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The editors are happy to make the famous 1946 and 1956 seminar

lectures of Heinz Hopf on Geometry and Differential Geometry in the

large available to the mathematical community. They are pleased to

have this fine volume carry the number 1000 of the Lecture Notes in

Mathematics series. They express their sincere thanks to all those

who have contributed to the project: To Peter Lax and John Gray who

wrote the original class notes; to the Mathematics Institutes of

N.Y.U. and of Stanford University for the permission to rewrite and

publish the notes; to S.S. Chern for suggesting the volume and"writing

a preface; to Konrad Voss and Karl Weber for carefully checking the

old versions and correcting errors, partly using error lists made by

Heinz Hopf himself; and to Rachel Boller for her excellent job in

typing the final manuscript and drawing all illustrations.

Albrecht Dold

Beno Eckmann



PREFACE TO THE SECOND EDITION

The text of the Hopf Lecture Notes remains nearly unchanged. A

number of misprints has been corrected, for which considerable help was

given by WU TA-JEN of Nankai University at Tianjin, China, who also

contributed a great number of valuable remarks.

One of the main questions discussed in Part-Two of the Hopf

Lectures is the problem of finding all closed surfaces in E3 with

constant mean curvature (c.m.c.), the solution being given in these

Lecture Notes for the genus 0 case and for the case of all simple

closed surfaces of arbitrary genus (in which cases the round spheres

are the only solutions), while "the question whether there exist closed

surfaces of genus > 1 with H=C and with self intersections
... remains

unanswered" (p. 131). An exciting development began in 1986 with

H.C. WENTE's proof of the existence of c.m.c. tori; this proof starts

exactly at the point, where Heinz Hopf left the problem in 1950. In

the meantime, not only have the c.m.c. tori been classified, but

N. KAPOULEAS (1987) has also proved the existence of c.m.c. surfaces

of arbitrary genus > 3. The case of genus 2 still seems to make siffi-

culties. For references see the paper of U. PINKALL and I. STERLING:

On the classification of constant mean curvature tori, to appear in

Annals of Mathematics (1989).

K. Voss

March 1989



PREFACE

These notes consist of two parts:

1) Selected Topics in Geometry, New York University 1946,

Notes by Peter Lax.

2) Lectures on Differential Geometry in the Large, Stanford

University 1956, Notes by J.W. Gray.

They are reproduced here with no essential change.

Heinz Hopf was a mathematician who recognized important mathema-

tical ideas and new mathematical phenomena through special cases. In the

simplest background the central idea or the difficulty of a problem

usually becomes crystal clear. Doing geometry in this fashion is a

joy. Hopf's great insight allows this approach to lead to serious ma-

thematics, for most of the topics in these notes have become the star-

ting-points of important further developments. I will try to mention a

few.

It is clear from these notes that Hopf laid the emphasis on poly-

hedral differential geometry. Most of the results in smooth differen-

t1al geometry have polyhedral counterparts, whose understanding is both

important and challenging. Among recent works I wish to mention

those of Robert Connelly on rigidity, which is very much in the spirit

of these notes (cf. R. Connelly, Conjectures and open questions in ri-

gidity, Proceedings of International Congress of Mathematicians, Hel-

sinki 1978, vol. 1, 407-414) .

A theory of area and volume of rectilinear polyhedra based on de-

compositions originated with Bolyai and Gauss. Gauss realized the de-

licacy of the problem for volumes, and Hilbert proposed in his famous

"Mathematical Problems" that of "constructing two tetrahedra of equal

bases and equal altitudes which can in no way be split into congruent

tetrahedra
...

" (Problem no. 3). This was immediately solved by Max Dehn

whose results, with some modifications, are presented in Part 1, Chap-

ter IV of these notes. This work has been further pursued and treated

by algebraic methods. For the modern developments I refer to C.H. Sah,

Hilbert's third problem: Scissors congruence (Research Notes in Mathe-

matics 33, Pitman, San Francisco 1979).
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The main content of Part 2 consists of the study of Weingarten

surfaces in the three-dimensional Euclidean space, particularly those

for which the mean curvature or the Gaussian curvature is a constant.

Important progress was recently made by Wu-Yi Hsiang, as he constructed

many examples of hypersurfaces of constant mean curvature in the Eucli-

dean space which are not hyperspheres; cf. Wu-Yi Hsiang, Generalized

rotation hypersurfaces of constant mean curvature in the Euclidean

spaces I (J. Differential Geometry 17 (1982), 337-356), and his other

papers. But the simplest question as to whether there exists an immersed

torus in the three-dimensional Euclidean space with constant mean cur-

vature remains unanswered (the "soap bubble" problem).

Hopf's mathematical exposition is a model of precision and clarity.

His style is recognizable in these notes.

S.S. Chern

March 1983
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PART ONE

Selected Topics in Geometry

New York University 1946

Notes by Peter Lax

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), p. 1, 1983, 1989.
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CHAPTERI

The Euler Characteristic and Related Topics

Section 1. The first topic to be discussed will be Eulerts famous re-

lation between the number of faces, edges and vertices of a convex

polyhedron.

Definition. A convex 2-cell is a convex point set whose boundary.con-

sists of a finite collection of straight line segments (edges) which

meet at points (vertices). A convex 3-cell is a convex point set whose

boundary consists of a finite collection of convex two-cells.

Number of vertices of a three-cell will be denoted by e

Number of edges of a-three-cell will be denoted by k

Number of two-cells of a three-cell will be denoted by f

Eulerts theorem states that for convex three-cells the following

relation holds.

e - k + f = 2

A number of proofs of this theorem will be presented.

Section 2. First Proof (Legendre)

We are given P
,

a convex polyhedron; project its surface from

an interior point into the surface of the unit sphere around that

point. This may be done from theorems in the general theory of convex

sets. This way we obtain a network on the surface of a sphere consist-

ing of convex spherical polygons.

A Theorem on Spherical Polygons. The sum of the angles of a convex

spherical polygon on the surface of a unit sphere is equal to

(n-2)w +A
,

where n is the number.of sides of the polygon and A

its area.

This theorem can be proved by induction: for n = 3 it reduces

to a well-known theorem in spherical trigonometry. To proceed from n

to n+I we subdivide the polygon into a triangle and a polygon of

(n- I) sides by means of a diagonal, which lies completely inside the

original polygon because of its convexity.

The theorem holds for non-convex polygons as well but we shall

not bother to prove it.

We return to our network consisting of convex spherical polygons.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 3–29, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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For each polygon we write down the equation

X(XI= nx - 2x + A where cc

I
is an angle of the polygon.

We sum over all polygons, Pj . Then

X a 2we since each vertex contributes a total angle
i'j

of 2-K
.

Im. 2wk since each edge bounds two polygons and will be
I

counted twice in summation of edges of the polygon.

f

Z 2w = 2xf
,

since j goes from I to f

j=1

 A 4x
,

since every point of the sphere is covered once
3

an on y once, and the area of a unit sphere = 4x
. But

Z a.
.

= Z n x - Z 2w + Z A

ij i i i

27re 27rk 2-Kf + 4w

dividing by 2x we get e- k + f 2

Section 3. Corollaries of Euler's Theorem

Let f denote the number of two-cells bounding the polyhedron
n

which have n sides; obviously

CO

(3.1) f = 2: f
n

n=3

Since each edge bounds two polygons:

CO

(3.2) 2k = 7. nf
n

n=3

the total number of edges of-all the polygons.

Let e be the number of vertices of the polyhedron at which m
M

edges meet, obviously

CO

(3.3) e = y e
m

m=3

Since each edge contains two vertices:

CO

(3.4) 2k = z me, ,

m=3

the total number of edges emitted from all vertices.

Multiplying both sides of equation (1.1) by two and first substituting

(3.1) and (3.2) ,
(3.3) ,

then (3.1) ,
(3.3)' and (3.4) we obtain



12 e + 2:2 f - 4 = Xnf

Z2e + Z2f - 4 = Zme

x4 e + z4f
n

- 8 = Xnf + Dme

or

CO CC)

0 8 + X (m-4) e
m

+ 2: (n-4) f
n

m=3 n=3

Putting all negative terms on the left side:

CO CO

e
3

+ f
3

= 8 + 2: (m-4) em+ I (n-4) f
n

m=5 n=5

Since all terms on the right are non-negative, it follows from

this last expression that

(3.5) e3 + f 3> 8

In particular (3.5) implies that

a) every convex polyhedron possesses either trianqular faces, or ver-

tices with exactly three edqes, or possiblyboth.

Multiply (1.11) by two and add it to (1.1"):

X6e + Z6f - 12 = Z2nf + Eme
I

or CO CO

-12 = z (2n-6)f
n

+ 2: (m- 6) e
m

3 3

Arranging this equation so that both sides will contain positive

terms only:

CO CO

3e
3

+ 2e
4

+ e
5

= 12 + x (2n-6) f
n

+ 2: (m-6) em
n=4 m=7

Since all terms on the right side are non-negative

3e
3

+ 2e
4

+ e 5>, 12

Similarly we can derive the inequality

3f
3

+ 2f
4

+ f 5>, 12

These last two inequalities imply that:

b) Every convex polyhedron must contain three, four or five-edged

vertices.

c) Every convex polyhedron must contain triangles, or quadrilaterals,

or pentagons as faces.
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Reqular--polyhedra. A regular polyhedron has the property that all

its faces have the same number of sides n
,

and all its vertices have

the same number of edges m . Therefore

e =

em ,
f = f

n
.

By the previously derived results either m = 3 and

3,<n,<5 or n = 3
,

and 3,<m,<5 musthold.

Furthermore, the three equations:

2k=me=nf
,

and e-k+f =2

determine e
,

k ancT f completely in terms of m and n We tabu-

late all possible combinations

n I m I e I f I k

3 3 4 4 6 Tetrahedron

3 4 6 8 12 octahedron

3 5 12 20 30 Icosahedron

4 3 8 6 12 Hexahedron (cube)
5 3 20 12 30 Dodecahedron

We have thus proved that the five common regular polyhedrons are unique.

Section 4. Second Proof of Eulerts Theorem (Steiner)

Consider in the plane a two-cell C with N sides subaivided

into two-cells C
. Let e

,
k f denote the total number of ver-

tices, edges and two-cells in C el
,

k' and ft denote the number

of interior vertices, edges and two-cells (i.e. those edges and ver-

tices not on the boundary of C ).

For each two-cell we have the well-known formula for the sum of

the angles of a two-cell C
I

with n sides and n angles each of

(Xi
radians.

(4.1) X cL n7c + 2-K = 0

j=1

We sum over all two-cells C
L

and, as previously, we have

Y. (X. 2'Re' + IcL
,

each interior vertex yields 27r to which

ij
]L

C

we add 2: (X

C

E n Ix 2xkt + wN
,

each interior edge is on two 2-cells to which

i

we add N

1 2w 2nft
,

since f = ft

Hence summing we get
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(4.2) 27re' - 2xkt + 2nft + Z a - 7rN = 0

C

Since (4.1) holds for c too, 2: a - 7rN + 2jr = 0
. Substituting

C

this into (4.2) and dividing it by 21r we obtain the equation

(4  . 3) et kt + fI

But, e = el + N
,

k k' + N f f? substituting these into (4.3)

we obtain

(4.3t) e k + f

Let us consider next a subdivision of a straight line segment into sub-

segments, e, k, el, kt being defined as before. Since kI, the number

of subsegments is always one greater than the number of interior ver-

tices et,

(4.4) et- kt = -1

holds.

Similarly

(4.41) e - k = I

(4.3t) and (4.4t) may be considered as Eulerts Theorem for 2 and I

dimensional cases.

Section 5. General Notion of Polyhedron

A polyhedron is a finite collection of two-cells with the follow-

ing properties: Two 2-cells must be in one of the following three re-

lations to each other:

a) They have no points in common;

b) They have one vertex in common;

c) They have one edge in common.

The characteristic x(P) of a polyhedron P is defined as

follows:

X(P) = e - k + f

Subdivision of a polyhedron: By the subdivision of a polyhedron we

mean a division of its two-cells by networks of edges and vertices in

such a manner that when two 2-cells have an edge in common, any new

vertex formed by the network of one cell on that edge of the original

two-cell must coincide with a new vertex found in such a manner in the

other two-cell.

Theorem: Let P,, P
2

be two polyhedra, P
2

being a subdivision of P
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Then

(5.1) X(PI) = X(P2)

Proof: Consider an edge of PI on which new vertices are introduced;
the contribution of this open edge to x(P2) is, in view of (4.4), -1;
the contribution of the same edge originally to X(PI) was also -1

Consider an open two-cell of P
I

which is subdivided into two-

cells; the contribution of the new vertices, edges and two-cells to

X(P2) is, in view of (4.3), +1
. The contribution of that same two-

cell originally to x(P1) is +1 also. Since these are the only pos-

sible changes made by a subdivision, we see that the characteristic
remains invariant.

The fact that the characteristic is invariant under subdivision

is one of the most important tools in the classification of surfaces.

Section 6. We have shown that the characteristic is invariant under

subdivision; this fact will be the basis of our third proof of Euler's

theorem.

Consider two convex three-cells and project both of them from an

interior point onto the surface of a sphere. This way we obtain two

networks P and Q on the surface of the sphere. Consider S
,

the

"combination" of P and Q .
The two-cells of S are the non-empty

intersections of two-cells of P and Q ; the edges of S are the

subdivision of edges of P and Q by points of intersections of P

and Q ; the vertices of S are the vertices of P and Q plus the

points of intersections of P and Q . Thus S is a subdivision of

both P and Q . By our previous result X(S) = X(P) and also

X(s) = %(Q) ,
hence

X(P) = X(Q) -

Hence all convex polyhedra have the same characteristic X specifi-

cally the characteristic of the tetrahedron is 4-6+4 = 2 but then

X(P) = 2 or e -k+ f = 2

must hold for all convex three-cells. This proves Euler's Theorem.

Section 7. Surfaces of Higher Genus

The previous considerations can be carried over to networks drawn

on closed surfaces which are said to have different genus than the

sphere. A surface of genus p can be obtained by cutting out 2p

small circles from the surface of a sphere and connecting the punctures

pairways so that they do not intersect. The surface shown in the dia-

gram is of genus 2. A surface of genus I is called a torus. It may be
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P P

shown that all topologically equivalent closed orientable surfaces are

of the same genus, and every closed orientable surface falls into a

genus class.

All networks P drawn on a surface of qenus p have the same

characteristic x(p) .

This important theorem can be proven the same way we proved the

special-case p = 0 (sphere). Given networks P and Q ,
we obtain S

by "combining" P and Q Thus S is a subdivision of both P and

Q ,
hence

x (S) Y. (P) = x (Q)

Thus we have shown that a characteristic X can be associated

with each surface of genus p .
We wish to determine X as a function

of p .
This we do inductively.

First we determine the characteristic of a torus. Two cuts in the

manner indicated on the diagram will separate the torus into two parts;

each of the parts will be equivalent to a sphere with two two-cells re-

moved, therefore each part will have the characteristic zero. Putting

the two parts together will not alter the characteristic since there

were the same number of edges and vertices along the cut which will

cancel themselves out. Thus we have shown that X(torus) = 0.

In case of a surface of genus p we cut it into two parts: One
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will be a torus, minus one two-cell, the other a surface of genus (p-1),

minus one two-cell. The characteristic of the former is -1
,

and that

of the latter X(p-1) -1
.

As before putting the two parts together will

not alter the characteristic, hence

(7.1) X(p) = X(p-1) - 2

Since

(7.2) X (0) = X(sph e r e) = 2
,

it follows by induction from (7.1) and (7.2) that

(7.3) X(p) = 2 - 2p .

Section 8. Application to the theory of Riemann surfaces

A surface Z of genus p is represented by a single-valued con-

tinuous function on the sphere S
.

All but a finite number of points (branch points) of Z have a

small neighborhood mapped in a one-to-one manner into a small region

on S
.

Furthermore we assume that each point which is not an image of a

branch point is covered by the same number of sheets, let's say s

times.

Let the number of branch points of order m be w

m
,

and put

W= E mw

m
m

The problem is to express p in terms of s and W

Draw a net on S
, stipulating that all branchpoints of the Rie-

mann surface should be vertices of the net. Project the net on the Rie-

mann surface.

Let e,k,f and E,K,y be the number of vertices, edges and faces

on S and on the Riemann surface respectively.

(p = sf
, r, = sk

, E = es - W

p = I - X(p)/2 = I - ((p-r,+E)/2 = I - s(f-k+e)/2 + W/2

= I - s + (1/2)W

which is the desired result.

bne interesting consequence of (8.1) is that Wis always even.

Consider the Riemann surface which the function

]/ft-aI)ft-a 2) ... ft-a
2n

)' gives rise to; here W= 2n and s = 2

Hence the Riemann surface can be represented on a surface of genus

1 -2 +n = n- I
.
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Problem 1. If instead of a sphere we relate the point transformation

between a surface of genus p and one of genus q ,
how would formula

(8.1) change?

Section 9. Role of the Euler Characteristic in the Theory of

Vector Fields

Definition of Plane Vector Fields: To each point with a finite number

of exceptions a direction is given; this direction is a continuous

function of the plane except at the exceptional points; these points

are called singular points.

Index of a Sinqular Point: Draw a circle around the singular point which

is so small that it contains no other singularities of the vector field

in its interior or on its circumference. Take an arbitrary point on the

Y

X

circumference of the circle and let a be the angle the vector at

that point makes with the direction of the positive x axis. a is

uniquely determined mod 2W
. After fixing the value of a

,
the angle

of a vector at any subsequent point on the circumference with the

direction of x axis can be determined uniquely if we require that it

be a continuous function of the arc length on the circumference of the

circle. We consider the changing direction at each point and finally

the total change of the a until we reach the original point. This

will be a multiple of 2w
.

a (2 x) - a (0) = 2 7rj

where j is the integral multiple called the index.

a) The value of j is finite and it does not depend upon our initial

point on the circumference of the circle.

b) The value of j does not depend upon the particular circle we

choose as long as the region is free of other singular points. (Since

two circles can be deformed into each other, and j changes con-
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tinuously, hence remains a constant under such a deformation.)

Exameles of sinqular points in vector fields:

(a) (b) (c) 0
7

 V c_
(d) e) M

If we regard these fields as gradient fields,

(a) a source corresponds to a maximum,

(b) a sink, to a minimum,

(c) a center,

(d) a simple saddle-point,

(e) a monkey-saddle,

(f) a dipole.

The indices of these configurations are as follows:

(a) I (c) I (e) -2

(b) I (d) - I M 2

The index was defined as 1/2 w times the change of direction of

the vector field with respect to a horizontal parallel vector field in

going around a singular point x in a positive sense.

We observe that this change of angle in going around a regular

point is zero. From this it follows that in the definition of the index

the horizontal parallel vectorfield can be replaced by an arbitrary

vector field which has no singular points in a sufficiently small

neighborhood of x .

This generalized definition of the index is useful in studying

Vectorfields on Closed Surfaces.

Definition: Let I be a closed surface possessing continuous first

derivatives at every point; then a tangent plane exists at every point

whose normal will vary continuously on the surface. Consider a field of

tangent vectors (of unit length) defined and continuous at all but a
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finite number of points of this surface. These exceptional points are

called singular points. A field with such properties will be called a

reqular vectorfield.

Index of a Sinqular Point: Take a small region around a singular point

which contains no other singularities of the vectorfield; let the

boundary of this region be a simple closed curve. Since the surface has

continuous first derivatives at every point in every sufficiently small

region we can define a non-singular tangent vector field. The index is

defined as 1/2 N the change in direction of the original vectorfield

with respect to the local non-singular vectorfield.

We observe that the difference of the indices of two vectorfields

F and F1 on Z at a point x can be defined without any reference

to a local non-sinqular vectorfield. Namely the difference of the in-

dices of F and Ft at x is times the change in the angle

between the directions of the vectorfield F and F1 in going around

x in a positive sense. (The contribution of the local non-singular

vectorfield cancels out.)

This observation will be of great importance in proving the follow-

ing theorem:

The sum of the indices of all sinqularities of a reqular vector-

field is equal to the characteristic of the surface.

(9-1) 2: i = XW-

r r

Proof: The proof consists of two parts; first we show that Z j has

r r

the same value for all regular vectorfields on Z .

we consider two regular vectorfields F and Ft
.

We then sub-

divide X by a network in such a manner that there will be no singu-

larities of either of the two fields on the edges or vertices of the

network. Furthermore we make the two-cells of the network small enough,

so as to have at most one singularity of F or Ft in any one of them.

Since there are a finite number of singu arities this may easily be

done.

The difference of indices j.- j., of the singularity in each

two-cell is times the change in the difference of the direc-

tions of F and Ft in going around the boundary of the two-cell in

a positive sense. But if we sum j F_ jF' '
over all two-cells, we find

that this total sum is zero since every edge bounds two two-cells and

in the course of calculating X(j F_ jF ) each will be traversed in

two opposite senses. Thus its contribution to 2:(j F_ iF) is zero.
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Hence Zj. = zjF1 P
and the sum of indexes is independent of the vec-

torfield.

The second part of the proof of (9.1) will consist of construc-

ting a special vectorfield whose 2:j will be calculated.

As in the first part divide I by a network in such a manner

that all two-cells of the network are triangles.

4 
In each triangle we introduce 4 additional points. The centers of the

three sides and a point in the interior. The point in the interior is

connected with the vertices of the triangle and the centers of the

sides; these connecting lines are given a direction which points to-

ward the interior point. Each half of the edges of the triangle are

directed away from the vertex, from which it emanates (see diagram).

The original triangle is now broken up into six triangles; it is

easy to see that it is possible to define a continuous vectorfield in

449&
the interior of the triangles which will coincide on the boundary with

the already prescribed directions.

Thus we have defined a vectorfield on Z which has one singular

point in each vertex, on each edge and in each two-cell of a network

on Z and all other points are regular points. Furthermore the index

of the singularities in the vertices and in the two-cells are +1

since they are respectively sources and sinks while the index of the

singularities on the edges is -1
,

since they are of simple saddle-

point type. If e,k and f denote the numbers of vertices, edges and

two-cells of the network, we have

(9 -1) 2: jr =e + f - k =
X(z)

r

Q.E.D.

With the aid of (9.1) we can answer the following important
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question: On which surfaces exist vectorfields free of sinqularities?

If there are no singularities, Xj
r

=_ 0
.

By (9.1) %(X) = 0 must hold. Therefore the only possible surface with

the above mentioned property is the torus. By a simple construction

(see diagram) we can show that such a vectorfield actually exists.

Section 10. In this lecture a purely combinatorial proof of Euler's

theorem (due to Cauchy) will be presented.

Definition of network: A network in n-dimensional Euclidean space

consists of a finite number of points (vertices) p and of straight

line segments (edges) connecting some of these vertices, where no two

edges have an interior point in common. An edge will be denoted by its

endpoints pipi *

A network on the surface of a sphere consists of a finite number

of points (vertices) and of arcs of great circles (edges) connecting

some of the vertices, where every pair of vertices is connected by at

most one edge and no two edges have an interior point in common.

We introduce the following notation:

e = number of vertices

k = number of edges

f = number of open connected regions

c = number of components of the network

(A component is a connected part of the network which is not connected

with the remainder of the network.)

Then the following equality holds:

(10.1) e -k + f = I + c

In proving this theorem at some stage of the proof we must essen-

tially use the hypothesis that the network is situated on the surface

of a sphere (and not on a surface with genus
& 0). We do this by using

Jordan's theorem on polygonal arcs:

Jordants Theorem: On the surface of a sphere every closed simple

non-self intersecting polygonal arc divides the surface of the sphere
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in exactly two open regions. Furthermore points on the opposite side

of a boundary arc in a sufficiently small neighborhood of the arc be-

long to different regions.

The proof of (10.1) will be done by induction on the number of

edges.

For k = 0 (10.1) holds because in that case the network con-

sists of e isolated vertices; for this configuration

f = 1 and c = e

and we obtain

e-k+ f = e -0+1 I+e = I+c

We now show that if (10.1) holds for k n then it holds for

k = n +1
.

This will be done by removing an qdge from a network with

(n+1) edges. We will then show that in all cases the right and left

side of (10.1) has decreased by the same amount. But first we must

introduce the concept of a free vertex. A free vertex is one from which

one edge emanates.

Lemma: if a network Q containing some edges does not contain free

vertices then there exists at least one simple closed polygonal arc

made up of edges of Q

Proof of Lemma: Since Q contains edges, by hypothesis there exists a

vertex p, in Q with an edge PIP2 emanating from p, ; since
P2

cannot be free, there will be an edge P2P3 different from P2PI
ema-

nating from it. By the same process we get a chain of vertices

PVP2'**-Pn in which two consecutive vertices are connected by an

edge and any three consecutive vertices are distinct. Since there are

but a finite number of vertices in Q ,
we shall eventually come to a

vertex Pn ,
for which p

n

=

Pr '
r <n .

We consider the first vertex

that satisfies this condition: we then have a closed polygonal arc

Pr'pr+I'Pr+2 - Pr

with at least 3 distinct edges in it. This proves the lemma.

Now we proceed with the induction.

Assume that (10.1) holds for all networks with k = n edges and

consider a network Q with n + I edges. We distinguish two cases:

M Q has a free vertex

(II) Q doesn't have free vertices

In case (I) let p be a free vertex, connected by an edge to another
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vertex .P, -
If P, is .also a free vertex, then the removal of the

edge p , ps will

leave e unchanged,

p
leave f unchanged,

decrease k by one,

p increase c by one

We can verify that the right and left hand side of (10.1) changed

by the same amount. - The case where pl is not free is trivial.

In case (II) we have no free vertices hence by our lemma there

exists a closed polygon. Removing an edge of this polygon will

leave e unchanged,

decrease k by one,

leave c unchanged,

decrease f by one.

(Since points on opposite sides of the edge we have removed belonged

to two different open regions.)

This completes the proof of (10.1).

Using (10.1) we shall derive two classical results of combinato-

rial topology.

Section 11. General notion of one-dimensional complex

A one dimensional complex is a finite collection of elements

(vertices) PI'P2'***'Pn and pairs of elements (edges) pip 3
so that

each vertex is situated on at least one edge.

Imbeddinq of a one dimensional complex: A one-dimensional complex C

is said to be imbedded in an n-dimensional Euclidean space En(on S

the surface of a sphere) if there exists a network Q in E
n

(on S)

with the following properties: To every vertex p of C there corre-

sponds one and only one vertex pt of Q ; to all edges p.p. of C
1 3

correspond simple disjoint polygonal arcs whose endpoints are p! and

P!

If E and K denote the number of vertices and edges of C
,

e

and k the number of vertices and edges of Q we notice that it

follows from the definition that e - k = E - K

In the following discussion we shall construct two complexes and

prove that they cannot be imbedded on the surface of a sphere.

- (A) Consider. the complex A consisting of five vertices pi
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1,...,5 and 10 edges pipj ,
i = 1,...,5 , j = 2,...,5

,
i< j

Assume that it is possible to imbed it on the surface of a sphere;

then we have a network Q for which (10.1) holds:

(11.1) f 2 -(e-k)(c I since Q is obviously connected)

e k = E - K 5 10 -5 substituting this into (11.1).

we obtain

f = 2 - (-5) 7

Let i denote the total number of incidences of edges of the

complex with the open regions of the network. Since every edge of A

lies on some closed simple plygonal path, by Jordan's theorem each edge

bounds two regions:* )

i = 2K

on the other hand each open region has at least three edges of the

complex on its boundary:
3f <- i

Substituting the values f = 7 K = 10. into

3f -< i 2K

we obtain
21 -<i 20

which is a contradiction. Hence the complex A cannot be imbedded on

a sphere.

(B) Consider the complex B consisting of six vertices

PI'P2'P3 q:,,q VC13 and nine edges piqj i,j = 1,2,3 .
In this case we

have
E = 6

,
K = 9

,
f 2 - (6-9) = 5

.

Let i denote the*total number of incidences of edges of the complex

with regions of the network. As before

i = 2K
.

There are no triangular regions because if there were, at least two of

the three vertices of the triangle would both be a p or both a q .

However, no two p or q are connected by an edge while in a triangle

all vertices are connected with each other. Hence each region has at

least four edges on its boundary:

4f < i
.

Actually all that we need here is that i-< 2K
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Substituting the values f 5 K = 9 into

4f i 2K

we obtain

20-< 18

Hence the complex B cannot be imbedded on the surface of a sphere

since the assumption that it can lead to a contradiction.

We call a one-dimensional complex that cannot be imbedded in the

surface of a sphere singular; a singular complex is called irreducible

if eliminating any one of its edges would make it non-singular.

Kuratowski has shown that the only two irreducible sinqular com-

plexes are A and B .

Section 12. The second result that we shall derive with the aid of

(10.1) is a theorem of Cauchy that is of great importance in his proof

of the rigidity of convex polyhedra.

Given a network Q on S (the surface of a sphere) not containing

any free or isolated vertices. We divide its edges into two groups X

and Y to form a network. The order of a vertex of Q is defined as

the number of instances in which two neighboring edges emanating from

the vertex belong to different groups. The order is always an even,

non-negative number.

edges of group X
j = order of vertex

------------ edqes of qroup Y

__X'

0 0 j = 2 j = 4

Call a the number of vertices of order 0 the number of

vertices of order 2 and rv . v = 1,2,... the number of vertices of

order (2 +2v) .
Two adjacent emanating edges from the vertex form an

angle. Let w be the total number of angles at all vertices, w
I

the

number of angles whose two edges belong to the same group X or Y

and w
2

the angles whose edges are in different groups. Since there

are no free vertices, each edge is on 4 angles and each angle has 2

edges
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(12.1) 2k = w = wI+ w2

Since at least two of the three edges of a triangle belong to the

same group it follows that

w1 _> number of triangles = f3

By formulas derived in section 3

CO 00

2k = 1: n f and f z f we see that

n= n=3

2k = 3f3+ 4f4+ 5f5+ ... >_ 3f3+ 4(f4+ f5+ f6

= 3f3+ 4(f-f 3) = 4f - f3 4f -

wI

Adding this equality to (12.1) we obtain

2k 4f -

wI
2k wI + w2

4k 4f + w2 or

(12.2) w2 4(k-f)

By (10.1) k - f = e 1 - c < e 2 and substituting this into

(12.2) we obtain

(12.3) w2 4e - B

By definition
CO

w2 2p + z (2+2n)r
n

n=1

while the total number of vertices

CO

e = a +p+ z rn
, n=1

Substituting this into (12.3) we obtain

CO CO

8 + 2p + 2: (2+2n) i7n
< 4cL + 4p + 4 z rn

n=1 n=1

or after rearrangement and division by 2

CO

(12.4) 2oL +p >, 4 + Z (n- 1) r4

n=1

A vertex whose order is > 4 is called (for obvious reasons) a cross-

point. Inequality 12.4 means then that if the edges of a network Q

on S are divided into two.groups X and Y there will always be at

least two vertices which are not crosspoints.

There is an analogy between this theorem and the theorem on the
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sum of indices of singularities of a vector field on S

Section 13. Generalization of Eulerts theorem to n dimensions

Before we attempt to establish and prove the generalization of

Euler's theorem we would like to generalize the notions and lemmas

that were used for proving it in 2 dimensions. In Legendre's and

Steiner's proof we operated with theorems on the sums of angles of

spherical and plane triangles and polygons. These theorems can be ge-

neralized to n dimensions; the results are elegant but are not as

widely known as they should be.

A formula connecting the sum of the solid angles and dihedral

angles of a tetrahedron was discovered by de Gua (1783).

Denote the solid angles at the vertices of the tetrahedron by (x

(i 1,2,...,4), the dihedral angles by pi (i = 1,2,...,6). Trihedral

Z;a
Pi

angles will be measured by the area cut off on a unit sphere with the

vertex of the angle as origin. Dihedral angles will be measured in the

usual way and are therefore equal to the spherical angles shown in the

diagram. By the well known formula on the sum of angles of a spherical

triangle (see section 2) we have for each vertex

(13.1) 7C +
CLi= 2: P

where the summation is to be taken over all edges emanating from ver-

tex i
.

Summing (13.1) over all vertices (i = 1,2,...,4) we obtain (since

each dihedral angle contributes to two vertices)

z cc - 21: p = -4-K
.

Dividing this last equation by 4-K we obtain

(13.2)
_L

X. -

1
2: P = -1

.

4n 2 7c

This is de Guals Formula.

If we change the unit of the solid angle so that the solid angle

associated with the whole surface of a sphere is I
,

and the unit of
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the dihedral angle so that the angle between two planes at an angle

of 27c is 1, (13.2) can be written in the more symmetrical form

(13.21) ZCL - 10 = -1

Furthermore, if we artificially associate with each face of the tetra-

hedron an angle y i
(i = 1,...,4) , y,

= 1/2 , (the solid angle of an

internal hemisphere whose center is any point on the face), and with

the interior another angle 6 = I
,

(the solid angle of an internal

sphere whose center is any interior point) (13.21) can be written in

the still more symmetrical form

(13.211) Za - ZP + XY - 16 = 0

It is this form that will be the easiest to generalize to n dimen-

sions.

Section 14. Definition of an n dimensional simplex.

Given n+1 points in an n dimensional Euclidean space E
n

where these n+1 points do not lie on any hyperplane of dimension

lower than n
,

we introduce the following system.of coordinates: One

of the (n+l) given points is chosen as the origin 0 ; each point X

of E
n

can be written as a linear combination of the remaining n

points a,,a 2' ...,an :
n

X = I a.x.

i=1
I I

where the x
I

are real numbers. The set of points X whose coordi-

nates satisfy the inequalities

xV >' 0 v

(14.1) n

X xv
V=1

is called an n-dimensional simplex'with the vertices o,a,,a 2'***' an

The boundary of the simplex is the set of points X for whose co-

ordinates the inequalities (14.1) will be satisfied, with the sign of

equality holding in at least one case. Consequently, the boundary con-

sists of n+1 faces ((n-1) dimensional simplices), each of these

faces is contained in an (n-1) dimensional hyperplane.

We pass n+1 hyperplanes parallel to the (n+l) hyperplanes con-

taining the faces of the simplex through a point of the space which

may for sake of convenience coincide with the vertex 0
.
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a

a2

0

a3

Each of these hyperplanes P, ,
i = 1,2, n+l divides the whole

space into two parts. The half space which, after a parallel trans-

lation of the plane into a position where it will contain one of the

faces, contains the simplex is called the positive halfspace, the

other the negative one.

Lemma I: No point of the space is on the positive (or negative) side

of all hyperplanes P
I

through 0 .

Proof of Lemma I: The positive halfspaces of each of the planes con-

taining the n faces of the simple?c passing through the vertex 0

are defined by the inequalities

(14.2) XV>0 ,

The positive halfspace of the plane parallel to the plane containing

the remaining face is defined by the inequality

n

(14.2t) E X < 0

V=1

Obviously (14.2) and (14.21) cannot be satisfied simultaneously.

Q.E.D.

The intersection of (n-r) faces of the simplex is an r-cell of

the simplex. We define the angle associated with this r-cell as the

solid angle of that part of the (n-1) dimensional unit sphere about

the origin which is on the positive side of the (n-r) planes parallel

to the faces whose intersection defines the r-cell. (The unit of solid

angle is chosen so that the solid angle of the full sphere is 1).

We introduce the following functions:

f M =

I if X is on the positive side of P
3.

i 0 otherwise.

S denotes the total surface area of the (n-l)-dimensional tinit

sphere.

Let a

r
be the angle associated with the intersection of



24

P 1P P

We defined a as
r

(14.3) f Mf (X) ...
f (X) dS

1 2 n-r

where the integration is extended over the unit sphere.

Let a
r

be the sum of the angles on all r-cells, i.e.
ar= Z ar

Lemma I of this section formulated in terms of the functions f.(X)
3.

states that the products

n+1 n+1

1I fiM I
II (1-fIM)

i=1 i=1

are zero for ail values of X
.

Expanding the second one of these products and using the fact that

the first one vanishes identically we obtain

(14.4) 1 - Ef + 2: ff + (-1), 2: ff f 0

Integrating (14.4) term by term over the surface of the (n-l)-

dimensional unit sphere and using (14.3) and the definition of a
r

we

obtain

n

(14.5) 2: (_ .) rar0
r=o

This proof is due to Poincar6.

Since a = -I(n+l) and a I due to their degeneracy, we have
n-1 2 n

the corollary 2: (_:J) rar n( n21
r=o

Section 15. Definition of n-dimensional convex polyhedron

An n-dimensional convex polyhedron is a convex point set whose

boundary consists of a finite number of (n-1) dimensional convex poly-

hedra where any two (n-1) dimensional convex polyhedra have either no

point or an r-cell in common.

Given an n-dimensional convex polyhedron we take an r-cell (r _<n)

of it and about a point of this r-cell we construct an n-dimensional

sphere. The n-dimensional solid angle of that part of the sphere which

is inside the polyhedron is the angle associated with this r-cell.

Let a

r

denote the sum of the angles of all r-cells.

Let e r = 0,1,...,n ,
denote the number of r-cells of a convex
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polyhedron P
. We define -X(P) ,

the characteristic of P by
n

(P) = 1: (_ 1) rer
r=o

(This is a natural extension of the Euler characteristic in three

dimensions.)

Sr denotes an r-dimensional sphere.

Let Cr be a convex r-cell whose interior is subdivided into

r-cells. Let e
t

denote the total number of t-dimensional elements,

eI the number of interior t-dimensional elements. We define
t

(15.2) X(Cr)
t

%,(Cr)
t

e
t et (r,> t >,O

t=o t=o

By the subdivision of an r-dimensional convex polyhedron we mean

a subdivision of its (r-1) cells in such a manner that if two (r-1)

cells have a t-cell in common, the subdivision of the two (r-1) cells

on this t-cell must coincide. Let Pf stand for a subdivision of P

After these preliminaries we state and shall prove the following

four theorems:

(1) (Sr) = I+(_:,)r
,

where ,(,r) the characteristic of any

network on an r-dimensional sphere,

(II) (Cr) = I

(III) X, (Cr) r

(IV) XM= X(P 1) -

These four theorems will be proven by induction applied simultane-

ously to (1) and (III).

For r = I we can easily verify that (I) and (III) hold.

Assume that (I) and (III) hold for all r <n ; we shall show that

(II), (III), (IV) follow for r = n

Let a denote an.angle associated with an r-cell of a convex

n-cell, and y = .1 -(x the corresponding exterior angle; a is the
2 r

sum of the angles of its r-cellst and we let T
r

be the sum of the ex-

terior angles of its r-cells. (Tn-l= 0 ) .

We define n n-2

52 = 1: (-1) ra r 1:
r

Tr
r=o r=o

Lemma II. For every convex n-cell

(15.3) n + r
2

)
n
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(15.4) 9 = 0

Proof of Lemma IIIBy summing the angles of all r-cells, on which by

definition y =

2
-a we see that

T
1

e - d e T
r 2 r r r 2 r r

n
r

n-:1
r

(_:L)
n

X (-1) Cr 2: (-1) er-T + since a

r=0 r=o

n-1 n-1

1/2 z (_,)rer- I (_ r,,
r+

n

r=0 r=o

and since the boundary of a convex n-cell can be considered as a net-

work on an (n-1) sphere

Q = 1/2 X (Sn- 1) + (_ 1)
n

since we assumed that (I) holds for r = n-1

Q + r = 1/2 (1+ (_:L)
n- I+ n

= 1/2 (:1 +(_:L) n)

which proves (15.3)

We subdivide the (n-l)-cells of the convex n-cell into simplices

(a possibility of such a subdivision is shown by the induction). The

angle of any y-cell introduced on an r-cell Cr (n >r,> y) of the n-cell

=

CLr, the angle of Cr ; since III is assumed to hold for r <n the

contribution of the y-cells on Cr to 0 is X, (Cr) (Xr= (_,) r(Xr
contribution of Cr to 2; hence Q remains invariant under a subdi-

vision of the boundary.

We take a point interior to this subdivided convex n-cell and by

connecting this point with all vertices on the subdivided boundary we

subdivide the convex n-cell into n-dimensional simplices.

An interior r-cell of any of the simplices into which the original

n-cell is subdivided consists of an (r-1) -cell of the boundary of the

n-cell plus the interior point. Therefore if we denote by er the

number of interior r-cells of the simplices, by e* the numbel; of
r

r-cells on the boundary, the following equation holds:

(15.5) e = I
,

e = e*_1 , 1,<r,<n
0 r r

By (14.5), (15.4) holds for each of the simplices:
n

r

(15.6) E (- 1) ar=
0

r=0

We sum (15.6) over all n-dimensional simplices and since each



27

interior r-cell contributes a total angle 1, we obtain

za = e + a*
r r r

where a* is the sum of angles of the r-cells of the subdivided n-cell;
r

hence
n n-1

r
+ 1: (_,) r,* = 0(15.7) e

r r
r=o r=o

Substituting (15.5) into (15.7) we obtain

n-1 n-1

(15.8) 1- X (_:,) re* + z (_,) rc,* 0

r=o r=o
r

The boundary of a convex n-cell can be regarded as a network on an

(n-1) sphere, and since (I) holds for r = n-1 the first sum in (15.8)

can be replaced'by +(_:,)n-I ; hence we have by definition of Q

n n-1
r ra* + (-I)

n

r
r=o r=o

which by (15.B)

= 1 + (_:L)
n- I

I +
n

= 0

which proves (15.4).

Using Lemma II we are able to prove (III) for r = n

Let Cn be subdivided into convex n-cells C
n

; by Lemma II for

each C
n

(15.4) holds:
I

n

(15.9) r,,i = 0
r

r=o

Let el denote the number of interior r-cells, a* the sum of the
r r

angles of the r-cells of C
n

.
Since each interior r-cell contributes

a total angle I we obtain by summing (15.9) over all i

n n-1
r

el + r,,* = 0
r r

r=o r=o

hence
n n-1

(Cn re I = - 7. (- 1) r,* n n

r r
r=o r=o

which proves (III) for r = n .

To prove (II) we observe that

(Cn) = ,

- I)X(Sn n
+ (:1 +(_:,)

n

(Cn) + .

To prove (IV) we observe that the contribution of an r-cell to

X(P) is (_:I)r
,

while the contribution of the same r-cell after sub-

r

division to X(PI) is, by (III) ,
also (-I)
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Since any two networks on Sn possess a common subdivision (see

section 6), it follows that the characteristic of any network on Sn

has the same value. Computing this value for the network defined by an

(n+1) dimensional simplex, where

e = (n+2) ,
r = 0,...,n

r r+1

,x (Sn)
n

_ r(n+2) = :, + (_,)
n+2 _n+2 n+2

J( 1) 2: (_,,)
r (

r=o
r+1

r=o
r

= I + (_:,)
n

which proves (I) and completes the induction.

Section f6. n-dimensional spherical simplices

Given an n-dimensional sphere of radius R
,

and (n+1) hyperplanes

PIwhich pass through its center. Each of these hyperplanes divides

the whole space into two parts, one of which, arbitrarily chosen, will

be designated as the positive, the other one as the negative half-space.

We define the functions

fi(x)
I if X is on the positive side of Pill i=1,2,..,n+l.
0 otherwise,

The closure of the set of points X on the surface of the sphere

for which fl(X) fn+1 M= I is called an n-dimensional sphe-

rical simplex.

The set of points X on the surface of the sphere for which

fIM = f2 (X) =
...

= fn+1 (X) = 0 is another spherical simplex, anti-

podic to the first one and therefore congruent to it.

The intersection of (n-r) hyperplanes P 1P '...)p with the

surface of the sphere defines an r-cell of
i:1 i2 'n-r

the spherical simplex. An angle of this simplex ar
is defined as

(16.1) Cc

I

(X)dS
r

=

C Rn lf'I(X)f'2(X)**,fin-r
n

whereC nRn is the surface area of the n dimensional sphere.

We consider the value of the product

(I- fI (X) (1- f 2(X) )... (1- fn+1 (X) )

which is = I if X is in the antipodic simplex, and zero for all

other values of X
.

If A
n

denotes the area of the spherical simplex

(= the area of the antipodic spherical simplex), we obtain
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(:L-f
I
M) (1-f

2
M ... (I- f

n+I
(X) ) dS = A

n

Evaluating the same integral term by term we obtain

(16.2) 1 (1- Z f
i
M+ 1: f

iI
Mf

i2
(X) ...+ (_ I)

n

Z fiI Mf

i2
(X) ...

f

in
M

+ (- 1)
n+I

fI Mf
2

(X) ...
f
n+I

(X)) dS = A
n

.

The ,value of the integral I fI (x)....f
n+I

(X)ds is = A
n

'
since

the value of the product is I if X is in the spherical simplex, 0

otherwise. Using this fact and (16.1) we can rewrite (16.2) as

n

(16.3) C
n

Rn I (- 1) ra
r

= (:,+(_,)n )A
n

r=o

We distinguish two cases:

M n is even.

(ii) n is odd.

Using our previous symbols
n n-2

r
Z (- 1) a

r
r

r
r=o r=o

in case M, (16.3) can be rewritten as

C R
n

Q = 2A
n n

or
A

(16.4) n = 2/C _a
,

n
R
n

we can write (16.4) in terms of r : Substituting (15.3) into (16.4)

we obtain
A

C
n R

n

Replacing A by its definition as an integral we rewrite this last
n

identity as

(16.5)
dS

+ C /2 r = Cn/2
R
n n

(16.5) is.the Gauss-Bonnet formula for n-dimensional spherical simplices.

(i i) For n odd (16.3) and (15.3) yield

(16.6) n = r = 0 -

The forgoing derivation is due to Poincar6. He used (16.4) and

(16.6) to obtain (15.4) by letting R - co .

Using (16.4) and (16.6) we can easily generalize Legendrets proof

of Eulerts formula to n dimensions.



CHAPTERII

Selected_Topics in Elementary Differential Geometry

Section 1. Curvature

Let X(t) = (x(t), y(t), z(t)) be a parametric representation of

a curve in three-dimensional Euclidean space; assume that the functions

x(t), y(t), z(t) possess continuous second derivatives. The spherical

imaqe of X(t) is constructed as follows: With any point X(t 0) on

the curve X(t) we associate the point of intersection of the directed

half-ray from the origin parallel to the directed tangent to X(t) at

X(t0 ) 'with the unit sphere about the origin. It follows from the dif-

ferentiability properties of the curve X(t) that its spherical image

will possess continuous first derivatives.

We introduce s ,
the arc length of X from a fixed point s

0
as

parameter. If Aa denotes the arc length of the spherical image bet-

AU dcr
ween s and s +As

,
the limit = lim =

T
= k exists and k is

s

called the absolute curvature
As-o

AS

atss
,

or just curvature at s.

The total curvature between two points s
I

and s
2

is the length

of the spherical image,
K =

s2

kds =

fr2
da

Si CTI.

The spherical image of a plane curve obviously lies on a great

circle. We can give an orientation to this great circle by defining

Au as positive or negative according to the sense of rotation from

s to s +As .
Directed curvature is defined as I im

d cr
= k (s)

Obviously Jk,J = k = absolute curvature.
AS-0

As ds 1

Again for the three dimensional case denote the angle which two

tangent vectors at 9
1

and s
2 ' respectively subtend by u(s,,s 2)

O""-U(sils2 ),< -K .
This angle is equal to the spherical distance of the

spherical images of the points X(s 1), X(s 2) on the unit sphere. By

the geodesic property of arcs of great circles it follows that

U(si)s ) < Js2 kds
2 , si

The sign of equality holds only in case of plane curves with a

monotonically turning tangent if the total curvature of the arc is x.

For plane curves we can define k
I

as above and the equation

U(sils ) = I
s2

k ds
2

sI
I

holds if the total curvature of the arc between s
I

and s
2

is _<W

Lemma I: If two plane curves XI(s) and X2(s) satisfy the following

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 30–46, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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conditions

(a) They have the same curvature for all values of s

(b) For one point s
0

, X1 (s0 X2 (s0 (s0 2 (s0
then XI(s) = X

2
(s) for all values of s i.e. the two curves

are identical.

Proof: Since the curvature is the derivative of the angle enclosed by

the tangent and the x axis, it follows from (a) that

tan- tan-I * for all values of s .
This yields(Y2/ 2)

2 *2 2 * 2
and since x + Y, + 1

,
it follows that at any Ilkl=  2/ 2 1 2 Y2

points s one of the equations

(1.2)  :, = k  :L = -

*

2 X2

must hold. Since the vectors X
I

X
2

never vanish it follows that if

one of the equations (1.2) holds for one value of s
,

it must hold for

all values of s but :R
I (so X2 (s0) by (b), hence  

1
(s) 2(s)

holds for all s Integrating this equation from s
0

to s and using

from (b) the initial values X
1

(s 0) = X2(s 0) we establish Lemma I.

We note that for curves in three dimensions the identity of the

curvature does not imply the congruence of the curves:

Theorem A. (A. Schur) Let C and Ct be two arcs of the same length

with the endpoints a,b,al,bt respectively, d = Tb and dt= albt

denoting the distance of the endpoints; furthermore let k(s) and

kl(s) denote the respective curvatures of C and Ct
,

where the pa-

rameter s is the arclength on C and Ct measured from a and at

respectively.

If C is a plane curve and together with the chord connecting

its endpoints forms a simple closed convex curve, and if at every

point s
,

0 kl(s)-< k(s) holds, then

dt-> d
,

the sign of equality holding if and only if C = Ct

Proof: (E. Schmidt) Since C possesses a continuously turning tangent

there exists a point s, ,
0 <s

1
< 9

,
where the direction of the tan-

gent to C is parallel to the chord'through a and b let us call

the point C(s 1) = p

By hypothesis C together with the chord connecting a and b

form a simple closed convex curve; therefore the angle enclosed by the

tangent at C(s) with the line through a and b is a monotonic

function of s and its variation on the arcs 0-< s-< s,, s,-< s,< f is
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n .
Therefore (1.1') is applicable:

u(s s)
s:I

k(s)dsl 0 '< s
I S

s

We apply (1.1) to the curve C'

sI

UI(SIPS)'< 11 kI(s)dsI
s

and by the hypothesis kl(s),< k(s) it follows that the last expression

is sI

,< 11 k (s) ds I = u (s:, , s)

s

Taking the cosine of both sides of this last inequality we obtain

(since cos 0 is decreasing between 0 and ir):

(1.3) Cos u
I

(si Is) '> Cos u (s, f S) .

We integrate both sides of (1.3) from 0 to the integral of

the right side is the length of the projection of the chord ab on the

tangent at p ; since this tangent was chosen to be parallel to the

chord, the length of the projection is equal to the length of the

chord = d
.

The integral of the left side is the length d" of the

projection of the chord albt on the tangent at pt ; therefore

d" < the length of albI = dt ; since the inequality (1.3) is preserved

under integration, it follows that

(1.4) d'-> d
.

The sign of equality holds if and only if:

(a) (1.1) as applied to Ct the sign of equality holds, which

implies that the two arcs atpt and ptbt constituting C'

are 121ane arcs.

(b) in k I (s) <, k (s) the sign of equality holds for all s, i.e.

k I (s) = k (s) for all s

(c) d" = d'
-

By lemma I the equality of the curvature for plane curves implies

the congruence of the curves. Therefore it follows from (a) and (b)

that atpt ap , p1bt pb .
We want to show that alpt and ptbt

lie in the same plane.

Assume that atpi and ptbt lie in two different planes; then

their common tangent at P, must coincide with the line of intersection

of these planes. But it follows from (c) that the tangent at pt must
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be parallel to the chord albl which is possible only if both at and

bl lie on the line of intersection of the two planes. That means that

the line through at, bt intersects the arc alp' at the point pt

and since alp' ap ,
the line through the points a,b intersects

C at p .
This is contrary to the hypothesis that C together with

the chord connecting its endpoints is a convex curve.

Thus we have shown that Cl is a plane curve, consequently by

(b) and Lemma I C '- " Cl
Q.e.d.

Section 2. Applications of Theorem A

Given two points albl whose distance is albl = dl
.

if we choose

a value r so that r>- d/2 ,
it is possible to pass a circle of radius

r through at and bt
.

The two arcs connecting the points a' and

bt both have a constant curvature = 1/r

We consider now all curves Cl connecting a' and bt whose

curvatures k(s) satisfy the inequality k(s): 1/r .
A theorem of

H.A. Schwarz states that the arclength of such curves Cl is

either < the length of the lesser arc or the length of the greater

arc of the circle of radius r connecting at and bt
.

Proof: If f > 2xr
,

then 9 is certainly _> the length of the greater

arc; therefore we can restrict ourselves to the case e < 2wr
.

Let

a,b be two points on a circle of radius r such that the length of

one of the arcs ab taking this arc as C in Theorem A, we ob-

tain from (1.4) that

ab _< albl = dt
.

This means that if we draw the chord atbt parallel to ab, this chord

will be nearer to the center of the circle than ab this implies that

Q
I b CIO

0 
I

a b



A 
t he  length of t h e  major a r c  a l b l  i s  5 t h e  length  of t h e  major a r c  
n - 
ab and t h e  length  of t he  minor a r c  a l b l  i s  2 t h e  length  of t he  minor 

n 
a r c  ab  . The length  of one o f  t he  a r c s  connecting a  and b  being =I 
we see  t h a t  t he  above s tatement  i s  i d e n t i c a l  with Schwarzls theorem. 

Q.e.d. 

Sec t ion  3 .  Now we d i s cus s  t he  fol lowing problem: Of a l l  a r c s  whose 

endpoints  co inc ide  and whose curva ture  k  (s) s a t i s f i e s  t h e  i nequa l i t y  

k ( s )  < ko , which one has  t he  sma l l e s t  a r c  length?  This  ques t ion  is 

motivated by t h e  phys ica l  problem 'of f ind ing  t h e  s h o r t e s t  p i ece  of 

wire  t h e  endpoints  of which can be brought toge ther  wi thout  breaking 

t h e  w i r e ,  i . e .  without  increas ing  i t s  curva ture  a t  any p o i n t  beyond 

ko ' 1 

We s h a l l  show t h a t  t h i s  curve i s  t h e  c i r c l e  of r ad iu s  . To 
ko 

prove t h i s  we assume t h a t  t h e r e  e x i s t s  a curve C 1  whose a r c  length 

f i s  < 2x/ko . Let a , b  be two p o i n t s  on t h e  c i r c l e  of r ad iu s  l /ko 
h 

such t h a t  t he  length of one of t h e  a r c s  ab  = . Taking t h i s  a r c  a s  

C i n  Theorem A ,  we v e r i f y  t h a t  t h e  hypothes i s  of t h a t  theorem a r e  

s a t i s f i e d ,  t h e  c i r c l e  being a  convex a r c  and having a  cons tan t  curva- - 
t u r e  = k  2 k ( s )  . Then we ob t a in  t h a t  d  = ab  5 d i s t a n c e  of 

0  

endpoints  of C '  = 0  . But i f  c 2n/ko , t h e  p o i n t s  a  and b  a r e  - 
d i s t i n c t ,  i . e .  ab > 0 ; hence t h e  assumption t h a t  t h e r e  e x i s t s  a  C '  

whose a r c  length is < 2z/ko leads  t o  a  con t r ad i c t i on  which pzove's t he  

minimal proper ty  of t h e  c i r c l e  wi th  r ad iu s  l /ko . 
Sect ion  4 .  Four v e r t e x  theorems 

Take i n  t h e  plane two closed simple convex curves C1,C2 which 

have t h e  same a r c  length  L1 = L2 = L . We make a  one-to-one correspon- 

dence between p o i n t s  of c1 and C2 by tak ing  one i n i t i a l  po in t  a rb i -  

t r a r i l y  on each of t h e  two curves and introducing t h e  a r c  lengths  
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measured from those points a s a parameter. The curvatures k 1(s) and

k2(s) are continuous and periodic functions of s with period L

Since the total curvature of closed simple convex curves is 2w

(kl(s)- k
2

(s))ds kI(s)ds - k2 (s)ds = 2w 2-K = 0

0 0 0

from which it follows that unless k
1

(s) =- k2 (s) in which case

C1 n:C2 '
k I(s) - k

2
(s) has to change sign at some point.

We shall prove that unless the two curves are congruent in which

case there are no changes of sign there are at least four chanqes of

siqn of k
1

(s) - k
2

(s) in the interval O: s: L

Proof: k I(s) - k
2

(s) being a periodic function it follows that if the

number of changes of signs is finite, it must be an even number; since

the vanishing of  F(k i
(s)-k

2
(s))ds shows that the number of changes

0

of signs is > 0
,

to prove our theorem.all we have to show is that it

is impossible to have exactly two changes of sign.

Assume that there are exactly two changes of sign occurring at

s = 0 and s =

so ,
i.e.

(4.1) k
1

(s) _> k 2(s) for O,<s.- s

(4.2) k1 (s) < k 2(s) for s

0
: S: L

If in Theorem A we identify C1(s) , O: s,< so ,
with C

,
C2(s)'

0 -<s,< s0
with Ct

,
from the conditions of simplicity and convexity

imposed on C
I

and (4.1) we can verify that the hypotheses of Theorem

A are satisfied. Hence from (1.4) we obtain

(4.3) d ?-> d

where

d' = C
2

(s 0)C2(0) ,
d = C1(s0 )c 1(0) -

On the other hand it follows from (4.2) that Theorem A is appli-

cable with C2(s) ' so
< s: L as -C and C1(s) ,

s

0
_< s: L

,
as C t

;

for this case (1.4) yields an inequality which is the exact opposite

o f (4.. 3) :

(4.31) d-> dt

(4.3) and (4.31) are at variance unless in both of them the sign of

equality holds. But this is the case if and only if in both (4.1) and

(4.2) the sign of equality holds, i.e. 'k 1
(s) = k2(s) for all s

which by Lemma I implies C, C2
Q.e.d.
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Given any closed convex curve C of arc length L
,

we draw

a circle R with radius L/27r and identify C and R with C and

C2 of the previous theorem. The theorem states that k I(s)- k2 (s) =

k(s) - 2')VL changes sign at least four times; since between two changes

of sign a continuous function always has an extremal value, it folloWs

2.Ir

L

that the curvature of a closed simple convex curve has at least four

extremals. This theorem is known as the four vertex theorem (Vierschei-

tel Satz).

Section 5. Curves with discontinuously turninq tanqents

our discussion up to now applies only to curves which possess

two continuous derivatives. The class of such curves will be referred

to as class I
.

We shall now generalize some of our results to the

class of curves which possess continuous second derivatives except at

a finite number of points where a jump discontinuity in the first deri-

vative may occur. The exterior angle formed by the right and left tan-

gents at a point of discontinuity s will be denoted by a(s) .
This

class of curves will be referred to as class II. A curve of class II

is the sum of a finite number of curves of class I ; its spherical

image is defined as the sum of the spherical images of the curves of

class I that constitute it plus those minor arcs of great circle which

connect the two different spherical images of the points where the

first derivative has a discontinuity. The length of these connecting

arcs is equal to the angles cL enclosed by the right and left tangents;

from this and the results of Section I of Chapter 11, it follows that

)
P2

(5.1) u(SIPS 2
< I da = length of spherical image between

s
I sI and s

2
'

the sign of equality holding for and only for plane curves with mono-

tonically (though not necessarily continuously) turning tangents, if
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2du < x .
The length of the spherical image can be written in thef

I
form:

s s S<s

(5.2) 1 da = 1 k(s)ds +
5

a (S)
sI sI S >SI

where la(s) is the sum of all exterior angles enclosed by the right

and left tangents at points of discontinuities between s
I

and s
2

'

From (5.1) and (5.2) the following generalization of Theorem A follows:

Theorem At: If C and Ct are curves having the same length, belong-

ing to class II, and at every point of continuity k(s) >, kl(s) ,
at

points of discontinuity a(s) ->a' (s) holds, furthermore, if C together

with the chord connecting its endpoints is a simple convex curve, then

(5.3) dt _> d

where d and dt are the distances of the endpoints of C and Ct

respectively. The sign of equality holds if and only if C a C'
-

We shall apply Theorem At to prove an important lemma. We first

introduce the following notation: Let G and Gt be two corners in

three-dimensional space with n faces each, F and Ft respectively,
V 11

v = 1,2,...,n ; denote the face angles of F and Ft by and
V V V

Y, respectively. 9. W ) denotes the edge of G(G') bound by the two
V V+1 V+1

faces F
,

F (F F 1,2,...,n (where F Fjr P, 91
V V+1 V, V+1 n+1 n+1 1

let the dihedral angle on Z
V

and k be a
V

and a
V

respectively.

0 and 01 denote the apexes of G and Gt respectively.

Lemma II: If the following conditions are satisfied:

(a) TV yt for v =

V

(b) a IV >, oLv for v = 2,3,...,n-1

(c) G is convex, i.e. any straight line cuts the faces of the

corner in at most two points.

then

Tn1 Tn

the sign of equality holding if and only if the sign of equality holds

in (b), v = 2,3,...,n-1 .

Proof: We construct a plane P which cuts all edges of G but does

not go through 0 let us denote the point of intersection of P

with Ov by Av v = 1,2,...,n .
We construct the points AI

11
1
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v = 1,2,...,n on the edges ?I of GI so that (5A- = OIAI
V V V

C and Cf denote the polygons whose vertices are A and At
V V

respectively, v = 1,2,...,n ,
and whose..edges are the straight line

segments connecting A with Av and A' with Av1+j respectively,
V +1 V

v = 1,2,...,n-1 .

It follows from (a) and the construction that the triangles

 OA and A'OtA' are congruent for 1,2,...,n-1 ,
hence

V V+1 V V+1

 A A'A' By simple trigonometry it follows from (b) that the
V V+:L V V+1

*

angles of C are > the corresponding angles of C'. Furthermore, it

follows from (c) that C
,

taken together with the chord connecting its

endpoints is a simple convex curve. Hence C and C' satisfy all the

hypotheses of Theorem A' ; (5.3) yields

(5.4) AtAll >_ A A
n n 1

from which it follows by simple trigonometry that

-) AtOtAj ><A OA, =

(pYnt =

n n n

The sign of equality holds if and only if av U. for

v i.d. G
Q.e.d.

Let G and Gt be two convex corners with n faces each such

that yv 9v? for v = 1,2,...,n .
We divide the edges of G into

three classes

(a) The class of edges for which a > atF
K K K

(b) The class of edges for which cx < a

(c) The class of edges for which a at

We define the function I(v)

I if
V

belongs to (a)

I(V) = -1 if
V

belongs to (b)

0 if
V

belongs to (c)

The number of changes of sign of I(v) as v assumes its values

1,2,...,n-1, n, 1 consecutively is called the index of (G,GI) and is

denoted by j . Obviously j is a non-negative even integer.

Lemma III: j,> 4 unless G =_ G'
.

Proof: All we have to show is that

j = 0 and j = 2 implies G = GI

(i) j = 0 means that either (a) or (b) is empty. If (a) is empty,

Lemma II implies y
t > where the sign of equal.ity holds if and only
n

-
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if (b) is empty also. But yl by hypothesis, hence (b) is empty.
n (Pn

Similarly upon the application of Lemma II the emptiness of (b) implies

the emptiness of (a) ; but if all edges belong to (c), G GI

(ii) j 2 means that

(5.5) (X holds for v = 1,2,...,m
V

and

(5.6) V = m+1
,

" (X

V

holds for
, m+2, n

where m is some integer between I and n .

By identifying the corner formed by the edges Rv v = 1,2,...,m

with G
,

and the corner formed by the edges P, ,
v 1,2,...,m with

V

Gt
,

of Lemma II we obtain by that Lemma that

(5.7) ?M' >_

where and denote the angles enclosed by t1' and
m

.

and f, and fm respectively.
m

By identifying the corner formed by fv ,
v m+1, m+2,...,n

with Gt and the corner formed by the edges f
V

v = m+1, m+2,...,n

with G of Lemma II we obtain by that lemma

(5.8) '-: F ifm>' < F 10m, -

(5.7) and (5.8) are at variance unless in both of them the sign of

equality holds. But then the corners identified with G and Gt in

Lemma II are congruent, hence G and GI of Lemma III are congruent

also. Q.e.d.

This last result is an essential lemma in Cauchyts famous theorem.

on Riqidity of convex polyhedra: Given P
I

and P
2

'
two convex poly-

hedra whose faces are in a one-to-one correspondence, corresponding

faces being congruent and joined in the same order. Then the correspon-

ding dihedral angles are equal, i.e. P
1

and P
2

are congruent.

Proof: We consider two classes of edges of P
I

:

(a) Those where the dihedral angle is > the dihedral angle at the

corresponding edge of P2 *

(b) Those where the dihedral angle is < the dihedral angle at the

corresponding edge of P
2

'

We project P
I

from an interior point into the surface of a sphere

about the interior point; the projection of those edges which belong
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either to (a) or to (b) forms a network Q on the sphere. This network

will be empty if (a) and (b) are empty.

According to Sec.12 of Chapter I if the edges of a non-empty network

are divided into two classes there always exist at least two vertices

whose order j is < 4. Since by Lemma III j >, 4 for every vertex, Q is

empty. Hence (a) and (b) are empty also, i.e. all corresponding dihedral

angles are equal.
Q.e.d.

Section 6. We shall now present a shorter proof of the four vertex

theorem, due to Herglotz.

First we shall state without proof an elementary lemma from the

theory of functions of real variables.

Lemma IV. If a continuous function has no extremal values in the inter-

val (a,b) ,
then it is monotonic in this interval,

Now let the simple closed convex curve C be represented in some

rectangular coordinate system:

(x (s) , y (s) ) ,0 <, s <_ L

where L is the total arc length.

Let O(s) denote the angle of the tangent at s : then

A = cos 0
,  = sine

.

Differentiating the first equation and substituting the second expres-

sion in the formula we obtain

U =-sine- 4=- k

since k by definition. This last expression shows that  k is

the derivative of a continuous, periodic function, hence its integral

over the period vanishes:

L
L

(6.1)  k ds 0

0

Now let us assume that k(s) has, beside a maximum at s = 0 and a

minimum at s = s ,
no other extremals. We choose our coordinate axes

so that the x-axis coincides with the line through (x(O) , y(O)) and

(x(so), Y(so )) . C being convex this line doesn't intersect the curve

at any otber.point, therefore for 0 <x< s0 : y(s)> 0
,

and for

s0<s <L : y(s)< 0 furthermore by Lemma IV k(s) is monotonic non-

decreasing from s 0 to s = s
0

,
and monotonic non-increasing from
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S S

0
to s = L

. By the second mean value theorem there exists

0 <g < s such that

so ti s0

k ds = k(O)  ds + k(s  ds = k (0) y (g:,)i 1 0

0 0

+ k(s 0My(s 0) -Y Qj) [k(O) - k(so)]y(gl)

Similarly there exists a 9
2

' so "2 < L such that

L t2 L

sjk ds = k(so) I  ds + k(L) I  ds = k(s dy( 2) +

0
s
0 92

+ k (L) [ y (L) - y (g 2) I = [k(s0) - k(L) ]y (Y = [ k (so) - k (0) ]Y(Y '

Adding these two equations we obtain

L

(6.2) 1 k ds = [k(O) - k(s 0)][Y(91) - Y( 2"

and by (6.1) this last expression is zero. But the first factor of the

right side of (6.2) A 0 unless max k(s) min k(s) i.e. k(s) is a

constant. The second factor is always > 0 since Y( I)> O> Y(t2) for

the values of t
I

and 92 that were chosen. Hence their product

cannot be zero which shows that the assumption that k(s) has only

two extremals and k(s) X constant leads to a contradiction.

Q.e.d.

The four-vertex theorem holds for all simple closed curves but we

shall not give a proof of this generalization.

Section 7. The total curvature of a simple closed convex curve is = 2ff;

we shall generalize this result.



42

For a plane curve C we have defined k, as the oriented curva-

ture; we are going to show that for simple closed plane curves

L

(7.1) 10kIds =  de = 2w

if the curve is oriented so that the order of its interior is +1

Proof: For 0,< s I< s2<L we define V(s,,s 2) as the argument of the

vector pointing from C(s I) to C(s 2) ; since C has no double points

and it possesses a continuous tangent, V(s,_ps2 is continuous in the

closure of its domain of definition. We choose s = 0 so that the ho-

rizontal supporting line touches C at C(O) In view of the positive

orientation of C the positive direction of the tangent at C(O) is

as indicated by the arrow on the accompanying diagram. The vector field

V(sils2) is defined in the triangle indicated on the diagram and is

continuous there. Since the variation of the argument of a continuous
s=L

vector field around a closed path is zero, it follows that f de = the

S2 S=O

L

 P_ S

S=O I

variation of V(s,,s 2) from (0,0) to (L,L) along the hypothenuse

is = the sum of the variation of V(slys 2) from (0,0) to (0,L) and

(0,L) to (L,L) along the legs of the triangle.

To evaluate the variation of V(sl,s 2) from (0,0) to (0,L)

along the leg of the triangle we observe that,since the tangent at

C (0) is a su pporting line of C, , 0-<V(O,s) _< ir ; since V(O,s)

is thus restricted to this sector, its variation as s goes from 0

to L is = V(0,L) - V(0,0) = ir ; similarly we f ind that the variation

of V(slps 2) along the other leg is also = n . Adding these quantities

we establish the -validity of (7.1) .

Section B. It follows from (7.1) that for plane curves

L L L

k ds = 11klds >, k1ds = 2n
.

We shall now demonstrate that the in-L
0

equality
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L

Ik ds,> 2w

0

holds for all closed curves, i.e.
,

the total curvature of any closed

curve is >, 2n
.

Given any curve belonging to class I of total length L

(x(s),y(s),z(s)) 0: s,< L we consider its spherical image

S (s) = ( (s) ,  (s)  (s) ) 0: s _< L S (s) is a closed rectifiable

spherical curve. Furthermore

L L

(8.2) JS(s)ds (s) (s) (s) ) d s = 0y

0 0

because x,y and z are periodic functions of s with period L

Lemma V: Given a set of k vectors in m dimensional space

XJIX2'*0*
Ix

k
'satisfying the following equation:

k

(8.3) X a IX C

i=1

where the a
I

are positive numbers, then: it is possible to select n

vectors Xi
1

'Xi 2"*"X'n
from the given k vectors and determine n

positiv numbers bl,b 2'***' bn such that

n k n k

X b.X. I a.X. X b. z a.

j =1
3 Ij j=1 i =:r j =J

and

(8.4) n _< m+1

Proof: We shall prove Lemma V by induction on k
.

Lemma V holds

for k = I
. Assume that Lemma V holds for all values of k -<k we

shall show that then it holds for k = k + I also.
0

If k
0

-<m then Lemma V is trivially satisfied by b
j= aj

j = 1,...,k + I since n = k + I satisfies (8.4).

If k
0

>m we consider the system of m+1 homogeneous equations

for k + I unknowns X1,N2'***"\ko+i
ko+1

(Bo5) I N3.X3. = 0

i=J

2: Ni= 0

Since the number of unknowns, k 0+ I
,

is greater than the number of

equations m+1
,

the system (8.5) will always have a non-trivial set

of solutions.

NJ .
X " k2" "

0+1
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Of these numbers some let us say the f irst will be positive, the

others non-positive:

X > 0 for i 0 for i p+l,...,k + I

We choose Xv I <v,< v so that

0 <t
a,

(8.6)
X X

for j 1,2,... ji

We write
at = a.- X.t

1 1 1

then
at = a - X t 0

,
a! a t > 0 for j = 1,2,

V V V

because of (8.6) and

a! = a.- X.t> 0 holds for j V+I,...,k + I
I 1 0

since for these values of i ,
X 0

Multiplying the first of equations (8.5) by t and subtracting it from.

(8.3) we see that

ko+I
(8.7) 7. a!X. = C

i=1
1. 1

and from the second of equations (8.5) we see that

k +1 k +1
0 0

(8.8) a a!

Of the set of non-negative numbers {a!j we select those a! which
1 3

are positive; since at = 0
,

the number of positive a!-s is < k
V 1 0

since equations (8.7) and (8.8) remain unchanged if we omit those a

which are zero, we have succeeded in selecting from the original k 0+1
vectors n vectors-, n <k

,
such tha a linear combination of these

0 0+1
vectors with positive coefficients a.X. and the sum of the co-

ko+I
efficients in this linear combination a.

.
Thus we have reduced

the case k = k0+ I to the case k =n,< ko, for which Lemma V holds by

the assumption of the induction.
Q.e.d.

From (8.2) and the definition of Riemann integral it follows that

to any given e we can find N such that

(8.9)
N

L

S("L)j <1 2:
-

v=1
N N

Then by the special case m = 3 of LemmaV we can find n <4 points

S(v'L) ,
i = 1,...,n and n positive numbers bi .

i 1,...,n such

N
L S(vL) =

n

that x - 2: b S("'L)
V=1

N N
I

i N,

N
L

n

x L = Z b3.
V=1 i=1
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We let e assume a sequence of values tending to zero; we shall

correspondingly have a sequence of values N n(e) < 4 ,
b I(e) and

1)i(e) such that

n (e) Vi(e) L n (e)
b S( N(e) )I < b1 L

From this sequence of values we select a subsequence such that the

limit
lim n(e) n

lim
i

s 1,2,...,n
N(e)

lim b i(c) b
i

shall exist as e - 0 through this particular subsequence. The exi-

stence of such a subsequence follows from the local compactness of

finite dimensional spaces. Passing to the limit in (8.10) we obtain

n n

2: b3. S(s
1

0 z b. L

i=1
3.

We introduce the abbreviation S(s
i Si 1,2,...,n

From the minimal property of minor arcs of great circles it

follows that

n

(8.12) length of S(s) X IS i Si+1 I(S n+12-S1)
=1

I denotes the length of the minor arcwhere SiS S iSj connecting

S. and S.
3. 3

We shall show that there exist on the arcs S iS i+1
1,2,.....n

two antipodic points (i.e. two points on the opposite ends of a dia-

meter of the unit sphere ) .

The necessary and sufficient condition for two points S and St

to be antipodic is that a relation of the form

(8.13) bS + b'St = 0
,

b >0
,

b'> 0

be satisfied.

We distinguish 3 cases.

(a) n =2
.

In this case it follows from (8.11) and (8.13) that S
I

and S
2

are antipodic.

(b) n = 3

in this case it follows from (8.11) that the points S
I 'S2'S3

lie on a great circle made up of the arcs S IS2' S2S3 ' S3 SI ; conse-
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quently the antipode of S
I

will lie on S-2S' 3

(C) n = 4

In this case we define

b
12

= lb,Sl+ b2S21 , b34 = lb 3S 3+ b4S41

(IXI stands for the distance of X from 0
,

the center of the unit

sphere).

If b
12

` 0 (or b34 - 0), S1 and S
2

(or S3 and S
4

satisfy a

relation of the form (8.13)
,

therefore they are antipodic.

If b12'b 34
> 0 we define

(8.14) S
12 b (b1S1+ b2S2 S

34 b (b3 S3+ b4 S4
12 34

substituting this into (8.11) we obtain

b12S12 + b34 S
34

0

which is a relation of the form (8.13), hence S
12

and S
34

are anti-

I--,

podic. But it follows from (8.14) that S is on S-S S on S S
12 1 2' 34 3 4*

This completes our demonstration that there always exist antipodic
--11

points S and St on the arcs S
I Si+1 1,2,...,n . Then from the

minimal property of minor arcs of great circles it follows that

n
-

271 ISS'l + IS,-Sj S.S

whJ cb by' (8.12) is <,
Qoe.d.

It can be easily verified that the sign of equality holds for and

only for plane convex curves.



CHAPTERIII

The Isoperimetric Inequality and Related Inequalities

Section 1.

,

In this chapter the isoperimetric inequality and related inequa-

lities will be discussed.

The isoperimetric inequality states that the area enclosed by a

simple closed curve C is < the area of the circle with the same

circumference, the two areas being equal if and only if C is a circle.

There are numerous qeometrical proofs of the isoperimetric inequa-

lity varying in elegance and simplicity. Of the analytical proofs, the

first one was given by Hurwitz in 1901. We shall discuss it later. We

shall first consider a strikingly simple demonstration due to E. Schmidt

(1939).

Let C be a simple closed plane curve possessing a continuous

tangent, which is cut by any straight line at most a finite number of

times. Let A denote the area, L the total arc length of C .

We represent C parametrically by Jx(t), y(t)}, t 0: t_< ti

{X(t 0),Y(t0 {x (t 1) Y(ti The formulas

tI
(1.1) A S xy'dt

t
0

(1.2) A

t

f
yxldt

t
0

(y' = dy/dt, xt = dx/dt)

hold for all parametric representations where the variation of the arc

length s ,
measured from {x(t 0),Y(t 0)) ,

as t goes from t
0

to t
1

is equal to L .
This amounts to saying that {x(t),y(t)) goes aroun&

C just once as t goes from t
0

to t
1

*
It is important to note

that it is not required that the representation {x(t),y(t)) be one-to-

one.

We enclose C between two vertical supporting lines touching the

curve in P and Q respectively as shown on the following diagram.

We draw a circle E having the same two vertical supporting lines. Let

the radius of E be Q and the center 0 of  be the origin of our

coordinate system. Let s be the arc length measured counterclockwise

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 47–57, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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from p
,

C = (x(s) y(s)) ; then Q = Ws0) Y(s 0)) for some s
0

We introduce the following parametric representation for

 = (-x (S) , -Y (S) ) :
I

X(S) X(S)
- V-  -x2(s)(1.3) y (S) Q 0 -< s < s

0

2_X2 ss 0< s < L

(This parametric representation amounts to coordinating points of C

to those of  by vertical projection of the arcs PQ, QP of C on

the arcs of respectively; it is easy to see that as s

varies from 0 to L (x(s),y(s)) goes around once. We apply

(1.1) to C (1.2) to E :

L
2

L L

A  xyIds r  -YR'ds I yxIds
0 0 0

Adding these two expressions we obtain

L L -22 2 Jxt 2+y'2ds(1.4) A + Q 7c (xyt-yxl)ds rx 7Y
0 0

where the inequality on the right of (1.4) was obtained by applying

Cauchyts inequality for the integrand. But- xt 2+Y,2= 1 since s is

the arc length on C
,

and x2+Y2 (22 by (1.3). Hence (1.4) gives

2
L

(1.5) A + Q I Qds LQ

0

Applying the inequality between the arithmetic and the geometric mean

of two numbers A and Q2x we obtain from (1.5)

+ Q
2.K2 JQ2

wA = 2 QV-KA -< A < LQ
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and after dividing by Q and squaring both sides we obtain

(1.6) 47rA <, L2

which is the celebrated isoperimetric inequality.

We shall show now that the sign of equality can hold if and only

if C is a circle:

Assume that the sign of equality holds in (1.6); then the arith-

metic and geometric means of A and Q2x must be equal, which is the

case if and only if A = Q2x
; but since the choice of the y direction

is arbitrary, this implies that the width (2Q) of C is a constant

for all directions.

For the sign of equality to hold in (1.4) we have to have (x, )

proportional to (y'-x') with Q as the constant of proportionality,

i.e. x = Qy' , y -Qxt ; squaring the first of these equations we

obtain x
2= Q2y12

and by interchanging the x and y axes and using

the fact that Q is independent of the direction of the coordinate

axes we obtain y
2= Q2xI2

. Adding these equations we obtain

x2+ y
2

= Q2(xt2 + y12) = Q2
P

which means that C is situated on a circle of radius hence it is

identical with the circle.
Q.e.d.

Section 2. Generalization to n dimensions.

The generalization of the isoperimetric inequality to n dimension

is an estimate of the volume A enclosed by a closed surface in terms

of its surface area L
.

Since we expect the sign of equality to hold

for and only for n dimensional spheres, and since for an n dimen-

n n-I
sional sphere of radius r ,

A = Cnr ,
L = nC

n
r (Cn is the volume

of the n-dimensional sphere of unit radius), we conjecture the inequa-

lity

(2.1) C nnAn-I < Ln

We shall prove (2.1) for the special class of bodies whose ortho-

gonal projection on an (n-:1) diinensional plane is an (n-1) dimen-

sional sphere, by methods similar to those used in the previous para-

graph.

Let S be the surface of an n-dimensional body with a continuously

turning tangent plane whose projection on the plane formed by the

x1ox 2"**' xn-I axes is an n-I dimensional sphere; we assume further-

more that any straight line parallel to any of the axes cuts S a
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finite number of times. Denote the direction cosines of the normal at

any point of S by cos tv I
V = 1,2,...,n . Then, under the condi-

tions imposed on S it is easy to show that

(2.2) A = Jx VCos  Vds ,
v = 1,2,...,n

S

where the surface integral is extended over the surface S

We construct an n-dimensional sphere S whose projection on the

hyper plane of the x,,x 2""' Xn-1 axes coincides with that of S
.

The center of  is chosen as origin of the coordinate system. Then

n  x-(2.3) CnQ
S

nCos  nds

where  denotes the volume of  and Q its radius.

We substitute v = 1,2,...,n-1 into (2.2) and add these equations

to (2.3); we obtain:

n

(n-I)A +CnQ
= I(X 1Cos t 1+ X2Cos t

2
+ + xn-1c os t

n-1
+

S

+ XnCos t n)ds

estimating the integral on the right side by Schwarz's inequality we

obtain

n 2 2 2 -2' 2
(2.4) (n-1) A +CnQ X1 + x2 +...+ X

n-1
+ xn). V(cos tl +

+ Cos
2

2
+...+ Cos 2 V )ds VQ2ds = QL

Since the arithmetic mean of n numbers is >_ their geometric mean,,

the left side of (2.4) is > n C AP-1P hence by (2.4)_N n

n

n NCnAn-1p n
< pL

raising both sides to the nth power we obtain (2.1). By a reasoning

similar to the one used in the two-dimensional case we can show that

the sign of equality holds if and only if S is the surface of an n-

dimensional sphere.
Q.e.d.

Section 3.

We shall now consider the older proof of Hurwitz for the isoperi-

metric inequality in two dimensions. Our presentation is the one given

in Hardy-Littlewood-Po'lyals "Inequalities".

Lemma I. (Wirtingerts inequality): If f(t) is a continuous function
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of period 2-K
, possessing a continuous derivative ft(t)(*)

,
and

2 r

1 f(t)dt = 0 ; then

0
2 Tc

ft2
2 -K

2
(3.1) 1 dt  f dt

0 0

the sign of equality holding if and only if f (t) = a cos t + b sin t

The condition jf(t)dt = 0 is not superfluous since otherwise we could

make the right side of (3.1) arbitrarily large without altering the left

side, by adding any constant to f(t)

Hurwitz in his original proof resorts to the theory of Fourier

series; namely f(t) and fl(t) both being continuous the Fourier

series of the latter is the term-by-term derivative of that of f(t)

Co

7rf(t) a'/2 + I (a
n

cos nt +b
n

sin nt)

(3.2)
n=1

7Tft(t) E(nbncos nt- na

n

sin nt)
21T

hold. Since ao f f(t)dt ,
it follows from the hypothesis that

a = 0
0

0

Applying Parseval's formula to the Fourier expansions (3.2) we

obtain
2 CC) 2 2

f dt 2: (a + bn)
n=1

ft2
cu 2 2 2

dt In (a + bn)
n=1

Then
2

-
 f2 dt =

Co 2_ 1)
2 2)Ift dt 2: (n (a + b

n=1

and this expression is always > 0 its value is zero if and only if

an= b 0 for all n >1
,

i.e. f a1 cos t + b
1

sin t
.

This proves

Lemma Q.e.d.

Proof of the isoperimetric inecrualit : Let C be a simple closed curve

with piecewise continuous tangent; we denote its area by A and its

total arc length by L
.

Without loss of generality we can take L = 2w.

We choose our rectangular coordinate system so that the center Of

gravity of the circumference falls on the y axis, i.e.

2 7c

Tox ds = 0

It is enough to assume that fl(t) is square integrable and f(t)

can be represented as the integral of its derivative.
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where the parameter s is the arc length. By (1.1)

(1.1) A jxy1ds

Also, since x1 2+ Y12 1
,

(3.3) 271 =

2w

(x,2+ Y12)dsI
0

We multiply (1.1) by 2 and subtract it from (3.3):

2 (7c-A) =

2w

2+ Y,2_ 2xyt) dsI (x

(3.4)
0

2 x
2 2

2 7c
2

= I (xt' -x )ds + I (x-y') ds
.

0 0

The first term on the right side is >, 0 by Wirtingerts inequality;

the second term is > 0 because it is the integral of a non-negative

quantity; hence

(3.5) 2 (x-A) >, 0 or A < 7c

i.e. the area enclosed by the curve C having the circumference 2w

is < A = the area of the circle having the circumference 2w
.

If the

sign of equality holds in (3..5), it must hold in Lemma I as applied to

f = x(s) ,
which is the case if and only if x(s) - a cos s +b sin s ;

in addition x - yt a 0 must hold, i.e. y = a sin s -b cos s +c ; it

is easy to see that this is a parametric representation of a circle.

This proof of the isoperimetric inequality is not as elementary

as the one given in section I since in the proof of Lemma I it makes

use of the more sophisticated theory of Fourier series. it is therefore

desirable to find an elementary proof of wirtinger's inequality; such a

proof is suggested by the procedure of section 1.
2 7c

If f(t) satisfies the condition of f(t)dt 0 it follows for

1(t) = f(t) + C

2 7c2 2 7r2 2
(3.6) 101 (t)dt = Tof dt + 27iC

If M,> 0 denotes max f (t) , m< 0 denotes min f(t)
6-<t-<2-K 0,<t,<2 7c

For yet another proof see Hardy-Littlewood-P lya "Inequalities".
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the function
M+M

x (t) = f (t) -

-2

will have the property max x(t) = -min x(t) =

M-M
Assume that

a maximum occurs at t = 0
,

a minimum at t = to . 0 <t
0

< 27r

Construct in the x,y plane a circle of radius Q . We introduce

t as a parameter for the circle by the equation

x (t)

y(t) 4Q2_x2 (t) ,
0 <_ t < t

0

y (t) Q2_x2 (t) I to <t <2w

It can be easily verified that as t goes from 0 to 2w the point

(t) ,  (t) ) goes around the circle once.

If we assume for sake of simplicity that x(t) takes up the same

value in its range for a finite number of different values of t

then it is easy to show that the area of the circle is given by the

well known formula

2 7r
2

1 i-(3.7) Q X x1dt

0

We estimate the right side of (3.7) by Schwarz's inequality: we intro-

duce the abbreviation
27c

x

2
dt = A

2w xj2 dt = B

L 10

 f(Q2 2 22
X dt 2dt _x ) dt I Xt dt = F(2 KQ2-A) B

Multiplying both sides by \/A we obtain

2
i

,
-A) B(3.8) X A <  A (2 xQ2

and since the product A(27cQ
2
-A) , being maximum for A = xQ

2

,
is

2 4 2
always _< x Q , (3.8) yields after division by Q 7c

2w
2

2w
2

(3.9) j/A_<jFB
,

i.e. A,<B or I x dt _< I (XI) dt

0 0

Q.e.d.

Discussion of the sign of equality: If the sign of equality holds

in (3.9), then it must hold in Schwartz's inequality-as applied to

(3.7), i.e.

(3.10) y = kRxl kx1

Also
2w

2
2 x

2 2 2 2

y dt (Q -x ) dt = 2xQ A = -KQ

2_
0

-K

2 Q4
0

since A(2xQ A) = must hold if in (3.9) the sign of equality
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holds. By (3.10)

1 y2dt = xQ
2

= k21X,2 dt k2B = k2,KQ2

2
hence k

Squaring (3.10) and substituting y
2

= Q2-x2 we obtain for x

the differential equation

x,2 = Q2-x2
,

i.e. x = a cos t + b sin t

as a necessary (and sufficient) condition for the sign of equality to

hold.

Substituting (3.9) into (3.6) we obtain

2

71f2dt <

2 7r

f,2 dt -(M+M)227cS 1
2

0 0

which is a slightly sharper inequality than (3.1).

Section 4.

This method of proof of Wirtinger's inequality can be applied to

the following more general type of inequality: Let f(t) be a function

defined for 0,< t <I having a continuous derivative in this interval

which satisfies the condition

max f (t) = f (0) = -min f (t) = -f (t 0) = Q -

Let a,b be two numbers satisfying the conditions a >0
,

b> I

define P by the equation I/b + I/p = 1
.

Then

1 1

(4.1) (1 Ifa d9 1/a
Cab (I

b
dt

'1/b

0 0

where

I/a( )1/p
ab 4B(1/0+1,1/a) p+a p+a

fB(p,g) is the Beta function.) The sign of equality holds for the

function f(t) which satisfies the differential equation

(4.2)
Pa-bab

- (7
a b

Ift(t),
b

= Q
a

_ If(t),a
(4B (I/ p+1

, I/ a) )b

Proof: For the curve def'ined by

(4.3) IxIa + IyIp =

a

we introduce the parametric representation
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x f (t)

y Q If (t)
a

for 0_< t,< tN  Q I f M 
0

_Ca a

Q _ 11 f (t) 1 for t _< t _< IQ

The curve (4.3) encloses an area = UQ
I+a/p

where u 4/aB(I/p+I,I/a)

By formula (1.2) for the area enclosed by a curve:

(4.4) UQ
Ita/p

I

yxtdt
0

we estimate the right hand side of (4.4) by H81der's inequality; intro-

ducing the abbreviation,

I I

I I f (t)ad t) 1/a
= A I Ift(ol b) 1/b

= B

0 0

I+a/p lx,b 1/b a a I/p.
(4.5) UQ (I y dt)'/O d t) (Q -A B

0 0

Wemultiply both sides of (4.5) by A and replace the factor

(A P(,a -Aa))I/P by its maximum value = Q
I+a/p (p/p+a)l' /a (a/p+a)l/p

assumed for A = Q(P/P+a)
1/a

:

AuQ
I+a/p

< Q
I+a/0

(p/p+a)
1/a (a/a+p)'/PB

--z

1+a/P
Dividing by uQ we obtain (4.1). The sign of equality holds

if and only if:

(a) In HZ51derts inequality as applied to (4.4) the sign of equa-

lity holds;

1/a
(b) A = Q(P/P+a)

From (a) it follows that

(4.6) lylp kjx1j
b

for some constant k by integrating (4.6) and using condition (b) we

find that k has the value Q
a-b

(a/a+o) b/ub ; substituting this value

of k into (4.6) we obtain the differential equation (4.2). The demon-

stration that (4.2) has a continuous solution for 0,<t <1 whose maxi-

mumand minimum are respectively +Q and -Q will be omitted.
(*)

(*) Compare E. Schmidt IlUeber die Ungleichung welche die Integrale
über eine Potenz einer Funktion und über eine andere Potenz ihrer

Ableitung verbindet", Math. Ann. 117, 301-326, (1940).
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Section 5.

in this paragraph we shall complete the proof of the three-dimen-

sional isoperimetric inequality by constructing to an arbitrary body of

surface area L and volume A a rotational body of the same surface

area and greater volume, or, what is equivalent, a rotational body of

the same volume and lesser surface area.
N

We assume that all surfaces considered in this paragraph have con-

tinuous derivatives.

Lemma II:

T
2 IT t)2(5. JL) I FI+D2(t)dt >, JT +( Dd

0
0

holds for all piecewise continuous functions D(t) ,
the sign of equa-

lity holding if and only if D(t) is a constant.

Proof: If x(t), y(t), 0,< t,< T are two arbitrary functions with piece-

wise continuous derivatives xt M= f (t) , yt (t) = g (t) ,
the arc

[ (x(t) y(t) ] connecting the points [x(O),y(O)l and (x (T) , y (T) ) is

rectifiable and its length f =

T - T

F1 2 +g-2x Y,2 dt =  4-f2 "dt

The length of the chord connecting the same two points

)2+ )2 = t)2+
T

t)2=  (x (T) -x (0) (y (T) - y (0) Y( f f (t) d (S g (t) d
V

0 0

hence the inequality

T

IF
T T

f, t)2+ t)2(5.2) f'Wdt > fd I g d

0 0 0

holds for all piecewise continuous functions f and g ; by putting

f(t) = I
, g(t) = D(t) we obtain (5.1) as a special case of (5.2). If

we are given any three-dimensional body we consider its intersection

with the planes z = const. The arc length a of the boundary of this

intersection and z are now taken as parameters for the surface of the

body.
(**)

If D(z,a) denotes the Jacobian
()(x'v)

the surface ele-
a(z,a)

ment is
dL =  1 +D

2
dzda

.

The following proof is due to H.A. Schwarz (1884).

we assume that the only horizontal tangent planes are the two

supporting planes; otherwise difficulties arise as z and a

are introduced as parameters.
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Denote the area of the intersection of the plane parallel to the (X,Y)

plane at height z with the body by Q(z) ; since
a(x'y)

dzda is the
O(Z,C,)

infinitesimal area of the projection of the surface element dL on

the x,y plane,
dQ E(Z)Dda where f(z) is the circumference of

Q(z) -

dz
0

In the formula

L dz

e(z)
Vr,,+D2d.

0

we estimate the integral with respect to da by Lemma II:

1

(5.3) L >, P(z) +

f (z)

Dda)2dz =1  g2 (z) +(dQ)2dzY
.

(Jo dz

In (5.3) the sign of equality holds if D does not depend upon a

this will certainly be the case for rotational surfaces.

Given an arbitrary body F of surface area L and volume A

and cross sectional area Q(z) for any z
,

we construct another

body F1 whose horizontal cross section at height z is a circle of

area Q(z) having its center on the z-axis. Let A' and L' denote

the volume and surface area of Ft
. By cavalierits principle At = A

Since Ft is a rotational body, in (5.3) as applied to Ft the sign

of equality holds:

(z
_22'

z)) 2+ (4) 2,(5.31) L
dz

dz

where (z) denotes the circumference of the circle of area Q(z)

(i.e. F1(z) = f4-KQ(z))
.

The isoperimetric inequality for two dimen-

sions asserts that

(5.4) F
I (z) _' F (z) -

Combining (5.3) , (5.31) and (5.4) we obtain L > Lt
,

with the sign of equality holding if and only if F has rotational

symmetry about an axis parallel to the z axis. Q.e.d.
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The Elementary Concept of Area and Volume

Section 1.

In elementary geometry area (volume) is defined in the following

manner:

(i) A rectangle (right rectangular prism) with sidelengths

1j, (1,1j) units is called a normal rectangle with an area (volume)

of f square (cubic) units.

(ii) The area (volume) of any polygon (polyhedra) P which can be

decomposed into a finite number of parts so that these parts can be re-

arranged to form a normal rectangle (rectangular prism) R is equal to

the area (volume) of R

This definition, in order that it be useful, must be:

(a) consistent

(b) applicable to a sufficiently wide class of (preferably all)

polygons (polyhedra) P
.

The consistency of (i) and (ii) means that if a polygon can be de-

composed and rearranged into two normal rectangles R and Rt then

M
R R'

.
This consistency could be demonstrated, for example, by

means of Jordan measure theory.

In this chapter we shall investigate point sets to which this de-

finition is applicable. We shall start our investigations by scrutini-

zing the derivations of the formulas for the area of a triangle and the

volume of a tetrahedron.

Given a triangle (abc), denote by h the length of the altitude

to side ab
, by f the length of side ab

,
and by A the area of the

triangle. Then

(1.1) A hF
2

Proof: Decompose and rearrange the triangle as shown on the accompanying

diagram, to form a rectangle (a b blat) of sidelengths and h/2

G

Q
1

/1 \2. \" 61

CL

For a systematic treatment see: D. Hilbert, "Grundlagen der Geome-

trie", Chapter IV.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 58–75, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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If we assume - and this assumption will be proved in section 2, Lemma

II - that the area of any rectangle is the product of the lengths of

its sides, then this rearrangement proves (1.1).

Given a tetrahedron (1 2 3 It), denote by h the length of the

altitude to the face (1 2 3) whose area we denote by A ; V denotes

the volume of (1 2 3 It)

(1.2) V = 1/3 hA

Proof: Construct the triangular prism (1 2 3 112131) assume - and

this assumption will be proved in section 6, Theorem V that the vo-

lume of the prism is = base area times altitude = hA

The prism is the sum of three tetrahedra: (1 2 3 It), (It2 3 2t)

and (1t2t3t3) ; any two of these tetrahedra have congruent faces

31

with equal altitudes to these faces. (E.g. (1 2 3 It) and (112 3 21)

have the congruent faces (1 112) and (11212) with the opposite ver-

tex 3 in common.)

If we assume that

(iii) Two tetrahedra with the same base and equal altitudes have

the same volume.

Then it follows that the three tetrahedra (1 2 3 11), (112 3 21) and

(1121313) have the same volume = one third of the volume of the prism

1/3 h A
. Q.e.d.

in this proof in addition to (i) and (ii) we had to use postulate

(iii); therefore in view of our present definition of volume this proof

is invalid unless (iii) can be derived from (i) and (ii). Whether this

is possible or not was for a long time one of the outstanding unsolved

problems of geometry, proposed by Gauss and solved for the first time

by M. Dehn
(*)

in the negative.

(*) M. Dehn, Math. Ann., 55, 465-478 (1902).

2,
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Section 2. Definition:

Two polygons (polyhedra), A and B
, are equivalent if there

exist polygons (polyhedra) AipB,) i = :1,2,...,n such that

n

A Z A.

(2.1)
i=11

n

B X B.

i=1
1

(2.2) AiQZBi p
i = 1,2,...,n

and AijAj 9
and BipBj j

have no interior point in common for

i,j = 1,2,...,n i y6 j . Equivalence will be denoted by A -B
.

Remark: The elementary definition of area (volume) is applicable to a

point set P if and only if P -R
,

where R is a normal rectangle

(rectangular prism). In all subsequent paragraphs, unless otherwise

specified, the words area and volume will be used in the Jordan sense

and the elementary notion of area and volume will be replaced by the

idea of equivalence.

Lemma I: Equivalence is transitive, i.e. A-B and B -C imply A -C.

Proof: By hypothesis A- B and B -C . Therefore there exist Ai.,Bip
i = 1,2,...,m and B!,Cj p j = 1,2,...,n such that no two A,,B. or

I I

B!,C have an interior point in common and

m m

A I A B X B

i=1 i=1

n n

B X B! C X C.

j j=1

A, Bi 1,2,...,m

B! Cj j 1,2,...,n
3

We define S.. as the common part of B. and B! 1,2,...,m
1] 1 3

1,2,...,n Since B and B! are themselves polygons (polyhedra),
i 3

so are the S
13

.
All common points of S3.] and S

k 
are common

points of Bi y
B B!

,
B since the first two and the last two

k
'

3

polygons (polyhedra) have inner points in common only if i = k

j = g ,
it follows that S and S

kf
have no interior points in

common unless i = k
, j =

From the definition of S
1]

it follows that
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n

B X S
ij

(2.3)
j=1
M

B! S j 1,2,...,n
ij

C. B!
,

we can carry the subdivision (2.3)Then, since A. B. and
3 3

of B. over to A. and similarly that of B! over to Cj .
i.e.

there exist Rij and T 1,2,...,m j 1,2,...,n such that

(2.4) R.. T.. S..
13 1] 13

n

(2.5) A
i

2: Rij 1,2,...,m

3=1

m

(2.6) C. I T.. j 1,2,...,n
J i=1 13

Summing (2.5) and (2.6) over all i and j respectively we find

m m n

A 2: A 'Z R.

i=1 J=1
13

(2.7)
n n m

C z:1C 1 1: Tij
j= j=1 i=1

(2.7) provides a subdivision of A and C into a finite number of

polygons (polyhedra) which are pairwise congruent and such that no two

of the R.. or T.. have an interior point in common (this follows
13 13

from the similar property of the S
ij

). Hence A -C Q.e.d.

It follows from the transitivity of equivalence that we can put

all equivalent polygons (polyhedra) into one class and thus divide all

polygons (polyhedra) into equivalence classes.

Theorem I: All polygons with the same area belong to the same equiva-

lence class.

Corollary: (i) and (ii) define an area in the elementary sense for

every polygon.

Lemma II: Every polygon is equivalent to a normal rectangle.

Proof of Lemma II: Every polygon is the sum of a finite number of tri-

angles. Since normal rectangles can be joined to form one normal rec-

tangle, it is sufficient to prove Lemma II for triangles. This will be

done in four steps:

a) Every triangle of altitude a and base b is equivalent to
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a parallelogram with altitude a/2 and base b

This has already been demonstrated by the construction given in

the proof for formula (1.1).

b) Two parallelograms which have one side and the altitude on

this side in common are equivalent.

Let (1 2 3 4) and (1 2 310) be the two parallelograms. Since

the altitudes on (1 2) are the same in both parallelograms, the

points 3,4,31 and 41 lie on a straight line. We distinguish two

cases:

(A) 31 lies in the closed interval (3,4) . Then

(1 2 3 4) = (1 3 31) + (1 V4 2) , (1 2 3t4t) = (2 4 V) + (I V4 2)

and since (1 3 31) (2 4 V) , we have (1 2 3 4) -(1 2 3t4t)

Li 1,
1

2,

(B) 31 lies outside of (3,4). We construct a finite sequence of

(2) (n)
points 3(:'), 3 ...'3 on the line through 3 and V such that

3(i+1) 3(') = 3t4t: 3(1) coincides with 3 t
,

and 3(n) lies in the

closed interval (3,4). The existence of such a sequence is guaranteed

by the axiom of Archimedes.

4 31 Li'

By (A) (1 2 3(')3 (12 3(i- 1)
3 (')) for i =2,3, . ..

n-I and

also (1 2 3(n-1)3(n) ) - (1 2 310) ,
and (1 2 3(1)3 (2)) _(1 2 3 4)

Since equivalence is transitive, we have

(1 2 3 4) - (1 2 3t4t)

c) Two triangles with the same base and altitude are by a) both

equivalent to two parallelograms with one side and an altitude in

common. These parallelograms are, by b) equivalent, hence the transiti-
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vity of equivalence shows that the original triangles were also equi-

valent.

d) Given a riqht triangle (1 2 3) we select on the halfray {1,31

the point 31 whose distance from 1 is two units. We suppose

{1,3} >, {1,31} although the case {1,311 >_ {1,3} can be demonstrated

in exactly the same manner. Then we select the point 21 so that the

line through 3 and 21 is parallel to the line through 31 and 2

a

3'

(2.8) (1 2 13 1) (1 2 31) + (2 2 13 t)

and

(2.9) (1 2 3) (1 2 3 + (2 3 3

(2 21 31 ) and (2 3 31 ) are triangles with the same base (2 3') and

equal altitudes on this base; hence by c) they are equivalent and by

(2.8) and (2.9)

(2.10) (1 2 3) - (I 2t3t)

But to any given triangle we can construct a right triangle

(1 2 3) with the same base and altitude which, by c) will be equiva-

lent to the original triangle. This, together with (2.10), shows that

every triangle is equivalent to a right triangle one of whose legs-is

two units long. Combining this statement with a) we have completed our

proof of Lemma II for triangles, and consequently for all polygons.

If P and P1 are two polygons, then by Lemma II there exist two

normal rectangles R and R' so that P -R
,

Pl- R' If P and Pt

have equal areas, so do R and Rt
, consequently R Rt

.
Transiti-

vity of equivalence shows then that P -PI
.

This completes the proof

of Theorem I.

Section 3.

In the previous paragraph we have shown that if two polygons have

the same area then both of them can be built up from the same finite

4 z zo



64

collection of polygons. It is of some interest to find out (at least in

some special cases) what is the least number of polygons that are needed.

Example: Pythaqorean Theorem: If a,b ,
and c are the two legs and

the hypotenuse of a right triangle respectively, then the area of the

square with side-length c = the sum of the areas of the squares with

sidelength a and b
.

The accompanying diagram shows how a 2+ b2 and

*2 can be built up from the same five polygons. It can be shown that

* subdivision into at least five parts is necessary for a demonstration

of the Pythagorean theorem.

Section 4.

Before discussing the problem of equivalence of polyhedra we

shall discuss the much simpler problem of equivalence with respect to

reqular subdivision.

Two polyhedra A and B are equivalent with respect to regular

subdivision (denoted by A;z:B ) if

n n

A = I Ai p
B =

.1 B AI QZBi 1,2,...,n ,
where A

I
and B

1i=1 1=1

are polyhedra such that any two A
1

or B
I

either have no point in

common or just one vertex, edge or face in common. (Compare this defi-

nition with the notion of subdivision in Chapter I.)

We have shown in Chapter I that two regular polyhedral subdivisions

of a polyhedron always have a common regular polyhedral subdivision.

From this it follows that AI*B and B -C imply A;uC
, consequently

b
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we can define equivalence classes with respect to regular subdivision.

Lemma II. A necessary condition for A ZB. Let A and B be two poly-

hedra and let ai p
i = 1,2,...,r and pj , j = 1,2,...,s ,

denote

their dihedral angles. If A-B
,

then there exist positive integers

mi,nj 1,2,...,r j = 1,2,...,s and an integer k such that

r s

(4.1) E m CL n + kn

i=1 j=1

Proof: Assume that AZB .
Then there exist AipBi-f Ai'Z

 
B such

M M

that A X A., B = X B. is a regular subdivision of A and B

Denote the dihedral angles of the A, ,
i = 1,2,...,M , by (Pk

k = 1,2,...,N .

N

We shall evaluate the sum 1 9 by grouping together all dihe-

dral angels yk
that lie around

i=1
a single edge of the sum 2:A

1
.

The sum of those
(pk

that lie around an interior edge of the sum ZA

is 2N
,

while the sum of those which lie about a boundary edge

is equal to the dihedral angle of that edge of A on which this boun-

dary edge lies. Thus

N r

(4.2) 1:
(Pk

X miCLi
+ 2k

1-K
k=1 i=1

where m
I

is the number of intervals into which the edge with the

M

dihedral angle a

i
is divided by the subdivision A A and k

the number of interior edges in this subdivision.

Since A B i = 1,2,...,M ,
the

yk
can be regarded as di-

hedral angles of the polyhedra B
I

- Then by a reasoning identical to

the one by which (4.2) was derived we derive

N s

(4.3) X (Pk- *= 2: nipj
+ 2k

27c
k=1 i=1

Therefore equating (4.2) and (4.3),and setting k = 2k
2- 2k,

r s

Im1aI = 2:
ni Pi + k 7c

.

i=1 j=1 Q.e.d.
.

Theorem Il:(*) There exist polyhedra with the same volume which are

not equivalent with respect to regular subdivision.

(*) This theorem and proof are due to Bricard.
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Proof: Let X denote the regular tetrahedron with unit volume and Y

the unit cube. We shall prove Theorem II by showing that X A Y
.

Let (x, t
i = 1,2,...,6 ,  j p j = 1,2,...,12 ,

denote the dihe-

dral angles of X and Y respectively. By an elementary calculation

we have

(Xi
= Y = Cos

-1
1/3 ,

i = 1,2,...,6 j,

= -K12 j = 1,2,...,12

If XZ Y were true then by Lemma II

6 6 12

(4.4) E M. (X. =
Y X m. = 1: n P + k7c = ir/2 2: n. + kg

i=1
1 1

1
1 i i

j =1 3

would hold for some positive integers mi, n

i
and some integer k

We shall show that y and -K are incommensurable, hence a relation

of the form (4.4) cannot hold, consequently X;z:Y cannot hold either.

Define

eiY = cos y + i sin y = 1/3 +
i )F83

is the root of the following quadratic equation

(4.5) 3 2_
2 + 3 = 0

.

We shall first show that for all positive integer exponents m

M-1 m
(4.6) 3 at + b

where a,b are integers depending on m satisfying 'the follOWing con-

dition:

(4.7) a X 0 (mod 3)

We prove this by induction.

(4.6) holds for m = 2 by virtue of (4.5). If we assume that

(4.6) holds for m
,

then multiplying it by 3 and substituting for

3t2 = 2t - 3 we obtain

M m+1 2
3 t = 3at + 3bt = a (2t-3) + 3bt = (2a +3b) t - 3a

Since a satisfies (4.7), the new coefficient 2a + 3b will

evidently also satisfy (4.7) since 2a + 3b X 0 (mod 3) .

Suppose now to the contrary that y is a rational multiple of

w ; then t would be a root of unity, i.e. for some positive integer

N

tN = 1

(4.6) yields for m = N
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N-1 N N- 1
3 t at + b = 3

Equating the coefficients of the imaginary parts on both sides a = 0

follows, contrary to (4.7). Hence the assumption that y is a rational

multiple of w leads to a contradiction. This shows that the unit cube

and unit regular tetrahedron are not equivalent with respect to regular

subdivision.
Q.e.d.

Section 5.

In this paragraph we shall prove

Theorem III: There exist two polyhedra with the same volume which are

not equivalent.

It follows from Theorem III - and this is the main problem to be

discussed in this chapter - that it is not possible to develop an ele-

mentary theory of volume in three dimensions.

We shall prove Theorem III by a lemma analogous to Lemma II:

Lemma III: Let A and B be two polyhedra and let
ai 9

i 1,2,...,r,

and Pi P j = 1,2,...,s ,
denote their dihedral angles.

If A -B then there exist positive integers mi , nj
i = 1,2p ... r j = 1,2,...,s ,

and an integer k such.that

r s

(5.1) 1 Z n-P. + kw

=:L j =j.
3 3

Equation (5.1) is of the same form as (4.1); since in section 4

we have demonstrated that the dihedral angles of the polyhedra X and

Y defined there cannot satisfy an equation of this form, it follows

from Lemma III that not only XZY does not hold, but X -Y does not

hold either, which proves Theorem III.

The crux of the matter then is to prove Lemma III. This cannot be

done in the simple and straightforward manner in which Lemma II was

proved because there the regularity of the subdivisions was essentially

used.

Preparatory remarks: We could attempt to show that A ~B implies AZB

and thus reduce Lemma III to Lemma II by obtaining from the irregular

subdivisions A Ai ,
B = zB

i regular ones. This can be attempted

by introducing on A
I

as new edges and vertices all incidences of

edges and vertices of the other A with A
I

in the sum I:Ai ; let

us denote the polyhedron thus obtained from A. by A! ; then we have

to introduce corresponding new edges and vertices on B. obtaining B!.
3. 3.
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Since the subdivision B = IB? is in general not a regular one, we

have to introduce all incidences of edges and vertices of B! with B!

as new edges and vertices on B!
, obtaining the new polyhedra B.'

This subdivision has to be transferred to the A!-s
,

and so on. only

if this process terminates in a finite number of steps will be obtain

a common regular subdivision of A and B . In the following (for sake

of simplicity two-dimensional) example the process terminates after the

second step:

XA X2 )(2. %4'
A

B

B

AI

At BI

A" B"

We will give a proof of Lemma III which works with a common subdivision

only on the edges of the polyhedra A
I

and B
1.

Proof of Lemma III:
N

Assume that A -B
.

Then there exist polyhedra

c, n
,

such that

n n

A X Ai p
B = X Bi y

A
i

B
3.

=
C

i
i=1 i=1

This proof is due to Kagan, Math. Ann., Bd. 57.
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n

In the sum I A. we consider all incidences of vertices of A.

i=1
3. 3

with edges of A i, j = 1,2,...,n ,
and denote the corresponding

points on the congruent polyhedra C
i

by a

3
We define the points

b. in a similar manner. These points a b divide the edges of

C. into intervals which will be denoted by e The points a. also

I ak
*

a
3

divide the edges of C
I

into intervals e k,and,each ek is the sum

of a finite number of e
k

*
We define the intervals e

k
in a similar

manner. We assign to each e
k

a positive integer Pk ; having done

Q 01

A a.. e3

4

4 e, Qi e bi a, Al e. 1 2.

e6
ej 2.

this we can assign to each ea e + e + + e the positive

a
i rI r2 rm b=

integer pj Pr + Pr2+
+

rM
and similarly to each ei es +

1 b
+

I

+ es2+ ...
+

eSn positive integer pj
= P, 1Ps 2+ ...

+

psn.

Lemma IV: It is possible to assign a positive integer p
k

to each e
k

so that whenever e
a

and e
a

coincide in the sum I A

k, k2 i

(5.2)
a

=

a

PkI Pk2

holds, and similarly whenever e

b
and e

b
coincide in the sum XB

kI k2 1

(5.3)
b

=

b

PkI Pk2
holds.

Proof: We shall prove Lemma IV by making use of the following algebraic

lemma:

Lemma V: If a system of homogeneous equations

n

(5.4) 1 C..X. = 0 1,2,...,m

with integer coefficients C
13

has a solution X = (x:L,x 2'***'xn) for

which x > 0 holds for i = 1,2,...,n ,
then there exists another

solution Q = (q1'q2"'* 'q n) such that qi is a positive integer,

i = 1,2,...,n .

Proof of LemmaV:.According to the established theory of systems of

linear equations all solutions of (5.4) can be written as the linear

combination of a finite number of rational vectors Xh ,
h - 1,...,H,

H-< n . Consequently the solution X = (x,.Px 2'***'xn) can be written
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in the form

consider

X = (xIIx 2
) ... Pxn X

I
+
-

+ 7HXH

+ X(x:lt'x2t'**"xnl) ='I 2A H

where the 1 are rational numbers. Since we assumed x.> 0 for

i = 1,2,...,n we can choose h = 1,2,...,H so small that

x!> 0 for i = 1,2,...,n . Since the vectors Xh are rational vectors
1

and were chosen to be rational, the numbers x! will also be ra-

tional. Since a constant multiple of a set of solutions of homogeneous

equations is also a solution, we can multiply the x! by their least
1

common denominator and obtain a set of positive integer solutions.

Q.e.d.

We observe that equations (5.2) and (5.3) are linear and homoge-

neous with integer coefficients in the p
k

; if we write x
k

for p
k

in these equations we can immediately verify that x
k

= length of e
k

is a solution of them. Since these x
k

are > 0
,

it follows from

Lemma V that (5.2) and (5.3) possess positive integer solutions. This

completes the proof of Lemma IV if we choose these values as our p
k

a b a b
To each e

k' ek ,
and e

k
we assign an angle yk'Yk ,

and (Pk
= the

dihedral angle of that edge of C on which e ea, or eb lies.
1 k' k k

it follows from the definition that if ek
I

and e

k2
are parts of

ek3 ,
then

a

"PkI  Pk2
=

(Pk3

b
and similarly if

ep:,
and e

F2
are parts of e

C3
,

then

b
T (P

=

OE3?I F2

Consider the sum

(5.5) 1: P
kN

where the summation is extended over all k
.

We divide the set of

intervals e
k

into subsets by grouping together all e
k

that are part

a
of the same e

e .
We group together all terms Pkyk in the sum (5.5)

that are associated with intervals e
k

belonging to the same subset.

This rearrangement shows that (5.5) can be written in the form

(5.6)
a a

kPk

We shall evaluate (5.6) by grouping together all term
a a

s
(Pk iPk i
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which are associated with intervals e
a

that are coincident in the

sum 1A The positive integers p
a

ki
are, by Lemma III, equal for

i
'

k,
a a

all these intervals, therefore the sum I

Ni Pki
around each edge is

equal to:

(a) 7cpa if the intervals e
a

lie on a face of one of the A.-
k. k.

1 1

(b) 2APa if e

a
lie on an interior edge in the sum xA.

k k 1
1

whi ch does not lie on a face.

(c) pa a.

k
if e

a
lie on

k
an edge of A the dihedral angle of.

.

I
.

which i s (X.

I

Therefore we see that the sum (5.6) is equal to

(5.7) 2: m3. CL1+ k 17r
i

the summation extending over all dihedral angles of A
,

where m
i

de-

note positive integers and k
I

an integer.

Repeating this reasoning with the polyhedron B instead of A we

get for the value of the sum (5.5)

(5.8) 2: nPi + k271 ,

the summation extending over all dihedral angles of B
,

where n

j
de-

note positive integers, k
2

an integer. (5.1) follows from equating

(5.7) and (5.8) and setting k = k
2- kI *

Q.e.d.

Corollary to Theorem III: We divide the set of all polyhedra of volume

one into equivalence classes; the number of classes is at least 2.

Dehn and recently Sydler
(*)

obtained a sharper result:

Theorem IV: The power of the class of equivalent polyhedra of unit

volume is that of the continuum.

No proof of this theorem will be given here.

Section 6.

In the last paragraph we have shown that not all polyhedra of the

same volume are equivalent; this brings up the following important and

interesting problem: Characterize all polyhedra that belong to the

same equivalence class.

Sydler, J.P.: Sur la d6composition des polybdres. Comment. Math.

Helv. 16, 266-273 (1944).
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This is a difficult problem and it has not been completely solved

yet. Partial results in the form of necessary conditions for equiva-

lence which are stronger than Lemma III have been obtained by Dehn.

we shall prove

Theorem V: All prisms of the same volume belong to the same equivalence

class.

Proof: We divide the.base of the prism P into polygons so that the

diameter (i.e. the maximum distance of any two points) of each polygon

is <
h

cos a
,

where h is the altitude, a the angle enclosed by the
2

altitude and the generator.

We divide P into prisms P
1

having as base the polygons into

which the base of P was divided, and the same altitude and generator

as P
.

We take any point of P
I

at the altitude h/2 and construct

a plane passing through this point and normal to the generator of P
i

This plane divides the prism into two parts P
I

and P
2

i i
h

Since the diameter of the base of P
1

was assumed to be < 7 COS(X,

this plane will not intersect the base B or the top B2 of P

1 2 1
1

Therefore we put P and P together so that B and B? coincide
1 i I I

and obtain a right prism P! with altitude ht= h/cosa. It follows
1

from the construction that P.- P!
. By Theorem I the base B! of P!

1 1 1 1

is equivalent to a normal rectangle. Therefore, since P! is a right
I

prism, P! - and consequently P is equivalent to a right rectangular
3.

; B?
I

B!
I

 
B 

1

prism P.' two sides of which have the length I and h' units. Putting
I

these prisms Pt' together so that their I by h' face coincides we
3.

obtain a prism P"
,

two sides of which have the length I and ht

such that P- P"
. Using Theorem I once more we find a normal rectangu-

lar prism P... such that P- P"'. Since the length of the third side

of P"' is determined by the volume of P
,

we see that all prisms P
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having the same volume are equivalent to the same prism P"', hence

by the transitivity O'f equivalence they belong to the same equivalence

class.
Q.e.d.

.

A qeneraliKed notion of equivalence: Two polyhedra A and, B are

equivalent with respect to decomposition and completion, denoted by

AG)B
,

if there exist two polyhedra C and C'
,

such that C and A,

C' and B have no interior point in common and

C-C'
,

A+C-B+Ct

Obviously A-B implies AQ B

Sydler
(*)

has shown that A<DB implies A -B
,

i.e. the notion

of equivalence with respect to decomposition and completion is not more

general than equivalence with respect to decomposition alone. The only

advantage of the former is that A- B can be demonstrated, if true,

without the use of the axiom of Archimedes.

Two polyhedra A: and B are equivalent and equally oriented if

n n

A = X Ai B.= Z Bi
i=1 i=1

AI and Aj p
B

i
and Bj j

i j , having no interior point in common,

and A
i

is congruent and equally oriented to B
I

for i = 1,2,...,n

Gerling has shown that two tetrahedra that are mirror images of

each other can always be decomposed into a finite number of polyhedra

that are pairwise congruent and equally oriented. Hence A -B always

implies that A and B are equivalent and equally oriented.

For a full discussion of equivalence and related topics we refer

the reader to Sydler's paper.

Sydler, J.P.: Sur la d6composition des polybdres. Comment. Math.

Helv.
, 16, 266-273 (1944)



74

PROBLEMS

Chapter I

(1) The polar GI of a corner G is defined as the corner whose

edges are the Positive normals to the faces of G .
Derive Euler's

relation for a convex polyhedron P by constructing the polars

of the corners at all vertices of P and using the formulas for

the area of plane and spherical polygons. (Hint: Find connection

between face angles of G and dihedral angles of GQ

(2) Generalize this proof for polyhedra of genus p .

(3) Generalize this proof to n-dimensional convex polyhedra.

(4) Construct on a special surface of genus p vector fields which

have

(a) two singularities of index +1
,

and 2p singularities of

index -1
. (Hint: Consider the field as the gradient of a

function with one maximum, one minimum and 2p saddlepoints)

(b) two singularities, each with index 1-p

(c) one singularity, with index 2-2p .

(d) k singularities with prescribed indices il' j2'***jk
where jI+ j2+**'+ ik = 2-2p

(5) consider the product

(1-fr1(x) ) (1- f r2W)... (1-fr W)

where the f
r

(X) are the functions defined in section 14. Expand

the product, integrate over the n-dimensional unit sphere and sum

over all combinations of s functions f i(x) . Express this re-

sult as a linear homogeneous relation between a
r

'
r = 0,1,...,n ,

where a
r

is the sum of the angles on all r dimensional faces

of the simplex.

How many of these n+2 relations are linearly independent?

Chapter II

(1) Formulate and prove a theorem analogous to the four vertex theo-

rems for polygons.

(2) Show by means of an explicit example that the four vertex theorem

does not hold for self-intersecting curves. Consider the proof of

the four vertex theorem given in Bieberbach's "Differentialgeo-
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metrie" and show why it doesn't apply to self-intersecting curves.

Chapter IV

(1) (a) Show tetrahedron 12311 is not equivalent to a cube.

(b) Show tetrahedron 12331 is equivalent to a cube, and demon-

strate this by decomposing the tetrahedron into no more than

five parts.
31

NV

3

2

(2) A theorem of Euclid states that in the areas of rectangles

I, It, and II, III are equal. By theorem I we have

I -it
f

II -III
.

Demonstrate this directly by decomposing these regions into

pairwise congruent polygons. What is the least number of

parts, I and II respectively have to be decomposed into to

demonstrate equivalence? (Express it in terms of the angles

OL, P) -

(3) Prove that two tetrahedra which are mirror images of each

other are equivalent and equally oriented.
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INTRODUCTION 

This series of lectures will deal exclusively with the global geo­

metry of ~-dimensional surfaces. The intrinsic Riemannian geometry of 

surfaces will be considered only to a small extent, while the major 

concern will be with surfaces, especially closed ones, in~ dimen­

sional Euclidean space. 

The first chapter will be a review of classical differential geo­

metry in the small, and the second will be devoted to some general re­

marks on closed, differentiable surfaces, not necessarily in E3 • 

These will be followed by a short chapter on the Riemannian geometry of 

closed surfaces in which will be considered the relation between the 

Gauss curvature of a surface, the singularities of fields of directions 

on the surface and the topological structure of the surface. The re­

mainder of the lectures will deal with surfaces in E
3 

. 

The material covered in the first chapter can be found in greater 

detail in the following texts: 

Struik, D.J., Classical Differential Geometry 

Darboux, G., Le~ons sur la theorie generale des surfaces 

Blaschke, W., Vorlesungen liber Differentialgeometrie, Vol. I. 

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 81, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989



CHAPTERI

Differential Geometry of Surfaces in the Small (summary sketch]

0. Notation

The following notation will be used:

2
There will be a "parameter plane", E

,
with Cartesian coordinates

1 2 3
(u,v) or (u ,u ) and a Euclidean space E with Cartesian coordi-

1 2 3
nates (X,Y,Z) or (X ,x ,x ) -

Vectors (usually in E3) will be denoted by Roman Capital letters,

X, Y, etc. However, such letters will be used also for things which are

not vectors. The meaning should be clear from the context. Juxtaposi-

tion of vectors denotes scalar product and x denotes vector product.

If u u(t) ,
where t is a parameter, then ul =

du
.

If

ax
dt

1 2
X = x(u;v) then - - and x and'similarly if x = x(u u

u du v av

then x C)XIand x
2

= ax2. If, further, u = u(t) and v = v(t)

au O_u

then xt = x U, + x vt
U v

If X = (x,y,z) and x,y, and z are functions of u and v
,

then X
u

= (Xulyu)z u) and Xv = (Xvfyvyz v
) .

The definitions of X, ,

and X
2

are similar to those given above. If X(t) = (x(t),y(t),z(t))

is a curve, then Xv = (xt,yf,zt) .
If t = s is the arc length, then

X1 is denoted by R or X'.

Warninq. Existence and continuity of derivatives will be assumed

(without explicit mention) wherever this will expedite the statements

and proofs of results. No special attempt will be made to always give

the "best" results with respect to minimum conditions on derivatives.

However, whenever analyticity is necessary, this will be stated expli-

citly. In general, most expressions which will be considered will re-

quire that the functions appearing in them be twice continuously diffe-

rentiable to be meaningful and three times continuously differentiable

to be provable.

1. Elementarv Concepts

1.1 Definition. A surface in E
3

is a map of a region R in the

u-v-plane (called the parameter plane) into E
3

subject to the follow-

ing conditions: If the mapping is given by specifying the functions

x(u,v),y(u,v), and z(u,v) then

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 82–99, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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1) all first partial derivatives exist and are continuous (strong-

er assumptions will be made when necessary)

2) xu Yu zu
rank 2( xv Yv

zV)
The map will be denoted by X(u,v) (x(u,v),y(u,v),z(u,v))

1.2 Theorem. A map of a region R in the u-v-plane into E
3

which

defines a surface is a local homeomorphism; i.e., the map gives a homeo-

morphism between a neighborhood of each point and the image of the

neighborhood under the map.

Proof: We may assume xu Yu

Xv Yv
A 0

But then the projection of the surface into the x-y-plane is a local

homeomorphism, of the u-v-plane into the x-y-plane, since the Jaco-

bian of this map is not zero. Therefore the map into the surface is

locally 1-1 and open, and hence a local homeomorphism.

1.3 Definition. If X = (x(u,v),y(u,v),z(u,v)) is a surface, then X
u

and X
v

are tanqent vectors to the surface. The plane spanned by X
u

and X is called the tangent plane.
v

X XX

The vector YC -u v
is the normal to the surface.

I T-XXI
u v

condition 2) of 1.1 can be stated XuX Xv y6 0 ; i.e. X
u

and X
v

do

not vanish and have different directions.

1.4 Definition. A motion is a translation, a rotation, a reflection,

or any combination of these three.

An admitted parameter transformation is a one-to-one map of a

region R in the u-v-plane into a region R in the,u-v-plane such

that
a(u'v)

'4 0
a(U'V)

Under such a transformation, it is often necessary to decrease

the region in which certain expressions are valid. This, in a sense,

is characteristic of classical differential geometry, and is precisely

the sort of argument which is not allowed in differential geometry in

the large.

If X(u,v) is a surface, then clearly under an admitted parameter
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transformation, X[u (Tj,V) v (U,V) ] is also a surface whose image is the

same point-set as the image of X(u,v) .
If

a(u'v)
> 0

,
then

a (-U " )
XUX XV and X

U
X Xv have the same direction; otherwise, they have

opposite directions.

2. First Fundamental Form

2.1 Definition. If X(u,v) is a surface, then the expression

X2du2+ 2X X du dv + X2dv2
U U v v

is called the first fundamental form of the surface. If E = X
2

2
u

F = X X
,

and G = X ,then it can be written
U v v

2 2
E du + 2F du dv + G dv

.

1 2
If coordinates N ,u ) are used instead of (u,v) ,

then the

first fundamental form will be written

gi
duiduj where g,,

= E
' g12

=

921
= F

' 922
= G

2.2. Let u(t), v(t) define a curve in the u-v-plane. Then, if

X(u'v) is a surface, X(u(t) v(t)) is a curve in the surface. The

length of this curve is defined to be 1;(Xt)2dt .
Since

X, = XUut + Xvv? we have immediately that

F(Xt)
2
dt VE(u,) 2+ 2F utvt + G(v,) 2dt

= I VE du2+ 2F dudv + G dv
2

.

Hence, in the surface, the element of arc length, ds, is given by

2
=

2 2
ds E du + 2F dudv + G dv

.

It follows from this that the first fundamental form is positive de-

f inite.

2.3. If two intersecting curves are given, then the angle between the

curves is defined to be the angle between the tangents to the curves.
1 2

Using coordinates (u u their tangent vectors can be expressed as

linear combinations, a Xi and b3X
i

respectively, of the tangent
vectors X

I
and X

2
*

If Y is the angle between the tangents to the

curves, then
g..alb3

Cos Y

rgiia'ai Vg_jj 7b_3
3 3
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2.4. The area A of a region on a surface X is given by

A = I FEG-; dudv = 11 idet (g.
1 2I ) du du

2.5. In the preceding discussion, it was shown that the first fundamen-

tal form of a surface essentially determines the metric properties of

that surface. It is easily seen that these notions are invariant with

respect to motions and admitted parameter transformations. In fact, if

gi. are components of the first fundamental form with respect to

1 2 1
(u ,u ) and ghk are the components with respect to ( ';2) then

gijdu
iduj =ghkduhduk

i.e., the
gij

transform like a second order, covariant symmetric

tensor. If X and Y are two surfaces which can be transformed into

each other by a motion, then they have the same first fundamental forms,

but the converse is not true.

2.6 Definition. Let X and Y be two surfaces. If there is a diffe-

rentiable homeomorphism between X and Y
,

which preserves the length

of curves, then X and Y are said to be isometric. The map is called

an isometry.

If parameters u and v are introduced so that X(u,v) and

Y(u,v) are corresponding points under a given homeomorphism h
,

then

h is an isometry if and only if the first fundamental forms of X and

Y with respect to u and v are the same.

3. Geodesic Lines

3.1 Definition. Let X be a surface and let X(s) be a curve on the

surface where s is arc length. If K = XR then X(s) is called a

qeodesic. If u and v are the surface parameters, then this condition

is equivalent to RX = 0 and RX = 0
. By eliminating arc length bet-

u v

ween these two equations and taking v as the parameter along the

curve, it can be shown that the curve satisfies a second order differen-

tial equation U" =.f(u',u,v) .

Thus, the following theorem follows trivially.

3.2 Theorem. Given a point on a surface and a direction in the surface,

there exists exactly one geodesic line through the point in the given

direction.
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3.3 Theorem. A curve X(s) is a geodesic if and only if for each pair

of points a and b on X(s)
,

the length 2 of X(s) between a

and b is stationary with respect to variation of the curve between

a and b
.

Proof: Let X(S,T) be a family of curves such that X(s,O) = X(s)

and let
b

2(T)  'a T)]2ds
-

We wish to show that 2t (0) = 0

A simple computation shows

21 (0)

b
iZ tds

1
)2a

2
But I since s is arc length. Since ( xl)*= KXt +   t

, by

integration by parts, we get
b

2,(0) = [kXt]b  Xlds
a

a

Now iC is the tangent to the curve X(s) and Xt is the vector in

the direction of the variation. Since we are keeping the end points,

a and b 'fixed, [.;(Xt]b =0
. Further, since XI is a tangent vector,

a

if Y is a tangent vector orthogonal to we may write

xt = p(s);( + q(s)Y . Finally, since k2 0 . Hence

b

21 (0) = - t(YCY) q (s) d s .

if 21(o) is to be 0 for every function q(s) ,
which vanishes

at a and b
,

then by the Fundamental Principle of the Calculus of

Variation, we must have KY = 0 But, since trivially 0 this

is equivalent to the condition xX-

on the other hand, if  = AR then RY = 7%X_Y = 0 and hence

21 (0) = 0

3.4 Definition. Let C be an arbitrary curve on a surface X . Let

v be arc length along C . By 3.2 through each point of C
,

there is

a unique geodesic orthogonal to C
. By well-known properties of diffe-

rential equations, these geodesics depend continuous on their point of

intersection with C . Hence if u measures arc length along these

geodesics, then u and v give an admitted parameter system in a

neighborhood of C where the geodesics do not intersect. This coordi-

nate system is called a geodesic coordinate system, and u and v
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are called geodesic parameters.

3.5 Theorem. If u and v are geodesic parameters on X
,

then

2 2 2 2 2 2 2 2
ds = du + 9 dv . Conversely, if ds du + 9 dv

,
then the curves

v = constant are geodesics.

2
=

2 2
Proof: In general ds. E du + 2F dudv + G dv

.
If u and v are

2
geodesic parameters, then E xu = I since u is arc length. We must

show that F(u,v) = Xuxv = 0 Now F(O,v) = 0 by definition.

It is sufficient to show that F = 0 But
u

F = X X + X X
u uu v U uv

However, X X
-1

Ev = 0
,

since E I
,

and X YC which is
U uv 2 uu

normal to the surface since the u-curves are geodesics. Since X
v

is

a tangent vector, XuUXv=0
. Therefore F

u

b
. Finally if g = +Y_G

then

2 2 2 2
ds du + g dv

Conversely, let a and b be two points on a curve v = constant

and let D be any curve joining them. Then

 b yr-du2+ g2dV2u + g v2 (D) d d > Idu = 2(U)

a

where U is the curve v = constant. Therefore U is a curve of mini-

mum length between a and b
,

and hence a geodesic.

4. Parallel Disolacement

4.1 Definition. Let s be arc length along a curve C in a surface

X .
Let Z(s) be a tangent vector field along C

.
Then Z is called

a parallel vector field if the tangential component of  is zero;

i.e.,  tang = 0
. More precisely, this is parallelism in the sense of

Levi-Civita.

Example: If C is a geodesic, then K
tang

0 since K is normal to

the surface. Hence the tangent vectors, X to a geodesic form a

parallel vector field.

4.2 Theorem. If Z
I

and Z
2

are two parallel vector fields then

ZIZ2 = constant.

Proof: (Z,Z ).= Z Z +-Z Z = 0 since Z and Z are normal, while
... 2 1 2 1 2 1 2

ZI and Z
2

are tangential.
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2
Since z = constant is a special case of the theorem, the length

of a parallel vector field is constant. Also, the angle between two

parallel vector fields is constant. Hence it is meaningful to speak of

the parallel displacement of the whole vector bundle at a point, since

this displacement is rigid.

1 2
4.3 Theorem. Given a curve C on a surface X(u ,u ) and a vector at

a point of C
,

there exists exactly one parallel vector field along

C containing the given vector.

Proof: If Z(s) is a parallel vector field along C
,

we wish to shaw

that the condition Z
tang

= 0 is equivalent to a system of first order

differential equations. Clearly 2
tang

= 0 is equivalent to

 X = 0
,

k = 1, 2
.

Since Z is a tangent vector,
k

Z = z iX.
1

where z

i
are the components of Z Hence

iiX. + z

i

= Z X. + X.
.

 ]j z
1 13

Therefore, we must have

0 = ilx iXk + (X ijXk)

Now X
i Xk =

g1k .
Thus if (g

hj
) denotes the inverse matrix of (gik)'

multiplying by g
k

gives

0
*h hk
z + g XijXk Ijzi

h hk
If we let rij

= g x ijXk ,
then

h h
0 + r 13i 'i

ij

which is the desired system of first order differential equation. Hence

existence and uniqueness follow by well-known properties of such

systems.

4.4 Theorem. In the special case that (u,v) is a geodesic coordinate

2 2 2 .2
system, i.e., ds du + g dv ,then the differential equations re-

duce to

a =

_gu
 7

where a is the angle between x
u

and Z .
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Proof: For a geodesic coordinate system we may write

Z = Cos (x X + s in a g -1x

since X
2

= I and x
2 g2 and since we know from 4.2 that JZJ = 1.

u V

Then

21= Cos (x + 6L g-
I
x + sin (x (-6 X + (g- IxV)

But X it = 0 and g-
I
x (g- IX 0 since x

2
and (g- Ix ) 2= 1

u u v v u v

and x
uxv = 0

,
since (u,v) is a geodesic coordinate system. Hence

 x = sin a (-d+ (g-
I
x ) 'x ) = 0

Z x 9 COS +,x*(g- x 0
v u v

However kU9-1 xv+ x
u

(g -1xv (x ug-Ixv)* 0 since xug- 1Xv = 0

Hence the coefficients of sin a and cosa are the same. But

sina and cosa are never simultaneously zero. Therefore we conclude

that

a + R
u

(g-lxv) = 0

Or, in terms of u and v

Cc + g x
uuxv 1 + g- x

uvxv 0

Now XuUXv + XuXuv (Xuxv )u = 0 . But, since XUX
uv

= 0 also, it

follows that X X 0
. Finally, since X

2
= g2 ,

1 2

uu v v xuvxv = Y(g )u= ggu-
Therefore

a = -g
u

We see from this result, that for a geodesic coordinate system,

the equation for parallel displacement depends only on the first funda-

mental form. Since parallel displacement does not depend on the coordi-

nate system, this is true in any coordinate system. However, we shall

give a formal proof of this fact, in order to be able to use the re-

sults in Section 5.

4.5 Theorem. The equations for parallel displacement of a vector de-

pend only on the first fundamental form.

Proof: It is sufficient to show that r". is determined by the first

h hk
3.]

fundamental form. Since rij"
= g Xijxk it suffices to consider the

quantities

r
ij,k

=

XijXk

Since gik
!'-

Xixk '
the r

ij,k
satisfy the following properties,
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rii k ri i,k
C)g

ik
2a) rij k

+
rkj

,
i ul

ag

jk,i ik, j k
au

24C) rki,j +
rji

=

,k
.

.

au

Adding equation 2a, b, and c, making use of 1) gives

r
I (

Og
ik

+ !!4 _!LJL )ij k aui duI auk

5. Riemannian Space

.5.1 Definition. Let ds 2= gijdu
3. du3 be a Riemannian metric in a

region of the u-v-plane. (i.e., the
gij form a positive definite

quadratic form). Then as in Section 4, we define

r
I ( Ogik

+ f4 .2a)ij k 2 dui duI auk

h hk

rij
= g rij k

If z

3.
are the components of a field of contravariant vectors on a

curve which satisfies the equations

-h
z + r Aljzi = 0

13

then the field is called a parallel field. The equations are called the

equations of parallel displacement.

A curve is called a geodesic if the tangent vectors to the curve

satisfy the equation of parallel displacement.

5.2 Theorem. Let A and B be vectors with components a
i

and b
i

respectively.. Then the scalar product AB =

gija
3. b3 is invariant under

parallel displacement. This property is characteristic in the sense

that if the r
ij,k

are allowed to be arbitrary functions of u and v

which are symmetric in the first two indices and which preserve scalar

products, then they must be the r
ij,k

given in 5.1.

Exercise: Prove Theorem 5.2.

5.3 Theorem. Geodesics satisfy a second order differential equation and
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the distance along a geodesic between two of its points is stationary

with respect to variations of the curve between the two points. As in

Section 3, geodesic coordinates can be introduced along a curve.

6. Curvature in Two Dimensional Riemannian Geometry

6.1. Let the closed curve C be the boundary of a region R on a

Riemannian manifold, U a continuous field of directions on R uC

z0 a vector (,& 0) in a point of C
, Z

t
(0-< t -<I) the field gene-

rated by parallel displacement of Z
0

around C a = 2 [T_T,Z
t

Then

the variation 6
C

a along C equals mod. 2w the angle <[Z
0

1z

It is easily shown that 6Ca does neither depend on the choice of U

nor on the choice of Z
0

6.2 Theorem. Let R be a region small enough to be contained in the

region of validity of a geodesic coordinate system and let C be the

boundary of R
.

Then

6 a

guu
dA

C
R

9

where dA is the surface element, and hence dA gdudv

Proof: By applying 4.4, we get 6 C(X $ 6ds gu 0, ds gu dv

C C

= - J g du dv = -  1 guu
dA

.

R
uu

R
9

6.3 Definition. K(a)
guu (a)

is called the Gauss-Riemann curva-

g(a)
ture.  J K dA is called the total curvature of the region R . By

R

6.2, the total curvature of a region R is equal the change in angle

of a vector displaced parallely around the boundary of R -

6.4 Theorem. K(a) is independent of the-coordinate system at a

Proof: K(a) -

guu (a)
=_

lim6 Ca
where A is the area bounded by

g(a)
C-a

A

C and lim means limit as the curve C is shrunk to the point a

C-a

Since A and 6 ca are independent of the coordinate system, the

theorem follows.

6.5 Theorem. If K is constant, then, subject to initial value condi-

tions, there is exactly one Riemannian metric with the given K
. The

cases K>O, K<O, and K = 0 are called respectively elliptical, hyper-

bolic, and Euclidean.
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Proof: The proof follows easily since g satisfies the differential

equation guu
+ xg = 0 .

6.6 Theorem. In an orthogonal coordinate system (i.e., F 0 if

2 2
E e and G g then

K
Lue

V
+ ( U)eeg 9

v u

I v
+ (  E =G)G2 EG

(;EG )v
u

7. The Gauss Curvature of Surfaces in E
3

7.1. In order to motivate the discussion of the curvature of a surface

in E
3

,
we shall review the definition of the curvature of a plane

curve. if c(s) is a plane curve, where s is the arc length and if

T is the angle between the tangent to the curve and the positive

x-axis, then the curvature, k
,

is defined by k
A-T

. Clearly T
ds

could as well be defined to be the angle between. the normal to the

curve and the positive x-axis. Let r be the unit circle in the

x-y-plane and consider the mapping of C(s) into r given by mapping

C(s0) into the point on r which is the intersection of r with a

unit vector through (0,0) parallel to the normal to C(s) at s
0

Let 2(s,s 0) be the length of C(s) between s and s
0

and let

2(s'S0) be the length of the image of the arc between s and s

0

under the map given above. Then

s s

2(s's0 1 dT I k ds

s s
0 0

Hence 2(s'S
0

k(s0
s

-11

 B (S'S
_S 0

0

3
7.2. For a surface X(u,v) in E ,we have a similar map into the unit

sphere, X
,

defined by mapping the point X(uotv 0) into the point on

I which is the intersection of x with a unit vector through (0,0,0)

parallel to the normal to X(u,v) at (uopv 0) - This map is called the

spherical ma of X .
Let A(uoov 0) be the area of a small region con-

taining X(uOPv0) and let 0 be the area of the image of this region

under the spherical map. Then the curvature, K
,

is defined by

K(u v ) = Jim
S2 d!Q

0 0
A-o

A
=

jA
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Gauss proved (Theorema Egregium) that this K depends only on the first

fundamental form of the surface. It can be shown, in fact, that this K

and the K defined in 6.3 are the same. From this, it follows immedi-

ately that if X and Y are surfaces which are isometric, then they

have the same curvature at corresponding points.

8. The Second Fundamental Form

8.1 Definition. Let X(u,v) be a surface. Then the second fundamental

form of X is

2 2
X X du + 2X R dudv + X R dv
uu uv vv

Since X
u

0 and therefore x
uu -xuxu ,

the second fundamental

form can be written

2 2
-X R du 2X R dudv - X R dv

.

u u u v v v

If L = -X
uxu, M = -Xuxv I

and N = -XvXV then it can also be written

2 2
L du + 2M dudv + N dv

.

1 2
If coordinates (u ,u ) are used instead of (u,v)

,
then the second

fundamental form is written

e..duiduj
13

where
11

= L
12

= f21 = M
,

and e
22

= N

The second fundamental form will be used to derive detailed infor-

mation about the curvature in the neighborhood of a point. We shall also

be concerned with the entities th 9kh
,

because of the followingi ik

theorem.

8.2 Theorem.  Xj ,
i.e.

,
the are the components of the

linear transformation which gives the rate of change of the normal to

the surface.

Proof: Since is a tangent vector, a X.
. Taking the scalar

1 3
product with X

k
gives - Pik= a?

gjk and hence, multiplying by g
kh

gives h kh
a = - C = _ Fh

i ikg i

8.3. Since V) is a linear transformation we may consider its inva-
L

riants under linear transformations; i.e., the determinant, the trace
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and the eigenvalues. It can be shown that

det(P
idet(? ) -

= K
L det(g,,)

where K is the Gauss-Riemann curvature.

We define the mean curvature H by

H tr
2

where tr denotes trace. It can be shown easily that

2H =

GL-2FM+EN

EG-F2

If we choose parameters at a point so that E G I and F 0

then (g. (6. .) and (gjj)- 1= (6 ) Then which is
1) 3.3 ij ij

symmetric. Therefore has real eigenvalues, which will.be denoted

by k
I

and k
2

' kI and k2 are called the two principle curvatures

and satisfy the following equations:

kIk 2
K and k I+ k

2
= 2H

and therefore k = H +' H-K
.

If the corresponding eigenvectors are

uniquely defined (i.e., k:1 A k2) ,
then the directions of the eigen-

vectors are called the principle directions. Points where k,= k
2

are

called umbilical points. In the first case it is possible to find two

families of curves such that the tangents to the curves are in the

principle direction at each point. These curves are called the lines

of curvature.

8.4. The equations satisfied by the lines of curvature can be derived

as follows:

1 2 1 2
Let (u ,u ) be a coordinate system and (du ,du ) one of the

principle directions. Then, since the direction is not changed by the

spherical map, (du 1, du2) must be proportional to (f Idui, f2 dui)
i i

Hence

du
I du2

0

I'dui 2dui
i

1 2
Expanding this in terms of (u,v) rather than (u,u ) gives

p2d u2 + (f2_ I) dudv 'd v2 = 0
1 2 1 2

Clearly, parameters can be introduced along these lines in the neigh-

borhood of any point which is not an umbilical (or flat) point. It can
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be shown that a necessary and sufficient condition for the constant

lines of a coordinate system to be lines of curvature is that

F = M = 0 .

8.5 Definition. Let (u,v) be a Euclidean orthogonal coordinate system.

in the tangent plane to the surface, with (0,0) corresponding to the

point on the surface. The conics given by

Lu2 + 2M uv + Nv
2

= + I

are called the Du2in indicatrix. There are several cases to consider:

1) The second fundamental form is definite; i.e. LN - M
2

> 0
.

Then only one choice of sign gives a real curve, which is an ellipse.

In this case the tangent plane is entirely on one side of the surface.

In a neighborhood of such a point, the spherical map is 1-1 and pre-

serves orientation.

2) The second fundamental form is indefinite; i.e. IN - M2<0

The locus is two conjugate hyperbolas. In this case the tangent plane

intersects the surface. In a neighborhood of such a point the spherical

map is 1-1 and reverses orientation

2
3) LN - M = 0

a) (L,M,N) (0,0,0) .
In this case the locus is two parallel

straight lines since the left side of the equation is the square of a

linear form.

b) (L,M.N) = (0,0,0) .
There is no locus. Such a point is

called a flat point.

No general statement can be made about the location.of the tangent

plane and the spherical map may not even be 1-1
.

8.6. The principle curvatures can be given a more geometric-interpre-

tation. For, given a point on the surface and a direction in the tangent

plane to the surface at the point, a unique plane is determined by this

direction and the normal to the surface at the point. The intersection

of this plane with the surface is a plane curve whose curvature k can

be shown to be

k
L du2+ 2M dudv + N dv

2

E du2+ 2F dudv + G dv
2

k is a function of the direction in the tangent plane and it can be

shown that JkJ where r is distance from the origin to the indi-

catrix. Hence, in general, k has one maximum and one minimum. These
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are precisely the eigenvalues kIand k2 'and the directions in

which they occur coincide with the directions of the eigenvectors.

Exceptions to this behavior occur when the point is an umbilical (or

flat) point; then all directions are eigenvectors. In cases 2) and 3a)

the asymptotic directions are given by

2 2
Lu + 2M uv + Nv=0

8.7. The curvature K was introduced by means of the spherical map as

a generalization of the curvature k of a plane curve. The mean curva-

ture H is also a natural generalization of k
,

where this generali-

zation is given by considering the variation of arc length of a curve

between two points.

Let X be a curve in the plane between two points a and b of

length 2 .
If X is varied, then, as in Section 3, the rate of change

of 2 is given by

21 kX'ds + [ Xl]b
a

a

Let Y be the unit normal to the curve and let T be the angle bet-

ween the tangent to the curve and the positive x-axis. Then

k = (COS T sin T) -

So K = k (-sin T p
COS T) = kY

Since X1 can be written

XI = ti + nY

it follows that for an arbitrary variation Xt

nk ds + [t]b
a

a

If X1 is a normal variation of constant magnitude I ; i.e. t = 0

and n = I
,

then

b

21 k ds

a

if the analogous argument is carried out for a region of a sur-

3
face X in E ,then the result is in terms of H

.
Let p be the

variation parameter and let A(p) be the area of the varied surface.

If X1 is the derivative in the direction of the variation, then

Xt = nX + Xttang

It can be shown that
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At = -2jjnH dA +  (R,Xl,dX)

where (X,Y,Z) denotes the determinant of the vectors X,Y, and Z

If Xtang
= 0 and n = I

,
then

At = -2  H dA
.

Exercise: Derive the above formula for A'

9. The Relation between the two Fundamental Forms

9.1 Theorem. Let X and Y be two surfaces such that there is a 1-1

map of X onto Y . Let (u,v) be a coordinate system such that

X(u,v) and Y(u,v) are corresponding points under the map. Then the

first and second fundamental forms of X and Y with,respect to u

and v are the same, if and only if the map is produced by a proper

motion. (Under a reflection, the first fundamental form is the same,

while the second fundamental form changes sign).

9.2 Definition. Let E du 2+ 2F dudv + G dv
2

and L du 2+ 2M dudv +Ndv
2

k
be two differential forms. Let r.. be defined as in 5.1. Then the

13

equations

L M rI L+ (r2 - rI)M- r2 N
v u 12 12 11 11

M N rI L + (r2 rI )M_
2

N
v U 22 22- 21 r2,

are called the Codazzi equations.

9.3 Theorem. Given two forms, E du2+ 2F dudv + G dv
2

and

2 2
L du + 2M dudv + N dv

,
there exists a surface with these as first

and second fundamental forms respectively if and only if

1) E du2+ 2F dudv +Gdv
2

is positive definite

2) IN - M2= f (E F,G) where f is the operator given by Gauss'

Theorema, Egregium.

3) The forms satisfy the Codazzi equations (i.e., the Codazzi

equations are essentially integrability conditions for the

forms.)

Proof: We will sketch the proof of necessity. 1) and 2) are obvious.

To prove 3) consider the following formulas:

X.
.

= ak X + F R
.

1] ii k ij
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Taking the scalar product with Xh gives

r = X ak
ij h i j Xh

22:

i j gkh

Hence a
k

= r .
. Therefore

i j 3.3

x.
.

= rk x + e R
.

13 ii k i3

We also know that -I X
. Now, assuming continuity of the third

1 k

derivatives, X
ijk

=

Xikj
=

Xkij ,
etc. By computation, one shows that

these equations just reduce to the Codazzi equation and Gauss' theo-

rema egregium.

10. Miscellaneous Remarks

10.1. We have seen that the coefficients of the first fundamental form

g.. are the components of a covariant symmetric tensor; i.e., if

g (gij) in one coordinate system and g = (gij) in another coordi-

nate system, then g = TtgT ,
where T is the Jacobian of the coordi-

nate transformation and T1 is the transpose of T
.

However, the situation is not quite the same for the coefficients

of the second fundamental form, e., - Since e
ii

 

xii the ?ij
would be the components of a covariant tensor if X was invariant

under a change of coordinates. But, by our definition, R changes sign

under a coordinate transformation which reverses orientation. Hence, in

general, if F = (eij) in one coordinate system and  = (Tij) in

another coordinate system, then aTVTT where a
T

is the sign of

the determinant of T
.

Now, the curvature K is not affected by this property, but the

mean curvature H is, and in fact changes sign under an orientation

reversing transformation, since tr(-C) = -tr(e) .
Therefore the mean

curvature of a surface is well-determined only if an orientation is

chosen, or equivalently, only if the direction of the'normal is speci-

fied.

10.2. In Section 3 it was shown that parameters could be introduced

so that

ds2 = du
2

+ g
2 dv2.

A second convenient parameter system which can be introduced is an iso-

thermal parameter system, which satisfies E = G and F = 0
.

If a co-

ordinate system is given such that

2 2 2
ds = E du + 2F dudv + G dv
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then a simple proof of the possibility of introducing isothermal para-

meters, u* and v* can be given providing E, F, and G are analytic,

where the proof is given by continuing E, F, and G into the complex

domain. The theorem is true under much weaker conditions - for example,

if E, F and G are only twice continuously differentiable - but the

proof is much more difficult.

Clearly such a mapping of the u*- v* - plane into a surface pre-

serves angles and hence is conformal. In this case, when it is con-

venient we can introduce new parameters

w = u* + iv* and  i = u* - iv*

10.3. In the special case that the surface is given by z = z(x,y)

the basic quantities can be explicitly calculated. Let p, q, r, s,

and t denote respectively zxpz y
'z

xx
Oz

Xy
,

and
zyy . Then

E I+p
2

F pq G I+q
2

L
r

M
s

N
t

fl +p2+q
2 fl_  +q 2 2

K
rt-s2

2H
(I+q2)r-2pgs +(I+p2)t

(I+p2+q7 (14p 2+q2)3/2



CHAPTERII

Some General Remarks on Closed Surfaces in Differential Geometry

As a general reference to the topological material covered in

this chapter, see Seifert-Threlfall: Lehrbuch der Topologie.

1. Simple Closed Surfaces in E3

1.1 Definition. A sim2le, closed (i.e., compact) surface or 2-manifold

in E3is a set S c E3such that:

1) S is compact (i.e., closed and bounded)

2) S is connected. (A compact set S is not connected if

S = A UB where A and B are compact and non-empty, and

AnB is empty.)

3) Each point p r. S has a neighborhood N(p) c S which is homeo-

morphic to the interior of a disk in the plane.

S is called differentiable if in addition the following con-

ditions are satisfied:

4) Let N(p) be a neighborhood of p satisfying 3) above and

let the homeomorphism be given by

X(u,v) = WUM,Y(U,V), z(u,v))

where (u,v) are Euclidean coordinates in the plane and

(x,y,z) are Euclidean coordinates in E3
.

Then x,y, and z

are differentiable and

xu YU zu

rank 2

xV Yv zv

5) If r F. N(p) n N(q) where N(p) is homeomorphic to a disk in

the u-v-plane and N(q) is homeomorphic to a disk in the

u- -plane, then the natural map u = u(u,v),v = v(u,v) de-

termined in N(p) n N(q) is differentiable in both directions

and therefore:

A(U IV
0

U'v)

3

1.2 Theorem. (Jordan-Brouwer) If S is a simple, closed surface in E

then E3\ S = I UE where I and E satisfy

1) 1 and E are open, connected, non-empty sets

2) In E is empty

3) 1 is bounded

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 100–106, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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4) E is not bounded

I is called the interior of S and E is called the exterior

of S

3
1.3 Theorem. if S is a simple, closed surface in E

,
then S is

homeomorphic to a sphere with g handles (g>, 0) as illustrated be-

low. The number g is called the qenus of the surface.

0

Surfaces with zero Surfaces with one Surfaces with two

handle handle handles

2. Abstract Closed Surfaces

2.1 Definition. An abstract closed surface is a Hausdorff space S

satisfying the second axiom of countability and such that conditions

1), 2) and 3) of 1.1 are satisfied. if in addition, condition 5) of

1.1 is satisfied, then the surface is called differentiable.

Let S be a differentiable surface and let f be a real-valued

function on S .
Let pf. S and let N(p) be homeomorphic to a disk

in the u-v-plane with p corresponding to (0,0) .
Then f is diffe-

r ntiable at p if f(u,v) is differentiable at (0,0) .
This notion

is clearly invariant under a differentiable change of coordinates.

2.2 Definition. An abstract closed, differentiable surface is called

orientable if all of the parameter disks can be chosen so that all of

the Jacobians of condition 5) of 1.1 are positive.
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If the surface is a subset of a Euclidean space then an equivalent

condition is that it be possible to assign a coherent orientation to

the tangent planes to the surface. Since an orientation in a tangent

plane at p determines an orientation in a neighborhood of p ,
this

is equivalent to requiring that the orientations assigned in the inter-

section of two neighborhoods are the same.

2.3 Theorem. A simple closed surface in E
3

is orientable.

Proof [Sketch]: It is easy to see heuristically that this must be true,

since, by 1.2, at each point of the surface we can distinguish the

normal directed towards the interior. If a definite orientation is

-chosen for E3
,

then at each point the tangent plane can be oriented

so that this orientation and the direction of the interior normal gives
3

the chosen orientation of E .
This process clearly gives a coherent

orientation of the whole surface.

2.4 Theorem. An orientable abstract closed surface is homeomorphic to

3
 simple closed surface in E

,
and hence, by 1.3, is homeomorphic to

 sphere with g handles (g-> 0) . Hawever, as the following two

examples illustrate, there are non-orientable abstract closed surfaces.

2.5 Example. The real projective plane. Let (u,v,w) be an orthogonal

coordinate system in E3 and let p be the point (0,0,0) .
Let L

be the plane w = I
.

Then each straight line through p ,
not parallel

to L determines exactly one point on L
,

and conversely. In fact,

(u,v,w) may be considered as homogeneous coordinates of the point

U v

(t, ;;, 1) e L

clearly, the lines parallel to L correspond to the "points at infi-

nite" in the projective L plane; i.e., the points with homogeneous

coordinates (u,v,O) .
Hence the real projective plane is in 1-1 cor-

3
respondence with the bundle of straight lines through a point in E

This bundle of straight lines has a natural 1-1 correspondence with

the pairs of antipodal points on the 2-sphere. The set of these pairs

of points is in 1-1 correspondence with the upper hemisphere where the

antipodal points on the bounding, equatorial circle are identified.

In the above construction, if the unit sphere is taken as the

2-sphere with center at p ,
then a point on the projective L plane

u v w

with homogeneous coordinates (u,v,w) maps into the pair ( ,  , -) ,

n n
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v \(2 +  v2 + w2lwhere n= u under the first corre-
n n n

spondence; and into
u v 12 1) if w A 0 or (-;u, v, 0) andn

0) ,
where M v if w 0

,
under the second cor-

M M

respondence.

This last set is clearly homeomorphic to a closed disk in the plane

with diametrically opposite boundary points identified. For neighbor-

hoods of points interior to the disk, we take ordinary Euclidean neigh-

borhoods. For boundary points, two half disks are taken as illustrated.

Using this last model, it is clear that the projective plane is

non-orientable, since if an orientation is chosen at the center, then

the orientation is determined at all interior points. However, because

of the identifications of boundary points, each point on the boundary

of the disk must have opposite orientations, depending on the direction

from which the boundary is approached.

2.6 Example. The Klein Bottle. A Klein bottle can be represented-as a

rectangle with sides identified as in figure 1). Figure 2) is a picture

of a model of a Klein bottle in E
3

with self-intersections.

2)

2.7 Theorem. A non-orientable abstract closed surface is homeomorphic

to a real proJective plane with p handles (p >O) or a Klein.bottle

with p handles (p > 0) .

3. General Closed Surfaces in E
3

3.1 Definition. Let S be an abstract closed surface with a differen-

tiable structure. Let X be a differentiable map of S
0

into E
3

i.e.,
x (p) = (x (p) , y (p) , z (p) )



104

where x(p),y(p), and z(p) are differentiable functions on S

such that, with respect to local parameters u and v

xU YU zu

rank 2

xv Yv zv

3

Then X is called a qeneral closed surface in E
. Strictly speaking,

a general closed surface is an ordered couple (SopXJ . However, if

S = X(S0) is the image of S
0

under X
,

we will also call S the

general closed surface when no confusion will arise from this conven-

tion.

The condition on the rank implies that X is locally 1-1 ; how-

ever, the image may have self-intersections. If S
0

is non-orientable

then the image will necessarily have self-intersections, by 2.3.

3.2 Theorem. Every non-orientable closed surface can be imbedded diffe-

3
rentiably and locally 1-1 as a general closed surface in E

Proof: Illustration 2) of 2.6 gives such an imbedding of the Klein

3
bottle in E

.
The Boy surface is an imbedding of the projective plane

3
in E

.
For a description of this surface, see Hilbert-Cohn-Vossen:

Geometry and the Imagination. By 2.7, all others are these with handles.

3.3 Problem. The above imbeddings are geometrical of necessity since no

explicit formulas are known for the imbedding of the Klein bottle and

3
the projective plane in E .For the projective plane, this could be

done, for example, by specifying three functions on the 2-sphere which

are even and such that the rank of their Jacobian is 2
. It is conjec-

tured that this can be done with homogeneous forms of even degree. How-

ever, it is impossible with quadratic forms and is conjectured to be

impossible with quartic forms.

4
With respect to imbedding surfaces in E

,
an explicit parametric

representation of the projective plane is given in Hilbert-Cohn-Vossen.

(However, the equational characterization given there is incorrect as

can be easily seen by the fact that (in their notation) the plane

* = t = 0 also satisfies the given equations.) In general, if Mk is

* k-dimensional, non-orientable manifold, then it is impossible to re-

present M
k

in E
n

by giving n-k equations of the form

f3. = 0
,

i = 1,...,n-k
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with maximal functional rank. The proof consists essentially in obser-

ving that if such equations could be given, then their gradients would

be independent at every point, and hence determine an orientation of

; which is a contradiction.

3.4 Remark. In the remainder of these lectures we shall restrict our

considerations to orientable surfaces.

4. Riemannian Geometry

4.1. Let S
0

be an abstract closed surface. Then a Riemannian geometry

is determined on S
0

by giving a covariant, symmetric, second order

tensor, gij , on So ,
such that the quadratic form gijdu iduj is po-

sitive definite. By 2.4 and 3.2, since every abstract closed surface

3
can be realized as a general closed surface in E

,
the induced metric

given by considering S
0

as a subset of E
3

provides an example of a

Riemannian metric for an arbitrary surface S
0

The question then

arises are such metrics the only possibilities; i.e., given a Riemann

metric
gij on an abstract closed surface So does there exist an

3isometric imbedding of S
0

as a general closed surface in E
. The

following theorem and example show that the answer is no!

3
4.2 Theorem. Let S be a general closed surface in E

.
Then there

are points p in S such that K(p) > 0

proof: Since S is compact, S is contained in a sphere with given

center of minimum radius R
,

with the property that S is tangent to

the sphere at at least one point. At this point,

the curvature of S,> the curvature of the sphere >0

Exercise. Show that JJK dA,> 47r for every general closed surface S

3 P
in E

,
where P CS is the set where K>0

4.3 Examole. Let S
0

be the surface of a torus of revolution and let

a and p be parameter angles as indicated.
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Def ine

ds2 = da2+ dP
2

.

Then K=- 0
,

since in this metric, S
0

is locally like the Euclidean

3
plane. Hence by 4.2, S

0
cannot be imbedded isometrically in E

. How-

ever, S0 can be isometrically imbedded in E
4

; the functions

x
I

= Cos a
, x2

= sin (y. , x3= Cos x4 =sin

give such an imbedding since

2 2 2 2 2 2 2
ds = dxI + dx2+ dx

3
+ dx

4
= da + dp

This counterexample, since it uses the curvature K
,

is relevant

only to the problem of isometries which are three times continuously
3

differentiable; i.e., of class C

4.4. In the above example, we saw that the given metric could be

realized in E
4

.
In general it is known that a k-dimensional, compact,

Hausdorff space satisfying the second axiom of countability can be im-

2k+1
bedded homeomorphically in E If the space in addition is a mani-

2k
fold, then it can be realized in E Hence any abstract closed sur-

4
faceface can be realized in E

.
The question remains, can every Rie-

mann metric be realized in E
4

J. Nash has shown that this is true

if one is content with a C
I- imbedding. (See Annals of Mathematics, 60

(1954) p. 383-396). His results can be summarized as follows:

If an abstract, closed, differentiable manifold Mn
,

of dimension

k
n ,

admits a topological imbedding of class e in E
,

k >_n+2 ,
then

every Riemann metric (of class e) on can be realized on a simple
I k

closed manifold of class C in E

Nash has also obtained results on isometric imbeddings, (See

Annals of Mathematics 63 (1956) p. 20-63) ,
but here the bound on the

dimension is much worse. His main theorem here is:

A compact n-manifold with a C
k

positive metric has a C
k

iso-

n
metric imbedding in any small volume of Euclidean (1)(3n+11)-space,

provided 3 < k < co
.

No.definite results have been given for the case k = 2
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The Total Curvature (Curvatura Inteqra) of a Closed Surface with

Riemannian Metric and PoincarOs Theorem on the Sinqularities of

Fields of Line Elements

.1. Sinqularities of Families of Curves

1.1 Definition. A line element on a surface S is determined by-a

non-zero tangent vector to the surface. The same line -element is de-

termined by all non-zero multiples of the vector. Hence there is no

distinguished direction on a line element. Strictly speaking, a line

element is a one dimensional linear subspace of the tangent vector

space.

A regular (integrable) field of line elements in a region corre-

sponds to a family of curves in the region such that at each point of

the region the line element at that point is tangent to the curve

through that point.

If A regular field of line elements is given everywhere in a re-

gion except at a single point p and if it is impossible to extend the

field(uniquely)to p by continuity, then the field is said to have a

sinqularijX at p

1.2 Definition. The index j of an isolated singularity is defined as

follows:

Let p be an isolated singularity of a field of line elements

and let C be a simple closed curve such that

1) p is the only singularity in the interior of C

2) There are no singularities on C .

Then the given field induces a field F of line elements on C . Let

C be given as a function of a parameter t
,

C = C(t) , 0_< t<, I
.

Choose one of the two possible directions along the line element at

C(O) .
This determines a direction at C(Q for every t

,
0 < t < I

by continuity. We wish to measure the total change in angle of this

field of directions in going once around C .
In order to do this, we

must have something to measure angles with respect to. Assume, for the

moment, that C is small enough to be contained in the region of vali-

dity of a fixed local coordinate system. Within such a region there is

defined a field with no singularities; e.g., the lines v = constant.

This determines a direction at each point, which will be denoted by U.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 107–118, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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Let , C,[U,F] be the angle between the U direction and the chosen F

direction, and let 6C<[U,F] be the total change in this angle in

going around C once in the positive direction. Then we define

2xi = 6C.5< ( U, F].

It is easy to see that j =-2 where n is an integer.2

1.3 Theorem. j does not depend on U or C . Hence the restriction

of C to small curves in the definition is unnecessary.

Proof: 1) Let V be another field without singularities. Then

6C- [U,F] = 6C. [U,V] + 6CI[V,F] -

However, by choosing C small enough, we can make 6
C

-T,[U,V] arbi-

trarily small since they are both continuous fields without singulari-

ties. Hence, since 6 C2 [U,V] is an integer multiple of x,

6C f [UIVI = 0

2) Since i6 C
depends continuously on C

,
while 2j is an

integer, it is clear that j does not depend on C .

1.4 Theorem. If As
2

is a Riemannian metric and the angle in 1.2 is

measured with respect to this metric, then the index doesn't depend on

the metric used.

Proof: Let (gi ) and (h be the matrices of the positive definite

forms of two Riemannian metrics. Then

fij (t) = (1-t) g,j
+ th

ij
0 _< t: 1

is also positive definite and hence determines a Riemannian metric for

each t
.

But the angles change continuously with t
,

and 2j is an

integer. Hence, j does not depend on the metric.

-1,.5 Examples. The following examples show that for each j there
2

is a field with a singularity with index j
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1) no singularity, j =0 2) j 3) j
2

4) j = 1 5) j 3/2 6) j 2

n+2
7) j 5/2 8) j

2 , n_>

9) -1 10) 11) j=
 2-n

,n
2 2
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:1.6 Theorem. Given a surface of genus g ,
there is a field of line

elements defined on the surface with a finite number of singularities

such that the sum of the indices of the singularities is 2-2g .

Proof: We will sketch the desired differentiable fields with this pro-:-

perty.

1a) g = 0 .
Take the great circles

through the poles. There are two

singularities each of which is like

4) of 1.5 and hence has index +1

Therefore X i = 2 = 2- 2-0
.

1b) g = 0
.

The stereographic

projection of a family of parallel

streight lines in the plane. There

is one singularity at the north

pole which looks like 6) of 1.5,

and hence has index +2
.

Ic) g = 0
.

Take the level lin s

of z .
There are three singularities

like 3) of 1.5 with index +1
,

and

one like 10) of 1.5 with index -1

Hence X j 2

2a) g = I Take circles of revo-

lution. There are no singularities,

and Xj = 0 = 2 -2-1

2b) g = I
.

Take level lines of

x .
Then there are 2 singularities

like 3) of 1.5 "with index +1 and

two like 10) of 1.5 with index -1

Hence zi = 0

X



3a) For arbitrary g ,
if the

surface is imbedded as shown, take

the level of x . Then there are

2g saddle points like 10) of 1.5

with index -1 and 2 singularities

like 3) of 1.5 with index +1 X

Hence Z j = 2 - 2g

3b) If the surface is represented

as two plane figures with boundaries

identified as shown, then the indi-

cated field has 2(g-1) singularities

like 10) of 1.5 with index -1

Hence Ij = 2-2g .

Exercise: Construct a field of line elements with exactly one singula-

rity on a surface of genus g _>2 . Check that the index of the singu-

larity equals 2- 2g . (The singularity can be, but is not necessarily,

like 11) of 1.5) (p. 209).

1.7 Historical Remark. Poincar6 originally considered singularities of

differential equations of the form

a (u,v) du + b (u,v) dv = 0
.

If a and b have a common zero, then the integral curves near the

common zero may look like some of the figures of 1.5. For example

a) u du + v dv 0 gives figure 3)

b) v du + u dv 0 gives figure 10)

c) vdu- udv =0 gives figure4)

However, it is easy-to see that not all the figukes of 1.5 correspond

to this type of differential equation; for, on an integral curve of

a du + b dv = 0
,

the vector (a,b) is normal to the curve. But (a,b)

is a vector with a definite direction. Hence in going around a curve

C
,

it must change by n-2x where n is an integer. Hence the half-

integer values for j do not correspond to differential equations.
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2. The Main Theorems

2.1 Theorem 1: Let S be a closed, orientable surface of genus g

with a Riemann metric defined on S so that the curvature K is de-

fined on S . Let there be given a field F of line elements on S

with at most a finite number of singularities. Then the sum of the

indices j of the singularities of the field is defined and

I K dA = 2x Xj
S

Proof: If C is a simple arc on S which does not contain a singula-

rity of F
,

then F indu(tes a field of directions F
C

on C .
If

zC is a parallel field on C
,

then we define

o(C) = 6C- ,[ZC,FC] .

Clearly, given F and given the metric, (I(C) does not depend on the

chosen parallel field and depends only on C .
Since the definition of

a parallel field does not depend on the direction in which a curve is

traversed, if -C denotes the curve C traversed in the opposite

direction, then

0 (-C) = -I (C)

It is a well-known theorem in the theory of surfaces that a sur-

face can be subdivided into 2-cells, where a 2-cell is the topological

image of a closed cell in the plane. Clearly, this can be done in such

a way that:

1) There are no singularities of F on the boundary of any cell.

2) Each cell contains at most one singularity.

3) Every cell can be covered by a geodesic parameter system.

call these cells yl'y2'*' ,
and let j(y) be the index of the singu-

larity in y if there is one and 0 otherwise.

Let y be a fixed cell, let U be the direction of the geodesics

in the geodesic coordinate system, and let b(y) be the boundary of

y . Then, by 1.2 and 1.3
,

1) 27rj (y) =6b(y)
K[U,F]

However, we saw in 1, 6.2, that if Z is a parallel field on b(y)

then 11 K dA = 6b (y)
_) [UIZI

y

This can be rewritten
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2) - Ij K dA = 6b(y)<[Z'U]
y

Adding equations 1) and 2) gives

2 7rj (y) - I I K dA6b(y)
EZ,Fj

y

= -t (C

Cieb(y)

where the sum is taken over all arcs CI in b(y) If this equation

is summed over all 2-cells
Yk ,

then

2x Z j (y) - 11 K dA = 0

S

since each arc cI appears in the boundary of exactly two Yk , once

as +C and once as -C

This is the desired result.

2.2 Theorem 11: (Poincar6). If F is a field of line elements on S

with at most a finite number of singularities, then

Xj = 2 -2g

where g is the genus of S

Proof: Since 2w Zi   KdA and 11 K dA does not depend on the field,

Zj is the same for Sall fields
S

with at most a finite number of

singularities. But in 1.6 we gave an,example where 'Ej = 2 -2g .
Hence

the equality holds for all such fields.

2.3 Theorem III: (The Curvature Integral). If S is a closed orientable

surface of genus g with a Riemann'metric, then

11 X dA = 2x(2-2g)
S

Proof: By 1.6, there exists a field of line elements on S with at

most a finite number of singularities. Hence the proof is immediate by

2.1 and 2.2.

2. Applications

a) g = 0 .
Then dA = 4n

.
If P is the set of points where

K>0
,

then
11

K dA-> 4 7c

P

(aI) Any field on such a surface has at least one singularity; and,

if it has at most a finite number of singularities, then at least one

singularity has a positive index.
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b) g = I
.

Then K dA = 0
.

This is the only case where it is

possible to define a
,

SRiemannian metric such that K = 0
,

and the

only case in which it is possible to define a field of line elements

without singularities.

c) g>, 2
.

Then there is at least one singularity for any field of

line elements. If there are at most a finite number of singularities,

then at least one singularity has a negative index.

d) g very large. Then K is negative on most of the surface.

2.5 Euler's Formula. Let S be a closed orientable surface with a

given subdivision into 2-cells. Let

a = number of vertices
0

a:,= number of edges

a2
= number of 2-cells.

Then a 0- aI+ a2
= 2 - 2g . (This result will not be needed in what

follows.)

Proof: We will construct a field where

it is obvious that a0- aI+ a 2= zj ,

which will prove the theorem. We make a

barycentric subdivision of the given

subdivision by taking as new vertices

the original vertices, an interior

point of each edge, and an interior

point of each cell. New edges are added

as indicated. In each triangle of the

barycentric subdivision construct a

field as shown, where b
0

is an ori-

ginal vertex, b
I

the interior point of

an edge and b
2

the interior point of
b

a 2-cell. Then at b and b
2

there is

a singularity like 4) of 1.5 with index

+1 and at b
I

there is a singularity

like 10) of 1.5 with index -1
. But

each b
0

corresponds to an original

vertex, each b
I

to an original edge

and each b
2

to an original 2-cell.
b b

Hence
Zj = a0- a I+ a2

=2- 2g .



115

Notation; The number X = 2 - 2g ,
which appears in the Euler formula,

the curvature integral, and the Poincar6 theorem, is called the charac-

teristic of the surface.

3. The De2ree of the Spherical Map

3.1 Definition: Let {S 0X} be a general, closed, differentiable

surface in E
3

(See 11, 3.1), where S
0

is oriented, and S = X(S
0

Then to each point p
0

E S0 ,
there corresponds a well determined normal

of S at the point p = X(p0) F. S
.

The direction of this normal de-

termines a point f(p
0

) on the sphere z of directions in E
3

(See I,

7.2). This map f : So - I is called the spherical map of {S 0X}

Let K be the Gauss curvature and dA the element of surface

area of S in the Riemannian metric induced by the imbedding X . Then

K and dA may be considered as Gauss curvature and surface element

respectively on the parameter surface S
0

.
Then by 1, 7.2, do = K dA

is the surface element of f(S 0) on z (measured in the ordinary

spherical metric of 2:) .
The sign of dQ is determined by the sign of

K since on S
0

, we always have dA >0 .
A region R

0
C S0 where

K> 0 is said to cover I positively under f
. Similarly if K<0

R0 covers X negatively. Since the spherical image of the set on S
0

where K = 0 has area -0 it follows that

11 K dA Q

S
0

where 0 is the algebraic area of f(S
0

) on 2: i.e., the sum of the

areas covered positively minus the sum of the areas covered negatively.

Since 11 K dA = 2x(2-2g) we get the result

S
0

s2 = (1-g) 4w

Since 4w is the area of Z
, 1-g represents the algebraic proportion

of Z that is covered by f(S 0) -

3.2 D6finition. Let q 6 E satisfy the following conditions:

1) q is the image of only a finite number of points of S
0

q:L,---,qm ,
under the spherical map f

.

2) In a neighborhood of each of these points, f is 1-1
.

Then

q is said to be in qeneral position with respect to f
.

If q is in general position with respect to f
,

let P(q) be

the number of positive coverings of a neighborhood of q and let N(q)
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be the number of negative coverings. Let d(q) = P(q) - N(q)

3.3 Theorem. If q and q1 are in general position then

d (q) = d (q 1) = d
.

Proof: [Sketcbl.,To see heuristically that d(q) is constant, we argu .e

as follows:

f essentially defines S
0

as a covering surface of z and hence

f(S0) may have branch points or fold lines. If q and q1 are two

points in general position, they may be joined by an arc Which'avoids

the branch points. P and N are constant along this arc except where

the arc crosses a fold line. But at such a crossing both P and N

either 'increase by 1 or decrease by 1. Hence P-N remains constant.

The theorem below shows that d is independent of the imbedding func-

tion X .

3.4 Definition: The number d = P-N is called the deqree of f

Theorem. The degree d of the spherical map of a general closed sur-

face of genus g satisfies d = 1-g .

Proof: In 3.1 we saw that 1-g is the proportion of z covered by

f(S0) .
But d is clearly also the proportion of X covered by f(S 0).

Hence

d = 1-g

3.5. The definition d = P-N of the degree which we have sketched

above can be given quite rigorously in terms of point-set topology.

(This definition is the original one given by Brouwer). However, in

terms of algebraic topology, a rigorous definition can be given rather

easily as follows:

Let and N
n

be two n-dimensional manifolds and let f be

a continuous map of M
n

into Nn
.

Let Mn and N
n

denote the n-dimensio-

nal fundamental cycles on M
n

and Nn respectively; i.e., they generate
n n

the n-dimenaional homology groups of M and N
.

Then f(Mn) is a

integer is the degree d

3
3.6 Theorem. If S

0

is a simple closed surface in E
,

then f(S 0)
covers all of X

.
If S

0
is a general closed surface and g ;4 1

then also f(S 0) covers all of Z
.

3
Proof: If S

0
is a simple closed surface in E

,
choose the inner

normal as the positive normal. Then a given point p on z is covered

since there is a plane perpendicular to the direction determined by p

which just touches the surface from the outside.
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if S0 is a general closed surface, then the above consideration

shows that at least one of every pair of antipodal points of Z is

covered. If g )6 1
,

then d A 0
,

and hence every point is covered

since if some points were not covered at all, then P-N = 0 which is

a contradiction.

Remark. The above theorem does not hold if g = I Consider the sur-

face generated by rotating the curve C about the axis A
.

This

8 8

C A

generates a general closed surface in E
3

of genus I
. But, as the

figure on the right side illustrates, the normal never points directly

upwards, and hence a neighborhood of the north pole is.not covered.

4. Generalizations to Hiqher Dimensions

4.1 The-_Euler aumber, the Poincar6 number, and the index. Let P
n

be

an n-dimensional polyhedron, subdivided into simplices. Let a
r

be the

number of r-simplices and let p be the rtth Betti number. Then the
n

(_:,)
r

r

Euler number is I a .
The Poincar6 number, which generalizes

0 n
r

r
the number 2- 2g, is OX (-I) Pr

The Euler-Poincar6 identity states that

rar rp
r

'

n
This number is called the characteristic X of P

Furthermore, if P
n

is a differentiable manifold then it is

possible to consider vector fields on P
n

and to define the index of

a singularity of such a field. It can be shown that for every field

with at most a finite number of singularities, 2:j = X .

4.2 The deqree. Let 0 be a general closed, differentiable, oriented,

n+1
n-dimensional manifold in E .Then the spherical map and the degree

d are defined. Then is it true that d = IX ? This is false for a
2
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circle in the plane, since there, d = I and X = 0
.

Also d is not

independent of the imbedding, since for the figure orr the right side,

d = 2

0 (D

Theorem. If n is even, then d If n is odd and > I
,

then
2

-there exist simple closed manifolds which are homeomorphic but which

have different degrees.

4.3 The Gauss Curvature. If n is even and a Riemannian metric is de-

fined on 0
,

then a scalar function K can be defined in terms of

the first fundamental tensor such that Cn j... I K dV =
X ,

where Cn
is a constant depending on n .

This has been established by Allen-

doerfer, Weil, and Chern. If n is odd, then 0
,

so no such

formula can exist.



CHAPTERIV

Hadamard's Characterization of the Ovaloids

1. Ovaloids in E
3

n
1.1 Definition. If p and q are points in E

,
then j0q denotes

the line segment between p and q .
A set S cE

n
is convex if for

every pF_S and q eS
, j5_q cS . A convex body is a compact convex set

with a non-empty interior. It is easy to show that a convex body is

homeomorphic to a solid sphere (but we will not need this fact). In

these notes we will assume in addition that the boundary surface of a

convex body in E
3

is several times differentiable.

1.2 Theorem. The surface of a convex body in E
3

satisfies K,> 0

Proof: Suppose K< 0 at some point p of the surface. The one of the

principle curvatures, say k
2

'
is negative (where the inner normal is

chosen to be the positive normal in order to determine the signs of the

curvatures). Hence the intersection of the surface with the plane de-

termined by the eigenvector corresponding to k
2

and the normal to

the surface is a curve with negative curvature. Let q and q' be two

points on this curve near p . Then clearly qql is not contained in

the convex body; which is a contradiction.

1.3 Definition. An ovaloid is a closed surface which is the boundary

of a convex body and which satisfies K> 0
.

1.4 Theorem (Hadamard). Let S
0

be a general closed surface of genus

g in E
3

satisfying K> 0 .
Then

1) g = 0

2) The spherical map is 1-1 and onto

3) S
0

is simple

4) S0 is the boundary of a convex body

Proof: 1) If K >0 then

If K dA 4 7r (1-g) > 0

Hence g <1
. But since g is a non-negative integer, g = 0

2) We shall give three essentially different 'proofs that the

spherically map is 1-1 and onto.

a) Let f : S
0

- X be the spherical map and let d be the degree

of f .
Then

d 1- g = P- N

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 119–122, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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Since K> 0
, every point of E is in general position. Let qE z be

covered by f .
Then the number of positive coverings is at least one

and there are no negative coverings. Therefore P- N>, I
. On the other

hand I- g-< I
. Hence d = I and every point is covered exactly once.

(This gives another proof that g = 0 .)

b) "The Official Proof". Let f : S
0

be the spherical map.

Since K>0 f is a local homeomorphism and hence f(S 0) is an open

subset of X On the other hand, since S
0

is compact and f is con-

tinuous, f(S0 is a closed subset of Z Therefore, since z is con-

nected, f(S0) = 2: .

To prove f is 1-1
, suppose f(q

0 f(qI qEX ,
where

q0 & q
I

Then there is a neighborhood U of q
0

such that

f(S O-U) z .
Since there are only positive coverings of 1: the area

of f(So-U) is > 47c
.

Hence   K dA,>47c , and, therefore,

S_U
0

 j K dA>47c

S
0

which is a contradiction, since by 1),

  K dA = 4w

S
0

c) This proof is based on the following analogue of the Monodromy

Theorem:.

Let f be a map of S
0

into I which is single valued and local-

ly 1-1 . Then f is 1-1 in the large and onto. The proof is as

follows:

Let a FE S0and f (a) = CL -E Since f is locally 1-1
,

there

is a neighborhood U(a) which is in 1-1 correspondence with a neigh-

borhood U(a) . Let (p U(oL) - U(a) be this mapping. Then -f-,(p is the

identity map on U(cx) Call (p a "function element" at a .
We wish

to extend y to all of Z
.

Let r be a curve on Z from a to P .
Then there is a curve

C on S
0

such that f maps C onto r . For suppose there is no

such curve. Since y is 1-1 there is a curve in U(a) which covers

r n U(a) . Hence there is a f irst point (x* y6 a on r beyond which C

does not exist. Let faij be a sequence of points on r between a

and a* converging to (x* .
The

oLi correspond to a sequence on C

which, by compactness, converges to a point a*, satisfying f(a*) = a*.
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But by the above argument C can be continued in a whole neighborhood

of a*
,

which is a contradiction. Therefore, the function y can be

continued along r and satisfies foy = identity in a neighborhood

of r
.

if rt is another curve from a to P sufficiently close to r

then y can be continued along r'
, given the same function element

at
.

Hence if r" is any curve from a to p homotopic to r ,
the

continuation of y along r" results in the same function element at

P . However, since the sphere is simply connected, all curves from a

to 0 are homotopic. Therefore, the function element at p is inde-

pendent of the curve r
.

Thus we have defined y at every point of

X to-satisfy foy = identity. Consequently, f is i-1 and onto. Note

that this proof of statement 2) of our theorem does not make use of the

formula S K dA = 4w
,

in contrast to the two other proofs. This is

important for Section 2. (For a general treatment of this type of argu-

ment, see Chevalley: Theory of Lie Groups, and Steenrod: The Topology

of Fibre Bundles.)

3) To prove that the image S of S
0

in E
3

is simple, we will

show that if Ta is the tangent plane to S at an arbitrary point
0

a iS corresponding to a 0E S
0

,
then there is no point b

0
A a

0
such

that the corresponding b FS is on Tao .
Hence in particular there

will be no b
0

A
a0 such that b = a and therefore S is simple.

Let Ta be the tangent plane at aE S corresponding to a
0 ES0

0

Then there is a point a'E S at a maximum distance from T .
Let at

ao 0

be a corresponding point in S .
Then the tangent plane Tat is

0 0

parallel to Ta
0

and the normals at a and at have opposite direct-

ions since the spherical map is 1-1
. By the same argument, there is no

other point b ,6 a a
I such that T is also parallel to T

0 0 0 b0 ao

Now suppose there is a b
0

 a0 such that b is on Ta . Then,

since Tb
0

is not parallel to Tao )
it intersects Tao * But this

implies that there are points of S on the opposite side of Ta
0

from

Tat .
Hence by compactness there is a point c on this side of Ta

0 0

with maximum distance from Ta .
This is a contradiction since the

0

tangent plane at c must be parallel to Tao
4) Since S is simple it has a well defined interior and exterior.

Let a eS and let T
a

be the tangent plane to S at a . we have seen

in 3) that no point b of S different from a is on T
a

. Therefore,

S lies entirely on one side of T
a

' It also follows from 3) that all



122

of T
a

except a lies in the exterior of S Suppose for simplicity

that T
a

is horizontal and S is below T
a

Then from 3) we have in

fact that the entire half space above T
a

is in the exterior. Now

suppose p and q are two points in the interior of S
.

Then JFq is

below T
a

and hence a i(g-q . Since a is an arbitrary point of S

it follows that no line segment joining two points of the interior of

S intersects S . Therefore, the interior of S is convex, so S is

the surface of a convex body.

1.5 Remark: In the above theorem the hypothesis can be formally

weakened to require only that X  6 0
,

since we already know that there

are points where K>0
.

In fact if the part 2) of our theorem is

suitably modified then it is sufficient to require only that K>O to

be able to conclude at least that S is the surface of a convex body.

2. Generalizations to Hiqher Dimensions

2.1 Theorem. Let 0 be a general closed manifold in E
n+1

,
n >,2

such that K>0
,

where K is defined as in two dimensions by the

spherical mapping. Then the spherical map is 1-1 and onto and M
n

is

a simple closed manifold which is the boundary of a convex body in

n+1
E

Proof: The proof is the same as in 2) and 3) of 1.4 above, the essen-

tial fact being that the n-sphere is simply connected fo r all n>_ 2
.

2.2 Remark. The theorem is obviously not true for a curve in the plane

(see example). Our proof c) of statement 2) above fails since on the

I
circle S

,
two points a and p may be joined by two curves r

and rt which are not homotopic.

ror,

P



CHAPTERV

Closed Surfaces with Constant Gauss Curvature (Hilbert's Method)-

Generalizations and Problems - General Remarks on Weinqarten Surfaces

1. A Characterization of the Sphere

1.1 Introduction. our aim in this section is to prove that the spheres

are 1) the only closed surfaces with constant Gauss curvature K
,

and

2) the only ovaloids with constant mean curvature H .
We will actually

prove the stronger result that if the principle curvatures k
I

and k
2

of an ovaloid satisfy a relationship k
2

 f(kI) where f is a de-

creasing function,. then the ovaloid is a sphere. Since K = k Ik2 and

H = 'L(k + k the two results, 1) and 2) stated above will follow
2 1 2

from this theorem. The difference in the formulation of 1) and 2) is

due to the fact that on any closed surface there are points where

K> 0 (See 11, 4.2). Therefore if K is constant, then K is a posi-

tive constant and hence by IV, 1.4, the surface already is an ovaloid.

The problem of characterizing arbitrary closed surfaces for which H

is constant is much more difficult. It will be considered in Chapter

VI and VII.

The proof of the above theorem depends on several preliminary

lemmas and theorems, the first of which is an important characteriza-

tiorl of the spheres.

1.2 Lemma. The spheres are the only closed surfaces for which all

points are umbilics.

Proof: Let R be the normal to the surface. Then, by 1, 8.2,

3. 3.

At an umbilic point, U so
1 3.

-kX.

In terms of coordinates u and v

1) + kX = 0

2) X + kX = 0

Differentiating 1) with respect to v, 2) with respect to u and

subtracting gives

k X - k X = 0
v u u v

But, since X
u

and X
v-

are independent,

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 123–135, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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k = k = 0
u v

Therefore, k = constant.

Hence from 1) and 2) we conclude that

R + kX = c

where C is a constant vector. If k = 0 then C and X is a

plane, which is not a closed su.rface. Thus k  4- 0 and

1 -1
C - Xi k

Finally, since R is a unit vector,

I

IX-C11 =

Jkl

which is the equation of a sphere of radius
Jkl

Remark. As the proof shows, this result holds in the small. Hence pieces

of spheres and pieces of planes are the only possible regions for which

all points are umbilics.

.1.3 Lemma. Let R be a region of a surface where K> 0 . Suppose p ER

is not an umbilic point and at p ,
k

I
> k2 *

Then it is not possible

that k
I

has a maximum at p ,
and k

2
has a minimum at p .

Proof: Let u and v be parameters such that F = 0 . Then, by 1, 6.6,

f/ E \

K
If VI u+

1G) G2 Y_EG [ IFEv E

This can be rewritten as

1) -2(EG)K = E
vv

+ GuU+ mEv+nGu

where m and n are some bounded functions. Since p is not an um-;.

bilic point, the parameters u and v can be chosen so that the lines

v = constant correspond to the lines of curvature given by k
I

and

u = constant to those of k
2

'
Then M = 0 also. In this coordinate

system the Codazzi equations are

2) L
Ev (L Ev

(k:,iv 2 E G) 2 2)

3) N =

Ga G
u

(k + k
U 2 E G 2 1 2)

Now, in general, if (du,dv) is. a tangent direction, then the curva-

ture k in that direction is given by
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k
L du 2+ 2M dudv+N dy

2

E du 2+ 2F dudv+ G dv
2

Since the directions du = 0 and dv 0 correspond respectively to

k2 and k, ,
we have

L N

k, g and k
2

=

'a

The first relation says L = Ek *Hence differentiation gives

Lv = Evk I+ E(k I)v .

By 2) above,

E k + E(k

EvkI
+

Evk2
V I I v 2 2

Thus E

E(k 2(-k + k
1 v 2 1 2

Or
2

E = -

7 -v
I k2 E(kl)v

Similarly Gu =

k

2

k
G(k 2)u

1 2

Substituting these relations in equation 1) gives

-2EGK k2Ek
(k I)vv + k2Gk

(k 2)uu
1 2 1 2

+ mt(k I)v + nt(k 2)u
Or

-(kl-k 2)EGK = -E(k I)vv + G(k2)uu

+ m"(k I)v + n"(k 2)u

Since K> 0 and (kl-k2) > 0
,

the left side of the above equation is

negative (and not zero). On the other hand if we have a maximum of k,,
th en

(kI) v

= 0 and -E(k I)VV >_ 0

and if we have a minimum of k
2

then

(k 2)u = 0 and G(k2)uu >_ 0

Hence if both occur simultaneously, the right hand side of the above

equation is non-negative; which is a contradiction.

1.4 Theorem. Let S be an ovaloid such that there is a point pE S

satisfying

1) kI >_ k2
2) k

I
has a maximum at p

3) k
2

has a minimum at p
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Then S is a sphere.

Proof: Since S is an ovaloid, K> 0
,

and hence by Lemma 1.3, p is

an umbilic point. Therefore,

kI(p) = k2 (P)

But for all xE S
, by hypothesis

kI(p) > kI(x) _> k2(x) _> k2(p) = kI (p) -

Hence k I(x) = k2(x) . Therefore, all points are umbilics and conse-

quently, by Lemma 1.2, S is a sphere.

1.41 Theorem. The above theorem can be formulated as follows: If S is

an ovaloid which is not a sphere and if

1) kI>- k2
2) k

I
has its maximum at p

3) k2 has its minimum at q

then p y6 q

1.5 Theorem. Let S be an ovaloid such that k
2

= f(k 1) where f is

a decreasing function of k
1

* Then S is a sphere.

Proof: If k
I

has a maximum at p 'then k
2

has a minimum at p

since f is decreasing. Hence by 1.4, S is a sphere.

1.6 Historical Remark. The original problem in this connection was to

show that the surface of a sphere is rigid; i.e., it is not possible

to "bend" a sphere without changing lengths. Since K is invariant

under bendings, this fact is an easy consequence of our theorem that

the spheres are the only closed surfaces with constant K
.

Liebmann

gave the first proof of this in 1899. A short time after that Hilbert

gave another proof in which he showed that on a closed piece of a sur-

face with constant positive K which is not a piece of a sphere, if

kI > k2 '
then the maximum of k and the minimum of k

2
must lie on

the boundary. Our Lemma 1.3 is only a slight generalization of Hilbertts

principle lemma. (See*the appendix to Hilbert: Grundlagen der Geometrie).

Liebmann proved also (1900) that the spheres are the only ovaloids

with constant H .
our theorem 1.5 is included in papers by A.D. Alexan-

drov (1938) and S.S. Chern (1945).

H. Weyl also proved (1916) a lemma similar to our Lemma 1.3. He

showed that on surfaces with K> 0
,

it is not possible for H to have

a maximum and K a minimum at the same point. This is an easy conse-
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quence of Lemma 1.3.

1.7 Exercise. Give an example of a surface, not a sphere, with K

constant> 0
, kI> k2 '

and such that in some interior point of a region

of the surface, kI has a minimum, and therefore, k
2

a maximum.

Hint: Consider surfaces of revolution with constant K (see

Struik for examples) .
On the equator there are such points.

2. Weinqarten Surfaces

2.1 The Curvature Diagram. Let S be a region of a surface. Then at

each point p4ES ,
the principle curvatures are uniquely defined by

the

requirement tnat

kI (p)>, k2 (P)

(i.e., k1 (p) = H + TTK
,

k
2

(p) = H -

Hence the functions k
I

and k
2

map S into the indicated closed

half plane below the main diagonal in the k
I- k2 - plane. We call the

image of S under this mapping the curvature diaqram of S SectionI

above gives some information about the curvature diagrams of surfaces

with K>0

1) A segment of the diagonal line is not a possible curvature

diagram since points which map into the diagonal are umbi.lics. But, by

1.2, the only such surfaces are pieces of spheres for which the curva-

ture diagram is a single point.

2) The cases illustrated in a), b), and c).are not possible for

surfaces with K>O since in each case there is a point where k
I

has

a maximum and k
2

has a minimum, contradicting Lemma 1.3. Case c) gives

k2 as a decreasing function of k, which is forbidden by Theorem 1.5.

a) b) c)VIA1
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3) The level lines of H are lines perpendicular to the main

diagonal, while the level lines of K are hyperbolas with the main

diagonal as axis. Hence Weylls result, quoted in 1.6 and illustrated

in d), is included in our results as can be easily seen from figures

a) and d).

d) /19 
It should be remarked that general sufficient conditions for an

arbitrary point-set to be the diagram of a surface are not known.

2.2 Definition.A Weinqarten surface (or W-surface) is a surface whose

curvature diagram is a curve given by an equation W(kl,k2 = 0 .
We

will assume that W is differentiable. Since k
I

and k
2

are func-

tions of K and H
, W(kl,k 2) = 0 implies that there is a relation

U(K,H) 0 - However, because differentiability of W with respect to

kI and k
2

does not imply differentiability of U in the points

kI= k2 we make the additional assumption that U is also differen-

tiable.

Example. A surface of revolution is a Weingarten surface, since the

image of a meridian curve covers the whole curvature diagram, -which is

therefore a curve.

Exercise. Show that the curvature diagram of an ellipsoid of revolution

is an arc of a curve k ck
3

,where k is the curvature of a meri-

1
2 1 2

than curve and k, =- ,
where Q is the distance from the meridian

curve to the axis of rotation along the normal to the curve.

2.3 Question. Are the surfaces of revolution the only ovaloift which

are Weingarten surfaces?

2.4 The differential equation of a Weinqarten surface: Choose a coordi-

nate system for a region of a Weingarten surface so that the surface

is given by
z = Z(X;Y) .

Then using the equations for- K and H given in 1, 10.3, we get

U(K,H) = y(r,s,t,p,q) = 0
.

Hence the Weingarten relation becomes a second order differential

equation for z .
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The discriminant of this differential equation is computed as

2 2
follows: Let P +p + q .Then

t I +Cr2
Yr UK P2

+ UH
2 P3/2

1
U

=a
+ U -12cr

2 'Ps K
P

2 H
2P

3/2

Tt
= U

r
U

1t2
2

K P2
+

H2P3/2

Hence 1 2 2 1 2__L
( UjK+U UHH+

-X U Tr (Pt
-

T Ts
::2

P2

"I(U k k:1 +
IL

UH)P2 K 2+ '21 UH)(UK 2

1
W W

P2 k, k2

Since W
k

dk I+ W
k

dk
2

= 0 along the diagram curve W= 0
,

the sign of

1 2 d
is -opposite to the sign of the differential quotient

 k-2
. There-Wk:lWk2

dk2 1 2
dki

fore, if jk <0
,

then (p
r (Pt (P

s
> 0 and the equation is elliptic,

I dk2 1 2
while if > 0

,
then (p r(Pt s

< 0 and the equation is hyper-

bolic. Strictly speaking, the function z(x,y) of our surfaces is an

elliptic solution of y = 0 if
dk2

<0 along the diagram curve, and

dk2 =1
a hyperbolic solution if

UK7
> 0 Under the hypothesis of Theorem

1.5, if we add the condition Ithat f is differentiable and ft <0
, We

are therefore in the elliptic case. These remarks may show that in any

case the sign of
dk2

on the curve W = 0 plays an important role for

the properties of
dkj.

a Weingarten surface.

It should be remarked that in terms of parameters u and v all

Weingarten surfaces are characterized by the equation
a(K,H)

= 0
a(u'v)

2.5 -Closed Analytic Weingarten Surfaces

a) The sphere is a closed analytic Weingarten surface.

b) The surfaces of revolution illustrated below are closed ana-

lytic Weingarten surfaces.
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These surfaces are of genus 0 or I

c) Let C be a curve in space. At each point of the curve, put a

disk of fixed radius r orthogonal to the curve, with the center of

the disk on the curve. The surface generated this way is called a tube.

If C is closed, analytic and r sufficiently small, then the tube on

C is a closed analytic Weingarten surface. it is of genus 1. The dia-

gram of a tube is illustrated below.

;z

It is not known if these are the only closed analytic Weingarten

surfaces.

Exercise. Show that the tubes are the only surfaces with one principle

curvature k a constant.

2.6 Examples of C
CO

closed Wein2arten surfaces

a) A surface of genus g can be constructed by gluing g handles to

a sphere as illustrated

surfaces

ofrevolutio n 
*- tube

sphere K,
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b) A non-orientable surface can c) one can also have surfaces as

be constructed as illustrated illustrated

surfaces of

tubes revolution,

2.-7. The most interesting and important case of the general problem of

what types of W-surfaces exist is the questionwhetber there exist

closed W-surfaces with constant mean curvature H wbicb.are not spheres.

In the language of the curvature diagram the questions reads as follows:

Are there closed W-surfaces whose diagrams are straight line segments

perpendicular to the diagonal k,= k
2

? The answer to this question is

certainly "no" if we restrict the investigation to oval-oids; this is a

special case of Theorem 1.5 above.

We shall prove in Chapters VI and VII the following two theorems:

1) The only (general) closed surfaces of genus 0 with H = C

are the spheres.

2) The only simple closed surfaces (of arbitrary genus) with H =C

the spberare es.

The question whether there exist closed surfaces of genus > 1 with

H = C and with self-intersections (i.e., not simple) which are not

spheres remains unanswered.

Before we enter into Chapters VI and VII, we wish to justify the

statement that the knowledge of all closed surfaces with constant H

really would be important. We shall in fact show in the following para-

graph that this problem is closely related to a classical chapter of

geometry; namely, the isoperimetric theorem.
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3. The Isoperimetric Problem and Surfaces with Constant H

3.1 Introduction. The isoperimetric problem in two dimensions is to

find the shortest simple, closed curve enclosing a fixed area. The so-

lution is a circle.

The analogous problem in three dimensions is to find the region

of fixed volume with minimal surface area. Here again the classical

answer is the sphere. This problem is related to the discussion of sur-

faces with constant H as follows: We will prove that a surface has

constant mean curvature if and only if its area A is stationary (in

a sense to be defined) with respect to volume preserving variations.

Hence the conjecture that all simple closed surfaces with constant mean

curvature are spheres is equivalent to the conjecture that A
, con-

sidered as a function on the set of all simple closed surfaces enclo-

sing a fixed volume, has exactly one stationary value; namely, its ab-

solute minimum.

3.2. Let V(S) denote the volume of the interior of a simple closed

surface S Let Z be the collection of all simple closed surfaces S

such that V(S) = 1
.

Let A(S) be the area of S
.

Then A is a

function on S which has exactly one absolute minimum; namely, when S

is a sphere. Let S be a fixed surface and consider a one parameter

family of continuous and differentiable variations of S
,

indexed by

a parameter t
.

Let S
t

denote the varied surface. Then we require

that S = S and that for each t
,

S
t

E Z
. These variations are

called volume preservinq variations. Let A(t) = A(S Then A is
t

a differentiable function of t
. If A'(0) = 0 for all volume pre-

serving variations, then S is called a stationary surface.

We shall prove in 3.4 that a simple closed surface is stationary

if and only if its mean curvature H is constant.

3.3 Some Formulas. Let S be a surface given by the vector X and

let X(t) be a variation of S where X(O) = X
.

Let (p
= XI(O)FC de-

note the normal component of the variation vector X'(0) .
We indica-

ted in 1, 8.7 that

1) At (0) = -2 if (pH dA
.

This was an immediate consequence of the formula
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11) A1 (0) = -2 Ily H dA +  (R,Xf dX)

which holds for surfaces with boundaries.

Similarly, it can be shown that

2) V1 (0) = - J y dA .

This is a consequence of the general formula

2 1) V1 (0) = - J T dA+
-1  (X' X,dX)
3

where the volume V is given by

3) 3V = AXRdA
.

dA

X,

X

X(  (tX

Equation 3) can be,derived by considering the figure at the left. -XR

is the height of the cone of base dA
. Hence -XR dA is 3 times the

volume of this cone. Therefore 3V = -  XR dA .
For a non-convex region,

the right figure indicates how the proof is carried out.

Exercise. Derive formulas 22) and 2) above using formula 3).

3.4 Theorem. Let S be a simple closed surface. Then S has constant

mean curvature H if and only if 8 is a stationary surface.

Proof: Let S be given by the vector X and suppose for simplicity

that V(S) = I
. Sufficiency is trivial; for, suppose H is constant

and X(t) is a volume preserving variation of S .
Then

V1 (0) = -   (pdA = 0

and hence

AI(O) = -2 j TH dA = -2H  ydA = 0
.

conversely, suppose At(O) = 0 for every volume preserving trans-

formation. Then we must show that H is constant. Let y be an arbi-

trary function defined on S such that jj9dA = 0
.

We wish to show

first that then y is in fact the normal component of a volume pre-

serving variation. Consider the family of surfaces
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x M= x + t T
R

.

Let V
I
M denote the volume of X

I
(t) .

Then

V1(0) = V(S) = I
.

Now the normal component of x:,'(o) is clearly given by

X:I(O)R = TRR =
 p - Hence, by equation 2) of 3.3,

1 (0) = - 11 X:'L (0) R dA = -   (pdA = 0V:j

by hypothesis. However, the variation X
I

(t) need not be volume pre-

serving. This is remedied by taking the family of surfaces

x (t) = V_ 1/3
Mx M

1 1

Then, clearly, by equation 3) of 3.3

V(t) =- i
.

Hence X(t) is a volume preserving variation of S . Now, since

VIL (0) = 0
,

it follows that

x 1 (0) = X, (0) = YFC

Hence taking the scalar product with the unit vector X gives

9 = X, (0) R
.

Therefore y is not only the normal component of X11(0) but is also

the normal component of XI(O) ; and thus T is the normal component

of a volume preserving variation.

By hypothesis, S is stationary; so

A1 (0) = -2SI (p H dA = 0 .

Thus 11 (p H dA = 0 .

Also if h is an arbitrary constant

11 (ph dA = 0

and hence for any function y such that JjTdA = 0 and for any con-

stant h
,

J (p(H-h)dA 0

Now let h be the mean value of H

h = ! JH dA
A

Then II(H-h)dA 0 and consequently (because we may put (p= H-h)

SI(H-h)2 dA = 0
.

Therefore H=- h which concludes the proof.
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3.5. The condition that H is constant occurs in another connection;

namely, a free soap bubble is in equilibrium (no matter how unstable)

if and only if H is constant. Of course, the only experimentally

known examples are spheres. But, for example, there may very well be

cases of soap bubbles of positive genus which are in equilibrium.

3.6 General Closed Surfaces

In order to discuss Theorem 3.4 for non-simple closed surfaces, it is

necessary to generalize the notion of volume. For a closed curve C in

the plane, the "order" of a point x  C with respect to C is de-

fined to be the algebraic number of times C winds around x . I.e.,

order W=

1
6 0 where 0 is the angle in a set of polar coordi-

C 2n C

nates with origin at x . Clearly the order depends only on the connec-

ted component of the complement of C as indicated in the figure.

For a closed surface S cE
3

and a point x / S
,

take a small

sphere about x and project S onto this sphere from x .
The degree

of this map is defined to be the order of x .
As above, the order de-

pends only on the connected component of the complement of S in which

the point is located. Hence we can attach an integer d
I

to each such

connected component R Define

V = EdLVol(R d

Then it can be shown that with this definition of V
, again

3V = - 11 XFC dA
.

Our Theorem 3.4 and its proof hold also in this situation. T. Rado has

shown that the isoperimetric inequality also remains true.
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General Closed Surfaces of Genus 0 with Constant

Mean Curvature - Generalizations

The main theorem of the chapter has already been formulated in V,

2.7. The proof will be given in Section 2 and some generalizations will

be made in Section 3. The first paragraph is devoted to some preparatory

formulas and computations.

1. Isothermic Parameters

1.1. In 1, 10.2 we discussed the introduction of isothermic parameters;

i.e., parameters u, v which satisfy

ds
2

= E(du2+ dv
2

The basic entities in such a parameter system are as follows:

1) K k k
LN-M

2

1 2
E

2

2) H -1(k + k
L+N

2 1 2

The lines of curvature are given by

3) -M du2 + (L-N)dudv + M dv
2

= 0
.

The Codazzi equations are

E

L - M =
-,! (L+N) = E H

v u 2E v

M - Nu= -

Eu
(L+N) = -E H .

v 2E u

But, since EH =

L+N
L N

2
E H = -EH + --2 +

v

v v 2 2

E H=-EH +
LU

+
Nu

.

u u 2 2

Hence the Codazzi equations can be written

4)
JL-N

+ Mv=EH
u(k; N)

u

(L-N M -EH

1.2 Complex Parameters: If u and v are isothermic parameters, we

can introduce the complex parameters

w = u +iv w =u- iv

One, verifies easily the rules for differentiation

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 136–146, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989



137

2
dw du av

2
- L

=
'3

+ i
(3

'aa Ou av

i.e., for an arbitrary complex function F(w,,: ) = P +iQ

2Fw= (Pu+ Qv) - i(P
V_ Q

2F-= (P - Q ) + i(P + Q
w u v v u

Let Z(w, i)
L-W

- im
2

Then from 1.1.1 and 1.1.2 it follows that

1) Jkl-k 21
E 2

Hence the umbilic points of a surface S are the zeros of (p A

simple computation shows that the equation 1.1.3 for the lines of cur-

vature can be written

2) Im{ -z (dw)21 = 0
.

This is equivalent to

arg 0+ 2 arg(dw) mw (m an integer)
or

2t) arg d
MW I

w =

7
-

'2 -"-' '

where dw is the tangent element of a line of curvature.

By multiplying the second equation of 1.1.4 by i and adding it

to the first, the Codazzi equations can be written

3) 1- = EH
w w

1.3 The Index of ai7i isolated umbilic point,: Let p be an isolated

umbilic point. Then p is an isolated singularity of each of the two

families of lines of curvature (the one family corresponding to k
I

and the other to k
2 '

where we retain the convention k I> k2) . There-

fore p has an index with respect to each of these families (see III,

1.2); but, because the lines of one family are orthogonal to the lines

of the other family, it follows immediately from the definition of the

index that these two ind-ices are equal. Therefore the index of an iso-

lated umbilic point is well defined and satisfies

1
6 (arg dw)

where 6 means the variation if one goes once around p on a small
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curve in the positive sense and where dw has the same meaning as in

1.2.21. From 1.2.21 it follows, since the integer m remains unchanged,

that
j = -

1* :1
6 (arg 4,)

2w 2

1.4 Parameter Transformations: If the isothermic parameters u, v are*

replaced by other regular parameters x
, y ,

then these new parameters

are also isothermic if and only if z = x +iy is an analytic function

of w = u +iv with non-vanishing derivative, i.e., we have

z - z M ,
z 0

This means that the correspondence between the w-plane and the z-plane

is conformal.

We are interested in how our function 4 (w, ;) introduced in 1.2

changes under such a parameter transformation. Now, from the definition

of - l and the definitions of L, M, and N, it follows by an easy cal-

culation that

, = -2X R

where, as always, X is the position vector and R the normal vector

of our surface. Similarly, if V(z, ) denotes the function analogous

to ("0 (w " ) for the parameters x, y, then

V -2X R
z z

But, since

X X
dz dz

z  -w- X Xz 7w w w

we have ,(dz) 2

dw

Or 2 2
-t (dw) V(dz)

This formula desqribes the transformation of 4 In the terminology

which is usual in the theory of Riemann surfaces, the rule of trans-

formation may be formulated as follows: With respect to conformal para-

meter transformations, w*-,z
,  t(dw)

2
transforms like a complex

quadratic differential (where the coefficient -z is a function of w

a nd  ;i ) .

2. The Main Theorem

2.1 Theorem: Let S be a general closed surface of genus 0 (i.e.,

the parameter surface S
0

is of genus 0) with constant mean curva-

ture H .
Then S is a sphere.

We shall give two distinct proofs of this theorem, both of them
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using the characterization of the spheres given in V, 1.2. Thus we

shall prove that all points of the surface S are umbilics. Both

proofs will depend on Lemma 2.2 below and the first proof will also

require Theorem 2.3.

2.2 Lemma. The condition R = constant is equivalent to the condition

that 4 be an analytic function of w (Notation as in 1.2).

Proof: H = c is equivalent to H
u

= Hv = 0 and hence by 1.1.4 is

equivalent to the real and imaginary parts of j, satisfying the Cauchy-

Riemann equations. (The lemma also follows from 1.2.3).

2.3 Theorem. Let R be a region of a surface with constant H and

let U be the set of umbilic points. Let pE U .
Then

1) either p is an interior point of U

2) or p is an isolated point of U and the index of p is

negative.

Proof: By 1.2.1, U is the set of zeros of the function 15 which, by

Lemma 2.2, is an analytic function of w . Thus, either (p =- 0 and all

points belong to U
,

or 4 X 0 and p is an isolated point of U

In this case we can apply 1.3. Since  D is analytic

'Z (w) cwn where cAO , n>_1

and hence 6 (arg 0) 27cn

Consequently, I
6 (arg P) <0

X 2

2.4 First proof of the Main Theorem: We can interpret the lines of cur-

vature and the umbilic points of S as lines and points of S
0

. Let

U be the set of umbilic points of S
0

.
Since S

0

has genus zero, by

Poincar6ls theorem (111, 2.2, and 111, 2.4 a I) U is non-empty and if

U is finite, then at least one point of U has positive index. Hence

by Theorem 2.3, U is infinite. Since S
0

is compact, U has a point

of accumulation, p .
But U is the set of zeros of the continuous

function k
2- kI and consequently is closed. Hence pe U

, and, again

by Theorem 2.3, p is an interior point of U Let U* denote the

set of all interior points of U

Now, suppose there exists a point q  U* Then a continuous path

from p to q would have a first common point with the closed non-

empty set S
0-

U*
.

This point, being a point of accumulation of U

would belong to U but would be neither an interior point of U nor

an isolated point of U
, contradicting Theorem 2.3. Therefore q does
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not exist; i.e. U* = S
0

= U
,

and S is a sphere.

2.5 Second Proof of the Main Theorem: The metric of S induces on S
0

a Riemannian metric, and therefore a measure of angle. Thus S induces

the structure of an (abstract) Riemann surface on S
0

(as defined in

the theory of complex analytic functions). on this Riemann surface we

2 2
have the quadratic differential (Ddw Vdz as discussed in 1.4. By

Lemma 2.2, this differential is analytic. Since the zeros of this dif-

ferential are the umbilic points, the proof would be complete if we

could show that 4 -=O
.

Therefore our main theorem may be considered

as a corollary of the following theorem about Riemann surfaces.

2.6 Theorem: On a compact Riemann surface S
0

of genus 0
,

there

exists no analytic quadratic differential I>dw except the trivial

one, 1D E 0
.

Proof: One way to prove this theorem is to follow exactly the lines of

our "first proof" given above in 2.3 and 2.4. One considers on S
0

the

curves defined by 1.2.2 and their singularities. As in 2.3 one shows

that the indices of the singularities are negative and as in 2.4, one

finally proves, using Poincar6ls theorem, that -1=-O .

However, the theorem can also be proved without using the Poincar6

Theorem and using instead the fact (which is a part of the general uni-

formization theorem) that there exists only one conformal type of com-

pact Riemann surface of genus 0
.

For,this reason we may assume that

our surface S
0

is the ordinary sphere of complex numbers which can be

covered by two parameter neighborhoods; one of them in terms of w co-

vering all of the sphere except the point w = co
,

and the other in

terms of z = w

-1
covering all of the sphere except the point w = 0

2 2
The coefficients of the differential ( dw = vdz are connected by the

relation

M W(
dz 2

= TWW
-4

= VWz

4

t W  )

But -1 is an entire function of w and V is regular for z = 0

Hence 4 = 0 for w = co . Therefore, (I =_ 0 by Liouville's Theorem.

2.7 Remark. The appearance of complex analytic functions in the inve-

stigation of surfaces with H = c is not very surprising if one recalls

that the class of these surfaces includes the minimal surfaces (defined

by H = 0 ). The connections between minimal surfaces and complex ana-

lytic functions form a classical chapter of mathematics.
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On the other hand, our "main theorem" is trivial in the case

H = 0, for in this case K < 0 everywhere, which is impossible on a

closed surface (see 11, 4.2).

3. Special Weinqarten Surfaces

3.1 Introduction. In this section we will again study surfaces on which

a relation,

1) W(klpk2 0 (as always k I>_ k2)

holds (see V, 2.2). We wish to apply the method which furnished the

"first proof" of our main theorem in Section 2 to functions W more

general than W= k1+ k
2- c .

Since this method is mainly concerned

with the umbilic points, it is natural to impose conditions on W with

respect only to their behavior at points where k, = k
2

'
We shall al-

ways assume that W(k,,k 2) has continuous first derivatives and that

(Wkl'Wk2 (0,0) where k I= k
2

This means that

2)
dk2

-

, exists when k, = k

dk1 2

(r. may be infinite). The decisive hypothesis is

21) K = -1 where k:L = k
2

We will prove that an analytic closed W-surface of genus 0 which

satisfies 21) is a sphere.

If, instead of 1), the Weingarten relation is given in the form

U(K,H) = 0

where U is differentiable at the points where k:,= k
2

(or K H
2

then 2) is equivalent to

2
2*) UKH+

I

UHA 0 where K = H
2

This follows immediately from

U

kIdkI+ Uk2dk2
= 0

U = U k +
I

U U k, + U
k K 2 2 H I Uk2= K H

and from the facts that if k k then U U and H k = k2
'

k
:L k2 :1 2*

However, we shall not use this form of the statement.

We shall actually use conditions 1), 2), and 21) in the following



142

weaker form:' Suppose p
0

is an umbilic point such that there is a

sequence {p nI of non-umbilic points converging to po Let

h = H(p0 ) = k1(p0 k2(Po

Then condition 2) implies

2

k2(Pn )-h

Pn-p0k 1(Pn) -h

Therefore

1+K H(pn)-h
3) - = lim

1-K

pn-po i[k, Pn) -k 2(pn)l

for all sequences {p
n

} of non-umbilic points converging to p
0

or, in terms of an isothermal coordinate system at p
0

such that

E(p0) = I

H(pn)-h
31) lim

pn-P0 n

where 0 is the function of 1.2. This last condition is all we will

actually use. Since this makes no use of a Weingarten relation, we will

in fact prove a more general theorem than was promised. (see 3.5 below).

3.2 Theorem. If S is a general closed analytic, surface of genus 0

satisfying condition 3) with A = 0 (i.e., K = -1), in all umbilic

points, then S is a sphere.

3.3 First part of the proof. Assuming Poincar6ls theorem, as in 2.3

it is clearly sufficient to show that if p
0

is an umbilic point then

either

1) p
0

is an interior point of the set of umbilic points; or,

2) p
0

is an isolated umbilic point and the index j of p
0

is

negative. We may assume that p
0

is not an interior point of the set

of umbilic points. Therefore, there is a sequence {p n} of non-umbilic

points which converge to p
0

and condition 3) is applicable to this

sequence.

Since we are on an analytic surface,  Z and H have Taylor's

series developments around p
0

.

 P
(n)

(w,,p) + (w,rw) +..., n>O

(0)
H H (w,W) + H (w,w)

where 0
(k)

and H
(k)

are homogeneous forms of degree k
,

and
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0(n) X 0
.

Since H(O) ip,of degree 0
,

H(O) h
, so

H(w,,: ) - h H(1) (W, ;)+ ...

From 1.2 and condition 3), o and H satisfy the following two rela-

tions

a)
1

H
E w

b) lim
H-h

= X

Pi-po
1,11

Substituting the Taylor's expansions of o and H in a), by comparing

degrees we conclude that H(k)=
0 for k< n . But, since H is real,

w

2H
(k)

= H(k)_ iH
(k)

w u v

and hence H(k)= H(k)= 0 . Thus H
(k)

is a constant. But, since H
(k)

u v

(k)
=is a homogeneous form of degree k

,
H 0

,
0 <k <n Therefore

H(w,7d) - h = H
(n)

(w,;i7) + H
(n+1)

(W, ;)+

Equation b) can be rewritten

lim
H +...

- = X

Pi-po
(n)

If polar coordinates r and 0 are introduced at p
0

then

H(m) = rmH(m) (cos E)
,
sin E) ) = rmH(m)

(0)

0
(m)

= r m0(m) (cos E) sin E)) = rmo (m)
(0)

where H
(m)

and t(m) are homogeneous polynomials of degree m in

Cos 0 and sin E) . Therefore

I im
r nH(n) (o)+...

lim
H(n) _(E)) +rH

(n+1)
(Q) +.

pi-p,j r
n

,
(n)

(G) +. r-o I ()
(n)

Q+r  p
(n+1)

_H
(n)

(Q)
_

H
(n)

(W,;,)
(n) (n) --Z (o) (w,w)

In our case, 0 and therefore H
(n)

(W,' V) = 0 But by equation a)

(n) (w, %)
_

(n) (w,; 0 = H W) = 0
w w

Therefore 0
(n)

(w, v) is an analytic function of w
.

Since it is homo-

geneous of degree n
,

o(n) = cwn where c 26 0 Hence

1) = cw + 0(n+1) +

n n+1
= cw + r B
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where IBI< M in a sufficiently small neighborhood of w = 0

3.4 Second part of the proof: We are now in a position to prove that

PO
is in fact isolated and that j <0 Consider the neighborhood

r <
J-CL

. Suppose -2 = 0 at some point 0 in this neighborhood. Then
M

cwn = -r n+IB
n n+I

IcIr = r JBI

Hence Icl = rIBI for,some r  6 0, r
cl

>
Icl

,
which is a contra-

JBI M

diction.

To show that j <0
, by 1.3 and because 6arg(cw

n
n 2ff > 0, it

is sufficient to show that

6(arg P) = 6 arg(cw
n

for a small closed curve in the neighborhood r<
'c'

.
But in this

M

neighborhood
cwn, < 1cwn, .

Geometrically, this has the consequence that the three points O(w)
n

0
,

and cw never lie on a straight line with 0 between the other

two. cwn
0

0 M

Hence
n

arg (P - arg cw A k7c

where k is an odd integer. We have that

6(arg o)-6(arq cw
n

integer
2 -K

while argo-arg cw
n

 -6 half odd integer
2x

Hence by continuity,

6 (arg 4 ) -6 (arg cwn) = 0
.

3.5 Remarks: The above proof makes strong use of the hypothesis tha't

the surface is analytic, while the proof for surfaces with constant H

did not need analyticity. But there is actually no greater generality

in the case of constant H
.

For if the surface is described locally as

z = z(x,y) then the equation H = c reads as follows:

y(p,q,r,s,t) = (I+q 2)r-2pqs+ (I+p 2)t - 2c(l+p
2
+ q2) 3/2

= 0

This is an elliptic equation since we always have
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+q2 +P2 .(pq)
2

=I + p2+ q2> 0

Hence (P = 0 is an analytic, elliptic, 2'nd order differential equation.

But S. Bernstein's theorem says that a three-times differentiable so-

lution of such an equation is in fact analytic. Hence the surfaces we

considered with constant H are in fact analytic.

Hartman and Wintner (Amer. J. of Math., Vol. 76(1954), p. 502)

have proved Theorem 3.2 for twice differentiable W-surfaces, using

condition 2*) of 3.1. But their proof makes use of the Weingarten re-

lation which ours does not. In fact our proof applies to any analytic

surface whose curvature diagram has cusps at the diagonal (k:,= k2)
with tangents orthogonal to this diagonal.

I do not know whether, under these conditions for the diagram,

anything can be proved for non-apalytic surfaces which are not Wein-

garten surfaces.

3.6 Further Remarks. For analytic surfaces the following theorems are

true. (H. Hopf, Math. Nachrichten, Vol. 4 (1951)).

a) If K<O (i.e. 1,\I< 1), then r,=-l (i.e. 0) and

consequently an umbilic point is isolated and its index is negative.

b) If r.>O (i.e. jxj > 1), then K
= (2m+l)- :' for some posi-

tive integer m .
An umbilic point is isolated and its index is +1

The reason for these facts is that there are very few pairs of

(n) - (n) - (n)
homogeneous forms  D (w,w) and H (w,W) with H real which

satisfy
(n) (n) (n) (n)

w 0  -

Although in the quoted paper only Weingarten surfaces are mentioned,

the proofs do not use conditions 1) and 2) but only 3). Therefore, the

hypothesis that the curvature diagram is a curve can be replaced by

the weaker hypothesis that, in the points where k I= k
2

'
it has

cusps, similar to the figure in 3.5 (but with different tangents).

Recently K. Voss has proved the following theorem for analytic

surfaces:
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bl) If K >0
,

then the surface is a surface of revolution, with

the considered umbilic point on the axis. *)

Exercise I: Show that b) is a corollary of bl).

II: Show that the statement about K in b) breaks down if the

surface is not analytic but of class C
n

with a given n (which may be

large).

Hint: construct a surface of revolution.

*) Math. Annalen, Vol. 138 (1959)



CHAPTERVII

Simple Closed Surfaces (of Arbitrary Genus)

with Constant Mean Curvature - Generalizations

1. Introduction

In this chapter we will prove that the only simple closed surfaces

with constant mean curvature H are the spheres. From this theorem

and the main theorem of the preceding chapter it follows that the only

undecided cases are non-simple closed surfaces with genus > 0 .

A.D. Alexandrov communicated the theorem and sketched the proof in

a lecture given at Zurich in July 1955, but the proof has not yet been

published (March lq56). The proof depends on the rather obvious obser-

vation (to be discussed in Section 2 below) that the spheres are the

only closed surfaces with a plane of symmetry in every direction-The

proof then comes in two parts, a "geometric" and an "analytic" part.

We prove first that under suitable restrictions, any simple closed sur-

face satisfies certain "symmetry" properties, and second that two so-

lutions of an absolutely elliptic second order partial differential

equation which have a specified type of contact at a given point

actually coincide in a neighborhood of the contact point. The combina-

tion of these two results will give us our theorem.

It is my opinion that this proof by A.D. Alexandrov,and especially

the geometric part in Section 3 below, opens important pew aspects in

differential geometry in the large.

2. Another Characterization of the Spheres

2.1 Definition: A plane P in E
3

is a elane of symmetEX.for a set

S CE
3

if the Euclidean reflection of S in P maps S onto S .

The direction of a plane is the direction of a normal to the plane,

and hence by parallel translation corfesponds to a unique pair of anti-

podal points on the unit sphere I .
The diaqram of directions 2:1

of S is the set of points on I determined as above by all planes of

symmetry of S .

2.2 Lemma. If a simple closed surface S has a plane of symmetry in

every direction, then S is a sphere. In fact,.if the diagram of

directions 11 has an interior point on I ,
then S is a sphere.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 147–162, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989



148

Proof: Suppose the north pole is an interior point of Z' . Then on

each great circle through the north pole there is a small arc such that

each point on this arc corresponds to a plane of symmetry of S . Now

if P
I

and P
2

are two planes of symmetry and if cc is the angle be-

tween P
I

and P
2

'
then a reflection of S in P followed by a

reflection in P
2

corresponds to a rotation of S through an angle

2a about the intersection of P
1

and P
2 '

which by definition leaves

S invariant. Let P
1

be the plane corresponding to the north pole on

it . Then each point on the above small arc of a fixed great circle

corresponds to a rotation leaving S invariant. It is clear that all

of these rotations are about the same axis. Thus all small rotations

about this axis leave S invariant. But the rotations about a fixed

axis leaving S invariant form a group which is clearly generated by

the "small" rotations. Hence S is invariant under all rotations about

this fixed axis; so every point on this great circle corresponds to a

plane of symmetry of S
.

Since the great circle was arbitrary, we con-

clude that It = 1. But it follows from this that S is invariant

under all rotations. Let a ES
.

Then S contains a whole sphere

through a and therefore S is a sphere.

3. A "Symmetry" Property of Simple Closed Surfaces

3.1 Definition: Let S be a simple closed surface (of arbitrary genus)

in E3 of class C
2

,
and let d be a distinguished direction in E3.

(in sketches we will always take d to be the vertical direction ori-

ented from above to below.) Let n(x) denote the inner normal to S

d

at x eS .
Let

A - f x F. S :.,41 [ d
,
n (x) ] <

"

I
2

B = fx F_ S :., [ d,n (x) ] >
"

I
2

C = {x F. S :-4 [ d
,
n (x) I =

2
}

2

i.e., with the above convention, A is the set where the inner normal
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points downward, B where it points upward, and C where it is bori-

zontal.

A line parallel to d and oriented the same way as d will be

called a.d-line.

3.2 Lemma. 1) A and B are open sets on S and C is closed.

2) If denotes closure on S
,

then

RcAuC (RnB is empty)

EcBuC (EnA is empty)

3) If F is a straight line in the direction d oriented the

same way as d which meets S at ae A then f is not tangent to

S at a
,

and traversing t in the positive direction, one leaves

the exterior of S and enters the interior of S at a . I.e., points

of A are points of entrance to the interior of S in the direction

d
. Similarly, points of B are points of exit from the interior of

S in the direction d
.

The proof is obvious.

3.3 Definition: The asymptotic directions at a point of a surface are

given by the zeros of the second fundamental form; i.e., by

L du2+ 2M dudv + N dv
2

= 0 .

At a point where K> 0
,

there are no real solutions and hence no such

(real) directions. If K< 0 there are exactly two asymptotic direc-

tions. We are interested in points p such that K(p) = 0
.

The asymp-

totic directions at such a point are called doubly asymptotic direc-

tions. Two cases arepossible: Either (L,M,N) A (0,0,0) ; i.e., p is

an ordinary parabolic point, and there is exactly one doubly asymptotic

direction, or (L,M,N) = (0,0,0) ; i.e. p is a flat point, and all

tangent directions are doubly asymptotic.

A distinguished direction d in E3 is called exceptional (with

respect to S ) if there is a doubly asymptotic direction on S pa-

rallel to d .

3.4 Lemma. Let S be a simple closed surface of class C
2

and suppose

d is a non-exceptional direction with respect to S .
Then the set C

defined above is the sum of a finite number of non-intersecting simple

regular closed curves, and

!=AuC and E=BuC
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Proof: Let pf.C . Let (x,y,z) be a system of rectangular coordinates

at p so that the positive x-axis is a d-line, the positive z-axis is

the inner normal to S and (x,y,z) is positively oriented. Then the

x-y-plane is the tangent plane to S at p and in a neighborhood of

y I

p V. Z d

p ,
the surface is given by z = z(x,y) ; i.e., if X is the vector

describing S
,

then

x = (X,Y,Z(X,Y))

where z is twice differentiable. Since

xx (1,0'zx

Xy (OPI'zy

the inner normal is given by

x x x

z
2+ z2+ 1)

1/2 (-zx'-zy
x y

Hence in a neighborhood of P ,

A = {X: z
x

<0) ,
B = {X: z

x
> 0) ,

C = {X: zx
= O} .

Now z(x,y) = ax 2+ 2 bxy + cy
2+ D(x,y) where D contains terms of

higher order. Since p is not a flat point, (a,b,c) A (0,0,0) .
In

fact, (a,b) )& (0,0) ,
for if (a,b) = (0,0) ,

then

Z(X,Y) = cy
2+ D(x,y)

which would mean that the x-axis is a double asymptotic direction

contrary to the choice of the coordinate system (x,y,z) . Therefore,

zx
2 ax + 2 by + Dx(X,Y)

where grad z x(o,O) 2(a,b) ;A (0,0) .
Hence the curve z

x
(X,Y) = 0

which defines C near P ,
i s a regular curve near (0,0) .

But p
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was an arbitrary point of C and hence, since S is compact, C is

the union of a finite number of non-intersecting simple regular closed

curves.

To prove the second part of the theorem, let be the projection

of C into the x-y-plane. Then & is a regular curve through p such

that z > 0 on one side of F and < 0 on the other side. Hence
- -

x

CcAnB
. Since, by 3.2.2, AcAuC and BcBuC

,
it follows that

R=AuCand E=BuC
.

3.5 Lemma. With the assumptions and notations of 3.4, assume further

that a certain interval T = {x: O< x< x:,} of the x-axis does not con-

tain any point of S so that T lies either in the interior or the

exterior of S
. Let S be the intersection of S with the half plane

(y = 0
,

x> 0) in an arbitrarily small neighborhood of p .
Then

either T is in the interior of S and  n A A 0 or T is in the

exterior of S and  n B A 0
.

Proof: As in 3.4 the positive z-axis lies in the interior of S and

the negative z-axis lies in the exterior of S (in a neighborhood of

p ). If T is in the interior, then S separates T from the nega-

tive z-axis (see Figure 1) and therefore z < 0 on Consequently,

since z = 0 at p ,
z x<0 somewhere on i.e., Sn A  & 0

.
Simi-

larly, if T is in the'exterior, then S separates T from the posi-

tive z-axis and hence z >0 on S
,

which implies z > 0 somewhere
.1

x

on S ; i.e., S n B  4- 0 . (see Figure 2)

Fiq- I Fiq. 2

x x

3.6 Definition. Let a and p be two oriented pieces of surfaces

with interior points in common, and let p be such a common point.

1) If a and p have a common tangent plane at p ,
then a

and P have a contact at p .

2) If a and p have a contact at p such that the positive

normals to a and p coincide at p ,
then a and p have a p osi-
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tive contact at p.

3) In a neighborhood of p ,
let a be given by z:,= zI(X,Y)

and P by z 2= z 2(X,Y) .
if zI- z2 changes sign in each neighborhood

of p ,
then a and intersect at p

4) If a and have a contact at p but do not intersect at

p ,
then a and p have a 2roper contact at p .

5) If a and p have a contact at p such that there is on a

a regular (i.e. ,
of class CI curve r through p with the property

that on at least one side of a and do not intersect, then (x

and p have a s i-proper contact at p

3.7 Example. The surfaces in E
3

defined by the equations

zk =Imf c (X + iy) k}
, k>, 2

have a contact with the x-y-plane at the origin which is not semi-

proper.

Proof: The function z

k
is zero on each line through the origin which

makes an angle j
R

with the x-axis, j = 1,...,k ,
and changes sign

k

on crossing any of these lines. If r is any regular curve through the

origin, since k-> 2
,

a zero line of z

k
points into each component of

the complement of r in a neighborhood of the origin. Since z

k

changes sign across these lines, it changes sign in each such component.

3.8 Theorem. Let S be a simple closed surface of class C
2

and sup-

pose d is a non-exceptional direction with respect to S
.

Then there

is a plane P perpendicular to d such that if St is the reflection

of S in P
,

then S and St have a positive semi-proper contact,

(the "positive" normals always being the interior normals).

Proof: if a and b are two points, let M(a,b) denote the plane

which is the perpendicular bisector of the line joining a and b

We will prove that either

1) There are points aE A and bE B which are on a d-line such

that if P is a sufficiently small neighborhood of b on S and pt

is the reflection of p in M(a,b) ,
then pt and A do not inter-

sect; or

2) There is a point cE C such that if y is a sufficiently

small neighborhood of c on S and yt is the reflected image of y

in the plane through c perpendicular to d
,

then yt does not have

an intersection with A .
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Assume again that d is the vertical direction and let P be a

horizontal plane below S
.

Let 9" be the reflection of 5 in P
.

Translate E" upwards until it first meets R
.

Call this translated

set 91
.

Then T31 is the reflection of 9 in a plane parallel to P

and clearly Ef and R have a common point, but no intersection. Let

p eR nEl
.

Then we will show that either p = a F.A and 1) above is

satisfied or p = c E C and 2) is satis f ied.

We observe first that there is no point of Tk = A uC below p on

the d line through p since 5" is translated upwards until it

first meets Hence if there is any point of S below p ,
it is a

point of B But, by 3.2.3, such a point is an exit point from

the interior of S
,

and since there are no points of A uC below p

it is the only point of S below p .
Thus

1) either there is exactly one point b of B but no point of

A u C below p ,

2) or there is no point of S below p

Case 1,. We prove that in this case p E A (i.e. , p / C) .
Since b E B

the d line through p is not tangent to S at b and therefore is

also not tangent to BI at p . (see the figure) From the definition

of B1, it follows that in a neighborhood of p ,
there is no point of

A below B1
.

On the other hand, since b is a point of exit from

the interior of S the segment Tb lies in the interior. Therefore,

if p were a point of C
,

it would follow from Lemma 3.5 that in each

neighborhood of p ,
there are points of nA where the curve  is

tangent to the x-axis and below the plane x 0
,

which is obviously a

contradiction. Consequently, pe A

B

p

o'
d

z

S31)
b

B x

Case 2. In this case pe C for suppose pe A .
Then the x-axis enters

the interior of S at p and hence must leave the interior at some
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point b F-B contrary to the assumption that there is no point of S

below p .
Therefore p = c ERng

.
Under the map of 9 into 91

,

p = c clearly is mapped into itself. Hence the mapping is a reflection

in a horizontal plane through p .

Let y be a neighborhood of p and y' the reflected neighbor-

hood. Now y' contains points of A' Bt
,

and C' (where I denotes

the reflected'sets). we know already that 92 = BI uCt does not inter-

sect A so it remains to show that ytn A' does not intersect A
.

Let be the projection of C into the tangent x-y-plane. Then

by 3.4, is a regular curve. Let qe C and let q' be the reflected

point of q .
Then qt is either below q or equal to q ,

since p

is.the first contact point of and R
.

Thus

x (q) _< x (q -x (q)

and hence x(q),< 0
.

Therefore is above or on the y-axis and has a

minimum at p .

& decomposes the neighborhood of p into two components, one of

them corresponding to the projection of A
,

and the other to the

projection 9 of B .
We claim that is the lower one; i.e., the

one containing the positive x-axis. Indeed, the positive x-axis lies

in the exterior of S and therefore according to lemma 3.5, there

are points of B below the y- -plane. It follows that K is above
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But then it is obvious from the drawing that KI and  ' have no

points in common with  and therefore y'n At does not intersect A.

This completes the proof of Theorem 3.8.

3.9 Examples: Both cases of Theorem 3.8 actually occur,-as is illustra-

ted by the following two examples.

Case 1

BI

Case 2

A A

The proof fails for surfaces with self-intersections, as illustrated

below.

Bf

However, the theorem may very well be true, even though the proof

does fail.
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4. Absolutely Elliptic Partial Differential Equations

4.1 Definition. Let y
=

T (r,s,t,p,q,z,x,y) be a function of eight

variables defined in some region in E8
. Then if

y has continuous

first partial derivatives we may regard y
= 0 as a second order par-

tial differential equation for z = z(x,y) with partial derivatives,

p =

zx I q = z

y
,

r = z
xx

' s =

zxy ,
and t = z

yy

Consider the quadratic form

2 2
A rN + TShp +

Ytp

1) z(x,y) is called an elliptic solution of 0
,

or 0

is said to be elliptic with respect to z if A is positive definite

when the particular function z(x,y) is substituted in (p .

2) y
= 0 is elliptic if A is positive definite for every so-

lution z(x,y) .

3) y
= 0 is absolutely elliptic in a region RcE

8
if A is

positive definite for arbitrary values of its eight arguments in R

If = AIr + A
2

s +...+ A6z + A
7

where A
I= Ai(x,y) i = 1,...,7,

then y 0 is a linear partial differential equation. If A7= 0

then y is homoqeneous. A linear equation is elliptic if

AIX2+ A2hp + A
3P

2
is positive definite.

4.2 Example. The equation H = c is

(1+q2) r - 2pqs + (I+ p2)t-2c(l+p 2+
q2)3/2 = 0

2 2
Hence Yr=

1+ q , (ps -2pq , yt=
I + p . Therefore,

(1 +q2) N2_ 2pq Xp + (1 +p2)p 2

'\2 + p
2+ (qh - p p)2

which is clearly positive definite for every value of the arguments.

Thus H = c is an absolutely elliptic partial differential equation.

4.3 Lemma. Let qj(u) be a function of n variables, u = (u,, ... Pu
n

n

which is differentiable in a convex region in E
.

Then

n

qj (V) - q) (u) Ai(Vi- ui)

where

Ai(u'V) qJi (TV + (1- T) u) d T

0

and qj
i

is the aerivative of qj with respect to its i1th argument.
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Proof: Let denote differentiation with respect to the parameter
T

. Then

(V) - tp (U) tP
I (TV + (1- T) u) d T

0

n

X tPi (TV + (1- T) U) (TVi+ CI-T) U
i
)IdT

0

n

I kP, (TV + (1-T)u)dT (V i-ui
o

1
4.4 Lemma. Let Y = 0 be a partial differential equation which is

absolutely elliptic in a convex region R and let z
1

and z
2

be

two solutions of T = 0
.

Then

Z =

z2- z1

satisfies a linear homogeneous elliptic partial differential equation.

Proof: By assumption

9(ri,si,t i p,,q,,z,,x,y) = 0, i = 1,2 .

Hence, by Lemma 4.3,

y (r
2

' s2-* T(r,,slp ...

A(r 2-rI) + B(s
2- s1 ) + C (t 2-t1 ) + D (p 2-PI ) + E (q 2-qj)

I

+ F (z2 -Z I) = 0

where A(x,y) = So(pr dT and the arguments of
Tr

are

Tr2 (X,Y) + (1-T)r I(xPy)P---'Tz 2
(X,Y) + (1-T) Z

I
(X,Y) , X'y -

'It is

clear that this equation is homogeneous and linear, and that Z satis-

fi.es this equation.

The equation is elliptic since

(Prh2 + (PSAV + tIA2

is positive definite for arbitrary values in R
,

and hence in parti-

cular for the values which appear in the integrals for A, B, etc.

Therefore integrating the form, we get

1
2 2 2 2JI(PrX + Tshp +q)tiA IdT A(x,y)N + B(x,y),\,A + C(x,y),A

0

which is also positive definite.

4.5 Theorem. Let y = 0 be a partial differential equation which is

absolutely elliptic in a convex region. Let z
I

and z
2

be two solu-

tions of T = 0 such that at (0,0)
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z1(0,0) = z
2

(0 '0)

P:1(0'0)  P2(0'0)

q1(0, 0) = q2(010)

but z
I

A z2 in a neighborhood of (0,0) .
Then the surface defined

by
Z = Z2-

z
I

has a contact with the x-y-plane which is not semi-proper.

we will prove this under the assumption that Z is analytic. This

is the case, for example, if y is analytic and Z is at least three

times differentiable, by Bernstein's Theorem.

Proof: By Lemma 4.4, Z satisfies a linear, homogeneous elliptic par-

tial differential equation.

az
z A.. + X B

i -sx-
+ FZ = 0

13 ax iax i
X

Under a homogeneous affine transformation of coordinates, the coeffi-

cients A.. behave like the coefficients of a quadratic form. i.e.,
L]

if u
k

= Et kixi where t
ki

are constants and det(t
ki

0 then

()2z - a2z
2: A transforms to Z A - here

ij ax ax. ii ati. au.
, -

ij) = (t
ij

) (A ij) (tij

Since the form given by the A

ij
is positive, we may change coordina-

tes so that

A11 (0,0) = I
,

A12(0'0) = 0
,

A
22

(0,0) = I

Now Z is assumed to be analytic and hence can be expanded in homoge-

neous forms,
Z Z

(n)
(X,Y) + z(n+1) (X,Y). +

...

where Z
(n)

31 0
, n>, 2 If this expression is substituted in the above

transformed equation it is easy to see that the terms of lowest order

(n) (n)
have order n-2 and that these terms come from Z

xx

and Z
yy

.
Since

Al:1(0,0) = A
22

(0,0) = I
,

we have

A z
(n)

= z
(n)

+ Z
(n)

= 0
xx yy

where A is the Laplace operator. But the only forms satisfying this

are the forms
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z
(n)

= lm{C(X+iy)nl

We have already seen in Example 3.7 that these forms have the desired

property. But on each ray through (0,0) on which Z
(n)

A 0 there is

(n)
an interval containing (0,0) in which Z has the same sign as Z

Hence Z has the desired property.

4.6 Corollary: Two regions of surfaces satisfying the same absolutely

elliptic partial differential equation and which have a positive semi-

proper contact are identical in a neighborhood of the contact.

4.7 A Special Case. (not needed for our main theorem): Consider two

pieces of surfaces with the same constant Gauss curvature c They

satisfy the partial differential equation

(p
= rt s2_ c(1+P2+ q2)2 = 0

So
1 2 2 2 2 2

 O
-

-T s= tr - s c(l+p + q
r t

Hence this equation is elliptic if c> 0

Now let c > 0 Then the only place where trouble can'occur in

the application of 4.6 is in the convexity of the domain of ellipticity

of this equation. What we really need is the convexity with respect to

r,s,t . Hence we are concerned with the part of (r,s,t)-space where

rt - s2> 0 . Now in E3
,

the locus of the equation rt-s
2

= 0 is a

cone. This is easily seen by making the change of coordinates, r =.g +-n,

t = g -ij ,
s = t .

The equation then becomes t
2_

71 2_t2= 0
.

If the

left hand side is positive, then g A 0
. Hence we are concerned with

the region where (TVE) 2+ WO2< I
.

This is the interior of the cone

(TV0 2+ W0
2

= I
. Hence our region is the.union of two sets, each

of which is convex.

In one set, r> 0 and hence t >0 and in the other r <0 and

hence t <0
.

Thus if z
I

and z
2

are two solutions of K = c such

that r
1

and r
2

have the same sign, then z I-z 2
satisfies a linear

homogeneous elliptic partial differential equation.

Therefore, it follcws that two pieces of surfaces with the same

constant positive Gauss curvature which have a contact such that both

of them are on the same side of the tangent plane are identical.
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5. The Main Theorem

5.1 Lemma. Let S be a simple closed surface of class C
3

with con-

stant mean curvature. Then the set of non-exceptional directions, con-

sidered as a set on the unit sphere 2:
,

has an interior point.

Proof: Since H = c is an analytic equation, by Bernstein's Theorem,

S is analytic. From this we can prove that the set of non-exceptional

directions is all of Z except perhaps for an analytic curve on z

1) There are no flat points on S
.

For suppose p is a flat

point. Then k
I

(p) = k2(p) = 0
. Hence kI (p) + k2(p) = 2c = 0

,
so

c = 0 . But then k2 -kI and K = -k which is always non-positive,

which contradicts 11, 4.2.

2) The set of parabolic points is the analytic curve defined by

K = 0
.

In each of these points there is exactly one double asymptotic

direction. it is clear that these directions describe an analytic curve

on the sphere X of all directions.

5.2 Theorem. Let S be a simple closed surface of class C
3

with con-

stant mean curvature. Then S is a sphere.

Proof: If d is a non-exceptional direction, then by Theorem 3.8,

there is a plane P such that-if St is the reflection of S in P

then S' and S have a positive semi-proper contact. Hence by 4.6,

and since H = c is an absolutely elliptic equation (see 4.2), S and

St coincide in a neighborhood of the contact. But if two analytic sur-

faces coincide in a neighborhood then they are indentical. Therefore

St = S . Hence the non-exceptional directions correspond to directions

of planes of symmetry. Consequently, by Lemma 5.1, the.set of direc-

tions of planes of symmetry has a non-empty interior. Therefore, by

Lemma 2.2, S is a sphere.

6. Generalizations - Simple Closed Weingarten Surfaces

6.1 Lemma. Let S be a closed Weingarten surface whose Weingarten re-

lation U(K,H) = 0
1

corresponds to a partial differential equation

9 = 0 which is elliptic for S
.

Then there are no flat points on S.

Proof: We saw in V
,

2.4 that the equation of a Weingarten surface is

elliptic if and only if
dk2

<0.. Now a flat point corresponds to a

d7j_
dk2

point at the origin on the curvature diagram of S
.

But if
-j-kj

< 0

then the existence of such a point implies that the entire curvature
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k2

k
I

diagram lies in the 41th quadrant which in turn implies that

K = kIk2-"-0 ,
which contradicts 11, 4.2.

6.2 Theorem. Let S be a simple closed W-surface of class C
3

whose

Weingarten relation U(K,H) = 0 corresponds to a partial differential

quation y = 0 which is analytic and absolutely elliptic. Then S is

a sphere. The proof goes exactly as in Section 5.

6.3 Possible Generalizations. The proof of Theorem 6.2 depended both

on the analyticity and the absolute ellipticity of y .
In Theorem 4.5,

the requirement that 9 be analytic can be removed entirely. It is in

2
fact sufficient to assume that y is of class C .For details, see

the articles of E. Hopf in the Proceeding of the Academy in Berlin,

1927, and the Proceedings of the A.M.S., 1952. We also used analyticity

in 5.1 and 5.2, but it seems very likely that this can also be easily

avoided.

6.4 Remarks on Possible Generalizations. It is also not necessary for

T to be absolutely elliptic. For suppose y is only elliptic for S

Then S satisfies another equation which is absolutely elliptic. For,

since y is elliptic for S
,

the diagram of S is a monotone de-

creasing curve, as illustrated.

Extend this curve by a C
n

curve to the diagonal line and to

all values > 0 of k
I

such that the resulting curve is always mono-

tone decreasing and such that
dk2

= -1 at the diagonal line. The
dkj

lines kI+ k2 " const. and k I-k2 = const. define a new coordinate
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system. It is clear that in this coordinate system, the curve can be

written

kI+ k2 = f (k I- k2
or

H f (H2_ K)

where the function f is defined for all non-negative values of its

arguments.

Now consider the Weingarten relation

U*(K,H) = H - f(H 2_ K) = 0

Then the corresponding equation (p* = 0 is absolutely elliptic in the

closed half-plane below the main diagonal, and clearly S satisfies

this equation.

It is very likely that if one carries through all these details,.

one gets a proof of the fact that A. Alexandrov's Theorem 6.2 holds

for all simple closed surfaces of class C3 which fulfill a Weingar-

ten relation U(K,H) = 0
,

where U is differentiable and

UkIUk2>
0

.



CHAPTERVIII

The Conqruence Theorem for Ovaloids

1. The Second Fundamental Forms of Isometric Surfaces

1.1 Introduction. Let S and S* be two isometric surfaces (see I,

2.6). Let h be the isometry between S and S* and let u, v be

parameters such that X(u,v) and X*(u,v) are corresponding points

under the map h .
Then S and S* have the same first fundamental

forms; i.e.

1) (E,F,G) = (E*,F*,G*)

We wish to prove that if S and S* are isometric ovaloids, then S

and S* are congruent. We will prove, in fact, that if h is an iso-

metry, then h is a (proper or improper) Euclidean motion. Theorem

1.2 below will show that it is sufficient to prove that S and S*

have the same second fundamental forms.

Since S and S* are isometric surfaces, they have a common pa-

rameter surface S
0

(in the case of ovaloids we may assume that S
0

is a spher-e). Hence we may regard the forms

"2 2

2) L du + 2M dudv + N dv

L*du2 + 2M*dudv + N*dv
2

as being forms on the same surface, S
0

.

In the case K> 0
,

both forms are definite, and we may assume

they are both positive definite, since they can be made positive by a

reflection.

Then we wish to show that

3) (L,M,N) (L*,M*,N*)

or, equivalently, if

L, M*- M
, v N*- N

then

(31) (X,jA,V) = (0,0,0) on So

Since S and S* are isometric, K K* and hence

LN-M L*N*_M*2

EG-F
2 E*G*-F*2

Consequently, by-1)
2 2

4) LN- M = L*N*- M*

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 163–173, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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1.2 Theorem. Let S and S* be two surfaces such that there is a

1-1 correspondence between them under which they have the same first

and second fundamental forms. Then S and S* are congruent.

Proof: In 1, 9.1 we recalled that the theorem is true in the small;

i.e., if a and a* are corresponding points of S and S*
,

then

there are neighborhoods A and A* which are congruent under a Eucli-

dean motion M
a

.
We wish to show that if b and b* are any other

pair of corresponding points then MbmMa '

Now A and B can be joined by a finite chain of neighborhoods

satisfying the above properties. Hence it is sufficient to consider

neighborhoods A and B which have anon-empty intersection C . But

on C
,

M
a

and Mb are both given by the isometry h
,

and hence

they are identical on C
. Therefore, since M

a
and Mb are Eucli-

dean motions which agree on an open set of a surface, it follows that

Ma Mb *

1.3 Theorem. Let

L du2+ 2M dudv + N dv
2

L*du2+ 2M*dudv + N*dv
2

2 2
be two positive quadratic forms such that LN - M L*N*- M* Let

L*- L
, V

= M*- M
, v = N*- N

.
Then the form

Xdu2+ 2pdudv + v dv2

is either indefinite or identically zero; i.e. xv 2< 0 and 0 if

and only if X =p = v = 0
-

Proof: The equality LN - M2= L*N*- M*2 remains valid after a linear

transformation of coordinates. But since the forms are positive defi-

nite, we can transform both of them simultaneously to canonical formo

Thus we may assume that M = m*=0 and hence p = 0
.

Then L*N*= LN

where all four terms are necessarily positive. Now either L* = L

or L*,LL .
if L* =L

,
then N*=N and \=v=o andhencethe

form is identically zero. If L* A L
,

we may assume L*> L and hence

N*< N .
But then X> 0

, v < 0 and p= 0 which implies that the form

is indefiniteo

Remark. In order to prove our main theorem it is therefore sufficient

2
to prove that Xv - P = 0

1.4 Theorem. The functions X and v satisfy

-xv + P
2= NX 2MV + Lv

.
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Proof L* M* IL M

1M* N*1_ IM N

where L* = L + X, M* = M + N* = N + v . Hence

L MI L MI+ ,I + (L v - 2mjj +N,\) =IMNMN 11 VI
2

Therefore -Xv + =NX- 2MV + Lv

Corollary. If K>0
,

then there exists a positive quadratic form

(L,M,N) such that

2
-XV + V =NX- 2MV + Lv

1.5 Definition. Let J(f,g,h) denote the ideal generated by the con-

tinuous functions f, g, and h in the ring of all continuous func-

tions. That is, J(f,g,h) is the set of all continuous functions of

the form
af + bg + ch

where a, b, and c are continuous functions. We will be interested

in functions which are zero mod J

1.6 Theorem.

XV_ jAu
= 0 mod J(,\,IA,v)

1Av_ vu
= 0 mod J(,X,IA,v)

(Functions N,V,v satisfying this set of equations are called "pseu-

do-Codazzi" functions.)

Proof: The Codazzi equations for L, M, and N are

Lv Mu a IL + a 2M + a 3N

Mv Nu b IL + b2M + b3N

where the a's and bts are given in terms of the first fundamental

form. Hence L*, M*', and N* satisfy the same equations. Thus, by sub-

tracting the two pairs of equations, we get

XV- JAU
a I\ + a

211
+

a3

Vv- vu bl,\ + b21A + b3v

Remark. This theorem is non-trivial only at the common zeros of

and v
. For, suppose X y 0

.
Then

where a
-Xv-VV

.

Xv- pu=a X
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But the theorem tells us for instance that where X and v

have a common zero, then also

X
v- Pu

0

tAv- Vu0

_Z. Nets of Curves and their Sinqularities

2.1 Discussion. Let A du2+ 2B dudv + C dv2 be a quadratic form with

AC - B2< 0 .
Then in the small this determines two families of curves

which form a net in the small.

The question then arises; suppose that in a region of a surface

we have such a net in the small in a neighborhood of every point, does

this imply that we have a net in the large formed by two families of

curves which can be distinguished from each other? The situation illu-

strated below shows that in general this is not true. This family of

lines has the property that if a point on the heavy triangle is

assigned a line element determined by the family of curves and if this

line element is extended continuously around the triangle, then in

going around the triangle we come back to an element belonging to the

other line element in the point in which we started. Hence this set of

curves cannot be decomposed into two families of curves. We will show

that this does not happen in the case in which we are interested.

2.2 Theorem. Let A du
2

+ 2B dudv + C dv
2

be a quadratic form on a

sphere such that either AC - B2< 0 or A B C = 0 .
Let G be a

region in which we do not have A = B = C 0 Then the equation

A du2 + 2B dudv + C dv
2

= 0

determines exactly two families of curves in G .

Proof: Since we-are on a sphere, and since the neglection of a single

point (the point - ) does not affect the discussion, we can use a single



167

coordinate system throughout the proof. If the equation is multiplied

by A
,

then it can be written

2 2 2
(A du + B dv) + (AC- B )dv = 0

.

Let -D2=
AC-B2 where D >0

.
Then the equation factors into the two

equations

I) A du + (B +D)dv = 0 11) A du + (B -D)dv = 0
.

This determines two families of curves unless one of the equations

happens to be identically zero. This happens in Case I, for example, if

A = 0 and B <0
,

for then D = -B

On the other hand, if we had multiplied the original equation by

C first, and factored we would have gotten the equivalent equations

V) (B- D)du + C dv = 0 IV) (B +D)du + C dv = 0

Hence we have two well-defined families of curves given by the follow-

ing pairs of equations:

A du + (B+D)dv = 0 11) A du + (B-D)dv = 0

(B-D)du + C dv = 0 (B+D)du + C dv = 0
.

Exercise: Show that the above theorem is true for any orientable sur-

face.

2.3 Theorem. Using the notation of Theorem 2.2, let p be an isolated

singularity of

A du2 + 2B dudv + C dv
2

=0

and let j', and j
2

be the indices of p with respect to the curves

I and II respectively. Then il = j2 = j ,
where

6 (arg (A-iB)]I
c

Proof: It is clear that il  j2 since the two families of curves are

distinct at every point, and since the angle between them is never a

multiple of w .
We set i = j, -

Now consider the family of nets

A du2 + 2B dudv + [(I-t)C - tA]dv
2

= 0
,

0 <t <I

The discriminant is given by

(1-t)AC - (1-t)B 2_
tA2_ tB2

= (1-t)(AC-B 2) - t (A2 +B2) <0
, 0_<t,<i.-.

Hence by Theorem 2.2 we get a net of curves for each t
,

all with the
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same isolated singularity p . Hence the index j
t

is well de fined

for every t and, by continuity, j = jt , 0,< t <,I . Therefore j is

the same as the index for the field

2 2
A du + 2B dudv - A dv = 0

.

Or
A(du2_ dv2) + 2B dudv = 0

.

choose one family of curves and let T be the angle between this fa-

mily and the u-direction. Then

du : dv = COS T : s in T

and
A COS 2T + B sin 2T  0

2
Now if A = B = 0

,
then AC - B = 0 and hence C = 0

,
which

is forbidden. Hence the function A - iB is not zero. Let

a = arg(A-iB) . Then the above equation can be written

COSa COS 2 T - s ina s in 2 T = 0
, Or COS((x +2 T) = 0

-

Thus T
2

+ const. and hence 6 (T)
:1

6 (CL) .
Therefore

2 C 2 C

I = -

7.i T 6C[arg(A-iB)] .

1. The Main Theorem

3.1 Introduction. We will give two proofs of the main theorem. Our

first proof is the proof given by Cohn-Vossen in 1927 and later simpli-

fied by Shitomirsky. This proof depends on the surface being analytic

and shows that if (X,V,v) define a quadratic form on the sphere

satisfying 1.3, 1.4, and 1.6, then it is identically zero. Analyti-

city can be avoided by more recent achievements in the theory of

differential equations.

The second proof is a proof given by Herglotz in 1943 which works

for C
3

surfaces. Here we will utilize the Remark of 1.3 that it'is

2
sufficient to show that Xv - 0 and will prove that

S1 (Xv_112) P dA = 0
S
0

where P is a strictly positive function. It follows from this that,

since Xv -P
2< 0

,
in fact Xv -V

2
= 0 .

3.2 Lemma. Let X du
2

+ 2 V dudv + v dv
2

be the form defined in 1.1 and

suppose it satisfies the conclusions of Theorems 1.3, 1.4, and 1.6;

i.e.
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1) AV-112 < 0 and if Av -V

2
= 0 then A=v=v=O-

2) There is a positive definite quadratic form (L,M,N). such

that
2

-AV + 11 = NX - 2Mji + L v

3) Xv- 1A = 0 mod J(x,jA,v)

11v- Vu
= 0 mod J(N,p2v)

Let p be a singularity of the curves

X du2 + 2 IA dudv + v dv
2

= 0
.

If X, p ,
and v are analytic and not identically zero, then p is an

isolated singularity and the index, j ,
of p is negative.

Proof: By applying a coordinate transformation, we may assume that at

p  

(L,M,N) = (1,0,1)

Let the Taylorts developments of X,p and v around p be

(n)
'\ = , +

1A 1A +

(n)
V V +

(n) (n) (n)
where at least one of A 1A and v is not zero. n> 0

since p is a singularity. By Condition 2)

2
-XV + P = NX- 2Mp + L v

The left hand side has degree at least 2n while on the right hand

side, Mp starts with terms of degree greater than n since M = 0

at p while N and L start with I
. Hence

X(n) + V
(n)

= 0

Now, by Condition 3)

-

pX aI x + a 2P
+ a

3vv u

11v- v bI x + b
2P

+ b
3vu

Since the right hand sides of these equations have no terms of degree

n-1
,

it follows that

(n) (n)
otA2) X

uv

(n)
v

(n)
013) 1

v U

But from 1) and 3) we get
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31)
(n)

+ P
(n)

= 0
u v

Equations 2) and 31) are the Cauchy-Riemann equations for X
(n)_ i,(n).

Hence if w u + iv
,

then

(n)_ ip
(n)

= cw

Let X - ill . Then

n
+0 = cw

Then by the argument of VI, 3.4

6c(arg (p) = 6c(arg cwn) = n27c
.

Therefore, by Theorem 2.3

6 ( arg (,\- i1i) < 0
2 2w c 2

3.3 Theorem. Two isometric ovaloids are congruent.

First Proof: Let X du 2+ 2V dudv + v dv
2

be the form defined in I.I.

Then it can be considered as a form on a sphere and it satisfies pro-

perties 1), 2), and 3) of Lemma 3.2. Hence by Lemma 3.2 and Poincar6ts

Theorem, it follows exactly as in VI, 3.3, 3.4, 2.3 and 2.4 that

'\ =V =V _= 0
.

Question.. Does there exist a tensor (X,IA,v) / (0,0,0) on the sphere

satisfying properties 1) and 3) of Lemma 3.2 but not property 2) ?

3.4 Definition. Let q F-E
3

and let p(x) be the distance from q to

the tangent plane to the surface S at the point x . Suppose the ori-

gin of the coordinate system of E
3

is at q .
Then if X is the po-

sition vector of S and N is the-inner normal, p = JXNJ .
If S is

an ovaloid and q is in the interior of S
,

then we may write

p = -XN

and p is strictly positive. p is called the support function of S

with respect to q

3.5 Second Proof: We may assume that the intersection of the interiors

of S and S* is non-empty. Let q be a point in the intersection

and let p and p* be the sup 3ort functions of S and S* respecti-

vely. Now EG-F > 0 and XV-112 is a scalar function. We will pr-)ve

that
EG-F

2
(p+p*)dA = 0

S EG-F
0
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Since p + p*> 0 and since we know that either Xv
2

< 0 or

X v= 0
,

this will prove the theorem.

But we will show in fact that 1) holds for every pair of isometric

closed surfaces, even if they are not ovaloids. For

XV-U2 1 L* - L M* -

MIEG-F2 EG-F
Y I

M* - M N* - N

- 2K - 2K'

where K is the common Gauss curvature of S and S* and

LN*-2MM*+NL*
2K' =

2
EG-F

Hence 1) is equivalent to

13 (K-KI) (p+p*) dA = 0

S
0

Now the integrand can be rewritten

(K - KI) (p +p*) = (Kp - H) + (Kp* - H*) - (K'p - H*) - (K1p H) .

It is sufficient to prove that

2) jj(K'p-H*)dA = 0

since then the other integrals are also zero either by symmetry or by

indentifying the surfaces S and S*
.

This formula is quite analogous

to the well-known formula of Minkowski for ovaloids, that

3) 11 (Kp-H) dA = 0

S
0

Formula 3) follows with the aid of Stokes Theorem, since it can be

shown that if R is a region of a surface with boundary B
,

then

4) -2 J (Kp-H) dA (X,N,dN)
R

Formula 3) follows immediately from this since  (X,N,dN) does not

depend on the coordinate system,and hence cancels out when the inte-

gration is extended over a closed surface.

In 4), N 9jX (see 1, 8.2) and hence dN jX.du'
i i i 3

Formula 2) follows from the analogous expression

5) -2 J (Kip-H*)dA =  (X,N,r)

R B

where r = -f*3x.dul
.

It is easy to see that again (X,N,r) is in-
i 3 B
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dependent of the coordinate system and therefore

Ij (Klp-H*) dA = 0

S
0

Exercise: Derive formulas 4) and 5) above using the techniques of

exterior differentiation; i.e., show

a) d(X,N,dN) = -2(Kp-H)dA

b) d (X, N, r) = - 2 (K I p-H*) dA
.

The first is easy since ddN = 0
.

In the second, it is not true that

dr = 0 but we do have that dr-x
k

= 0
,

k = 1,2, which helps to give

the formula. In the expression for dr-x
k

one can replace X by X*,

using the isometry between the two surfaces. Therefore one has

d r-X = (ddN*)-X* = 0
k k

3.6 Generalizations. The theorem is certainly not true in general if

one removes the restriction that the surfaces be ovaloids. The illu-

stration b.elow gives two CCO surfaces of revolution which are obvious

isometric'but not congruent.

E. Rembs (Math. Zeitschrift, Vol. 56 (1952) p. 274) has given examples

of analytic surfaces which are isometric but such that the isometry

between them is not a congruence.

A. Alexandrov has proved (in Russian) however, that if S and

S* are simple closed, analytic surfaces (of arbitrary genus) such that

11 K dA = 4-K

K>O

then the congruence theorem holds. The tori of revolution give an

example of this situation.

our theorem can be restated as follows: Given an abstract closed

surface S
0

with a Riemannian metric
gij

such that K>0 ,
then

3

there exists at most one realization of S
0

with this metric in
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(modulo Euclidean motions, of course). It can be shown in fact that

3
there exists exactly one such realization in E .A proof was sketched'

but not completed by H. Weyl in 1916. one later proof has been given

by Alexandrov and Pogorelov, and another proof by Nirenberg. These

proofs also contain uniqueness proofs and hence give alternative proofs

of our theorem.



CHAPTERIX

Sinaularities of Surfaces with Constant Neoative Gauss Curvature

1. Sinqularities

1.1 Introduction. In this'chapter we shall be concerned with (open)
3

surfaces and their imbeddings in E .The definition of an open surface

is identical with definition 11, 1.1 except that condition 1) that S

be compact is no longer true. We will show that a surface with constant

negative Gauss curvature cannot be imbedded as a general (open) sur-

face in E3 without singularities (in a sense to be defined below).

The first proof of this was given by Hilbert (- 1900) for analytic

surfaces. Our proof works for C3 surfaces and the theorem is still

true for C2 surfaces. However, Kuiper has given a C
I

isometric

imbedding of the hyperbolic plane in E
3

without singularities. For

details see N.H. Kuiper, on CI- isometric Imbeddings I and II; Indaga-

tiones Mathematicae, Vol. 17 (1955) pp 545-556 and pp 683-689.

1.2,The hyperbolic plane. Consider the upper half plane of the u-v-

2 2

plane (i.e., v >O) with the metric
ds 2= du

+2dv
This surface

v

is called the hy2erbolic plane. It is easy to show that geodesics on

this surface are either straight lines perpendicular to the u-axis or

semi-circles with their center on the u-axis.

The first fundamental form can be rewritten

2
= (.2v ) 2+ u2ds d

v 2
v

Let v = log v .
Then

2- 2 22 2 v 2, -2
ds = dv + e du = dv + g du

where g = e-v
. Hence by 1, 6.3,

K
gVV

9

Hence the hyperbolic plane is a surface with Gauss curvature equal to

-1
.

H. Hopf: LNM 1000, A. Dold and B. Eckmann (Eds.), pp. 174–184, 1983, 1989.
c© Springer-Verlag Berlin Heidelberg 1983, 1989
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3
1.3 Examples in E Surfaces of revolution with constant negative

Gauss curvature and with singularities are illustrated below:

AA
.=F

'

'

Here one of the principle curvatures is infinite on the singular lines,

but the normals are continuous.

1.4 Discussion. One of the main problems is to give a satisfactory de-

finition of singularity. We wish to discuss singularities which arise

3
as a property of the imbedding of an abstract surface S- in E

01

Therefore, we are not concerned with "singularities" which may occur on

an abstractsurface (e.g., singularities of a metric, etc.).. Conse-

quently, we shall assume that all points of an abstract surface are re-

gular points. As a first attempt at a definition we may say that a point

P E E3 is a singularity of S if p / S but if p F.   (the closure

of S ). Now it is not sufficient to require only that there is a se-

quence (p : p E S) which converges to p . For, cIonsider athin
n n 0

strip A
,

which spirals an infinite number of times around a point, pop
as in a), Then there is clearly a sequence pne A which converges to

po ,
but we do not wish to consider p

0
as a singularity of A

.
Thus

we should like to require that there actually be a curve of finite

length converging to a singularity. But as b) illustrates this is also

a) .. --"*k f\ I
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not a satisfactory definition, for here the singularity lies in a point

which is also a regular point of the surface. The following definition

does turn out to be satisfactory.

1.5 Definition. A surface S
0

is called cOMplete (with respect to a

Riemannian geometry) if every half-open curve of finite length on S
0

(parametized by O_< t< 1) has an end point (at t = 1) on S
0

.

if S
0

is complete, then we say that an imbedding of S
0

in E
3

has no sinqularities.

A singularity is defined as follows:

Suppose C0(t) ,
0 <t <1 is a divergent curve of finite length on

S0 (We will usually consider the metric on S
0

induced by the imbedding

in E3); i.e., if t
n

- I
,

th en C
0

( tn) has no limit point on S
0.

Let C(t) be the image of C
0

in E3 under an isometric imbedding of

S0 in E
3

.
Then C is a curve of finite length in E

3
and hence con-

3

verges to a point pE E .Then we say that a singularity of the image

of S
0

in E3 lies in the point p . (As in 1.4, there may also be re-

gular points of S
0

at p .)

1.6 Further discussion. One immediate consequence of our definition is

that if every divergent curve on S0 has infinite length and if S
0

has an isometric imbedding in E
,

then the imbedded surface has no

singularities. It is easy to see that the hyperbolic plane satisfies

the property that every divergent curve has infinite length. Hence if

3
the hyperbolic plane had an isometric imbedding in E

,
the imbedding

would have no singularities. However, our main theorem in this chapter

will tell us that any isometric imbedding of a surface with constant

negative curvature necessarily has singularities. Therefore, there is

3
no isometric imbedding of the hyperbolic plane in E

Our definition allows certain more or less trivial singularities

which are really not relevant to the discussion. For suppose St is a
0

proper, open subset of S . Then S' has boundary points relative to
. 0 0

S0 .
It is clear that under an isometric imbedding of Sol these boun-

dary points are singularities, while under an imbedding of S
0

, they

are not. Such singularities which can be removed by an extension of

the original surface are called ordinary singular points (or removable

sinqularities). We will always assume that such extensions have been

carried out since we are concerned with "intrinsic" singularities which

cannot be eliminated. It can be shown by Zorn's lemma that any surface
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can be extended in this sense to a surface which cannot be extended

any farther.

2. TschebVscheff Nets

2.1 Definition. Let R be a piece of a surface on which there is de-

fined a net consisting of two distinct families of regular curves. We

will introduce local parameters u and v along these lines so that

we may speak of u-lines and v-lines. Choose a positive orientation of

R and let w be the positive angle through which a u-line must be

rotated to become tangent to a v-line. We will always assume that the

u and v lines are choosen to satisfy 0 <w <7r

u

If each rectangle whose sides are u-lines and v-lines has the

property, that opposite sides have the same length, then the net is

called a Tschebyscheff net.

On a Tschebyscheff net we can introduce parameters u and v

such that u and v measure arc length respectively on the u-lines

and the v-lines. In such a coordinate system the first fundamental

form becomes
2 2 2

ds = du + 2F dudv + dv

where F = cos w . Conversely, it is clear that the lines u = constant

and v = constant in such a coordinate system form a Tschebyscheff net.

We will call this coordinate system a Tschebyscheff coordinate system.

2.2 Lemma. In a Tschebyscheff coordinate system the Gauss curvature

K is given by
=-K sin w

uV

Proof: For such a coordinate system we have

2 2
EG-F = sin w

Let W= ;EG-F2 Then by the Theorema Egregium

[(Fu) FW
W

+ ( v), uv
K Tw- W.

v
sinw
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Thus w -K sin w

uv

2.3 Lemma. If R
0

is a rectangle as in 2.1, then

I It K dAl < 27c

R0

Proof: Let R
0

be a rectangle whose sides are u-lines and v-lines.

Then since
dA = sinw dudv

we have K dA = -w dudv
Uv

u

Hence
K dA

wuv
dudv wvdv

R
0

by Stokes Theorem, where the line integral is taken in the positive

direction over the boundary of Ro . Thus, using the notation of the

illustration, C D

  K dA  W dv + I wvdv
R B A

0

+

27c - ((x+p+y+6)

Because of 0 < a,p,y,6 <w the value of the integral lies between

-2w and 2-K
.

Remark: The above lemma used only the concepts of Riemannian geometry

and did not depend on properties of an imbedding in a Euclidean space.

This is not true for the following theorem, however.

2.4 Theorem. Let R be a region of a surface in E
3

on which K

Then the asymptotic lines on R form a Tschebyscheff net.

Proof: If K< 0 then the asymptotic lines are the solutions'of

2 2
1) L du + 2M dudv + N dv = 0

.
If we make the asymptotic lines the

u and v lines then we must have that du = 0 and dv = 0 are solu-

tions of equation 1); i.e. L = N = 0
.

In such a coordinate system the
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Codazzi equations reduce to

2) M = AM
U

M = BM
v

where

I -!(EG-F2) + FE - EG I

A
2

u2
v u

EG-F

"(EG-F2) + FG'- GE

B
2

v2
U v

EG-F-

(See, for example, Blaschke (3
rd

ed.) p. 117, Formula 139). Equations

2) can be rewritten

21) (M2)u = 2 AM
2

(M )v = 2 BM
2

But if K = -1
,

then
2

EG-F
2

or M
2= EG-F

2
. Hence, substituting in 21),

(EG-F2)
u

= (EG-F2) U+2 (FEV_ EGU)
,

or EG
U

- FE
v

= 0

Similarly -FGU + GE
v

= 0

But since EG-F
2

A 0 these equations is satisfied if and only if

3) E 0 and G 0

Therefore we have

E E(u) and G G(v)

Let U and v be coordinates such that

du = FE(u) du

dv = JG(v)dv

Then the first fundamental form becomes

ds
2

= dU2 + 2F dUd; + dV2

Hence the u and ;-lines form a Tschebyscheff net.
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3. The Main Theorem

3.1 In this section we will show that any surface S in E
3

with

constant negative Gauss curvature has singularities. To do this we must

show that if S
0

is a parameter surface for S
,

then S
0

is not com-

plete. we will show that if the canonical Tschebyscheff net on S is

considered as a net on S
0

,
then at least one curve of the net con-

tains a divergent arc of finite length. From this it follows that S

has at least one singular point. In Section 4 we will discuss (without

proofs) the kinds of singularities which actually appear.

3.2 Definition: For the canonical Tschebyscheff net on a region R of

a surface with K = -1
,

we have, using the notations and conventions

of the preceding section, that

W -K sin w = sin w > 0
uv

This equation clearly does not depend on the orientations of the u

and v-lines.

Let f be a v-line of the net and let p E Now w is a mono-

tone function on f since (w ) >0 ,
and hence there is at most one

point on ? where w
u

= 0
. Therefore, we may assume that w

u
(p) A 0

Let the positive u-direction be the direction such that

Wu(p) > 0
.

This determines the positive v-direction if we require that a positive

rotation of angle w (where 0< w <7r) carry the positive u-direction

into the positive v-direction. This direction on the v-lines is called

the distinquished direction.

It is easy to see that this direction is independent of the ori-

entation of R ; for, suppose the opposite orientation of R had been

chosen. Let w be the corresponding angle. Then w = x so

U u

and hence in the above discussion we must choose the opposite u-direc-

tion. But then a positive rotation (with this orientation of R )

obviously carries this u-dire6tion into exactly the same v-direction

as above.

3.3 Theorem. A surface S in E
3

with constant negative Gauss curva-

ture has singular points.

Proof: Let S
0

be a parameter surface for S and consider the cano-
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nical Tschebyscbeff net on S as a net on S
0

.
Let pES

0

be a point

where wu
& 0 and let the positive u and v directions be chosen as

in"3.2. Let q be a point on the positive u-line through p .
We will

be concerned with the region R above (in the positive, distinguished

v-direction from) the u-line through p and q .
Since we have a

Tschebyscheff net on this region, at least the lower part of this re-

gion corresponds to a rectangle R
0

in the u-v-plane. It is clear that

for a sufficiently small positive number V
,

it is possible to measure

v v

u

a distance V along a v-line in the distinguished v-direction starting

from the u-line through p and q .
This can be done uniformly for

each v-line in R
. To prove our theorem it is sufficient to show that

there is a finite least upper bound V* to the distances which can be

measured along all v-lines in R .
For suppose V* is such a bound.

Then there must be a v-line in R along which it is not possible to

measure-the distance V*
.

Hence the arc of this v-line starting from

the curve between p and q is a half-open divergent curve of finite

length and therefore S has a singular point.

To prove that V* < co we proceed as follows: let U be the length

of the u-line between p and q and let Ut satisfy

0 <U1 < U

Choose pl and q1 so that

p < pt < qt < q

p p
t q' q

p q
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and so that Ut is the length of p'qI .
Since w

u
(p)> 0 we may

assume that q is close enough to p so that wu>0 on all of pq

Then w is an increasing function on pq and

W(p 1) - W(P) > 0

w(q) - w(qt) > 0

Hence we can find an E: >0 which is smaller than both of these quanti-

ties. (Since 0 < w < K
,

it follows that F_ <
-E ) .

2

Now, consider a rectangle of height V over 5-q . Along the edge

above q ,
w < x . Further, if q and q

I
are situated as illustrated,

I I

then, since (wu) v> 0
,

we have
q

w(q I) - w (q 11) = I W du

q:I

q

> I w du > E: .

q1
u

Rt
0

V I qIIJ j q,

P p
I q' q

A similar inequality holds for points above p and pT Therefore,

if r is any point in the smaller rectangle RIO (above p'qI), it

follows that

e < w(r) < 7c - c

and hence
sin w > sin e .

Consequently, by Lemma 2.3, and since

-K dA = sin w dudv

we have

Hence

27r>j sinwdudv >sine 11 dudv UIV sine

R RI
0 0

V<
2'K

Utsin e

so V*
271

is an upper bound, which proves the theorem.
Ulsin e
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4. Further'Details and Generalizations

4.1 Singularities. M.H. Amsler has shown that on an analytic surface

with constant negative Gauss curvature, there exists a e-curve con-

sisting entirely of singular points. However, his proof does not hold

for Cn surfaces. For details see

Amsler, M.H., Des surfaces h courbure n6gative constante dans

Ilespace h trois dimensions et de leurs singularit6s;

Mathematische Annalen, 130(1955) pp. 234-256.

4.2 Constant Positive Curvature. It can be shown that if S is an
0

abstract surface on which there is defined a Riemann metric such that

S0 is complete and K=- I
,

then S
0

is compact. It follows immediate-

ly from this that the only surface with constant positive Gauss curva-

ture in E
3

without singularities is a sphere.

4.3 -Strictly Positive or Strictly Neqative Curvature. E. Heinz has

proved the following theorems concerning surfaces in E
3

given by a

function z z(x,y) which is defined and of class C
2

in the circle

2 2 2
x + y < R

1) If jHj,>a>O ,
then R,<1

CL

2) If K,> cL>O
,

then R,<_F- :'
E33) If K,<-a<O

,
then R-<e 7CL

For details see:

E. Heinz, Ueber Flachen mit eineindeutiger Projektion auf eine

Ebene, deren KrUmmUngendurch Ungleichungen eingeschrankt sind;

Mathematische Annalen, 129(1955) p. 451-454.

It can also be shown that the theorem stated in 4.2 is true if

one only requires that K>- K0> 0 .
It follows from this that if S is

such a surface in E
3

without singularities, then S is an ovaloid.

If we only require that K> 0
,

then not too much can be said.

However, Stoker has shown that a part of H. damardls Theorpm (IV, 1.4)

is still true; namely:

If S is a complete surface in E
3

with K>0
,

then S has no

self-intersections and S is the boundary of a convex set.

It follows from this that the spherical map is 1-1 and

K dA -`- 2 x

S
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4.4 The Curvature Inteqral (See 111, 2.3). In general, for an open sur-

face So J] K dA does not exist. However, if S
0

is "complete" it

can be S0 shown that there exists an increasing sequence of re-

gions G
n

each of finite area, such that S0= UGn and such that

lim jj K dA <,27r(l-pl)
n-co G

n

where p, is the first Betti number of S
0

.
For a closed surface, we

had I  K dA = 2 7c (2-p:,)'

But for any surface, po=
1 and P2

= 1 if the surface is closed and

P2= 0 if the surface is open. Hence it is always true that for each

complete surface (closed or open)

lim 11 K dA < 2 -K (p o- P1+ P2) -

n- G
n

For details, cf. S. Cohn-Vossen, Compositio Mathematica 2 (1935).
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