¥ is regular for z =0 .

Hence ¢ =0 for w = . Therefore, ¢=0 by Liouville's Theorem.

2.7 Remark. The appearance of complex analytic functions in the inve-
stigation of surfaces with H = ¢ 1is not very surprising if one recalls
that the class of these surfaces includes the minimal surfaces (defined
by H = 0 ). The connections between minimal surfaces and complex ana-

lytic functions form a classical chapter of mathematics.
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On the other hand, our "main theorem” is trivial in the case
H = 0, for in this case K ¢ 0 everywhere, which is impossible on a

closed surface (see II, 4.2).

3. Special Weingarten Surfaces

3.1 Introduction. In this section we will again study surfaces on which

a relation

1) W(k1’k2) =0 (as always k1;:k2)

holds (see V, 2.2). We wish to apply the method which furnished the
“first proof" of our main theorem in Section 2 to functions W more
general than W =k + k2— ¢ . Since this method is mainly concerned
with the umbilic points, it is natural to impose conditions on W with
respect only to their behavior at points where k, = k2 . We shall al-~

1
ways assume that W(ki’kz) has continuous first derivatives and that

(Wkilwkz) # (0,0) where %k, =k, .

This means that

dk2

ET exists when k, =k
1

2) 1 2

(x may be infinite) . The decisive hypothesis is

| = - =
2%) K 1 where k1 k2 .

We will prove that an analytic closed W-surface of genus O which
satisfies 2') is a sphere.

If, instead of 1), the Weingarten relation is given in the form

1Y) U(K,H) =0
where U 1is differentiable at the points where k1= k2 (or K = H2),
then 2) is equivalent to
1 2
* — -
2%) UH + 3 Up A0 where K =H .
This follows immediately from
U, dk, + U, dk, = O
k1 1 k2 2
U, = Uk, + 4 Uy , Uy = 1
k,© k2 T U Uk, = Ugky + 5 Uy

it

and from the facts that if k, = k = =
1 5 then Ukl Uk2 and H = ki_ k2.
However, we shall not use this form of the statement.

We shall actually use conditdions 1), 2), and 2') in the following
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weaker form: Suppose Py is an umbilic point such that there is a

sequence {pn} of non-umbilic points converging to Py * Let
h =Hp) =k (p) =k,(p) -

Then condition 2) implies

k, {(p_)-h
. 25 n
2" 1 —i e — .
) . im %, ()& K
n Po
Therefore
H{p_)-h

3) A= 125 = Lin n

1
PP, ik (b ) -k, (p) ]

for all seguences {pn} of non-umbilic points converging to P, -

Or, in terms of an isothermal coordinate system at Py such that
= 1

E(p,)

H(p )-h
3t) A = lim T
" 2(p )|
pn pO n

where @ 1is the function of 1.2. This last condition is all we will
actually use. Since this makes no use of a Weingarten relation, we will

in fact prove a more general theorem than was promised. (see 3.5 below).

3.2 Theorem. If S 1is a general closed analytic, surface of genus O
satisfying condition 3) with A =0 (i.e., ¢ = -1), in all umbilic

points, then S 1is a sphere.

3.3 First part of the proof. Assuming Poincaré's theorem, as in 2.3

it is clearly sufficient to show that if Py is an umbilic point then
either

1) Po is an interior point of the set of umbilic points; or,

2) Py is an isolated umbilic point and the index j of Pg is
negative. We may assume that p_ is not an interior point of the set
of umbilic points. Therefore, there is a sequence {pn} of non-umbilic
points which converge to p_  and condition 3) is applicable to this
seguence.

Since we are on an analytic surface, ¢ and H have Taylor's

series developments around P, -

ew,i@ = o™ w,@ + o) (w,% +..., n>o0

Hiw,w) = H(O)(w,a) + H(l)(w,a) +...
(k)

and H are homogeneous forms of degree k , and

(k)

where @
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Q(n) £ 0 . Since H(O) is of degree O , H(o) =h , so

H(w,w) - h = H(l)(w,§)+ e .

From 1.2 and condition 3), ¢ and H satisfy the following two rela-
tions

- = H

w w

b) lim%=7\ )
PP,

) -1-¢
a E

-

Substituting the Taylor's expansions of ¢ and H in a), by comparing
degrees we conclude that H(k)

w
20K - Hék) - iH

=0 for k<n . But, since H is real,

(k)

v

(k)

(k) is a constant. But, since H
H(k)
]

and hence Hék)= H(k)= O . Thus H

is a homogeneous form of degree k =0 , O0<k<n . Therefore

Hw,w) -h =8 i + 5™ o oe LoL L

Equation b) can be rewritten

(n)
lim B teee o,

Pi*POIQ(n)+

If polar coordinates r and © are introduced at Py then

H(m) = rmH(m)(cos ©6,sine9) = rmH(m)(m

Q(m) = rm¢(m)(cos e,sing) = er(m)(e)
where H(m) and ¢(m) are homogeneous polynomials of degree m in
cos 6 and sin ® . Therefore

Pu (g, B (g arn™) (g4, ..

lim = Llim
P-l-'p°|r"¢’(n) (@ +...1 r-ole™ (o) +ra™) (g)4...|
_ 5" (g) _ 5 w3 .
1e™ (@] o™ .|

In our case, A =0 and therefore H(n)(w,ﬁ) = 0 . But by equation a)

o™ w@_ = H(")(W,W) =0 .
w w

Therefore Q(n)(w,ﬁ) is an analytic function of w . Since it is homo-

PRV |

geneous of degree n , cw where ¢ # O . Hence

+
o= a4 o) L
+1
cwn + rn B
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where |B| <M in a sufficiently small neighborhood of w = 0O .

3.4 Second part of the proof: We are now in a position to prove that
p_ is in fact isolated and that j <O . Consider the neighborhood

r <-'L-c-'L - Suppose ¢ = 0 at some point £ O in this neighborhood. Then

M
cwn - _rn+1B
[clrn - rn+1|B|
Hence |c| = r|B| for some r #0,r = +E+ > lﬁl , which is a contra-
diction.
To show that j <0 , by 1.3 and because 6arg(cwn) =n 21 > 0, it

is sufficient to show that

6larg @) = 6 arg(cwn)

for a small closed curve in the neighborhood r<-L§L . But in this

neighborhood n n
Je-cw’| < |ow | .

Geometrically, this has the consequence that the three points &(w) |,

0 , and ow” never lie on a straight line with O between the other

two. cw™
/0/

arg ¢ - arg cw" 7~ kn

@ (w)

Hence

where %k is an odd integer. We have that

5{arg @) =5 (arg cw")

5 = integer
hil d—-arx n
while argd-arg cw # half odd integer .

21
Hence by continuity,
d(arg ¢ )-d{arg cwn) =0 .

3.5 Remarks: The above proof makes strong use of the hypothesis that
the surface is analytic, while the proof for surfaces with constant H
did not need analyticity. But there is actually no greater generality
in the case of constant H . For if the surface is described locally as

z = z(x,y) then the equation H = ¢ reads as follows:
2 2 2 2 .3/2
¢(p,q,r,s,t) = (1+g )r-2pgs+ (14p )t = 2c(l4p "+ q°) 2o .

This is an elliptic equation since we always have
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(1+q2) (1+p2) - (pq)2 =1 + p2+ q2> o .

Hence ¢ = 0 is an analytic, elliptic, 2'nd order differential equation.
But S. Bernstein's theorem says that a three-times differentiable so-~
lution of such an equation is in fact analytic. Hence the surfaces we

considered with constant H are in fact analytic.

Hartman and Wintner (Amer. J. of Math., Vol. 76(1954), p. 502)
have proved Theorem 3.2 for twice differentiable W-surfaces, using
condition 2%) of 3.1. But their proof makes use of the Weingarten re-
lation which ours does not. In fact our proof applies to any analytic
sur face whose curvature diagram has cusps at the diagonal (k1= k2)

with tangents orthogonal to this diagonal.

7

I do not know whether, under these conditions for the diagram,
anything can be proved for non-analytic surfaces which are not Wein-

garten surfaces.

3.6 Further Remarks. For analytic surfaces the following theorems are
true. (H. Hopf, Math. Nachrichten, Vol. 4 (1951)).

a) If k<0 {(i.e. |A] < 1), then x =-1 (i.e. A= 0) and

consequently an umbilic point is isolated and its index is negative.

b) If x>0 (i.e. |A| > 1), then « = (2m +1)il for some posi-

tive integer m . An umbilic point is isolated and its index is +1 .

The reason for these facts is that there are very few pairs of

homogeneous forms Q(n)(w,ﬁ) and H(n)(w,ﬁ) with H(n) real which
satisfy
g™ _ 7\|4’(n)| c o g(n)
w W

Although in the quoted paper only Weingarten surfaces are mentioned,
the proofs do not use conditions 1) and 2) but only 3). Therefore, the
hypothesis that the curvature diagram is a curve can be replaced by
the weaker hypothesis that, in the points where k1 = k2 , it has

cusps, similar to the figure in 3.5 (but with different tangents).

Recently K. Voss has proved the following theorem for analytic

surfaces:
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b') If k>0 , then the surface is a surface of revolution, with

the considered umbilic point on the axis. *)

Exercise I: Show that b) is a corollary of b').

II: Show that the statement about x in b) breaks down if the
surface is not analytic but of class " with a given n (which may be
large) .

Hint: construct a surface of revolution.

#*) Math. Annalen, Vol. 138 (1959)



CHAPTER VII

Simple Closed Surfaces (of Arbitrary Genus)

with Constant Mean Curvature - Generalizations

1. Introduction

In this chapter we will prove that the only simple closed surfaces
with constant mean curvature H are the spheres. From this theorem
and the main theorem of the preceding chapter it follows that the only

undecided cases are non-simple closed surfaces with genus > O .

A.D. Alexandrov communicated the theorem and sketched the proof in
a lecture given at Zurich in July 1955, but the proof has not yet been
published (March 1956) . The proof depends on the rather obvious obser-
vation (to be discussed in Section 2 below) that the spheres are the
only closed surfaces with a plane of symmetry in every direction. The
proof then comes in two parts, a "geometric" and an "analytic" part.
We prove first that under suitable restrictions, any simple closed sur-
face satisfies certain "symmetry" properties, and second that two so-
lutions of an absolutely elliptic second order partial differential
equation which have a specified type of contact at a given point
actually coincide in a neighborhood of the contact point. The combina-

tion of these two results will give us our theorem.

It is my opinion that this proof by A.D. Alexandrov,and especially
the geometric part in Section 3 below, opens important new aspects in

differential geometry in the large.

2. Another Characterization of the Spheres

2.1 Definition: A plane P in E3 is a plane of symmetry for a set

s cE3 if the Euclidean reflection of S in P maps S onto § .

The direction of a plane is the direction of a normal to the plane,
and hence by parallel translation corresponds to a unigue pair of anti-
podal points on the unit sphere % . The diaqram of directions z!

of § 1is the set of points on I determined as above by all planes of
symmetry of S .

2.2 Lemma. If a simple closed surface S has a plane of symmetry in
every direction, then S 1is a sphere. In fact, if the diagram of

directions X' has an interior point on %, then S is a sphere.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 147-162, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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Proof: Suppose the north pole is an interior point of %' . Then on
each great circle through the noxth pole there is a small are such that
each point on this arc corresponds to a plane of symmetry of S . Now
if P, and P, are two planes of symmetry and if « is the angle be-
tween P, and Py then a reflection of S in P, followed by a
reflection in P, corresponds to a rotation of S , through an angle
2a about the intersection of P and P, , which by definition leaves

1 2
S invariant. Let P, be the plane corresponding to the north pole on

%' . Then each pointlon the above small arc of a fixed great circle
corresponds to a rotation leaving S invariant. It is clear that all
of these rotations are about the same axis. Thus all small rotations
about this axis leave S invariant. But the rotations about a fixed
axis leaving § invariant form a group which is clearly generated by
the "small” rotations. Hence S is invariant under all rotations about
this fixed axis; so every point on this great circle corresponds to a
plane of symmetry of S . Since the great circle was arbitrary, we con-
clude that X' =X. But it follows from this that 8 is invariant
under all rotations. Let a ¢S . Then S contains a whole sphere

through a and therefore S 1is a sphere.

3. A "symmetry" Property of Simple Closed Surfaces

3.1 pDefinition: Let S be a simple closed surface {(of arbitrary genus)

in E3 of class C2 , and let d be a distinguished direction in E3.

(In sketches we will always take d to be the vertical direction ori-

ented from above to below.) Let n{x) denote the inner normal to S

at x €S . Let

A= {xes :4\{[(3,1’1(}{)]<'27"r }
B = {xeS :4[d.n(x)]>'j2't' }
¢ = {xes :{[d,n(X)1=§ }

I.e., with the above convention, A 1is the set where the inner normal
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points downward, B where it points upward, and C where it is hori-
zontal.
A line parallel to d and oriented the same way as d will be

called a d-line.

3.2 Lemma. 1) A and B are open sets on S and C 1is closed.

2) 1If denotes closure on S , then

AchAucC (AnB is empty)
BcBuC (BnA is empty) .

3) 1£ f 1is a straight line in the direction d oriented the
same way as d which meets S at aeA , then f is not tangent to
§ at a , and traversing { in the positive direction, one leaves
the exterior of S and enters the interior of S at a . I.e., points
of A are points of entrance to the interior of 8§ in the direction
d . Similarly, points of B are points of exit from the interior of

S in the direction d . The proof is obvious.

3.3 Definition: The asymptotic directions at a point of a surface are

given by the zeros of the second fundamental form; i.e., by

L du2+ 2M dudv + N dv2 =0 .

At a point where X>0 , there are no real solutions and hence no such
(real) directions. If K<O there are exactly two asymptotic direc-
tions. We are interested in points p such that X(p) = O . The asymp-~
totic directions at such a point are called doubly asymptotic direc-

tions. Two cases are possible: Either (L,M,N) # (0,0,0) ; i.e., p is

an ordinary parabolic point, and there is exactly one doubly asymptotic
direction, or (L,M,N) = (0,0,0) ; i.e. p 1is a flat point, and all
tangent directions are doubly asymptotic.

A distinguished direction d 1in E3 is called exceptional (with
respect to S ) if there is a doubly asymptotic direction on S pa-
rallel to 4 .

3.4 Lemma. Let S be a simple closed surface of class C2 and suppose
d is a non-exceptional direction with respect to S . Then the set C
defined above is the sum of a finite number of non-intersecting simple

regular closed curves, and

A=AucC and B=BucC .
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Proof: Let peC . Let (x,y,z) be a system of rectangular coordinates
at p so that the positive x-axis is a d-line, the positive z-axis is
the inner normal to 8 and (x,y,z) is positively oriented. Then the

%x-y~-plane is the tangent plane to S at p and in a neighborhood of

y

Y

p ., the surface is given by 2z = z(x,y) s i.e., if X 1is the vector

describing S , then

X = (x,y,2(x,y))

where z 1is twice differentiable. Since

i

X

(1,0,z_)
X X

x = (0,1,z
Y ’y)

the inner normal is given by

- XXX 1
X = = (-z_,—2_,+1) .
|X£<Xy| (z2+ 22+ 1)1/2 X b4
x Ty
Hence in a neighborhood of p ,
= s < = H , = H = .
A= {X z, 0} , B {x zx>o} c = {X: z, 0}

2
Now z(x,y) = ax + 2 bxy + cy2+ D(x,y) where D contains terms of
higher order. Since p 1is not a flat point, (a,b,c) # (0,0,0) . In
fact, (a,b} # (0,0) , for if (a,b) = (0,0) , then

2
z{x,y) = cy + D(x,y)
which would mean that the x-axis is a double asymptotic direction

contrary to the choice of the coordinate system (x,v,2) . Therefore,

z, = 2 ax + 2 by + Dx(x,y)

where grad z, (0,0) = 2(a,b) # (0,0) . Hence the curve z (x,y) =0,

which defines C near p , is a regular curve near (0,0) . But p
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was an arbitrary point of ¢ and hence, since S 1is compact, C is
the union of a finite number of non-intersecting simple regular closed
curves.

To prove the second part of the theorem, let C be the projection
of C into the x-y-plane. Then C 1is a regular curve through p such
that zx>-0 on one side of C and < O on the other side. Hence
CcAnB . Since, by 3.2.2, AcAuC and B¢BucC , it follows that
A=AuC and B =BucC .

3.5 Lemma. With the assumptions and notations of 3.4, assume further
that a certain interval T = {x: 0<:x<:x1} of the x-axis does not con-
tain any point of S so that T lies either in the interior or the
exterior of S . Let g be the intersection of S with the half plane
{y =0, x>0) in an arbitrarily small neighborhood of p . Then
either T is in the interior of S and SnA #0 or T 1is in the
exterior of S and Sa B A0 .

Proof: As in 3.4 the positive z~axis lies in the interior of S and
the negative z-axis lies in the exterior of S (in a neighborhood of
p). If T 1is in the interior, then S separates T from the nega-
tive z-axis (see Figure 1) and therefore =z < 0 on S . consequently,
since z =0 at p , z, <0 somewhere on S ;s i.e., Sn A # 0 . Simi-
larly, if T 4is in the exterior, then S separates T from the posi~
tive z-axis and hence z>0 on S , which implies zx:>0 somevhere

on 8§ ; i.e., SnB # 0 . {see Figure 2)

Fig. 1 Fig. 2
l z>0 z>0
T 7
5 I
X X

3.6 Definition. Let &« and B be two oriented pieces of surfaces

with interior points in common, and let p be such a common point.

1) If o and p have a common tangent plane at p , then a«a
and f# have a contact at p .
2) If o and p have a contact at p such that the positive

normals to « and f coincide at p , then o and p have a posi-
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tive contact at p.
3) 1In a neighborhood of p , let a be given by z,= zl(x,y)
and B by Z,= zz(x,y) . If z,~ 2, changes sign in each neighborhood

of p , then a and P intersect at p .

4) If o and g have a contact at p but do not intersect at

p , then « and g have a proper contact at p .

5 If « and B have a contact at p such that there is on «
. 1 .
a regular (i.e., of class C ) curve I through p with the property
that on at least one side of r, a« and p do not intersect, then «

and p have a semi-proper contact at p .

3.7 Example. The surfaces in E3 defined by the equations

zk = Im{c(x-+iy)k} , k=2

have a contact with the x-y-plane at the origin which is not semi-

proper.
Proof: The function zk is zero on each line through the origin which
makes an angle j % with the x-axis, j = 1,...,k , and changes sign

on crossing any of these lines. If T 1is any regular curve through the
origin, since k22 , a zero line of zk points into each component of
the complement of T in a neighborhood of the origin. Since zk

changes sign across these lines, it changes sign in each such component.

3.8 Theorem. Let S be a simple closed surface of class C2 and sup-
pose d 1is a non-exceptional direction with respect to S . Then there
is a plane P perpendicular to d such that if S' is the reflection
of § in P , then S and S' have a positive semi-proper contact,

(the "positive" normals always being the interior normals).

Proof: If a and b are two points, let M(a,b) denote the plane
which is the perpendicular bisector of the line joining a and b .
We will prove that either

1) There are points a€¢A and beB which are on a d-line such
that if P is a sufficiently small neighborhood of b on S and p!
is the reflection of p in M(a,b) , then p' and A do not inter-
sect; or

2) There is a point ceC such that if y is a sufficiently
small neighborhood of ¢ on S and y' 1is the reflected image of y
in the plane through ¢ perpendicular to d , then y' does not have

an intersection with A .
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Assume again that d is the vertical direction and let P be a
horizontal plane below S . Let B" be the reflection of B in P .
Translate B" upwards until it first meets A . Call this translated
set B' . Then B' is the reflection of B in a plane parallel to P
and clearly B' and A have a common point, but no intersection. Let

p € AnB' . Then we will show that either p = ae¢A and 1) above is

satisfied or p = ¢e C and 2) is satisfied.

We observe first that there is no point of A =2AuC below p on
the 4 line through p since B" 1is translated upwards until it
first meets A . Hence if there is any point of S below p , it is a
point of B . But, by 3.2.3, such a point is an exit point from
the interior of S , and since there are no points of AuyC below p ,

it is the only point of S below p . Thus

1) either there is exactly one point b of B but no point of
AuC below p ,

2) or there is no point of S below p .

case 1. We prove that in this case peA (i.e., p ¢ C). Since beB ,
the d line through p is not tangent to S at b and therefore is
also not tangent to B' at p . (see the figure) From the definition
of B', it follows that in a neighborhood of p , there is no point of
A below B! . On the other hand, since b 1is a point of exit from

the interior of S the segment EE lies in the interior. Therefore,
if p were a point of C , it would follow from Lemma 3.5 that in each
neighborhood of p , there are points of SnA where the curve S is
tangent to the x-axis and below the plane x = O , which is obviously a

contradiction. Consequently, pe¢ A .

S

b

B

Case 2. In this case peC , for suppose p ¢ A . Then the x-axis enters

the interior of S at p and hence must leave the interior at some
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point b e¢B contrary to the assumption that there is no point of §
below p . Therefore p = ce¢AnB . Under the map of B into B' ,
p = ¢ clearly is mapped into itself. Hence the mapping is a reflection
in a horizontal plane through p .

Let Yy be a neighborhood of p , and y' the reflected neighbor-
hood. Now y' contains points of A' , B' , and C!' (where ' denotes
the reflected sets). We know already that BY = B' yC!' does not inter-—

sect A , so it remains to show that y'n A' does not intersect A .

Let C be the projection of C into the tangent x~y-plane., Then
by 3.4, C is a regular curve. Let geC and let q' be the reflected
point of g . Then g' 1is either below g or equal to ¢q , since p
is. the first contact point of B" and A . Thus

x{a) € x(g*) = -x(q)

and hence x(g) £O . Therefore ¢ is above or on the y-axis and has a

minimum at p .

- P
C -4
A
ScB
P Y x
v
A
x ¢
Y
- ~ ¥y
.7 AN
/ \
/ ~ Y~
! At v Ot
| 1
x

¢ decomposes the neighborhood of p into two components, one of
them corresponding to the projection A of A , and the other to the
projection g of B . We claim that B is the lower one; i.e., the
one containing the positive x-axis. Indeed, the positive x-axis lies
in the exterior of S and therefore according to lemma 3.5, there
are points of B below the y-z-plane. It follows that A is above c.
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But then it is obvious from the drawing that Z' and C' have no

points in common with A and therefore y'n A' does not intersect A.
This completes the proof of Theorem 3.8.

3.9 Examples: Both cases of Theorem 3.8 actually occur, 'as is illustra-
ted by the following two examples.

- O

|

‘)>

Case 2

The proof fails for surfaces with self-intersections, as illustrated

below.

D

However , the theorem may very well be true, even though the proof

does fail.
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4. Absolutely Elliptic Partial Differential Equations

4.1 Definition. Let ¢ = ¢ (r,s,t,p,q,2,x,y) be a function of eight
variables defined in some region in EB . Then if ¢ has continuous
first partial derivatives we may regard ¢ = 0 as a second order par-
tial differential eguation for =z = z(x,y) with partial derivatives,
p =2z, q = zy y T = zxx s B = zXy ,and t = zyy .
Consider the quadratic form
_ 2 2
A= (pr7\ + q;sAp, + (ptp .

1} =z{x,y) 1is called an elliptic solution of ¢=0 , or ¢ =0

is said to be elliptic with respect to =z if A is positive definite

when the particular function =z(x,y) 1is substituted in

2) ¢ =0 is elliptic if A 1is positive definite for every so-
lution =z(x,y) -

3) ¢ = 0 is absolutely elliptic in a region R cE8 if A is

positive definite for arbitrary values of its eight arguments in R .

If ¢ =Ar + Ays +...t Agz + A7 where Ai= Ai(x,y) , 1

then ¢ =0 1is a linear partial differential equation. If A7

1,...,7,

It
(o]

then ¢ is homogeneous. A linear equation is elliptic if

A1A2+ AZAp + A3p2 is positive definite,
4.2 Example. The equation H = c is
-2 2
(1+q2)r—2pqs + (1+pz)t-2c(1+p + g )3/2 =0 .
2
Hence ¢ = l+a, ¢, = -2pq , ¢.= 1+ P2 . Therefore,

2 2 2
A= (1+a®) A= 2pg ap + (1 +p2)p”

2. 2 2
AT+ p 4+ (gh - pu)

it

which is clearly positive definite for every value of the arguments.

Thus H = ¢ 1is an absolutely elliptic partial differential equation.

4.3 Lemma. Let ((u) be a function of n variables, u = (ui,...,un)
which is differentiable in a convex region in E" . Then
n
pv) - vl = z B;lv,- uy)
i=1
where 1
A.{u,v) = S . (7v + (A=7)u)dr
i R

and wi is the derivative of ¢ with respect to its i'th argument.
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Proof: Let ' denote differentiation with respect to the parameter

T . Then 1
W) = g = [ g + (-pwar
[o]

1 n
- jo W0V e Gk (o) Y

n 1
= { Y. (Tv + (1—T)u)dT}(v.-u.)
i=1 'L 1 i i
4.4 Lemma. Let ¢ = O be a partial differential equation which is

absolutely elliptic in a convex region R and let =z and =z be

1 2
two solutions of ¢ = 0 . Then

satisfies a linear homogeneous elliptic partial differential equation,

Proof: By assumption
¢(ri,si,ti.pi,qi,zi,x,y) =0, 1i=1,2 .

Hence, by Lemma 4.3,
(p(rztszr---) - fp(rl:sly---)

= A(r,~r,) + Bl(s,=s;) + C(t,-t,) + Dlp,~p,) + E(a,-q,)

. + F(zz—zi) =0

where A(x,y) = ig@rdr and the arguments of 9, are

o, (x,y) + (-7, (x,¥) ..., 72, (x,y) + (1-7)z, (x,y) , x,y . It is
clear that this equation is homogeneous and linear, and that Z satis-
fies this equation.

The equation is elliptic since
2 2
Ay +
e N+ o9 A P

is positive definite for arbitrary values in R , and hence in parti-
cular for the values which appear in the integrals for A, B, etc.
Therefore integrating the form, we get
1
[o A2+ 2 2 2
i 9Nt g FonTldr = Alx,y) A%+ B(x,¥) Ap + C(x,y)p

which is also positive definite.

4.5 Theorem. Let ¢ = O be a partial differential equation which is
absolutely elliptic in a convex region. Let z, and z, be two solu-
tions of ¢ = 0 such that at (0,0)
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z,(0,0) = z,(0,0)
pi(o,o) = p2(0,0)
q,(0,0) = q,(0,0)

but z, 2 z, in a neighborhood of (0,0) . Then the surface defined
by

has a contact with the x-y-plane which is not semi-proper.
We will prove this under the assumption that 2 4is analytic. This
is the case, for example, if ¢ 1is analytic and Z is at least three

times differentiable, by Bernstein's Theoren.

Proof: By Lemma 4.4, 2 satisfies a linear, homogeneous elliptic par-

tial differential eguation.

2
02

Ehs e YIBy g T B O -
J 0% 0%y i

Under a homogeneous affine transformation of coordinates, the coeffi-

cients Aij behave like the coefficients of a quadratic form. I.e.,

if u, = Ztkixi where tki are constants and det(tki) # 0 then
azz = 622
ZAij E;IE;; transforms to X Aij ?EI?E; , where

Since the form given by the Aij is positive, we may change coordina-
tes so that

Aii(o’o) =1 ) A12(O,O) =0 , AZZ(O’O) =1 .,

Now Z 1is assumed to be analytic and hence can be expanded in homoge-

neous forms, n n+l
z =2z, +2™ 9 & ...

where Z(n) # 0, n22 . If this expression is substituted in the above

transformed eguation it is easy to see that the terms of lowest order

have order n-2 and that these terms come from Zi:) and Z;;). Since

All(o,o) = A22(0,O) = 1 , we have

az®™ gy g g
XX

Yy

where A is the Laplace operator. But the only forms satisfying this
are the forms
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Z(n) = Im{c(x+iy)"} .

We have already seen in Example 3.7 that these forms have the desired
property. But on each ray through (0,0) on which Z(n) # 0 there is
an interval containing (0,0) in which 2 has the same sign as Z(n).

Hence 2 has the desired property.

4.6 corollary: Two regions of surfaces satisfying the same absolutely
elliptic partial differential eguation and which have a positive semi~-

proper contact are identical in a neighborhood of the contact.

4.7 A Special Case. (not needed for our main theorem) : Consider two

pieces of surfaces with the same constant Gauss curvature ¢ . They

satisfy the partial differential equation

2 2,2
¢ =rt - sz— c(i+p™+ g )" =0 .
So
1 2 2 2 2,2
o.0m F o, = tr - s =clipta)’ .
Hence this equation is elliptic if ¢>0 .

Now let ¢ >0 . Then the only place where trouble can occur in

the application of 4.6 is in the convexity of the domain of ellipticity
of this equation. What we really need is the convexity with respect to
r,s,t . Hence we are concerned with the part of (r,s,t)-space where

rt - s2> 0O . Now in E3 , the locus of the eguation rt—52 =0 1is a
cone. This is easily seen by making the change of coordinates r =¢ +q,
2 g2= 0 . If the
left hand side is positive, then ¢ # O . Hence we are concerned with
the region where (ﬂ/§)2+ (g/g)2< 1 . This is the interior of the cone
(q/g)2+ (g/g)2 = 1 , Hence our region is the union of two sets, each

t=¢t-1n , 8 =1 . The equation then becomes gz- n

of which is convex.

In one set, r>0 and hence t >0 and in the other r <O and
hence t<0O . Thus if zy and z, are two solutions of K = ¢ such
that T, and r, have the same sign, then 2,= 2, satisfies a linear
homogeneous elliptic partial differential equation.

Therefore, it follows that two pieces of surfaces with the same
constant positive Gauss curvature which have a contact such that both

of them are on the same side of the tangent plane are identical.
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5. The Main Theorem

5.1 Lemma. Let S be a gsimple closed surface of class C3 with con~-
stant mean curvature. Then the set of non-exceptional directions, con-

sidered as a set on the unit sphere Z , has an interior point.

Proof: Since H = ¢ is an analytic equation, by Bernstein's Theorem,
S is analytic. From this we can prove that the set of non-exceptional

directions is all of X except perhaps for an analytic curve on 3% .

1) There are no flat points on § . For suppose p is a flat
point. Then k,(p) = kz(p) =0 . Hence2 k,(p) + kz(p) =2¢c =0, so
¢ = 0 ., But then k2= -k1 and K = -k1 which is always non-positive,
which contradicts II, 4.2.

2) The set of parabolic points is the analytic curve defined by
K = 0 . In each of these points there is exactly one double asymptotic
direction. It is clear that these directions describe an analytic curve

on the sphere I of all directions.

5.2 Theorem. Let S be a simple closed surface of class 03 with con-

stant mean curvature. Then S is a sphere,

Proof: If d 1is a non-exceptional direction, then by Theorem 3.8,
there is a plane P such that if S' 1is the reflection of S in P ,
then S' and S have a positive semi~-proper contact. Hence by 4.6,
and since H = ¢ 1is an absolutely elliptic equation (see 4.2), S5 and
S' coincide in a neighborhood of the contact. But if two analytic sur-
faces coincide in a neighborhood then they are indentical. Therefore

§' = 8 . Hence the non-exceptional directions correspond to directions
of planes of symmetry. Consequently, by Lemma 5.1, the set of direc-
tions of planes of symmetry has a non-empty interior. Therefore, by

Lemma 2.2, S is a sphere.

6. Generalizations - Simple Closed Weingarten Surfaces

6.1 Lemma. Let S be a closed Weingarten surface whose Weingarten re-
lation U(X,H) = O corresponds to a partial differential equation

¢ = 0 which is elliptic for S . Then there are no flat points on S.

Proof: We saw in V , 2.4 that the equation of a Weingarten surface is

elliptic if and only if EE% <0 . Now a flat point corresponds to a

. . R 2
point at the origin on the curvature diagram of S . But if EEI <0,

then the existence of such a point implies that the entire curvature
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// 1

diagram lies in the 4'th quadrant which in turn implies that

K = k1k2$(), which contradicts II, 4.2.

6.2 Theorem. Let S be a simple closed W-surface of class c3 whose
Weingarten relation U(K,H) = O corresponds to a partial differential
quation ¢ = O which is analytic and absolutely elliptic. Then S is

a sphere. The proof goes exactly as in Section 5.

6.3 Possible Generalizations. The proof of Theorem 6.2 depended bhoth

on the analyticity and the absolute ellipticity of ¢ . In Theorem 4.5,
the requirement that ¢ be analytic can be removed entirely. It is in
fact sufficient to assume that ¢ is of class C2 . For details, see
the articles of E. Hopf in the Proceeding of the Academy in Berlin,
1927, and the Proceedings of the A.M.S., 1952, We also used analyticity
in 5.1 and 5.2, but it seems very likely that this can also be easily

avoided.

6.4 Remarks on Possible Generalizations. It is also not necessary for

¢ to be absolutely elliptic. For suppose ¢ is only elliptic for § .
Then S satisfies another equation which is absolutely elliptic. For,
since ¢ 1is elliptic for S , the diagram of S 1is a monotone de-

creasing curve, as illustrated.

N\
/! ~

Extend this curve by a c™ curve to the diagonal line and to

all values > 0 of k1 such thgﬁ the resulting curve is always mono-

tone decreasing and such that EEZ -1 at the diagonal line. The

const. define a new coordinate

[l

lines k1+ k., = const. and kl— k

2 2
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system. It is clear that in this coordinate system, the curve can be
written
k1 + k2 = f(k1' k2)

or H = £(H- K)

where the function £ is defined for all non-negative values of its
arguments.

Now consider the Weingarten relation
U*(K,H) = H - f(HZ- K} =0 .

Then the corresponding equation ¢* = 0 is absolutely elliptic in the
closed half-plane below the main diagonal, and clearly S satisfies
this equation.

It is very likely that if one carries through all these details,
one gets a proof of the fact that A. Alexandrov's Theorem 6.2 holds
for all simple closed surfaces of class C3 which fulfill a Weingar-
ten relation U(K,H) = O , where U is differentiable and

U, U > 0.
kK,



CHAPTER VIII

The Congruence Theorem for Ovaloids

1. The Second Fundamental Forms of Isometric Surfaces

1.1 Introduction. Let S and S* be two isometric surfaces (see I,
2.6). Let h be the isometry between S and S* and let u, v be
parameters such that X(u,v) and X*(u,v) are corresponding points
under the map h . Then S and S* have the same first fundamental

forms; i.e.
1) (E,F,G) = (E*,F*,G*) .

We wish to prove that if S and S* are isometric ovaloids, then §
and S* are congruent. We will prove, in fact, that if h 1is an iso-
metry, then h is a (proper or improper) Euclidean motion. Theorem
1.2 below will show that it is sufficient to prove that S and §*

have the same second fundamental forms.

Since S and S* are isometric surfaces, they have a common pa-
rameter surface So (in the case of ovaloids we may assume that So
is a sphere). Hence we may regard the forms

2) L au’+ 2m dudv + N dv2

L*du2 + 2M*dudv + N*dv2

as being forms on the same surface, So .

In the case K>O0 , both forms are definite, and we may assume
they are both positive definite, since they can be made positive by a
reflection.
Then we wish to show that
3) (L,M,N) = (L*,M* N*) .
Or, equivalently, if

A=L¥- L, p =M~ M, p =N N

then

(3') (}\JP)V) = (0,0,0) on SO -

Since S and S* are isometric, K = K*¥* and hence
LN-M> _ L*N*-ml
EG—F2 E*G’*’—F’"2

Consequently, by 1)
2
4) LN- M2 = LXN*- M*" .

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 163-173, 1983, 1989.
¢ Springer-Verlag Berlin Heidelberg 1983, 1989
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1.2 Theorem. Let S and S* be two surfaces such that there is a
1~-1 correspondence between them under which they have the same first

and second fundamental forms. Then S and S* are congruent.

Proof: In I, 9.1 we recalled that the theorem is true in the small;
i.e., if a and a* are corresponding points of S and S* , then
there are neighborhoods A and A* which are congruent under a Eucli-
dean motion Ma . We wish to show that if b and b* are any other

pair of corresponding points then M = Ma .

Now A and B can be joined by a finite chain of neighborhoods
satisfying the above properties. Hence it is sufficient to consider
neighborhoods A and B which have anon-empty intersection ¢ . But
on C , M.a and Mb are both given by the isometry h , and hence
they are identical on C . Therefore, since Ma and Mb are Bucli-
dean motions which agree on an open set of a surface, it follows that
Ma=Mb .

1.3 Theorem. Let 2 5
L du + 2M dudv + N dv
L*du2+ 2M*dudv + N*dv2

be two positive quadratic forms such that LN - M2= L*N*- M*z. Let

A=L* L , y =M~ M, v =N* N . Then the form
Adu2+ 2ydudv +1;dv2

is either indefinite or identically zero; i.e. Av -p2$ 0 and =0 |if
and only if A =p=v=0 .

; 2 . : :
Proof: The equality 1IN =~ M2= L*N*- M* remains valid after a linear

transformation of coordinates. But since the forms are positive defi-
nite, we can transform both of them simultaneously to canonical form.
Thus we may assume that M = M*= 0 and hence p = 0 . Then L*N*= LN
where all four terms are necessarily positive. Now either L* = L

or L* #L . If L* =L , then N* =N and A=p =0 and hence the
form is identically zero. If L* # L , we may assume L¥*>L and hence
N*<N . But then A>0 , v <« O and p= O which implies that the form
is indefinite.

Remark. In order to prove our main theorem it is therefore sufficient

2
to prove that Av - p =0 .

1.4 Theorem. The functions A,u and v satisfy
Loz 2ATC-0 3
~Av+ p = NA - 2Mp + Ly
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Proof: |L* m*
[M* N*

=1l
MN

where L* =L + A, M* = M +p, N* = N + y . Hence
PR

+ -2 =
M N W oo {(Lv My +NA)

Therefore ~Av + p2= NA - 2Mp + Lv .

Corollary. If K>O , then there exists a positive quadratic form
(L,M,N) such that

=Av + p2= NA - 2Mp + Lo .

1.5 Definition. Let J(f,g,h) denote the ideal generated by the con-
tinuous functions £, g, and h in the ring of all continuous func-
tions. That is, J(f,g,h) 1is the set of all continuous functions of

the form af + bg + ch

where a, b, and c¢ are continuous functions. We will be interested

in functions which are zero mod J .

1.6 Theorem.

>

1
=

|

0 mod J{A,p,v)

0 mod J{(A,p,v)

=
!
<
I

(Functions A,u,v satisfying this set of equations are called "pseu-

do-Codazzi" functioms.)
Proof: The Codazzli equations for L, M, and N are

LV— Mu = aiL + a2M + a3N

biL + sz + b3N

M- N
v u

where the a's and b's are given in terms of the first fundamental
form. Hence L*, M*, and N* satisfy the same equations. Thus, by sub-

tracting the two pairs of equations, we get

Kv— My aih + azp + 330

bl]\ + bzp + b3V .

It

Hy™ Py
Remark. This theorem is non-trivial only at the common zeros of A ,p
and v . For, suppose A # O . Then

7\v— uu=a A
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But the theorem tells us for instance that where A ,p, and v
have a common zero, then also
Av_ By = °
By~ v, = o .

2. Nets of curves and their Singularities

. . 2 : .
2.1 Discussion. Let A du2+ 2B dudv + C dv be a guadratic form with
AC - B2< O . Then in the small this determines two families of curves

which form a net in the small.

The question then arises; suppose that in a region of a surface
we have such a net in the small in a neighborhood of every point, does
this imply that we have a net in the large formed by two families of
curves which can be distinguished from each other? The situation illu~

strated below shows that in general this is not true. This family of

lines has the property that if a point on the heavy triangle is
assigned a line element determined by the family of curves and if this
line element is extended continuously around the triangle, then in
going around the triangle we come back to an element belonging to the
other line element in the point in which we started. Hence this set of
curves cannot be decomposed into two families of curves. We will show
that this does not happen in the case in which we are interested.

2.2 Theorem. Let A du2 + 2B dudv + C dv2 be a quadratic form on a
sphere such that either AC - B2< O or A=B =C=0.Let G be a
region in which we do not have A =B = C = 0 . Then the equation

A du2 + 2B dudv + C dv2 =0

determines exactly two families of curves in G .
Proof: Since we are on a sphere, and since the neglection of a single

point (the point @ ) does not affect the discussion, we can use a single
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coordinate system throughout the proof. If the equation is multiplied
by A , then it can be written

{(3d du +B dv)2 + (AC~ Bz)dvz =0 .

2 .
Let ~D = AC -B2 where D>0 . Then the equation factors into the two
equations
I) Adu + (B+D)dv =0 IT) Adu + (B-D)dv =0 .

This determines two families of curves unless one of the equations
happens to be identically zero. This happens in Case I, for example, if
A =0 and B<O , for then D = -B .

On the other hand, if we had multiplied the original equation by
¢ first, and factored we would have gotten the equivalent equations

Y (B-D)du + C dv = O I1Y) (B+D)du + C dv = 0 .

Hence we have two well-defined families of curves given by the follow-
ing pairs of equations:

1) A du + (B4+D)dv = O 11) A du + (B-D)dv = 0O
{B-D) du + C dv =0 (B4D)du + cdv =0 .

Exercise: Show that the above theorem is true for any orientable sur-

face.

2.3 Theorem. Using the notation of Theorem 2.2, let p be an isolated

singularity of

A du2 + 2B dudv + C dv2 =0

and let j1 and j2 be the indices of p with respect to the curves
I and 1I respectively. Then j1 = j2 = j , where

. 1 1 ;

i=-33x bc farg (a-iB)1 .
Proof: It is clear that j1 = j2 since the two families of curves are

distinct at every point, and since the angle between them is never a
multiple of =n . We set j = j1 .

Now consider the family of nets
A du2 + 2B dudv + [ (1~-t)C - tA]dvz =0, 0Ltsl .
The discriminant is given by
(1-t)AC - (1-t)B- ta2- tp2

= (1-t) (ac-B%) - t(a’+8%) <0, oOst<1 .

Hence by Theorem 2.2 we get a net of curves for each t , all with the
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same isolated singularity p . Hence the index jt is well defined
for every t and, by continuity, j = jt y 0Lt<1l . Therefore 3§ is
the same as the index for the field

A du2+ 2B dudv - A dv2 =0 .

Or Adu®- av®) + 2B dudv = O .

Choose one family of curves and let 7t be the angle between this fa-
mily and the u-direction. Then
du : dv =cos 1: sin T

and A cos 27 + B sin 2t =0 .

. 2
Now if A =B =0 , then AC - B =0 and hence ¢ = 0 , which
is forbidden. Hence the function A - iB is not zero. Let

a = arg(A~-iB) . Then the above equation can be written

cosa ¢cos 27 - sina sin 27 =0, or cos(a+27) =0 .
Thus 7T = - % + const. and hence 60(7) = - % 6c(a) . Therefore

i1 -

i==-35 bc[arg(A—lB)] .

3. The Main Theorem

3.1 Introduction. We will give two proofs of the main theorem. Our
first proof is the proof given by Cohn-Vossen in 1927 and later simpli-
fied by Shitomirsky. This proof depends on the surface being analytic
and shows that if (A,p,v) define a gquadratic form on the sphere
satisfying 1.3, 1.4, and 1.6, then it is identically zero. Analyti-
city can be avoided by more recent achievements in the theory of
differential equations.

The second proof is a proof given by Herglotz in 1943 which works
for C3 surfaces. Here we will utilize the Remark of 1.3 that it is
sufficient to show that Av - pz = 0 and will prove that

XSI (Av-p2)P da = 0
o
where P 1is a strictly positive function. It follows from this that,

since Av -pZS Q , in fact Av -p2 =0 ,
3.2 Lemma. Let A.du2 + 2p dudv +1:dv2 be the form defined in 1.1 and
suppose it satisfies the conclusions of Theorems 1.3, 1.4, and 1.6;

i.e.
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2 .
1) Av-p £0 and if Av _“2 = 0 , then =p=v=0 .
2) There is a positive definite quadratic form (L,M,N)} such
that 2
-Av + p = NA - 2ZMp + Lv
3) Amy, =0 mod J(A,p,v)

By = 0 mod J(A,p,v) .

Let p bhe a singularity of the curves
A du2+ 2p dudv + vdv2 =0 .

If A, u, and v are analytic and not identically zero, then p is an
isolated singularity and the index, j , of p is negative.

Proof: By applying a coordinate transformation, we may assume that at

P
(L,M,§N) = (1,0,1) .

Let the Taylor's developments of A,y and v around p be
(n)

A=A + .o
b= u(m + ...
v = u(n) + ..
where at least one of }\(n) , p(n) , and u(n) is not zero. n>0

since p 1is a singularity. By Condition 2)
—Av+p2 = NA- 2Mp + Lv .

The left hand side has degree at least 2n while on the right hand
side, MM starts with terms of degree greater than n since M =0
at p while N and L start with 1 . Hence

1) AR o) o
Now, by Condition 3)
AV- By = a1A + asu + a3u
By~ uu = b1A + bzu + b3u .

Since the right hand sides of these equations have no terms of degree
n-1 , it follows that

2) A‘En)- uén) =0
3) pén)_ vén) =0 .

But from 1) and 3) we get
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31) Aén) + pén) =0

.

Equations 2} and 3') are the Cauchy-Riemann equations for A"/~ ip .
Hence if w = u + iv , then
A(n)- ip(n) = cw’ .
Let ¢ =A- ip . Then
¢ = cwn F oeee .
Then by the argument of VI, 3.4
6 (arg ¢) = b (arg cwn) = n2nr .
c c
Therefore, by Theorem 2.3

N S - -_2X
i==-%3 95 éc[arg(A il = 5 < o .

3.3 Theorem. Two isometric ovaloids are congruent.

First Proof: Let A du2+ 2p dudv + v dv2 be the form defined in 1.1.
Then it can be considered as a form on a sphere and it satisfies pro-
perties 1), 2), and 3) of Lemma 3.2. Hence by Lemma 3.2 and Poincaré's
Theorem, it follows exactly as in VI, 3.3, 3.4, 2.3 and 2.4 that
A=p=v=sE O .

Question. Does there exist a tensor (A,u,v) £ (0,0,0) on the sphere
satisfying properties 1) and 3) of Lemma 3.2 but not property 2) ?

3.4 Definition. Let q €E3 and let p(x) be the distance from g to
the tangent plane to the surface S at the point x . Suppose the ori-
gin of the coordinate system of E3 is at g . Then if X is the po-
sition vector of S and N is the inner normal, p = [XN] . If S is
an ovaloid and q 1is in the interior of S , then we may write

p = —-XN

and p 1is strictly positive. p 1is called the support function of S

with respect to q .

3.5 Second Proof: We may assume that the intersection of the interiors
of S and S* 1is non-empty. Let g be a point in the intersection

and let p and p* be the supgort functions of S and S* respecti-

vely. Now EG-—F%> 0 ang ARTHL is a scalar function. We will prove
that EG-F

2
1) SS Aﬁ:ﬂi (p+p*)dA = O .
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Since p + p*> 0 and since we know that either ap - p2< 0 or
A =p=v=0, this will prove the theorem.
But we will show in fact that 1) holds for every pair of isometric

closed surfaces, even if they are not ovaloids. For

ro-pl 1 L¥ - L M* - M

EG-F2 EG—F2 M*¥ - M N* - N
= 2K - 2K!
where K 1is the common Gauss curvature of S and S* and

okt = LN*=2MM*+NL*

EG-F2
Hence 1) is equivalent to
1Y) ﬁ (K~-K') (p+p*)dA =0 .
S
o

Now the integrand can be rewritten

(R-K') (p+p*) = (Kp-H) + (Kp* -H*) ~ (K'p-H*) - (K'p*- H) .

It is sufficient to prove that

2) [ (K'p-H*)aa = 0

since then the other integrals are also zero either by symmetry or by
indentifying the surfaces S and S* . This formula is gquite analogous
to the well-known formula of Minkowski for ovaloids, that

3) 1| (kp-man =0 .
s

o
Formula 3) follows with the aid of Stokes Theorem, since it can be
shown that if R is a region of a surface with boundary B , then
4) -2 |{ (xp-m)aa = § (X,N,dN) .

R
Formula 3) follows immediately from this since @(X,N,dN) does not
depend on the coordinate system and hence cancels out when the inte-

gration is extended over a closed surface.

In 4), Ni= - Bix. (see I, 8.2) and hence dN = =~ fngdul .
Formula 2) follows from the analogous expression
5) -2 X (K'p-H*)dA = & (XrN,I‘)
R B

where T = —f*ngdul . It is easy to see that again b (x,N,7) is in-
B
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dependent of the coordinate system and therefore
I (x'p-m*yaa = o .

5
o

Exercise: Derive formulas 4) and 5) above using the techniques of

exterior differentiation; i.e., show
a) d(X,N,dN) = -2(Kp~H)dA
b) d({X,N,I) = -2(K'p~-H*)da .

The first is easy since ddN = 0 . In the second, it is not true that
dr = 0 but we do have that dF-Xk =0, k =1,2, which helps to give
the formula. In the expression for dr‘-xk one can replace X by X*,
using the isometry between the two surfaces. Therefore one has

- = *) JX* =
dI‘xk (ddaNn¥*) xk o .

3.6 Generalizations. The theorem is certainly not true in general if

one removes the restriction that the surfaces be ovaloids. The illu-
stration below gives two c¢® surfaces of revolution which are obvious

isometric but not congruent.

E. Rembs (Math. Zeitschrift, Vol. 56 (1952) p. 274) has given examples
of analytic surfaces which are isometric but such that the isometry
between them is not a congruence.
A, Alexandrov has proved (in Russian) however, that if S and
S* are simple closed, analytic surfaces (of arbitrary genus) such that
IX K da = 4xn
K>0
then the congruence theorem holds. The tori of revolution give an
example of this situation.
Our theorem can be restated as follows: Given an abstract closed
surface So with a Riemannian metric gij such that K>0 , then

there exists at most one realization of So with this metric in E
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(modulo Euclidean motions, of course). It can be shown in fact that
there exists exactly one such realization in E3 . A proof was sketched

but not completed by H. Weyl in 1916, One later proof has been given
by Alexandrov and Pogorelov, and another proof by Nirenberg. These
proofs also contain uniqueness proofs and hence give alternative proofs

of our theorem.



CHAPTER IX

Singularities of Surfaces with Constant Negative Gauss Curvature

1. Singularities

1.1 Introduction. In this chapter we shall be concerned with (open)

surfaces and their imbeddings in E3. The definition of an open surface

is identical with definition II, 1.1 except that condition 1) that §
be compact is no longer true. We will show that a surface with constant
negative Gauss curvature cannot be imbedded as a general (open) sur-
face in E3 without singularities (in a sense to be defined below).
The first proof of this was given by Hilbert (~ 1900) for analytic

sur faces. Our proof works for C3 sur faces and the theorem is still
true for C2 sur faces. However, Kuiper has given a C1 isometric
imbedding of the hyperbolic plane in E3 without singularities. For
details see N.H. Kuiper, on Cl-isometric Imbeddings I and II; Indaga-
tiones Mathematicae, Vol. 17 (1955) pp 545-556 and pp 683-689.

1.2 The hyperbolic plane. Consider the upper half plane of the u-v-

plane (i.e., v>0) with the metric dsz' du2+ dv2 . This surface
- 2
v

is called the hyperbolic plane. It is easy to show that geodesics on

this surface are either straight lines perpendicular to the u-axis or
semi-circles with their center on the u-axis.
The first fundamental form can be rewritten
2
1
ds? = (gx) b= au® .
v 2
v
Let v = log v . Then
- -2v. 2 - 2_2
dsz= dv2 + e 2vdu = dv2+ g du
where g = e ' . Hence by I, 6.3,

K=——V—",' —1.

Hence the hyperbolic plane is a surface with Gauss curvature equal to
-1 .

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 174-184, 1983, 1989.
c Springer-Verlag Berlin Heidelberg 1983, 1989
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1.3 Examples in E3. Surfaces of revolution with constant negative

Gauss curvature and with singularities are illustrated below:

Here one of the principle curvatures is infinite on the singular lines,

but the normals are continuous.

1.4 Discussion. One of the main problems is to give a satisfactory de-

finition of singularity. We wish to discuss singularities which arise
3

as a property of the imbedding of an abstract surface So‘ in E
Therefore, we are not concerned with "singularities" which may occur on
an abstract surface (e.g., singularities of a metric, etc.). Conse-
quently, we shall assume that all points of an abstract surface are re-
gular points. As a first attempt at a definition we may say that a point
P ¢ES is a singularity of S if p £ S but if peS (the closure

of S8 ). Now it is not sufficient to require only that there is a se-
quence (pn: P, € S) which converges to p, - For, consider a thin

strip A , which spirals an infinite number of times around a point. Py’
as in a) . Then there is clearly a sequence P, ¢ A which converges to
P, but we do not wish to consider p, as a singularity of A . Thus
we should like to require that there actually be a curve of finite

length converging to a singularity. But as b) illustrates this is also

a)
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not a satisfactory definition, for here the singularity lies in a point
which is also a regular point of the surface. The following definition

does turn out to be satisfactory.

1.5 Definition. A surface So iz called complete (with respect to a
Riemannian geometry) if every half-open curve of finite length on So
(parametized by O<€ t< 1) has an end point (at t =1} on Sy -

If So is complete, then we say that an imbedding of S0 in E3

has no singularities.

A singularity is defined as follows:

Suppose co(t) , 0t <1 is a divergent curve of finite length on
s° (Wg will usually consider the metric on So induced by the imbedding
in E7); i.e., if t,- 1 , then Co(tn) has no limit point on So .
Let C(t) be the image of c, in E3 under an isometric imbedding of
5, in E° . Then C ig a curve of finite length in E3 and hence con-
verges to a point pe¢ E . Then we say that a singularity of the image
of §, in E> 1lies in the point p . (As in 1.4, there may also be re-

gular points of 8, at p .)

1.6 Further discussion. One immediate consequence of our definition is

that if every divergent curve on S, has infinite length and if So
has an isometric imbedding in g3 , then the imbedded surface has no
singularities. It is easy to see that the hyperbolic plane satisfies
the property that every divergent curve has infinite length. Hence if
the hyperbolic plane had an isometric imbedding in E3 , the imbedding
would have no singularities. However, our main theorem in this chapter
will tell us that any isometric imbedding of a surface with constant
negative curvature necessarily has singularities. Therefore, there is

no isometric imbedding of the hyperbolic plane in E> .

Our definition allows certain more or less trivial singularities
which are really not relevant to the discussion. For suppose Sé is a
proper, open subset of So . Then Sé has boundary points relative to
S, - It is clear that under an isometric imbedding of sé these boun-
dary points are singularities, while under an imbedding of So , they

are not. Such singularities which can be removed by an extension of

the original surface are called ordinary sinqular points (or removable
singularities). We will always assume that such extensions have been
carried out since we are concerned with "intrinsic" singularities which

cannot be eliminated. It can be shown by Zorn's lemma that any surface
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can be extended in this sense to a surface which cannot be extended

any farther.

2. Tschebyscheff Nets

2.1 pefinition. Let R be a piece of a surface on which there is de-
fined a net consisting of two distinct families of regular curves, We
will introduce local parameters u and v along these lines so that
we may speak of u-lines and v-lines. Choose a positive orientation of
R and let « be the positive angle through which a u~line must be

rotated to become tangent to a v-line., We will always assume that the

u and v lines are choosen to satisfy O<w<w .

If each rectangle whose sides are u-lines and v-lines has the
property, that opposite sides have the same length, then the net is
called a Tschebyscheff net.

On a Tschebyscheff net we can introduce parameters u and v
such that u and v measure arc length respectively on the u-lines
and the v-lines. In such a coordinate system the first fundamental
form becomes 2 2 2

ds” = du + 2F dudv + dv
where F = cosw . Conversely, it is clear that the lines u = constant
and v = constant in such a coordinate system form a Tschebyscheff net.

We will call this coordinate system a Tschebyscheff coordinate system.

2.2 Lemma., In a Tschebyscheff coordinate system the Gauss curvature

K is given by © .=-K sin o
uv

Proof: For such a coordinate system we have
EG-F2 = sinzw .

]/ 2
Let W = YEG~F . Then by the Theorema Egregium

F F w
K=— [|8] + (=X = . 4V
20 [\W /, W/, sinw
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Thus = -K sin w .
uv

2.3 Letma. If RO is a rectangle as in 2.1, then
| [ K aaj< 2x
o

Proof: Let R0 be a rectangle whose sides are u-lines and v-lines.

Then since dA = sinw dudv

we have K dA = -w__dudv
uv

Hence u K dA = - “ wuvdudv = -d)wvdv

R
o

by Stokes Theorem, where the line integral is taken in the positive
direction over the boundary of R, - Thus, using the notation of the

illustration, C D
SX Kda =-{ odv + { wvdV
R, B ¥ A

[-y+(x-p) 1 + [ (x=8)=a]

21 - (ckpty+d) .

Because of 0O < «,p,y,6<x , the value of the integral lies between

-2% and 27n .

Remark: The above lemma used only the concepts of Riemannian gecmetry
and did not depend on properties of an imbedding in a Euclidean space.

This is not true for the following theorem, however.

2.4 Theorem. Let R be a region of a surface in £> on which K = -1.

]}

Then the asymptotic lines on R form a Tschebyscheff net.
Proof: If K<O then the asymptotic lines are the solutions of

1) L du2 + 2M dudv + N dv2 = 0 . If we make the asymptotic lines the
u and Vv lines then we must have that du = 0 and dv = 0 are solu-

tions of eguation 1); i.e. L =N = 0 . In such a coordinate system the
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codazzi equations reduce to

2) M = AM

where

(

[ XYY

(EG-F°) + FE - EG_]
u v u

EG-F2

i 2 -
[ 2(EG-F )V+ FGu GEv]

EG-Fz

(See, for example, Blaschke (3rd ed.) p. 117, Formula 139) . Equations
2) can be rewritten

2t) (Mz)u = 2 AM2
2 2
(M )v = 2 BM™ .
But if K = -1 , then 2
-M
5 = -1 .
EG~F

or M2= EG—F2 . Hence, substituting in 2%),

2, _ 2
(EG-F) | = (EG-F")  + 2(FE - EG)

s

or EGu - FEv =0

Similarly -FG + GE =0 .

. 2 s . . . . .
But since EG-F # 0 , these equations is satisfied if and only if

3) E =0 and G_ =0 .
v u

Therefore we have
E=E(u) and G = G(v) .

Let u and v be coordinates such that
du = YE(u)du
av = Je(viav .
Then the first fundamental form becomes
2

as® = A% + 2F dGdv + av .

Hence the u and v-lines form a Tschebyscheff net.
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3. The Main Theorem

3.1 In this section we will show that any surface S in E> with
constant negative Gauss curvature has singularities. To do this we must
show that if So is a parameter surface for S , then So is not com-
plete. We will show that if the canonical Tschebyscheff net on S is
considered as a net on S0 » then at least one curve of the net con-
tains a divergent arc of finite length. From this it follows that §
has at least one singular point. In Section 4 we will discuss (without

proofs) the kinds of singularities which actually appear.

3.2 Definition: For the canonical Tschebyscheff net on a region R of
a surface with K = -1 , we have, using the notations and conventions

of the preceding section, that

W, ==K sinw =sinw >0 .
uv

This equation clearly does not depend on the orientations of the u
and v-lines.

Let ! be a v-line of the net and let p ¢f . Now w, is a mono-
tone function on [ since (wu)V:>0 , and hence there is at most one
point on f where w, = O . Therefore, we may assume that wu(p) A0 .

Let the positive u-direction be the direction such that
wu(p) > 0 .

This determines the positive v~direction if we require that a positive
rotation of angle w (where O<w <n) carry the positive u~direction
into the positive v-direction. This direction on the v-lines is called

the distinquished direction.

It is easy to see that this direction is independent of the ori-
entation of R : for, suppose the opposite orientation of R had been

chosen. Let ®© be the corresponding angle. Then o = x -~ @ , SO

0 = -~
u u

and hence in the above discussion we must choose the opposite u-direc-
tion. But then a positive rotation (with this orientation of R )
obviously carries this u-diredtion into exactly the same v-direction

as above.
3.3 Theorem. A surface S in E3 with constant negative Gauss curva-

ture has singular points.

Proof: Let So be a parameter surface for S and consider the cano-
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nical Tschebyscheff net on S as a net on So . Let p eSo be a point
where w, # 0 and let the positive u and v directions be chosen as
in 3.2. Let g be a point on the positive u-line through p . We will
be concerned with the region R above (in the positive, distinguished
v-direction from) the u-line through p and ¢q . Since we have a
Tschebyscheff net on this region, at least the lower part of this re-
gion corresponds to a rectangle R in the u-v-plane. It is clear that
for a sufficiently small positive number V , it is possible to measure

v v
A

A J
=

|3 q

a distance V along a v-line in the distinguished v-direction starting
from the u-line through p and g . This can be done uniformly for
each v-line in R . To prove our theorem it is sufficient to show that
there is a finite least upper bound V* to the distances which can be
measured along all v-lines in R . For suppose V* 1is such a bound.
Then there must be a v-line in R along which it is not possible to
measure the distance V* . Hence the arc of this v-line starting from
the curve between p and q is a half-open divergent curve of finite
length and therefore S has a singular point.

To prove that V* < o we proceed as follows: let U be the length
of the u-line between p and q and let U' satisfy

0O<U'< U .

Choose p' and g' so that
p<p'<a'<q
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and so that U' 1is the length of p'q' . Since wu(p) >0 we may
assume that g 1is close enough to p so that o >0 on all of Pq .

Then w is an increasing function on pg and
w{p') - wlp) >0
wl@ - wl@)>o0 .

Hence we can find an € >0 which is smaller than both of these quanti-

ties. (Since O<w < 7w, it follows that ¢ <~g— ).

Now, consider a rectangle of height V over bg . Along the edge
above g , w < ® . Further, if q, and qi are situated as illustrated,

then, since (wu)v>o , we have

94
wlq,) - olgq]) = [ w, du
a3
q
> S'wudu > e .

q

R'

[¢)

L
v qll 4 ql
p p' a' q

A similar inequality holds for points above p and p' . Therefore,
if r is any point in the smaller rectangle R(') (above p'q'), it

follows that
e < wl(r) < m=-¢

e . ,
and henc sinw >singe .

consequently, by Lemma 2.3, and since

-K dA = sin o dudv

we have
21r>“ sin w dudv >sineg n dudv = U'W sine .
R R!
o o
Hence
ve—2X
U'sin ¢
2% . .
so V* = Tisine is an upper bound, which proves the theorem.
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4. Further Details and Generalizations

4.1 Sinqularities. M.H. Amsler has shown that on an analytic surface
with constant negative Gauss curvature, there exists a ®-curve con-
sisting entirely of singular points. However, his proof does not hold
for ¢" surfaces. For details see
Amsler, M.H., Des surfaces & courbure négative constante dans
l'espace & trois dimensions et de leurs singularités;

Mathematische Annalen, 130(1955) pp. 234-~256.

4.2 Constant Positive Curvature. It can be shown that if So is an

abstract surface on which there is defined a Riemann metric such that
So is complete and K= 1 , then So is compact. It follows immediate-
1y from this that the only surface with constant positive Gauss curva=-

ture in E3 without singularities is a sphere.

4.3 Strictly Positive or Strictly Negative Curvature. E. Heinz has

proved the following theorems concerning surfaces in E3 given by a
function =z = z(x,y) which is defined and of class C2 in the circle
2 2 2
x+ty<R .
1

1) 1f |H|Z2a>0 , then RS

2) If Kza>0 , then RSV%

3) If K £ ~-a<0 , then RSeV%

For details see:

E. Heinz, Ueber Flichen mit eineindeutiger Projektion auf eine
Ebene, deren Krimmungen durch Ungleichungen eingeschrdnkt sind;
Mathematische Annalen, 129 (1955) p. 451-454.

It can also be shown that the theorem stated in 4.2 is true if
one only requires that X2 K°>-O . It follows from this that if S 1is
such a sur face in E3 without singularities, then S is an ovaloid.

If we only require that X>O0 , then not too much can be said.
However, Stoker has shown that a part of Hadamard's Theorem (IV, 1.4)

is still true; namely:

If S 1is a complete surface in E3 with K>O0 , then S has no
self-intersections and S is the boundary of a convex set,.

It follows from this that the spherical map is 1~1 and
]X Kdasan .
S
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4.4 The Curvature Integral (See III, 2.3). In general, for an open sur-

face So s “'K dA does not exist. However, if So is "complete" it
can bhe So shown that there exists an increasing sequence of re-
gions Gn , each of finite area, such that S°= UGn and such that
Lim J| x aa g2x(1-p,)
now G
n
where Py is the first Betti number of So . For a clogsed surface, we

had {{x an = 2x(2-p,)

But for any surface, Po= 1 and py= 1 if the surface is closed and
py= 0 if the surface is open. Hence it is always true that for each

complete surface (closed or open)

Lim {| K dA<2n(p - p,+ p,) .
n-oo0 Gn

Por details, cf. S. Cohn-Vossen, Compositio Mathematica 2 (1935).



Some general remarks on the publication of
monographs and seminars

In what follows all references to monographs, are applicable also to
multiauthorship volumes such as seminar notes.

§1.

§2.

§3.

Lecture Notes aim to report new developments - quickly, infor-
mally, and at a high level. Monograph manuscripts should be rea-
sonably self-contained and rounded off. Thus they may, and often
will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should pro-—-
vide sufficient motivation, examples and applications. This
clearly distinguishes Lecture Notes manuscripts from journal ar-
ticles which normally are very concise. Articles intended for a
journal but too long to be accepted by most journals, usually do
not have this "lecture notes" character. For similar reasons it
is unusual for Ph.D. theses to be accepted for the Lecture Notes
series.

Experience has shown that English language manuscripts achieve a
much wider distribution.

Manuscripts or plans for Lecture Notes volumes should be
submitted either to one of the series editors or to Springer-
Verlag, Heidelberg. These proposals are then refereed. A final
decision concerning publication can only be made on the basis of
the complete manuscripts, but a preliminary decision can usually
be based on partial information: a fairly detailed outline
describing the planned contents of each chapter, and an indica-
tion of the estimated length, a bibliography, and one or two
sample chapters - or a first draft of the manuscript. The edi-
tors will try to make the preliminary decision as definite as
they can on the basis of the available information.

Lecture Notes are printed by photo-offset from typed copy deli-
vered in camera-ready form by the authors. Springer-Verlag pro-
vides technical instructions for the preparation of manuscripts,
and will also, on request, supply special staionery on which the
prescribed typing area is outlined. Careful preparation of the
manuscripts will help keep production time short and ensure sa-
tisfactory appearance of the finished book. Running titles are
not required; if however they are considered necessary, they
should be uniform in appearance. We generally advise authors not
to start having their final manuscripts specially tpyed before-
hand. For professionally typed manuscripts, prepared on the spe-
clial stationery according to our instructions, Springer-Verlag
will, if necessary, contribute towards the typing costs at a
fixed rate.

The actual production of a Lecture Notes volume takes 6-8 weeks.
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§4.

§5.

Final manuscripts should contain at least 100 pages of mathema-

tical text and should include

- a table of contents

- an informative introduction, perhaps with some historical re-
marks. It should be accessible to a reader not particularly
familiar with the topic treated.

- a subject index; this is almost always genuinely helpful for
the reader.

Authors receive a total of 50 free copies of their volume, but
no royalties. -They are entitled to purchase further copies of
their book for their personal use at a discount of 33.3 %,
other Springer mathematics books at a discount of 20 % directly
from Springer-Verlag.

Commitment to publish is made by letter of intent rather than by
signing a formal contract. Springer-Verlag secures the copyright
for each volume.
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