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10 M. GROMOV 

The curva ture  tensor  of a Riemannian manifold is a little 
monster  of (multi)linear algebra whose full geometric meaning 
remains obscure. However,  one can define using the curvature  
several significant  classes of manifolds and then these can be 
studied in the spiri t  of the old-fashioned s y n t h e t i c  g e o m e t r y  with 
no appeal to the world of infinitesimals where  curva ture  tensors 
reside. A similar interplay between infinitesimal quanti t ies  and 
visual fea tures  of geometric objects appears  in all corners of geo- 
met ry  and analysis. The simplest example is provided by  tht  
equivalence of the two definitions of a mono tone  function 

d f  > 0 ~ f ( t l )  < f ( t2)  for  t~ < to 
dt  . . . . . . .  

Then the infinitesimals of the  second order  br ing along a geome- 
tr ically more  interesting phenomenon of convex i t y .  

(1 ) 1 
d~f  > 0 ~ f - (tl + t:) < -2- (f( t l  + f( t2)) 
d t  ~ - _ . 

Our next  example lies at  the very  verge of the  Riemannian 
domain so we look at in a grea te r  detail. 

w 0. T H E  SECOND FUNDAMENTAL FORM AND CONVEXITY IN THE 

EUCLIDEAN SPACE. 

The basic infinitesimal invar iant  of a smooth hypersur face  
W c  ~ "  (<<hyper>> means codim W = n - - d i m W = l )  is the 

de] 
second f u n d a m e n t a l  f o r m  17 = 17 W which is the  field of quadrat ic  

f o r m s / / ~  on the tangents  spaces T ~ ( W )  c T ~ ( ~ ' )  = ~ defined as 
follows. 

AFFINE DEFINITION OF H. Move w to the origine of ~ "  by a parallel 
t ranslat ion of W in ~ "  and compose the result ing embedding W c ~ 
with the l inear quotient map  ~ ' - - >  ~ ' / T w ( W )  ---- N w .  Ident i fy  the  

a,j 

(one dimensional linear) space Nw with ~ and thus obtain a function, 
say  p ~ pw : W--> ~ ,  whose differential  D p  vanishes at  w (by the 
definition of T~(W)) .  T h e n  define the  second d i f f e r e n t i a l  De p t h a t  

is a quadrat ic  form on T ~ ( W ) ,  such tha t  fo r  every pai r  of vector 
fields 01 and 02 on W the (second Lie) derivat ive of p at  w satisfies 

01(02 p) (w)  = (D: p) (01(w), (0~(w)). 



SIGN AND GEOMETRIC MEANING OF CURVATURE 11 

(The existence of such De p follws f rom Dp = 0 by a simple com- 

putation). This construction applies to all w E W and gives us o u r / /  

f o r / / w  = D e P, thought  of as a quadratic form on T(W) with values 

in the normal bundle N=Tw(1R~) /T(W)  over W, where Tw(1R ~) 
denotes the restriction T(IR~)IW. 

Here is the famil iar  picture for  n = 1. 

W 

N w "-R 

F i g .  1. 

Geometrically speaking, Hw measures the second order infini- 
tesimal deviation of W from the af f ine  subspace T w ( W ) c  ~ .  In 
particular,  if  W is connected, then the vanishing of / /  on W is 
equivalent to W lying in a hyperplane, as everybody knows. 

A more interest ing relation between H and the (affine) geometry 
of W reads 

The farm II is positive semi-definite if and only if W is convex. 

To make it  precise we have to choose a coo~ientation of W tha t  
is a way  to distinguish between two components into which W locally 
divides 1R ~. This is customary done with a t ransversal  (e.g. normal) 
vector field v along W. Such a preferred field, once chosen, is called 
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interior looking and the par t  of ~ "  where  v looks into it is called 
the interiar of W. 

w 

terior W 
r  

w 

Fig .  2. 

Notice tha t  such a field also defines an orientation of the  normal 

f ibers  N~ and so one can speak of the  sign of the forms llw with 

values in N~.  Now we invoke the following 

DEFINITION OF CONVEXITY. W is called convex at  w if  i t  is 

contained in the  interior half-space T + c ~ "  bounded by  the hyper-  

plane T~(W) ~ "IR". 

F o r  example, the  curve W in Fig. 2 is convex a t  w bu t  not  a t  w'. 

Yet  i t  becomes locally convex at w' if  we  change the coorientation 

by  invert ing the sign of ~. 

In the  language of the  projection p : W--~ N~ ~ ~ the con- 
vexi ty  claim is p >__ 0 which well agrees with the  posi t ivi ty of 
I I ~ - - D e p .  In fact, positive definiteness of H~ obviously implies 
local convexity (i.e. the convexity of small neighbourhood U c W 
of w) of W. But  it is slightly harder  to derive local convexity of W 
f rom posit ive semidefiniteness of H in a neighbourhood of w (ra ther  
than  at  w alone). Also, the  proof  of the  global convexity of W is 
not  qui te  trivial. Recall tha t  the global convexity, ( i .a  the  convexity 
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at  all w ~ W) follows f rom H >_ 0, provided W is a closed connected 

hypersurface,  where  <( closed )) means  compact  wi thout  boundary.  

The af f ine  definition o f / / g i v e n  above is quite general. Namely, 

it applies to all dimensions and codimensions (but  we need codim 

W ~ 1 to speak of convexity), it  makes  sense for  a rb i t r a ry  smooth 

maps  f :  W--> 1R m (not only embeddings) and it generalizes to non- 

Euclidean ambient  spaces endowed with affine connections. However,  

the aff ine  na ture  of this definition makes  it poorly adapted to the 

needs of the  Riemannian geometry  where  the  ma jo r  object  of s tudy 

is the distance function associated to the Riemannian structure.  With 

this in mind we tu rn  to our second definition o f / /  which is based 
on the following impor tant  notion. 

EQUIDISTANT DEFORMATION. Let  W be a cooriented hyporsur face  

in 1R" and denote by J(x), x ~  1R" the signed distance function 

to W. That  is ~(x)-----dist(x, W) for  the  exter ior  points x and 

5 ( x ) ~ - - - d i s t ( x ,  W) in the  interior. Notice tha t  in general the 

distinction between interior  and exterior  points makes  sense only 

locally near  W and then J(x)  is defined only in some small neigh- 
bourhood of W. Also recall tha t  

dist(x, W) ~ -  infdist(x,  W) 
def wE ~r 

for  the Euclidean distance 

dist(x, w ) ~  l ] x - - w l l  ~ < x - - w ,  x - - w  > 1/2. 

Then we look at  the  levels of ~, tha t  are  

w~ ~--~-l(e)~ {x ~ 1R" I ~(x)--  s}, 

and call them e-equidistant hypersurfaves or e-equidistaz~t defo~vna- 
tians of W ~ Wo. 

I t  is easy to show that  fo r  small e the manifolds W~ are  smooth 

if  Wo is smooth, but  W~ may become singular  fo r  large c. In fac t  

we  shall see in a minute  tha t  the  i~ward (i.e. e < 0) equidistant 

deformation necessari ly produces singularit ies fo r  every convex 
initial hypersur face  Wo. (See fig. 3 below). For  example such a 

deformation of the  round sphere W o ~ S ~ - l ( r ) c  1R" of radius r 



14 M. GROMOV 

brings Wo to the  center  of the  sphere for  E - ~ r .  (Here  W = 
S ' - l ( r  ~- ~) fo r  all ~ >__ ~ r ) .  

We r 

Wo 

interior N~~~~ w 

Fig. 3. 

Next  we consider the  lines Nw in 1R" normal to W at  the  points 
w E W. I t  is easy to show that  every such line meets  each W~, for  
small e, a t  a single point denoted w, or (w, e) E W, and the result ing 
map  d~ : W--> W~ for  d ~ ( w ) =  we is smooth. (In fact,  d~ is a dif- 
feomorphism;  moreover, Nw is normal to W, at w , ,  as  e lementary 
different ial  geometry  tells us). Now we are  going to define the 
second quadrat ic  form as the ra te  of change of the  lengths of curves 
C c Wo as we pass f rom Wo to infinitesimally close hypersur face  
W~. We recall tha t  the length of C is determined by (integration of) 
the  length of  the tangent  vectors  of C which is given, in turn,  by  
the f irs t  f u ~ t a l  form g on W tha t  is j u s t  the restr ict ion of the 
Euclidean scalar product  (which is a quadrat ic  fo rm on ~ )  to the 
tangent  spaces T~(W) c T~( IR ~) = 1R", w E W. In other  words  g is 
the Riemannian metric on W induced f rom the s tandard  Riemannian 
metr ic  on 1R ~+1. Geometricly speaking, << induced ) amounts  to the  
relation 

g-length(C) = The Euclidean length(C) 

fo r  all smooth curves C in W. 
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We denote by  g,  the f i r s t  fundamental  form of W,,  we pull it 

back to W by the differential  of the map de and we denote the 

pulled back form g* on W ~ W~. Then we set 

1 d ( . )  //w ~ _ _  _ _  , 
2 de g~=0 

EXAMPLE. Let  W be the unit  sphere Sn-l(l)c ~ (e.g. the 

circle in the  plane). Then g* comes f rom the concentric sphere 

W ~ S " - I ( 1 - { - e )  and we clearly see tha t  g* ~ ( 1  ~- D~go. Thus 

H W-'- go for  V ~ S "-~ (1), as everybody knows f rom the kindergarten.  

I t  is not  hard  to show (by an elementary infinitesimal compu- 

tation) tha t  the  above << equidistant  ~ definition of H is equivalent 

to the  aff ine definition given earler. In fact,  the  equidistant  defini- 

tion extends to all codimensions and still remains equivalent to the 

af f ine  definition, (see, e.g., Appendix 1 in [Mi-S]). 

EQUIDISTANT DEFORMATION OF A CONVEX HYPERSURFACE. If the hyper- 

surface W---~ Wo is convex then W. is convex for all ~ C IR, even 

where W, becomes singular and one needs a definition of convexity 

applicable to non-smooth hypersurfaces. First we indicate an infini- 

tesimal proof of the convexity of W. based on the classical tube 
formula which tell us how H W~ develops with e for variable e. To 

write down this formula we pass from the form II to the associated 

operator A defined on T(V) by the usual relation 

II('rl, r2)~g(Av:l,  ~'2):~ < A t , ,  re > ~ n + , .  

Notice tha t  A is a symmetr ic  opera tor  (on each tangent  space 
T~(W))  and it is sometimes called the shape operator. Then the tube  

formula for  the  operators  A* on T(W), which are  the  Dd~-pull-backs 

of the  operators  A~ on We corresponding to H ~ ,  reads 

dA* _ _ (A*, )2 (, ,)  
d~ 

for  the  ordinary square of the linear operator  A*~. This formula 

actually says tha t  (the differential  Dd~ of) d~ maps  the principal 

axes of  the  form H ~ ( that  are  the  eigenvectors of A) to  those of 
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H ~  and the principal curvatures 21(D, 2~(D..., )~_~(e) of W, ( that  

are  the  eigenvalues of A, on W, corresponding to H W*) sat is fy  

( + )  271 (e) = 27 (0) + 

This agrees with wha t  we  know for  the sphere S~-l(r) fo r  W, where  

21 "- - -  2 2  . . . . .  ~ - 1  ~ r - 1  and We ~ S~-l(r  + e), also ( + )  agrees wi th  

(**) as s  (% + e) -1, for  c ~  2i-1(0) according to ( + )  and then 
the derivat ive is - - ( %  + e)) -~. (See Appendix 1 in [Mi-S]  fo r  a 

proof  of the  tube  formula  adapted to the  present  notations). Now it 

is clear tha t  if  H ~  >__ 0 then H w~ remains  positive semi-definite for  

all e _ 0 and also for  negative e >__ - -  max 2~ -~ (0). In fact,  whenever  
i ~ l  . . . . .  n - - 1  

e becomes equal to - - 2 i  -~ (0) at  a point  w, then the map d. : W--> ~ 

(which moves w to the  e-end of the  normal [0, e]-segment to W at  w) 

fails to be regular at  w in the  senst  tha t  the  differential  of this map 

(which is smooth for  all e) becomes non~in]ective on Tw(W) and so 

the image de(W) (which is not  the same as W~ for  large e where  
there  is no regular i ty)  may  acquire a s ingulari ty at  d, (w)E ~ ' .  

Now let us look a t  W, f rom a global point  of  view where  
W ~ - W o  is a closed convex hypersur face  in ~ .  The above discus- 

sion shows tha t  W, is smooth and convex for  all e >_ 0 and so the 

induced metr ic  on W~ is monotone increasing in e (where one com- 

pares  two  Riemannian metric  by bringing them to the  hypersur face  
Wo by  the  dif feomorphism d, : W--> W,). This implies the  following 
global consequence of the  convexity (defined infinitesimally by 
H w >_ 0). 

For each exterior (i.e. outside the compact region bounded by 
W) point x E ~n there exists a unique point w ~ p(x) E W, such that 
the segment Ix, w] c ~n  is normal to W at w. Moreover, the re, 
sulting map p : Exterior(W)--> W is distance decreasing. 

We shall see later on (in w 2) tha t  this proper ty  is character is t ic  

for  the ambient  manifolds (replacing ~ "  D W) of non-positive sec- 
tional curvature. 

Now, let us look at  the  internal deformation W~ where  e < O. 

As we  mentioned earlier, such We inevitably become singular  at  
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some moment  s < 0. For  example, if  W=S~-I(r )  then the (only) 
singular moment  is e = m r and then We becomes empty (though 
the  normal map d~ sends W on the concentric sphere S~-l(r ~- e) for  
e < - -  r). But  for  non-round W the singular  region occupies an entire 
interval in s before W~ disappears, see Fig. 4 below. 

W 

Fig. 4. 

The presence of singularit ies makes it harder  to prove the convexity 
of W~ by infintesimal means but this is ra ther  obvious geometrically 
as one easily sees tha t  the interior  In t  W, is a convex set in the 
ordinary sense. Namely if  xl and x2 are two points in In t  W~, then 
the segment [x l ,  x2] also lies in In t  W~. In fact  In t  We consists of 
the points x ~ 1R" sat isfying dist(x, Ex t  W) >_ s and so the inclusion 
[x l ,  x2] c In t  We is equivalent to U~ ( [x l ,  x2]) c In t  W~, where U~ 
denotes the e-neighbourhood tha t  is the  set of the points within 
distance _< E f rom the segment Ix1, x2]. Now, this  U, ( [x l ,  x2]) 
obviously equals the convex hull of the union of the e balls 
B(Xl, e)OB(x2, ~), which must  lie in In t  W as this inter ior  is as- 
sumed convex in the f ramework  of our present  convexity discussion. 

I f  we still insist on an infinitesimal proof, we may define 
singular  convex hypersurfaces  W as appropriate  limits of those W' 
whose interiors are  f ini te  intersections of regions bounded by smooth 
convex hypersurfaces.  Then we can apply the tube formula  to the 
smooth convex pieces of W' (which can be chosen with an upper 
bound on the  principal curvatures  in order to avoid premature  sin- 
gularities) and prove the convexity of W~ by a simple approximation 

B c m i n a r i o  M a t e r n a t i e o  e F i ~ i e o  . 2 
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argument as W' converges to W. The advantage of such approach 
is the applicability to non-euclidean ambient manifolds V D W. In 
fact, the convexity of the interior equidistant manifolds W~ (i.e~ for 
s _< O) is characteristic for the manifolds V of non-negative sectional 
curvature (see w 3). 

Let us draw the moral of the story. The second fundamental 
form / /  is an easily computable tensorial object has several mean- 
ingful interpretations on the infinitesimal level. Furthermore, the 
Class of convex hypersurfaces, defined by the (infinitesimal) condi- 
tion H >-- 0, has a global geometric interpretation and can be studied 
by means of synthetic geometry. In fact, the geometric approach 
naturally brings in singular convex hypersurfaces but their  global 
geometry does not harbour any surprises as they can be approximated 
by smooth convex hypersurfaces. 

w 1/~. G ~ I Z ] ~  CONVEXITY. 

The above discussion leads to the following question. 

What are other geometrically significant classes of hypersur- 
faces (and submanifolds of higher codimension) distinguished by 
some properties of H? 

One interesting notion generalizing convexity is positive mean 
curva ture ,  

MeanCurv W ~- trace 17 W : -  ~_~ ~ >_ 0, 
de/" 

where 2, denote the principal curvatures of W. This is equivalent in 
terms of We to the monotonieity of the volume element of W~ rather  
than of the induced metric. Geometrically this monotonicity says that  
the (n--1)-dimnsional  volume of every domain U c W E  W0 in- 
creases as we pass to W~ with E > 0. More precisely the domains 
U, ~-  d, (U) c W~ satisfy the relation 

dVol U~ 
dE 

_> 0 at E~O.  

The positivity of the mean curvature of the boundary W ~ aV of 
a domain V c IR n implies the following property of the signed 
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distance function 

5 ( v )  ----- - -  d i s t ( v ,  W )  ~--  - -  inf dist(v, w ) .  
~'E W 

The function 5(v) /s subharmonic, 

Aa(v) >_ 0 

for all v E V. 

Notice, tha t  the  function ~ is not  everywhere  smooth in V and 
at  the singular  points the  sign of the Laplace opera tor  A mus t  be 
understood in an appropr ia te ly  generalized sense. 

The inequali ty A5 >_ 0 at  the  smooth points of 5 can be easily 
derived by applying the tube  formula  to the  levels of J which are 
ju s t  our  equidistant  hypersur faces  W~, and at  the  singular points 
one needs an ex t ra  approximation argument.  (We shall come back 
to the  positive mean curva ture  in the more  general f r amework  of 
manifolds V D W with Ricci V _ 0 where  the  equidistant  deforma- 
tion of  hypersurfaces  provides the major  tool for  the  s tudy of such V 
(see w 5). 

k-CONVEXITY. A cooriented hypersur face  W in ~ "  is called k-convex 
for  some integer k ~-~ 1, 2 ..... n - -  1, ~ dim W, if  among its n - -  1 
principal curva tures  ~ at  least k are  >_ 0. Then W is called strictly 
k-cinvex if k among ~ are  > 0. Fo r  example, ( n - - 1 )  convexity is 
the same as the  ord inary  convexity. 

Notice tha t  k convexity is invar iant  under pro]ctive transforma- 
tion of ~ which allows us to extend the notion of k-convexity to 
the sphere S ~ and the project ive space P~ which are  locally projec- 
t ively equivalent to ~ .  Then we observe tha t  k-convexity is stable 
under  small inward equidistant  deformations of W in ~" ,  as follows 
f rom the tube  formula.  (This is also t rue  for  large deformation 
with an appropr ia te  generalization of k-convexity to non-smooth 
hypersurfaces) .  Fur thermore ,  the  inward  equidistant  deformation 
performed in S n with respect  to the  spherical metric also preserves 
k-convexity since S ~ has  (constant) positive curva ture  where  the 
generalized tube  formula  (see (**) in w 2) leads to the  desired con- 
clusion (compare the  discussion in w 2 following (**)). Moreover, 
since the  curva ture  of S ~ is strictly positive, an arb i t ra r i ly  small 
equidistant  deformation in S " makes  every k-convex W strictly 
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k-convex. As both notions are projectively invariant,  we conclude 
tha t  every k-convex hypersurface in ~ admits a strictly k-convex 
approximation. 

So an elementary Riemannian geometry of positive curvature 

leads to a purely Euclidean conclusion. 

More interesting global properties of closed k-convex hyper- 
surfaces can be obtained with elementary Morse theory of l inear 
functions f : ~ n _ >  ~ restricted to W. I f  the critical points of such 
f are  non-degenerate, which is the case for  generic l inear func- 
tions f, then all critical points of f on W have indices ei ther  >_ k 
or _ n - - 1  ~ k. Therefore W admits a cell decomposition with no 
cell of dimension e in the interval n - -  1 - -  k < e < k. 

EXAMPLES. (a) I f  k ~ n - - 1 ,  the only possible cells are  of dimension 
0 or n - -  1 and the above reduces to the s tandard proper ty  of locally 
convex closed hypersurfaces  W in ~ . - 1 :  these are homeomo~phic to 
disjoint unions of spheres (we do not  assume W is connected). 

(b) Let  k -  n - - 2 .  Now the above cell restriction becomes non- 
vacuous s tar t ing  f rom n ~  5. I t  says tha t  the cells have dimensions 
0, 1, n . -  2 and n -  1. An obvious consequence of tha t  for  n _ 5 
is the freedom of the fundamental  group and the vanishing of He(W) 
for  i ~ 0 ,  1, 2, n - - 2 ,  n - -  1. 

I n  

only i f  
all k_> 

general, the Morse theory of W tells us something non-trivial 
n _ 2k + 1. However, there are non-trivial restrictions for  
1 on the domain V c ~ bounded by W. 

/f 
then V 
hedron 

a bounded domain V in ~n has smooth k-convex boundary, 
admits a homotopy retraction onto an e-dimension subpoly- 
in V for e ~ - - n - - l - - k .  

This is immediate with the Morse theory applied to f on V which 

is a compact manifold with boundary. 

I t  is not hard  to see tha t  the converse is also true. I f  V can be 
built in ~ n  by sequentially a t taching handles of indices <_ e, then it 
is diffeomorphic to a domain with ( n -  1 -  0-convex boundary.  
For  example, every small s-neighbourhood of a smooth submanifold 
Vo c ~n of codimension k + 1 obviously has k-convex boundary.  
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Now, we wan t  to use the Morse theory to say something 
interest ing about the geometry of V. F i r s t  we observe tha t  the 
intersection of a k-convex domain V (i.e. aV is k-convex) with an 
af f ine  subspace X c 1R ~ of codimension d is ( k -  d)-convex in X 
(i.e. has a ( k -  d)-convex boundary, now of dimension n ~  1 -  d) 
in-so-far as the intersection V ~ X has smooth boundary in X. Then 
we apply the Morse theory to l inear functions on the intersections 
of V with linear subspaces and obtain by induction on d (the case 
d ~ 1 follows by the above Morse theory) the following 

LEFTSCttETZ THEOREM. The homology homomorphism 

H e (V N X) --> H e (V) 

is in]ectiv fo~" e ~ n - -  1 - -  k and codim X ~ d _< n - -  k. 

EXA~PLP.. I f  k ~ n - - 1  and d , ~ - - n - - 1  the above says, in effect, 
t ha t  the intersection of every connected component of V with a line 
is connected. In other words, a connected domain with locally convex 
boundary is convex in the ordinary  sense. 

I t  is easy to see tha t  the Lefschetz property  is characterist ic 
for k-convexity. 

I f  a compact domain V c 1R ~' wi th  smooth boundary has 

Hr injective for all affine (~ + 1)-dimensional sub- 

spaces X in ~n then (the boundary of) V is k-convex for k ~ n - - e - - 1 .  

Now, one can accept the above injectivity as the definition of 

k-convexity wi thout  any smoothness assumption on W E  0V. The 

f i rs t  (obvious) theorem of the resulting theory reads 

I f  V1 and V,_ are k-convex in ~ then the intersection V1 N V,2 

is also k-convex. 

Notice t ha t  the homological definition of ( n -  1)-convexity 

allows disconnected domains in ~n  with locally convex boundaries. 

The connectedness condition generalizes for  k < n -  1 by the requi- 

rement  tha t  Ho_(V ~ X) ~ 0 for  e ~ n - -  1 - -  k and for  all (e + 1)- 

dimensional subspaces X c ~n. For  example, in the next-to-convex 

case of k ~ n - - 2  this  requires the intersection of V with every 

plane X c ~ to be simply connected. 
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Finally we  indicate ye t  another  k-convexity condition by the 
analogy wi th  the classical convex case, for  every point x in ~ 
outside V there is a k-dimensianal affine subspave passing through 
x and missing V. 

This is a t ru ly  global p roper ty  of V c ~ which is much s t ronger  
than the above k-convexity and which becomes indispensable if we  
want  to reconstruct  V by  its l inear project ions to ( n - - k ) - d i m e n -  
sional subspaces in ~n. 

IMMERS]~) k-CONVEX HYPERSURFACES. Here  our W in ~ is allowed 
to have self-intersection. This means, W is a smooth ( n -  1)-dimen- 
sional manifold which comes along with an i~mersion W--> ~n  tha t  
is a locally diffeomorphic map. I f  W is oriented as an abs t rac t  
manifold, then the immersed W c ~ "  becomts cooriented if  we  f ix 
once and for  ever  some orientation of ~ .  In this case we can define 
the second fundamental  form and the notion of k-convexity of W. 

One sees in fig. 5 below a locally convex immersed closed curve 

in ~2. Notice tha t  the image of this immersion is singular at  the  
double points and in no sense convex 

Fig. 5. 

A classical convexity theorem claims tha t  every locally convex 
closed connected hypersur face  in ~ is embedded (i.e. has no double 
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point) for n _> 3 and thus  bound a convex domain in ~ - .  The latter 
statement generalizes to the k-convex case as follows. 

Let W c ]R" be a closed immersed k-convex hypersur]ace for 
n 

k > - ~ .  Then W bounds an immersed manifold V in IR n of dime~ion  

n(i.e. W bounds V as an abstract  manifold and the immersion o] 
W ~ V  to IR" extends to ~n immersion V--> ?R"). 

The construction of V is achieved by fol lowing the levels of  a 
linear funct ions on W that are the intersections W fl Xt for a family 
of parallel hyperplanes Xt c ~".  These intersections are ( k - - 1 ) -  
convex for non-critical t where X~ is transversal to W and the 
intersection W t ~  W N X t  is a smooth immersed hypersurface in 
X ~ - - - ~ , - 1 .  As  we  move t in a non-critical interval this  hypersurface 
moves by a rgular homotopy (i.e. remaining immersed) but  the self- 
intersection pattern of W~ may change with t. However,  the inequa- 

n 
lity k <~ -2- rules out the interior head-on collision of two  pieces of  

Wt as indicated in Fig. 6 below 
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Fig. 6. 
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(The vector  field on the initial position of Wt marks  the coorienta- 
tion). I t  is easy to see that  if  Wto bounds some immersed manifold 
Wt0 in X t 0 = ~ - l ,  then this also so for  Wt, for  t~ > t o  if  in the 
course of the  regular  homotopy Wto--> Wt~ the above head-on collision 
does not occur. Then the manifolds Vt filling in all Wt add up to 
the required V filling in W. 

REMARK. The circle in Fig. 5 gives us a conterexample for  k ~--- 1 and 
n = 2 and it is easy to produce non-tillable W in ~ for  all n and 

n 
k _ < ~ . n - - 1  But  the  case k ~ -~- fo r  even n _> 4 is less obvious. 

PSEUDO-CONVEXITY. I f  one is content  to  res t r ic t  the  symmet ry  group 
preserving k-convexity one comes up with a vas t  amount  of gene- 
ralizations among which the most  impor tan t  is pseudo-convexity of 
hypersur faces  W c C ~. The complex s t ruc ture  in C ~ distinguishes 
certain af f ine  subspaces in ~ =  C ~, namely those which not  only 
~ - a f f i n e  bu t  also C-a f f ine  in C ~. In particular,  the  distinguished 
planes in ~ =  C ~ are  (called) C-lines in C ~. With this terminalogy, 
W is called pseudoconvex, i f  for  each point  w E W and every C-line 

X in r t angent  to W at  w the  restr ict ion of the  second fundamenta l  

form / / w  to X ~ - - - ~  has  the  eigenvalues 21 and 22 sat isfying 
21 + 22 ~ 0. In other  words,  W is mean curvature convex along all 
C-drections. Similarly one defines k-pseudo*convexity by  insisting 
on the above inequality at  each w for  the  C-lines inside some 
k-dimensional ~;-affine subspace tangent  to W at  w. 

We sugggst  to the reader  to s ta te  and prove the Lefschetz and 
the filling theorems in this case. 

The beautiful  fea ture  of pseudo*convexity and k-pseudo*convexity 
is the  invariance under  the  (local as well as  global) biholomorphic 
t ransformat ions  of C ~. (The proof  is not  hard). This allows an 
extension of these notions to a rb i t r a ry  complex manifolds V where  
th t  pseudo*convexity plays a major  role in the  analysis and geometry  
on V. Fo r  example, there  is a remarkeble  theorem of Grauer t  which 
claims tha t  every compact  connected complex manifolds V with a 
non-empty str ict ly pseudoconvex boundary  admits  a non-constant  
holomorphic function. Moreover, there  is a proper  holomorphic map 
f of the  inter ior  of V into some C N, such tha t  f is injective on the 
complement to some compact  complex submanifold V0 = V of posi- 
t ive codimension. 
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Finally, we suggest to the reader to work out the notion of 

k-convexity in the quaternion space ~'~ and then extend it fu r the r  

to the  mean curva tur  convexity with respect to a given set of 

(distinguished) subspaces in ~ .  Then the reader may state and 

prove the Lefschatz and the filling theorems. 

HYPERSURFACES OF TYPE (k+ , k_). This refers  to the condition which 

requires tha t  W has at  each point w exactly k+ strictly positive and 

k_ strictly negative principal curvatures.  We also assume I1 W is 

nawhere singular on W and so k+ ~ k_ ~ n - - 1 .  Notice tha t  the 

non-singulari ty of H W is equivalent (by a trivial  argument)  to regu- 
larity of the Gauss map. Recall tha t  the Gauss map v sends a 

co=oriented hypersurface W to the uni t  sphere S "-1 c ~ by assigning 

to each w ~ W the outward looking uni t  normal vector v(w) at  w 

brought  to the origin of ~'~. In the non-cooriented case the Gauss 

map goes to the projective space pn-~ by sending w to the line in 

~ + 1  through the origin parallel to v(w). Such a map is smooth if  

W is smooth and the above mentioned regular i ty  of v means tha t  

the differential  Dr: T(W)--> T(S) is injective on the  tangent  spaces 

Tw(W) for  all w E W, or, equivalently, tha t  v is locally diffeomorphic. 

For  example, for  surfaces W in ~ there  are two possibilities. 

The first ,  is, where H is definite, positive or negative (one may  
switch f rom positive to negative by changing the coorientation) and 

so W is locally convex or concave. The second possibility is tha t  of 
indefinite / /  where W is a saddle surface. 

o 

convex 

Fig. 7. 
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Recall tha t  w E W is called a saddle point if  W is nei ther  convex 

nor concave at  w, tha t  is the tangent  space Tw(W) c 1R" intersects 

the inter ior  and the exterior (parts of the complement )o f  W arbi- 

t ra r i ly  close to w. Equivalently, w is contained in the (Euclidean) 

convex hull of the boundary of every sufficiently small neighbourhood 

U c W of w. Then W is called of saddle type if all w E W are saddle 

points. 

I f  one want  to reap global consequences of the type condition 

on H w one must  make some assumptions on the behavior of W at 

infinity.  Here it is worth-while noticing tha t  every closed hyper-  

surface always contains at  least one convexity/concavity point. For  

example, W is (obviously) convex at  each maximum point of the 

distance function dist(x~, w) on W for  every fixed Xo ~ 1R ~. Thus the 

saddle type makes V non-closed and one may expect interest ing geo- 

met ry  if  W has no apparent boundary in ~,+1 of this  kind or 

another.  Here are three conditions one usually imposes on W to rule 

out such a boundary. 

(1) W is properly embedded (or immersed if a self-intersection 

is allowed) into ~n. That  is the inclusion map W c 1R ~ is proper:  
the intersections of the compact subsets in ~ with W are compact 
in W. In other  words, if  a sequence of points w~ E W goes to inf in i ty  

in W then it also goes to inf ini ty  in 1R ~ (and so no subsequence may  

create in the limit a boundary point of W in 1R"). 

(2) W is quasi-proper in 1R". This means tha t  the intersection 

of W with every compact subset in 1R ~ is a union of disjoint compact 
subsets in W. That  is every connected curve in W going to inf ini ty  

in W must  be unbounded in the ambient  1R ~. Clearly, proper---->quasi- 

proper. 

(3) W is complete. This r fers  to the  completeness of the induced 

Riemannian metric. Equivalently every connected curve in W going 

to inf in i ty  must  have infini te  length in 1R ~ (and hence in the induced 

metric on W). This is weaker  than  quasi-properness. 

These three conditions serve their  purpose of rul ing out boun- 

dary (or limit) points of W in ~n if  W itself has no boundary as 

a topological manifold. 
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Here  are  some examples clarifying the meaning of the  above 

definitions. 

(a) Let  Wo c ~n  be a closed submanifold and W--> Wo c ~ be 

an infinite covering map. One may  take, for  example Wo ~ S 1 c ~ 
and W ~ ~ which covers the circle S 1. Then this W is complete but  

nei ther  proper  nor  quasi-proper in ~" .  (Of course an infinite 

covering map W--> Wo never give us an embedding W--> ~ ,  but  
one can sometimes make  an embedding f rom such a map by an 

arb i t ra r i ly  small per turbat ion  which does not  af fec t  the  propert ies  

(1), (2) or (3). This is clearly possible, for  example, fo r  ~ -->S ~ c ~2). 

1 
(b) The graph of the function sin - -  over ] 0, ~ [ is complete 

X 

1 1 
but  not  quasi-proper  in 112; the graph o f -  s i n -  over ] O, ~ [ is 

X X 

1 
quasi-proper though non-proper;  but  the graph of x 2 s i n -  over 

the  semi axes ] O, ~ [ is not  even complete. 

Now let W c ~ be a submanifold wi thout  boundary  which 

sat isf ies one of the  above conditions (1), (2), (3) and has the  form 
H W of a given (constant!)  type  (k+ ,  k_). Then one expects tha t  the 

global geometry  (and topology) of W is ra ther  special. Yet, one can 

not answer  the  following simple looking questions. 

Is there  a bound on certain Betti  numbers  of W? What  is the 
s t ruc ture  of the  Gauss map  v :  W--> S ~-1 ? Can this map have 
I J a c v ] ~ l D i s c r H  I _ > c > 0 ?  (This is impossible for  n ~ 3  by  a 

diff icult  theorem of Efimov, see [Miln]). Suppose v is a diffeomor- 
phism of W onto an open subset  U c S ~-~. Does this U has bounded 
topology? Can one classify the subsets U appear ing this way?  (Yes, 

for  n ~  2 according to Verner,  see the  discussion on p.p. 188 and 

283 in [Gro]). 

COMPACTIFICATION OF W. The constant  type  condition on H W is not 

only an af f ine  invar iant  bu t  it is also invar iant  under  projective 

t ransformat ions  of ~ .  Therefore,  one may speak of hypersurfaces  

of constant  type  (k+,  k_) in the project ive space P~ and also in the 

sphere S ~. Here  such a hypersur face  may be closed and then one 
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asks what  the geometry and topology of such closed W c S" can 

conceivably be. The simplest examples are provided by codimension 

one orbits of isometry groups acting on S ~, where not only the type 

of II W but  also the princ@al curvatures of W in S ~ are constant. The 

hypersurfaces  wth constant  principal curvatures (recall, these are 

the eigenvalues of H) are called isoparametric and, amaizingly, not 

all of them are homogeneous for  large n (see [F-K-M]). Now, one 

can not expect the (topological) classification of closed hypersurfaces  

W c S" of a given constant  type (k+,  k_) to be too simple, but  one 

still believes tha t  such W have r bounded >) topology and geometry, 

e.g. the Betti numbers of W must  be bounded in terms of the 

dimension n alone. 

Final ly  we observe tha t  every closed hypersurface  W c P~ gives 

us (properly embedded) hypersurface  W' in ~"~- - -P~- -P~- I ,  tha t  

is W ' ~  W - - P  ~. Then we ask if  this (~ compact origin >> of W' of 

constant  type imposes extra topological restriction on W'. 

We conclude this section by an a t tempt  to formulate  a general 

problem on the relation between //w and the global geometry 

of W. F i r s t  we notice tha t  //w is completely characterized (up to 
rigid motions) at  each point w ~ W by the  principal curvatures  
21(w) . . . . .  2~_1(w) which we organize in the increasing order, 

21 _< 42 _< ... _< ~,-1. Then we have a non-ambiguous (and hence, 

continuous) map ~: W-~IR  "-1 for  ~ ( w ) ~ ( ~ l ( w )  ..... 2,_1(w)) which 

encodes the  infinitesimal information hidden in I1 TM at  all points 

w E W. Now, for  example, every subset A c ~ - 1  defines a class of 

hypersurfaces  W in ~ "  if one requires the image ~(W) to be con- 

tained in A. (This includes k-convexity, MeanCurv >_ 0, and constant  

type as special cases). Another  important  invar iant  besides the geo- 

metric image ~(W) is the push-forward q,  ~---~, (dw) of the Rieman- 

nian measure dw on W. Then every class ~ of measures on ~ , - 1  

defines a class of W in ~ -  with 4, (dw) belonging to r With these 

A and ~ the r local-to-global >> problem sounds as follows. What  

is the (geometric and topological) << shape >) of W in the class defined 

by a given A or r We want  an answer in terms of A or ~ and 

we may  expect it  only for exceptionally nice A and r Unfor tuna-  
tely we never know which problem is nice and which is ugly unless 

we solve it. 
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w 1. R E C O ~ T I O N  ON LENGTH, DISTANCE AND RIEMANNIAN METRIC. 

A Riemannian s t ructure  on a smooth manifold V is given by a 

positive definit ive quadrat ic  fo rm g on the tangent  bundle T(V). 

Such g assigns the  norm (or length) to each tangent  vector  r E T(V) 
by  

1 

and then one has  the  g-length of every Cl-smooth curve in V, tha t  

is a map c : [0, 1]--> V, defined by in tegrat ing the norm of the 
a 

vectors c'(t) ~-- (Dc) - ~  E T~(V), v -~-- c(t), 

1 

length r j Ilc'(t)ll, dr .  
0 

Geometrically speaking, the  norm I]r]]g pulled back to [0, 1] by the 

differential  of c defines a measure density on [0, 1] whose total 

mass is the  length of c. Thus the length is invar iant  under  repara-  
metrization of [0, 1]. 

There is nothing sacred in the quadrat ic  na tu re  of ]1 [],- One 
could s tar t  with an a rb i t r a ry  continuous family of (non-Euclidean) 
norms ]] ]] on the  tangent  spaces Tv(V), v C V, and then define the 
length of curves  by in tegrat ing I[c'[I. Here  we only mention tha t  a 
norm on T(V) is called a Finsler mebric on V and manifold carry ing 

these are  called Finsler manifolds. 

Let  us concentrate  our  at tention for  the  moment  on the function 
c ~-> length (c) defined on the space of map [0, 1 ] - ~  V with some 

Riemannian or Finsler  norm on T(V). Such a function sat isfying a 

few obvious propert ies  (such as invariance under  reparametr izat ion 

and addit ivi ty for  subdivisions of curves into smaller pieces) is an 

interest ing geometric  object  in its own r ight  which is called a length 
s~acture on V. Granted such a structure,  we  define the associated 

metric  on V in the  usual w a y  by  looking at  all curves between 

given points vl and v2 in V and by sett ing d i s t (v l ,  v~) equal the 

infimum of  the  lengths of  these curves. Clearly, this is indeed a 
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metric in the  Riemannian and Finsler  cases (but  it may  be not  so 

for  less regular  length s t ructures  where,  fo r  example, every curve 

between vl and v2 may  happen to have infinite length, e.g. if  we 

allow a generalized norm on T(V) which is infinite away  f rom some 

subbundle S c T(V)). 

Metrics arizing f rom length s t ructures  are  called length metrics 
and they  have the following proper ty  which almost characterizes 

them. 

TRIANGLE E-EQUALITY. For  every two points v~ and v2, every E > 0 

and every  posit ive 5 _ d i s t (v l ,  v2) there  exists a point  v E V, such 

that  

dist(v, vl) _< ~ -+- 

and 

dist(v, re) <_ dist(v~, v2) - - (~ .  

In other  words  the t r iangle inequality 

dist(v~, v_~) _< dist(v, v~) + dist(v, v~) 

becomes near ly  the  equali ty wi th  an appropr ia te  choice of v. In fact,  

one can make  an actual equali ty if  there  exists a shortest curve c 
between vl and v2 for  which length(c)=d-----dist(vl,v:). Such a 

curve c in V with the induced metr ic  clearly is isometric to the 
segment  [0, d] c ~ and it is customari ly called a minimizing geo- 
desic segment between vl and v2 and, accordingly, denoted (even if  
such segment  is non-unique) by  [v~, v2] c V. Then for  every 5 E [0, d] 

the  corresponding v E Ivy, v2] ** [0, d] with dist(v, %) ---~ 5 satisfies 

the  t r iangle equali ty 

dist(v, vl) + dist(v, v2) = d i s t (v i ,  re) .  

Notice tha t  if  V is a compact  (possibly with a boundary)  

Rimannian (or Finsler) manifold then the minimizing segment does 
exist  for  all vl and v~ in V, as everybody knows, and this is also t rue  
in the  non-compact case if  V is complete as a metric  space. 

LOCALITY OF LENGTH METRICS. Every  length metric  on V is uniquely 

determined by  its restr ict ions to the  elements of an a rb i t r a ry  cover 
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of V by  open subsets  U~. That  is if  two such metr ics  coincide on 

every U~ then they  equal on V. In fac t  for  an a rb i t r a ry  metric  d 

on V on can define d § as the supremum of the  metrics d' for  which 

there  exists an open covering of V by Us (depending on d'), such 

tha t  d'<_ d on each U~. Then the t r iangle e-equality shows tha t  
d+ ~ d fo r  the  length metr ics  d. But  in general d § > d. For  example, 

i f  we s ta r t  with the  Euclidean metric d on a submanifold V c ~ ,  
then d+ corresponds to the  induced Riemannian structure on V 
defined with the  Euclidean length of curvs (but these must  be taken 
inV). Thus 

distv(vl, v~)~- d+(v~, v2) > d(v~, v 2 ) ~  dist~,~ (Vl, V2) , 

unless V (or at  least the  closure of V in ~ )  contains the s t ra ight  
segment between vl and v2 in ~ .  

The locality of the  length metrics, and in part icular  of the 

Riemannian metr ic  is the  major  (non-psychological) reason why one 
adheres to the  local-to-global principle in the  Riemannian geometry.  

NON-EFFECTIVF_~ESS OF THE LENGTH DEFINITION OF A METRIC. E v e n  

if  a Riemannian metr ic  on V is wri t ten  down quite explicitely one 

may  have hard  t ime in evaluating the corresponding distance between 

two given points. Fo r  example, if V is (diffeomorphic to) a domain 
in ~ - ,  n ~ d i m  V then every Riemannian s t ruc ture  is given by 

n(n ~-1) functions on V tha t  are  the  components of g in the 
2 

s tandard  basis, 

g ~ s -  g(8~, 8j), i, y" ----- 1, ..., n 

0 
for  the  vector  fields 3 ~ -  on 1R ~. But  even for  very  simple ax~ 
functions (e.g. polynomials) gij we can not  see very well wha t  happens 

in the  course of  minimization of the  g-length of curves. 

Another  example, where  the logical na ture  of the  problem is 

especially clear, is where  V equals the universal covering of a com- 

pact manifold V~. The length s t ruc ture  lifts easily f rom Vo to V 

by jus t  assigning to each curve in V the length of its image in ]1o. 

Yet  i t  does not  tell us much about  the corresponding metric in V. 
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For  example, there  is no way  to tell by looking at  Vo if the  diameter 
of V (i.e. sup dist(v~, v~)) is f ini te  or not, as  this is equivalent to 

v2,v~ E Y 

f inding out  whether  the  fundamental  group ~l(Vo) is f in i te  or not. 
But  the  la t ter  problem is well known to be undecidable and so the 

diameter  of V can not  be effectively computed in terms of 11o. 

Our last  example is where  V is a Lie group and g is a left 

invariant Riemannian structure.  Such a g is uniquely determined 
by  wha t  happens on a single tangent  space, say at  To(V) for  the 

neutral  group element e E V. Thus g may  be given by prescr ibing 

a quadrat ic  form on the linear space Te(V). Yet one has very  poor 

knowledge (especially fo r  non-nilpotent solvable Lie groups)  on the 

metr ic  s t ruc ture  of these (V, g). 

The above mentioned difficulties make  quite valuable any kind 

of metr ic  information one can obtain by looking at  effectively com- 
putable  infinitesimal invariants of V. A grea t  deal of these is 

harboured  by  the Riema~znian c~erv~ture tensor of g which is expres- 

sed by  direct  (but  messy) algebraic formulae  involving g and the 

f i r s t  and second derivatives of the components gij of g in given local 
coordinates. (These formulae  appears  explicitely later in this w For  
exmple, there  is a par t icular  combination of these derivatives, 
called the sectional curvature K ( V )  (see w 2), whose strict positivity 
K(V)  >__ E ~ 0 implies V is compact, whenever  it is complete as a 

metric  space. This gives an (effective !) part ial  solution to the  above 
diameter  problem for  coverings V--> V. .  Conversely, if the  sectional 
curva ture  of 11o (and hence of V) is everywhere  negative then V is 
non-compact  and its diameter  is infinite (see w167 2 and 4). Unfor-  

tunately,  most  manifolds have sectional curva ture  of variable  sign 

and the  above cri terion does not  apply. But  the  constant  sign of the 

sectional curva ture  does occur for  certain interest ing examples inclu- 

ding some homogeneous Riemannian manifolds (yet solvable groups 

mentioned above do not  fall into the  constant  sign category). 

RECAFTURING g FROM THE METRIC. T h e r e  i s  the following simple 
way  to reconstruct  g f rom the corresponding distance function. Fo r  

a given point  v we define the  function ~(v') on V by ~ ( v ' ) - ~  (dist 
(v, v')) 2. We observe tha t  ~ is smooth at  v ' ~  v and the different ial  
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Dq vanishes a t  v. Then the second differential  D20 is a well defined 

quadrat ic  fo rm on Tv(V) which equals (by an easy a r g u m e n t ) t o  g 

on Tv. 

Thus we established the equivalence of the  three  basic view- 
points on a Riemannian s t ruc ture :  infinitesimal, fo r  g a quadrat ic  

fo rm on T(V);  path-theoretic,  for  the  length function on curves and 
the metr ic  (or distance function) point  of view. Often one does not  

distinguish between the three  s t ruc tures  and apply the expression 

<< Riemannian metr ic  >> to all of them. I t  should be noted tha t  although 

the three  s t ruc tures  are  formally equivalent they  represent  objects 

f rom quite d i f ferent  worlds. For  example, g is a tensor, specifically 

a quadrat ic  form, whose posit ivity may  be sometimes forfai ted.  But  

then nothing remains of the  metric  s t ruc ture  at tached to g (except 

for  some residual terminology such as <~ Lorentz metric >>). On the 

other  hand one may have a (non -Riemann ian )me t r i c  space with 

ra ther  nas t ry  singulari t ies where  the  infinitesimal approach becomes 

hard  to persue. So it  seems we are  quite lucky in having so diverse 

notions and ideas merging together  in the  Riemannian stream. 

RIEMANNIAN VOLUME. Each Riemannian manifold V of dimension n 

carr ies  a canonical measure,  which is (uniquely) characterized by  

the following two axioms. 

IVf0NOTONICITY. I f  there  exists a distance decreasing surject ive map 

between two n-dimensional manifolds, say f : V1 --> V2, then 

Vol V2 _<_ Vol V~ 

where  <~ Vol >> denotes the  total volume (or mass) of the  measure  on 

the manifold in question. 

NORMALIZATION. The unit  cube in ~ "  has volume ~--- 1. 

Notice tha t  the above definition makes  sense on the level of the  

length s t ruc ture  and of the  Riemannian norm on T(V) as well as 
for  the  distance function. In fact, the  following three  conditions 

on f a re  obviously equivalent, 

8 o m i ~ r ~ o  Matemat i .co  �9 Fi.~t, co - 3  
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(i) f is distance decreasing, 

(ii) f decreases the length of curves, 

(iii) the  different ial  of f decreases the  length of the  tangent  
vectors (here we mus t  additionally assume f differentiable). 

The existence and uniqueness of the  Riemannian measure  for  

the  continuous s t ructures  g on V immediately follows f rom the 

obvious infinitesimal ~pproximation of g at  each point vo E V by a 
Euclidean metr ic  go. Nomely, if  we take  some local coordinates 

u~ ... u~ in V near  vo, then g defines a Euclidean metr ic  go on the 

coordinate neighbourhood U by 

go(a~(u), O,(u)) = g (a,(v~), 0j(vo)), 

a 
where  0 ~ - - - - ~ -  and u run  over U while v~ E U is fixed. I t  is clear 

tha t  (U, go) is isometric to ~ and tha t  go approximates g a~ Vo 
wi$h zero order. That  is fo r  every  E :> 0 there  exists a neighbourhood 

U~ c U of v, such tha t  

( 1 - - e )  go <_ g <_ (1-~ e) go on U~. 

I t  follows, by monotonicity, tha t  the  Riemannian g-volume of U~ is 
s-close (in an obvious sense) to the  go-volume (which is Euclidean 
and may  be assumed known) and then the  uniqueness of Volg follows 
with E--> 0. The existence is also seen in this  f r amework  but it is 
more  convenient to use a purely infintesimal definition. Namely, 
(the discr iminant  of) g defines a norm on the  top exter ior  power 

of T(V) which gives us a measure  (density) on V. In the  down-to- 

ear th  t e rms  one has the  notion of ]Jacobian[ for  every Cl-map 

f : V1--> ]12 which is computed at  each v ~ V with the  (Euclidean !) 

metr ics  gl(v)  on To(V) and g2(w) on T~(V2), w = f (v)  E V2, as [Det I 
of the  different ial  Dr: T,,(V~)--> T,~(V2). That  is 

t 

]Jac f] ~ ]Det f] ~ (Det DD*) ~ , 

where  D ~ Df  and D* is the  adjoint  of D with respect  to gl(~) and 
g2(w). Then one defines the  Riemannian volume of every small neigh- 
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bourhood U c V by  taking a di f feomorphism f : U' -~ U for  some 

U' c ~ and by  sett ing 

Vol~ U ~ j  IJac fl du' 
U" 

fo r  the  Euclidean volume element du'. 

Notice that  the  Riemannian s t ruc ture  res t r ic ts  to submanifolds 
W c V of dimension k < ~ ~ dim V and then we have the Rieman- 

nian volume Vol~ on W. In part icular,  for  k ~ 1 we come up again 

with the length of curves, tha t  is Vol~ W for  dim W - ~  1. 

F I R S T  ORDE~ INFINITESIMAL APPROXIMATION OF g BY g o .  Since g is 

Euclidean at  v0 with zero order  one might  th ink  tha t  non-flatness 
of g (i.e. the  deviation f rom being locally Euclidean) can be measured 

by  the f i r s t  derivat ives of g~j--g(O~, aj) in some local coordinates. 

Then, surprizingly, this does not work  because there  a lways  exist  
par t icular ly  nice local coordinates u~, ..., u~ around v, called geode~ic 
coordinates, such that  

~ g~j(Vo) ~ 0 for  all i, ], k ~ 1, ..., n, 

where  we need the metric g to be Cl-smooth a t  vo. In fact, a little 
thought  explains how this could happen. When we change coordinate 
systems which a re  n-tuples of functions ~ : V--> ~ ,  we observe that  

the change of ak g~j(vo) is determined by the second derivatives of 

n~(n + 1) 
u~ at  vo. Altogether,  there  are  2 of these derivatives (for  n 

functions ~ )  which are  (somewhat  miraculously) the  same in number  

as the f irst  derivatives of n(n  ~ 1) 2 functions g~. a t  v~. Then it 

is easy to believe (and not  hard  to prove) tha t  one can ad jus t  the 

second derivat ives of  % such tha t  O~ g,s become zero. In fact.  one can 

prove tha t  these second derivatives are  uniquely determined by  the 

condition O~ g~s(v~)~-O. Namely, if  u~ and u~ are  geodesic coordinates, 

such tha t  O~ u~ ~ 6!~, then the second derivatives of u~ with respect  

to ~ vanish at  vo. 
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The Euclidean metric  go on U constructed as earlier, bu t  now 

with geodesic coordinates u~, approximates  g at  Vo with the  fixst 
order, 

, )  

--e2go <-- g ~ g o  <-- e'go, 

where  e is a smooth function on V vanishing a t  vo. The name usually 
applied to go is the osculating metric at vo. 

One may  t ry  to proceed fu r the r  and eliminate the  second deri- 

vat ives of g a t  vo by manipulat ing the third derivatives of  u~. But 
n~(n + 1) (~ + 2) 

now we have only 6 of the third derivatives of u, to 

play against  n2(n + 1)2 second derivat ives of g,j. The difference 
4 

between the  two numbers  is n"(n2--1)  which tells us how many 
12 

pa ramete r s  must  measure  the second order  non-flatness of g at  Vo. 
In fac t  the  following linear combinations R,s~a of 0~0~ g,j(v) are 

constant  under  the changes of u~ which keep f ixed the f i r s t  and the 

second derivatives of geodesic coordinates u~ at v, as  a straight-  

fo rward  (an exceedingly boring) computat ion shows 

1 
R~jk~ ~ - ~  (0i 0~ g~k + 0~ 0k g ~  - -  0~ 3 4 gs~ - -  0j 0k g~ ), 

1 
where  - ~  is the mat te r  of convention. It  is clear tha t  

and tha t  

R~jk~ ~ - -  R~j~ ~ R ~ s  ~ - -  R ~  

which is called the (first)  Bianchi identity. Then one can easily see 

~ ( ~  - -  I )  
tha t  the  number  of l inearly independent R~jk~ is exactly 12 

and tha t  R~i~ t ransform as tensors  should under the  changes of 

local coordinates (now, with no restr ict ion on the f i r s t  and second 

derivat ives of these coordinates). Thus we obtain a tensor  on V 
called the curvature tensor R-----{R~ike} of g which measures  non- 

f la tness  of  g in the  following sense. 
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A manifold (V, g) has zero curvature i f  and only i f  each point 

v E V admits a neighbourhood U wi th  is isometric to some open 

subset U' c ~n, for  n ~ dim V. 

The curvature  R at  v is a 4-linear tensor on the tangent  space 

T~(V) which is given a Euclidean s t ructure  by g lT , (V) .  One can 

form a vast  amount  of numerical characterist ic of R IT (V)  which 

are invar iant  under  g-orthogonaI t ransformat ions  of (T(V), g) and 

thus give us scalar invariants of g, tha t  are real valued functions 

on V built up in an invar iant  way  at  each v E V f rom the second 

derivatives of g at  v in geodesic coordinates. For  example, one can 
1 

/~-~ 
take the g-norm I[RIIg tha t  i s .  [ ~  R,.j.k,~) which gives us an overall 

] 

i,j,k 

scalar measure of non-flatness of V. Now we can say tha t  V is e-flat 

i f  [[R] Ig -< E on V and then t ry  to study the global geometry of e-flat 

manifolds for  a given s > 0 (see, e.g. [Bu-Kar]).  But  we are con- 

cerned with more subtle scalar invariants  which are not automa- 

tically positive and whose sign conveys a non-trivial geoxnetric 

information about V. As a mat te r  of comparison we may look again 

at  the second fundamental  fo rm [I v of V c 1R "+1 whose norm ]]IlVll 

measures non-flatness of V in 1R ~+1 but where the sign of the eigen- 

values ~ of [iv (which are scalars invar iant  under  rigid motions 

much more than the sheer size of H. (Not ice  of V in ~,§ tells US 

n 

tha t  ~ ~.~ = III/11~). 
i ~ l  

In the Riemannian case there are many  similar scalar invariants  

(which correspond to functions on the space of curvature  tensors on 

T(V) invar iant  under  fiberwise orthogonal t ransformat ions)  but  only 

few of them have found a meaningful  geometric interpretat ion so 

far.  Most studied among these are the sectional curvature K(V), 

which is, in fact,  a function on the Grassmann bundle of the  tangent  

2-planes in V, the Ricci curvature, which is a quadratic fo rm on V 

and the scalaz curvature which is a function on V. These curvatures 

are defined and studied in the following w167 2-6. 



38 M. 6ROMOV 

w 2. EQUIDISTANT DEFORMATIONS AND THE SECTIONAL CURVATURE 

g(v). 

For  every hypersur face  W in a Riemannian manifold V : -  (V, g) 
(recall tha t  r hyper  >> signifies dim W E  n -  1 for  n ~  dim V) we 
define the  equidistant hypersur faces  We as the levels of the  signed 
Riemannian distance function dista(v, W) exactly as we  did it 

for  hypersur faces  in IR ~ in w 0. We can also define the  map 
d : W-- -  Wo --> V, which moves Wo to W~ for  small ~ using geodesic 
e-segments normal  to W instead of s t ra ight  segments in ~ + ~  (see 
w 0). In order  to have good theory  of geodesics in V we assume g 
is C2-smooth (in some coordinate system). Then one knows since the  
work  of  Riemann tha t  fo r  every unit  t angent  vector ~ E T~(V) there  
exists a unique geodesic issuing from v in the direction 7. Here  the 
word r geodesic >> means a locally isometric map of IR or of  a con- 
nected subset  of  ~ into V, where  r locally isometric �9 refers  to the 
distance function in V. Namely, every sufficiently small subsegment  
of a geodesic must  be a minimizing segment in V tha t  is of the 
length equal the  distance between its ends in V. (For  example, the 
geodesics in the  uni t  sphere S ~ c ~ + ~  are  the  grea t  circles or  ra ther  
lines and segments  going around these circles with the  uni t  speed. 
They are  minimizing in-so-far as  thei r  length does not  exceed ~). 

I f  V is a complete (e.g. compact)  manifold wi thout  boundary,  
then it is classically known (probably, a lready to Riemann) then 
one has a geodesic ray ~, : ~+-->V with r ( 0 ) ~ v  and 7 ' ( 0 ) ~ r  fo r  
all v E V and unit  7 E T~(V). I f  V has  a boundary,  the  ray  may  hit  
the  boundary  at  some fini te  moment. Similarly, if V is non-complete 
the  ray  may  reach the << infini ty �9 of V in f ini te  t ime (as actually 
happens  to s t ra ight  rays  issuing f rom a point  in a bounded domain 
V c ~ ) .  However,  fo r  every  interior point  v ~ V and some e > 0 
depending on v there  a lways  exists an e-segment 7: [0, s] --> V wi th  
7 ( 0 ) ~ -  v, 7 ' ( 0 ) ~  z (for  a given uni t  T E T~(V) which is a minimizing 
geodesic segment  between v ~ ( 0 )  and v ' ~ r ( D  E V. Thus the local 
geomet ry  of geodesics in V is ve ry  much the same as tha t  in IR ~ 
(where the  geodesics are  s t ra ight  lines, rays  and segments). 

Now we define d~ with an exter ior  uni t  normal field v to  W 
by  sending each w E W to the  e-end of the  geodesic segment  issuing 

f rom w in the  direction v(w). (If  E < 0 we  use the  segment  
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7: [ - - e ,  0] -->V with 7(O)-~w and 7'(O)~-v). I f  V is complete we 
thus obtain a map (called the normal exponential map) d: W X 1R--> V 
for  d(w, D ~ d, (w) in the above notation. I t  is characterized by the 
geodesic proper ty  of d on the lines w X 1R and by the initial 
conditions 

0 d ( w , O ) ~ v ( w )  d(w, O ) ~  w and - ~  

for  all w E W. (In the non-complete case we have such a map on 
some neighbourhood U c W X 1R of W X 0 c W X 1R, provided W 
lies in the interior of V). 

T H E  SECOND FUNDAMENTAL FORM OF W IN V. Using d~ one defines 
the second fundamental  form //w which measures how much W is 

curved inside V (exactly as in the Euclidean case, see w 0), by 

1 d ( + )  //w . . . .  , 
2 de g~=o, 

where g* is the metric on W induced f rom g by the  map de : W -> V.  

There is another  way to define H w by using geodesic coordinates 
u l , . . . , u~  at  a point w E W c  V where we wan t  to evaluate H W. 
Nomely, these ooordinates ident i fy  the coordinate neighbourhood U 
with a domain U' c ~*  (with the Euclidean coordinates ul .... , u,), 
such tha t  w ~ 0 and W N U becomes a hypersurface  W' c U' c ~ "  
passing through the origin. Then we define the form H W of W c V 
at  w as tha t  of W' in ~* at  O, 

I nW l To(W) 

where the tangent  spaces Tw(W) and To(W') are identified by the 
different ial  of the  implied diffeomorphism U ~ U" (sending W N U 
to W' and Tw(W) onto To(W')). A little thought  shows this  definition 
to be independent of the coordinates u~ and with a minor  ext ra  ef for t  
one can see this  fo rm is the same as defined by the above (+ ) .  

An offshot  of the second definition is the existence, for  every 

tangent  hyperplane S c T~ (V), of a smooth hypersurface  W c V 

passing through v, t angent  to S (i.e. having T ~ ( W ) ~  S) and being 
geodesic at v which means, by definition, TIWI T ~ ( W ) ~  O. For  
example, one may  take  W corresponding to the Euclidean hy~er- 
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phtne W' c 1R ~ in geodesic coordinates, such tha t  W" is t angent  to 

S at  To(1R") ----- T,(V). 

d , 
Now, as -~e g ~ = 0 ~  0 a t  v for  the above W and the corresponding 

equidistant We, we want  to look at  the second derivative. This is 

bet ter  done (for the reason which will become clear later  o n ) w i t h  

the operators A~* on T(W) defined as the pull-backs of the shape 
operators A~ on W~ under the differentials  of the maps d~ : W --> W~ 

(compare w 0; here as in the Euclidean case d~ is a diffeomorphism 

of W on W~ for  small ~ and A~is defined by llW~(r~, ~2)~---g(A~7~, 72)----- 
< As 7~, 72 > v). Namely we set 

(++)  d , Bs=--~ A~=o]S. 

This Bs is a symmetric  operator  on S ~  T~(W) which depends only 

on S and on g but  not on a choice of W with T ~ ( W ) ~ S ,  as a simple 

infinitesimal computation shows. Also notice tha t  Bs does not depend 

on the choice of coorientation of S (and thus  of W) since the second 
deriative is invar iant  under  the sign change of the variable. 

The operators Bs on the tangent  hyperplanes S c T(V) car ry  
the same infinitesimal information as the curvature  tensor and there  

are simple algebraic formulae expressing one in term of the other. 

On the other hand, one can define with Bs the sectional curvature 
K(o) for  all t angent  2-planes o c T,(V) as follows. Take an a rb i t r a ry  
hyperplane S c T~(V) meeting o a t  a line ~ ~ S N o c T~ and being 

normal to o (i.e. normal to the line ~l c o normal to e ). Then we 

take  a unit  vetor 7 6 e and define 

(*) K(o) ~ - -  g(Bs(7), 7). 

Again one should go through some simple algebraic computation to 

see why the result  does not depend on the choice of S and r. As for  

the minus sign, this comes about because we want  the round sphere 
in 1R "+1 to have positive curvature.  In fact, let V equal the uni t  

sphere S ' ~ - - - S ' ( 1 ) c  1R "§ with the induced Riemannian metric g 

and W c V =  S ~ be an equatorial hypersphere. Then W clearly is 

geodesic at  all points w 6 W and so is suitable for  computing Bs for  
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S~-~ T(W). The e-equidistant concentric spheres We c V clearly are 
smallev than W. More precisely, the metrics of these spheres W 

brought to W-~-Wo are given by the following well known (and 
obvious) formula 

g** ~ (cos: s) go. 

Therefore the second derivative of g* measured by B is negative 

(definite) and the sectional curvature K is positive in accordance 
with the usual convention. Also notice htat the diminishing of g* for 

frowing Is] agrees with the behavior of the second form llW~: the 

smaller of the two balls in S n bounded by We is convex and the 

larger ball is concave. Thus the interior equidistant deformation 
of W (for a given coorientation) makes W convex and the exterior 
deformations We are concave. 

and so 

Now, let us compute K for W~-S ' (1 ) .  First, 

d 
d-~ g ~ ~ - -  2 sin E cos E go, 

A* EIa, 

d , 
(formally, A~ equals -~e g~ divided by g~*). Then 

d A * = ( - - 1 - - t g e )  Id, 
ds 

for the identity operator Id on S ,-~ T(W). Thus B s - - - - I d  and 
K ( o ) - - 1  for all tangent planes o in W ~ S ' ( 1 ) .  

Notice that K scales quadraticly under the scalar change of the 
metric. For example, the sphere Sn(R) of radius R has K = R  -2. 
(This can also be seen directly for g* wcos2(ER -1) in this case). 

In general, we denote by RV the manifold with the new distance 
defined by 

dist .... - - R  disto~,~, 

which correspond to g.e . .~-R 2 go~d. Then the scaling formula for 
K reads 

K(RV)-.~ R-'-' K(V) .  
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SECTIONAL CURVATURE FOR SURFACES. If dim V ~-2 then the curva- 

ture tensor reduces to a function on V (as the number of components 
n2(n ~ - -  1) 

becomes 1 for  n ~--- 2, see w 1) which adequately is expres- 
12 

sed by the  sectional curva ture  K ( v ) ~  K(o ~ Tv(V)) for  the points 
v E V. The famous Gauss' formula expresses K for  surfaces in ~3. 

TEOREMA EGm~IUM. The sectional curvature K(v) of V c ~ equals 
the Jacobia~ of the Gauss map V--> S o at v, or equivalently to the 
product of the principal curvatures (eienvalues of H v or of the shape 
operato~ A) at v. 

Of course, the proof  is tr ivial  by  the s tandards  of the  modern 
infinitesimal caulculus. Yet, the  ma jo r  consequence of the  theorem 
looks as remarkable  as it appeared 200 years  ago: the  Jacobian  of 
the  Gauss map  does not  change if  we bend V in ~ ,  tha t  is if  we 
apply a deformation preserving the length of the curves in V. For  
example, when we s ta r t  bending an initially f lat  sheet of paper  it 
does not  remain f la t  in ~3  bu t  its intrinsic geometry  does not  change 
and so the Jacobian of the Gauss maps  remains zero. 

Another  corollary of Gauss theorem reads 

Convex (and concave) surfaces have K >__ 0 while saddle sur- 
faces home K <_ O. 

Notice tha t  the f i r s t  claim extends to convex hypersur faces  
V" c ~,+1 for  all n:  they have K _> 0 by  Gauss' formula  extended 
to the  higher  dimension. On the other  hand, saddle surfaces V 2 c ?R '~ 
have K ~ 0 for  all n, where  (< saddle �9 means the following. 

CONVEX HULL PROPERTY. Each point  v E V is contained in the 
Euclidean convex hull of the  boundary  of every sufficiently small 
neighbourhood U c V of v. (Compare saddle surfaces in w 1/2). 

The proof  of the  K _< 0 s ta tement  follows f rom a higher  codi- 
mensionai version of Gauss' formula. (This formula  applies to all 
V n c  ~,+k bu t  it leads to no nice geometric interpretat ion for  
K ( V  ~) <_ O if  n ~ 3). 

SURFACE~ ~: C V. The sectional curva ture  K of V can be computed 
at every tangent  plane o c Tv(V) with an appropr ia te  surface  ~: 
in V. Namely one takes ~:, such tha t  Tv(~:)-~-o and such tha t  ~: is 
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geodesic at v. The geodesic condition is equivalent to the existence 
of geodesic coordinates ul , . . . ,  u~ at v with respect to which 
becomes a Euclidean plane in 1R ~ (with the Euclidean coordinates 
u t ,  .... u~, compare w 1). Then, by yet another generalization of 
Gauss' formula, K(o) in V equals K(v) in Z for the metric in 
induced from V. 

S E C T I O N A L  C U R V A T U R E  OF H Y P E R S U R F A C E S .  Consider a hypersurface  
W c V and let us formulate Gauss' teorema egregium which relates 
Kw(o) to Kv(o) for  the planes o E Tw(W), w E W. For this we need 
the second fundamental form H w restricted to o, where o is given 
the (Euclidean) metric inhereted from g on Tw(V). Now, every qua- 
dratic form on ~-~--(o ,g]o)  is characterized by its eigenvalues 
(which are the eigenvalues of the corresponding symmetric operator 
A on ~ : )  and the product of these eigenvalues for the form H w on 
o is denoted Dis(o). With this the Gauss formula reads 

Kw(o) ~- Kv(o) + Dis(o). 

Here as earlier the proof is algorithmic but the corollaries are quite 
nice. For  example if W is convex (see next w for a discussion on 
convexity in V) and so H w is definite, then we conclude 

Kw > Kv. 

In particular if V has positive sectional curvature then so does W. 

TUBE FORMUI~. The tube formula for hypersurfaces in 1R" (see (**) 
in w 0) generalizes to hypersurfaces W in an arbi trary Riemannian 
manifold V by 

d , 
(**) d--~ A~ ~ - - -  (A*): + B, 

where B is the operator on the (tangent spaces S of the) tangent 
bundle T(W,)  defined earlier in this w by ( + + ) .  Notice that  (**) 
for  e ~ 0  reduces to ( + + ) f o r  geodesic submanifolds W (i.e. where 
I1 W ~ 0). As usual we do not provide the proof as we do not attempt 
to present the infinitesimal computational formalism of the Rieman- 
nian geometry. Yet, we want to point out here the following impor- 
tant feature of (**). The term B measures the curvature of V and 
does not depend on W. In fact, we have B on every tangent hyper- 
plane S c T(V) and B in (**) is obtained by restricting to the 
hyperplanes Tw(W,) c T~(V). On the other hand the operators A, 
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measure  the relative curva ture  of W : ~  W0 in V and, for  e =/= 0, of 
the  equidis tant  hypersurfaces  W~. 

Using (**) we can give our f i r s t  geometric characterization of 
manifolds with K >__ 0 and K _< 0 in term of equidistant hypersur-  
faces W~. 

LOCAL CONS/F_~ITY CRITERION. If  K(V) >_ 0 then the inward equidistant 
deformations W~ of every convex hypersurface W c V remain con- 
vex, and if  K(V)_< 0 then the outward deformation is convex. 
Conversely, i f  the inward equidistant deformation preserves convexity 
of all convex hypersurfaces in V then K(V) >_ 0 and if  this happens 
for the outward deformation then K(V) <_ 0. 

In this s ta tement  we speak of cooriented hypersurfaces  and 
convexity is defined by I1W>_ O. The equidistant  deformation in 
question is only considered for  small E so tha t  the normal geodesic 
map d~ : W--> V is a diffeomorphism of W onto W~ (as is needed 
for  our  version of tube  formula). Then the claims 

and 

K(V) > 0---> inward deformation preserves convexity 

K(V) _< 0 > outward  deformation preserves convexity 

become obvious as 

and 
K > O (  .',B < 0 

K < O (  >B>_O.  

To prove the opposite implication, f rom preservation of convexity 
to the  sign of K(V), one needs sufficiently many convex hypersur-  
faces W in V whose equidistant  deformations W~ are  non-convex 
whenever  the curva ture  sign is wrong. Such a W must  have quite 
small second fundamental  form (and hence, small IIAII) to be sen- 
sit ive to the  B-term in (**). This can be easily a r ranged by  using 
hypersur faces  W corresponding to (pieces of) Euclidean spheres of 
large radius in geodesic coordinates. (We suggest  the  reader  to 
actually produce these W and conclude the proof  following the  above 
hint.). 

The above convexity cri terion makes  sense for  quite general 
metric  spaces (e.g. for  Finsler  manifolds), where  one can define 

convexity but  where  our infinitesimal definition of the  curva ture  
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does not  work.  On the other hand, the  usefulness of the  (infinitesi- 
mally defined) conditions K >_ 0 and K ~ 0 in the Riemannian fra-  
mework  owns very  much to the possibility of several d i f ferent  
geometr ic  in terpreta t ions  which by no means follow one f rom 
another  for  non-Riemannian manifolds. F o r  example, one does not 
know how to extend the implication 

K ( V )  >_ 0 y K ( W )  >_ 0 

to convex hypersur faces  W in non-Riemannian spaces V. Even for  
non-smooth convex hypersur faces  in 1R" the only simple proof  of 
K ( W )  >_ 0 uses an approximation by smooth hypersur faces  followed 
by  the application of Gauss' teorema egregium. 

We conclude this w by relating the sectional curva ture  to the 
curva ture  tensor  defined in w 1. 

SECTIONAL CURVATURE AND THE CURVATURE OPERATOR. The sectional 
curvature at each point v E V is a function on the Grassmann mani- 
fold Gr2 IR'~ Gr2T~(V) of the planes in ~ (Tv(V),g,,). To 
understand the nature of this function we use the standard 
(Plficker) embedding of G~ IR ~ into the unit sphere of the exterior 
power A: ~ which assigns to each plane o ~ Gr~ IR ~ the bivector 
l?~Xl/kX2 for an orthogonal basis (xl, x2) in o c IR ~. This fi does 
not depend on the choice of xl, x2 (here we need o oriented and the 
basis respecting this orientation) and the norm [[~II (naturally de- 
fined with the Euclidean norm in ~') equals one. Now a simple 
algebra shows that the sectional curvature function o~->K(o) on 
Gr2 IR~c A 2 IR ~ is quadratic: there exists a (necessarily unique) 
quadratic form Q on A21~ ~, such that K(o)~--- Q(o, o) for all o~Gr21R ~. 
Following the established tradition one often uses instead of Q the 
correspoding symmetric operator R defined by (Roe, ~)~-Q(u, ~) for 
the scalar product on A ~ T(V) induced by g on T(V). This is called 
the  curvature operator R : A 2 T~(V)--> A 2 T~(V). 

n ( n  - -  1) 
Notice tha t  d -  dim A s 1R ~ - -  and so quadrat ic  forms 

2 
Q on A e 1R ~ const i tute the  space of dimension 

d(d  Jr 1) n ( n - -  1) (n ~- 1) (n - -  2) 
2 8 

This is more  than the number  of the independent indices in the  

curva ture  tensor  ( w h i c h  is n ~ ( n ~ - - l )  ) 12 , see w 1 and in fact, the 
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form Q satisf ies some symmet ry  relation, called the Bianchi identity, 
nS(n~ - -  1) 

which reduces the  dimension to 12 . Then the form Q (and 

the curva ture  operator  R)  can be  identified with curva ture  tensor  
of (V, g). 

w 2 �89  INFLUF~CB OF K(V)  ON SMALL BALLS IN V. 

We want to give here another geometric criterion for the sign 
of K(V), now in terms of the size of small balls in V. Namely we 
shall show that small concentric balls grow slower in V with 
K(V) >_ 0 than the balls in IR". On the contrary, if K(V) <_ 0, then 
the balls in V grow faster with the growth of the radius than it 
happens in ~. Here is the precise statement. 

MONOTONICITY CRITERION. If K(V)>__ 0 then for every point v E V 
there exists a number ~ > 0 such that every two concentric balls 
B (v, ~) and B (v, 2~) with ~ <_ 2~ <_ ~o satisfy 

(0) B(v, ~)  <_ ~B(v, ~) 

which is understood according to the following 

DEFINITION. The inequality 

B _~ 2B' 

fo r  two  metr ic  spaces B and B'  signifies tha t  there  exists a bi ject ive 
(sometimes << surject ive �9 is enough) map f : B'  -~ B, such that  

distn(f(a), f(b)) <_ ~ distB,(a, b) 

for  all a and b in B'. 

The inequality (0) is characteristic for  K _ 0. I f  i t  holds for  
all small balls around v then the sectional curvatures  at  v are  ___ 0. 
Similarly, the negative curvature K <_ 0 is characterized by the in- 
verse ball inequality 

B(v, ~ )  >_ ~B(v, 8) 
fo r  0 < ~ _< ~5 _Jo(v).  

IDEA OF THE PROOF. One knows tha t  every point  a E V lying suffi-  
ciently close to v can be joined with v by  a unique geodesic segment 
[v, a] ~ V. Then for  every a E B(v, ~) we define b-----f(a)E B(v, ~ )  
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as the  b-end of the geodesic segments [v, b] which extends [v, a] 
and has 

length [v, b] ~ 2 length [v, a].  

The result ing map  f :B(v,O).-->B(v,  2O) preserves  the  geodesics 
issuing f rom v and also it respects the spheres around v : the sphere 
S(v, ~z) of radius  ~, for  every a _< ~, goes to S(v, ~) fo r  fl ~ 2a. This 
f expands exactly by 2 in the radial direction and we must  show 
tha t  it expands the spheres S(v ,a)  no more  than that. Now the 
spheres S(v, e) form an equidistant  family  to which the tube  for- 
mula (**) applies. This shows for  K >_ 0 tha t  S(v, e) grow slowe~" 
with e than the corresponding spheres in ~ (where K ~ 0  and 
there  is no negat ivt  B- term in the tube  formula), while initially, for  

infinitely small >> e the spheres S(v, e) are  (asympto t ica l ly )Eucl i -  
dean. In other  words,  the (eigenvalues of the) shape operator  on the 
sphere S(v, e) are  smaller in V than in ~ *  and so the spheres do 
g row slower in V. This implies the required 2-inequality on f com- 
par ing B(v, ~) and B(v, 2,~), fo r  K _> 0 and the  case K _< 0 follows 
by  a similar argument .  

I f  dim V ~  2, then the converse s ta tement  giving the sign of 
K(V)  in te rms of the balls follows f rom wha t  we have jus t  proved 
an near  each point  v where  K(v) ~ 0 the curva ture  is ei ther positive 
or negative (because there  is a single 2-plane o at  v). Then this 
extends to n _> 2 by looking at the  growth of the small balls B(v, ~) 
intersected with a geodesic surface 2: at  v tangent  to the plane 
oE T~(V) where  we s tudy the (sign of the) curva ture  K(o). The 
details here  are  not  hard  to fill in and this is suggested to the reader. 

Notice, tha t  the inequality (0) for  the balls in V can be used 
as a definition of K _> 0 for  an a rb i t r a ry  metric space V bu t  the 
corresponding theory  has not  been t ru ly  developed. Fo r  example, one 
does not know when this definition agrees with tha t  using convex 
hypersurfaces.  

Another  r emark  is tha t  the above a rgument  gives us besides 
a comparison between concentric balls in V also a comparison of 
the small 0-balls B(v, 5 ) c  V, with the Euclidean ball B ' ( ~ ) c  ~ .  
Namely, 

K(V)  >_ 0 ~ B(v, ~) <_ B'(h) 

and 

K(V)  <_ 0 z '., B(v, 0) >_ B'(J). 
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Again this can be used as a definition of K _> _< 0 bu t  for  non- 
Riemannian V this is quite d i f ferent  f rom the above definition using 
the inequality (0) for  concentric balls in V. 

EXAMPLE. Let  V be a f ini te  dimensional Banach space tha t  is an 
n-dimensional linear space with a norm ]] II and the corresponding 
dist(vl,v2)---~-Ilvl--v2]]. This V, like 1R ~, admits a similari ty 
t ransformat ion  at each point  v E V by 

v ' - , v  + ~ ( v ' - - v )  

for  var iable  v'  and each s E ~ § This establishes the metric equality 

B(v, ~ )  ---~ ~B(v, ~) 

for  all balls and thus suggests  the vanishing of the curva ture  K(V). 
On the other  hand if  a ball B ~ B ( v ,  6) in such a V is comparable 
with the  Euclidean 5-ball B" by either of the  two inequalities B >_ B' 
or B _< B', then necessarily B ~ B'  and V is isometric to 1R". (This 
is a simple exercise for  the  reader). 

One may  ask at this point  wha t  is the  deep r tason which makes  
various geometric definitions of the  sign of the  curva ture  coincide 
fo r  the  Riemannian manifolds. F i r s t  of all, by  their  very definition, 
Riemannian manifolds are infinitesimally Euclidean and so their  
basic geometry  is similar to tha t  of 1R ~. Fur thermare ,  as we  assume 
the  Riemannian s t ructure  g smooth, we  t remendously res t r ic t  the 
infinitesimal geometry  at  each point  v E V. For  example, all infini- 
tesimal information of the  second order (which is reflected in the 
curvature)  is defined by finitely many parameters  at  each point  of 
V ( that  are  the values of the f i r s t  and second derivatives of g~j), 
and so there  are  plenty of algebraic relations between these para-  
meters.  When integrated, these infinitesimal relations acquire a 
geometric  meaning such, fo r  example, as the  equivalence of d i f ferent  
geometric definitions of (the sign of) the curvature.  On the other  
hand the infinitesimal geometry,  say, of a Finsler  manifold a t  a 
given point  involves infinitely many parameters  as these are  needed 
to specify a general (Banach) norm at  every tangent  space. However ,  
there  exist some non-Riemannian spaces with f inite dimensional 
infinitesimal geometry. Among them most  known are  those called 
sub-Riemanni~n or C~rnot-Caratheodory spaces but  their  geometry  
has not  been studied as deeply as in the Riemannian case (compare 
[ Str]  ). 
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w 3. MANIFOLDS WITH POSITIVE SECTIONAL CURVATURE. 

As we already know the curva ture  condition K ( V )  >__ 0 is cha- 
racterized by  preservat ion of convexity of small inward  equidistant  
deformat ions  W, c V of convex hypersur faces  W in V. Now we 
wan t  to establish the  convexity of W,  fo r  all negat ive E (<< negat ive >> 
corresponds to << inward >> with our  conventions, see w 0) and we 
need f i r s t  of  all a definition of  convexity suitable for  non-smooth 
hypersurfaces .  We s ta r t  with the following basic notion of 

CONVEX BOUNDARY. Let  V' be a Riemannian manifold with boundary  
called W'. We say that  W' is (geodesically) convex of in the interior 
Int  V' ~ 1 1 ' -  W', every two points can be joined by a minimizing 
segment  provided such a segment exists for  the  two points in 
question in the  ambient  space V' D Int  V'. (The la t ter  condition is 
sat isf ied for  all complete, in par t icular  compact manifolds V'). In 
other  words,  non-convexity of W" is manifested by the minimizing 
segments  between vl and v2 in Int  V' which meet  W' at  some point 
w between vl and v2. See Fig. 8. 

W, 

V, 

Fig. s. 

Notice tha t  such a minimizing segment  [v l ,  v2] in V' typically 
<< bends >> at  the points w where  it meets  W'. For  example if  V' is 
pa r t  of  a larger  manifold V D V" with dim V ~ dim V" then Ira ,  v2] 

8 e m ' ~ l r ~ r i o  M a t e m o ,  t,{co e F~d,  eo . 4 
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may be (and typically is) non-geodesic a t  w in V. With this in mind 
one can see tha t  W" is convex if  and only if  the second fundamental  
fo rm H w" is positive semi-definite, provided W' is C2-smooth in order 
to have I I  w" defined. I t  follows that  the convexity is a local proper ty  
of W and this locality remains valid (for  the  above reason) for  
non-smooth  W' as well. (Notice tha t  the  above a rgument  which 
appeals to the  length minimization inside V' gives us a ve ry  quick 
proof  of  the  classical result  on the convexity of connec ted  locally 

convex  subsets  in ll~ ". We challenge the reader  to f ind a purely 
e lementary proof  of this classical local to global convexity criterion 
for  f ini te  polyhedra V'  in 1~). 

Now a hypersurface  W in V is called convex  if near  each point 
w E W it  can be made into the  (par t  of the) boundary  of a convex 
domain IT' c V where  the  la t ter  convexity refers  to the  boundary  
onvexity of IT' defined above. Again, if  W is smooth this is equi- 
valent  to 11 W >_ O, but  now no apparent  global convexity of W follows 
f rom our local definition, as is seen in Fig. 9 below. 

Fig. 9. 

We shall also apply the notio~a of geodesic convexity to subsets  
Vo c V as follows. Vo is called geodesical ly  convex  if  fo r  every two 
points vl and v2 there  exists a path between vl and v2 which is length 
minimizing among all paths  between vl and v2 in Vo and which is 
also geodesic in the  ambient  manifold V. Notice, tha t  convex hyper-  
surfaces  W are  not  convex in this sense but  wha t  is bounded by  W 
may  be convex. On the other hand every connected to tal ly  geodesic  

submanifold Vo c V is geodesically convex. (Recall tha t  Vo is called 
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totally geodesic if  every geodesic in V which is tangent  to Vo at  a 
point  is necessari ly contained in V,). In fact,  one can th ink of every 
k-dimensional convex V0, fo r  k _< n ~ dim V, as a convex domain 
inside a total ly geodesic submanifold of dimension k in V. 

INWARD DEFORMATION OF THE BOUNDARY. Let  V be a compact  manifold 
with boundary  a V ~  W and set 

V7 -~- {v ~ V [ dist(v, W) >_ e}. 

I f  V7 happens to be a manifold with boundary  then 

OV-[~ W _ ~ { v  ~ V [ dist(v, W ) ~ e } ,  

(where the minus sign at  ~ is due to our  coorientation convention, 
see w 0). I f  W is smooth then also W_~ is smooth for  small e bu t  as 
e growths  W_, may  develop singularities. There  are  two slightly 
d i f ferent  reasons for  the appearance of singularities. First ,  two dif- 
fe rent  par ts  of W may meet inside V as they move inward, see 
Fig. 10 and 11 below. 

W W-t. 

W 

W' 

W -  t �9 - t  o 

W - c  < - t  o 

Fig. 10. Fig. 11. 
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In other  words  a point v E V~- becomes singular if there  are  two 
distinct points w' and w"  in W for  which 

e : dist(v, w ' ) =  dist(v, w " ) :  dist(v, W). 

Notice, tha t  this v is the double-point of the  normal geodesic map 

d, and de ( w ' ) ~  de (w") ~ v. 

The second reason for  the  s ingulari ty is the meeting in V of 
two << infinitely close ~> points of W. This means v is the focal point 
for  some point  w E W with dist(v, w)----e, where  (< focal >> signifies 
tha t  the  normal geodesic map d~ : W--> V is non-regular  at  w, i.e. the 
differential  of d, is non injective at  w. (Recall tha t  d~ moves each 
w to the  e-end of the  geodesic e-segment normal to W at  w). Notice 
tha t  the f i r s t  moment  so where  a focal point  appears  is characterized 
by the blow-up of the second fundamental  form of W mapped to V 
b y d .  

I[//[[ ~ = for  e-->eo. 

This is clearly seen, for  example, in the  inward deformation of the 
sphere of radius so in ~n. 

Now the reader  may appreciate  the elQgance of the  following 
basic theorem by Gromoll and Meyer  (see [Ch-Eb]).  

CONVEX CONTRACTION FOR K >_ O. Let  V be a compact connected 

manifold with convex boundary and non-negative sectional curva- 

ture. Then the subsets V T c V  are convex fo~ all s >__ O. (We assume 
v is connected to sat isfy our  cur ren t  definition of convexity). 

IDEA OF THE PROOF. Assume for  the  moment  tha t  W ~ 3 V  is smooth. 

Then V7 remains smooth, and hence convex, in-so-far as  the  normal 

geodesic map  d, :W-->  V is a smooth embedding. Fur thermore ,  if  

d,(W} develops a self-intersection wi thout  focal points, then VT be- 

comes locally represented as an intersection of smooth convex subsets  
and so again it is convex. Then it is easy to believe in the  convexity 
at  the  focal points as  well as  these are  ju s t  r infinitesimal >> double 
points (vanishing of the differential  of a map  at  a tangent  vector  

E T(W)  brings together  the  << infinitely closed points >> correspond- 
ing to the  << two ends ~> of T). 
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To make  the above rigorous, one may use a piecewise smooth 
approximation (compare w 0) of convex hypersurfaces  (and subsets) 
as in Fig. 12 below. 

Fig. 12. 

We require  tha t  each piece is convex and has  the  second fundamental  
form H bounded by ]]HI] <_ c for  some fixed constant,  e.g. c ~  1. 
Then the  small inward E-deformation of this piece-wise smooth 
hypersurface  is again convex and piecewise smooth, where  the  de- 
formed pieces may, unfortunately,  have II//11 slightly grea te r  than c. 
This increase of IIHII--> ~ which corresponds to the  appearance of 
a focal point. But  this can be prevented since the deformed hyper-  
surface  can be arbi t rar i ly  close approximated again by  another  piece- 
wise smooth convex hypersur face  having IIHII ___ c for  all pieces. 
Thus by sequentially applying small equidistant  deformations fol- 
lowed by  approximat ions  

W ~  W,--)  (W:-) W:), ~ . . .  
deJ" appr d~f 

we manage to keep in the category of piecewise smooth convex 
hypersur faces  for  large inward deformations.  

To conclude the proof, we must  somehow produce small convex 
pieces out of which we construct  the approximat ing hypersurfaces.  
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This is done at  each point  v by using geodesic coordinates a t  v which 
relate (small pieces near  v of) str ict ly convex hypersur faces  W in V 
(<< str ict ly �9 means H W > 0) with those in 1R ~ (where the  Euclidean 
coordinates correspond to the  geodesic coordinates in V, see w 1). 
Thus the approximation of a s tr ic t ly  convex W reduces (locally and 
then globally) to the corresponding Euclidean problem where  the 
approximation is quite easy, but  the  non-strict  case is somewhat  
more  delicate. 

Notice tha t  the  notion of s t r ic t  convexity of W extends to  non- 
smooth points w ~ W by requir ing the existence of a smooth s tr ic t ly  
convex hypersur face  W' --> w (i.e. I1 W" (w) > 0) whose �9 interior 
region �9 locally contains W as in Fig. 13 below. 

W 

W, 

Fig .  13. 

One might  th ink tha t  there  is little point  in fuss ing about  non- 
s t r ic t  convexity as a small per turbat ion  could make  every  convex 
hypersur face  W strict ly convex. In fact,  this  works  if  V has sf/rictly 
po~t ive  curva ture  (K(~) > 0 fo r  all ~ c T(F) )  where  a small inward 
equidistant  deformation leads to  str ict  convexity. Similarly, i f  K < 0, 
one obtains s t r ic t  convexity with the  ou tward  deformatiorL Also in 
V ~ - ~ n  convex hypersurfaces  can be approximated by  str ict ly 
convex ones (see w 1/~). But  if  we look a t  a product  manifold such 
as V ~ Vo X 1R ~, where  Vo is a closed manfold wi th  dimVo ~ 0 and 
t ake  W ~  Vo X S ~-1 fo r  the  round (and strictly convex l) sphere 
S ~-1 in ~ ,  we  shall see tha t  this W is convex bu t  not  str ict ly convex, 
nor can it  be  approximated by  anything strictly convex. 
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The geometry  of the equdistant  hypersurfaces  is very  simple in 

the above product  example. Namely, W_, ---~ Vo X S~-l(e n D where  
is the  radius  of the  original sphere S ~-1 ~ S ~-1 (~) c ]R ~. Fur ther -  

more the  region V7 c V bounded by  W_~ equals Vo X B~-I (~ - -  s) for  

the balls B k - l ( e - - s )  bounded by  the  spheres in ~ .  Thus V~- and 

W ,  disappear  a t  the moment  s ~ ~ and at  the  last moment  V7 and 

W_, equal V~ X 0 in V---~Vo XTR ~. 

A similar p ic ture  is observed for  all manifolds V with K(V)>_O. 
As we deform the boundary  W E  aV inward  there  is the  f i r s t  mo- 
ment  

& ]  

: ~  inrad V ~ sup dist(v, W), 
vEv  

such tha t  dim V7 ~ -  n ~-  dim V for  s < ~  and dim V~-< n. I f  K ( V ) > 0  
or if  W ~  OV is str ictly convex, then the only possibili ty for  Vo is 
to be a single point since no totally geodesic submanifold V~ of posi- 
t ive dimension in V can be strictly convex at  a non-boundary point 
v~ E V with our definition of s t r ic t  convexity given above for  singular 
points. On the other  hand, in the  non-strict  case, the  inward equi- 

dis tant  deformation may  terminate  with a subset  V~ c V of positive 

dimension which is, as  we  know, convex. This VT, is itself a compact 

manifold with or  wi thout  boundary.  If  VT, has a boundary,  call it 

W t ~---3V7,, one can shrink V/, fu r the r  with the  inward  deformation 

W ~  of W ~ in V~,~. I f  the  process stops at  a closed (i.e. wi thout  boun- 
dary)  manifold we are  through ; if not we go to yet  lower dimensional 

manifolds 

(VT,)7,, ((VT,)7, )~ .... 

unless we do ar r ive  at  a closed totally geodesic submanifold Vo ~ V 
without  boundary,  called the soul of V. Then it is not  very  hard  to 
show tha t  V is homeomorphic to ~ bundle of balls over Vo. For  

example, V is homeomorphic to the n-ball in the strict case i.e. where  

either K > 0 or W ~ aV is str ict ly convex. (The s tr ic t  case is due 
to Gromoll-Meyer and the general one to Cheeger-Gromoll (see 

[Ch-Eb]).  This indicates tha t  manifolds V with K _> 0 tend to have 
a ra ther  simple topology and whenever  this topology approaches the 

critical level of complexity compatible with K >_ 0, then the geometry  
of V becomes very  special. Fo r  example, if  the  above V with K(V)>_O 
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and convex boundary  has non-trivial homology in dimension k, then 
V contains a closed totally geodesic submanifold (the above soul) of 
dimension >__ k. I t  is worth  noticing tha t  the  existence of a totally 
geodesic submanifold of dimension k for  2 _< k _< n -  1, n ~ dim V, 
is an exception ra ther  than a rule: there  is no such submanifold for  
a gene~ic Riemannian metric g on V. 

The above discussion also shows that  the homotopy classification 
of manifolds V with K ( V )  >_ 0 admit t ing a convex boundary  reduces 

to tha t  fo r  closed manifolds. (Notice tha t  a soul V~c V has  K(Vo)>__O 

as it  is total ly geodesic in V). This result  extends to non-compact 

complete manifolds V wi thout  boundary :  every such V f ibers  over 
i ts  soul which is a closed total ly geodesic subrnanifold Vo c V and 

the f ibers  a re  homeomorphic to some 1R ~. (This is shown by  con- 
s t ruct ing an exhaustion of V by compact  convex domains wi th  convex 
boundaries,  see [Ch-Eb]).  

Then one may  ask wha t  is a possible homotopy type  of a closed 
manifold V with K ( V )  >_ O. 

On the positive side, one knows tha t  every compact  homogeneous 
space, V ~ G / H  for  a compact  Lie group G, admits  a metr ic  wi th  
K _> 0. In fact,  every bi- invariant  metric  g on G has  K ( g )  >__ 0 ac- 
cording to the  following formula (see [Ch-Eb])  which expresses the  
value of K at  the span o ~ x / k y  of two orthonormal vectors  x and y 
at  the  tangent  space Te of G at  the  identity, 

1 
II Ix, y] I I , 

where [, ] is the bracket in the Lie algebra L(G)~T6. Then g 

descends to the metric g on V defined by the following condition: 
the differential of the projection G--.~ V isometrically sends the 

horizoq~tal subbundle of (T(G) g) to (T(V), g) (where the horizontal 
subbundle consists of the vector g-normal to the fibers of the pro- 
jection which are also the arbits of H in G). One knows, that the 

3 
curvature of ~ satisfies K(x-Ay-)~---4-[[[x,y]~e~t]] 2, where x and y 

are orthonormal horizontal vectors in Te and x, y are their images 

in T(V), (see [Ch-Eb]), and so K(g) >_ 0. 
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Among homogeneous manifolds with K _> 0 the most  remarkable  
are  compact symmetric spaces V, where  for  each point  v E V there 
is an isometric involution I :V - ->  V f ixing v and having the dif- 
ferential  D I - - - - I d I T ~ ( V ) .  In fac t  one may  think that  the  sym- 
metric examples provide the major  motivation for  the  s tudy of 
K > _ 0 .  

There are  some non-homogeneous manifolds with K >_ 0 but  they 
do not  influence much fu r the r  our intuition. Fo r  example, one believes 

that  the  topologically r largest  >) n-dimensional manifold with K >_ 0 
is the n- torus T ~ (which admits  a metric with K ~ 0 as T" ~ ~ / Z ' ) .  
One knows in this regard  that,  indeed, the fundamental group ~ (V) 
for  K(V)  >_ 0 cannot be much greater than ~," as it is commensurable 
wth  Z ~, (this is a lready t rue  for  Ricci _> 0, see w 5) and one also 
knows that  the Bett i  numbers b~(V) are bounded by universal 
constants b~,,. Yet one is unable to bound b~(V) by b ~ ( T ' ) ~  (~). 
(See [CheJ about  it). 

The above bound on ~1 (V) becomes radically be t te r  if we assume 
K(V)  is strictly positive (i.e. K ( o ) >  0 fo r  all ~ E T(V)). Namely 
nl(V) is finite in this case by the following classical 

BONNET THEOREM. I f  K(V) >_ u: then the diameter of V is bounded by 

where  

D i a m  V _< ~ / ~ ,  

Diam V ~ sup dis t (vl ,v2) .  
v~, vsE V 

IDEA OF THF. PROOF. Take  a minimizing segment between two points 
in V, say [vo, vii between vo and vl and look at the spheres S(e) of 
radius e around v~ near  the  points v E Iv0, vl].  (See Fig. 14 below). 

~ 
~176 

vo "..::__,,],] ] I I ! I I I 
o 

~176 
. . ~ ~  

Fig. 14. 
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The minimizing proper ty  of [vo, v~] implies tha t  every sphere S(D 
is smooth at  the  point vE [vo,vl] with d i s t ( v 0 , v ) = E  for  all 

< dist(vo,  vl). (This is a simple general fac t  which is t rue  wi thout  
any curva tu re  condition). On the other  hand a simple analysis of 

the  tube  formula  (**) in w 2 shows that  A~* must  blow up for  some 

finite negative E. Namely if we s ta r t  with some A~, then A~* becomes 
infinite for  some E in the interval [ - - u / x ,  0]. Thus the length of 

[vo, vl] cannot  exceed - - ~ / z  and the theorem follows. 

The critical case for  the Bonnet  theorem which clarifies the 

pic ture  is tha t  of V equal to the round sphere S'(~) c .~n+l which 

has constant  curva ture  ~.~___e-2. Here  the  ball B(vo, ~) of radius E 
around vo E S" is convex in S" until the  moment  E ~ n ~ / 2  and for  

larger  ~ the  boundary  sphere S(",7 ~ -----W_~ of this ball becomes con- 

cave. As e--> ne the curva ture  of W_~ (measured by A*~) blows up 
to infini ty while the complementary region S * - - B ( v o ,  D becomes 
r infinitely convex ~> for  s--> nQ and blows out  of existence fo r  E > ~e. 
Now the tube  formula shows that  all this  happens even fas te r  for  

K(V)  >_ ~2. Namely the spheres S(D are  more  concave in V than in 
S*(#) and the complement V - -  B(vo, e) is more convex. In par t icular  
this complement  must  become empty  for  e > ne as is claimed by  the 
Bonnet  theorem. 

Now, the finiteness of n~(V) follows f rom the Bonnet  theorem 

applied to the  universal covering V--> V which has f ini te  diameter  
and therefore  is compact. 

I t  is also wor th  looking at  the case where  K is non-strictly 
positive and ~ is infinite. Fo r  example if  nl is isomorphic to ~ ,  

then V (isometrically!) is a flat torus, i.e. V =  ?~"/L fo r  some lattice 

in ~ "  isomorphic to Z" (see [Ch-Eb]).  

There is no comparable  result  of this na ture  for  b,(V) for  i _> 2. 

REMARK. The conclusion of Bonnet 's  theorem remains valid with the 
following (weaker) assumption on Ricci(V), 

Ricci >_ ( n - -  1) r2,  

and the above characterization of f la t  tori by Ul-----Z" also remains 
valid fo r  Ricci ___ 0 (see w 5). On the other  hand, the u~-corollary to 
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Bonnet 's  theorem is sharpened by Singe's theorem (see w 71/~) which 
says tha t  i f  n ~ dim V is even and K > 0, thtn  the  fundamental  
group is ei ther  trivial or Z o, where  the la t ter  happens if V is non- 
orientable. 

w 31/@ DISTANCE FUNCTION AND ALEXANDROV-TOPONOGOV THEOREM. 

I f  one looks at  a metric  space V f rom a finite combinatarial  
point  of view then one wants  to know the proper t ies  of the (N X N)- 
mat r ix  of the  pai rwise  distances between the points in every subset  
in V containing N elements. In other  words, one may t ry  to charac- 
terize V by  the set of those metric spaces with N elements which 
isometrically embed into V. Yet another  way  to see it is by consi- 

dernig the map  of the  Cartesian power  V N =  V X V.X ... _X V into 
N 

11 ~' fo r  N '  = N ( N  ~ 1) 2 , say MN: V~--> ~N,, which relates to each 

N-tuple of points in V the set of the mutual  distances between these 
points. Then our invar iant  of V is the  image M ~ ( V  N) c 11 N'. (If  there  
is a natural  measure  on V as in the  Riemannian case one should look 
at  the  MN-push-forward of this measure  to 1RN'). One obvious uni- 
versal restrict ion on Ma(V 3) c 11 ~ is expressed by  the triangle ine- 
quality. Then one laso knows how to character ize the  Euclidean and 
(Hilbert)  spaces in terms of M~ (express the  scalar products  a~j 
between the vectors x o -  x~ in 1R", i ~---1 ..... N -  1, in te rms  of the 
squred distances and observe tha t  the  mat r ix  a~j is positive semi- 
definite). 

Now we want  to s tate the Alexandrov-Toponogov theorem 
which characterizes the manifolds V with K ( V )  >_ 0 by the  image 
M4(V 4) c ~ .  To abbrevia te  the f rmulae  we shall wr i te  below 
I v 1 -  v21 for  d i s t (v l ,  v2). We consider three  points Vo, vl and v2 in 
V and also a point  v3 between vt  and v~. This means 

Iv1 - -  v~l + Iv~_-- v.~i = Iv1 - -  w.I. 

Then we observe tha t  there  exist  four  points in ~ - ,  v~, v l ,  v~ and 
s v 2 between v~ and v~, such tha t  

and also 

I v ~ -  v~ I ~  ~--- I v` - -  vjlv for  i, ] ----- 0, 1, 2 

I v 1 - - v ~ l v  = I v l - - v ;  I ~ , .  
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Then automatically 

and the  Euclidean distance Iv o - v ~ l ~ 2 c a n  be expressed by a (well 

known) formula  in te rms of the four  numbers  Ivo--vil, Iv,,--wl, 
Ivl--v21 and Ira--V31. Here  is the picture which helps to keep 
everything in mind. 

t 

v I 

Vl V3 ~ ' 

v2 / "~ v 2 

! 

Vo v o 

Fig. 15. 

THEOREM. If  V is complete with K(V) >_ 0, then 

We call this AT-inequality as it  was discovered by Alexandrov 

for  n = 2 and extended by  Toponogov to n >_ 3. 

IDEA OF THE PROOF. One can think of the  AT-inequality as a kind of 
concavity relation for  the function do(v) ~ distv(v~, v) on V restr icted 
to the  segment  [v l ,  v2] as it gives a lower bound on do(v3) in te rms  
of do(v1) and d0(ve). More precisely, the  theorem says that  do is more 
concave on each segment in V than the Euclidean distance funct ion 
on the corresponding segment  in ~2. Although the function distv(Vo,. ) 

is non-smooth, the concavity type  inequalities on geodesic segments 
follow f rom the corresponding local concavity which, in the  smooth 
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case, can be expressed with the  Hessian of do ~ -d i s t (vo ,  .). Now we 
invoke the  tube formula  (**) in w 2 and apply it to the concentric 
spheres S(v~), D c V for  all ~ > 0. We can see with this formula  
(with a little ad jus tment  at non-smooth points of the  spheres) tha t  
these spheres are  less convex (or more concave) than the  e-spheres 
in ~ .  (For  example the  spheres in the  unit  sphere V ~  S ' ( I )  c ~ '+1 
become concave for  ~ > ~/2). This <( concavity ~> of the spheres to- 
ge ther  with the  obvious relation ]lgrad do(v)l I -----1 t ranslates  into a 
certain concavity of the function do(v) and by inspecting this t rans-  
lation one sees tha t  it gives exactly the desired locall version of the 
AT-inequalii ty on each geodesic segment  in V. Q.E.D. 

REMARK. It  is easy to see tha t  the AT-inequality, when applied to 
the  points v l ,  v~o and va which are  infinitely close to v~, yields K __ 0 
at  v~. Thus A T  is equivalent to K __ 0. 

One may  wonder  if  there  are  fu r the r  universal metr ic  inequalities 
related to the curvature,  but  none besides A T  is known today. 

However, the inverse AT, namely Ivy--v~lv <_ Iv'o--v" 3 I~  is known 

for  complete manifolds V with K(V)  <_ O, but  here  one must  addi- 
tionally assume tha t  V is simply connected. Also, the  manifolds V 
with Ricci V _> 0 sat isfy certain metr ic  inequalities (see w 5) but 
these depend on dim V. 

w 32/~. SINGULAR SPACES WITH K >_ 0. 

One may try,  following Alexandrov, to develop the theory  of 
metr ic  length spaces with K >_ 0 using A T  as an axiom. Now such 
a generalized space V of positive curva ture  may  be singular, and 
in fact,  even topologically singular. For  example, if  we s ta r t  with a 
smooth V with K(V)  >_ 0, acted upon by a f ini te  isometry group /~, 
then the  AT-inequali ty for  V implies (by an e lementary <~ synthetic >> 
argument)  tha t  for  V/I', which is a singular space if the action of 
F is non-free. The geometry of possible singularities of V can be 
also seen in convex subsets V c 1R ~ which a re  regarded (mildly) 
singular a t  the  boundary  points (even if the  boundary  OV is smooth) 
and also a t  the singular points of non-smooth convex hypersurfaces  
V c ~ + 1  with the  induced length structure.  (One can replace 1R "+1 
by an a rb i t r a ry  smooth manifold of dimension n -[- 1 with K >_ 0). 
An instructive example is the  boundary  of the  convex hull of a 
generic curve in 1R ~+1. 
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Another  kind of a s ingular  space with K >_ 0 is the uni t  Eucli- 
dean cone over  a manifold S with K(S)>_ 1. This cone is singular 
at  the ver tex  unless S is the  round sphere of constant  curva ture  1, 
where  the  cone is jus t  the unit  Euclidean ball bounded by  the sphere. 
Notice tha t  one can allow singular  points in the  above S with K >_ 1 
and instead of the  cone one may  take  the  suspens/on which is the 
union of  two cones over S joined along S. 

Final ly  we  observe that  the  Cartesian product  of  spaces with 
K >__ 0 has  K _> 0 and also tha t  curva ture  remains  posit ive if  we go 
to a quotient  V/G for  a compact  group G of isometrics of V. (We 
have mentioned above the case of a f ini te  group). 

These examples make singular spaces worth  of a s tudy and one 
can extend some known results f rom smooth manifold to the  general  
case. However  one has not  developed yet  the  theory  of convex hyper-  
surfaces  W in such spaces. F o r  example, one does not  know i f  the 
induced (intrinsic) metric of W haz K _>_ 0. Another  question is 
whether the inward equidistant defarmations W~ are convex (*). 

Next  one wishes to know the s t ructure  of the singularit ies of V. 
The known examples indicate tha t  V should be topologically conical 
at  each point  with roughly conical geometry. Recently G. Perelman 
proved the topological conical p roper ty  of V, which implies, in par- 
ticular, local contractibi l i ty of V, (see [B-G-P]) but  the conical geo- 
met ry  remains conjectural  (**). (Notice that  these questions are 
closely related to the  geometry  lying behind the bound on b~(V) 
mentioned earlier). 

The final group of questions concerns the s t ructure  of the  sin- 
gular  loci of  spaces with K >__ 0. I t  is known that  the  singular  points 
must  form a ra ther  ra re  set. Nomely, every n-dimensional space V 
contains an open dense subset  which is locally by-Lipschitz home- 
omorphic to ~ .  Moreover, fo r  each e > 0 there  exists an open dense 
subset  V, c V which is locally e-Euclidean in the following sense. 
Fo r  each point  v E V, there  exists a f ia t  metr ic  distE on some neigh- 
bourhood V C V~ of v which is e-bi-Lipschitz to the  metric coming 
f rom V, that  is 

1 -  E _< distv/distE _< 1 + 

en U (see [B-G-P]).  

(*) r Yes ~, according to Perelman. 
(**) This is now proved by Perelman. 
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This is still f a r  f rom wha t  one expects by looking at  convex 
hypersur faces  in ~ + 1  which are known to be almost everywhere 
C:-smoeth. The above s ta tement  concerns the  C~-structure (in the 
case of  convex hypersurfaces) .  I t  seems that  once the Cl-structure 
of the  singuarit ies is completely understood the C2-refinement will 
follow by  mere  analysis (*). On the other  hand one would need a new 
geometric idea in order  to prove that  the  n-dimensional Haussdor f  
measure  of the  singular  set is zero (**). Intuitively, each singular 
point carr ies  infinite positive curva ture  while the integral curvature  
properly defined) must  be universally bounded as one believes bu t  is 
unable to prove even in the smooth case for  n > 3. (For  n ~  2 such 
a bound is obtained with the  Gauss-Bonnet theorem which equates 
the total curva ture  of a surface  V with 2~x(V ). This theorem extends 
to higher dimensional manifolds bu t  it provides a non-trivial in- 
formation on the total amount  of curva ture  only for  n ~ 2 and n ~--- 4, 
where  one may use fo r  n ~ - 4  the universal bound on Ix(V)[ which 
follows f rom that  on the Betti  numbers  for  K(V)  >_ O. Compare the 
discussion following the s ta tement  of the sphere theorem in the 
next  w 

w 33//t. THE SPHERE THEOREM AND EQUIDISTANT DEFORMATION OF 
IMMERSED HYPF~SURFACES. 

The modern period in the global Riemannian geometry starts,  
according to M. Berger  (see [ B e r ] l ,  [Ber]e), with the  work  of 
Rauch in the early f i f t ies  who proved among other  things tha t  if 
the sectional curvatures  of a closed simply connected Riemannian 
manifold V are  sufficiently close to those of a round sphere, then V 
is homeomorphic to the  sphere. (One needs the  simply connectedness 
assumption in order  to rule out  such manifolds as the  real project ive 
space P" ~ S~/Z 2 and the lense spaces S:m-1/Zk which have constant  
positive curva ture  but  not  homeomorphic to spheres). 

The closness of the  curva ture  K~-~ K ( V ) :  Gr~V-. .1R to the 
(constant) curva ture  of a sphere is customarily expressed by the 
inequality. 

c a < : K  < a, 

where  a > 0 and 0 < c < 1. Here  one th inks  of  the  constant  ~ as 

(*) This analysis was started by Otsu and Shioya and it is rather subtle, 

(**) This is proven by Otsu and Shioya and also appears in the final 

version of [B-G-P]. 



64  M. GROMOV 

1 

of the curvature of the round sphere of radius ~-T and c, called the 
pinching constant, measures the allowed amount of non-constancy 
in K(V). Notice, that  by scaling one can reduce the general case to 
that  of c ~ 1 and then the inequality 

c < K < l  

says that  the sectional curvatures of V are strictly pinched between 
1 

those of the unit sphere and the one of radius c-~.  

Rauch conjectured that  the best pinching constant in his theorem 
must be 1/4. This value is motivated by the fact that  the complex 
pro]ectixe space ~ P~, which goes next in roudness af ter  S ~, has the 
sectional curvatures spread over the closed interval [1/4,1] for the 
natural U(n § 1)-invariant (Fubini-Study) metric on C P~. Notice 
that also the quaternion projective spaces and the projective Cayley 
plane carry natural homogeneous (even symmetric) metrics with 
1//4 _< K _< 1. 

The solution of the Rauch problem (achieved in the middle 
sixties by Berger and Klingenberg) is now known as 

THE SPHERE THEOREM. I f  a closed simply connected manifold V has 

1 
~- < K(V) < 1, 

then V is homeomorphic to S n. 

REMARKS 

(a) One still does not know if the above V is diffeomorphic to S ~ 
(but this is known for a more narrow pinching). 

(b) If  V is not simply connected, the theorem applies to the universal 
covering of V. 

(c) For the non-strict pinching. 

1 
- -  < K ( V )  < 1 ,  

the sphere theorem is complemented by the rigidity theorem of Berger 
which says that if a closed simply connected manifold V with 
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1 - - <  K ( V ) <  1 is non-homeomorphic to S" then it is necessari ly 
4 - -  

isometric to the  project ive space over complex numbers,  quaternions 

or  over Cayley numbers  with the  s tandard  homogeneous metric. 

SKETCH OF THE PROOF OF THE SPHERE THFA)REM. I f  n ~ d i m  V ~ 2 ,  

then the result  follows f rom the Gauss-Bonnet theorem 

f K(v)dv  -~- 2,nz(V), 
V 

for  the  Euler  characteris t ic  z(V). Thus the posit ivity of the  curva- 

ture  K alone (without  pinching) implies z(V) > 0 and hence we  can 

identify V with S 2 as we assume V is simply connected. 

REMARK. The Gauss-Bonnet  theorem generalizes to all dimensions by  

f Qdv = Z (V), 
L 
V 

where  .(2 ~ ~2(v) is expressible at  each v as a certain polynomial 

in the  components of the  curva ture  tensor. One knows tha t  for  

dim V ~ 4 the  sign conditions K > 0 and K < 0 both imply Y2(v) > 0. 

I t  follows that  if the curvature of V does not change sign then 
z(V) > o. 

This is not very  interest ing for  K > 0, where  the  universal 

covering ~ of V is comoact  and where  ~ I ( V ) ~  0 .~ bl ~ b 3 ~  0. 

So the remaining Bett i  numbers  contr ibut ing to Z ( ~ ) ~  z ( V ) a r e  
even: bo, b~ and b4. On the other  hand the topological conclusion, 
z(V) > 0 for  closed 4-dimensional manifolds of str ict ly negative cur- 

va ture  cannot  be obtained to-day by  any other  method. 

I f  dim V _> 6, the  sign of ~ is not  controlled by  the sign of K 

anymore. Yet  Chern conjectures  tha t  if  n ~ 4 k ,  then K > 0 and 

K < 0 imply Z > 0 and for  n ~ 4k + 2 the  sign of Z equals tha t  of 
K if  K is everywhere  str ict ly posit ive or  str ictly negat ive on V. 

Now, we are  back to the sphere theorem for  n _ 3. We recall 

tha t  the pinching condition 1/4 < K < 1 means tha t  the sectional 

8 s m i n a r i o  M a t e m a t i e o  e F i s i c o  . 5 
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curvatures  of our V are str ict ly smaller than  those ( ~  1) of the unit  

sphere S ~ and grea ter  than  the curvature  of the sphere 2 S  ~ of 

radius 2. Then we take  a point v E V and consider the concentric 

balls B(v,  r ) c  V. For  a small radius r > 0 every such ball has 

smooth convex boundary. As the ball growths three  bad things may 

happen to it. 

(1) The boundary (sphere) may loose convexity and even become 

everywhere concave. For  example this  happens to B(v, r) c S ~ for  
1 

r > ~ /2  and  it  happens in 2S ~ for  r > ~. The condition K(V)  :> T 

impli~ by the tube formula,  t ha t  B(v, r) necessarily become concave 
for  r >_ ~. 

We shall see below, t ha t  this concavity of the boundary sphere 

is not  a bad th ing af te r  all. On the contrary,  i t  tu rns  out very useful 

as we look a t  this  sphere f rom outside where  it appears convex. 

(2) The boundary sphere may develop double points. To see how 

it  happens we look a t  the example of the  (flat) cylinder V ~ S 1 X �9 �9 

The universal covering of the cylinder is the Eucldean plane ~ :  and 
the ball B(v,  r) in V is the  image of a Euclidean 2-ball (disk) B 
in ~2. As r becomes grea ter  than  the half-length of S 1 the map of 

B to S 1 X �9 becomes non-one-to-one and we can see B wrapping 

around the cylinder as r grows. 

One observes a similar picture in an a rb i t ra ry  V with the 

so-called exponential map e :  T, (V)--~ V which sends each vector 

E T~(V) to the second end of the geodesic segment in V issuing in 

the direction of ~ and having length ~ ]l~]l. The ball B(v, r) in V 

equals the exponential image of the  Euclidean r-ball B c T~(V) and 

the double points of the  boundary sphere of B(v, r) are the  images 

of those points in S ~ 3B where the map eiS is non-one-to-one. For  

example, i f  V-----5* then the  exponential map is one-to-one on the 

balls B c T~(V) of radii < n but  the sphere S c T~(V) of radius n 

is sent  by e to the single point in V ~ S " which is opposite to v in S ". 

The double points, unquestionably, cause a serious complication 

of the  picture. Yet this  will be taken care of in the above concave 

c a s e .  
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(3) The geometric  image of the  ball B c T~(V) wrapping  around 
V under  the  exponential map  e : T~(V).-> V is adequate in-so-far as 
the map  e is an immersion i.e. is locally one-to-one (and hence locally 
homeomorphic) on B. A suff icient  condition for  tha t  is the  regularity 
of r iB which means r a n k ( D e ) ~  n, where  De denotes the  different ial  
of e and n ~ d i m  17. I f  K(V)  < 1 then the tube  formula implies tha t  
the ma~ e is r e y u ~ r  on the ball B c T, (V)  of radius ~. Here  one 
may  ignore possible self-intersections of the  boundary  spheres 
S(v, r)~--OB(v, r) by looking a t  the  exponential map  e on a na r row 
sector A c B around ~ given s t ra ight  segment  in B c T~(V) joining 
the origin (i.~ the  center  of  B) with a point  s E S ~  OB. Then the 
inetrsections of the  concentric spheres in T~(V) with A go under  e 
into a family of smooth mutual ly  equidistant  hypersur faces  in V, 
see Fig. 16 below. 

i .  j 

Fig. 16. 

t \  ( ( (~ 
1 

Thus, if  - ~  < K(V)  < 1, we have an immersion of B c T~(V) 

into V, such tha t  the  boundary  of  this immersed ball is concave 
in V. Now we wan t  to construct  another  immersion of some ball B '  
to V which would bound e ( S ) - - e ( O B ) c  V f rom the convex side. 
Thus we would obtain an immersion of the  sphere S" ~---B U B'  into 
V, where  the  two balls B and B'  are  glued together  over the  common 
boundary  S. Notice that  suche an immersion is a covering map 
(since S ~ is a closed manifold and n ~  dim V) and so the sphere 
theorem comes along with an immersed B'  in V filling in e(S) c V 
f rom the convex side. The existence of such B'  is insured for  n _> 3 
by  the following 

FILLING LEMMA (compare w 1/~). Let  V be a complete Riemannian 
manifold of dimension n >_ 3 wi th  K(V) > 0 and let e : S - > V  be a 
(topolagival) immersion of  ~ closvd connected ( n - - l ) - d i m e n s i o n a t  
manifold S into V; I f  the immersed hypersurface is locally convex 
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in V, then i t  is diffeomorphic to S n-1. Moreover, there exists a bedl 
B' which bounds this S n - l ~  S and an immersion B' --) V extending 
e : S --> V, such that the immersed ball B' fills in e(S) t om  the oenvex 
side. 

REMARK. Notice tha t  the  image e(S) c V does not have to be convex 
in any sense. The local convexity means  tha t  each point  s E S has a 
neighbourhood W c S on which the map  e is one-to-one and whose 
i m a g e / s  (locally) convex in V. A typical example is provided by  the 
locally convex immersed curves in the  plane as in Fig. 17 below. 
(Compare Fig. 5 in w 1/2 and Fig. 9 in w 3). 

Fig. 17. 

Also notice that  a closed immersed curve S in ~2  does not  bound 
any immersed disk unless S is embedded (i.e. has  no double point). 
This does not  contradict  Filling Lemma where  we  assume n >__ 3. 

IDEA OF THE PROOF. Given an immersed locally convex hypersur face  
in V, we may t ry  the  inward  locally equidistant  deformation which 
applies simultaneously to all small embedded neighbourhoods of 
e(W) ~ V, see Fig. 18 below. 

The equidistant  deformat ion sketched in Fig. 18 develops a (cuspidal) 
s ingular i ty  at  a certain moment  to and cannot  be continued beyond eo. 
However ,  an elementary a rgument  as in w 1/2 shows tha t  no such 
singuari t ies appear  for  deformations of locally convex (pieces of) 
hypersur faces  in ~ for  n >_ 3. This  conclusion extends to all Rie- 
mannian manifolds V ~dth local geodesic coordinates systems a t  the 
points x ~ e(S) where  one is af ra id  of singularities. Thus one can 



SIGN AND GEOMETRIC MEANING OF CURVATURE 69 

continue the equidistant deformation as long as the local convexity 
is preserved. (In fact one needs here s t~zt  convexity as it is stable 
under small perturbations and goes along as one passes to the Eucli- 
dean picture in geodesic coordinates). Now, since K ( V ) >  0, the 

e(S) 

f 
Fig. 18. 

convexity only improves in the course of the inward deformation 
and so S eventually shrinks to a single point v' E V. The totality of 
the deformed hypersurfaces form a multiple domain in V filling in 
e(S) which is a manifold B' with a B ' ~  S immersed into V, and our 
locally equidistant hypersurfaces 

S, ~ {b E B' ] dist(b, aB')~-~e} 

for the Riemannian metric in B' induced by the immersion B'--> V. 
In this case we know by the Gromoll-Meyer theorem (see w 3) that  
B' is homeomorphic to the ball B" (this homeomorphism is easily 
constructed with the family of convex S~ shrinking to a point in B') 
and the proof of Filling Lemma is concluded. (See [Esch] for a 
detailed argument). 

REMARK. Coming back to the theorem, we observe that the simply 
connectedness of V implies that  the (covering) map S" ~ B U B'--> V 
is injective. So the exponential map e : B--> V is injective af ter  all! 
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w 4. NEGATIVE SF_~TIONAL CURVATURE. 

Here  V ~ - ( V , g )  is a complete Riemannian manifold with 
K(V) <_ O. One can easily derive f rom the  tube formula  (see (**) 
in w 2) tha t  the  condition K _< 0 is equivalent to the preservation of 
convexity under  outward  equidistant deformations W~>0 of convex 
hypersur faces  W in V, for  small e, see Fig. 19. 

W We 

Fig. 19. 

This is quite similar to thc case K _> 0. But wha t  happens here  
for  large e ___ 0 is different ,  Namely, the  tube formula  shows tha t  
the normal  geodesic map d : W--> V~ is regular  (i.e. an immersion) 
for  all ~ > 0 and d~(W)r W is a locally convex immersed hyper-  
surface. The only problem comes f rom possible self-intersections of 
this hypersurface.  The simplest case to consider is where  W~ are 

concentric e-spheres a round a point Vo E V. In  other  words we look 
at  the  exponential marp e : H~0(V)-->V which locally isometrically 

sends each s t ra ight  r ay  ~ in the  tangent  space T~0 (V) to the  geodesic 
r ay  in V issuing f rom vo and tangent  to ~ a t  vo. This e (obviously) 
maps every Euclidean r-bal l  B (0, r ) c  T~~ (V) onto the  r-bal l  
B (vo, r) c V (this is t rue  for  all complete V with no assumption on 
the curvature)  and for  K _< 0 the  tube formula  (applied to the 
spheres) shows tha t  e is an immersion. Moreover, by the  tube for- 
mula the  map e is infinitesimally distance increasing, i.e. the  metr ic  

g 'on  T~0 (V) induced by e f rom g on V is (non-strictly) grea te r  than  
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the  Euclidean metr ic  go on T~0 (V). Since go is complete the (greater)  

metric  g is also complete which then implies by  an easy a rgument  
tha t  e is a covering map and since T~ ( V ) ~  1g ~ is simply connected 

this is the universal covering. From this one immediately derives 
the classical 

THEORIgM OF CARTAN-HADAMARD. The universal covering of a corn 
plete n-dimensional manifold V with  K <_ 0 is diffeomorphic to ~R n. 
In particular, i f  V is compact without boundary then the fundamental 
group h i ( V ) / s  infinite. 

The proof  of the  above theorem shows tha t  if  V is simply con- 
nected then the exponential map  T,(V)--> V is a bi ject ive diffeomor- 

phism for  each v ~ V. I t  follows tha t  every two points v and v' in V 

can be joined by  a unique geodesic segment  in V, which (because of 
uniqueness) must  be minimizing in V and tha t  the  distance function 

d i s t (v l ,  v2) is smooth for  v~ :~v2.  Then, by  applying the tube  for- 

mula to the s-neighbourhoods of the diagonal d --- V c V X V, one 

can easily prove that  dist is a convex function on V X V. This means 
dist is convex on every plane in V X V which is the  Cartesian 

product  of two geodesics in V. In particular,  every ball B(v, e) c V 
in convex. 

The above discussion indicates a certain duality between mani- 
folds with K _> 0 and simply connected manifolds with K _ 0. This 
duali ty shows up even bet ter  for  the monotonicity of the  balls 

B(v, he) > ~B(v, e) 

for  all v E V, e _> 0 and ). >_ 1 (compare w 2 � 8 9  and the Alexandrov- 
Toponogov inequality 

IVo- -  v3iv _< Iv0 - -  

(see Fig. 15 in w 31/~), which is a sharpening of the convexity of the  

function d i s t (vo , . )  on V. Notice tha t  both inequalities need nl ~ 0 

as well as  K _< 0. 

But  the  duality does not  seem to extend much fur ther .  In fac t  

the essential fea tures  of manifolds V with K(V)  _< 0 and n ~ ( V ) ~  0 
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are  seen (if we know where  and how to look) asymptotically as we 
go to infinity in V, which has no counterpar t  for  K _> 0. 

Now, if  we turn  to closed manifolds V with K < 0 then they 

appear  as quotient spaces of the  universal covering ~ by  the Galois 

group F ~ - ~ I ( V )  which isometrically acts on ~. Even if we f ix 

the  var ie ty  of di f ferent  F c Iso V and the corresponding V ~ ~ / r  
may  be quite astounding. Tht  richest source of examples is the 

3-dimensional space ~ H  3 of constant negative curvature which 

can also be defined as PSL2 C/S0(3) with an invariant  Riemannian 

metric. Discrete subgroups F c PSL2G conformcally act on the 
Riemann sphere S 2 and their  s tudy under  the  name of the  Kleinian 
groups has been conducted for  many  years  in the  f r amework  of 

complex analysis. A new development emphasizing K ~ 1 was 

s tar ted  about  12 years  ago by Thurs ton who has  created (or disco- 

vered) a magnif icent  geometric  world in dimension 3. There is 

nothing comparable to this fo r  K >_ 0. 

Notice tha t  negative cu rva tu re  accompanies every non-compact 
semi-simple group G. Namely, i f  we  divide G by the maximal compact 

subgroup H c G then, by the compactness of H, the  spact  V ~ G/H 
admits  a G-invariant metric  g. Such a metr ic  is co~nplete (this is 
elementary) and by a well known theorem of E. Caf tan  K(g)< O. 
This curva ture  is strictly negat ive if  and only if  r a n k ~  G ~-~ 1, and 

K(g) is constant if and only if  G is locally isomorphic to O(n, 1). 

The compact  manifolds V covered by V are  associated to discrete sub- 
groups/~ c G which are  usually produced by  ari thmetic constructions. 

The above mentioned examples by  no means exhaust  all compact  

manifolds with K _< 0. In fact,  there  is no slightest chance o~ any 

meaningful  classification of such manifolds (but  there  may  exist  a 

classification of compact  manifolds wi th  K _< 0 modulo those with 
K < 0). On the other  hand for  K _> 0 a rough description of all 
compact  manifolds looks quite feasible. (For  example, every convex 

subset  V c ~ is roughly equal to some solid [0, ~1], X [0, ~ ]  X ... 

�9 .. X [0, ~ ]  and every f ia t  to rus  roughly is the  Riemannian Cartesian 

product  of the circles S~ of certain lengths ~). The situation here 

is vaguely similar to the classification of algebraic variet ies (e.g. sur- 
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faces). The varieties of general type look kind of hyperbolic (which 

corresponds to K _< 0) and are unclassifiable. On the contrary,  special 

varieties (such as Fano varieties) sometimes can be classified in every 

fixed dimension. These correspond to manifolds with K _> 0. 

In order to have a better idea of a possible classification for  

general manifolds with K > 0 one may look a t  two examples where 

the problem was, in principel, solved. The f i r s t  example is tha t  of 

constant curvature 1, where V,-~ S"/F for  some f ini te  isometry group 

F freely act ing on the uni t  sphere S n c ~ + ~ .  The second class of 

examples is given by the flat Riemannian manifolds (K ~ - 0 )  which 

are ~ ' / F  for  so-called crystallographic groups F (isometrically 

acting) on ~ .  In both cases one has a good overall picture of such 

groups F as well as a possibility of classification for  every fixed n 

(but such classification quickly becomes a mess for  large n and is 
not very appealing). 

HYPERBOLIC GROUPS. The main topological problem concerning the 

spaces with K _< 0 is a characterizat ion of the  groups F which may 

serve as fundamenta l  groups of such spaces. I f  we only assume tha t  

V with K __ 0 is complete then it is unclear if there  is any  non- 

obvious restriction on F~z~I(V) .  (The << obvious >> condition is the 

existence of a free discrete action on a Euclidean space as ~ is dif- 

feomorphic to ~ ) .  On the other hand, if  V is compact, then there 
are many specific properties of F ~ u l ( V ) .  For  example, F contains 
a free group on two generators unless V is a f lat  manifold. (In the 

lat ter  case F contains a subgroup F ' ~ Z  ~ of f ini te  index). The idea 
of the freedom theorem goes back to Felix Klein who proved it for  
groups acting on the hyperbolic space H 8 with K- - - - - -  1. The gene- 

ralization to the subgroups F c SL,, acting on the manifold S L J S O  (n) 
with K _< 0 is a famous result  by J. Tits. The extension to the 

variable strictly negative curvature  is due to P. Eberlein and in 

the general case the freedom theorem was recently proven by 

W. Ballmann on the basis of a deep analysis of the na ture  of r non- 

strictness >> for  K _< 0. 

To get  some idea on the difference between strictly and non- 

str ict ly negative curvature  we f i r s t  recall the old result  by Preissmann 

saying tha t  every Abelia~ subgroup A c F ~ n l ( V )  is free cyclic, 
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assuming V is a closed manifold wi th  K < 0. Fur thermore ,  if we 

only assume K < 0 and insist on the existence of a free Abelian 

subgroup A in nL(V) of rank k >_ 2, then V contains an isometrically 

and geadesically immersed  f lat  torus T k r V and 8o K(o) ~--- 0 on all 

planes tangent  to T k. 

This example shows how the << c r i t i c a l ,  topology may  influence 
the geometry  for  K _< 0. This phenomenon (which is somewhat  

s imiar  to wha t  happens for  K > 0) is seen even bet ter  in the  fol- 

lowing s t r ik ing result  due to Gromoll-Wolf and Lawson-Yau. 

S P L I T T I N  THEOREM. If  the fundamenta l  group F of a closed manifold 

V w i th  K <_ 0 splits into the direct product  by 1" ~ 1"1 f 1"2, where  

F1 and F~. have trivial centers, then V isometrically splits, i.e. 

( V , g ) ~ ( V 1  X V: ,  gl (~g2), where  : ~ ( V l ) ~ / ] ,  i ~ 1 . 2 .  

Notice that  the condition Center  1"+----0 is essential as  is seen 
in the  example of  a non-split  f la t  torus. (These tori  also suggest  a 

correct  generalization to the case Center  ~ 0). 

Observe tha t  if  dim V+ > 0 i ~ 1 , 2 ,  then K ( V - - V 1  X V2) 
vanishes on many 2-planes ~ E T(V) .  Namely, K vanishes on the 

Cartesian products  of geodesics ~'1 X 7: c V for  ~,+ c V+, as these 
products  a re  isomtric to 1R: geodesically immersed into V. (This 
is alweys t rue  for  Riemannian products  with no regard  fo r  the 
curvature).  

Some results similar to the split t ing theorem were  more  recently 
established for  manifolds V with K ( V )  <_ 0 where  there  a re  r suf- 

f iciently many �9 plane o on which K ( o ) ~ -  0 (see [B-G-S]). This has 

raised hope for  a possible reduction of the  general case of K < 0 

to tha t  where  K < 0. On the other  hand, one can axiomatize the 

essential fea tures  of the  fundamental  groups ~I(V) fo r  K ( V ) <  0 

and s tudy them independently of differential  geometry. This br ings  
to life a new class of groups called hyperbolic groups which include 

the above ~I(V) as well as the so-called small cancellation groups. 

The s tudy of  the  hyperbolic groups  appears  to be a t  the moment  the 

main avenue in (strictly) negat ive curvature.  (See [Gh-Ha] fo r  more 

about  it). 
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w 5. RICCI CURVATURE. 

Let us recall the basic tube formula (see (**) in w 2), which 
relates the second derivative of the (induced) metric ge on the equi- 
distant hypersurface W. c V to the sectional curvature K(V)  expres- 
sed by the symmetric operator B ~- B on T(W ). This formula reads 

d $ 

where A~* is the shape operator which is just another face of the 
second fundamental form /7 of W~, that is 

H ~  1 d 
ae: 2 de g." 

Let us see what happens if we take the traces of the operators A* 

and B in the tube fomula .  First, the trace of A* is the same as the 

trace of / / ~  relative to g~, which is called the mean cu~vsture 
M ( W . )  of W. and which equals to the sum of the principal curva- 
tures of W. (as follows from the definitions of all these curvatures, 

s e e  w 0). Then it is clear with the above formula for H ~  that 

M ( W  ) ~ Traceo, I1 w~ 

volume of g, ,  that  is 

measure the e-variation of the Riemannian 

d VoL M(W,) VoL*, (*) 

where Vol. denotes the Riemannian volume density on W. (recall 

that a dvn.sity on W. is not a function but rather a (n--D-form 

modulo __+ sign). Then Vol* denotes the pull-back of Vol, to W ~ Wo 

under the normal geodesic map d, : W--> W.. Now (,) makes sense 

as the left hand side is a density on W as well as the right hand 

side being the product of a density by a function. 

One can equivalently express (.) by using the background metric 

go on W---~ Wo as follows. Let J(w,  D denotes the Jacobian of the 
map d. at w E W. Then (.) becomes 

d(J (w ,  e)) 
de ~ J(v,  e) Trace A.*, 
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a s  

dJ d VoL - - / J  , :  / Vol, .  
de de 

Yet another  way  to express (,) is by 

log J(w, E)= Trace A~*, 
de 

or, if  one integrate  over W~, one gets 

d ; 
d--e Vol(W~) = ~ J(w, e) Trace A*, dw. 

Iv 

I t  may  be worth noticing at  this point  tha t  the ( n -  1)-dimen- 
sional volume of the  equidistant  hypersurface  W, in the  above 

formula  equals the derivat ive with respect  to e of the  n-dimensional 
volume of the r b a n d ,  between W~ and W~ that  is the  image of 
the map 

W0 )< [0, e] --> V by (w, e) ~-> d~ (w). 

More generally, one may take  the E-neighbourhoods V~ c V of a 
f ixed subset  Vo c V. Then the ( n -  1)-dimensional volume of the 

boundary  W, - -  0V + satisfies 

d 
Vol W, . =  Vol V +, 

(where V + ~  {v E V [ dist(v, V~) _< e}). Notice that  the  above formula 
&Y 

remains valid even if the hypersur faces  W~ are  non-smooth. (This 

is f i r s t  proven in 11 n and then brought  to V with Euclidean metrics 

is f i r s t  proven in infinitesimally approximat ing g a t  the points v E V, 

ompare  w 1). 

Now let us turn  to TraceB.  Recall, tha t  the operator  B ~ Bs 
was  assigned to every co-oriented hyperplane  S c T~(V) in each 

tangent  space T~(V). Every  such S is defined by the unit  normal 

vector  ~ = S "  (unique because of the coorientatien) and then TraceB 
becomes a function on the unit  tangent  bundle of V. Then a simple 

(infinitesimal) algebraic consideration shows that  this function is 
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q u a d r a t i c  on each fiber. That  is there exists a (necessarily unique) 

quadratic form on V, called the R i c c i  t ensor ,  such tha t  

for  ~ ~ S T . 

Trace Bs  ~ ~ Ricci (v ,  v)  

With this Ricci we have the following 

TRACF~ TUBE FORMULA. 

(**) d M ( W , )  ~ ~ Trace A2, - -  Riccl (v~, v~) 
ds 

where v, is th t  inward (or outward, which makes no difference) 

normal unit  field on W,.  I f  we combine this with the above discus- 

sion on Vol, and the Jacobian of d, we have 

(+) d~ log J ( w ,  E) ~ - - T r a c e A ~  (w) - -  Ricci(v~ (w), v, (w)). 
dr ~ 

Notice tha t  TraceA~ equals the squared norm ]IH~I[ ~ mea- 

suring the overall curvature  of W, in V by the sum of principal 

curvatures.  

Now, we may  recall the definition of the sectional curvature  K 
(see w 2) and observe the following formula expressing Ricci by K. 

Let  ~ ~ ~1, -2 ... ~', be an orthonormal f r ame  in T v ( V )  and let o2, ..., o, 

denote the planes spanned by the pairs of vectors (~1, v_~), ( ~ ,  ~3) .... 

�9 .. (~1 ,~). Then by an easy computation, 

n 

Ricc 0', ~ ) ~  ~ K(ot). 
i ~ 2  

Thus the uni t  round n-sphere S ~ has Ricci ~ ( n - -  1) g for  the sphe- 

rical metric g. (I t  is no accident tha t  Ricci(S~)--> ~ for  n--> ~ ,  but 

an impor tant  property  of S ~ with many  implications, see [Mi-S]). 

MANIFOLD WITH Ricci V _ 0. I f  Ricci > 0 (i.e. positive semidefinite), 

then the t raced tube formula  shows tha t  the second derivative (va- 
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riation) of logVol, is negative or. equivalently 

d 2 
de a log J(v ,  e) <_ O. 

Conversely one can easily see tha t  this inequality is equivalent to 
Ricci >_ 0. 

One can derive a sharper  inequality f rom the  t raced tube for- 
mula ( §  by observing tha t  

- - T r a c e A  ~ _< ( n - - 1 )  -1 (TraceA) 2 

for  n - -  1 ~ dim W ~ dim V - -  1. Then ( §  and the  preceeding 
d 

fo rmua  f o r - y -  J yield 
~ E  

(+§ a~ logJ  
d~ 

< _ _  ( n _ _ l )  ( d l ~  2 
�9 de . m R i c c i  

which becomes 

(+,) d ~ l o g  J dlog  J )2 
_< - -  ( n -  1) de 

for  Ricci >_ 0. In t e rms  of the mean curva ture  M of W~ the  equi- 
valent  inequalities a re  

( + , y  d ~ log VoL dM 
d ~  - -  de _< m ( n - -  1 )  -1 M 2 - -  Ricci 

and 

( §  d 2 log Vol. dM 
d@ - -  de - < - ( n - 1 ) M  2 for  Ricci_>0,  

where  
d log VoL 

is identified with M according to (,). 

In order  to emphasize the  similari ty of the  above inequalities 
with those for  K >_ 0 in w167 2, 3 we introduce the  following ter-  
minology. 

A cooriented hypersur face  W c V is called mean conve~ if  
M ( W )  >_ 0. Then a domain Vo c V with smooth boundary  is meun 
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convex if the boundary  is mean convex. Clearly, convexity implies 

mean convexity as the lat ter  requires the positivity of all principal 

curvatures not only of their  mean. Also notice, tha t  with our termi- 

nology, round spheres in ~ "  looked upon as boundaries of balls 

B c ~ "  are convex, but the same spheres which bound the comple- 
ments 1 R " - - B  are regarded concave. 

Observe tha t  the round 

( n -  1)e -1 and so the above 

shows tha t  if  Ricci _> 0 then 

m a k e s  W ~ W~ m e a n  convex 

to the round  phere  in ~ "  of 

point w E W in question. In 

so is  W~ for  e <_ O. 

e-sphere St c 1R" has mean curvature  

( + . ) '  becomes an equality. Thus (_{_.)t 

the i n w a r d  d e fo rm a t io n  (i.e. for  e _< 0) 

at every w E W fas t e r  than  i t  happens  

the same mean curvature  as W at  the 

particular,  i f  W is mean  convex then  

NON-SMOOTH MEAN CONVF, XITY. The above discussion was made under  

the taci t  assumption of smoothness of W~ along with the require- 

ment  on d~ :W--> V to send W diffeomorphically onto We. This 

assumption, as we know, is satisfied for  smooth W and small lel but 

it  is usually violated for  large ]e I. However, the above mean convexity 

property  for  Ricci _> 0 remains valid for  all e with an appropriate 

generalizations of mean curvature  and mean convexity to non-smooth 

hypersurfaces  (notice tha t  exactly a t  this  point the geometry t ru ly  

comes into play. The above formulae for  small e would remain a 

futile infinitesimal exercise if they were not valid globally for  all 

W ). The idea of such a generalization comes f rom the remark  tha t  
the intersection of two mean convex domains 111 and V2 in V should 

be mean convex, though the boundary  of V1 N V2 may be (and usually 

is) non smooth. Thus one can enlarge the class of mean convex do- 

mains  with smooth boundaries by tak ing  f ini te  and (with some 

precaution) inf ini te  intersections. Then one defines mean convex non- 

smooth hypersurfaces  as those which locally are the boundaries of 

such domains. Alternatively, one can make a definition of mean 

convexity of W at  a given point w E W with an (( ambient  >) smooth 

mean convex W' touching W at  w f rom outside as in Fig. 13 used 

earlier in w 3 to define convexity. 

F r o m  this moment  on we assume we know the meaning of the 

relation M ( W )  >_ 0 for  non-smooth W and we take  a similar a t t i tude 
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toward  the  relation M(W) >_ ~ for  all real 3. We also introduce the 

notions of strict mean convexity, denoted M ( W ) >  0, as we did 

earlier in the convex surrounding of w 3. 

Now let us apply the above principle of the fas t  mean convexity 

ra te  to concrete geodesic situations. 

PUSHING-IN MEAN CONVEX BOUNDARY. Let  V be complete with compact 

mean convex boundary W~---OV (V itself may be non-compact but 

look like W X [0, ~) ) .  Then we define as earlier 

V7 = {v 6 V [ dist(v, W) >_ e} 

and observe tha t  the above discussion for  Ricci >__ 0 implies tha t  

V~-c V is mean convex for  all e > 0. Then we can est imate the 

( n - - D - d i m e n s i o n a l  volume of W_~ ~ aV7 since the derivative of 

Vol W_~ e q u a l s - - M ( W _ ~ )  integrated over W, with a positive weight. 

Thus we see tha t  Vol W_~ is monotone decreasing in e. Finally we 

recall t h a t  Vol W_~ integrated over E gives the n-dimensional volume 

of the r band >> V - -  V7 which we can now bound by e Vol W. 

Suppost fur thermore  tha t  either W ~---0V is strictly mean convex 

(i.e. M ( W ) >  0) or Ricci > 0. In this case the inequality (-~*)" 
integrated over We shows tha t  Vol W~ becomes zero at  some fini te  

moment s. I t  easily follows tha t  V is compact in this case. In parti-  

cular, i t  can not be hameomorphic to W X [0, ~). One knows more 

in this regard. For  example, the splitting theorem of Cheeger and 

Gromoll (who generalized the earlier splitt ing theorem of Toponogov 

for  K >_ 9) implies t ha t  if a complete manifold V with Ricci >__ 0 has 

no boundary and has more than one end (i.e. V - - V o  is disconnected 

for  all sufficiently large compact subsets Vo in V) then V splits into 
the isometric product by V-----W X �9 for some closed manifold W. 

!VIEAN CUKVATURE AND T H E  LAPLACE OPERATOR. Recall tha t  the Laplace 

operator Af  on smooth functions f :  V--> ~ is 

Af = div grad f, 
de/ 

where the  vector field grad f is defined with the  Riemannian metric 
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g as the dual of the differential  df,  i.e. 

(grad  f, ~) ~ df(T) 

for  all ~ E T(V) ,  and the divergence is defined as the L ie  der iva t ive  

of the Riemannian volume (density) with respect to the gradient.  

Now let f ( v ) - - - d i s t ( v ,  W). This function obviously has 

Ilgradll ~ 1 and the divergence of the gradient  equals the variat ion 

(i.e. derivative with respect to s) of the volume densities Vol, of W, ,  

since the volume of the region between W~ 1 and W~, in V equals the 

integral of Vol W~ over [ ~ ,  e2], and the same remains t rue  for  all 

subdomains U~ c W~. Thus we obtain the equality between A f  at  v 

and the mean curvature  of W, passing through v. This equality, 

A f ( v )  ~ M ( M , ,  v), 

makes sense so f a r  only where W~ and f are smooth, but with our 

earlier discussion we can extend the s tory to all points v E V. In 

particular,  if  Ricci V _> 0 and W ~ OV is mean convex, then 

- - A  dist(v, w) _ 0, 

tha t  is the minus distance to W is a subharmonic  function on W 

which may be called m e a n  convex in our language. Notice tha t  this 

function /s convex for  K _> 0 (compare w167 0 and t/~ where all this 

is done for  V c ~ ' ) .  

VOLUME MONOTONICITY FOR BALLS. Consider concentric balls B(D in 

V around a fixed point v~ E V and observe with our tube inequalities 

for  Ricci V >_ 0 tha t  these balls are (( less mean convex ~> than the 

corresponding balls in ~ ' ,  t ha t  is 

M(OB(e))  <_ (n - -  1) E -1 = M ( S ~ - J ) ,  

S, . (If  we look f rom the point of view for  the Euclidean e-spheres n-1 

of the  complement V r ~ - V - - B ( D ,  then the boundary sphere 

a B ( e ) ~ a V T  appears more  mean convex than  tha t  in ~ with our 

convex-concave convention). Also notice t ha t  in te rm of the  function 

do(v) ~ dist(v,  v~) the above mean curvature  relations becomes 

Ado _< ( ( n - - 1 ) ~ - l ) .  I t  follows tha t  the volumes of ~B(D and B(e) 

86minario Matema2ieo t Fisico -6 
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grow slower than those in ~ ~. Namely, 

Vol OB(e) ~ Vol S? -~ 

and also the  n-dimensional volume Vol B (e) does not  extend the 

volume of the  Euclidean e-ball in ~n.  

In fac t  the  tube  inequali ty ( + . ) "  teals us more. Namely, if  we 

in tegra te  it over e we obtain the  following bound on the growth  of 

the  ( n - -  1)-dimensional volume of the  boundary  spheres 0B(D in V, 

Vol 0B(2e) _< ,~'~-1 Vol 0B(e), 

where  2 is an a rb i t r a ry  number  > 1. Then the second integrat ion 
over e yields the  following very  useful 

BISHOP INEQUALITY. I f  a complete n-dimensional Riemanniem mani- 
fold V without  boundary has RicciV >__ 0, then every two concentric 
balls in V of radii e >_ 0 and 2e >_ e satisfy 

( + + )  VolB(,~D < ~"VolB(e). 

This can be  thought  of as a relation on the pushforward  of the 
Riemannian measure  by  the function 

dist(vo , . )  : V - ~  ~ .  

Fo r  example, this inequality provides an upper  bound on the number  
of disjoint  e-balls inside a larger  ball of radius ~ which leads to a 

non-trivial restr ict ion on the distances between f ini te  configurat ions 

of points in V (see the  discussion in w 31/~ around Alexandrov- 

Topenogov). 

The Bishop inequality becomes sharper  for  Ricci > 0, as  for  
Ricci >__ ( n - - 1 ) ~ - :  the ra te  of growth  of spheres and balls in V is 

dominated by  tha t  in the  round sphere S~(#) c ~n+l. I t  follows, tha t  

the  volume VolB(D does not  increase at  al for  e >_ ~ and so the 
diameter of V is baunded by ae, which generalizes Bonnet  theorem 

(see w 3). In partcular,  the universal covering of every closed mani- 
fold V with strictly pos@ive Rieci curvature is compact and ~1 (V) is 

finite exactly as in the case K > 0  we studied earl ier  in w 3. Moreover, 

even in the  non-str ict  case the  s t ruc ture  of the  fundamental  group 
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zl(V) for  Ricci ~ 0 is similar to tha t  fo r  K _> 0. Namely, nl contains 
a free Abelian subgroup of rank_< dim V having finite index in ~1. 
This follows f rom the Cheeger-GromolI splitt ing theorem applied to 
the universal  covering of V. (This theorem, in its general form, 
claims tha t  every complete Riemannian manifold X without  boundary  
and with R i c c i X  >_ 0 admits  an isometric splitting, X ~  Y X ~ ,  
provided X contains a line ~ tha t  is a geodesic which minimizes the  
distance between each pai r  of points in ~ ). 

On the other  hand, there  seems to be no restr ict ion on the simply 
connected pa r t  of the  topology forced by Ricci _> 0. (An exception 
is discussed in w 6 in the  f r amework  of the positive scalar curvature).  
Fo r  example, a recent  construction by Sha and Yang (refined by 
Anderson) provides manifolds V of a given dimension n _> 4 with 
Ricci > 0 and wi th  arbitrary large Betti numbers. (These manifolds 
can not  have metrics with K >_ 0 by the discussion in w 3). To obtain 
some perspective one may compare the  manifolds with Ricci ~ 0 to 
subharmonic funct ions while K >_ 0 goes parallel to convexity. This 
analogy suggests Ricci flat manifolds (i.e. wi th  Ricci ~ 0) as the 
counterpar ts  to harmonic functions (which are  by f a r  more  numerous 
tha t  l inear functions corresponding to K - - 0 )  and one may  expect 
tha t  a grea t  deal of simply connected manifolds admit  Ricci f la t  
metrics. But  even a single example of  this kind is not  a t  all easy to 

produce. Yet, Yau has  proven the existence of these fo r  all even 
n ~ dim V, as he has produced a Riemannian (even KRhler) metric  
with Ricci ~ 0 on every smooth complex project ive hypersur face  V 
of degree m ~ 1 in (l: pro. (Notice tha t  all such V are  mutually dif- 
feomorphic for  a f ixed m and they are simply connected for  m > 3). 
Yau has also shown tha t  the  hypersurfaces  of degree _ m have 
metrics with Ricci > 0 and those of degree ~ m ~- 2 with Ricci < 0. 
Moreover, in the  la t ter  case Yau has proven the existence of Einstein 
metrics g on V sat isfying the equation R i c c i , - - J  g. 

Among more  elementary examples of manifolds with Ricci _> 0 
we mention again homogeneous spaces G/H for  compact  G, whose 
homogeneous metr ics  often have Ricci > 0 while K is, typically, only 

non-strictl.v positive. The simolest  among them are  Cartesian pro- 

ducts, like those of spheres;  S k X S ~ for  k, ~ >_ 2, and compact  semi- 
simple Tie groups G with b i invar iant  metrics (only SU(2)  and S0 (3 )  
have K > 0). Notic tha t  the  tube  related inequalities provide non- 
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trivial information on the geometry  of G expressed by Paul Levy's 
isoperimetric inequaliby which generalizes the  classical isoperimetric 
inequality in S% This inequality is especially interest ing when Ricci 
G --> ~ along with dim G --> ~ as i t  implies the  following remarkable  
concentration of values of funct ions f~ : G~--> ~ with [[gradf~[[a~ _< 
const. 

The pushforwards of the Haar measures on Gi weekly converge 
to the Dirac 5-measure on ~ for dim Gi--> ~,  provided the biinva. 
riant metrics are normalized to have Diam(Gi,g~)~-~-I and fi are 

f l ~  0, (See [Mi-S]). normalized by 
* ]  

G i 

SINGULAR SPACES WITH Ricci >_ 0. The theory  of these spaces does 
not  exist  yet. I t  seems hard  (if at  all possible) to express adequately 
the  inequali ty Ricci >_ 0 by some universal distance inequality similar 
to Alexandrov-Toponogov for  K _> 0. Although the condition Ricci _> 0 
does imply some relations on the  distance, e.g. those related to  balls 
inside a larger  ball (see above), these are  not s trong enough to 
character ize Ricci _> 0. Let  us s tate a f iner  inequality of this  kind, 
tha t  appears  very  much similar to A-T but  still does not  furnish a 
characterizat ion of Ricci _> 0. We consider, as  in the  case K >_ 0, 
four  points v~ E V, i----- 0, 1, 2, 3 where  v3 lies on a minimizing segment 
[v l ,  v2] (see Fig. 15 in w 31/2 ) and we want  to give the lower bound 
on the  distance Ivo--v~] between vo and v3. Denote by E the excess 
in the t r iangle inequality for  (v~, v~, v2), tha t  is 

E ~ Iv0 - -  vii + I v o - -  v ~ l -  I v 1 -  v_~l 
and let 

~ - - ~  ~ i n ( I v o - -  v,  I, Ivo - -  v~]). 

Then, if  Ricci >_ 0, the distance I v o -  v3[ satisfies the following 

ABRESCH-GROMOLL INEQUALITY. 
1 

Ivo--v31 >_ (s(E/4).-~)'.  

(See [Che] for  a proof). 

Recall tha t  the distance inequalities, in general, characterize 
the image of the distance function on V N, denoted M , ( V  N) c ~  N', 

N'  N ( N - - 1 )  (see the discussion preceeding Alexandrov-Toponogov 
2 
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in w 31/~). Now, the  Ricci curva ture  manifests  itself via the  tube  

inequalities for  the volume behavior  of the  distance function. Thus 

one may  expect the desired abs t rac t  characterizat ion of Ricci _> 0 

in te rms  of the push-forward  of the  Riemannian measure  to ~N,. 

(For  example, the  Bishop inequality ( +  ~-) is of this  nature).  Notice 
that  for  general metric  spaces there is no distinguished measure,  and 
so the (hypothetical) theory of Ricci >_ 0 must  include a measure  as 

a given element of the s t ruc ture  along with the  metric. 

An impor tant  fea ture  of the  theory of spaces with K >__ 0 defined 

by A-T is the good behavior under  the Haussdorf limits of sequences 
of spaces, where  the  Haussdor f  convergence V~--> V roughly cor- 

responds to the  convergence, for  every N ~ 2 ,  3 ..... of the subsets 

MN(V~) c ~N, to MN(V N) for  the Haussdor f  metric (see [G-L-P] 

more  about  it). Now, in the Ricci curva ture  case one probably should 

allow weak Haussdorf limits corresponding to weak limit of the 
M, -pushfo rward  measures  on ~N,. 

There is another  option for  the abst ract  theory  of Ricci >__ 0 
where  instead of the  metric ont emphasizes the  heat flow (diffi~ion) 
on V, but  at  this s tage it is unclear whether  the  two approaches are 
equivalent and if  not which one is be t ter  for  applications. 

Let  us indicate a specific problem giving more  substance to the 
above discussion. We recall tha t  smooth manifolds with Ricci >_ ~ > 0 
sa t is fy  Paul Levy's  inequality which implies, in turn,  certain bounds 
on the spectrum of the  Laplace operator  A and on the  heat  kernel 
on V. (See [Mi-S], [Gall). Now we ask if similar bounds remain 
valid on singular  spaces with K _> 0 where  the  ex t ra  condition 

Ricci _> e is enforced in an appropr ia te  way. For  example one can 
s t rengthen the A-T-inequality in w 31~ to make  it  equivalent to 
K >__ e / n - - 1  which would imply the above bound on Ricci. (For  the 

meaning of the  spectrum of A etc. on an abs t rac t  metric space we 
refer  to [Gr]l).  

ON RIccI _< 0. The t raced tube  formula does not provide much infor- 
mation if  Ricci _< 0 (unlike the  case K _< 0) and in fac t  nothing is 
known on the geometric meaning of this condition. It  seems tha t  the 
only known result  is the old theorem by Bochner  saying tha t  a 
closed manifold V with Ricci < 0 must  have finite isometry group. 
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Also no topological restr ict ion on V seems to issue from the negative 
Ricci. One believes nowadays  that  every manifold of dimension n _> 3 
admits  a complete metric  with Ricci < 0. (For  n ~ 3 this  is a 
thearem of Gao and Yau) (*). 

EXAMPLE. If V Js immersed into ]R m for  some m as a minimal sub- 
var ie ty  then the induced metr ic  has Ricci _< 0 (by an easy compu- 
tation) and one may  expect tha t  every open manifold V admits a 
complete minimal immersion into some Euclidean space. 

REMARKS ON PSEUDOCONVEXITY AND POSITIVE BISECTIONAL CURVATURE. 

The notion of ps~doco~vexity of domains and hypersurfaces is (~" 
(see w I/~) interpolates between convexity and mean convexity. Then 

one may ask what are the manifolds endowed with complex struc- 
tures and Riemannian metrics where the inward equidistant defor- 
mations preserve pseudoconvexity. Notice, that a priori there may 
be no such manifolds at all, but, in fact, they do exist. They are 

K~hler manifolds with a certain inequality on the curvature tensor 
called the positivity of the  bisectional curvature. (For  example every 
K~ihler manifold with K _> 0 has  bisectional curva ture  >__ 0). A theo- 
rern of Siu-Yau claims tha t  every closed manifold with strictly 
positive bisectional curvature is diffeo~no~phic (even biholomo~phic) 
to (~ P~. Yet  there  is no direct proof  of this result  using pstudoconvex 
deformations.  (Siu and Yau use hwrmonic maps S 2 --> V, compare 
w 7 ~ .  There is another  approach due to S. Mori who appeals to 
algebraic geometry  over f ini te  (!) fields). On the other  hand the 
pseudoconvexity considerations are  very  useful in the  s tudy of com- 
plex subvariet ies in V with positive bisectional curvature.  F o r  exam- 
ple, fo r  every complex hypersur face  H c (~ P~ the regions 

IT:- ~ {v e r P~ I dist(v, H)  >_ e} 

are  pseudoconvex and, hence, by easy Morse theory G p m  H has 
the homotpy type of an m-dimensional polyhedron. This is (the special 
case of) the  famous theorem of Lefschitz. 

Final ly  we  notice fo r  experts  that  similar  posi t ivi ty conditions 
can be introduced for  other  manifolds with restricted holanamy, but  
the usefulness of these is limited by the list of known examples. 

(*) A strengthened version of this conjecture, namely the h-principle for 
Ricci ~ 0, is proven by Lohkamp for all n >_ 3. 
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w 6. POSITIVE SCALAR CURVATURE. 

The formal  definition of the scalar curvature  Sc(V) is easy, 

Sc (V) ~- Traceg Ricci V. 

Then, if  we recall the definition of Ricci in terms of the  sectional 

curvature,  we can compute Sc at  a given point v E V by using an 

orthonormal f r ame  ~,1 ..... v, in T~(V) and adding together the sec- 

tional curvatures  of the planes o~j, spanned by ~ and ~j for  all 1 <_ i, 

] ___ n and n ~ - d i m V ,  Sc~(V)-~-ZK(o~) .  Thus the uni t  s p h e r e  

~j 

S" c ~+~ has S c ~ - - n ( n - - 1 )  (which gives 2 for  the  2-sphere whose 

sectional curvature  K ~  1). One can make  the above look more 

geometric by using the integral of Ricci(s, s) over the uni t  sphere 

c T~(V) instead of the trace (or the sum Z K(mj)). Then, ac- S,-1 

cording to the  tube formula,  Sc,(V) measures the  excess of the total  

mean curva ture  of the e-sphere S(V,  s) in V around v for  e --> 0 over 

the total mean curvature  of the Euclidean e-sphere. To see this  we 

observe tha t  the rescaled spheres ~-~ S(V,  s) form a smooth family  

in s ~  0 at  s ~ 0 ,  where s-~S means (S,s-~-g~) for  the induced 

Riemannian metric g~ on the e-sphere S(V,  s ) c  V and where s-~S(V, s) 
for  e=----0 refers  to the uni t  Euclidean sphere S ~ c  T~(V). This 

makes sense as we ident i fy  S "-~ with S(V,  s) by relat ing the tangent  

vectors r E S ~-~ to the s-ends of the geodesic e-segments issuing f rom 
v and tangent  to . (The smoothness of the family  s -2 g~ at  0 follows 

f rom the smoothness of g at  v E V). Now we formally expand g. into 

a power series in s, 

g~ --~ s2 go ~ r~ gl ~ s4 g2 ~ ..., 

where g~ f i x  0, 1, ..., are some quadrat ic  differential  forms on S ~-1 

with go being the spherical metric. Then the shape operators At of 

S(V,e)  (defined by (A~v,~')~--~H~(.r,~'),  see w167 0, 1, 2) are  also 

expanded as 

A , ~  s -11d q- Ao ~ sA1 -q-- eZ A2 -~ ... 

where A. and A~, i ~ O, 1, ..., are  operators on the  tangent  bundle 
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T(S ~-~) for  S "-~ identified with S(V, e). Then we invoke the basic 

tube  formula  

dA~_____A'~ 
de ~ + B  

(see (**) in w 2) and subst i tu te  the above series for  A , .  Thus  we 

obtain 

--e-2 Id --}- A1 -~- 2 e A2 -~ . . . .  

--(e-~ Id + e-12A,o --~ A~ + 2A, -}- e(AoA~ --{- ...) + ...) + B, 

which implies 

(,) e A ~ s - l I d + ~ - B + . . . ,  

where  the omitted te rm is O(e~). Then we take  the t races  of the 
operators  in ( , )  (these are  T~(S~-I)--> T,(S~-I)s ES~-I), and ar r ive  at 

the following relation (for  funetians) on S ~-~, 

s Ricci + Ms ~ (n - -  1) e -1 - -  ~ -  ... 

where  5/. is the  mean curva ture  of S(V, e) and Ricci s tands  for  
Ricci (s, s), s ~ S "-~ c T,(V). Now we wan t  to evaluate the  integral  

of M~ over S(V, e) and we have to exercise some control over the  
volume density on S(V, D. We wr i te  this  as J. ds fo r  the spherical 
measure  d~ on S ~-1 and a (density) function J~ on S ~-1, which is 
related to M~ by the equation 

dJ~ ~ J~M~ 
de 

(see w 5). We look for  a solution in the  form 

j ~ - I  _]_ b~e~ ~_ b~+l En+l _~_ ... 

(this is jus t i f ied  by the smoothness of g as earlier) and see tha t  

( n - -  1)s"--" -~- rib, s ~-~ -F ( n +  1)b,+~e~ + . . . .  

( e R i c c i +  ) (e "-1-~ b~e ~-~ ba+i~+i -~  ...) ( n - - 1 )  e - 1 - ~ -  . . . .  
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I t  follows, t h a t  b, = 0 and  

(n ~- 1) b,§ = - -  1 Ricci ~ ( n - -  1) b,+~. 
3 

T h e r e f o r e ,  

En+l 
(**) J - - s  ~-1 - -  Ricci ~- ... 

~ - -  6 ' 

and  so the  ( n - -  1)-dimensional  vo lume of  the  sp h e re  S(V,  E) c V is 

w h e r e  

Vol S(V,  s) ~ s"-1(1 - -  g~ ~.  Scv + ...)Vol S ~-1, 

a~ ~ (6n) -~ , 

(as the  a v e r a g e  of  R i cc i ( s , s )  over  S "-1 equals  T r a c e  Ricc i /n) .  We 

also can w r i t e  down the  in t eg ra l  mean  c u r v a t u r e  of  S(V,  s) by  

k~n--1 

which  gives us 

M~ --= e - ~ - ~  ( n  ~ 1 ~ e  2 p,. S c  § ...) Vol S ~ - 1  , 

c u r v a -  w h e r e  ~,  = n -~ -~ ~ 6 " 

t u r e  m e a su re s  the  excess  of  t he  i n t eg ra l  m e a n  c u r v a t u r e  M~ of  S(V,  e) 

ove r  t h a t  f o r  t h e  Euc l idean  sphe res  S ( ~  ", e) (w h e re  M ~ s~-~(n--1)) .  

In  fac t ,  t h e  above  f o r m u l a  f o r  Vol S(V,  D gives a s imi l a r  i n t e r p r e -  

t a t i on  of  Sc by  t h e  excess  of  the  vo lume of  t h e  sphe re s  S(V,  e) and  

t h e n  by  i n t e g r a t i n g  ove r  e one gets  ye t  a n o t h e r  such re la t ion,  th is  

t i m e  f o r  t he  balls  B (V, s) c V a r o u n d  v, 

Vol B(V,  s) ~-- sn(1 - -  g~ a~, See § ...) Vol B ~ , 

w h e r e  B n denotes  the  un i t  ball in 1R". F o r  example ,  i f  Scv(V) > 0 
t h e n  e v e r y  su f f i c i en t ly  small  ball  B(V,  s) has  

Vol B(V,  s) < s'* Vol B ~ ~ Vol B (  1R", s). 

Conversely ,  i f  

Vol B (V, e) _< e" Vol B ~ 
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for  all sufficiently small E, then Sc~(V) >_ O. (Notice, tha t  our  discus- 

sion here  and earl ier  only makes  sense fo r  n _> 2. I f  n ~ 1 all 

Riemannian manifolds are  locally isometric to ~ and there  is no 
curva ture  to speak of). 

I t  may  seem at this s tage that  we have achieved a certain under- 

s tanding of the scalar curva ture  of V. Yet  the  above infinitesimal 
relations for  Sc do not  integrate  the way  it was happening for  the 

sectional curva ture  and Ricci. In fact,  we are  still nowhere  as fa r  

as the  geometry  and topology of manifolds with Sc >_ 0 (or Sc <_ O) 

is concerned. To see the  probem from another  angle let us look at 

certain examples of manifolds with Sc >_ O. Fi r s t  we observe that  
the scalar curva ture  is addit ive for  the  Cartesian product  of mani- 

folds. Thus, if  a manifold V has inf Sc > M co, (e.g. V is compact) 

then the  product  of V with a small round sphere S~(<~) c 1R 3 (which 
has S c ( S ~ ( ~ ) ) ~ 2  ~-2) has positive scalar curvature.  This product  
manifold V X S~(8) is, on the other  hand, as geometrically and 
topologically complicated as the underlying manifold V and it may  
appear  hopeless to find any global pat tern  fo r  Sc > O. 

The f i r s t  global result for  Sc > 0 was obtained by Lichnerowicz 
in 1963 who proved the following 

LICHNEROWICZ THEOREM. I f  a closed 4k-dimensional spin manifold V 

admits  a metric wi th  Sc > 0, then a certain chwracteristic number  

of V, namely the .~-genus, vanishes. 

The meaning of << s p i n ,  and r .4-genus �9 will be discussed later 
on along with the idea of the  proof  (which uses in an essential way  

the Atiyah-Singer  index theorem applied to the  Dirac operator).  Here  

we  only indicate a par t icular  example of V, where  the  theorem 

applies. 

EXAMPLE. Let V be a smooth complex hypersurface of degree d in 

Gp~+1. If m is even, then the (real) dimension of V is divisible 

by 4. Furthermore, if d is even, then V is spin. Finally if d >_ m ~- 2, 

then A (V)~ 0, and so such a V cannot have a Riemannian metric 

with S c V > 0. The simplest such manifold is quartic (i.e. d~-~-4) 

in Gp3, which is a 4-dimensional simply connected manifold V' which 

by Lichnerowicz's theorem admits no metric with Sc > O. (By Yau's 
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theorem mentioned in w 5 this V 4 admits  a metric  with Ricci ~ 0, 
and hence with Sc ~ O. On the other hand, even if we are  content  to 
show r no metric with Ricci :> 0 >> or even less, << no metr ic  with 
K > 0 ~, we are  still unable to do it geometrically wi thout  an appeal 
to the  deep analysis underlying the proof  of the Lichnerowicz 
theorem). 

The method of Lichnerowicz was extensively developed by 
N. Hitchin, who has  shown, among other  things, tha t  there exists 
an exotic 9-dimensional sphere V (i.e. a manifold which is hameo- 
mo~phic but not diffeomorphic to S 9) which admits no metric wi th  
Sc > 0. (In fact,  half  of the exotic spheres in dimension 1 and 2 
(mod. 8) ca r ry  no such nmtrics by Hitchin 's  theorem). Here  again, 
there  is no al ternat ive geometric approach even with Sc > 0 replaced 
by K >  0. 

SCALAR CURVATURE AND MINIMAL HYPERSURFACES. The first geometric 
insight into Sc >_ 0 was achieved by Schoen and Yau in 1979 with 

the following innocuously looking modification of the traced tube 

formula (see (**) in w 5) for surfaces W in a 3-dimensional mani- 

fold V. At every point v ~ W we consider the tangent plane o~ ~ T~(W) 
and the unit normal vector v~ to W. (We assume W is cooriented and 

stick to inward looking ~). First we observe that our formulas expres- 

sing Ricci and Sc in terms of K imply, that 

Sc~ ~--- 2K(o~) + 2 Ricci (~, ~). 

(In general, for hypersurfaces W in V ~ for ~ ~ 3 the term 2K(o~) 

must be replaced by the sum of K(mj) for some orthonormal basis 

vl ..... ~'~-i in T~(W)). Then we bring in the principal curvatures ~i 
and 42 of W at v and recall that the sectional curvature of W with 

the induced metric is expressed according to Gauss' formula (Teo- 

rema egregium in w 2) as 

K ( W ,  o~) ~ K(V,  o,~) ~- ~1 ;~2, 

which is equivalent to 

1 (M 2 _  TraceA'-) K ( W ,  o~) ~ K(V,  ~ )  + --~ 

where  A is the  shape operator  of W (whose eigenvalues are  exactly 
~1 and ~2) and M ~ Trace A ~ ~t + )~., is the  mean curva ture  of W. 
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T h e  t ube  f o r m u l a  (see (**) in w 5) expresses  the  de r iva t i ve  of 

M u n d e r  the  no rma l  equ id i s t an t  d e f o r m a t i o n  W, of W ~ Wo a t  ~ ~ 0 

as  fol lows 

dM 
- -  T r a c e  A'-' - -  Ricci (~, ~,). 

de 

T h e n  we  recall  t h a t  M equals  the  ( logar i thmic)  d e r i v a t i v e  of  the  

vo lume  dens i ty  on W~ a t  ~ 0 (see w 5). I t  fo l lows  b y  i n t eg ra t i o n  

over  W, t h a t  t he  de r iva t i ve  - -  A r e a  W~ a t  s ~ - 0  equals  the  to ta l  

m e a n  c u r v a t u r e  of  W 

~ f M d w .  
W 

(We say  r A r e a  >> r a t h e r  t h a n  << Vol >> since dim W ~ 2). 

The n  we  obse rve  t h a t  

dM f dM ~ d w - ~  fM :dw, 
dE - -  

)y w 

w h e r e  t he  second s u m m a n d  is due  to  t h e  v a r i a t i o n  of  t h e  volume 

(a rea )  e l emen t  dw ~ Vol~ = ~ exp re s sed  b y  t h e  m ean  c u r v a t u r e .  Th en  
dM 

we  subs t i t u t e  Ricci in the  above  t ub e  f o r m u l a  f o r  ~ by  

1 
2 Sc(V)  + K(VIT (W) )  

and  t he n  we  use the  Gauss  f o r m u l a  

1 
K(VIT(W) ) - - -  K ( W )  + - ~  ( T r a c e  A -~ - - M : ) .  

T h u s  we  obta in  the  fo l lowing  second v a r i a t i o n  f o r m u l a  f o r  t h e  a r ea  

of  W ~ W ~  a t  s ~ 0 .  

d: Area  W dM 2 [ 
d~  - -  de - -  1 .I ( - - S c  V ~- 2 K ( W ) - - T r a c e A  2 ~- M 2 ) d w ~  

W 

W 
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Now, we rcall the Gauss-Bonnet theorem 

f K(W) ~--- 2~z(W), 
W 

where  • denotes the  Euler  characteris t ic  and W is assumed compact  

wi thout  boundary.  Then, if Sc (V) >_ 0, w have the following inequality, 

d 2 Area  W < 2n z(W) + f ~ ) ;  dw. 
d~ 

W 

In particular,  if  x(W) < 0 and W is a saddle surface, i.e. if ~1 ~2 ~--- 0 ,  

then 

d 2 Area W 
( + + )  d~ < 0. 

Notice, tha t  as at  the previous occasions, this conclusion only 

applies to small equidistant  deformat ions  which do not  distroy the 

smoothness of W. Now, instead of extending the above computation 
to non-smooth W~ as we did earl ier  for  K > 0 and Ricci > 0, we 

follow the idea of Schoen and Yau and apply ( + + )  to smooth 
minimal surfaces W in V. (Non-smooth extension of the  above is 
questionable because of the saddle condition). The existence of such 

surfaces  is insured by the following theorem known since long in 
the geometric measure  theory (see, e.g. [Law]).  

Every 2-dimensioncd homology class in a closed Riemannian 
3 dimensional V can be represented by a smooth absolutely mini- 
mizing embedded oriented surface W c V. 

Recall tha t  << absolutely minimizing >> means tha t  every surface 
W' c V homologous to W has 

Area  W' _>_ Area  W. 

REMARK. A similar  result  remains valid for  minimal hypersurfaces  

W in V ~ for  n _> 3 but  now these W may have singularities. One 

knows, tha t  the  singulari ty is absent  for  n _< 7 and, in general, it 

has codimension _> 7 in W. 

Now, since a minimizing surface  W provides the  minimum for  
the function W ~-> Area  W on the  space of surfaces in V, the  f i r s t  
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variat ion of Area  is clearly zero and the second is non-negative. 

In par t icular  

d 2 Area  W 
_>0. 

d~ 

Moreover, every connected component  of W, say We, also has 

d ~ Area  Wc 
>_0. 

d~  

Fur thermore ,  minimal surfaces  have M ~ I  ~ - ~ 2 ~  0 and so are  

saddle. Hence, the  above inequali ty is incompatible with Sc(V) >__ 0 

and the issuing inequality ( + + )  unless 7~(V) _> 0. Thus we conclude 

to the following. 

SCHOF_~I-YAU THEOREM. Let  V be a closed 3-dimensional Riemaz~ian 

manifold wi th  Sc(V) >_ 0. Then every homology class in H2(V) can 

be realized by an embedded oriented surface W whose every con- 

nected componenti has Z >-- O. 

EXAMPLE. Let  V ~  Vo X S1 where  V~ is an orientable surface  of 
genus _> 2 (i.e. x(Vo) < 0). Then elementary topology tells us tha t  

11o---~ 11o X S,o c V is not homologous to a surface  whose all com- 
ponents  have genus _< 1. Therefore  this V admits  no metric  with 
Sc >__ O. (By an obvious read jus tment  of  the  above discussion, one 

rules out Sc ~> 0 s tar t ing f rom genus ( Vo) -----1). 

Schoen and Yau have generalized their  method to manifolds V ~ 
with n _< 7 and they proved tha t  i f  Sc(V n) _> 0, then every class in 

Hn-I(V") can be realized by a hypersurface W which admi2s some 

metric wi th  Sc >_ O. In fact,  they t ake  the valume minimizing hyper-  

sur face  for  W c V ~ and then modify the  induced metr ic  in W by a 

conformal factor  to make  Sc >_ O. This does not  work  for  n :> 7 due 

to the  (possible) presence of singulari t ies on minimal W bu t  later 

on Schoen and Yau indicated a way  out  of this problem. (See [Sch] 

for  a br ief  account of these results). 

The above theorem of Schoen-Yau shows (by a simple induction 

on n) tha t  there  are  non-trivial topological restr ict ions on V ~ with 

Sc(VD > O. For  example, the  Cartesian product  of surfaces  of genus 
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>__ 2 admits  no such metric. Fur thermore ,  their  method can be refined 

in order  to provide non-trivial geometric restrict ions on V as well. 

For  example, let V ~ be a complete non-compact oriented Riemannian 

manifold without  boundary with uniformely positive scalar curva- 

ture, i.e. S e ( V  ~) >_ c > O. Then V ~ admits no proper distance de- 
creasing map to ~ of non-zero degree. In other words, V " is no 

larger  than  ~ .  

EXAMPLE. Let  V" ~ $2 X 1R "-2 with the product metric. Clearly this 

V " (which has Sc >_ c > 0) admits no above map to 1R ". But  if we 

modify the product  metric gs ~ gs on V " ~ S 2 X 1R ~-2 by introducing 

a so-called waxTping factor,  tha t  is a positive function ~ : t~ "-2 --> t~ +, 

and by making  g ~ ~gs ~- g~, then for  (V, g) we can easily produce 

a contract ing proper map into 1R ~ of degree one, provided the 

function ~(x) satisfies the asymptotic relation 

~0(x)-~ ~ for  x - )  ~ .  

I t  follows, tha t  such a warping ~ necessarily makes 

inf Sc g <_ O, 

though it is not hard  to achieve Sc g > 0 non-uniformly on V. 

w 61/,2. S P I N O R S  AND T H E  D I R A C  OPERATOR. 

Now we return to Lichnerowicz' approach. F i r s t  we recall tha t  

the fundamental  group of the special orthogonal group is 

( S O ( n ) ) ~ t Z  for  n ~ 2  
7T1 

•.  for  n_>_3. 

Thus SO(n), for  all n >_ 2, admits a unique double cover denoted 

Spin (n) --~ SO (n), 

where Spin(n) carries a na tura l  s t ructure  of a Lie group such tha t  
the above covering map is a homomorphism. (This is quite obvious 

for  S 0 ( 2 ) ~  S 1 and easy but not all obvious for  n _> 3). 
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Next, for  a Riemannian manifold V, we look at  the orthonormal 

f r ame  bundle SO(V), tha t  is the  principal bundle with the  f iber  

SO(n), ~ = dim V, associated to T(V), and we ask ourselves if  there  
exists a double cover 

Spin(V) --> SO(V) 

which reduces over each point  v E V to the  above Spin(n)-+SO(n).  
This is clearly possible if the  tangent  bundle (and, hence, SO(V) as 
well) is trivial, T ( V ) =  V X 1R ~, as one can t ake  V X Spin(n) for  

Spin V. In general, there  is a topological obstruction for  the  existence 

of Spin(V) which can be easily identified with the  second St~eSel- 
Whitney class w2(V). This is a certain cohomology class in H2(V, •2) 
which measures  non-trivial i ty of T(V) and which is also known to 

be a homotopy invariant  of V. In any case, w2 = 0 i f / ~  (V, Z2) = 0 
and then Spin ( V) ---> SO ( V) does exist. 

The space Spin(V), whenever  it exists, has a natural  s t ruc ture  
of a principal Spin(n) bundle over V and then one may look for  

associated vector  bundles. These come along with l inear representa-  

t ions of the  group Spin(n). There are, for  even n =  2r, two  distin- 

guished fai thful  (spin) representat ions of Spin(n) of (lowest possible) 
dimension 2 ~-1, for  which the corresponding vector  bundles, denoted 

S+ --> V and S_ --> V, are  called the positive and negative spin bun- 
dles, whose sections are  called (positive and nega t ive ) sp ino r s  on V. 
Atiyah and Singer have discovered a remarkable  elliptic differential  

operator  between the spinors, i.e. 

D+ : C ~ (S+)-->C ~ (S_), 

which they  call the Dirac operator. This operator  is constructed with 

the  connection V+ in S+ induced by  the Levi-Civitta connection in V, 

where  the connection in S+ is thought  of as an operator  f rom spinors 

to spinor valued 1-forms on V, i.e. 

V+ : C~ (S+)-*9I(S+) �9 

Then D+ is obtained by composing V with a certain canonical vector  

bundle homomorphism ~21(S+)-->S_ coming f rom some algebraic 

manipulat ions with spin representations.  (We somewhat  abuse the 
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notations by using .QI(S+) for the bundle of spinor-forms as well as 

for the sections of this bundle). Notice that  D+ is defined locally 

and needs no << spin condition >> w2 ~ 0, but if w2 r 0, then spinors 

are globally defined only up to _+ sign. The interested reader may 

look to the book [L-M] for an actual construction of the spinors 

and Dirac. Here we just  assume the existence of certain bundles S+ 

and S_ and an operator D+ with the properties stated below. 

Besides the operator D+ we need its twin, called 

D_ : C a (S_)-->C ~ (S+) 

which is constructed in th same way as D + and which can be defined 

as the ad]oint operator to D+ for the natural Euclidean structure 

on the spin-bundles. Then one looks at the index of D+,  i.e. 

Ind D+ ~ dim ker D+ - -  dim ker D_ ,  

where the dimensions of the kernels of D+ and D are finite if V 
is a closed manifold, since the operators D+ and D_ are elliptic. The 
remarkeble (and easy to prove) property of the index is the inva- 

riance under the deformations of D+ in the class of elliptic operators 
between spinors. In particular, this index does not depend on the 

Riemannian metric used for the definition of D+ and so it represents 
a topological inv~riant of V. The famous theorem of Atiyah and 

Singer identifies Ind D+ with a certain characteristic number called 

ft.-genus of V, but for  our present purpose we may define A-genus 
as I n d D + .  The only serious property of D+ we need at the moment 

is non-vanishing of A(V) for  certain manifolds V. (Otherwise, what 
follows will be vacuous). 

Now we need another operator associated with V+, called 

Bochner Laplacian, 

where 

=v+*v+ 

V~+ : ~ ) l ( S + ) - - - )  C Qr ( S + )  

is the adjoint to V+.  This Laplacian makes sense for  an arbi trary 

8ominario  Matematico e F i s t e o -  7 



98 M. GROMOV 

vector bundle with a Euclidean connection over V and an important 
property of A+ is positivity, i.e. 

f (A+ s, s) >_ 0 
w 

for all spinovs s : V-->S+. (The Bochner Laplaeian for the trivial 
1-dimensional bundle reduces to the classical Laplace Beltrami ope- 

rator A ~ d* d on functions whose positivity follows by integration 

by parts, as ( f A r =  f (dr, df), and a similar consideration proves 

positivity of A + on spinors). 

Now the scalar curvature enters the game via the following 
IACHNE~OWICZ FORMUt~. The operator D_ D+ q- D+ D_ on S+ ~ S_ 
is related to A + q- A_ by 

1 D_D+ + D+ D ~ A +  q-A_ q- --~ Sc ld .  

Recall that  S e n S e ( V )  denotes the scalar curvature which is a 
function on V and Id is the identity operator on C | (S+ (~ S_). 

The proof of the Lichnerowicz formula consists of a straight- 
forward (infinitesimal) algebraic computation which is quite easy 
with the definitions (we have not given) of D+ and D_.  Yet the 
geometric meaning of the formula remains obscure. 

COROLLARY. I f  ~b ctosed Riemannian spin (i.e. with w 2 ~  O) manifold 
V has Sc(V) > 0 then every harmonic spinor on V vanishes and so 

A(V) ~ Ind D~ ~ 0. 

Here, ((harmonic spinor ,  means a spinor s ~  (s+, s_) E C | (S+ (]~S_), 
such that  

D s ~ D + s +  + D _ s _ ~ O .  
de/ 

The proof of the corollary is obvious. 

f (ns, s) = f s> + sc <s, s), 
v v 
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which implies by  posit ivity of LI tha t  

j" (Ds, s) >_ f Sc {s,s) 
V V 

and then for  Ds ~ 0 we get  

f Sc(s ,s )  <__ 0 
V 

which is possibile only for  s-----0 since Sc > 0. 

Notice again, tha t  this Corollary is non-vacuous since there  exist 

spin manifolds with A - ~  0, e.g. complex hypersurfaces  in G / ~ + 1  

memtioned earlier in w 6. This proper ly  of non-vanishing of Ind D 
for  some V and the Lichnerowicz formula  is all which is needed 

f rom spinors and Dirac in order  to show tha t  some manifolds V 
admit  no metric  with Sc > 0. 

Although we do not  quite unders tand the geometry  behind the 

Lichnerowicz formula,  we can use this formula  to reveal some geo- 

me t ry  of  V with Sc V ~_ c > 0. Namely, we wan t  to show tha t  such 
a V cannot  be r too large >>. For  example, it cannot be much larger  

than the unit  sphere S ~. Indeed imagine tha t  V is much larger  than 

S ~ in the  sense tha t  there  exists a smooth map f : V--> S ~ of degree 
d ~-O, such tha t  the  different ial  of f is everywhere  small, 

I[Df[l~ < e, v e V. 

Then we pull-back to V some f ixed vector  bundle Eo with a Euclidean 
connection over S ~. The pull-backed bundle, say E over V, is << e-fiat , ,  
tha t  is locally e-close to a tr ivial  bundle. In part icular,  the twisted 
D/ra t  operator,  denoted D~ | E : C | (S+ | E) -~  E | (S_ | E)  is 

locally e-close to the  direct sum of k copies of D+ for  k ~ r a n k E .  
(If  E~--- ~ X V--> V with the  tr ivial  connection then 

S+ | E ----- S+ + S+ + . . . + S +  

k 

and the twis ted  Dirac is D+ ~- D+ ~ ... ~- D + .  The definition of the 

twis t ing  with a non-trivial connection is such that  the  e-flatness of E 
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makes the twisted Dirac e-close to D+ ~- D+ ~- ... ~- D+). I t  follows, 

tha t  is E is small compared to c -~- inf  Sc V > 0, then the twisted 
v 

Dirac operator  D + | E has 

IndD+ | E ~ 0  

by an E-perturbed version of the Lichnerowicz formula.  

Now, one can f ind in certain cases a bundle Eo such tha t  

Ind D | Eo ~ 0. In fact, on can always produce such a (complex 

vector bundle) Eo over an even dimensional sphere, as follows f rom 

the Atiyah-Singer  index theorem applied to D+ | E. Therefore,  no 

spin manifold V with Sc(V)  _> c > 0 can be E -1 times grea te r  than  

S ~ fo r  e << c, (where the odd-dimensional case reduces to the  even 

dimensional one by mult iplying V by a long circle $1). 

The reader  may be just ly  dissatisfied at  this  point as the discus- 

sion was incomplete and quite formal. A detailed exposition can be 
found in the book [L-M] but  fil l ing in the details does not seem to 

reveal extra  geometry. 

CONCLUDING REMARKS. The existence of two so di f ferent  approaches 
to Se > 0 has no rational explanation at  the present state of art.  

In general terms, the Schoen-Yau method appeals to the (non-linear) 

analysis  in the space of submanifolds in V while the  Dirac operator 

approach uses the linear analysis (of spinors) over V. One may  hope 
for  the existence of a unified general theory which would t rea t  

simultaneously non-linear objects inside V as well as l inear ones 

over V in a way similar to what  happens in algebraic geometry. 

Probably, such a unif icat ion may  be possible only in an infinite 

dimensional f ramework.  

SCALAR CURVATURE _< 0. This condition has no topological effc t  on 

V by a theorem of Kazdan and Warner  which claims the  existence 

of a metric Sc < 0 on every manifold of dimension n __ 3. Probably, 

the global geometry of V is also unsensitive to Sc < 0 (though the 

condition Sc >_ c for  c < 0 does have non-trivial corollaries) (*). 

(*) The flexibility and the h-principle (in the sense of [Gro]) for Sc < 0 
is proven by Lohkamp. 
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w 7.  T H E  C U R V A T U R E  OPERATOR AND RELATED INVARIANTS.  

We have mentioned in the  end of w 2 tha t  the sectional curva ture  
function on the space of 2-planes of V, i.e. 

K : Gr~ V--> IR 

uniquely extends to a quadrat ic  form (function) Q on the bundle 
A 2 T(V), and the symmetr ic  operator  R : A ~ T(V)  --> A ~ T (V)  cor- 

responding to Q is called the curvature aperator. The condition K >_ 0 
can be expressed in terms of Q by  

Q(rA~', rA~') >- 0 

for  all tangent  vectors  r, ~, in T,(V),  v E V, while s t r ic t  posit ivity 

K > 0 corresponds to Q(~A~, TA * ) >  0 fo r  all pairs  of linearly 
independent pairs  (T, ~). 

F rom the point  of view of Q a more natural  condition is Q >__ 0 

which means Q(a, ~)>_ 0 for  all ~ E A  ~ T(V)  ( that  may  be sums 
k 

a ~ Z  r~A~', for  k > 1) which is called pos@ivity of the curvature 
~ 1  

operator R. Then strict positivity of R refers  to positive definiteness 

of Q. Similarly one introduces the (str ict  and non-strict) negativity 
of Q and R. 

The above posit ivity of Q and R is a significantly more  restr ict ive 

condition than K >__ 0. Yet, the  basic examples of  manifolds with 

K _> 0 also have Q >__ 0. Namely, convex hypersur faces  in 1R ~-1 and 
compact  symmetr ic  spaces have Q >_ 0. Also Cartesian products  of 
manifolds with Q _ 0 have Q _> 0. 

To see the  point  of depar ture  between K _> 0 and Q >__ 0 we 

look at  the  complex project ive space (~ P" with a U(n -{- 1)-invariant 

Riemannian metric  g fo r  a natura l  actio~ of the  uni ta ry  group 

on (~ P~. I t  is not  hard  to see that  such a g (which exists because 

U(n ~- 1) is compact) is unique up to a scalar multiple and ((~P~, g) 

is a symmetric  space af rank oqze which is equivalent fo r  compact 

symmetr ic  spaces to K > 0. In fact,  we  al ready know (see w 33/~) 
1 

tha t  the sectional curva tures  of g are  pinched between ~ -  a and a 
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fo r  some constant  a > 0 depending on (normalization of) g. (An 

inquisitive reader  would be happy  to learn that  a ~ n -1 (Diam 
( r  P~, g))-~). 

On the  other hand, the  curva ture  operator  R is only non-str ict ly 

positive, i.e. the  form Q is only svm/-po~itive definite. Thus  a small 

per turba t ion  of g may  easily b reak  the condition R >_ 0 without  

destroying K >_ 0. 

The above example of (~ P~ is especially interest ing in view of 

the  following well known 

CONJECTURE. I f  a closed n-dimensional Riemannian manifold has 

R > 0 then its universal covering is diffeomorphic to the  sphere  S ~. 

The positive solution is classical for  n ~ - 2  where  R is the  same 

K and I K > 0 implies g(V) ~ 0 by  the  Gauss-Bonnet  theorem. a s  

v 

The cases n ~  3, 4 are  due to R. Hamil ton whose proof  uses 
a deep analysis of a heat flow an the space of metrics. Namely, 

Hamil ton  considers the following differential  equation for  a one- 
pa ramete r  family of metr ics  g~ on V, 

dg, 
~ -  a~ gt - -  2 Ricci (gt) 

dt 

fo r  a ~ 2 ~  -1 f Sc(g~)/Vol(V, gt), and he provss the  solvability of 
Y 

this  fo r  a given initial metric  g ~ go. Then he shows tha t  the  re- 

suiting hea t  f low preserves  the  subspace of metrics g with R(g) ~ O. 
(This is called << heat  f low ~> since the correspondence g ~-~ Ricci(g) 

is a different ial  opera tor  on quadrat ic  different ia l  fo rms  on V which 

is in many  respects  similar  to the  Laplace operator  on functions. 

Notice tha t  Ricci is a non-linear opera tor  bu t  it has a remarkable  

(albeit  obvious) proper ty  of commuting with the  action of  the  group 
of dif feomorphisms of V on the space of metrics). 

Finally, for  n -~-3  and 4 Hamil ton proves tha t  the  solution g~ 

of his equation with R(go) ~ 0 converges as t--~ ~ to a metr ic  g | 

of constant povitive curvature which makes  the  universal  covering 



SIGN AND GEOMETRIC MEANING OF CURVATUR]~ 103 

(V, g= ) obviously isometric to S n. Notice tha t  Hamil ton 's  proof  yields 

the solution of the  strengthened conjecture which claims the existence 
of a (Diff  V)~invariant contraction of the  space of metr ics  with 

R >_ 0 to the subspace with K ~---1. 

Also notice tha t  for  n-----3 Hamil ton only needs Ricci V > 0 in 

order  to make  his method work.  

The basic point  in Hamil ton 's  approach is the  s tudy of the 

evolution of the curva ture  tensor  under  the  hea t  flow, where  the 

condition R > 0 becomes crucial because it is invar iant  under  the  

flow. (Notice that  the  t e rm a~ gt in Hamil ton 's  equation is brought  

in for  the purpose of a normalization, while the curva ture  discussion 

applies to the  equation dg, _ - - 2  Ricci(gt)). 
dt  

There are  other  more  s t r ingent  curva ture  conditions which are  

also invariant  under the heat  f low and for  some cases one is able 

to prove the eventual contract ibi l i ty to constant  c u r v a t u r e  Fo r  exam- 

ple one has as a corollary the  following result  for  metrics g with 

point-wise pinched sectional curvature.  

(RUH-HUISKEN-MARGARIN-NISHIKAVA) Let the sectional c~rva~re 
K : Gr2(V)--> ~ of a closed Riemannian n-dimensionsional manifold 
V be pinched (i.e. restricted) at each point v ~ V by 

c~ a(v) <_ K(o) <_ a(v), 
3 

where a is a positive function on V and c, ~ 1 -  3(2n) ~, while o 
stands for an arbitrary 2-plane in Tv(V). Then V is diffeomoq3ahic 
to S'. 

Notice tha t  the  above theorem is quite non-trivial fo r  any c~ < 1. 

For  example, such a condition is sat isf ied for  n ~ 2 (where there  

is only one o at  each v) by  every metric  with K > 0 and so the cor- 

responding heat  f low does not  amount  to a small per turba t ion  of 

the  original metric. (See [Bou] for  an exposition of the  hea t  f low 

method). 

BOCHNF~ FORMULAS. Many natural  (but  usually complicated) curva- 

ture  expressions go along with natural  different ial  operators  on V. 
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For example, we could define the scalar curvature of V with the 
Dirac operator D ~ D+ �9 D_ by 

Scld  - -  4 (D e - -  V*  V ) 

where Id  is an identity operator on the spin bundle S ~ S +  (~ S_ 

(compare Lichnerowick' formula in w 6�89 

Now we want to do a similar comparison between the Hodge-de 

R h ~ m  Laplacian A on k-forms on V and the rough (Bochner) Lapla- 

sian V * V ,  where V denotes the Levi-Civita connection of V 
extended to the bundle A k T * ( V )  of k-forms on V. 

It  is not hard to see that  the two operators coincide if V is fiat 
(i.e. locally Euclidean). Then we recall that  every metric g can be 
infinitesimally first  order approximated at each point by a (oscu- 
lating, see w 2) fiat metric. Then the following result comes as no 
surprise. 

The di f ferential  o'perator A - -  V * V has zero order and is given 

by ~ symmetr ic  endamorphism R~ of  the bundle A k T* (V), where  Rk 

is algebraivally (even linearly) expressible by the curvature tensor 

of V. (Here r symmetric >> means that  R~ is a symmetric operator on 
every fiber of the bundle). 

Another way to put it is by writing 

A ~ V*V + R~, 

which is called the Bochner (or Bochner-Weitzenbock) formula for A. 
The expression of Rk in terms of the curvature operator R is rather 

complicated for k _> 2 (see, e.g. [Bes]) but for k ~  1 it is quite 
transparent. Namely 

R1 ~ Ricci*, 

that  is the symmetric operator on the cotangent bundle T*(V) as- 

sociated with the quadratic form Ricci in T ( V )  in the natural manner 

via the underlying metric g. It  is worth observing that  this Bochner 

formula 
A m ~  V * V ~o + Ricci*(eo) 

applied to exavt forms o~ ~ d f ,  where the function f has uni t  gra- 
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dient, i.e. 

II oll Ilctfll = Ilg rad fll = 1 ,  

is essentially the same thing as the traced tube formula from w 5 

applied to the levels W ~ { f ( x ) ~ - - e } .  

The Bochner formula with Ricci* immediately implies that if 

Ricci > 0), then every harmonic 1-form on V vanishes (compare the 

proof of Lichnerowicz' theorem in w 61/2) and thus 

Hi(H, ~ )  ~- O. 

(We have indicated another proof of this in w 5 using the more 

powerful Cheeger-Gromoll splitting theorem, but the above analytic 

proof by Bochner is older by a quarter of a century). 

The operators R~ for k >_ 2 are significantly more complicated 

than Ricci*. Yet one has the following result of Bochner-Yano-Berger- 
Meyer, (see [L-M]). 

If  R > 0 then Rk > 0 (i.e. positive definiteI for all k V:0, 

n ~ dim V. Thus every closed Riemannian manifold with positive 
curvature operators has Hk(V, ~ ) ~  0 for 1 _< k _< n - - 1 .  

This result shows that R > 0 implies that  V is a rational homo- 
logy spherg which is significantly weaker than being diffeomorphic 
to the sphere required by the conjecture stated above. Now, a recent 
theorem by Micallef and Moore claims that the universal covering 

of V is, in fact  a homotopy sphere, and hence homeomorphic to the 

sphere by the Poincar~ conjecture (solved for n >__ 5 by S. Smale 

and for  n ~  4 by M. Freedman. The remaining case n ~  3 for 

Ricci > 0 is taken care of by Hamilton's theorem cited earlier). 

The method of Micallef-Moore is similar to that employed by 

Siu and Yau in their study of K~hler manifolds with positive 

bisectional curvature (see the end of w 5). Both methods make an 

essential use of harmonic maps of the sphere S ~ into V and the 

curvature appears in the second va~iation formula for  the energy of 

a harmonic map as we are going to expain next. 
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w 71/~. H A R M O N I C  MAPS AND T H E  COMPLEXIFIED CURVATURE Kr . 

The energy of a smooth map  between Riemannian manifolds, say 

f :W . - - ->V  
is defined by 

1 t'][Df(w)[I2dw E( f )  ~ ~ . 
w 

where  the  squared norm of the differential  

D ~ D f ( w )  : T,,~(W).--.> Tv(V), v ~ f ( w ) ,  

at  each point  w ~ W is 

[IDfll 2 = Trace D* D 

where  D* : Tv(V)..--> Tw(W) is the  adjoint  operator.  

A map f is called harmonic if it is s ta t ionary (or critical) for  

the  energy thought  of as a smooth function on the space of maps  

W--> V. The s ta t ionary condition for  E at  f, i.e. d E ( f ) ~ O ,  says  in 

plain words  t h a t  for  every smooth one-parameter  deformation 

ft of f ~ fo the  derivat ive dE(f t )  vanishes a t  t ~ 0. Notice tha t  this 
dt 

der ivat ive of E at  t ~ 0 depends only on the �9 d i r e c t i o n ,  of the 
of deformation f t  at  t ~ - 0 ,  tha t  is the vector fields 8 ~ - ~  in V 

along f (W) .  More precisely, 6 is a section of the  induced bundle 

T* ~ f* (T(V))  ...-> W. 

Harmonic  maps can also be defined as solutions of a certain 

sys tem of non-linear part ial  different ial  equations, namely the Euler-  

I ~ g r a n g e  equations corresponding to E. This system can be wr i t ten  

as A f ~  0 where  the  operator  z] generalizes the classical Laplace 

operator.  In fact,  if  one takes  geodesic coordinates xi .... , x~ at  

w E W and y l ,  .... y~ at  v ~---~-f(w) and represents  f by  n functions 
y,~--~-y,(f(x~,..., x~)), then the above Af (w)  becomes equal to the 

ordinary  Laplacian of the vector-function YI .... , y,, at  zero, tha t  is 

�9 O x J  . . . .  ' Ox'-' 
J J J 
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EXAMPLBS. (a) I f  V is the circle S 1 then every map f : W--> S ~ is 

locally represented by a function ~ : W --> 1R defined up to an additive 

constant  and 

E ( f ) - ~ - ~  f ]]grad~l �9 
W 

Then the equation Aft---0 is the same as A~ ~ - 0  for  the ordinary 

Laplace-Btltrami operator on W. 

(b) Now, let W ~ S 1 and V be arbi t rary.  Then 

Af  ~ V~ T, 
where 

at.: d~ ae: 

a 
for  the s tandard (cyclic) parameter  s on S 1, where  - ~  denotes the 

correspondence (coordinate) vector field on S 1, and where  V is the 

covariant  derivative in V. Harmonic maps f : S 1 --> V are those where 

V r r ~  0. These are exactly geodevic maps: the image of f is a 

geodesic in V and the parameter  is a multiple of the length. 

The curvature  of the ambient  manifold V enters the picture 

once we look at  the second variation 

d ~E(f t )  at t ~ 0 .  
6 2 E( f )  a-~f dt ~ 

In general, the second derivative in t along f o ( W ) c  V at  t ~  0 

i.e. a t  t~---0) depends only on : 
clUE(f t) Of 

dt 2 . not the field ~ ~ at  

af t , ~  0 but also on the derivative A~ ~ - .  However, if f ~ fo is har- 

monic, then this  derivative depends only on ~ which just i f ies  the 

notation 6 2 E in this  case, in fact, if  a function E has  zero (first) 

differential  a t  some point f, then there  is a well defined second dif- 
ferential (or Hessian) H of e at  f which is a quadrat ic  fo rm on the 

vector fields ~ at  f, such tha t  

6(6E(f)) = H(6, 6). 
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THE SECOND VARIATION FORMULA FOR HARMONIC MAPS. If f is a smooth 

harmonic map, then 

(*) O'~ E(f)~-~ l" (IIVSI] ~ 4- K(~2))dw, 

where V is the covariant derivative of ~ in V along W and K(5 "~) 
is au algebraic quadratic expression in J involving the curvature of V. 
(Notice that  in our earl ier  formulas  for  the second var ia t ions  for  

areas  and volumes the field ~ was  unit and normal to a hypersurface 
W and the ~7 ~-term was  zero). Let  us make  the above precise. F i r s t  
we  rcall tha t  ~ is, in fact,  a section of the induced bundle T*--> W 
and denote by ~7 the connection in T* induced f rom the Levi-Civita 

connection in T(V). Then 11~75112 makes  sense as V is a different ial  
opera tor  with values in the  bundle ~(~1 T~k ~ Hom(T(W),  T*) which 

def 

has a natural  Euclidean s t ruc ture  coming f rom those in T* and T(W). 

Now we take  care of the curva ture  term. F i r s t  we extend the 

sectional curva ture  K by bil ineari ty to all pairs (~, v) of vectors  in V. 
In te rms  of  the  form Q on A:T(V) this reads 

K ( ~ A , ) - -  Q(vA,',  ~-A,')- 

Then the curva ture  K(J : )  is expressed at  every point w ~ W with an 

or thonormal  f rame  r l , . . . ,  T,, in T~(W), m ~ - d i m  W, by  

-~(&~) ~ - - - -  Z K((Dz~)A~), for  D ~ D f ,  
i ~ l  

where  the result  does not  depend on the choice of the  frame.  (See 

[E-L]1 and [E-L]2 for  an extensive discussion of these matters).  

Now, we  see that  K(V) <_ 0 makes  5~ E(f)  >_ 0 and so one may  expect 

tha t  every harmonic maps  provides a local minimum for  the  energy. 

In fact.  every harmonic map  of a compact manifold W into a com- 
plete V with K < 0 gives the  absolute minimum for  the  energy 

function (see [E-L]1). 

I f  K(V)  >_ 0 one may expect (~2 E to be negative for  those fields 

($ whose (covariant) derivatives along W are  small. Fo r  example, 
i f  ~ is V-paral le l  along W, i.e. V b ~ - 0 ,  then ~2(E) _< 0. 
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EXAMPLE. Let  W - - S  1 , then f (S  1) is a geodesic in V and every 

vector x E T~(V), v - ~  f(w) admits an extension to a V-paral le l  field 

along this  geodesic. When we go around the circle, the vector x does 

not go, in general, into itself, but into another  vector, say x' E T,(V). 
The resulting map say L:T~(V)-->T~(V)  for  L ( x ) ~ x ' ,  is called 
the holanomy transformation (or p~rallel transport) along the loop 

f ( S  1) and is known (by the basic property of the Levi-Civita con- 

nection) to be an orthogonal l inear map. Since the curve f ( S  ~) is 

geodesic (and has ~7~ v ~ 0 as we have seen above) the tangent  vector 
df 

(Dr) ~ E Tv(V) is invar iant  under L. then we look at  

the orthogonal complement N, c T~(V) of m and observe tha t  the 

poerator LIN, : N ,  --> N~ fixes a uni t  vector ~,, i.e. L(~,)~----v,, in the 
following two cases 

(i) n ~ dim V ~ dim Nv ~- 1 is even and L is an orientation 
preserving map, i.e. Det L ~ ~ 1 ; 

(ii) n is odd and L is o~ientation reversing, i.e. Det L ~ -  1. 

Notice, tha t  L is orientation preserving for  all loops in V if  the 

manifold V is orientable. But  i f  V is non-orientable then there  exists 

a homotopy class of loops in V, such tha t  L is orientation reversing 

for  all loops in this class. 

I f  L(~,, ,)= ~,~, then the vector ~,~ extends to a global (periodic) 

parallel field ~ in V along W for  which the second variat ion of E is 

~E(f)---~-- f K(TA~) ds. 

I f  K(V) > 0 this  variat ion is str ict ly negative and so f is not a local 

minimum of the energy. On the other hand it is not ha rd  to show tha t  

if  V is a closed manifold, then every homotopy class of maps S 1 --> V 

contains a smooth harmonic (i.e. geodesic) map f giving the  absolute 

minimum to the energy on this class of maps. Thus we obtain the 

classical 

SYNG~. THF_~REM (See [Mil]). Let V be a closed Riemannian manifold 

with K(V) > 0. I f  n ~ dim V / s  odd, then V is orientable and if n 
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is even, then the cananical oriented double cover of V is simply con- 
nected (e.g. i f  V is arientable then it  is simrpIy connected). 

Notice that  the proof  of this theorem uses the  posi t ivi ty of K 
along some (non-specified) closed geodesic in V and no geometr ic  
informat ion is needed (nor revealed) away  f rom this geodesic. This 
sharply contras ts  with our s tudy of K _> 0 by  means of  the  tube  
formula  (though the second variat ion formula for  ~ follows f rom 
the tube  formula  applied to (germs of) hypersurfaces  normal  to the 
geodesic in question). 

THE SECOND VARIATION OF THE ENERGY FOR dim W ~ 2. I f  dim W >_ 2 

then, generically, there  is no V-paral lel  field ~ along W as the  system 

V 5  ~ 0 on W is overdetermined. In fact,  the  operator  V applies 

to sections J of  the  induced bundle T*~-f*(T(V))- - ->W (where 
f : W - - >  V is our harmonic map) which are  locally given by 

n ~ rank  T* functions on W while the ta rge t  bundle for  

~21 T* ~ Horn (T(W), T*)), has  rank  ~ n dim W which is ~ n for  

dim W >_ 1. Now let W be an oriented surface  and let S--> W be a 

complex vector  bundle with a complex linear connection ~7. The 
Riemannian metric in W together  with the orientation defines a 
complex strructure in the  bundle T(W). Namely, the  multiplication 
by  i ~ - - - I / -  1 is given by  rotat ing tangent  vectors  by 90 ~ counter  

clockwise. Each f iber  ~1 Sw of the  bundle $21 S, which consists of 
-linear maps  Tw(W)--~ Sw, splits into the sum of two  subspaces, 

~Q' and ~2" in ~21 S~,  where  .(2" consists of ~-linee~r maps 
~" : T~(W)--> S~ i.~ commuting with multiplication by l / - - 1 ,  which 
means e ' ( } / ~  1 x ) :  V - -  1 e'(x), while the  maps e" E ~ "  ant i -commute 
with 1/~-l, i.e. e"(  ~ / ~ 1  x ) : - - J / ~  1 d"(x). This gives us a split- 

ring of V into the  sum of two operators,  V : ~ 7 ' - 1 - V "  for  

V '  : C~ (S) --> C ~ ( i f )  and p "  : C ~ (S) -~  C | (~"). Notice tha t  the 
bundles ~2' and ~Q" have the same rank over ~ as S and so the 

systems ~7' ~ ~ 0 and V" ~ : 0 are  determined. Now there  is a 

good chance they are  solvable. In fact,  there  is an impor tant  case 
where  solutions are  known to  exist ;  Namely, let S be the  camplexi- 
fication of a real vector bundle T with a Euclidean connection 
over W. Then one has the following 

PROPOSITION (See [M-M]). I f  W is homeomorphic to the sphere S 2 
then the  equation V " ~  ~ 0 has (at least) n linearly independent 
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over ~ so,lutions ~, ..... ~o, : W -~  S ~ -  T ~ ~ / m l  T for  n ~ rank  T, 
which, mareover span in each f iber Sw a (complex)  subspace of 

dimension >_ n/2.  

IDEA OF THB PROOF. There is a natural  complex analytic s t ruc ture  on 
the total  space of S for  which holomorphic sections are  exactly those 

which sa t is fy  V " ~ - ~  O. Fur thermore ,  the  vector  bundle S - ~  W 

is self-dual as a complex analytic bundle, because the Euclidean 

s t ruc ture  on T (which is a quadrat ic  form on T) extnds, by ~;-linea- 
r i ty  to a no~-singuIox quadratic f o rm  on S which is parallel and, 
hence, hotomarphic on S. Then the existence of the  required n holo- 

morphic sections follows f rom RiemannoRoch combined with the 

Bi rkhof f -Gro thendieck  theorem on spli t t ing holomorphic vector  
bundles over S 2 into line bundles. 

Next  one shows that  the  Laplace operator  associated to V",  

that  is 

A " ~ -  ( V")* V" ,  

is related to A ~ V * V  by the following Bochner-Weitzenbock 
formula 

A : 4 A "  = - -  I / ~  1 K "  

where  K'" is the (skew-Hermit ian)  endomorphism of S associated 
with the  curva ture  of V and the uni t  bivector  field (codensity) on 
W associated with the  metric  in W. (We recall tha t  the  curvature  
of V is a 2-form on W with values in End  S and K "  equals the  value 

of this fo rm on ~i A r2 for  orthonormal tangent  vectors  a t  every point 
in W). In part icular,  one relates the integrals 

and 

by 

W W 

i'ltv" ll d :-- f<  > dw 

f llv ll dw=4 I'IlZX" II:dw-I-]I--1 f < K "  ~ , ~ > d w .  
w iv i~ 
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(The above integral formulae  for  ~ < A 9, 9 > and ~ < A" 9, 9 > 
are  obtained by  integrat ion by  parts.  In fac t  one could define 
zJ ~ V * V  and A " :  ( V " ) *  V "  as well as the adjoint  operators  
~7 * and ( ~7")* by  postulat ing these integral formulae  fo r  all smooth 

sections 9- Also notice tha t  < ,  > denotes the  Hermi t ian  inner 

product  in S-~-~ T ~ l / ~ 1 T associated to the  Euclidean s t ructure  
in T). 

We wan t  to rewri te  the  second variat ion formula  (*) for  

H(J,J)~--j2E(f) (for  harmonic maps f ) w i t h  [[ V"91[ 2 instead of 

I[ ~7 91 ]s. F i r s t  of all we extend the formula to the  complexified bundle 

S* ,--  T* ~]~ ~/ - -  1 T*, where  it  expresses the  Hermit ian  extension of  

the  Hessian of E at  f. On every complex field 9 which is a formal  

combination of two real fields, 9 ~ ~ + I / ~ 1 ~2, this Hessian is 

H(9, "~) ~ H(O~, 6j) + H(Je, d e ) ~  6~E(f) + ~ E(f). 
de r 

Then by the second var ia t ion formula, 

where  

HQ0,~) ~ -  / l [  V 9]] ~ + ~(~2)) dw, 

Ilvgll ~ =  IIv~ll ~ + IIv6~ll ~ 

and / ~ ' ( 9 2 ) ~ K ( 6 ~ ) +  K(O~) which is expressible in term of the 
sectional curva ture  K of V and orthonormal vectors r l ,  ~ a t  each 

point  w E W  by K . ( 9 ) ~ - - - X  K(Dr~ASi) for  the  differential  

D--Dr(w), as we  have seen earlier. (Here  as always we  identify 
61 and 62 in T* with their  images in T(V) under the  tautological 

map T* =/*(T(V)).-., T(V)). Now we subst i tute  ] Ilvgl? in H(9, 
by 

4 (ll v" 9ll ~ + r  fl < K"9, 9 > 
W W 

according to the  previous formula  and obtain the following expres- 

sion for  H, 

H ( 9 , ~ ) = 4  fIIv"911 dw + .l K"(9~) dw 
W W 
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f o r  

(Notice that/~"(~0 e) is real since < K" ~0, ~0 > is purely imaginary). 
We are going to apply this formula to fields ~ satisfying V" ~ ~ 0, 
which makes 

H(~, ~ : [ ~:"Qo~)) dw, 
W 

and we want  to know when /~"Qo 2) is negative (compare the Synge 
theorem). The answer is obtained with the following notion of the 
eomplexified sectional curvature Kr  of V. 

Extend the form Q by complex multil inearity to the complexified 

tangent  bundle ~ T(V)  ~ T(V)  G t; - -  1 T(V)  and let 

Kr (,~A~) = Q ('aA~, aA~)  

for a and ~ in (~ T(V)  (and the obvious conjugation z ~->z in the 

complexified bundle). If we wri te  ~ - t l  -F } /ml  t2 and ~ t 3  -t- } / 5  t4 
for vectors t~ E T(V), then a trivial computation expresses Ke in real 
terms as follows, 

Kr ( ~ A f l ) ~ Q ( t l A t 3 - - t 2  At4, f l A t 3 - -  t2At4) -~- 

Q(~IA t4 - -  t2A t,~ , t~A t4 - -  t2At3). 

With this one sees that  the condition Kr _> 0 interpolates between 
K >__ 0 and Q _> 0 (i.e. the positivity of the curvature operator). Also 
notice that  the inequality Kr > 0, by definition, says that  Kr  0 
for all pairs of r  vectors ~ and /? in C T(V).  

A useful sufficient condition for positivity of Kr is the 1~4-pin- 
ching of K. That  is Kr > 0 at every point v where the sectional 
curvatures K(o) satisfy 

1 / 4 a  < K(o) < a 

for some a = a ( v ) >  0 and all 2-planes o E Tv(V). Similarly, the 
negative 1~4-pinching of K(o) (between - - a  and ~ 1 / 4  a) insures 
Kr < 0. (This is due to Hernandez. Earl ier  Micallef and Moore proved 

8 t m i n a r i o  M a t e m a t i c o  e F i s i c o -  
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a slightly weaker  result needed for  the present application. Also 

notice tha t  the pinching criterion is sharp:  The complex projective 

space has 1/4 ___ K _< 1 and Kr is non-strictly positive). 

Now we re turn  to our map f : W ~-> V, we take  two orthonormal 

vectors T~ and ~2 at  some point w E W and let 

1 (DT1 - -  f ~ 1 D-c~) E ~, T (W)  D' ~ -~- 

for  D ~ - D /  : T(W).-> T(V).  

LEMMA. The above curvature term K" satisfies at each point f(w)EV, 

K"  (g~) ~ - -  4~:r (D% A ~)). 

This is proven in [M-M] by a s t ra ighforward  computation based 

on the definit ions of the curvatures in question. 

COKOLLARY. I f  K r  ~_ 0 then the (complexified) second variation of 
the enery is non-positive on the solutions q) of the equation ~7 " ~) ~ O. 
Furthermore, i f  Kr > 0 and ~o is non-tangent to D ' v  E C T(V) at  

some pains f(wo)EV, then H ( ~ , ~ ) >  0. I t  follows that f is not a 
local m in imum of the energy function f ~-> E(f). 

PROOF. The only point which may need explanation is the relation 

of (the sign of) the complex Hessian with the real variat ion of the 

energy. But  for  ~ ~ 51 + 1 / - -  1 52 the complex Hessian is the sum 

of the two real ones 

: ~" E f t )  H(~, ~) ~ H(51, J1) -F H(52,62) 62 E(f)  + .2 

and so the  negativi ty of H(~, ~) implies tha t  for  some of the two 

real variat ions 5~ E(f )  or 5~ E(f) .  Q.E.D. 

Now we assume tha t  W is homeomorphic to S 2 and the map 

f : S 2 --> V is non-constant. Then we have with our earlier proposi- 

tion n ~ dim V linearly independent solutions ~01, ..., ~ of the 

equations V " ~  ~ 0 which span a subspace of dimension _ n / 2  at  

some point f(wo) E V where D" r ~ 0. Thus for  n ___ 4 we obtain at  

least one field ~ for which H(~, ~) < 0 and in general, for n >_ 4 
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n 
we have at l eas t -~  - - 1  fields, such that H is negative definite on 

their span. 

Recall, t ha t  all this  neds Ka  > 0. In fact, Micallef and Moore 

prove the above under  the (weaker) condition of positivity of Ka  

(only) on those complex 2-planes in E T(V) on whch the complexified 

Riemannian metric (which is a E-quadrat ic  fo rm on E T(V)) vanishes. 

The above Corollary shows, in particular,  t ha t  no smooth non- 

constant  harmonic map f : S 2 -> V is energy minimizing in its homo- 

topy class for  n >_ 4. On the other hand, a fundamenta l  theorem of 

Sacks and Uhlenbeck claims the existence of such f whenever the 

second homotopy group ~2(V) does not vanish (where V is other- 

wise an arbi t rar i ly  closed Riemannian manifold). Thus Kr ( V ) >  0 

implies ~(V)~-~0  for  d imV_> 4 and this  suffices for  n ~ 4  (by 

elementary topology) to insure tha t  the universal covering of V 

(which is compact as K(V) > 0) is a homotopy sphere. 

REMARK. The subtlety of the Sacks-Uhlenbeck theorem is due to the 

fac t  tha t  the space of maps f : S 2 -~ V with E(f)  < const is nan- 

canvpact. Moreover, a simple computation (using the fact  tha t  

dim S 2 ~ 2 )  reveals tha t  the energy is invar iant  under  the (non- 

compact !) group of conformal transformations of ~-' and so even the 
space of harmonic maps with bounded energy is non-compact. Thus 

one can hardly  expect convergence of any kind of a minimization 
process for  obtaining a harmonic map with minimal energy in a 

given homotopy class of maps. In fact, one does have divergences 

were a map S" --) V <~ bubbles >> into several pieces, see fig. 20 below 

�9 

Fig. 20. 
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Such bubbling t r ans fo rms  a single map f : S ~ --> V to a f ini te  CO1- 
k 

maps f~ : S: --> V, i ~ 1, .... k, such tha t  ~ E(fO <_ E ( f )  lection o f  

and the  homotopy classes of the maps f~ add up to tha t  of f. This 
explains why  one cannot have an energy minimizing map in every 
homotopy class. Yet this  perfect ly agrees with the  Sacks-Uhlenbeck 

theorem claiming the existence of an energy minimizing map in 

some non-trivial homotopy class though this class is not known in 
advance. 

Miscallef and Moore generalize the Sacks-Uhlenbeck theorem by 
developing a limited Morse theory  for  the energy function E on the 
space of maps S~--> V and showing for  n _>_ 4 tha t  either a closed 

n-dimensional s imply connected Riemannian manifold V is a homo- 

@oy sphere or there exists a non~cansta~t harmonic map f : $2--> V, 
n 

which  admits  at mos t  k <_ - ~  ~ 2 fields ~of, such that the Hessian 

HQ0, ~) is negative on their spore. Therefore, the condition Kr > 0 
implies (by the above existence discussion for ~i wi th  negative H) 
V is a homo topy sphere. 

We have mentioned ear l ier  tha t  the  s t r ic t  1/4-pinching condi- 
tion on the sectional curva ture  K implies str ict  positivity of Ka .  
Thus the  above theorem of Micallef-Moore implies the Sphere Theo- 
rem (see w 33/~). 

Notice, tha t  Micallef and Moore need only local pinching, i.e. 
1 

--~ ~(v)  <_ Kv(V)  <_ a(v) for  some positive function a(v)  while in the 

sphere theorem one requires a is a positive constant. But Moore and 

Micallef do not directly produce (for locally pinched manifolds V) 
any explicit geometric homeomorphism between V and S ~ as is done 
in the  proof of the sphere theorem (see w 33/~) but appeal to the 

topological solution of the  Poincar~ conjecture  for  n > 4. In  fact, 
one has no geometric picture a t  all of locally pinched manifolds (even 

with a constant  c. close to 1 instead of ~-la), dispite the  remarkable  

success of Micallef-Moore's method on the  topological side. Here  

again, the  istuation is parallel to the Synge theorem discussed earl ier  

in this w 
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w 72/~. HARMONIC MAPS INTO MANIFOLDS W I T H  K r  ~ 0. 

Firs t  we only assume that  K _< 0 and recall the  following basic 
existence theorem for  harmonic maps  (see [E-L] 1). 

(Eells-Sampson) Let  V and W be closed Riemannian manifolds, 
where K(V)_< 0. Then every continuous map W - - > V  is homotopic 
to a smooth harmonic map (which is energy minimizing in its homo- 
tapy class). 

Notice, tha t  for  K(V)  <_ 0 the bubbling phenomenon displayed 
in Fig. 20 is impossible and harmonic maps can be obtained (as is 
proven by Eells and Sampson) by a s t ra igh t forward  minimization 
process. The condition K ( V )  <_ 0 enters  via a Bochner type  formula 
fo r  maps f :  V--> W which generalises the  formula A ----- V * V - -  Ricci* 
on 1-forms (see w 7) and which is stated below in the  special case 
where  f is harmonic. 

EF_J~LS-SAMPSON FORMULA. (See [E-L] 1) Every  harmonic map f :W--~V 
satisfies 

AIIDf[l: = IlSesstlp + Curv, 

where Hess is the totality of the second covariant derivatives o/ f 
and Curv is a curvature te~n described below. 

Fi r s t  we describe Hess  by interpret ing the differential  Df  of f 
as the  section of the  bundle ~QI~ Hom(T(W),  T*) for  T*---- f*(T(V))  
and then by  sett ing Hess t~ - -V  Df  where  the connection V in Q1 
comes f rom those in T(V)  and T*. Then we observe tha t  the Ricci 
form on W defines together  with the metric in T* a quadrat ic  form 
on ~1 also called Ricci w. Fur thermore ,  the  different ial  D : T(W)-->T(V) 
brings  the  quadrat ic  form Q on A ~ T(V)  to a quadrat ic  fo rm on 
A 2 T(V).  The t race  of this with respect  to the  metr ic  of T(W)  is 
denoted KV((Df)4). Notice tha t  if  K(V)<_ 0 then so is KV((Df)~). 
Fur thermore ,  if  K < 0 and rank  Df >_ 2 then KV((Df) 4) < O. With 
the above notat ions we can wr i te  down the explicit form of the 
curva ture  te rm in the  Eells-Sampson formula 

Curv ~ Ricci W (Dr, Dr) - -  K v ((Dr)4). 

In par t icular  if  K(V)<_ 0 and Ricci(W)~---0 (e.g. W is flat) then 
C u r v -  KV((Df) 4) >_ O. 
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By integrat ing the Eells-Sampson formula  we obtain the  fol- 

lowing relation for  closed manifolds W 

f A I[Df[l~dw=O= ( (llHess,[l: + Curv) dw, 
w w 

which fo r  Curv _>_ 0 implies tha t  Hess t ~-- 0 and so the map  f is geo- 
desic in an obvious sense. In particular,  i f  K(V) < 0 and RicciW ~ 0, 

then rank  Df _< 1 and so the image of f is ei ther a point  (we assume 

V is connected) or  a closed geodesic in V. (Notice tha t  all this  remains 

valid fo r  Ricc(W) >__ 0 instead of Ricci ~--0). 

The s tory  becomes by  f a r  more  interesting for  manifolds  W 

which are  Kdhler ra ther  than  flat. The corresponding Bochner type  

formula,  due to Siu and refined by Sampson, generalises the  Hodge 
formula for  the  Laplace opera tor  on funct ions on Ki4hler manifolds, 

tha t  is 

A = d * d  = 2A" = 20"0.  
def def 

The Siu-Sampson formula  is an (infinitesimal) identi ty which 

involves Kr and the complex Hessian H~ defined as follows. F i r s t  

we introduce the operator  d v f rom T*-valued 1-forms on V (i.e. sec- 

t ions W--> ~ 1 =  Hom(T(W),  T*)) to T*-valued 2-forms on W, which 

is obtained by  the usual <( twis t ing  >> of the  exter ior  d on 1-forms 
on W with the  connection in T*. Then we put  

Hess~ = d v JDf, 

where  J : 9 1 - ~  t21 is the operator  induced by  the multiplication by 

- - 1  in T(V). Observe tha t  the  definition of Hess  r uses the  complex 

s t ruc ture  in W and the Levi-Civita connection in V bu t  not  the  metric 

(or connection) in W. Also notice tha t  H~ ~ 0 if  and only if  the 

restr ict ion of f to every holomorphic curve in W is harmonic. Such 

maps  are  called plurihaxmardc (and they a re  similar to geodesic maps 

of f la t  manifolds W to V. Also notice that  this discussion for  

dim~ W ~ 2 shows the conformal invariance of the  equation Af = 0 
for  maps  f : W--> V). 

Next  we  complexify the  differential  of f and thus obtain a 

c - l i n e a r  homomorphism D e :  T(W)...~ ~, T(V). This D r pulls back 
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the form Q on r  ~ ~, T(V) to a form on A 2 T(W) (here 

exterior power A ~ is meant over C). In fact, what we need is 
the Hermitian form associated with the quadratic form Q, say 

Q. (cr ~) ~ Q(,~, fl), for a, ~ E CA  2 T(V). (Recall that  Q was originally 
defined on A ~ T(V) and then extended to CA ~ T(V) by complex multi- 
linearity; compare the earlier discussion in w 71/~ around the theorem 
of Micallef-Moort). Then we pull-back the form Q" to A ~ T(W) and 

we denote by K~((Df)  4) the trace of this pull-back with respect to 
the Hermitian form in A 2 T(W) induced by the K~ihler metric in W. 

Notice that  Kr _< 0 implies KV((Df)  ~) <_ O. Furthermore, if 

Kr < 0 and rank Df >__ 3 then K~ ( (Df) 4) < O. 

Now we write down (without proof) the following 

INTF~RATF~ SIU-SAMPSON FORMULA. Let W be a clased Kdhler ma- 
nifold and V a Riemannian manifold. Then every smooth harmonic 
m~p f : W --> V satisfies 

(Jr) . f  ]]Hess]l l2dw-- f KV((Df)4)dw~--O. 
W 

COROLLARY. I f  Kr (V) <__ 0 then every haxmonic map f : W --> V has 

Hess~ ~---0 and hence, is pluriharmonic. Furthermore i f  Kr (V) < 0 
thne rank Df <_ 2 at every point w E W. 

Finally, we combine this corollary with the Eells-Sampson 
existence theorem for harmonic maps and arrive at the following 

THEOREM (Siu, Sampson, Jost-Yau, Carlson-Toledo). Let V be a 
closed manifold with Kr (V) < 0. Then every continuous map oy an 
arbitrary Kdhler manifold W into V can be homotoped to a map oy 
W inta the 2-skeleton oJ some triangulation of V. 

This imposes a very strong (albeit weird) restriction on the 
topology of V, as there are many Ki4hler manifolds W to which the 

theorem may be applied. Important examples of W are compact quo- 
tients of bounded symmetric domains (such as the ball B ~ c  CO 
by discrete (holomarohiv) automerphism groups. 

Among manifolds V to which the above theorem applies the 

most important are the spaces with constant negative curvature. 
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Also there are examples of manifolds V with strictly 1/4-pinched 
curvature which are not homotopy equivalent to constant curvature 

manifolds. 

The non-strict case Kr (V) _< 0 is especially important because 
all locally symmetric spaces of non-compact type satisfy this con- 
dition and the pluriharmonic conclusion of the above corollary plays 

a crucial role in the representation theory of the fundamental group 
.~I(W) in the isometry groups (e.g. S L , )  of symmetric spaces (see 

[Cor], [G-Pa] ). 

Finally, we notice that  the theory of harmonic maps extends 
to the case where the target  is singular with K _< 0 in the sense of 
Alexandrov-Toponogov (compare w 32/~). Then one tries to understand 
the (stronger)) condition Kr _< 0 for singular spaces (such as the 
Bruhat-Tits buildings on whoch p-adic Lie groups act) and harmonic 
maps appear quite useful for this purpose (*). 

w 7 ~ .  METRIC CLASSES DEFINED BY INFINITESIMAL CONVEX CONES. 

Every subset C in the space of quadratic forms Q on A2~" 
which is invariant under the orthogonal transformations of ~ "  
dtfines a class ~: of metrics on every n-dimensional manifold V by 
requiring that  the quadratic form Q on T ~ ( V ) =  ~"  built with the 
curvature of this metric is contained in C for  every v E V (Notice 
that  the identification T . ( V ) =  ~ -  is unique only up to orthogonal 
transformations of ~ "  by the required O(n)-invariance of C). All 
classes of metrics defined by K _> 0 K _ 0, Ricci _> 0, etc., we have 

met so far  could be obtained with such a C which is uniquely 

determined by the class of metrics in question. Moreover, the subset 
C in all our cases was a convex  cone in the linear space of quadratic 

forms on A 2 ~".  It is not clear at all why geometrically significant 
classes ~: must be generated by convex cones, but analytically this 
corresponds to quasi-linearity of the differential condition defining 

(compare p. 24 in [Gro]). 
The greatest cone we met was given by Sc >_ O. In fact this 

condition defines a half-space in the space of Q's. The smallest of 

(*) See Gromov and Schoen in Publications Mathematiques IHES (1993). 
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our cones was { Q > 0 } corresponding to the  str ict  posit ivity of the 

curva ture  operator.  The closure of this cone (given by Q >_ 0) can 

be defined as the  minimal closed convex O(n)-invariant  cone which 
contains the  curva ture  Q of the product  metric on S 2 X 1R ~-2. This 

suggests  other  definit ions of interest ing (?) classes of metrics defined 

with natural  cones C. (Compare curva ture  posit ivity conditions in 
[Gro] :  aimed at  bounding the size of V). In the search of interest ing 

cones C one may  be guided by  how C interacts  with natural  dif- 

ferential  operators  on V. (Compare the invariance of { Q > 0 } under 

R. Hamilton's  heat  f low on the space of metrics and various Bochner 
formulas  we have seen in w 7). More geometrically one may look 

at  ~ as a subset  in the space 6 +  of Riemannian metrics g on a 
given manifold V which are  considered as sections of the symmetric  

square S ~ T*(V). Then the above mentioned global analytic features  

of the  underlying C can often be interpreted in te rms of infinitesimal 
geometry  of ~:. I t  is wor th  noticing at this point tha t  % c @+ is a 

cone for  every C and that  ~; is invar iant  under the natural  action of 

Di f f  V on @+. But  ~: is not a convex cone unless C is empty or 

equals the  space of all forms Q. In fact, ~ +  (which itself is a convex 
Diff - invar iant  cone in the linear space of sections V--->S~T*(V)) 

contains no non-trivial Diff - invar iant  convex subcones at  all, if  the 

underlying manifold V is compact  connected wi thout  boundary  (see 
p. 231 in [Gro])  and also pp. 24 and 111 in this book). 

SUMMARY. m This is an expanded version of my �9 Lezione Leonardesca~ 
given in Milano in June 199.0. I t ry  to reveal to non-initiates the inner working 
of the Riemannian geometry by following the tracks of relatively few ideas 
from the very bottom to the top of the edifice. 
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