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The curvature tensor of a Riemannian manifold is a little
monster of (multi)linear algebra whose full geometric meaning
remains obscure. However, one can define using the curvature
several significant classes of manifolds and then these can be
studied in the spirit of the old-fashioned synthetic geometry with
no appeal to the world of infinitesimals where curvature tensors
reside. A similar interplay between infinitesimal quantities and
visual features of geometric objects appears in all corners of geo-
metry and analysis. The simplest example is provided by tht
equivalence of the two definitions of a monotone function

% > 0= f(t) < f(t) for t, < ts.
Then the infinitesimals of the second order bring along a geome-

trically more interesting phenomenon of convexity.

a2 f 1 ) 1
A0S (4 (i 8)) < o (Flt + £t

Our next example lies at the very verge of the Riemannian
domain so we look at in a greater detail.

§ 0. THE SECOND FUNDAMENTAL FORM AND CONVEXITY IN THE
EUCLIDEAN SPACE.

The basic infinitesimal invariant of a smooth hypersurface

W < R* («<hyper» means codim W — n — dim W =1) is the
def

second fundamental form II — IT¥ which is the field of quadratic
forms I1,, on the tangents spaces T, (W) c T,(1R") = IR" defined as
follows.

AFFINE DEFINITION OF II. Move w to the origine of fR* by a parallel
translation of W in 1R” and compose the resulting embedding W < R»
with the linear quotient map wR* — R*/T.(W) ﬁ N, . Identify the

(one dimensional linear) space N,, with R and thus obtain a function,
say p="7,: W >R, whose differential Dp vanishes at w (by the
definition of T,(W)). Then define the second differential D2 p that
is a quadratic form on T,(W), such that for every pair of vector
fields 9; and 9, on W the (second Lie) derivative of p at w satisfies

91(32 ) (w) = (D? p) (3:(w), (32(w)) .
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(The existence of such D2 p follws from Dp—0 by a simple com-
putation). This construction applies to all w € W and gives us our II
for I1,—= D2 p, thought of as a quadratic form on T (W) with values
in the normal bundle N =Ty (1R")/T(W) over W, where Tw(R")
denotes the restriction T(1R")|W.

Here is the familiar picture for n —=1.

A\

Fig. 1.

Geometrically speaking, II,, measures the second order infini-
tesimal deviation of W from the affine subspace Tw(W) c R". In
particular, if W is connected, then the vanishing of I on W is
equivalent to W lying in a hyperplane, as everybody knows.

A more interesting relation between II and the (affine) geometry
of W reads

The form II is positive semi-definite if and only if W is convex.

To make it precise we have to choose a coorientation of W that
is a way to distinguish between two components into which W locally
divides 1R™. This is customary done with a transversal (e.g. normal)
vector field v along W. Such a preferred field, once chosen, is called
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interior looking and the part of fR” where v looks into it is called
the interior of W.

exterior

Fig. 2.

Notice that such a field also defines an orientation of the normal
fibers N, and so one can speak of the sign of the forms I7,, with
values in N,,. Now we invoke the following

AFFINE DEFINITION OF CONVEXITY. W is called convex at w if it is
contained in the interior half-space T + < 1" bounded by the hyper-
plane T.,.(W) c R"

For example, the curve W in Fig. 2 is convex at w but not at w’.
Yet it becomes locally convex at w’ if we change the coorientation
by inverting the sign of ».

In the language of the projection p : W— N,= 1R the con-
vexity claim is » > 0 which well agrees with the positivity of
II,=D2p, In fact, positive definiteness of II,, obviously implies
local convexity (i.e. the convexity of small neighbourhood U c W
of w) of W. But it is slightly harder to derive local convexity of W
from positive semidefiniteness of I7 in a netghbourhood of w (rather
than at w alone). Also, the proof of the global convexity of W is
not quite trivial. Recall that the global convexity, (i.e. the convexity
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at all w ¢ W) follows from IT > 0, provided W is a closed connected
hypersurface, where « closed » means compact without boundary.

The affine definition of II given above is quite general. Namely,
it applies to all dimensions and codimensions (but we need codim
W =1 to speak of convexity), it makes sense for arbitrary smooth
maps f: W— R™ (not only embeddings) and it generalizes to non-
Euclidean ambient spaces endowed with affine connections. However,
the affine nature of this definition makes it poorly adapted to the
needs of the Riemannian geometry where the major object of study
is the distance function associated to the Riemannian structure. With
thig in mind we turn to our second definition of IT which is based
on the following important notion.

EQUIDISTANT DEFORMATION. I.et W be a cooriented hyporsurface
in iR* and denote by 4&(x), x € lR" the signed distance function
to W. That is dé(x)=dist(x, W) for the exterior points x and
6(x) = —dist(x, W) in the interior. Notice that in general the
distinction between interior and exterior points makes sense only
locally near W and then 4(z) is defined only in some small neigh-
bourhood of W. Also recall that

dist(z, W) — infdist(x, W)
def wWEW
for the Euclidean distance
dist(z, wy= ||z —w||=< 2 —w, r —w > 2,
Then we look at the levels of 4, that are
W, =06"1(g)= {x €ER" | ()= s} ,

and call them s-equidistant hypersurfaces or c-equidistant deforma-
tions of W—=W,.

It is easy to show that for small ¢ the manifolds W, are smooth
if W, is smooth, but W, may become singular for large ¢ In fact
we shall see in a minute that the imward (i.e. ¢ < 0) equidistant
deformation necessarily produces singularities for every conwex
initial hypersurface W,. (See fig. 3 below). For example such a
deformation of the round sphere W,=S"1(r) c R™ of radius r
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brings W, to the center of the sphere for e=—1r. (Here W =
S*-1(r 4+ ¢) for all ¢ > —1).

W exterior

W

interior

Fig. 3.

Next we consider the lines N,, in R”™ normal to W at the points
w € W. It is easy to show that every such line meets each W, for
small ¢ at a single point denoted w, or (w, ¢) € W, and the resulting
map d,: W—o W, for d.(w)=w, is smooth. (In fact, d, is a dif-
feomorphism ; moreover, N, is normal to W, at w,, as elementary
differential geometry tells us). Now we are going to define the
second quadratic form as the rate of change of the lengths of curves
C c W, as we pass from W, to infinitesimally close hypersurface
W, . We recall that the length of C is determined by (integration of)
the length of the tangent vectors of C which is given, in turn, by
the first fundamental form g on W that is just the restriction of the
Euclidean scalar product (which is a quadratic form on 1R") to the
tangent spaces T, (W) c T,(RR")= R", w € W. In other words g is
the Riemannian metric on W induced from the standard Riemannian
metric on WR*+*l. Geometricly speaking, «induced » amounts to the
relation

g-length(C) = The Euclidean length(C)

for all smooth curves C in W.
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We denote by g, the first fundamental form of W,, we pull it
back to W by the differential of the map d, and we denote the
pulled back form g* on W= W,. Then we set

1 "
*) = = g%,

EXAMPLE. Let W be the unit sphere S*-1(1) c R" (e.g. the
circle in the plane). Then g* comes from the concentric sphere
W.=8"1(14 ¢) and we clearly see that ¢g* = (1 4 ¢ 9go. Thus
IIY = g, for V—=8"-1(1), as everybody knows from the kindergarten.

It is not hard to show (by an elementary infinitesimal compu-
tation) that the above « equidistant » definition of II is equivalent
to the affine definition given earler. In fact, the equidistant defini-
tion extends to all codimensions and still remains equivalent to the
affine definition, (see, e.g., Appendix 1 in [Mi-S]).

EQUIDISTANT DEFORMATION OF A CONVEX HYPERSURFACE. If the hyper-
surface W= W, is convex then W, is convex for all ¢€ 1R, even
where W, becomes singular and one needs a definition of convexity
applicable to non-smooth hypersurfaces. First we indicate an infini-
tesimal proof of the convexity of W, based on the classical fube
formula which tell us how IT1": develops with ¢ for variable ¢ To
write down this formula we pass from the form II to the associated
operator A defined on T (V) by the usual relation

(71, 12)=9(A71, 12) = < A71, T2 > gnt1.

Notice that A is a symmetric operator (on each tangent space
T..(W)) and it is sometimes called the skape operator. Then the tube
formula for the operators AY on T (W), which are the Dd,-pull-backs
of the operators A, on W, corresponding to 1%, reads

. dA; *
(**) o =— (4D

for the ordinary square of the linear operator AY. This formula
actually says that (the differential Dd. of) d, maps the principal
axes of the form IT¥ (that are the eigenvectors of A) to those of
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II% and the principal curvatures i,(e), A2(e) ..., ln_1(e) of W, (that
are the eigenvalues of A, on W, corresponding to IT"¢) satisfy

(+) ) =A47"(0) + .

This agrees with what we know for the sphere S*-1(r) for W, where
h=—ilo=..=Ap_y=7r1and W,=8"1(r + ¢), also () agrees with
(**) as 4(e) = (¢; + &), for c;=1;'(0) according to (+) and then
the derivative is —(¢; -+ £))-2. (See Appendix 1 in [Mi-S] for a
proof of the tube formula adapted to the present notations). Now it
is clear that if I7"> > 0 then I1" ¢ remains positive semi-definite for
all ¢ > 0 and also for negative e > —max ;' (0). In fact, whenever

i=l,....,n—1
¢ becomes equal to — 47" (0) at a point w, then the map d, : W — R
(which moves w to the ¢-end of the normal [0, ¢]-segment to W at w)
fails to be regular at w in the senst that the differential of this map
(which is smooth for all £) becomes non-injective on T, (W) and so
the image d.(W) (which is not the same as W, for large ¢ where
there is no regularity) may acquire a singularity at d, (w) € RR*.

Now let us look at W, from a global point of view where
We=W, is a closed convex hypersurface in 1R*. The above discus-
sion shows that W, is smooth and convex for all ¢ > 0 and so the
induced metric on W, is monotone increasing in ¢ (where one com-
pares two Riemannian metric by bringing them to the hypersurface
W, by the diffeomorphism d, : W — W,). This implies the following
global consequence of the convexity (defined infinitesimally by
v = 0).

For each exterior (i.e. outside the compact region bounded by
W) point x € R" there exists a unique point w=p(x) € W, such that
the segment [x,w] — 1R™ is normal to W at w. Moreover, the re-
sulting map p : Exterior(W)— W 1is distance decreasing.

We shall see later on (in § 2) that this property is characteristic
for the ambient manifolds (replacing R" o W) of non-positive sec-
tional curvature.

Now, let us look at the internal deformation W, where ¢ < 0.
As we mentioned earlier, such W, inevitably become singular at
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some moment ¢ < 0. For example, if W=—_S8*-1(r) then the (only)
singular moment is e==—1r and then W, becomes empty (though
the normal map d, sends W on the concentric sphere S*-1(r 4 ¢) for
& < — 7). But for non-round W the singular region occupies an entire
interval in ¢ before W, disappears, see Fig. 4 below.

w

Fig. 4.

The presence of singularities makes it harder to prove the convexity
of W, by infintesimal means but this is rather obvious geometrically
as one easily sees that the interior Int W, is a convex set in the
ordinary sense. Namely if z; and x» are two points in Int W,, then
the segment [z,, x.] also lies in Int W,. In fact Int W, consists of
the points « € R™ satisfying dist(x, Ext W) = ¢ and so the inclusion
[21,22] c Int W, is equivalent to U, ([2:, 22]) c Int W,, where U,
denotes the e-neighbourhood that is the set of the points within
distance < ¢ from the segment [z;, x.]. Now, this U, ([#;, %-])
obviously equals the convexr hull of the union of the ¢ balls
B(x,, ) UB(x2, ¢), which must lie in Int W as this interior is as-
sumed convex in the framework of our present convexity discussion.

If we still insist on an infinitesimal proof, we may define
singular convex hypersurfaces W as appropriate limits of those W’
whose interiors are finite intersections of regions bounded by smooth
convex hypersurfaces. Then we can apply the tube formula to the
smooth convex pieces of W’ (which can be chosen with an upper
bound on the principal curvatures in order to avoid premature sin-
gularities) and prove the convexity of W, by a simple approximation

Seminario Matematico e Fisico - 2
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argument as W’ converges to W. The advantage of such approach
is the applicability to non-euclidean ambient manifolds V - W. In
fact, the convexity of the interior equidistant manifolds W, (i.e. for
£ < 0) is characteristic for the manifolds V of non-negative sectional
curvature (see § 3).

Let us draw the moral of the story. The second fundamental
form IT is an easily computable tensorial object has several mean-
ingful interpretations on the infinitesimal level. Furthermore, the
class of convex hypersurfaces, defined by the (infinitesimal) condi-
tion IT = 0, has a global geometric interpretation and can be studied
by means of synthetic geometry. In fact, the geometric approach
naturally brings in singular convex hypersurfaces but their global
geometry does not harbour any surprises as they can be approximated
by smooth convex hypersurfaces.

§ 4. GENERALIZED CONVEXITY.
The above discussion leads to the following question.

What are other geometrically significant classes of hypersur-
faces (and submanifolds of higher codimension) distinguished by
some properties of I7?

One interesting notion generalizing convexity is positive mean
curvature,

MeanCurv W = trace IT¥Y — 2 A =0,
def

where 1; denote the principal curvatures of W. This is equivalent in
terms of W, to the monotonicity of the volume element of W, rather
than of the induced metric. Geometrically this monotonicity says that
the (7 —1)-dimnsional volume of every domain U c W= W, in-
creases as we pass to W, with ¢ > 0. More precisely the domains
U.e=d,(U)y c W, satisfy the relation

dVol U.

e >0 at ¢=0.

The positivity of the mean curvature of the boundary W —=—29V of
a domain V c R" implies the following property of the signed
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distance funection
(V) = —dist(v, W) = — ixéfwdist('v, w).
The function 6(v) is subharmonic,

Ad(v) = 0
for all veYV.

Notice, that the function ¢ is not everywhere smooth in V and
at the singular poinfs the sign of the Laplace operator 4 must be
understood in an appropriately generalized sense.

The inequality 46 > 0 at the smooth points of § can be easily
derived by applying the tube formula to the levels of § which are
just our equidistant hypersurfaces W., and at the singular points
one needs an extra approximation argument. (We shall come back
to the positive mean curvature in the more general framework of
manifolds V > W with Ricei V > 0 where the equidistant deforma-
tion of hypersurfaces provides the major tool for the study of such V
(see § 5).

k~-CONVEXITY. A cooriented hypersurface W in 1R”" is called k-convex
for some integer k=1,2,..,7n—1,—=dim W, if among its n —1
principal curvatures A; at least k are = 0. Then W is called strictly
k-cinvex if k among Ai; are > 0. For example, (n — 1) convexity is
the same as the ordinary convexity.

Notice that k convexity is invariant under projetive transforma-
tion of 1R™ which allows us to extend the notion of k-convexity to
the sphere S* and the projective space P* which are locally projec-
tively equivalent to 1R". Then we observe that k-convexity is stable
under small inward equidistant deformations of W in 1R", as follows
from the tube formula. (This is also true for large deformation
with an appropriate generalization of k-convexity to non-smooth
hypersurfaces). Furthermore, the inward equidistant deformation
performed in S* with respect to the spherical metric also preserves
k-convexity since S* has (constant) positive curvature where the
generalized tube formula (see (**) in § 2) leads to the desired con-
clusion (compare the discussion in § 2 following (**)). Moreover,
since the curvature of S* is strictly positive, an arbitrarily small
equidistant deformation in S* makes every k-convex W strictly
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k-convex. As both notions are projectively invariant, we conclude
that every k-convex hypersurface in WR" admits a strictly k-convex
approximation.

So an elementary Riemannian geometry of positive curvature
leads to a purely Euclidean conclusion.

More interesting global properties of closed k-convex hyper-
surfaces can be obtained with elementary Morse theory of linear
functions f : lR* — R restricted to W. If the critical points of such
f are nmon-degenerate, which is the case for generic linear func-
tions f, then all eritical points of f on W have indices either > k&
or < n—1—k. Therefore W admits a cell decomposition with no
cell of dimension ¢ in the interval n —1 —k < ¢ < k.

ExAMPLES. (a) If k=7 —1, the only possible cells are of dimension
0 or n —1 and the above reduces to the standard property of locally
convex closed hypersurfaces W in 1R*-1: these are homeomorphic to
disjoint unions of spheres (we do not assume W is connected).

(b) Let k=mn—2. Now the above cell restriction becomes non-
vacuous starting from n=2>5. It says that the cells have dimensions
0, 1, n.—2 and n— 1. An obvious consequence of that for n > §
is the freedom of the fundamental group and the vanishing of H;(W)
for i520,1,2,n —2,n—1.

In general, the Morse theory of W tells us something non-trivial
only if » = 2k 4 1. However, there are non-trivial restrictions for
all X > 1 on the domain V < " bounded by W.

If a bounded domain V in R™ has smooth k-convex boundary,
then V admits a homotopy retraction onto an ¢-dimension subpoly-
hedron in V for ¢ =n—1—Kk.

This is immediate with the Morse theory applied to f on V which
is a compact manifold with boundary.

It is not hard to see that the converse is also true. If V can be
built in 1R* by sequentially attaching handles of indices < ¢, then it
is diffeomorphic to a domain with (n —1 —¢)-convex boundary.
For example, every small e-neighbourhood of a smooth submanifold
Vo < R of codimension k& 4 1 obviously has k-convex boundary.
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Now, we want to use the Morse theory to say something
interesting about the geomeiry of V. First we observe that the
intersection of a k-convex domain V (i.e. 3V is k-convex) with an
affine subspace X — R" of codimension d is (k — d)-convex in X
(i.e. has a (kK — d)-convex boundary, now of dimension n—1-—d)
in-so-far as the intersection VN X has smooth boundary in X. Then
we apply the Morse theory to linear functions on the intersections
of V with linear subspaces and obtain by induction on d (the case
d =1 follows by the above Morse theory) the following

LEFTSCHETZ THEOREM. The homology homomorphism
H,(VNX)— H,(V)
is injectiv for ¢ ==n—1—Fk and codimX=d <n—%L.

EXAMPLE. If k=n—1 and d=%—1 the above says, in effect,
that the intersection of every connected component of V with a line
is connected. In other words, a connected domain with locally convex
boundary is convex in the ordinary sense.

It is easy to see that the Lefschetz property is characteristic
for k-convexity.

If a compact domain V c R* with smooth boundary has
H@(VHX)—>HQ(V) injective for all affine (¢ + 1)-dimensional sub-
spaces X in R* then (the boundary of) V is k-convex for ke=n—~¢—1.

Now, one can accept the above iniectivity as the definition of
k-convexity without any smoothness assumption on W ==3V. The
first (obvious) theorem of the resulting theory reads

If Vi and V. are k-convex in 1R" then the intersection V,N V.
is also k-convex.

Notice that the homological definition of (» — 1)-convexity
allows disconnected domains in 1R® with locally convex boundaries.
The connectedness condition generalizes for k¥ < n —1 by the requi-
rement that Hy(VNX)=0 for ¢=n-—1—F and for all (¢4 1)-
dimensional subspaces X — R". For example, in the next-to-convex
case of k=mn—2 this requires the intersection of V with every
plane X — 1R" to be simply connected.
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Finally we indicate yet another k-convexity condition by the
analogy with the classical convex case, for every point x in R™
outside V there is a k-dimensional affine subspace passing through
x and missing V.

This is a truly global property of V < IR* which is much stronger
than the above k-convexity and which becomes indispensable if we
want to reconstruct V by its linear projections to (n — k)-dimen-
sional subspaces in 1R™

IMMERSED k-CONVEX HYPERSURFACES. Here our W in 1R* is allowed
to have self-intersection. This means, W is a smooth (n — 1)-dimen-
sional manifold which comes along with an immersion W — RR® that
is a locally diffeomorphic map. If W is oriented as an abstract
manifold, then the immersed W < " becomts cooriented if we fix
once and for ever some orientation of R”. In this case we can define
the second fundamental form and the notion of k-convexity of W.
One sees in fig. 5 below a locally convex immersed closed curve

in 1R2. Notice that the image of this immersion is singular at the
double points and in no sense convex

Fig. 5.

A classical convexity theorem claims that every locally convex
closed connected hypersurface in 1R" is embedded (i.e. has no double
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point) for n > 3 and thus bound a convex domain in IR”. The latter
statement generalizes to the k-convex case as follows.

Let W c ™ be a closed immersed k-convex hypersurface for

k> —‘2‘— . Then W bounds an immersed manifold V in 1R* of dimension

n(i.e. W bounds V as an abstract manifold and the immersion of
W =9V to " extends to an immersion V — R").

The construction of V is achieved by following the levels of a
linear functions on W that are the intersections W N X, for a family
of parallel hyperplanes X; c 1R". These intersections are (& —1)-
convex for non-critical ¢ where X, is transversal to W and the
intersection W;— WnNX, is a smooth immersed hypersurface in
X:=1R"1. As we move t in a non-critical interval this hypersurface
moves by a rgular homotopy (i.e. remaining immersed) but the self-
intersection pattern of W, may change with ¢. However, the inequa-

lity £k < % rules out the interior head-on collision of two pieces of
W, as indicated in Fig. 6 below
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(The vector field on the initial position of W, marks the coorienta-
tion). It is easy to see that if W,, bounds some immersed manifold
W;, in X, = R™, then this also so for W, for ¢, > ¢, if in the
course of the regular homotopy W, — W, the above head-on collision
does not occur. Then the manifolds V; filling in all W, add up to
the required V filling in W.

REMARK. The circle in Fig. 5 gives us a conterexample for k=1 and
n==2 and it is easy to produce non-fillable W in 1R" for all » and
n—1

. But the case k=—= % for even 7 = 4 is less obvious.

k=<
PSEUDO-CONVEXITY. If one is content to restrict the symmetry group
preserving k-convexity one comes up with a vast amount of gene-
ralizations among which the most important is pseudo-convexity of
hypersurfaces W — ¢~ The complex structure in € distinguishes
certain affine subspaces in 1R?* = ", namely those which not only
R -affine but also ¢-affine in ¢". In particular, the distinguished
planes in 1R?" = (" are (called) C-lines in C*. With this terminalogy,
W is called pseudoconvex, if for each point w € W and every (C-line
X in G~ tangent to W at w the restriction of the second fundamental
form IIY to X= 1R2 has the eigenvalues 1, and 1., satisfying
A1 4 A2 = 0. In other words, W is mean curvature convex along all
C-drections. Similarly one defines k-pseudo-convexity by insisting
on the above inequality at each w for the (C-lines inside some
k-dimensional (-affine subspace tangent to W at w.

We sugggst to the reader to state and prove the Lefschetz and
the filling theorems in this case.

The beautiful feature of pseudo-convexity and k-pseudo-convexity
is the invariance under the (local as well as global) biholomorphic
transformations of C*. (The proof is not hard). This allows an
extension of these notions to arbitrary complex manifolds V where
tht pseudo-convexity plays a major role in the analysis and geometry
on V. For example, there is a remarkeble theorem of Grauert which
claims that every compact connected complex manifolds V with a
non-empty strictly pseudoconvex boundary admits a non-constant
holomorphic function. Moreover, there is a proper holomorphic map
f of the interior of V into some C¥, such that f is injective on the
complement to some compact complex submanifold V, c V of posi-
tive codimension.
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Finally, we suggest to the reader to work out the notion of
k-convexity in the quaternion space 1h" and then extend it further
to the mean curvatur convexity with respect to a given set of
(distinguished) subspaces in 1R”. Then the reader may state and
prove the Lefschatz and the filling theorems.

HYPERSURFACES OF TYPE (k. , k_). This refers to the condition which
requires that W has at each point w exactly k. strictly positive and
k_ strictly negative principal curvatures. We also assume IIV is
nowhere singular on W and so k, =k_=mn—1. Notice that the
non-gingularity of IV is equivalent (by a trivial argument) to regu-
larity of the Gauss map. Recall that the Gauss map v sends a
co-oriented hypersurface W to the unit sphere S*-* < R by assigning
to each w € W the outward looking unit normal vector v(w) at w
brought to the origin of 1R™ In the non-cooriented case the Gauss
map goes to the projective space P*-! by sending w to the line in
R+ through the origin parallel to v(w). Such a map is smooth if
W is smooth and the above mentioned regularity of v means that
the differential Dv: T(W)— T(S) is injective on the tangent spaces
T,(W) for all w € W, or, equivalently, that v is locally diffeomorphic.

For example, for surfaces W in 1IR3 there are two possibilities.
The first, is, where II is definilte, positive or negative (one may
switch from positive to negative by changing the coorientation) and
so W is locally convex or concave. The second possibility is that of
indefinite IT where W is a saddle surface.

convex

Fig. 7.
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Recall that w € W is called a saddle point if W is neither convex
nor concave at w, that is the tangent space T,(W) c R* intersects
the interior and the exterior (parts of the complement) of W arbi-
trarily close to w. Equivalently, w is contained in the (Euclidean)
convex hull of the boundary of every sufficiently small neighbourhood
U c W of w. Then W is called of saddle type if all w € W are saddle
points.

If one want to reap global consequences of the type condition
on IT¥ one must make some assumptions on the behavior of W at
infinity. Here it is worth-while noticing that every closed hyper-
surface always contains at least one convexity/concavity point. For
example, W is (obviously) convex at each maximum point of the
distance function dist(z,, w) on W for every fixed z, € fR*. Thus the
saddle type makes V non-closed and one may expect interesting geo-
metry if W has no apparent boundary in WR**! of this kind or
another. Here are three conditions one usually imposes on W to rule
out such a boundary.

(1) W is properly embedded (or immersed if a self-intersection
is allowed) into WR* That is the inclusion map W < " is proper:
the intersections of the compact subsets in R* with W are compact
in W. In other words, if a sequence of points w; € W goes to infinity
in W then it also goes to infinity in 1R" (and so no subsequence may
create in the limit a boundary point of W in 1R").

(2) W is quasi-proper in R*. This means that the intersection
of W with every compact subset in 1R" is a union of disjoint compact
subsets in W. That is every connected curve in W going to infinity
in W must be unbounded in the ambient 1R". Clearly, proper=—>quasi-
proper.

(8) W is complete. This rfers to the completeness of the induced
Riemannian metric. Equivalently every connected curve in W going
to infinity must have infinite length in fR” (and hence in the induced
metric on W). This is weaker than quasi-properness.

These three conditions serve their purpose of ruling out boun-
dary (or limit) points of W in 1R* if W itself has no boundary as
a topological manifold.
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Here are some examples clarifying the meaning of the above
definitions.

(a) Let Wy < R” be a closed submanifold and W — Wy < IR” be
an infinite covering map. One may take, for example Wy,=S! c R?
and W =1 which covers the circle S!. Then this W is complete but
neither proper nor quasi-proper in M2 (Of course an infinite
covering map W —» W, never give us an embedding W — R", but
one can sometimes make an embedding from such a map by an
arbitrarily small perturbation which does not affect the properties
(1), (2) or (8). This is clearly possible, for example, for IR —S! c R?2).

(b} The graph of the function sin %— over ]0, [ is complete
but not quasi-proper in 1R2?; the graph of —i— sin —:; over ]0, w[ is

quasi-proper though non-proper; but the graph of «2sin % over

the semi axes ]0, «[ is not even complete.

Now let W — " be a submanifold without boundary which
satisfies one of the above conditions (1), (2), (8) and has the form
IT¥ of a given (constant!) type (k. , k_). Then one expects that the
global geometry (and topology) of W is rather special. Yet, one can
not answer the following simple looking questions.

Is there a bound on certain Betti numbers of W? What is the
structure of the Gauss map v: W — S*-1? Can this map have
|[Jac v| = |Diser II| = ¢ > 0? (This is impossible for n =3 by a
difficult theorem of Efimov, see [Miln]). Suppose » is a diffeomor-
phism of W onto an open subset U — S*-1. Does this U has bounded
topology? Can one classify the subsets U appearing this way? (Yes,
for n=2 according to Verner, see the discussion on p.p. 188 and
283 in [Gro]).

COMPACTIFICATION OF W. The constant type condition on II¥ is not
only an affine invariant but it is also invariant under projective
transformations of 1R™ Therefore, one may speak of hypersurfaces
of constant type (k. , k_.) in the projective space P* and also in the
sphere S*. Here such a hypersurface may be closed and then one
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asks what the geometry and topology of such closed W < S* can
conceivably be. The simplest examples are provided by codimension
one orbits of isometry groups acting on S*, where not only the type
of IT¥ but also the principal curvatures of W in S° are constant. The
hypersurfaces wth constant principal curvatures (recall, these are
the eigenvalues of II) are called isoparametric and, amaizingly, not
all of them are homogeneous for large n (see [F-K-M]). Now, one
can not expect the (topological) classification of closed hypersurfaces
W < 8" of a given constant type (k. , k_) to be too simple, but one
still believes that such W have « bounded » topology and geometry,
e.g. the Betti numbers of W must be bounded in terms of the
dimension 7 alone.

Finally we observe that every closed hypersurface W < P* gives
us (properly embedded) hypersurface W’ in 1R™==P* — P*-1, that
is W =W — P". Then we ask if this « compact origin » of W’ of
constant type imposes extra topological restriction on W’.

We conclude this section by an attempt to formulate a general
problem on the relation between II¥ and the global geometry
of W. First we notice that IIV is completely characterized (up to
rigid motions) at each point w € W by the principal curvatures
A1 (W), «., An_1 (w) which we organize in the increasing order,
A <ir<..=<1,_1. Then we have a non-ambiguous (and hence,
continuous) map 1: W — R* ! for 1(w)=1{(1,(w), ..., An_1(w)) which
encodes the infinitesimal information hidden in II¥ at all points
w € W. Now, for example, every subset 4 — R*-! defines a class of
hypersurfaces W in R" if one requires the image A(W) to be con-
tained in A. (This includes k-convexity, MeanCurv > 0, and constant
type as special cases). Another important invariant besides the geo-
metric image 1(W) is the push-forward ¢, = 1, (dw) of the Rieman-
nian measure dw on W. Then every class <))} of measures on R*!
defines a class of W in 1R” with i (dw) belonging to <}y. With these
A and 997 the «local-to-global » problem sounds as follows. What
is the (geometric and topological) « shape » of W in the class defined
by a given A or gn ? We want an answer in terms of 4 or 95 and
we may expect it only for exceptionally nice A4 and <. Unfortuna-
tely we never know which problem is nice and which is ugly unless
we solve it.
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§ 1. RECOLLECTION ON LENGTH, DISTANCE AND RIEMANNIAN METRIC.

A Riemannian structure on a smooth manifold V is given by a
positive definitive quadratic form ¢ on the tangent bundle T(V).
Such g assigns the norm (or length) to each tangent vector 7 € T(V)
by
X
lzlle = (9(z, 7))*
and then one has the g-length of every C'-smooth curve in V, that
is a map ¢ : [0,1] » V, defined by integrating the norm of the

vectors ¢’ (t) = (Dc) % €T, (V), v=c(t),

length (&)= [ ||e’(®)], dt .
0

Geometrically speaking, the norm ||z||, pulled back to [0,1] by the
differential of ¢ defines a measure density on [0,1] whose total
mass is the length of ¢. Thus the length is invariant under repara-
metrization of [0,1].

There is nothing sacred in the quadratic nature of || ||,. One
could start with an arbitrary continuous family of (non-Euclidean)
norms || || on the tangent spaces T,(V), v € V, and then define the
length of curves by integrating [|c¢’||. Here we only mention that a
norm on T(V) is called a Finsler metric on V and manifold carrying
these are called Finsler manifolds.

Let us concentrate our attention for the moment on the function
¢ — length (¢) defined on the space of map [0,1] —» V with some
Riemannian or Finsler norm on T (V). Such a function satisfying a
few obvious properties (such as invariance under reparametrization
and additivity for subdivisions of curves into smaller pieces) is an
interesting geometric object in its own right which is called a length
structure on V. Granted such a structure, we define the associated
metric on V in the usual way by looking at all curves between
given points v, and v. in V and by setting dist(v,, v2) equal the
infimum of the lengths of these curves. Clearly, this is indeed a
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metric in the Riemannian and Finsler cases (but it may be not so
for less regular length structures where, for example, every curve
between v, and v, may happen to have infinite length, e.g. if we
allow a generalized norm on T(V) which is infinite away from some
subbundle S < T(V)).

Mefrics arizing from length structures are called length metrics
and they have the following property which almost characterizes
them.

TRIANGLE ¢-EQUALITY, For every two points »; and v., every ¢ > 0
and every positive 6 < dist(v,, v;) there exists a point v € V, such
that
dist(v,v)) <8 + ¢
and
dist(v, v,) < dist(v;, v)—8.

In other words the triangle inequality
dist(v,, v2) < dist(v, v1) 4 dist(v, vy)

becomes nearly the equality with an appropriate choice of v. In fact,
one can make an actual equality if there exists a shortest curve ¢
between v, and v, for which length(c)=—d =—=dist(v{, v2). Such a
curve ¢ in V with the induced metric clearly is isometric to the
segment [0, d] — R and it is customarily called a minimizing geo-
desic segment between v; and v, and, accordingly, denoted (even if
such segment is non-unique) by [v;, v2] < V. Then for every 6 € [0, d]
the corresponding v € [v,, 2] — [0, d] with dist(v, v,) =4 satisfies
the triangle equality

dist(v, v,) + dist(v, vo) = dist(v;, v2) .

Notice that if V is a compact (possibly with a boundary)
Rimannian (or Finsler) manifold then the minimizing segment does
exist for all »; and v, in V, as everybody knows, and this is also true
in the non-compact case if V is complete as a metric space.

LOCALITY OF LENGTH METRICS. Every length metric on V is uniquely
determined by its restrictions to the elements of an arbitrary cover
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of V by open subsets U;. That is if two such metrics coincide on
every U, then they equal on V. In fact for an arbitrary metric d
on V on can define d+ as the supremum of the metrics d’ for which
there exists an open covering of V by U; (depending on d’), such
that d’ <d on each U;. Then the triangle c-equality shows that
d* =d for the length metrics d. But in general d+ > d. For example,
if we start with the Euclidean metric d on a submanifold V < R™,
then d+ corresponds to the induced Riemannian structure on V
defined with the Fuclidean length of curvs (but these must be taken
inV). Thus

diStV(vl s 02) = d+(’01 ’ 'Dg) > d(’vl » ”2)’: diSt«Rm (vl ) ”2) ’

unless V (or at least the closure of V in IR™) contains the straight
segment between v, and v, in R™

The locality of the length metrics, and in particular of the
Riemannian metric is the major (non-psychological) reason why one
adheres to the local-to-global principle in the Riemannian geometry.

NON-EFFECTIVENESS OF THE LENGTH DEFINITION OF A METRIC. Even
if a Riemannian metric on V is written down quite explicitely one
may have hard time in evaluating the corresponding distance between
two given points. For example, if V is (diffeomorphic to) a domain
in R*, n=dim V then every Riemannian structure is given by

n(n + 1)

2

standard basis,

functions on V that are the components of g in the

i :g(ai ’ a])’ 7:: .7= L.,n

for the vector fields 9;=

8?6 on R* But even for very simple
functions (e.g. polynomials) g;; we can not see very well what happens
in the course of minimization of the g-length of curves.

Another example, where the logical nature of the problem is
especially clear, is where V equals the universal covering of a com-
pact manifold V,. The length structure lifts easily from V, to V
by just assigning to each curve in V the length of its image in V,.
Yet it does not tell us much about the corresponding metric in V.
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For example, there is no way to tell by looking at V, if the diameter

of V (ie. sugv dist{v. . v.)) is finite or not, as this is equivalent to
%.73

finding out whether the fundamental group #,(V,) is finite or not.
But the latter problem is well known to be undecidable and so the
diameter of V can not be effectively computed in terms of V,.

Our last example is where V is a Lie group and g is a left
tnvariant Riemannian structure. Such a ¢ is uniquely determined
by what happens on a single tangent space, say at T.(V) for the
neutral group element e € V. Thus g may be given by prescribing
a quadratic form on the linear space T.(V). Yet one has very poor
knowledge (especially for non-nilpotent solvable Lie groups) on the
metric structure of these (V, g).

The above mentioned difficulties make quite valuable any kind
of metric information one can obtain by looking at effectively com-
putable infinitesimal invariants of V. A great deal of these is
harboured by the Riemannian curvature tensor of g which is expres-
sed by direct (but messy) algebraic formulae involving g and the
first and second derivatives of the components g;; of g in given local
coordinates. (These formulae appears explicitely later in this §). For
exmple, there is a particular combination of these derivatives,
called the sectional curvature K(V) (see § 2), whose striet positivity
K(V) = ¢ > 0 implies V is compact, whenever it is complete as a
metric space. This gives an (effective!) partial solution to the above
diameter problem for coverings V—V,. Conversely, if the sectional
curvature of V, (and hence of V) is everywhere negative then V is
non-compact and its diameter is infinite (see §§ 2 and 4). Unfor-
tunately, most manifolds have sectional curvature of variable sign
and the above criterion does not apply. But the constant sign of the
sectional curvature does occur for certain interesting examples inclu-
ding some homogeneous Riemannian manifolds (yet solvable groups
mentioned above do not fall into the constant sign category).

RECAPTURING ¢ FROM THE METRIC. There is the following simple
way to reconstruct g from the corresponding distance function. For
a given point v we define the function ¢(v’) on V by ¢(v')= (dist
(v, v")2. We observe that g is smooth at v'=1v and the differential
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Dy vanishes at v. Then the second differential D?p is a well defined
quadratic form on T,(V) which equals (by an easy argument) to ¢
onT,.

Thus we established the equivalence of the three basic view-
points on a Riemannian structure: infinitesimal, for g a quadratic
form on T'(V); path-theoretic, for the length function on curves and
the metric (or distance function) point of view. Often one does not
distinguish between the three structures and apply the expression
« Riemannian metric » to all of them. It should be noted that although
the three structures are formally equivalent they represent objects
from quite different worlds. For example, ¢ is a tensor, specifically
a quadratic form, whose positivity may be sometimes forfaited. But
then nothing remains of the metric structure attached to ¢ (except
for some residual terminology such as « Lorentz metric »). On the
other hand one may have a (non-Riemannian) metric space with
rather nastry singularities where the infinitesimal approach becomes
hard to persue. So it seems we are quite lucky in having so diverse
notions and ideas merging together in the Riemannian stream,

RIEMANNIAN VOLUME. Each Riemannian manifold V of dimension n
carries a canonical measure, which is (uniquely) characterized by
the following two axioms.

MONOTONICITY. If there exists a distance decreasing surjective map
between two n-dimensional manifolds, say f: V,— V., then

Vol V. < Vol V,

where « Vol » denotes the total volume (or mass) of the measure on
the manifold in question.

NORMALIZATION. The unit cube in R" has volume =— 1.

Notice that the above definition makes sense on the level of the
length structure and of the Riemannian norm on T(V) as well as
for the distance function. In fact, the following three conditions
on f are obviously equivalent,

Seminario Matematico ¢ Fisico - 3



34 M. GROMOV

(i) f is distance decreasing,
(ii) f decreases the length of curves,

(iii) the differential of f decreases the length of the tangent
vectors (here we must additionally assume f differentiable).

The existence and uniqueness of the Riemannian measure for
the continuous structures g on V immediately follows from the
obvious infinitesimal approximation of g at each point Vo€V by a
Euclidean metric g,. Nomely, if we take some local coordinates
U1 .. Uy IN V near vy, then g defines a Euclidean metric g, on the
coordinate neighbourhood U by

90(3:(u), Au(u)) = 9(3:(o), 3;(v0)) ,

where d;=— Taur and » run over U while v, € U is fixed. It is clear

that (U, g¢) is isometric to WR* and that g, approximates g at v,
with zero order. That is for every ¢ > 0 there exists a neighbourhood
U.c U of v, such that

11— go<g<(A+¢egoonU,.

It follows, by monotonicity, that the Riemannian g-volume of U, is
e-close (in an obvious sense) to the go-volume (which is Euclidean
and may be assumed known) and then the uniqueness of Vol, follows
with ¢— 0. The existence is also seen in this framework but it is
more convenient to use a purely infintesimal definition. Namely,
(the discriminant of) g defines a norm on the top exterior power
of T(V) which gives us a measure (density) on V. In the down-to-
earth terms one has the notion of |Jacobian| for every C’-map
f:Vi—V, which is computed at each v € V with the (Euclidean!)
metrics g,(v) on T,(V) and gz2(w) on T,(Vz), w=1f(v) € V3, as |Det|
of the differential Df: T',(V,)— T.(V.). That is

1
|Jac f| = |Det f| = (Det DD*)?

where D — Df and D* is the adjoint of D with respect to g,(?) and
g2(w). Then one defines the Riemannian volume of every small neigh-
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bourhood U — V by taking a diffeomorphism f : U’ — U for some
U’ < R* and by setting

Vol, U = j |Jac f| du’

&
for the Euclidean volume element du’.

Notice that the Riemannian structure restricts to submanifolds
W c V of dimension k <« #=dim V and then we have the Rieman-
nian volume Vol, on W, In particular, for k=1 we come up again
with the length of curves, that is Vol; W for dim W =1.

FIRST ORDER INFINITESIMAL APPROXIMATION OF g BY ¢,. Since ¢ is
Euclidean at v, with zero order one might think that non-flatness
of g (i.e. the deviation from being locally Euclidean) can be measured
by the first derivatives of g;,=—9(d:,0;) in some local coordinates.
Then, surprizingly, this does not work because there always exist
particularly nice local coordinates u,, ..., %, around v, called geodesic
coordinates, such that

0x 94V} =0 for all ¢, 5, k=1, ..., n,

where we need the metric g to be C'-smooth at v,. In fact, a little
thought explains how this could happen. When we change coordinate
systems which are n-tuples of functions #; : V— 1R, we observe that
the change of 0 9:;(ve) is determined by the second derivatives of

n2(n 4+ 1)
2

ug at vy . Altogether, there are of these derivatives (for n

functions «;) which are (somewhat miraculously) the same in number

n(n 4 1)
2

as the first derivatives of functions g; at v,. Then it

is easy to believe (and not hard to prove) that one can adjust the
second derivatives of u such that 9. g;; become zero. In fact, one can
prove that these second derivatives are uniquely determined by the
condition 9: g:;(ve) == 0. Namely, if u, and u; are geodesic coordinates,
such that 3., u]::é; , then the second derivatives of uj with respect
to u; vanish at »,.
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The Euclidean metric g, on U constructed as earlier, but now
with geodesic coordinates w;, approximates g at v, with the first
order,

— G =9 —go =< 9o,

where ¢ is a smooth function on V vanishing at v,. The name usually
applied to g, is the osculating metric at v,.

One may try to proceed further and eliminate the second deri-
vatives of g at vy by manipulating the third derivatives of ;. But
m2(n 4 1) (n 4 2)

6

now we have only of the third derivatives of w, to

second derivatives of g, . The difference

n2(nz2 —1)
12
parameters must measure the second order non-flatness of g at v,.
In fact the following linear combinations Rz of 0x9d¢ g9i;;(v) are
constant under the changes of w; which keep fixed the first and the
second derivatives of geodesic coordinates w, at v, as a straight-

forward (an exceedingly boring) computation shows

2 2
play against L:—l)

between the two numbers is which tells us how many

1
Rijug = K (95 0p g + 0: B gjg— i 3@ gix — 05 Or Gug )s

where —;— is the matter of convention. It is clear that

leke = Rijgk == Rk@ij = Rﬂke
and that
Rijke + Rm@j + Ri@jk= 0,

which is called the (first) Bianchi identity. Then one can easily see
(2 —1)
12
and that Ry¢ transform as tensors should under the changes of
local coordinates (now, with no restriction on the first and second
derivatives of these coordinates). Thus we obtain a tensor on V
called the curvature tensor R=—{Rix¢} of g which measures non-
flatness of g in the following sense.

that the number of linearly independent E, is exactly



SIGN AND GEOMETRIC MEANING OF CURVATURE 37

A manifold (V, g) has zero curvature if and only if each point
v eV admits a neighbourhood U with is isometric to some open
subset U' c R®, for n—=dim V.

The curvature R at v is a 4-linear tensor on the tangent space
T,(V) which is given a Euclidean structure by ¢ | T,(V). One can
form a vast amount of numerical characteristic of R |7 (V) which
are invariant under g-orthogonal transformations of (7(V), g) and
thus give us scalar invariants of g, that are real valued functions
on V built up in an invariant way at each v € V from the second

derivatives of g at v in geodesic coordinates. For example, one can
1

take the g-norm ||R||, that is ( R? k,ey which gives us an overall
i,k
scalar measure of non-flatness of V. Now we can say that V is eflat
if ||R||; < £ on V and then try to study the global geometry of eflat
manifolds for a given ¢ > 0 (see, e.g. [Bu-Kar]). But we are con-
cerned with more subtle scalar invariants which are not automa-
tically positive and whose sign conveys a non-trivial geometric
information about V. As a matter of comparison we may look again
at the second fundamental form II" of V < R*** whose norm ||IIV||
measures non-flatness of V in R**! but where the sign of the eigen-
values 1, of IIV (which are scalars invariant under rigid motions
of V in R*+1) tells us much more than the sheer size of II. ( Notice

n

that 3 21— |||[?).

i=1

In the Riemannian case there are many similar scalar invariants
(which correspond to functions on the space of curvature tensors on
T (V) invariant under fiberwise orthogonal transformations) but only
few of them have found a meaningful geometric interpretation so
far. Most studied among these are the sectional curvature K(V),
which is, in faet, a function on the Grassmann bundle of the tangent
2-planes in V, the Ricci curvature, which is a quadratic form on V
and the scalar curvature which is a function on V. These curvatures
are defined and studied in the following §§ 2-6.
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§ 2. EQUIDISTANT DEFORMATIONS AND THE SECTIONAL CURVATURE

K(V).

For every hypersurface W in a Riemannian manifold V = (V, g)
(recall that «hyper » signifies dim W==n—1 for n—=dim V) we
define the equidistant hypersurfaces W, as the levels of the signed
Riemannian distance function dist,(v, W) exactly as we did it
for hypersurfaces in R” in $§0. We can also define the map
d : W= W,— V, which moves W, to W, for small ¢ using geodesic
e-segments normal to W instead of straight segments in R"** (see
§ 0). In order to have good theory of geodesics in V we assume ¢
is C2-smooth (in some coordinate system). Then one knows since the
work of Riemann that for every unit tangent vector 7 € T,(V) there
exists a unique geodesic issuing from v in the direction 7. Here the
word « geodesic > means a locally isometric map of 1R or of a con-
nected subset of IR into V, where « locally isometric » refers to the
distance function in V. Namely, every sufficiently small subsegment
of a geodesic must be a minimizing segment in V that is of the
length equal the distance between its ends in V. (For example, the
geodesics in the unit sphere S* — 1R**! are the great circles or rather
lines and segments going around these circles with the unit speed.
They are minimizing in-so-far as their length does not exceed =).

If V is a complete (e.g. compact) manifold without boundary,
then it is classically known (probably, already to Riemann) then
one has a geodesic ray y : R, —» V with y(0)=v and y’(0)= ¢ for
all » €V and unit y € T,(V). If V has a boundary, the ray may hit
the boundary at some finite moment. Similarly, if V is non-complete
the ray may reach the «infinity » of V in finite time (as actually
happens to straight rays issuing from a point in a bounded domain
V c R"). However, for every interior point v €V and some ¢ > 0
depending on v there always exists an esegment y: [0, ¢] —» V with
y(0) =9, y’'(0})= 7 (for a given unit 7 € T,(V) which is a minimizing
geodesic segment between v = »(0) and v’ == y(¢) € V. Thus the local
geometry of geodesics in V is very much the same as that in R*®
(where the geodesics are straight lines, rays and segments).

Now we define d, with an exterior unit normal field v to W
by sending each w € W to the s-end of the geodesic segment issuing
from w in the direction v(w). (If ¢ < 0 we use the segment
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y:[—e 0] 5V with y(0) =w and y’(0)=7). If V is complete we
thus obtain a map (called the normal exponential mapy d: W X R—>V
for d(w, ¢) == d, (w) in the above notation. It is characterized by the
geodesic property of d on the lines w X R and by the initial
conditions

d(w, 0) = w and aie d(w, 0) = v(w)
for all w € W. (In the non-complete case we have such a map on

some neighbourhood Uc W X R of W X 0 c W X R, provided W
lieg in the interior of V).

THE SECOND FUNDAMENTAL FORM OF W IN V. Using d. one defines
the second fundamental form IT¥ which measures how much W is
curved inside V (exactly as in the Euclidean case, see § 0), by

1 d
| _Z g%
( ) H 2 dE £=0"

where g* is the metric on W induced from g by themapd. : W — V.

There is another way to define IT¥ by using geodesic coordinates
Uy, ey Uy 8t a point w €W — V where we want to evaluate IT¥,
Nomely, these ocordinates identify the coordinate neighbourhood U
with a domain U’ — 1R* (with the Euclidean coordinates u,, ..., %),
such that w o 0 and WNU becomes a hypersurface W’ < U’ = 1R»
passing through the origin. Then we define the form IIV of W V
at w as that of W’ in R" at 0,

IV | T,(Wy=1II""| To(W)

where the tangent spaces T,(W) and To(W’) are identified by the
differential of the implied diffeomorphism U « U’ (sending WnU
to W’ and T, (W) onto To(W”)). A little thought shows this definition
to be independent of the coordinates u; and with a minor extra effort
one can see this form is the same as defined by the above (4).

An offshot of the second definition is the existence, for every
tangent hyperplane S < T, (V), of a smooth hypersurface W c V
passing through v, tangent to S (i.e. having T,(W)=2=S) and being
geodesic at v which means, by definition, II¥ | T, (W) = 0. For
example, one may take W corresponding to the Euclidean hyper-
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plane W’ < 1R* in geodesic coordinates, such that W’ is tangent to
S at To(R™)=T,(V).

Now, as g—g:‘:o =— 0 at v for the above W and the corresponding
e =

equidistant W,, we want to look at the second derivative. This is
better done (for the reason which will become clear later on) with
the operators A¥ on T (W) defined as the pull-backs of the shape
operators A, on W, under the differentials of themapsd,: W—o W,
(compare § 0; here as in the Euclidean case d, is a diffeomorphism
of W on W, for small ¢ and A, is defined by II1"* (71, 72)=0(A.71, 7o)—
=< A,71, 72 > v). Namely we set

(+-+) By=- AL,]S.

This Bs is a symmetric operator on S = T,(W) which depends only
on S and on g but not on a choice of W with 7,(W)=—3=, as a simple
infinitesimal computation shows. Also notice that Bs does not depend
on the choice of coorientation of S (and thus of W) since the second
deriative is invariant under the sign change of the variable.

The operators Bs on the tangent hyperplanes S < T(V) carry
the same infinitesimal information as the curvature tensor and there
are simple algebraic formulae expressing one in term of the other.
On the other hand, one can define with Bg the sectional curvature
K (o) for all tangent 2-planes ¢ — T,(V) as follows. Take an arbitrary
hyperplane S « T,(V) meeting ¢ at a line ¢=S8Sne¢ c T, and being
normal to ¢ (i.e. normal to the line ¢* < ¢ normal to ¢). Then we
take a unit vetor v €¢ and define

(*) K(0)=—g(Bs(z), 7).

Again one should go through some simple algebraic computation to
see why the result does not depend on the choice of S and 7. As for
the minus sign, this comes about because we want the round sphere
in R**! to have positive curvature. In fact, let V equal the unit
sphere S*=S"(1) c R"*! with the induced Riemannian metric g
and W c V==38" be an equatorial hypersphere. Then W clearly is
geodesic at all points w € W and so is suitable for computing Bs for



SIGN AND GEOMETRIC MEANING OF CURVATURE 41

S =T(W). The sequidistant concentric spheres W, c V clearly are
smaller than W. More precisely, the metrics of these spheres W,
brought to W= W, are given by the following well known (and
obvious) formula

gF = (cos? &) 9o .

Therefore the second derivative of g* measured by B is negative
(definite) and the sectional curvature K is positive in accordance
with the usual convention. Also notice htat the diminishing of g* for
frowing |e| agrees with the behavior of the second form IT":: the
smaller of the two balls in S* bounded by W, is convex and the
larger ball is concave. Thus the interior equidistant deformation
of W (for a given coorientation) makes W convex and the exterior
deformations W, are concave.

Now, let us compute K for W= 58"(1). First,

d

ng = —2ginecos ey,
3

and so

AY ——tgeld,

(formally, A7 equals d—igf divided by ¢7). Then

d

— A¥ = (—1—tge)ld,
ds

for the identity operator Id on S — T(W). Thus Bs — —Id and
K(s)=1 for all tangent planes ¢ in W =38*(1).

Notice that K scales quadraticly under the scalar change of the
metric. For example, the sphere S*(R) of radius R has K= ER-2
(This can also be seen directly for g* —cos?(¢ R-!) in this case).
In general, we denote by RV the manifold with the new distance
defined by

dist,cw = R distoy ,

which correspond to ¢..o = R? gsa. Then the scaling formula for
K reads
K(RV)=R-2K(V).
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SECTIONAL CURVATURE FOR SURFACES. If dim V =2 then the curva-
ture tensor reduces to a function on V (as the number of components
n2(nz—1)

12
sed by the sectional ecurvature K(v) = K (¢ = T,(V)) for the points
v € V. The famous Gauss’ formula expresses K for surfaces in 1R®.

becomes 1 for n =2, see § 1) which adequately is expres-

TEOREMA EGREGIUM. The sectional curvature K(v) of V — R? equals
the Jacobian of the Gauss map V — S* at v, or equivalently to the
product of the principal curvatures (eienvalues of IIV or of the shape
operator A) at v.

Of course, the proof is trivial by the standards of the modern
infinitesimal caulculus. Yet, the major consequence of the theorem
looks as remarkable as it appeared 200 years ago: the Jacobian of
the Gauss map does not change if we bend V in R3, that is if we
apply a deformation preserving the length of the curves in V. For
example, when we start bending an initially flat sheet of paper it
does not remain flat in 1R but its intrinsic geometry does not change
and so the Jacobian of the Gauss maps remains zero.

Another corollary of Gauss theorem reads

Convex (and concave) surfaces have K = 0 while saddle sur-
faces have K < 0.

Notice that the first claim extends to convex hypersurfaces
V* < R**! for all n: they have K = 0 by Gauss’ formula extended
to the higher dimension. On the other hand, saddle surfaces V2 R
have K < 0 for all n, where « saddle » means the following.

CONVEX HULL PROPERTY. Each point v €V is contained in the
Euclidean convex hull of the boundary of every sufficiently small
neighbourhood U — V of v. (Compare saddle surfaces in § 1/2).

The proof of the K < 0 statement follows from a higher codi-
mensional version of Gauss’ formula. (This formula applies to all

V* - R*** but it leads to no nice geometric interpretation for
KV <0if n = 3).

SURFACES Y — V. The sectional curvature K of V can be computed
at every tangent plane o — T,(V) with an appropriate surface X
in V. Namely one takes X, such that 7,(X)=9¢ and such that 3 is
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geodesic at v. The geodesic condition is equivalent to the existence
of geodesic coordinates u,,.., %, at v with respect to which X
becomes a Euclidean plane in " (with the Euclidean coordinates
Uy, ooy Un, cOmpare § 1). Then, by yet another generalization of
Gausg’ formula, K(s) in V equals K(v) in ¥ for the metric in X
induced from V.

SECTIONAL CURVATURE OF HYPERSURFACES. Consider a hypersurface
W < V and let us formulate Gauss’ teorema egregium which relates
Ky (o) to Ky(o) for the planes ¢ € T,,(W), w € W. For this we need
the second fundamental form II¥ restricted to o, where ¢ is given
the (Euclidean) metric inhereted from g on T, (V). Now, every qua-
dratic form on 1R?= (o, 9|0} is characterized by its eigenvalues
(which are the eigenvalues of the corresponding symmetric operator
A on 1R?) and the product of these eigenvalues for the form II¥ on
o is denoted Dis(s). With this the Gauss formula reads

Ky (0) = Ky (o) -+ Dis(o).

Here as earlier the proof is algorithmic but the corollaries are quite
nice. For example if W is convex (see next § for a discussion on
convexity in V) and so IT¥ is definite, then we conclude

Ky = Ky .
In particular if V has positive sectional curvature then so does W.

TUBE FORMULA. The tube formula for hypersurfaces in R* (see (*x)
in § 0) generalizes to hypersurfaces W in an arbitrary Riemannian
manifold V by

() LA =——A)F 4B,
€

where B is the operator on the (tangent spaces S of the) tangent
bundle T(W,) defined earlier in this § by (4-+4). Notice that (=*)
for =0 reduces to (44 ) for geodesic submanifolds W (i.e. where
IT¥ — 0). As usual we do not provide the proof as we do not attempt
to present the infinitesimal computational formalism of the Rieman-
nian geometry. Yet, we want to point out here the following impor-
tant feature of (#+). The term B measures the curvature of V and
does not depend on W. In fact, we have B on every tangent hyper-
plane S ¢ T(V) and B in (%x) is obtained by restricting to the
hyperplanes T, (W,) < T, (V). On the other hand the operators A,
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measure the relative curvature of W=W, in V and, for ¢ 0, of
the equidistant hypersurfaces W..

Using (*x) we can give our first geometric characterization of
manifolds with K = 0 and K < 0 in term of equidistant hypersur-
faces W,.

LOCAL CONVEXITY CRITERION. If K(V) = 0 then the inward equidistant
deformations W, of every convex hypersurface W — V remain con-
vex, and if K(V) < 0 then the outward deformation is conver.
Conversely, if the inward equidistant deformation preserves convexity
of all convex hypersurfaces in V then K(V) = 0 and if this happens
for the outward deformation then K(V) < 0.

In this statement we speak of cooriented hypersurfaces and
convexity is defined by IT¥ = 0. The equidistant deformation in
question is only considered for small ¢ so that the normal geodesic
map d,: W— V is a diffeomorphism of W onto W, (as is needed
for our version of tube formula). Then the claims

K(V) = 0 inward deformation preserves convexity
and
K(V) < 0— outward deformation preserves convexity

become obvious as

K>0&&B=<0
and

K<0&B=0

To prove the opposite implication, from preservation of convexity
to the sign of K(V), one needs sufficiently many convex hypersur-
faces W in V whose equidistant deformations W, are non-convex
whenever the curvature sign is wrong. Such a W must have quite
small second fundamental form (and hence, small ||4]|) to be sen-
sitive to the B-term in (#+). This can be easily arranged by using
hypersurfaces W corresponding to (pieces of) Euclidean spheres of
large radius in geodesic coordinates. (We suggest the reader to
actually produce these W and conclude the proof following the above
hint.).

The above convexity criterion makes sense for quite general
metric spaces (e.g. for Finsler manifolds), where one can define
convexity but where our infinitesimal definition of the curvature
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does not work. On the other hand, the usefulness of the (infinitesi-
mally defined) conditions K > 0 and K < 0 in the Riemannian fra-
mework owns very much to the posgsibility of several different
geometric interpretations which by no means follow one from
another for non-Riemannian manifolds. For example, one does not
know how to extend the implication

K(V)=20—=KW)=0

to convex hypersurfaces W in non-Riemannian spaces V. Even for
non-smooth convex hypersurfaces in " the only simple proof of
K(W) = 0 uses an approximation by smooth hypersurfaces followed
by the application of Gauss’ teorema egregium.

We conclude this § by relating the sectional curvature to the
curvature tensor defined in § 1.

SECTIONAL CURVATURE AND THE CURVATURE OPERATOR. The sectional
curvature at each point v € V is a function on the Grassmann mani-
fold Gr: R*= Gr, T,(V) of the planes in R* = (T,(V), g.). To
understand the nature of this function we use the standard
(Pliicker) embedding of Gr. R* into the unit sphere of the exterior
power A2 R™ which assigns to each plane ¢ € G- R" the bivector
f =, A%: for an orthogonal basis (z:,%s) in ¢ ¢ R" This § does
not depend on the choice of z,, z; (here we need s oriented and the
basis respecting this orientation) and the norm [|g|| (naturally de-
fined with the Euclidean norm in 1R*) equals one. Now a simple
algebra shows that the sectional curvature function ¢+ K(s) on
Gry R* < 42 R* is quadratic: there exists a (necessarily unique)
quadratic form @ on A21R*, such that K(o)= Q(sg, o) for all 6€Gr,R™
Following the established tradition one often uses instead of @ the
correspoding symmetric operator R defined by (Ra, §) = Q(«a, §) for
the scalar product on A2 T(V) induced by ¢ on T(V). This is called
the curvature operator R: A2 T (V) — A2 T, (V).

Notice that d==dim 42 R"=— _77;("__2:2 and so quadratic forms

Q on A2 R* constitute the space of dimension

dd+41) nr—1)(r41)(rn—2)
2 o 8 ’

This is more than the number of the independent indices in the

2___
wm—1) , see § 1) and in fact, the

curvature tensor ( which is 1%
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form @ satisfies some symmetry relation, called the Bianchi identity,

2(n2 —
n—(tb%-—l). Then the form Q (and

the curvature operator R) can be identified with curvature tensor
of (V, g).

which reduces the dimension to

§ 214, INFLUENCE OF K(V) ON SMALL BALLS IN V.

We want to give here another geometric criterion for the sign
of K(V), now in terms of the size of small balls in V. Namely we
shall show that small concentric balls grow slower in V with
K(V) = 0 than the balls in R" On the contrary, if K(V) < 0, then
the balls in V grow faster with the growth of the radius than it
happens in " Here is the precise statement.

MONOTONICITY CRITERION. If K(V) = 0 then for every point veV
there exists a number 8o > 0 such that every two concentric balls
B(v, 8) and B(v, 1) with & < 16 < &, satisfy

(0) B(v, 18) < iB(v, )
which is understood according to the following

DEFINITION. The inequality
B < iB’

for two metric spaces B and B’ signifies that there exists a bijective
(sometimes <« surjective » is enough) map f : B’ — B, such that

dists(f(a), f(b)) < 4 dists(a, b)
for all ¢ and b in B’.

The inequality (0) is characteristic for K = 0. If it holds for
all small balls around » then the sectional curvatures at » are > 0.
Similarly, the negative curvature K < 0 is characterized by the in-
verse ball inequality
B(v, 18) = AB(v, 8)
for 0 < 6 < 16 <ds(v).

IDEA OF THE PROOF. One knows that every point ¢ € V lying suffi-
ciently close to v can be joined with v by a unique geodesic segment
[v,a] € V. Then for every a € B(v,d) we define b==f(a)€ B(v, id)
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as the b-end of the geodesic segments [v, b] which extends [v, a]
and has

length [v, b] = i length [v, a].

The resulting map f : B(v,d)— B(v, 10) preserves the geodesics
issuing from v and also it respects the spheres around v : the sphere
S(v, o) of radius a, for every a < 4, goes to S(v, §) for §==ia. This
f expands exactly by A in the radial direction and we must show
that it expands the spheres S(v,«) no more than that. Now the
spheres S(v, &) form an equidistant family to which the tube for-
mula (xx) applies. This shows for K > 0 that S(v,¢) grow slower
with ¢ than the corresponding spheres in " (where K=0 and
there is no negativt B-term in the tube formula), while initially, for
« infinitely small » ¢ the spheres S(v, ¢) are (asymptotically) Eucli-
dean. In other words, the (eigenvalues of the) shape operator on the
sphere S(v, ¢) are smaller in V than in 1R" and so the spheres do
grow slower in V. This implies the required i-inequality on f com-
paring B(v, d) and B(v, 19), for K > 0 and the case K < 0 follows
by a similar argument.

If dim V=2, then the converse statement giving the sign of
K(V) in terms of the balls follows from what we have just proved
as near each point v where K(v) % 0 the curvature is either positive
or negative (because there is a single 2-plane ¢ at v). Then this
extends to n > 2 by looking at the growth of the small balls B(v, §)
intersected with a geodesic surface ¥ at v tangent to the plane
6 €T,(V) where we study the (sign of the) curvature K(o). The
details here are not hard to fill in and this is suggested to the reader.

Notice, that the inequality (0) for the balls in V can be used
as a definition of K > 0 for an arbitrary metric space V but the
corresponding theory has not been truly developed. For example, one
does not know when this definition agrees with that using convex
hypersurfaces.

Another remark is that the above argument gives us besides
a comparison between concentric balls in V also a comparison of
the small é-balls B(»,48) — V, with the Euclidean ball B’(d) c R*".
Namely,
K(V) = 0 & B(v,6) < B'(4)
and
K(V) < 0& B(v, 6) = B'(d).
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Again this can be used as a definition of K > < 0 but for non-
Riemannian V this is quite different from the above definition using
the inequality (0) for concentric balls in V.

EXAMPLE. Let V be a finite dimensional Banach space that is an
n-dimensional linear space with a norm || || and the corresponding
dist(vy, v2) = ||v1—v:||. This V, like 1", admits a similarity
transformation at each point v €V by

vV —ov 4 AW —0)
for variable v” and each i € R, . This establishes the metric equality
B(v, 16) = AB(v, d)

for all balls and thus suggests the vanishing of the curvature K(V).
On the other hand if a ball B— B(v, d) in such a V is comparable
with the Euclidean é-ball B’ by either of the two inequalities B > B’
or B < B’, then necessarily B— B’ and V is isometric to " (This
is a simple exercise for the reader).

One may ask at this point what is the deep rtason which makes
various geometric definitions of the sign of the curvature coincide
for the Riemannian manifolds. First of all, by their very definition,
Riemannian manifolds are infinitesimally Euclidean and so their
basic geometry is similar to that of R" Furthermare, as we assume
the Riemannian structure g smooth, we tremendously restrict the
infinitesimal geometry at each point » € V. For example, all infini-
tesimal information of the second order (which is reflected in the
curvature) is defined by finitely many parameters at each point of
V (that are the values of the first and second derivatives of gy),
and so there are plenty of algebraic relations between these para-
meters. When integrated, these infinitesimal relations acquire a
geometric meaning such, for example, as the equivalence of different
geometric definitions of (the sign of) the curvature. On the other
hand the infinitesimal geometry, say, of a Finsler manifold at a
given point involves infinitely many parameters as these are needed
to specify a general (Banach) norm at every tangent space. However,
there exist some non-Riemannian spaces with finite dimensional
infinitesimal geometry. Among them most known are those called
sub-Riemannian or Carnot-Caratheodory spaces but their geometry
has not been studied as deeply as in the Riemannian case (compare

[Str]).
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§ 8. MANIFOLDS WITH POSITIVE SECTIONAL CURVATURE.

As we already know the curvature condition K(V) = 0 is cha-
racterized by preservation of convexity of small inward equidistant
deformations W, c V of convex hypersurfaces W in V. Now we
want to establish the convexity of W, for all negative ¢ (« negative »
corresponds to « inward » with our conventions, see § 0) and we
need first of all a definition of convexity suitable for non-smooth
hypersurfaces. We start with the following basic notion of

CONVEX BOUNDARY. Let V' be a Riemannian manifold with boundary
called W’. We say that W’ is (geodesically) convex of in the interior
IntVV=V"— W, every two points can be joined by a minimizing
segment provided such a segment exists for the two points in
question in the ambient space V' 5 Int V', (The latter condition is
satisfied for all complete, in particular compact manifolds V). In
other words, non-convexity of W’ is manifested by the minimizing
segments between v; and v» in Int V' which meet W’ at some point
w between v; and v,. See Fig. 8.

WI

V2

Fig. 8.

Notice that such a minimizing segment [v;, v.] in V’ typically
« bends » at the points w where it meets W’. For example if V' is
part of a larger manifold V » V’ with dim V = dim V’ then [v,, v.]

Seminario Matematico ¢ Fisico - 4
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may be (and typically is) non-geodesic at w in V. With this in mind
one can see that W’ is convex if and only if the second fundamental
form ITY is positive semi-definite, provided W’ is C2-smooth in order
to have ITV defined. It follows that the convexity is a local property
of W and this locality remains valid (for the above reason) for
non-smooth W’ as well. (Notice that the above argument which
appeals to the length minimization inside V’ gives us a very quick
proof of the classical result on the convexity of comnected locally
convex subgets in 1R". We challenge the reader to find a purely
elementary proof of this classical local to global convexity criterion
for finite polyhedra V’ in 1R3).

Now a hypersurface W in V is called convex if near each point
w € W it can be made into the (part of the) boundary of a convex
domain V' — V where the latter convexity refers to the boundary
onvexity of V’ defined above. Again, if W is smooth this is equi-
valent to II¥ > 0, but now no apparent global convexity of W follows
from our local definition, as is seen in Fig. 9 below.

Fig. 9.

We shall also apply the notion of geodesic convexity to subsets
Vo c V as follows. V, is called geodesically convex if for every two
points v; and v, there exists a path between v, and v, which is length
minimizing among all paths between v, and v, in V, and which is
also geodesic in the ambient manifold V. Notice, that convex hyper-
surfaces W are not convex in this sense but what is bounded by W
may be convex. On the other hand every connected fotally geodesic
submanifold V, c V is geodesically convex. (Recall that V, is called



SIGN AND GEOMETRIC MEANING OF CURVATURE 51

totally geodesic if every geodesic in V which is tangent to V, at a
point is necessarily contained in V). In fact, one can think of every
k-dimensional convex V,, for k < n=—dim V, as a convex domain
inside a totally geodesic submanifold of dimension k& in V.

INWARD DEFORMATION OF THE BOUNDARY. Let V be a compact manifold
with boundary 9V — W and set

Ve ={veV|dist(v, W) = ¢}.
If V, happens to be a manifold with boundary then
AV, =W_,={veV|dist(v, W)=¢},

(where the minus sign at ¢ is due to our coorientation convention,
gsee § 0). If W is smooth then also W_, is smooth for small ¢ but as
¢ growths W_, may develop singularities. There are two slightly
different reasons for the appearance of singularities. First, two dif-
ferent parts of W may meet inside V as they move inward, see
Fig. 10 and 11 below.

~€<—¢,

Fig. 10. Fig. 11.
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In other words a point v €V, becomes singular if there are two
distinct points w’ and w” in W for which

e == dist(v, w’) = dist (v, W’} = dist (v, W).

Notice, that this v is the double-point of the normal geodesic map
d, and d, (w)=d, (w’)=w.

The second reason for the singularity is the meeting in V of
two « infinitely close » points of W. This means v is the focal point
for some point w € W with dist(v, w)=—¢, where « focal » signifies
that the normal geodesic map d, : W— V is non-regular at w, i.e. the
differential of d, is non injective at w. (Recall that d, moves each
w to the ¢-end of the geodesic e-segment normal to W at w). Notice
that the first moment ¢, where a focal point appears is characterized
by the blow-up of the second fundamental form of W mapped to V
by d,

HI|| — < for e—>¢o.

This is clearly seen, for example, in the inward deformation of the
sphere of radius & in R®.

Now the reader may appreciate the elegance of the following
basic theorem by Gromoll and Meyer (see [Ch-Eb]).

CONVEX CONTRACTION FOR K > 0. Let V be a compact connected
manifold with convexr boundary and mnon-negative sectional curva-
ture. Then the subsets V, cV are convex for all ¢ = 0. (We assume
Y7 is connected to satisfy our current definition of convexity).

IDEA OF THE PROOF. Assume for the moment that W =29V is smooth.
Then V. remains smooth, and hence convex, in-so-far as the normal
geodesic map d.: W-—V is a smooth embedding. Furthermore, if
d (W) develops a self-intersection without focal points, then V. be-
comes locally represented as an intersection of smooth convex subsets
and so again it is convex. Then it is easy to believe in the convexity
at the focal points as well as these are just « infinitesimal » double
points (vanishing of the differential of a map at a tangent vector
7 € T(W) brings together the « infinitely closed points » correspond-
ing to the «two ends » of 7).
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To make the above rigorous, one may use a piecewise smooth
approximation (compare § 0) of convex hypersurfaces (and subsets)
as in Fig. 12 below.

Fig. 12.

We require that each piece is convex and has the second fundamental
form IT bounded by ||II|| < ¢ for some fixed constant, e.g. c=1.
Then the small inward e-deformation of this piece-wise smooth
hypersurface is again convex and piecewise smooth, where the de-
formed pieces may, unfortunately, have ||II|| slightly greater than c.
This increase of ||II|| - « which corresponds to the appearance of
a focal point. But this can be prevented since the deformed hyper-
surface can be arbitrarily close approximated again by another piece-
wise smooth convex hypersurface having ||II|| < ¢ for all pieces.
Thus by sequentially applying small equidistant deformations fol-
lowed by appreximations

WoaW, W.s W), - ..

def appr def

we manage to keep in the category of piecewise smooth convex
hypersurfaces for large inward deformations.

To conclude the proof, we must somehow produce small convex
pieces out of which we construct the approximating hypersurfaces.
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This is done at each point v by using geodesic coordinates at v which
relate (small pieces near v of) strictly convex hypersurfaces W in V
(« strictly » means IT¥ > 0) with those in R* (where the Euclidean
coordinates correspond to the geodesic coordinates in V, see § 1).
Thus the approximation of a strictly convex W reduces (locally and
then globally) to the corresponding Euclidean problem where the
approximation is quite easy, but the non-strict case is somewhat
more delicate.

Notice that the notion of strict convexity of W extends to non-
smooth points w 3 W by requiring the existence of a smooth strictly
convexr hypersurface W — w (i.e. IIY' (w) > 0) whose « interior
region » locally contains W as in Fig. 13 below,

Fig. 13.

One might think that there is little point in fussing about non-
strict convexity as a small perturbation could make every convex
hypersurface W strictly convex. In fact, this works if V has sitrictly
positive curvature (K(o) > 0 for all ¢ — T(V)) where a small inward
equidistant deformation leads to strict convexity. Similarly, if K <0,
one obtains strict convexity with the outward deformation. Also in
V= 1R" convex hypersurfaces can be approximated by strictly
convex ones (see § 14). But if we look at a product manifold such
as V="V, X R* where V, is a closed manfold with dimV, > 0 and
take W=V, X S*-1 for the round (and strictly convex!) sphere
S*-1 in W%, we shall see that this W is convex but not strictly convex,
nor can it be approximated by anything strictly convex.
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The geometry of the equdistant hypersurfaces is very simple in
the above product example. Namely, W_, =V, X S*-1(9 —¢) where
o is the radius of the original sphere S*-!= S*-1(g) — R*. Further-
more the region V, < V bounded by W_, equals V, X B*1(9 —¢) for
the balls B*-1(p — ¢} bounded by the spheres in R* Thus V., and
W _, disappear at the moment ¢ = ¢ and at the last moment V; and
W_.,equal Vo X 0in V=1V, X R*

A similar picture is observed for all manifolds V with K(V)=>0.
As we deform the boundary W=—=9V inward there is the first mo-
ment

def
o = inrad V= vsgl? dist(v, W),

such that dim V; =n =dim V for e<o¢ and dim V; < n. If K(V)>0
or if W9V is strictly convex, then the only possibility for V, is
to be a single point since no totally geodesic submanifold V, of posi-
tive dimension in V can be strictly convex at a non-boundary point
v9 € V with our definition of strict convexity given above for singular
points. On the other hand, in the non-strict case, the inward equi-
distant deformation may terminate with a subset V. — V of positive
dimension which is, as we know, convex. This V| is itself a compact
manifold with or without boundary. If V has a boundary, call it
W1=29V,, one can shrink V_ further with the inward deformation
W',.of W1 in V... If the process stops at a closed (i.e. without boun-
dary) manifold we are through ; if not we go to yet lower dimensional
manifolds

(Vedes (Vi) )eg s oee

unless we do arrive at a closed totally geodesic submanifold Vo < V
without boundary, called the soul of V. Then it is not very hard to
show that V is homeomorphic to a bundle of balls over V,. For
example, V is homeomorphic to the n-ball in the strict case i.e. where
either K > 0 or W =24V is strictly convex. (The strict case is due
to Gromoll-Meyer and the general one to Cheeger-Gromoll (see
[Ch-Eb]). This indicates that manifolds V with K > 0 tend to have
a rather simple topology and whenever this topology approaches the
critical level of complexity compatible with K = 0, then the geometry
of V becomes very special. For example, if the above V with K(V)>0
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and convex boundary has non-trivial homology in dimension %, then
V contains a closed totally geodesic submanifold (the above soul) of
dimension > k. It is worth noticing that the existence of a totally
geodesic submanifold of dimension k for2 <k <n—1, n=dim V,
is an exception rather than a rule: there is no such submanifold for
a generic Riemannian metric g on V.

The above discussion also shows that the homotopy classification
of manifolds V with K(V) > 0 admitting a convex boundary reduces
to that for closed manifolds. (Notice that a soul VoV has K(V,)=0
as it iy totally geodesic in V). This result extends to non-compact
complete manifolds V without boundary: every such V fibers over
its soul which is a closed totally geodesic submanifold Vo, c V and
the fibers are homeomorphic to some R*. (This is shown by con-
structing an exhaustion of V by compact convex domains with convex
boundaries, see [Ch-EDb]).

Then one may ask what is a possible homotopy type of a ¢losed
manifold V with K(V) = 0.

On the positive side, one knows that every compact homogeneous
space, V==G/H for a compact Lie group G, admits a metric with
K = 0. In fact, every bi-invariant metric ¢ on G has K(9) = 0 ac-
cording to the following formula (see [Ch-Eb]) which expresses the
value of K at the span 6==x Ay of two orthonormal vectors z and ¥
at the tangent space T, of G at the identity,

K@) =1 ||[= 91F,

where [,] is the bracket in the Lie algebra L(G)=T.. Then ¢
descends to the metric g on V defined by the following condition:
the differential of the projection G — V isometrically sends the
horizontal subbundle of (T(G)g) to (T(V), g) (where the horizontal
subbundle consists of the vector g-normal to the fibers of the pro-
jection which are also the arbits of H in G). One knows, that the

curvature of g satisfies K(z A¥) + %[l[m, Y] vert||2, Where z and y

are orthonormal horizontal vectors in T, and z,y are their images
in T(V), (see [Ch-Eb]), and so K(g) = 0.
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Among homogeneous manifolds with X > 0 the most remarkable
are compact symmetric spaces V, where for each point v € V there
is an isometric involution I': V— V fixing v and having the dif-
ferential DI —= —1Id|T,(V). In fact one may think that the sym-
metric examples provide the major motivation for the study of
K =0

There are some non-homogeneous manifolds with X > 0 but they
do not influence much further our intuition. For example, one believes
that the topologically « largest » n-dimensional manifold with K=>0
is the n-torus T* (which admits a metric with K =0 as T* = 1R*/ Z").
One knows in this regard that, indeed, the fundamental group n,(V)
for K(V) = 0 cannot be much greater than Z* as it is commensurable
wth Z7, (this is already true for Ricei = 0, see § 5) and one also
knows that the Betti numbers bi(V) are bounded by universal
constants b;,. Yet one is unable to bound b;(V) by b,(T") = @)
(See [Che] about it).

The above bound on 7; (V) becomes radically better if we assume
K(V) is strictly positive (i.e. K(o) > 0 for all s € T(V)). Namely
a:(V) is finite in this case by the following classical

BONNET THEOREM. If K(V) > »2 then the diameter of V is bounded by

Diam V < a/x,

where

def
Diam V = sup dist(v;, v,).

v, 1€V

IDEA OoF THE PROOF. Take a minimizing segment between two points
in V, say [v,, v:1] between v, and v; and look at the spheres S(¢) of
radius ¢ around v, near the points v € [v,, v,]. (See Fig. 14 below).

.,_\\\\ L))

v _,// 1/;/

b

Vi

Fig. 14.
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The minimizing property of [v,,v;] implies that every sphere S(¢)
is smooth at the point v € [vy,v;] with dist(v,,v)=¢ for all
¢ < dist(v,, v1). (This is a simple general fact which is true without
any curvature condition). On the other hand a simple analysis of
the tube formula (*+) in § 2 shows that A¥ must blow up for some
finite negative . Namely if we start with some A¢, then A* becomes
infinite for some ¢ in the interval [—=/z, 0]. Thus the length of
[v4, 1] cannot exceed — n/ % and the theorem follows.

The critical case for the Bonnet theorem which clarifies the
picture is that of V equal to the round sphere S"(¢) — R**' which
has constant curvature »2? == -2, Here the ball B(v,, &) of radius ¢
around v, € S* is convex in S* until the moment ¢=np/2 and for
larger ¢ the boundary sphere SI‘.)_1 = W_, of this ball becomes con-
cave. As ¢ —> qp the curvature of W_, (measured by A*,) blows up
to infinity while the complementary region S*— B(v,,¢) becomes
« infinitely convex » for ¢ — ap and blows out of existence for ¢ > np.
Now the tube formula shows that all this happens even faster for
K(V) = 2. Namely the spheres S(¢) are more concave in V than in
S*(g) and the complement V — B(v,, ¢) is more convex. In particular
this complement must become empty for ¢ > 7o as is claimed by the
Bonnet theorem.

Now, the finiteness of n;(V) follows from the Bonnet theorem

applied to the universal covering V — V which has finite diameter
and therefore is compact.

It is also worth looking at the case where K is non-strictly
positive and a; is infinite. For example if n, is isomorphic to Z=,
then V (isometrically!) is a flat torus, i.e. V= R*/L for some lattice
in R* isomorphic to Z" (see [Ch-Eb]).

There is no comparable result of this nature for b,(V) for ¢ > 2.

REMARK. The conclusion of Bonnet’s theorem remains valid with the
following (weaker) assumption on Ricei(V),

Ricei = (n — 1) »2,

and the above characterization of flat tori by »n; — Z* also remains
valid for Ricei = 0 (see § 5). On the other hand, the n;-corollary to



SIGN AND GEOMETRIC MEANING OF CURVATURE 59

Bonnet’s theorem is sharpened by Singe’s theorem (see § 714) which
says that if n=dim V is even and K > 0, thtn the fundamental
group is either trivial or Z., where the latter happens if V is non-
orientable.

§ 814. DISTANCE FUNCTION AND ALEXANDROV-TOPONOGOV THEOREM.

If one looks at a metric space V from a finite combinatarial
point of view then one wants to know the properties of the (N X N)-
matrix of the pairwise distances between the points in every subset
in V containing N elements. In other words, one may try to charac-
terize V by the set of those metric spaces with N elements which
isometrically embed into V. Yet another way to see it is by consi-

VXV XXV

dernig the map of the Cartesian power V¥ — into

N

RY for N' = Mzi——l—), say My: VN — RRY, which relates to each
N-tuple of points in V the set of the mutual distances between these
points. Then our invariant of V is the image My(VY) = RY. (If there
is a natural measure on V as in the Riemannian case one should look
at the My-push-forward of this measure to RY). One obvious uni-
versal restriction on M;(V3) — 1R® is expressed by the triangle ine-
quality. Then one laso knows how to characterize the Euclidean and
(Hilbert) spaces in terms of My (express the scalar products a;
between the vectors z —2z; in R*, i=1,...,N—1, in terms of the
squred distances and observe that the matrix ay; is positive semi-
definite).

Now we want to state the Alexandrov-Toponogov theorem
which characterizes the manifolds V with K(V) = 0 by the image
M,(VY < RS To abbreviate the frmulae we shall write below
|9, — vq| for dist(v,, v2). We consider three points v,, v, and ». in
V and also a point v, between v, and v.. This means

|V1 — Vs 4 |V2— V3| == |v1 —v2] .

Then we observe that there exist four points in R% v, v;, v, and
v, between v, and v,, such that
1”,- —; |ﬂ2 = |vi— |y for 4,7=0,1,2
and also
|91 — vsly = |v] — v |1R2 .
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Then automatically

|v, — v,

9 3|“2= |’U:—7)3lv

and the Euclidean distance |v| _'”:Islﬂz can be expressed by a (well
known) formula in terms of the four numbers |vo— .|, |vy— 22|,

|y —ve| and |v;— v,|. Here is the picture which helps to keep
everything in mind.

Vi

A

Vo

Fig. 15.

THEOREM. If V is complete with K(V) = 0, then
v —vsly = v, — ],

We call this AT-inequality as it was discovered by Alexandrov
for =2 and extended by Toponogov to n > 8.

IDEA OF THE PROOF. One can think of the AT-inequality as a kind of
concavity relation for the function d,(v) = disty (v, v) on V restricted
to the segment [v,, v,] as it gives a lower bound on dy(v3) in terms
of dy(v,) and dy(v,). More precisely, the theorem says that d, is more
concave on each segment in V than the Euclidean distance function
on the corresponding segment in R2. Although the function dist, (v,,-)
is non-smooth, the concavity type inequalities on geodesic segments
follow from the corresponding local concavity which, in the smooth
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case, can be expressed with the Hessian of d,= dist(v,,.). Now we
invoke the tube formula (xx) in § 2 and apply it to the concentric
spheres S(vy,e) — V for all ¢ > 0. We can see with this formula
(with a little adjustment at non-smooth points of the spheres) that
these spheres are less convex (or more concave) than the e-spheres
in 1R". (For example the spheres in the unit sphere V= 8"(|) < R"+!
become concave for ¢ > a/2). This « concavity » of the spheres to-
gether with the obvious relation ||grad do(v)|| =1 translates into a
certain concavity of the function dy(v) and by inspecting this trans-
lation one sees that it gives exactly the desired locall version of the
AT-inequaliity on each geodesic segment in V. Q.E.D.

REMARK. It is easy to see that the AT-inequality, when applied to
the points v,, v, and v; which are infinitely close to v,, yields K>0
at vo. Thus AT is equivalent to K > 0.

One may wonder if there are further universal metric inequalities
related to the curvature, but none besides AT is known today.

However, the inverse AT, namely |vo—v;)y < |v;—v’3|ﬁ2 is known
for complete manifolds V with K(V) < 0, but here one must addi-
tionally assume that V is simply connected. Also, the manifolds V
with Ricei V > 0 satisfy certain metric inequalities (see § 5) but
these depend on dim V.

§ 824. SINGULAR SPACES WITH K > 0.

One may try, following Alexandrov, to develop the theory of
metric length spaces with K > 0 using AT as an axiom. Now such
a generalized space V of positive curvature may be singular, and
in fact, even topologically singular. For example, if we start with a
smooth V with K(V) = 0, acted upon by a finite isometry group I,
then the AT-inequality for V implies (by an elementary « synthetic »
argument) that for V/r, which is a singular space if the action of
I' is non-free. The geometry of possible singularities of V can be
also seen in convex subsets ¥V — ™ which are regarded (mildly)
singular at the boundary points (even if the boundary 9V is smooth)
and also at the singular points of non-smooth convex hypersurfaces
V < R*+! with the induced length structure. (One can replace R*+*
by an arbitrary smooth manifold of dimension # 4 1 with K > 0).
An instructive example is the boundary of the convex hull of a
generic curve in R*+.
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Another kind of a singular space with K > 0 is the unit Eucli-
dean cone over a manifold S with K(S) = 1. This cone is singular
at the vertex unless S is the round sphere of constant curvature 1,
where the cone ig just the unit Euclidean ball bounded by the sphere.
Notice that one can allow singular points in the above S with K > 1
and instead of the cone one may take the suspension which is the
union of two cones over S joined along S.

Finally we observe that the Cartesian product of spaces with
K > 0 has K = 0 and also that curvature remains positive if we go
to a quotient V/G for a compact group G of isometrics of V. (We
have mentioned above the case of a finite group).

These examples make singular spaces worth of a study and one
can extend some known results from smooth manifold to the general
case. However one has not developed yet the theory of convex hyper-
surfaces W in such spaces. For example, one does not know if the
tnduced (intrinsic) metric of W has K > 0. Another question is
whether the inward equidistant deformations W, are convex (*).

Next one wishes to know the structure of the singularities of V.
The known examples indicate that V should be topologically conical
at each point with roughly conical geometry. Recently G. Perelman
proved the topological conical property of V, which implies, in par-
ticular, local contractibility of V, (see [B-G-P]) but the conical geo-
metry remains conjectural (**). (Notice that these questions are
closely related to the geometry lying behind the bound on b,(V)
mentioned earlier).

The final group of questions concerns the structure of the sin-
gular loci of spaces with K > 0. It is known that the singular points
must form a rather rare set. Nomely, every n-dimensional space V
contains an open dense subset which is locally by-Lipschitz home-
omorphic to R*. Moreover, for each ¢ > 0 there exists an open dense
subset V, — V which is locally eEuclidean in the following sense.
For each point v € V, there exists a flat metric dist; on some neigh-
bourhood V « V, of v which is e-bi-Lipschitz to the metric coming
from V, that is

1—e=<disty/diste <1+ ¢

en U (see [B-G-P]).

(*) «Yes», according to Perelman.
(**) This is now proved by Perelman.
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This is still far from what one expects by looking at convex
hypersurfaces in R**! which are known to be almost everywhere
C?-smooth. The above statement concerns the Cl-structure (in the
case of convex hypersurfaces). It seems that once the Cl-structure
of the singuarities is completely understood the C2-refinement will
follow by mere analysis (*). On the other hand one would need a new
geometric idea in order to prove that the n-dimensional Haussdorf
measure of the singular set is zero (**). Intuitively, each singular
point carries infinite positive curvature while the integral curvature
properly defined) must be universally bounded as one believes but is
unable to prove even in the smooth case for # > 3. (For n—2 such
a bound is obtained with the Gauss-Bonnet theorem which equates
the total curvature of a surface V with 27y(V). This theorem extends
to higher dimensional manifolds but it provides a non-trivial in-
formation on the total amount of curvature only for 7= 2 and n— 4,
where one may use for n=—4 the universal bound on |x(V)| which
follows from that on the Betti numbers for K(V) > 0. Compare the
discussion following the statement of the sphere theorem in the
next §).

§ 834. THE SPHERE THEOREM AND EQUIDISTANT DEFORMATION OF
IMMERSED HYPERSURFACES.

The modern period in the global Riemannian geometry starts,
according to M. Berger (see [Ber];, [Ber],), with the work of
Rauch in the early fifties who proved among other things that if
the sectional curvatures of a closed simply connected Riemannian
manifold V are sufficiently close to those of a round sphere, then V
is homeomorphic to the sphere. (One needs the simply connectedness
assumption in order to rule out such manifolds as the real projective
space P»=8*/Z . and the lense spaces S2"-!/Z, which have constant
positive curvature but not homeomorphic to spheres).

The closness of the curvature K-— K(V): Gr. V> 1R to the
(constant) curvature of a sphere is customarily expressed by the
inequality.

ca< K <a,

where ¢ > 0 and 0 < ¢ < 1. Here one thinks of the constant ¢ as

(*) This analysis was started by Otsu and Shioya and it is rather subtle.
(**) This is proven by Otsu and Shioya and also appears in the final
version of [B-G-P].
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1
of the curvature of the round sphere of radius a-2 and ¢, called the
pinching constant, measures the allowed amount of non-constancy
in K(V). Notice, that by scaling one can reduce the general case to
that of ¢c=1 and then the inequality

c<K<1
says that the sectional curvatures of V are strictly pinched between
1

those of the unit sphere and the one of radius ¢-2.

Rauch conjectured that the best pinching constant in his theorem
must be 1/4. This value is motivated by the fact that the complex
projective space ¢ P, which goes next in roudness after S», has the
sectional curvatures spread over the closed interval [1/4,1] for the
natural U(n 4+ 1)-invariant (Fubini-Study) metric on ¢ P*. Notice
that also the quaternion projective spaces and the projective Cayley
plane carry natural homogeneous (even symmetric) metrics with
1/4 < K < 1.

The solution of the Rauch problem (achieved in the middle
sixties by Berger and Klingenberg) is now known as

THE SPHERE THEOREM. If a closed simply connected manifold V has

1
T <EKm <1,

then V is homeomorphic to S».

REMARKS

(a) One still does not know if the above V is diffeomorphic to S*
(but this is known for a more narrow pinching).

(b) If V is not simply connected, the theorem applies to the universal
covering of V.,

(¢) For the non-strict pinching.

L <rkm=1,
4

the sphere theorem is complemented by the rigidity theorem of Berger
which says that if a closed simply connected manifold V with
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—i— < K(V) <1 is non-homeomorphic to S* then it is necessarily

isometric to the projective space over complex numbers, quaternions
or over Cayley numbers with the standard homogeneous metric.

SKETCH OF THE PROOF OF THE SPHERE THEOREM. If n—dim V=2,
then the result follows from the Gauss-Bonmnet theorem

[ K@) dv—2ny(),
i7

for the Euler characteristic (V). Thus the positivity of the curva-
ture K alone (without pinching) implies (V) > 0 and hence we can
identify V with S? as we assume V is simply connected.

REMARK. The Gauss-Bonnet theorem generalizes to all dimensions by

| odo—=yv),

14

where 2 = Q(v) is expressible at each v as a certain polynomial
in the components of the curvature tensor. One knows that for
dim V =4 the sign conditions K > 0 and K < 0 both imply 2(%) > 0.
It follows that if the curvature of V does not change sign then
z2(V) > 0.

This is not very interesting for K > 0, where the universal
covering V of V is compact and where n1(1~’)= 00— b;=b;=0.
So the remaining Betti numbers contributing to x(ﬁ): x(V) are
even: by, b. and b,. On the other hand the topological conclusion,
%(V) > 0 for closed 4-dimensional manifolds of strictly negative cur-
vature cannot be obtained to-day by any other method.

If dimV = 6, the sign of £ is not controlled by the sign of K
anymore. Yet Chern conjectures that if n—=—4k, then K > 0 and
K < 0 imply x > 0 and for n—=4k + 2 the sign of y equals that of
K if K is everywhere strictly positive or strictly negative on V.

Now, we are back to the sphere theorem for n > 3. We recall
that the pinching condition 1/4 < K < 1 means that the sectional

Seminario Matematico e Figico - 5
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curvatures of our V are strictly smaller than those (= 1) of the unit
sphere S» and greater than the curvature of the sphere 28" of
radius 2. Then we take a point v € V and consider the concentric
balls B(v,7y < V. For a small radius > 0 every such ball has
smooth convex boundary. As the ball growths three bad things may
happen to it.

(1) The boundary (sphere) may loose convexity and even become
everywhere concave. For example this happens to B(v, r) < S* for
1

r > a/2 and it happens in 2S* for r > n. The condition K(V) > e

implie, by the tube formula, that B(v, r) necessarily become concave
forr=a.

We shall see below, that this concavity of the boundary sphere
is not a bad thing after all. On the contrary, it turns out very useful
as we look at this sphere from outside where it appears convex.

(2) The boundary sphere may develop double points. To see how
it happens we look at the example of the (flat) cylinder V=281 XR.
The universal covering of the cylinder is the Eucldean plane 2 and
the ball B(v,7) in V is the image of a Euclidean 2-ball (disk) B
in M2 As r becomes greater than the half-length of S! the map of
B to S X R becomes non-one-to-one and we can see B wrapping
around the cylinder as r grows.

One observes a similar picture in an arbitrary V with the
go-called exponential map e : T,(V) - V which sends each vector
1 €T,(V) to the second end of the geodesic segment in V issuing in
the direction of ¢ and having length =||z||. The ball B(v,7) in V
equals the exponential image of the Euclidean r-ball B — T,(V) and
the double points of the boundary sphere of B(v,r) are the images
of those points in S =3B where the map ¢|S is non-one-to-one. For
example, if V= S* then the exponential map is one-to-one on the
balls B — T,(V) of radii < = but the sphere S < T,(V) of radius =
is sent by e to the single point in V — S" which is opposite to v in S

The double points, unquestionably, cause a serious complication
of the picture. Yet this will be taken care of in the above concave
case,
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(3) The geometric image of the ball B < T,(V) wrapping around
V under the exponential map ¢ : T,(V)— V is adequate in-so-far as
the map e is an immersion i.e. is locally one-to-one (and hence locally
homeomorphic) on B. A sufficient condition for that is the regularity
of ¢|B which means rank(De)=—n, where De denotes the differential
of e and n=dim V. If K(V) < 1 then the tube formula implies that
the mop e is regular on the ball B < T.(V) of radius n. Here one
may ignore possible self-intersections of the boundary spheres
S(v, ry=09B (v, ) by looking at the exponential map e on a narrow
sector A — B around o given straight segment in B < T,(V) joining
the origin (i.e. the center of B) with a point s € S—= gB. Then the
inetrsections of the concentric spheres in T,(V) with A go under ¢
into a family of smooth mutually equidistant hypersurfaces in V,
see Fig. 16 below.

i

Fig. 16.
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Thus, if %‘— < K(V) < 1, we have an immersion of B < T,(V)

into V, such that the boundary of this immersed ball is concave
in V. Now we want to construct another immersion of some ball B’
to V which would bound e(S)—=—¢(dB) c V from the convex side.
Thus we would obtain an immersion of the sphere S*==BUB’ into
V, where the two balls B and B’ are glued together over the common
boundary S. Notice that suche an immersion is a covering map
(since S* is a closed manifold and %»=dim V) and so the sphere
theorem comes along with an immersed B’ in V filling in ¢(S) c V
from the convex side. The existence of such B’ is insured for n > 3
by the following

FILLING LEMMA (compare § 14). Let V be a complete Riemannian
manifold of dimension n = 8 with K(V) >0 and let e : S—V be a
(topological) immersion of a closed connected (n— 1)-dimensional
manifold S into V; If the immersed hypersurface is locally convex
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in V, then it is diffeomorphic to S*-1. Moreover, there exists @ ball
B’ which bounds this S*1=—2_S and an immersion B’ —» V extending
e: S—V, such that the immersed ball B’ fills in e(S) rom the ocnvex
side.

REMARK. Notice that the image ¢(S) — V does not have to be convex
in any sense. The local convexity means that each point s€ S has a
neighbourhood W < S on which the map ¢ is one-to-one and whose
image is (locally) convex in V. A typical example is provided by the
locally convex immersed curves in the plane as in Fig. 17 below.
(Compare Fig. 5 in § 14 and Fig. 9 in § 3).

Fig. 17,

Also notice that a closed immersed curve S in 12 does not bound
any immersed disk unless S is embedded (i.e. has no double point).
This does not contradict Filling Lemma where we assume 7 > 3.

IDEA OF THE PROOF. Given an immersed locally convex hypersurface
in V, we may try the inward locally equidistant deformation which
applies simultaneously to all small embedded neighbourhoods of
e(W) c V, see Fig. 18 below.

The equidistant deformation sketched in Fig. 18 develops a (cuspidal)
singularity at a certain moment & and cannot be continued beyond & .
However, an elementary argument as in § 14 shows that no such
singuarities appear for deformations of locally convex (pieces of)
hypersurfaces in 1R* for n > 3. This conclusion extends to all Rie-
mannian manifolds V with local geodesic coordinates systems at the
points x € ¢(S) where one is afraid of singularities. Thus one can
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continue the equidistant deformation as long as the local convexity
is preserved. (In fact one needs here striet convexity as it is stable
under small perturbations and goes along as one passes to the Eucli-
dean picture in geodesic coordinates). Now, since K(V) > 0, the

X

e(S)

Fig. 18.

convexity only improves in the course of the inward deformation
and so S eventually shrinks to a single point v’ € V. The totality of
the deformed hypersurfaces form a multiple domain in V filling in
¢(S) which is a manifold B’ with 9B" = S immersed into V, and our
locally equidistant hypersurfaces

S, ={b € B’ | dist(b, 3B’} = ¢}

for the Riemannian metric in B’ induced by the immersion B’ — V.
In this case we know by the Gromoll-Meyer theorem (see § 3) that
B’ is homeomorphic to the ball B* (this homeomorphism is easily
constructed with the family of convex S, shrinking to a point in B’)
and the proof of Filling Lemma is concluded. (See [Esch] for a
detailed argument).

REMARK. Coming back to the theorem, we observe that the simply
connectedness of V implies that the (covering) map S*—=BUB' —»V
is injective. So the exponential map e : B— V is injective after all!
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§ 4. NEGATIVE SECTIONAL CURVATURE.

Here V—=(V,g) is a complete Riemannian manifold with
K(V) < 0. One can eagily derive from the tube formula (see (%)
in § 2) that the condition K < 0 is equivalent to the preservation of
convexity under outward equidistant deformations W..., of convex
hypersurfaces W in V, for small ¢ see Fig. 19.

W W,

Fig. 19.

This is quite similar to the case K > 0. But what happens here
for large ¢ > 0 is different, Namely, the tube formula shows that
the normal geodesic map d : W — V,is regular (i.e. an immersion)
for all ¢ > 0 and d.(W)— W is a locally convex immersed hyper-
surface. The only problem comes from possible self-intersections of
this hypersurface. The simplest case to consider is where W, are
concentric e-spheres around a point v, € V. In other words we look
at the exponential map e : H,.,(V) - V which locally isometrically
sends each straight ray 7 in the tangent space T,, (V) to the geodesic
ray in V issuing from v, and tangent to v at v,. This ¢ (obviously)
maps every Euclidean r-ball B (0, 7) c T,, (V) onto the r-ball
B(vo,7) < V (this is true for all complete V with no assumption on
the curvature) and for K < 0 the tube formula (applied to the
spheres) shows that e is an immersion. Moreover, by the tube for-
mula the map e is infinitesimally distance increasing, i.e. the metric

g~ on T, (V) induced by e from g on V is (non-strictly) greater than
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the Euclidean metric g, on Ty, (V). Since g, is complete the (greater)
metric E is also complete which then implies by an easy argument
that e is a covering map and since T, (V)= R" is simply connected
this is the universal covering. From this one immediately derives
the classical

THEOREM OF CARTAN-HADAMARD. The universal covering of a com
plete n-dimensional manifold V with K < 0 is diffeomorphic to R".
In particular, if V is compact without boundary then the fundamental
group n, (V) is infinite.

The proof of the above theorem shows that if V is simply con-
nected then the exponential map T,(V) — V is a bijective diffeomor-
phism for each v € V. It follows that every two points v and v in V
can be joined by a unique geodesic segment in V, which (because of
uniqueness) must be minimizing in V and that the distance function
dist(v,, vo) is smooth for v, < v.. Then, by applying the tube for-
mula to the e-neighbourhoods of the diagonal A=V < V X V, one
can easily prove that dist is a convex function on V X V. This means
dist is convex on every plane in V X V which is the Cartesian
product of two geodesics in V. In particular, every ball B(v,0) c V
in convex.

The above discussion indicates a certain duality between mani-
folds with K > 0 and simply connected manifolds with K < 0. This
duality shows up even better for the monotonicity of the balls

B('v, /{Q) 2 /IB('U, Q)

forall veV, o> 0 and 2 = 1 (compare § 214) and the Alexandrov-
Toponogov inequality

Ivo—vﬂv < I'U:) _ ’U;) I'R’

(see Fig. 15 in § 31%4), which is a sharpening of the convexity of the
function dist(v,,.) on V. Notice that both inequalities need n, =20
as well as K < 0.

But the duality does not seem to extend much further. In fact
the essential features of manifolds V with K(V) < 0 and #,(V)=20
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are seen (if we know where and how to look) asymptotically as we
go to imfinity in V, which has no counterpart for K > 0.

Now, if we turn to closed manifolds V with K < 0 then they
appear as quotient spaces of the universal covering 7 by the Galois
group I'=w=;(V) which isomefrically acts on V. Even if we fix V
the variety of different I' — Iso V and the corresponding V — V/r
may be quite astounding. Tht richest source of examples is the
3-dimensional space V—H3 of constant negative curvature which
can also be defined as PSL, C/SO(3) with an invariant Riemannian
metric. Discrete subgroups I' c PSL,C conformecally act on the
Riemann sphere S? and their study under the name of the Kleinian
groups has been conducted for many years in the framework of
complex analysis. A new development emphasizing K=-—1 was
started about 12 years ago by Thurston who has created (or disco-
vered) a magnificent geometric world in dimension 3. There is
nothing comparable to this for K = 0.

Notice that negative curvature accompanies every non-compact
semi-simple group G. Namely, if we divide G by the maximal compact
subgroup H — G then, by the compactness of H, the spact V—=G/H
admits a G-invariant metric ¢g. Such a metric is complete (this is
elementary) and by a well known theorem of E. Cartan K(g) < 0.
This curvature is strictly negative if and only if rank, G=1, and
K(g) is constant if and only if G is locally isomorphic to O(n, 1).
The compact manifolds V covered by V are associated to discrete sub-
groups I' — G which are usually produced by arithmetic constructions.

The above mentioned examples by no means exhaust all compact
manifolds with K < 0. In fact, there is no slightest chance of any
meaningful classification of such manifolds (but there may exist a
classification of compact manifolds with K < 0 modulo those with
K < 0). On the other hand for K > 0 a rough description of all
compact manifolds looks quite feasible. (For example, every convex
subset V — R” is roughly equal to some solid [0, ¢:], X [0, ¢2] X ...
<. X [0, ¢.] and every flat torus roughly is the Riemannian Cartesian
product of the circles S; of certain lengths ¢). The situation here
is vaguely similar to the clagsification of algebraic varieties (e.g. sur-
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faces). The varieties of general type look kind of hyperbolic (which
corresponds to K < 0) and are unclassifiable. On the contrary, special
varieties (such as Fano varieties) sometimes can be classified in every
fixed dimension. These correspond to manifolds with K > 0.

In order to have a better idea of a possible classification for
general manifolds with K > 0 one may look at two examples where
the problem was, in principel, solved. The first example is that of
constant curvature 1, where V.= 8"/I for some finite isometry group
I freely acting on the unit sphere S* — R"+1. The second class of
examples is given by the flat Riemannian manifolds (K = 0) which
are R"/I' for so-called crystallographic groups I (isometrically
acting) on R In both cases one has a good overall picture of such
groups I' as well as a possibility of classification for every fixed n
(but such classification quickly becomes a mess for large n and is
not very appealing).

HYPERBOLIC GROUPS. The main topological problem concerning the
spaces with K < 0 is a characterization of the groups I' which may
serve as fundamental groups of such spaces. If we only assume that
V with K < 0 is complete then it is unclear if there is any non-
obvious restriction on I =n,(V). (The « obvious » condition is the
existence of a free discrete action on a Euclidean space as V is dif-
feomorphic to 1R”*). On the other hand, if V is compact, then there
are many specific properties of ' =a,(V). For example, I' contains
a free group on two generators unless V is a flat manifold. (In the
latter case I' contains a subgroup IV =Z" of finite index). The idea
of the freedom theorem goes back to Felix Klein who proved it for
groups acting on the hyperbolic space H3 with K —=——1. The gene-
ralization to the subgroups I'cSL, acting on the manifold SL,/SO(n)
with K < 0 is a famous result by J. Tits. The extension to the
variable strictly megative curvature is due to P. Eberlein and in
the general case the freedom theorem was recently proven by
W. Ballmann on the basis of a deep analysis of the nature of « non-
strictness » for K < 0.

To get some idea on the difference between strictly and non-
strictly negative curvature we first recall the old result by Preissmann
saying that every Abelian subgroup A —c I'==na,(V) is free cyclic,
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assuming V is a closed manifold with K < 0. Furthermore, if we
only assume K < 0 and insist on the existence of a free Abelian
subgroup A in n,(V) of rank k = 2, then V contains an isometrically
and geodesically immersed flat torus T < V and so K(s) =0 on all
planes tangent to T

This example shows how the « critical » topology may influence
the geometry for K < 0. This phenomenon (which is somewhat
simiar to what happens for K > 0) is seen even better in the fol-
lowing striking result due fo Gromoll-Wolf and Lawson-Yau.

SPLITTIN THEOREM. If the fundamental group I' of a closed manifold
V with K < 0 splits into the direct product by ' =1rI1 X I's, where
I's and I's have trivial centers, then V isometrically splits, i.e.
(V,2)= (V1 X V2, g1 @D g2), where 7,(Vy)=T;, i=1.2.

Notice that the condition Center I';— 0 is essential as is seen
in the example of a non-split flat torus. (These tori also suggest a
correct generalization to the case Center << 0).

Observe that if dim V;> 0 ¢t=1,2, then K(V=V; X V.)
vanishes on many 2-planes ¢ € T(V). Namely, K vanishes on the
Cartesian products of geodesics y; X y.  V for y; — Vi, as these
products are isomtric to WR? geodesically immersed into V. (This
is alweys true for Riemannian products with no regard for the
curvature).

Some results similar to the splitting theorem were more recently
established for manifolds V with K(V) < 0 where there are « suf-
ficiently many » plane ¢ on which K(s)==0 (see [B-G-S]). This has
raised hope for a possible reduction of the general case of K < 0
to that where K < 0. On the other hand, one can axiomatize the
essential features of the fundamental groups =,(V) for K(V) < 0
and study them independently of differential geometry. This brings
to life a new class of groups called hyperbolic groups which include
the above n,(V) as well as the so-called small cancellation groups.
The study of the hyperbolic groups appears to be at the moment the
main avenue in (strictly) negative curvature. (See [Gh-Ha] for more
about it).
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§ 5. RICCI CURVATURE,

Let us recall the basic tube formula (see (*x) in § 2), which
relates the second derivative of the (induced) metric g, on the equi-
distant hypersurface W, < V to the sectional curvature K(V) expres-
sed by the symmetric operator B=—B on T(W ). This formula reads

d =

—— A, =— (4,2 + B
i A (4.7 4
where A is the shape operator which is just another face of the
second fundamental form I7 of W,, that is

W 1 d

I’ E o ge..

Let us see what happens if we take the traces of the operators A¥
and B in the tube formula. First, the trace of AF is the same as the
trace of IT": relative to g., which is called the mean curvature
M(W,) of W, and which equals to the sum of the principal curva-
tures of W, (as follows from the definitions of all these curvatures,
see § 0). Then it is clear with the above formula for I7": that
M(W )= Trace,, II ¥s measure the e-variation of the Riemannian
volume of g, , that is

dvoly

(%) &

= M(W.) Vol

where Vol, denotes the Riemannian volume density on W, (recall
that a density on W, is not a function but rather a (n — 1)-form
modulo + sign). Then Vol! denotes the pull-back of Vol, to W= W,
under the normal geodesic map d, : W — W,. Now (x*) makes sense
as the left hand side is a density on W as well as the right hand
side being the product of a density by a function.

One can equivalently express (*) by using the background metric
go on W =W, as follows. Let J(w, ¢) denotes the Jacobian of the
map d, at w € W. Then () becomes

d(J (w, ¢))

J —J (v, ¢) Trace A: ,
€
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_dz_f/J‘: d Vol.

e 4 /Vol,.

Yet another way to express (%) is by

g— log J (w, ¢) = Trace A¥ ,
£

or, if one integrate over W,, one gets

gs— Vol(We)—_—fJ(w, ¢) Trace A dw.
w

It may be worth noticing at this point that the (n — 1)-dimen-
sional volume of the equidistant hypersurface W, in the above
formula equals the derivative with respect to ¢ of the n-dimensional
volume of the « band » between W, and W, that is the image of
the map

Wy X [0,e] >V by (w, ) > d, (w).

More generally, one may take the s-neighbourhoods VI — V of a
fixed subset Vo, c V. Then the (n — 1)-dimensional volume of the
boundary W, =9V satisfies

Vol W. = & vol Vi,
de

(where V= {v € V| dist(v, Vo) < ¢}). Notice that the above formula
def

remains valid even if the hypersurfaces W, are non-smooth. (This
is first proven in R* and then brought to V with Euclidean metrics
is first proven in infinitesimally approximating g at the points v€V,
ompare § 1).

Now let us turn to TraceB. Recall, that the operator B — B;
was assigned to every co-oriented hyperplane S c T,(V) in each
tangent space T,(V). Every such S is defined by the unit normal
vector »— S (unique because of the coorientation) and then TraceB
becomes a function on the unit tangent bundle of V. Then a simple
(infinitesimal) algebraic consideration shows that this function is
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quadratic on each fiber. That is there exists a (necessarily unique)
quadratic form on V, called the Ricci tensor, such that

Trace Bs — — Ricci (v, v)
for »—=2_ST.

With this Ricei we have the following

TRACED TUBE FORMULA.

d

— M(W)=—Trace A? — Ricel (v,, v.)
&€

(%)
where », is tht inward (or outward, which makes no difference)
normal unit field on W, . If we combine this with the above discus-
sion on Vol, and the Jacobian of d, we have

(+) Fd;—log J(w, £) = — Trace A? (w) — Ricei (v, (w), v, (w)).

Notice that Trace A equals the squared norm |[|[IT"¢|} mea-
suring the overall curvature of W.in V by the sum of principal
curvatures.

Now, we may recall the definition of the sectional curvature K
(see § 2) and observe the following formula expressing Riecci by K.
Let y =, » ... v, be an orthonormal frame in 7,(V) and let o, ..., 9n
denote the planes spanned by the pairs of vectors (v, »2), (»1, ¥3)...
... (r1,7,). Then by an easy computation,

Rice (v, 7) = 3, K(o).

=2

Thus the unit round n-sphere S* has Ricci = (n-— 1) g for the sphe-
rical metric ¢g. (It is no accident that Ricei(S")— » for n— o, but
an important property of S* with many implications, see [Mi-S]).

MANIFOLD WITH RicciV = 0. If Ricci > 0 (i.e. positive semidefinite),
then the traced tube formula shows that the second derivative (va-
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riation) of logVol, is negative or, equivalently

dz
rre logJ(v,¢) < 0.

Conversely one can easily see that this inequality is equivalent to
Ricei = 0.

One can derive a sharper inequality from the traced tube for-
mula (4) by observing that

—TraceA? < (1 —1)-! (TraceA)?

for n —1=dim W=dim V—1. Then (4) and the preceeding

formua for 4 J yield

de
d?log J dlog J \? .
(+-+) o 5—(n—1)( i \) — Ricei
which becomes
d?logJ dlog J \?
(4+%) Tl 1 (X

for Ricci > 0. In terms of the mean curvature M of W, the equi-
valent inequalities are

d? log Vol. aM

(+»y e = 4 =— (n—17M* —Ricci

and

(+%)” @ log Vol. _ oM < — (n—1) M2 for Ricei = 0,
de2 de

where Loi—}o}—‘ is identified with M according to ().

In order to emphasize the similarity of the above inequalities
with those for K > 0 in §§ 2, 3 we introduce the following ter-
minology.

A cooriented hypersurface W — V is called mean convex if
M(W) = 0. Then a domain V, c V with smooth boundary is mean
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convex if the boundary is mean convex. Clearly, convexity implies
mean convexity as the latter requires the positivity of all principal
curvatures not only of their mean. Also notice, that with our termi-
nology, round spheres in 1R™ looked upon as boundaries of balls
B — R" are convex, but the same spheres which bound the comple-
ments R”— B are regarded concave.

Observe that the round e-sphere S, — 1R" has mean curvature
(n—1) &' and so the above (+*) becomes an equality. Thus (4-*)Y
shows that if Ricci > 0 then the inward deformation (i.e. for ¢ < 0)
makes W =— W, mean convex at every w e W faster than it happens
to the round phere in R™ of the same mean curvature as W at the
point w € W in question. In particular, if W is mean convex then
sois W, for e < 0.

NON-SMOOTH MEAN CONVEXITY. The above discussion was made under
the tacit assumption of smoothness of W, along with the require-
ment on d,.: W—V to send W diffeomorphically onto W,. This
assumption, as we know, is satisfied for smooth W and small |¢| but
it is usually violated for large |¢|. However, the above mean convexity
property for Ricci = 0 remains valid for all ¢ with an appropriate
generalizations of mean curvature and mean convexity to non-smooth
hypersurfaces (notice that exactly at this point the geometry truly
comes into play. The above formulae for small ¢ would remain a
futile infinitesimal exercise if they were not valid globally for all
W ). The idea of such a generalization comes from the remark that
the intersection of two mean convex domains V; and V, in V should
be mean convex, though the boundary of V; NV, may be (and usually
is) non smooth. Thus one can enlarge the class of mean convex do-
mains with smooth boundaries by taking finite and (with some
precaution) infinite intersections. Then one defines mean convex non-
smooth hypersurfaces as those which locally are the boundaries of
such domains. Alternatively, one can make a definition of mean
convexity of W at a given point w € W with an « ambient » smooth
mean convex W’ touching W at w from outside as in Fig. 18 used
earlier in § 3 to define convexity.

From this moment on we assume we know the meaning of the
relation M(W) = 0 for non-smooth W and we take a similar attitude
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toward the relation M(W) > 4 for oll real 4. We also introduce the
notions of striect mean convexily, denoted M(W) > 0, as we did
earlier in the convex surrounding of § 3.

Now let us apply the above principle of the fast mean convexity
rate to concrete geodesic situations.

PUSHING-IN MEAN CONVEX BOUNDARY. Let V be complete with compact
mean convex boundary W-—aV (V itself may be non-compact but
look like W x [0, »)). Then we define as earlier

Vi ={veV|dist(v, W) = ¢}

and observe that the above discussion for Ricci > 0 implies that
V:c V is mean convex for all ¢ > 0. Then we can estimate the
(n — 1)-dimensional volume of W_,=9V, since the derivative of
Vol W_, equals — M (W _,) integrated over W, with a positive weight.
Thus we see that Vol W_, is monotone decreasing in ¢ Finally we
recall that Vol W_, integrated over ¢ gives the n-dimensional volume
of the <« band » V— V. which we can now bound by ¢ Vol W.

Suppost furthermore that either W =9V is strictly mean convex
(i.e. M(W) > 0) or Ricci > 0. In this case the inequality (-1#)”
integrated over W, shows that Vol W, becomes zero at some finite
moment ¢ It easily follows that V is compact in this case. In parti-
cular, it can not be homeomorphic to W X [0, ). One knows more
in this regard. For example, the splitting theorem of Cheeger and
Gromoll (who generalized the earlier splitting theorem of Toponogov
for K > 0) implies that if a complete manifold V with Ricei = 0 has
no boundary and has more than one end (i.e. V— YV, is disconnected
for all sufficiently large compact subsets V, in V) then V splits into
the isometric product by V=W X R for some closed manifold W.

MEAN CURVATURE AND THE LAPLACE OPERATOR. Recall that the Laplace
operator Af on smooth functions f: V- R is

Af = div grad f,
def

where the vector field grad f is defined with the Riemannian metric
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g as the dual of the differential df, i.e.

(grad f, ) =4df(7)

for all v € T(V), and the divergence is defined as the Lie derivative
of the Riemannian volume (density) with respect to the gradient.

Now let f(v) = —dist(v, W). This function obviously has
||grad|| =1 and the divergence of the gradient equals the variation
(i.e. derivative with respect to ¢) of the volume densities Vol, of W,,
since the volume of the region between W, and W, in V equals the
integral of Vol W, over [e, ¢2], and the same remains true for all
subdomains U, — W.. Thus we obtain the equality between Af at v
and the mean curvature of W, passing through ». This equality,

Af(v):M(M, ’ v),

makes sense so far only where W, and f are smooth, but with our
earlier discussion we can extend the story to all points v € V. In
particular, if Ricei V = 0 and W =209V is mean convex, then

— A dist(v, w) = 0,

that is the minus distance to W is a subharmonic function on W
which may be called mean convex in our language. Notice that this
function is convex for K > 0 (compare §3 0 and 14 where all this
is done for V < R").

VOLUME MONOTONICITY FOR BALLS. Consider concentric balls B(g) in
V around a fixed point vy € V and observe with our tube inequalities
for RicciV > 0 that these balls are «less mean convex » than the
corresponding balls in ", that is

M@B(e)) < (n—1) et =M(S;7),

for the Euclidean e-spheres S !. (If we look from the point of view
of the complement V, =V — B(¢), then the boundary sphere
dB(¢)==3V. appears more mean convex than that in 1R™ with our
convex-concave convention). Also notice that in term of the function
dy (v) = dist (v, vy) the above mean curvature relations becomes
Ady < ((n—1) ¢ ). It follows that the volumes of 9B(¢) and B(e)

Seminario Matematico e¢ Fisico - 6
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grow slower than those in 1R”. Namely,
Vol 3B(¢) < Vol S

and also the 7n-dimensional volume Vol B(¢) does not extend the
volume of the Fuclidean &ball in R*

In fact the tube inequality (4-#%)” tells us more. Namely, if we
integrate it over ¢ we obtain the following bound on the growth of
the (n — 1)-dimensional volume of the boundary spheres dB(¢) in V,

Vol dB(4e) < it Vol 3B(¢),

where 1 is an arbitrary number = 1. Then the second integration
over ¢ yields the following very useful

BISHOP INEQUALITY. If a complete n-dimensional Riemannian mani-
fold V without boundary has RicciV = 0, then every two concentric
balls in V of radii ¢ > 0 and ic = ¢ satisfy

(++) VolB(ie) < A" Vol B(e).

This can be thought of as a relation on the pushforward of the
Riemannian measure by the function

dist(vo,-) : Vo R.

For example, this inequality provides an upper bound on the number
of disjoint e-balls inside a larger ball of radius ¢ which leads to a
non-trivial restriction on the distances between finite configurations
of points in V (see the discussion in § 314 around Alexandrov-
Toponogov).

The Bishop inequality becomes sharper for Rieei > 0, as for
Ricei > (n— 1) 072 the rate of growth of spheres and balls in V is
dominated by that in the round sphere S*(p) — RR*+%. It follows, that
the volume VolB(g) does not increase at al for ¢ > np and so the
diameter of V is bounded by np, which generalizes Bonnet theorem
(see § 3). In partecular, the universal covering of every closed moni-
fold V with strictly positive Ricei curvature is compact and n,(V) is
finite exactly as in the case K >0 we studied earlier in § 8. Moreover,
even in the non-striet case the structure of the fundamental group
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7, (V) for Ricei > 0 is similar to that for K > 0. Namely, n, confains
o free Abelian subgroup of rank< dim V hawing finite index in n, .
This follows from the Cheeger-Gromoll splitting theorem applied to
the universal covering of V. (This theorem, in its general form,
claims that every complete Riemannian manifold X without boundary
and with Ricei X = 0 admits an isometric splitting, X—=Y X R,
provided X contains a line ¢ that is a geodesic which minimizes the
distance between each pair of points in ¢).

On the other hand, there seems to be no restriction on the simply
connected part of the topology forced by Ricei = 0. (An exception
is discussed in § 6 in the framework of the positive scalar curvature).
For example, a recent construction by Sha and Yang (refined by
Anderson) provides manifolds V of a given dimension » > 4 with
Ricci > 0 and with arbitrary large Betti numbers. (These manifolds
can not have metrics with K > 0 by the discussion in § 8). To obtain
some perspective one may compare the manifolds with Rieci = 0 to
subharmonic functions while K > 0 goes parallel to convexity. This
analogy suggests Ricci flat manifolds (i.e. with Ricci=0) as the
counterparts to harmonic functions (which are by far more numerous
that linear functions corresponding to K=0) and one may expect
that a great deal of simply connected manifolds admit Ricei flat
metrics. But even a single example of this kind is not at all easy to
produce. Yet, Yau has proven the existence of these for all even
n=dim V, as he has produced a Riemannian (even Kihler) metric
with Ricci==0 on every smooth complex projective hypersurface V
of degree m + 1 in ¢ P (Notice that all such V are mutually dif-
feomorphic for a fixed m and they are simply connected for m > 3).
Yau has also shown that the hypersurfaces of degree < m have
metrics with Ricei > 0 and those of degree > m + 2 with Ricei < 0.
Moreover, in the latter case Yau has proven the existence of Einstein
metrics g on V satisfying the equation Ricei,—=—g.

Among more elementary examples of manifolds with Rieci > 0
we mention again homogeneous spaces G/H for compact G, whose
homogeneous metrics often have Ricei > 0 while K is, typically, only
non-strictly positive. The simplest among them are Cartesian pro-
ducts, like those of spheres; S* X 8¢ for %, ¢ = 2, and compact semi-
stmple Lie groups G with biinvariant metrics (only SU(2) and SO(8)
have K > 0). Notic that the tube related inequalities provide non-
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trivial information on the geometry of G expressed by Paul Levy’s
isoperimetric inequality which generalizes the classical isoperimetric
inequality in S" This inequality is especially interesting when Ricei
G — « along with dim G — = as it implies the following remarkable
concentration of values of functions f; : Gi— R with ||grad fi||,, <
const,

The pushforwards of the Haar measures on G; weekly converge
to the Dirac d-measure on R for dim G;— «, provided the biinva-
riant metrics are normolized to have Diam(G;, g))=1 and f; are

normalized by f f,— 0, (See [Mi-S]).
o

SINGULAR SPACES WITH Ricci > 0. The theory of these spaces does
not exist yet. It seems hard (if at all possible) to express adequately
the inequality Ricci > 0 by some universal distance inequality similar
to Alexandrov-Toponogov for K > 0. Although the condition Ricci >0
does imply some relations on the distance, e.g. those related to balls
inside a larger ball (see above), these are not strong enough to
characterize Ricci > 0. Let us state a finer inequality of this kind,
that appears very much similar to A-T but still does not furnish a
characterization of Ricei > 0. We consider, as in the case K > 0,
four points v; € V, t =20, 1, 2, 3 where v; lies on a minimizing segment
[v1,v2] (see Fig. 15 in § 814) and we want to give the lower bound
on the distance |vo— v;| between v, and v;. Denote by E the excess
in the triangle inequality for (vg, vy, v2), that is

E = vy —v,| + |Vo — V2| — |¥1 — 2
and let
8 ==min([ve— v1|, [9o — v2).

Then, if Ricci = 0, the distance |vo — vs| satisfies the following

ABRESCH-GROMOLL INEQUALITY,
1

oo —vs] = (s(E/4)1)" .
(See [Che] for a proof).

Recall that the distance inequalities, in general, characterize
the image of the distance function on V¥, denoted My(V¥) < RY,
__N(N—1)

N’ = (see the discussion preceeding Alexandrov-Toponogov
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in § 31%). Now, the Ricei curvature manifests itself via the tube
inequalities for the volume behavior of the distance function. Thus
one may expect the desired abstract characterization of Ricci > 0
in terms of the push-forward of the Riemannian measure to 1RY.
(For example, the Bishop inequality (4 <) is of this nature). Notice
that for general metric spaces there is no distinguished measure, and
so the (hypothetical) theory of Riceci = 0 must include a measure as
a given element of the structure along with the metric.

An important feature of the theory of spaces with K > 0 defined
by A-T is the good behavior under the Haussdorf limits of sequences
of spaces, where the Haussdorf convergence V;— V roughly cor-
responds to the convergence, for every N=2,3, ..., of the subsets
My(VY) c RY to My(V?) for the Haussdorf metric (see [G-L-P]
more about it). Now, in the Ricci curvature case one probably should
allow weak Haussdorf limits corresponding to weak limit of the
My-pushforward measures on 1RY.

There is another option for the abstract theory of Ricci > 0
where instead of the metric ont emphasizes the keat flow (diffision)
on V, but at this stage it is unclear whether the two approaches are
equivalent and if not which one is better for applications.

Let us indicate a specific problem giving more substance to the
above discussion. We recall that smooth manifolds with Ricci = o > 0
satisfy Paul Levy’s inequality which implies, in turn, certain bounds
on the spectrum of the Laplace operator A4 and on the heat kernel
on V. (See [Mi-S], [Gal]). Now we ask if similar bounds remain
valid on singular spaces with K > 0 where the extra condition
Ricei = o is enforced in an appropriate way. For example one can
strengthen the A-T-inequality in § 314 to make it equivalent to
K > ¢/7—1 which would imply the above bound on Ricci. (For the
meaning of the spectrum of A etc. on an abstract metric space we
refer to [Gr].).

ON RiccI < 0. The traced tube formula does not provide much infor-
mation if Ricci < 0 (unlike the case K < 0) and in fact nothing is
known on the geometric meaning of this condition. It seems that the
only known result is the old theorem by Bochner saying that a
closed manifold V with Ricci < 0 must have finite isometry group.
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Also no topological restriction on V seems to issue from the negative
Ricei. One believes nowadays that every manifold of dimension n>3
admits a complete metric with Ricei < 0. (For » = 8 this is a
theorem of Gao and Yau) (*).

EXAMPLE. If V is immersed into 1R™ for some m as a minimal sub-
variety then the induced metric has Ricei < 0 (by an easy compu-
tation) and one may expect that every open manifold V admits a
complete minimal immersion into some Euclidean space.

REMARKS ON PSEUDOCONVEXITY AND POSITIVE BISECTIONAL CURVATURE.
The notion of pseudoconvexity of domains and hypersurfaces is ™
(see § 14) interpolates between convexity and mean convexity. Then
one may ask what are the manifolds endowed with complex struc-
tures and Riemannian metrics where the inward equidistant defor-
mations preserve pseudoconvexity. Notice, that a priori there may
be no such manifolds at all, but, in fact, they do exist. They are
Kihler manifolds with a certain inequality on the curvature tensor
called the positivity of the bisectional curvature. (For example every
Kihler manifold with K > 0 has bisectional curvature > 0). A theo-
rem of Siu-Yau claims that every closed manifold with strictly
positive bisectional curvature is diffeomorphic (even biholomorphic)
to ¢ P Yet there is no direct proof of this result using pstudoconvex
deformations. (Siu and Yau use harmonic maps S?— V, compare
§ 7. There is another approach due to S. Mori who appeals to
algebraic geometry over finite (!) fields). On the other hand the
pseudoconvexity considerations are very useful in the study of com-
plex subvarieties in V with positive bisectional curvature. For exam-
ple, for every complex hypersurface H — ¢ P™ the regions

V. ={veQPr|dist(v, H) = ¢}

are pseudoconvex and, hence, by easy Morse theory ¢ P — H has
the homotpy type of an m-dimensional polyhedron. This is (the special
case of) the famous theorem of Lefschitz.

Finally we notice for experts that similar positivity conditions
can be introduced for other manifolds with restricted holonomy, but
the usefulness of these is limited by the list of known examples.

(*) A strengthened version of this conjecture, namely the %-principle for
Ricei < 0, is proven by Lohkamp for all n = 3.
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§ 6. POSITIVE SCALAR CURVATURE.

The formal definition of the scalar curvature Sc(V) is easy,
Se(V) = Trace, Ricci V.

Then, if we recall the definition of Ricei in terms of the sectional
curvature, we can compute Sc at a given point v € V by using an
orthonormal frame »,,,,, v, in T,(V) and adding together the sec-
tional curvatures of the planes oy, spanned by » and » for all 1 < 4,

i<n and n=dimV, Sc¢,(V)= EK (0y4). Thus the unit sphere

L)
S* « R*+! has Sc=n(n-—1) (which gives 2 for the 2-sphere whose
sectional curvature K—=—1). One can make the above look more
geometric by using the integral of Ricei(s, s) over the unit sphere

S*-1 < T,(V) instead of the trace (or the sum}: K(04)). Then, ac-
cording to the tube formula, Se,(V) measures thg excess of the total
mean curvature of the ¢-sphere S(V,¢) in V around v for ¢ — 0 over
the total mean curvature of the Euclidean e-sphere. To see this we
observe that the rescaled spheres 1 S(V,¢) form a smooth family
in e>0 at £e==0, where ¢!S means (S,e2¢.) for the induced
Riemannian metric g, on the g-sphere S(V, )V and where ¢-2S(V, ¢)
for ¢=—=0 refers to the unit Euclidean sphere S"-' < T,(V). This
makes sense as we identify S*-1 with S(V, ¢) by relating the tangent
vectors 7 € S»-1 to the ¢-ends of the geodesic e-segments issuing from
v and tangent to . (The smoothness of the family ¢-2 g, at 0 follows
from the smoothness of g at » € V). Now we formally expand g. into
a power series in g,

9528290 +E‘ag1+£4g2—|—...,

where ¢,,i=20, 1, ..., are some quadratic differential forms on S*-!
with g, being the spherical metric. Then the shape operators A, of
S(V,¢) (defined by (A,.7, 7). =I,(7, '), see §§ 0, 1, 2) are also
expanded as

A5=E_l Id+A0+ £A1+82A2+ .

where 4, and A;, i=20, 1, ..., are operators on the tangent bundle
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T(S*1) for S*-! identified with S(V, ). Then we invoke the basic
tube formula

dA.
de

=—A'+B

(see (#x) in § 2) and substitute the above series for 4,. Thus we
obtain

_S_2Id + A1 + 2£A2 —|— ves ==

—(e2ld 4+ 1240+ A, + 24, + (4o A1 + ..) +..) + B,
Which implies
(*) A=etld4 4B+,
where the omitted term is 0(¢?). Then we take the traces of the

operators in () (these are T,(S*1)— T,(S*-1)s €S*-1), and arrive at
the following relation (for functions) on S*-1,

Mi=—=(n—1)¢t — % Ricei -+ ...

where M, is the mean curvature of S(V,¢) and Ricci stands for
Ricei (s,8),s€8* 1 c T,(V). Now we want to evaluate the integral
of M, over S(V,¢) and we have to exercise some control over the
volume density on S(V, ¢). We write this as J, ds for the spheriecal
measure ds on S*! and a (demsity) function J, on S"-!, which is
related to M, by the equation

dJ .
de

=J.M,

(see § 5). We look for a solution in the form
Je=g"1 4 b, e* + by 161 4 ...
(this is justified by the smoothness of g as earlier) and see that

(M—1) &2+ by et + (N + 1) bpyr &+ ==

(%5 B o By 241 ) { (0 —1) 7t — £ Rieei +.).
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It follows, that b, =0 and
(14 1) byy = — 5~ Ricci + (1—1) b,

Therefore,
n+l

6

(**) J£= En_l -

Ricei + ...,

and so the (n—1)-dimensional volume of the sphere S(V,¢) = V is

Vol S(V, &) = &1 (1 — & o, Sc, + ...) Vol S»-1,
where
Oy — (Gn)_l ’

(as the average of Ricci(s, s) over S"1 equals Trace Ricci/n). We
also can write down the integral mean curvature of S(V, ¢) by

M, = { M, J,ds,
Sn—1
which gives us

M, =2 (n—1—g B, Sc + ..) Vol S*-1,

where g, =n"1 (% + n;— 1

). So, as we claimed, the scalar curva-

ture measures the excess of the integral mean curvature M, of S (V, ¢
over that for the Euclidean spheres S(1R", ¢) (where M — g"2(n—1)).
In fact, the above formula for Vol S(V, ¢) gives a similar interpre-
tation of Sc¢ by the excess of the volume of the spheres S(V,¢) and
then by integrating over ¢ one gets yet another such relation, this
time for the balls B(V, ¢} — V around v,

Vol B(V, &) = ¢"(1 — & a,, S¢, + ...} Vol B*,

where B" denotes the unit ball in R*. For example, if Sc¢, (V) > 0
then every sufficiently small ball B(V, ¢} has

Vol B(V, &) < & Vol B* = Vol B(RR", ¢).

Conversely, if
Vol B(V,¢) < ¢ Vol B"
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for all sufficiently small ¢ then Sc,(V) = 0. (Notice, that our discus-
sion here and earlier only makes sense for n = 2. If n =— 1 all
Riemannian manifolds are locally isometric to R and there is no
curvature to speak of).

It may seem at this stage that we have achieved a certain under-
standing of the scalar curvature of V. Yet the above infinitesimal
relations for S¢ do not integrate the way it was happening for the
sectional curvature and Ricci. In fact, we are still nowhere as far
as the geometry and topology of manifolds with Sc¢ = 0 (or S¢ < 0)
is concerned. To see the probem from another angle let us look at
certain examples of manifolds with Sc¢ > 0. First we observe that
the scalar curvature is additive for the Cartesian product of mani-
folds. Thus, if a manifold V has inf S¢ > — «, (e.g. V is compact)
then the product of V with a small round sphere S2(8) — R? (which
has Sc(S2(9))=2 6-2) has positive scalar curvature. This product
manifold V X S2(é) is, on the other hand, as geometrically and
topologically complicated as the underlying manifold V and it may
appear hopeless to find any global pattern for Se > 0.

The first global result for S¢ > 0 was obtained by Lichnerowicz
in 1963 who proved the following

LICHNEROWICZ THEOREM. If o closed 4k-dimensional spin manifold V
admits a metric with Sc > 0, then a certain characteristic number
of V, namely the A-genus, vanishes.

The meaning of « spin » and « ff-genus » will be discussed later
on along with the idea of the proof (which uses in an essential way
the Atiyah-Singer index theorem applied to the Dirac operator). Here
we only indicate a particular example of V, where the theorem
applies.

ExXAMPLE. Let V be a smooth complex hypersurface of degree d in
CPm+1, If m is even, then the (real) dimension of V is divisible
by 4. Furthermore, if d is even, then V is spin. Finally if d > m 4 2,
then X(V)% 0, and so such a V cannot have a Riemannian metric
with § ¢ ¥V > 0. The simplest such manifold is quartic (i.e. d=24)
in ¢ P3, which is a 4-dimensional simply connected manifold V* which
by Lichnerowicz’s theorem admits no metric with S¢c > 0. (By Yau’s
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theorem mentioned in § 5 this V* admits a metric with Rieei =290,
and hence with Sc = 0. On the other hand, even if we are content to
show <« no metric with Ricei > 0 » or even less, « no metric with
K > 0 », we are still unable to do it geometrically without an appeal
to the deep analysis underlying the proof of the Lichnerowicz
theorem).

The method of Lichnerowicz was extensively developed by
N. Hitchin, who has shown, among other things, that there exists
an exotic 9-dimensional sphere V (i.e. a manifold which is homeo-
morphic but not diffeomorphic to S°) which admits no metric with
Sc > 0. (In fact, half of the exotic spheres in dimension 1 and 2
(mod. 8) carry no such metrics by Hitchin’s theorem). Here again,
there is no alternative geometric approach even with Se > 0 replaced
by K > 0.

SCALAR CURVATURE AND MINIMAL HYPERSURFACES. The first geometric
insight into S¢ > 0 was achieved by Schoen and Yau in 1979 with
the following innocuously looking modification of the traced tube
formula (see (*+) in § 5) for surfaces W in a 3-dimensional mani-
fold V. At every point »€ W we consider the tangent plane ¢, = T,(W)
and the unit normal vector v, to W. (We assume W is cooriented and
stick to inward looking »). First we observe that our formulas expres-
sing Ricci and Se in terms of K imply, that

Se, = 2K (s,) + 2 Ricei (v, , »,).

(In general, for hypersurfaces W in V" for » > 38 the term 2K (o,)
must be replaced by the sum of K(oy;) for some orthonormal basis
Y13 ey Vn_1 I To(W)). Then we bring in the principal curvatures i,
and 1. of W at v and recall that the sectional curvature of W with
the induced metric is expressed according to Gauss’ formula (Teo-
rema egregium in § 2) as

K(W,0,) =K(V, 0.) + A1 42,
which is equivalent to

K(W,0,)=K(V,0,) + % (M2 — Trace A?)

where A is the shape operator of W (whose eigenvalues are exactly
i1 and io) and M = Trace A = i; + /. is the mean curvature of W.
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The tube formula (see (%) in § 5) expresses the derivative of

M under the normal equidistant deformation W, of W=W,at e=0
as follows

M

de

= — Trace A2 — Rieei (, »).

Then we recall that M equals the (logarithmic) derivative of the
volume density on W, at ¢=—0 (see § 5). It follows by integration

over W, that the derivative — Area W, at ¢=0 equals the total

mean curvature of W

H:[de.

w
(We say « Area » rather than « Vol » since dim W = 2).

Then we observe that

M / M dw + [Mz dw,
de
where the second summand is due to the variation of the volume

(area) element dw = Vol, _, expressed by the mean curvature. Then

we substitute Ricci in the above tube formula for % by

1
— Sc(V) 4 K(V|T(W))
and then we use the Gauss formula

K({V|T(W)=KW) + (Tra.ce A2 — M?),

Thus we obtain the following second variation formula for the area
of W=W, at e=0.

dﬂﬁ”:% —%[(_Sc V + 2K(W) — Trace A* + M*) dw =

w

(+) [ (= Se(¥) + KO + i 2o ) duw

v

w
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Now, we reall the Gauss-Bonnet theorem

(R
P

where y denotes the Euler characteristic and W is assumed compact
without boundary. Then, if Se(V)=0, w have the following inequality,

2
dAra W _ 2nx(W)-}—fll 70 dw.
de?
w
In particular, if y(W) < 0 and W is a saddle surface, i.e. if i; 1» < 0,
then

dz A
(++) ————;;aw < 0.

Notice, that as at the previous occasions, this conclusion only
applies to small equidistant deformations which do not distroy the
smoothness of W. Now, instead of extending the above computation
to non-smooth W, as we did earlier for K > 0 and Ricei > 0, we
follow the idea of Schoen and Yau and apply (--4) to smooth
minimal surfaces W in V. (Non-smooth extension of the above is
questionable because of the saddle condition). The existence of such
surfaces is insured by the following theorem known since long in
the geometric measure theory (see, e.g. [Law]).

Every 2-dimensional homology class in a closed Riemannian
3 dimensional V can be represented by a smooth absolutely mini-
mizing embedded oriented surface W < V.

Recall that « absolutely minimizing » means that every surface
W’ < V homologous to W has

Area W > Area W.

REMARK. A similar result remains valid for minimal hypersurfaces
W in V* for n > 3 but now these W may have singularities. One
knows, that the singularity is absent for » < 7 and, in general, it
has codimension > 7 in W.

Now, since a minimizing surface W provides the minimum for
the function W > Area W on the space of surfaces in V, the first
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variation of Area is clearly zero and the second is non-negative.
In particular

d2 Area W
—— =

iz 0

Moreover, every connected component of W, say W,, also has

d? Area W,
— >

D 0.

Furthermore, minimal surfaces have M =1, 4 42=0 and so are
saddle. Hence, the above inequality is incompatible with Se(V) = 0
and the issuing inequality (4 ) unless ¥(V) > 0. Thus we conclude
to the following.

SCHOEN-YAU THEOREM. Let V be a closed 3-dimensional Riemannian
manifold with Sc(V) = 0. Then every homology class in Hy(V) can
be realized by an embedded oriented surface W whose every com-
nected componenti has y > 0.

EXAMPLE. Let V=1V, X S! where V, is an orientable surface of
genus = 2 (i.e. x(Vo) < 0). Then elementary topology tells us that
Vo=V, X 8o — V is mot homologous to a surface whose all com-
ponents have genus < 1. Therefore this V admits no metric with
Se¢ = 0. (By an obvious readjustment of the above discussion, one
rules out Se > 0 starting from genus(V,y)=1).

Schoen and Yau have generalized their method to manifolds V»
with » < 7 and they proved that if Sc(V®) = 0, then every class in
H=-1(V") cam be realized by a hypersurface W which admits some
metric with Sc > 0. In fact, they take the valume minimizing hyper-
surface for W < V* and then modify the induced metric in W by a
conformal factor to make Sc¢ > 0. This does not work for n > 7 due
to the (possible) presence of singularities on minimal W but later
on Schoen and Yau indicated a way out of this problem. (See [Sch]
for a brief account of these results).

The above theorem of Schoen-Yau shows (by a simple induction
on n) that there are non-trivial topological restrictions on V* with
Se(V*) > 0. For example, the Cartesian product of surfaces of genus
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> 2 admits no such metric. Furthermore, their method can be refined
in order to provide non-trivial geometric restrictions on V as well.
For example, let V* be a complete non-compact oriented Riemannian
manifold without boundary with uniformely positive scalar curva-
ture, i.e. Sc(V*) = ¢ > 0. Then V* admits no proper distance de-
creasing map to R» of non-zero degree. In other words, V* is no
larger than 1R*.

EXAMPLE. Let V*=3S, X 1R"-? with the product metric. Clearly this
V* (which has S¢ > ¢ > 0) admits no above map to R" But if we
modify the product metric g5 4 g on V* =82 X R"*-2 by introducing
a so-called warping factor, that is a positive function ¢ : R*>* >R,
and by making g==g¢gs -+ g&, then for (V, g} we can easily produce
a contracting proper map into IR* of degree one, provided the
function ¢(z) satisfies the asymptotic relation

p(x) = o for x — 0.
It follows, that such a warping ¢ necessarily makes
infScg < 0,

though it is not hard to achieve Sc g > 0 non-uniformly on V.

§ 614. SPINORS AND THE DIRAC OPERATOR.

Now we return to Lichnerowicz’ approach. First we recall that
the fundamental group of the special orthogonal group is

Z for n=2
1 (SO(n)) =
Z. for n>38.

Thus SO(n), for all n > 2, admits a unique double cover denoted
Spin(n) — SO(n),

where Spin(n) carries a natural structure of a Lie group such that
the above covering map is a homomorphism. (This is quite obvious
for SO(2)=— 8! and easy but not all obvious for = > 3).
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Next, for a Riemannian manifold V, we look at the orthonormal
frame bundle SO(V), that is the principal bundle with the fiber
SO(n), n=—=dim V, associated to T(V), and we ask ourselves if there
exists a double cover

Spin(V) — SO(V)

which reduces over each point v € V to the above Spin(n) — SO(n).
This is clearly possible if the tangent bundle (and, hence, SO(V) as
well) is trivial, T(V)=V X R*, as one can take V X Spin(n) for
Spin V. In general, there is a topological obstruction for the existence
of Spin(V) which can be easily identified with the second Stiefel-
Whitney class w.(V). This is a certain cohomology class in H2(V, Z.)
which measures non-triviality of T(V) and which is also known to
be a homotopy invariant of V. In any case, w, =0 if H2(V, Z,)=10
and then Spin(V)— SO(V) does exist.

The space Spin(V), whenever it exists, has a natural structure
of a principal Spin(n) bundle over V and then one may look for
associated vector bundles. These come along with linear representa-
tions of the group Spin(n). There are, for even n = 2r, two distin-
guished faithful (spin) representations of Spin(n) of (lowest possible)
dimension 2-1, for which the corresponding vector bundles, denoted
S, —>V and S_— V, are called the positive and negative spin bun-
dles, whose sections are called (positive and negative) spinors on V.
Atiyah and Singer have discovered a remarkable elliptic differential
operator between the spinors, i.e.

D, :C*(S,)—>C*(S.),

which they call the Dirac operator. This operator is constructed with
the connection v, in S, induced by the Levi-Civitta connection in V,
where the connection in S, is thought of as an operator from spinors
to spinor valued 1-forms on V, i.e.

V+ ¢ C* (S,)—2(8,).

Then D, is obtained by composing  with a certain canonical vector
bundle homomorphism 2!(S,)—> S_ coming from some algebraic
manipulations with spin representations. (We somewhat abuse the
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notations by using £!(S.) for the bundle of spinor-forms as well as
for the sections of this bundle). Notice that D, is defined locally
and needs no « spin condition » w.—= 0, but if w, 40, then spinors
are globally defined only up to =+ sign. The interested reader may
look to the book [I-M] for an actual construction of the spinors
and Dirac. Here we just assume the existence of certain bundles S,
and S_ and an operator D, with the properties stated below.

Besides the operator D, we need its twin, called
D_:C*(S_)>C"(S,)

which is constructed in th same way as D, and which can be defined
as the adjoint operator to D, for the natural Euclidean structure
on the spin-bundles. Then one looks at the index of D_, ie.

Ind D, =dim ker D, — dim ker D _,

where the dimensions of the kernels of D, and D_ are finite if V
is a closed manifold, since the operators D, and D_ are elliptic. The
remarkeble (and easy to prove) property of the index is the inva-
riance under the deformations of D, in the class of elliptic operators
between spinors. In particular, this index does not depend on the
Riemannian metric used for the definition of D, and so it represents
a topological invariant of V. The famous theorem of Atiyah and
Singer identifies Ind D, with a certain characteristic number called
ﬁ-ge’nus of V, but for our present purpose we may define K-genus
as Ind D, . The only serious property of D, we need at the moment
is non-vanishing of A (V) for certain manifolds V. (Otherwise, what
follows will be vacuous).

Now we need another operator associated with v, , called
Bochner Laplacian,

A, =vVivs:C*(8)—C"(8)),
where

vt 1(S,)— C* (S.)

is the adjoint to v, . This Laplacian makes sense for an arbitrary

Seminario Matematico e Figico - 7
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vector bundle with a Euclidean connection over V and an important
property of A, is positivity, i.e.

f (A, 88)=0

w

for all spinors s : V-8, . (The Bochner Laplacian for the trivial
1-dimensional bundle reduces to the classical Laplace Beltrami ope-
rator A=d* d on functions whose positivity follows by integration

by parts, as f fAf = f (df, df), and a similar consideration proves
positivity of A, on spinors).
Now the scalar curvature enters the game via the following

LICHNEROWICZ FORMULA. The operator D_D, +D,D_on S, P S_
is related to A, + A_ by

D.D,+D,D.—4, + A_ +% Seld.

Recall that Sc=Sc(V) denotes the scalar curvature which is a
function on V and Id is the identity operator on C*(S. @ S_).

The proof of the Lichnerowicz formula consists of a straight-
forward (infinitesimal) algebraic computation which is quite easy
with the definitions (we have not given) of D, and D_. Yet the
geometric meaning of the formula remains obscure.

COROLLARY. If a closed Riemannian spin (i.e. with w,=—0) manifold
V has Sc(V) > 0 then every harmonic spinor on V vanishes and so

A(V)=Ind D, —0.

Here, <harmonic spinor » means a spinor s= (s, ,s_Y€C*(S,PS.),
such that

Ds=D, s, +-D_s_=0.

def

The proof of the corollary is obvious.

[ (Ds, )= [ (45,8) + Se s, ),
14

v
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which implies by positivity of 4 that

f (Ds, 8) = fSc(s,s)
vV

vV

and then for Ds— 0 we get
fSc (s,8) <0
;

which is possibile only for s =0 since Se¢ > 0.

Notice again, that this Corollary is non-vacuous since there exist

spin manifolds with 21\9&0, e.g. complex hypersurfaces in ¢ P+
mentioned earlier in § 6. This property of non-vanishing of Ind D
for some V and the Lichnerowicz formula is all which is needed
from spinors and Dirac in order to show that some manifolds V
admit no metric with Se¢ > 0.

Although we do not quite understand the geometry behind the
Lichnerowicz formula, we can use this formula to reveal some geo-
metry of V with S¢ V = ¢ > 0. Namely, we want to show that such
a V cannot be « too large ». For example, it cannot be much larger
than the unit sphere S”. Indeed imagine that V is much larger than
S in the sense that there exists a smooth map f : V — S* of degree
d 5= 0, such that the differential of f is everywhere small,

DAl < & vEV.

Then we pull-back to V some fixed vector bundle F, with a Euclidean
connection over S The pull-backed bundle, say E over V, is « e-flat »,
that is locally ¢-close to a trivial bundle. In particular, the twisted
Dirac operator, denoted D, QF : C* (S, ® E)-> E* (S_.® FE) is
locally c-close to the direct sum of % copies of D, for k—=rank E.
(If E= 1R* X V— V with the trivial connection then

S, @E=8, +8, +..+ 8,
k

and the twisted Dirac is D, 4+ D, 4 ... + D, . The definition of the
twisting with a non-trivial connection is such that the eflatness of E
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makes the twisted Dirac eclose to D, + D, + ... + D.). 1t follows,
that is ¢ is small compared to ¢=—=inf S¢ V > 0, then the twisted
4

Dirac operator D, ® E has
IndD,  E=0
by an e-perturbed version of the Lichnerowicz formula.

Now, one can find in certain cases a bundle E, such that
IndD ® E;+<0. In fact, on can always produce such a (complex
vector bundle) E, over an even dimensional sphere, as follows from
the Atiyah-Singer index theorem applied to D, ® E. Therefore, no
spin manifold ¥V with Sc¢(V) > ¢ > 0 can be ¢! times greater than
S* for ¢ << ¢, (where the odd-dimensional case reduces to the even
dimensional one by multiplying V by a long circle S1).

The reader may be justly dissatisfied at this point as the discus-
sion was incomplete and quite formal. A detailed exposition can be
found in the book [L-M] but filling in the details does not seem to
reveal extra geometry.

CONCLUDING REMARKS. The existence of two so different approaches
to Se¢ > 0 has no rational explanation at the present state of art.
In general terms, the Schoen-Yau method appeals to the (non-linear)
analysis in the space of submanifolds in V while the Dirac operator
approach uses the linear analysis (of spinors) over V. One may hope
for the existence of a unified general theory which would treat
simultaneously non-linear objects inside V as well as linear ones
over V in a way similar to what happens in algebraic geometry.
Probably, such a unification may be possible only in an infinite
dimensional framework.

SCALAR CURVATURE < 0. This condition has no topological effct on
V by a theorem of Kazdan and Warner which claims the existence
of a metric Sc < 0 on every manifold of dimension n > 3. Probably,
the global geometry of V is also unsensitive to S¢ < 0 (though the
condition Sc¢ = ¢ for ¢ < 0 does have non-trivial corollaries) (*).

(*) The flexibility and the h-principle (in the sense bf [Gro]) for Sc <0
is proven by Lohkamp.
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§ 7. THE CURVATURE OPERATOR AND RELATED INVARIANTS.

We have mentioned in the end of § 2 that the sectional curvature
function on the space of 2-planes of V, i.e.

K:Gr, Vo R

uniquely extends to a quadratic form (function) @ on the bundle
A2 T(V), and the symmetric operator R : A2 T(V)— A2 T(V) cor-
responding to @ is called the curvature operator. The condition K > 0
can be expressed in terms of Q by

Q(zAv, TA») =0

for all tangent vectors 7,» in T,(V), v € V, while strict positivity
K > 0 corresponds to Q(zAv tA ») > 0 for all pairs of lLnearly
independent pairs (z, »).

From the point of view of @ a more natural condition is @ > 0

which means Q(a, ) = 0 for all a € A2 T(V) (that may be sums
k

a=2 7iAv; for k > 1) which is called positivity of the curvature
=1

operator R. Then strict positivity of R refers to positive definiteness

of @. Similarly one introduces the (strict and non-strict) negativity

of @ and R.

The above positivity of @ and R is a significantly more restrictive
condition than K > 0. Yet, the basic examples of manifolds with
K > 0 also have @ > 0. Namely, convex hypersurfaces in R*-! and
compact symmetric spaces have Q > 0. Also Cartesian products of
manifolds with @ > 0 have Q = 0.

To see the point of departure between K = 0 and @ = 0 we
look at the complex projective space € P* with a U(n 4- 1)-invariant
Riemannian metric g for a natural action of the unitary group
on € P, It is not hard to see that such a g (which exists because
U(n + 1) is compact) is unique up to a scalar multiple and (CP~, 9)
is a symmetric space of rank one which is equivalent for compact
symmetric spaces to K > 0. In fact, we already know (see § 334)

that the sectional curvatures of g are pinched between —1— a and o
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for some constant @ > 0 depending on (normalization of) g. (An
inquisitive reader would be happy to learn that ¢ — a-! (Diam
(C P, 9)3).

On the other hand, the curvature operator R is only non-strictly
positive, i.e. the form Q is only semi-positive definite. Thus a small
perturbation of ¢ may easily break the condition R > 0 without
destroying K = 0.

The above example of € P* is especially interesting in view of
the following well known

CONJECTURE. If a closed n-dimensional Riemannian manifold has
R > 0 then its universal covering is diffeomorphic to the sphere S".

The positive solution is clagsical for n =— 2 where R is the same

as K and f K > 0 implies 4(V) > 0 by the Gauss-Bonnet theorem.
' 4

The cases n=—23,4 are due to R. Hamilton whose proof uses
a deep analysis of a heat flow on the space of metrics. Namely,
Hamilton considers the following differential equation for a one-
parameter family of metrics g, on V,

dg;
dt

= an 9: — 2 Ricci(g:)

for gn=2n-1 f Sc(g:)/Vol(V, g;), and he provss the solvability of
v

this for a given initial metric g — ¢, . Then he shows that the re-
sulting heat flow preserves the subspace of metrics g with R(g) > 0.
(This is called « heat flow » since the correspondence g > Ricci(g)
is a differential operator on quadratic differential forms on V which
is in many respects similar to the Laplace operator on functions.
Notice that Ricci is a non-linear operator but it has a remarkable
(albeit obvious) property of commuting with the action of the group
of diffeomorphisms of V on the space of metrics).

Finally, for n—=38 and 4 Hamilton proves that the solution g,
of his equation with R(g,) > 0 converges as t— o to a metric ¢~
of constant positive curvature which makes the universal covering
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(‘7’, Zw) obviously isometric to S*. Notice that Hamilton’s proof yields
the solution of the strengthened conjecture which claims the existence
of a (Diff V)-invariant contraction of the space of metrics with
R = 0 to the subspace with K =1.

Also notice that for n—3 Hamilton only needs Ricei V > 0 in
order to make his method work.

The basic point in Hamilton’s approach is the study of the
evolution of the curvature tensor under the heat flow, where the
condition KB > 0 becomes crucial because it is invariant under the
flow. (Notice that the term o, ¢g: in Hamilton’s equation is brought
in for the purpose of a normalization, while the curvature discussion

applies to the equation ‘fg = — 2 Ricci(g,)).

There are other more stringent curvature conditions which are
also invariant under the heat flow and for some cases one is able
to prove the eventual contractibility to constant curvature. For exam-
ple one has as a corollary the following result for metrics g with
point-wise pinched sectional curvature.

(RUH-HUISKEN-MARGARIN-NISHIKAVA) Let the sectional curvature
K : Gr.(V)— R of a closed Riemannion n-dimensionsional manifold
V be pinched (i.e. restricted) at each point vEV by

¢, a(?) < K(o) < a(v),
3

where a is a positive function on V and ¢, =1 —3(2n)—?, while o
stands for an arbitrary 2-plane in T.(V). Then V is diffeomorphic
to Sn.

Notice that the above theorem is quite non-trivial for any ¢, < 1.
For example, such a condition is satisfied for n=2 (where there
is only one ¢ at each v) by every metric with K > 0 and so the cor-
responding heat flow does not amount to a small perturbation of
the original metric. (See [Bou] for an exposition of the heat flow
method).

BOCHNER FORMULAS. Many natural (but usually complicated) curva-
ture expressions go along with natural differential operators on V.
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For example, we could define the scalar curvature of V with the
Dirac operator D=D_ @ D_ by

Seld=4(D*— y*v)

where Id is an identity operator on the spin bundle S=S, d S_
(compare Lichnerowick’ formula in § 614).

Now we want to do a similar comparison between the Hodge-de
Rhem Laplacian A on k-forms on V and the rough (Bochner) Lapla-
sian vy *v, where y denotes the Levi-Civita connection of V
extended to the bundle A* T*(V) of k-forms on V.

It is not hard to see that the two operators coincide if V is flat
(i.e. locally Euclidean). Then we recall that every metric g can be
infinitesimally first order approximated at each point by a (oscu-
lating, see § 2) flat metric. Then the following result comes as no
surprise.

The differential operator A — v * vV has zero order and is given
by a symmetric endomorphism Ry of the bundle AxT*(V), where Ry
is algebraically (even linearly) expressible by the curvature temsor
of V. (Here « symmetric » means that B; is a symmetric operator on
every fiber of the bundle).

Another way to put it is by writing
A= y*V + R,

which is called the Bochner (or Bochner-Weitzenbock) formula for A.
The expression of B, in terms of the curvature operator R is rather
complicated for ¥ > 2 (see, e.g. [Bes]) but for k==1 it is quite
transparent. Namely

R; — Ricci¥,

that is the symmetric operator on the cotangent bundle T*(V) as-
sociated with the quadratic form Ricei in T'(V) in the natural manner
via the underlying metric g. It is worth observing that this Bochner
formula

Ao= 7 * 7 o + Ricci*(w)

applied to exact forms « —df, where the function 7 has unit gra-
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dient, i.e.

]| = ||@f|| = ||grad f|| =1,

is essentially the same thing as the traced tube formula from § 5
applied to the levels W, = {f(x)=¢}.

The Bochner formula with Ricei* immediately implies that if
Ricei > 0), then every harmonic 1-form on V vanishes (compare the
proof of Lichnerowicz’ theorem in § 614) and thus

H'(H, R)=0.

(We have indicated another proof of this in § 5 using the more
powerful Cheeger-Gromoll splitting theorem, but the above analytic
proof by Bochner is older by a quarter of a century).

The operators R, for k > 2 are significantly more complicated
than Ricei*. Yet one has the following result of Bochner-Yano-Berger-
Meyer, (see [L-M]).

If R>0 then Ry >0 (i.e. positive definiter for all k0,
n=dim V. Thus every closed Riemannian manifold with positive
curvature operators has H*(V, R) =0 for 1 <k <n—1,

This result shows that R > 0 implies that V is a rational homo-
logy spherg which is significantly weaker than being diffeomorphic
to the sphere required by the conjecture stated above. Now, a recent
theorem by Micallef and Moore claims that the universal covering
of V is, in fact a homotopy sphere, and hence homeomorphic to the
sphere by the Poincaré conjecture (solved for » > 5 by S. Smale
and for n—=4 by M. Freedman. The remaining case n=—238 for
Ricei > 0 is taken care of by Hamilton’s theorem cited earlier).
The method of Micallef-Moore is similar to that employed by
Sin and Yau in their study of Kihler manifolds with positive
bisectional curvature (see the end of § 5). Both methods make an
essential use of harmonic maps of the sphere S? into V and the
curvature appears in the second variation formula for the energy of
a harmonic map as we are going to expain next.
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§ 714. HARMONIC MAPS AND THE COMPLEXIFIED CURVATURE K¢ .

The energy of a smooth map between Riemannian manifolds, say

f WV
is defined by

< [P dw

w

E(f)=

where the squared norm of the differential
D=Df(w) : T,.(W)—=T,(V), v=7Ff(w),

at each point we W is
||Df||? = Trace D* D

where D* : T,(V)— T,(W) is the adjoint operator.

A map f is called harmonic if it is stationary (or critical) for
the energy thought of as a smooth function on the space of maps
W -—> V. The stationary condition for E at f, i.e. dE(f)==0, says in
plain words that for every smooth one-parameter deformation

fe of f=1{f, the derivative dif ) vanishes at ¢ = 0. Notice that this

derivative of E at {— 0 depends only on the « direction » of the

deformation f, at =0, that is the vector fields 6= g{ n V

along f(W). More prec’isely, 6 is a section of the induced bundle
T*=7*(T(V))— W.

Harmonic maps can also be defined as solutions of a certain
system of non-linear partial differential equations, namely the Euler-
Lagrange equations corresponding to E. This system can be written
as Af=0 where the operator 4 generalizes the classical Laplace
operator. In fact, if one takes geodesic coordinates z,,..,z, at
weW and v,..., ¥, at v=f(w) and represents f by n functions
Y =Y (f (21, ..., Tm)), then the above Af(w) becomes equal to the
ordinary Laplacian of the vector-function v, , ..., ¥, at zero, that is

( 6‘-’y1.(0)’ 2 a°y..(0))
o

ax; ax;
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EXAMPLES. (a) If V is the circle S' then every map f: W —> 8 is
locally represented by a function ¢ : W — 1R defined up to an additive
constant and

E(fy= % I llgrad of|?.

w

Then the equation Af=0 is the same as Ap =0 for the ordinary
Laplace-Btltrami operator on W.

(b) Now, let W =S* and V be arbitrary. Then

Af=VzT’
where
_af 9
t = 0O (as)

for the standard (cyclic) parameter s on S!, where % denotes the

correspondence (coordinate) vector field on S, and where vy is the
covariant derivative in V. Harmonic maps f : S'— V are those where
V. 7==0. These are exactly geodesic maps: the image of f is a
geodesic in V and the parameter is a multiple of the length.

The curvature of the ambient manifold V enters the picture
once we look at the second variation

@ E({)

2 — —

PE() =g at t=0.
In general, the second derivative in ¢ along fo(W)c V at t=0
(i.e. dzgtgf ) at t=0) depends not only on the field 6=g—]; at

of
ot ”
monic, then this derivative depends only on é which justifies the
notation 62 E in this case, in fact, if a function E has zero (first)
differential at some point f, then there is a well defined second dif-
ferential (or Hessian) H of e at f which is a quadratic form on the
vector fields ¢ at f, such that

t =0 but also on the derivative A; However, if f=f, is har-

O (OE(fyy=H (s, 0).
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THE SECOND VARIATION FORMULA FOR HARMONIC MAPS. If f is a smooth
harmonic map, then

*) FE(f)= J (|| vo||* + K(69) dw,

w

where y is the covariant dertvative of 6 in V along W and ﬁ(62)
is an algebraic quadratic expression in & tnvolving the curvature of V.
(Notice that in our earlier formulas for the second variations for
areas and volumes the field 6 was unit and normal to a hypersurface
W and the v é-term was zero). Let us make the above precise. First
we rcall that 6 is, in fact, a section of the induced bundle T* — W
and denote by 7 the connection in T* induced from the Levi-Civita
connection in T(V). Then ||7 ¢||* makes sense as vy is a differential
operator with values in the bundle Q' T* — Hom(T (W), T*) which
def

has a natural Euclidean structure coming from those in T* and T (W).

Now we take care of the curvature term. First we extend the
sectional curvature K by bilinearity to all pairs (z, ») of vectors in V.
In terms of the form Q@ on A2T(V) this reads

KA =Q(zA», TA»).

Then the curvature K (6?) is expressed at every point w € W with an
orthonormal frame z4, ..., 7, in Tw(W), m=dim W, by

m

R =— Y, K((Dr)A¥), for D=DFf,

=1

where the result does not depend on the choice of the frame. (See
[E-L], and [E-L]. for an extensive discussion of these matters).
Now, we see that K(V) < 0 makes 62 E(f) = 0 and so one may expect
that every harmonic maps provides a local minimum for the energy.
In fact, every harmonic map of a compact manifold W into a com-
plete V with K < 0 gives the absolute minimum for the energy
function (see [E-L]1).

If K(V) = 0 one may expect 62 E to be negative for those fields
0 whose (covariant) derivatives along W are small. For example,
if & is v -parallel along W, i.e. y 6 =0, then §2(F) < 0.
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EXAMPLE. Let W =_8!, then f(S') is a geodesic in V and every
vector x € T,(V), v= f(w) admits an extension to a vy -parallel field
along this geodesic. When we go around the circle, the vector 2 does
not go, in general, into itself, but into another vector, say z’ € T,(V).
The resulting map say L : T,(V)— T,(V) for L(z)=21", is called
the holonomy transformation (or parallel transport) along the loop
f(S*) and is known (by the basic property of the Levi-Civita con-
nection) to be an orthogonal linear map. Since the curve f(S!) is

geodesic (and has v, 7 = 0 as we have seen above) the tangent vector
11,:% = (Df)q’% € T,(V) is invariant under L. . then we look at
the orthogonal complement N, < T,(V) of 7, and observe that the
poerator L|N, : N,— N, fixes a unit vector »,, i.e. L(v,)=v,, in the

following two cases

(i) n=dim V=dim N, 4+ 1 is even and L is an orientation
preserving map, i.e. Det L—= 4 1;

(ii) n is odd and L is orientation reversing, i.e. Det L —=—1,

Notice, that L is orientation preserving for all loops in V if the
manifold V is orientable. But if V is non-orientable then there exists
a homotopy class of loops in V, such that L is orientation reversing
for all loops in this class.

If L(»,)=7, then the vector », extends to a global (periodic)
parallel field » in V along W for which the second variation of £ is

2 B()=— [ K(zA»ds.

&

If K(V) > 0 this variation is strictly negative and so f is not a loecal
minimum of the energy. On the other hand it is not hard to show that
if V is a closed manifold, then every homotopy class of maps S1'—> V
contains a smooth harmonic (i.e. geodesic) map f giving the absolute
minimum to the energy on this class of maps. Thus we obtain the
classical

SYNGE THEOREM (See [Mil]). Let V be a closed Riemannian manifold
with K(V) > 0. If n=dim V is odd, then V is orientable and if n
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is even, then the canonieal oriented double cover of V is simply con-
nected (e.g. if V is orientable then it is simply connected).

Notice that the proof of this theorem uses the positivity of K
along some (non-specified) closed geodesic in V and no geometric
information is needed (nor revealed) away from this geodesic. This
sharply contrasts with our study of K > 0 by means of the tube
formula (though the second variation formula for » follows from
the tube formula applied to (germs of) hypersurfaces normal to the
geodesic in question).

THE SECOND VARIATION OF THE ENERGY FOR dim W=2. If dim W > 2
then, generically, there is no vy -parallel field ¢ along W as the system
vdé=0 on W is overdetermined. In fact, the operator v applies
to sections ¢ of the induced bundle T*=f*(T(V))> W (where
f:W—V is our harmonic map) which are locally given by
n = rank T* functions on W while the target bundle for
Q1 T* — Hom (T (W), T*)), has rank — n dim W which is > n for
dim W > 1. Now let W be an oriented surface and let S— W be a
complexr vector bundle with a complex linear connection 7. The
Riemannian metric in W together with the orientation defines a
complexr structure in the bundle T(W). Namely, the multiplication
by i=V —1 is given by rotating tangent vectors by 90° counter
clockwise. Each fiber £t 8, of the bundle £'S, which consists of
R -linear maps T,(W)— S, , splits into the sum of two subspaces,
& and 27 in 2' S,, where £ consists of ( -lnear maps
0 : To(W)— 8, ie. commuting with multiplication by ¥ — 1, which
means ¢’ (} — 1 2) =} — 1 ¢’(x), while the maps ¢” € 2” anti-commute
with J—1, i.e. ¢”() —1z)=—} —1 ¢”(x). This gives us a split-
ting of ¢ into the sum of two operators, v = v’ 4 yv” for
vV :C*(S) > C* () and v” : C* (S) - C* (£2”). Notice that the
bundles 2’ and £2” have the same rank over R as S and so the
systems V' p=—0 and ¢’ ¢=—0 are determined. Now there is a
good chance they are solvable. In fact, there is an important case
where solutions are known to exist; Namely, let S be the complexi-
fication of a real vector bundle T with a FEuclidean connection
over W. Then one has the following

PropPOSITION (See [M-M]). If W is homeomorphic to the sphere S2
then the equation y” ¢ =0 has (at least) n linearly independent



SIGN AND GBOMETRIC MEANING OF CURVATURE 111

over € solutions ¢ ,..,p. : W—>S=T D | —1 T for n=rankT,
which, moreover span in each fiber S, a (complexr) subspace of
dimension > n/2.

IDEA OF THE PROOF. There is a natural complex analytic structure on
the total space of S for which holomorphic sections are exactly those
@ which satisfy v” ¢ = 0. Furthermore, the vector bundle S— W
is self-dual as a complex analytic bundle, because the Euclidean
structure on T (which is a quadratic form on T) extnds, by C-linea-
rity to a non-singulor quadratic form on S which is parallel and,
hence, holomorphic on S. Then the existence of the required n holo-
morphic sections follows from Riemann-Roch combined with the
Birkhoff-Grothendieck theorem on splitting holomorphic vector
bundles over S2 into line bundles.

Next one shows that the Laplace operator associated to w7,
that is

A = ( v//)* V”’

is related to A= vy *vy by the following Bochner-Weitzenbock
formula

A=44" = —) —~1K"

where K” is the (skew-Hermitian) endomorphism of S associated
with the curvature of y and the unit bivector field (codensity) on
W -associated with the metric in W. (We recall that the curvature
of v is a 2-form on W with values in End S and K” equals the value
of this form on 7; A 72 for orthonormal tangent vectors at every point
in W). In particular, one relates the integrals

f IV olltdw=— [ < 4g,p> dw
W w
and
f V" ol|? dw=— / < A9, 9 > dw
i W
by

[livolPdw=4 [{|a”olftdw + V=T [ < K”¢,p > du.
J .

w w
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(The above integral formulae for — < Ag, ¢ > and — < 4”7 ¢, ¢ >
are obtained by integration by parts. In fact one could define
A= y*y and A" = (y")* v” as well as the adjoint operators
v * and (v”)* by postulating these integral formulae for all smooth
sections ¢. Also notice that <, > denotes the Hermitian inner

product in S=T@ }y — 1T associated to the Euclidean structure
in 7).

We want to rewrite the second variation formula (*) for
H(9d, 8y=48?E(f) (for harmonic maps f) with [| v o||? instead of
|| v o|[%. First of all we extend the formula to the complexified bundle
S*=—=T* @} — 1 T*, where it expresses the Hermitian extension of
the Hessian of E at f. On every complex field ¢ which is a formal
combination of two real fields, p ==46; + } —186,, this Hessian is

H(p, 0) =H(5:,8) + Hio:, 0= SIE(f) + 8} E(f).

Then by the second variation formula,

Hip 9= [ 11V ol + B du,
W

where
[V ol]F==|w ][> 4- || ¥ 32||?

and f(¢2)=1?(6§)+ In{'(aﬁ) which is expressible in term of the

sectional curvature K of V and orthonormal vectors 7;, z. at each

point weW by K(p)=— — 2 K(Dz; A 6;) for the differential
18,12

D= Df(w), as we have seen earlier. (Here as always we identify

4, and 4. in T* with their images in T(V) under the tautological

map T* = f*(T(V)) - T(V)). Now we substitute f”vq;”? in H(gp, p)
by
s [1197olf +V =T [ <K’ 0>

w w

according to the previous formula and obtain the following expres-
sion for H,

Hpp=4 [ 1|9 plldw + [ K"(g») dw
w

v

w
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for

B =K@) +V—1 <K g,0>.

(Notice that K”(¢?) is real since < K” g, p > is purely imaginary).
We are going to apply this formula to fields ¢ satisfying v” ¢ =20,
which makes

Hip g)= [ B"(g) dw,
L4

and we want to know when E”(q;?) is negative (compare the Synge
theorem). The answer is obtained with the following notion of the
complexified sectional curvature Kg of V.

Extend the form Q by complex multilinearity to the complexified
tangent bundle € T(V)=T(V)®V —1 T(V) and let

Ko (aA\B)y=Q(aAp a B

for « and g in ¢ T(V) (and the obvious conjugation z+>z in the
complexified bundle). If we write a=—*t, +| —1 t; and f=t;+}/—1¢,
for vectors ¢; € T(V), then a trivial computation expresses K. in real
terms as follows,

Kg (e AB) = QU A3 — 12 Aby, G AL — I ANE) +
QUANLs —ta Aty T AT — T ALR).

With this one sees that the condition K¢ = 0 interpolates between
K = 0 and @ > 0 (i.e. the positivity of the curvature operator). Also
notice that the inequality K¢ >0, by definition, says that K¢(a AS)>0
for all pairs of ¢ -independent vectors o and 8 in € T(V).

A useful sufficient condition for positivity of K¢ is the 1/4-pin-
ching of K. That is K¢ > 0 at every point v where the sectional
curvatures K (o) satisfy

1/4a < K(o) < a

for some a=a(») > 0 and all 2-planes ¢ € T,(V). Similarly, the
negative 1/4-pinching of K(o) (between —a and —1/4 a) insures
K < 0. (This is due to Hernandez. Earlier Micallef and Moore proved

8eminario Matematico e Figico - 8
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a slightly weaker result needed for the present application. Also
notice that the pinching criterion is sharp: The complex projective
space has 1/4 < K < 1 and K is non-strictly positive).

Now we return to our map f : Wi V, we take two orthonormal
vectors 7; and 7. at some point w € W and let

D e % (Dzi— V=T Drs)€ € T(W)

for D=Df : T(W)—> T (V).

LEMMA. The above curvature term K" satisfies at each point f(w)eV,
K" (9?)=— 4Kq (D’z A o).

This is proven in [M-M] by a straighforward computation based
on the definitions of the curvatures in question.

COROLLARY. If Kg > 0 then the (complexified) second variation of
the enery is non-positive on the solutions ¢ of the equation " ¢ =0.
Furthermore, if K¢ > 0 and ¢ is non-tangent to D’ : € CT(V) at
some point f(wo) €V, then H(p, p) > 0. It follows that f is not a
local minimum. of the enérgy function f — E(f).

ProoF. The only point which may need explanation is the relation
of (the sign of) the complex Hessian with the real variation of the
energy. But for =46, + | — 1 &, the complex Hessian is the sum
of the two real ones

H(p, 9)=H (81, 61) + H(ds,8:) =61 E(f) + &; E(f)

and so the negativity of H(g, p) implies that for some of the two
real variations &} E(f) or o E(f). Q.E.D.

Now we assume that W is homeomorphic to S2 and the map
f : 82— V is non-constant. Then we have with our earlier proposi-
tion # = dim V linearly independent solutions ¢, .., p. of the
equations " ¢ = 0 which span a subspace of dimension > n/2 at
some point f(w,) € V where D" 7 = 0. Thus for » > 4 we obtain at
least one field ¢ for which H(p, o) < 0 and in general, for n > 4
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we have at least —Z— — 1 fields, such that H is negative definite on

their span.

Recall, that all this neds K¢ > 0. In fact, Micallef and Moore
prove the above under the (weaker) condition of positivity of K¢
(only) on those complex 2-planes in € T(V) on whech the complexified
Riemannian metric (which is a ¢ -quadratic form on € 7' (V)) vanishes.

The above Corollary shows, in particular, that no smooth non-
constant harmonic map f : $2— V is energy minimizing in its homo-
topy class for » > 4. On the other hand, a fundamental theorem of
Sacks and Uhlenbeck claims the existence of such f whenever the
second homotopy group n:(V) does not vanish (where V is other-
wise an arbitrarily closed Riemannian manifold). Thus K¢ (V) > 0
implies 73(V)=0 for dim V > 4 and this suffices for n=4 (by
elementary topology) to insure that the universal covering of V
(which is compact as K(V) > 0} is a homotopy sphere.

REMARK. The subtlety of the Sacks-Uhlenbeck theorem is due to the
fact that the space of maps f : 82— V with E(f) < const is non-
compact., Moreover, a simple computation (using the fact that
dim 82 —=2) reveals that the energy is invariant under the (non-
compact!) group of conformal transformations of S® and so even the
space of harmonic maps with bounded energy is non-compact. Thus
one can hardly expect convergence of any kind of a minimization
process for obtaining a harmonic map with minimal energy in a
given homotopy class of maps. In fact, one does have divergences
were a map S? — V « bubbles » into several pieces, see fig. 20 below

(3-C8-C&O,

Fig. 20.
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Such bubbling transforms a single map f: $2—> V to a finite col-
k

lection of maps f;: 82—V, i=1,..,, k, such that 2 E(fy<E()

i=1
and the homotopy classes of the maps f; add up to that of f. This
explains why one cannot have an energy minimizing map in every
homotopy class. Yet this perfectly agrees with the Sacks-Uhlenbeck
theorem claiming the existence of an energy minimizing map in
some non-trivial homotopy class though this class is not known in
advance.

Miscallef and Moore generalize the Sacks-Uhlenbeck theorem by
developing a limited Morse theory for the energy function E on the
space of maps S?2 > V and showing for n > 4 that either a closed
n-dimensional simply connected Riemannian manifold V is a homo-
tpoy sphere or there exists a non-constant harmonic map f : S2— 'V,

which admits at most k < — —2 fields gi, such that the Hessian

H(gp, p) is negative on their span. Therefore, the condition K¢ (V) > 0
implies (by the above existence discussion for ¢, with negative H)
V is a homotopy sphere.

We have mentioned earlier that the strict 1/4-pinching condi-
tion on the sectional curvature K implies strict positivity of K.
Thus the above theorem of Micallef-Moore implies the Sphere Theo-
rem (see § 33/4).

Notice, that Micallef and Moore need only local pinching, i.e.
1
X a(v) < K,(V) < a(v) for some positive function a(v) while in the
sphere theorem one requires a is a positive constant. But Moore and
Micallef do not directly produce (for locally pinched manifolds V)
any explicit geometric homeomorphism between V and S" as is done
in the proof of the sphere theorem (see § 33/4) but appeal to the

topological solution of the Poincaré conjecture for » = 4. In fact,
one has no geometric picture at all of locally pinched manifolds (even

with a constant ¢, close to 1 instead of %), dispite the remarkable

success of Micallef-Moore’s method on the topological side. Here
again, the istuation is parallel to the Synge theorem discussed earlier
in this §.
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§ 7%3. HARMONIC MAPS INTO MANIFOLDS WITH K¢ < 0.

First we only assume that K < 0 and recall the following basic
existence theorem for harmonic maps (see [E-L],).

(Eells-Sampson)} Let V and W be closed Riemannian manifolds,
where K(V) < 0. Then every continuous map W — V is homotopic
to a smooth harmonic map (which is energy minimizing in its homo-
topy class).

Notice, that for K(V) < 0 the bubbling phenomenon displayed
in Fig. 20 is impossible and harmonic maps can be obtained (as is
proven by Eells and Sampson) by a straightforward minimization
process. The condition K(V) < 0 enters via a Bochner type formula
for maps f: V— W which generalises the formula 4 = v * v — Ricci*
on 1-forms (see § 7) and which is stated below in the special case
where f is harmonie.

EELLS-SAMPSON FORMULA. (See [E-L],) Every harmonic map f:W—V
satisfies
A||Df|[? = ||Hessy||? + Curv,

where Hess is the totality of the second covariant derivatives of f
and Curv is a curvature term deseribed below.

First we describe Hess by interpreting the differential Df of f
as the section of the bundle 2' = Hom (T (W), T*) for T* — f*(T(V))
and then by setting Hess;,— vy Df where the connection v in Q!
comes from those in T(V) and T*. Then we observe that the Rieci
form on W defines together with the metriec in 7* a quadratic form
on 2! also called Ricci¥. Furthermore, the differential D: T(W)—T (V)
brings the quadratic form @ on A2 T(V) to a quadratic form on
A2 T(V). The trace of this with respect to the metric of T(W) is
denoted KV((Df)*). Notice that if K(V) < 0 then so is KV((Df)).
Furthermore, if K < 0 and rank Df > 2 then KV((Df)¥) < 0. With
the above notations we can write down the explicit form of the
curvature term in the Eells-Sampson formula

Curv = Ricei¥ (Df, Df) — KV ((Df)*).

In particular if K(V) < 0 and Ricci(W)=0 (e.g. W is flat) then
Curv = K"((Df)*}) = 0.
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By integrating the Eells-Sampson formula we obtain the fol-
lowing relation for closed manifolds W

/ A ||Df|]? dw = 0= [ (||Hesss||* 4+ Curv) dw,
w W

which for Curv > 0 implies that Hess;,— 0 and so the map f is geo-
desic in an obvious sense. In particular, if K(V) < 0 and RiceiW =0,
then rank Df < 1 and so the image of f is either a point (we assume
V is connected) or a closed geodesic in V. (Notice that all this remains
valid for Rice(W) > 0 instead of Ricci=0).

The story becomes by far more interesting for manifolds W
which are Kdihler rather than flat. The corresponding Bochner type
formula, due to Siu and refined by Sampson, generalises the Hodge
formula for the Laplace operator on functions on Kéhler manifolds,
that is

A = d*d = 24" = 23* 2.
def def

The Siu-Sampson formula is an (infinitesimal) identity which
involves K¢(V) and the complex Hessian H,? defined as follows. First
we introduce the operator dV from T*-valued 1-forms on V (i.e. sec-
tions W — 21— Hom (T (W), T*)) to T*-valued 2-forms on W, which
is obtained by the usual « twisting » of the exterior d on 1-forms
on W with the connection in T*. Then we put

Hessy — dV JDf,

where J : 21— Q! is the operator induced by the multiplication by
J —1 in T(V). Observe that the definition of Hess® uses the complex
structure in W and the Levi-Civita connection in V but not the metric
(or connection) in W. Also notice that Hy —0 if and only if the
restriction of f to every holomorphic curve in W is harmonic. Such
maps are called pluriharmonic (and they are similar to geodesic maps
of flat manifolds W to V. Also notice that this discussion for
dimg W — 2 shows the conformal invariance of the equation 4f =20
for maps f: W V).

Next we complexify the differemtial of f and thus obtain a
C -linear homomorphism D¢: T(W)— C T(V). This D¢ pulls back
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the form @ on CA2T(V)= A2 T (V) to a form on A2 T (W) (here
exterior power A2 is meant over ). In fact, what we need is
the Hermitian form associated with the quadratic form @, say
Q- (a, f)=Q(a, B), for a, 3 €C A2 T(V). (Recall that Q@ was originally
defined on A2 T'(V) and then extended to ¢ A2 T (V) by complex multi-
linearity ; compare the earlier discussion in § 714 around the theorem
of Micallef-Moort). Then we pull-back the form Q- to 42 T(W) and
we denote by K ((Df)*) the trace of this pull-back with respect to
the Hermitian form in A2 T(W) induced by the Kihler metric in W.
Notice that Ko(V) < 0 implies KJ((DfyY) <0. Furthermore, if
K¢(V) < 0 and rank Df > 3 then Kg ((Df}) < 0.

Now we write down (without proof) the following

INTEGRATED SIU-SAMPSON FORMULA. Let W be a clased Kihler ma-
nifold and V o Riemannion manifold. Then every smooth harmonic
map £ : W'V satisfies

+) [ imessf |12 dw — [ KE (D1 dwo =0,
w

w

COROLLARY. If K¢ (V) < 0 then every harmonic map £ : W —V has
Hess}‘: 0 and hence, is pluriharmonic. Furthermore if K¢ (V) < 0
thne rank Df < 2 ot every point weW.

Finally, we combine this corollary with the Eells-Sampson
existence theorem for harmonic maps and arrive at the following

THEOREM (Siu, Sampson, Jost-Yau, Carlson-Toledo). Let V be a
closed manifold with K¢ (V) < 0. Then every continuous map of an
arbitrary Kdhler manifold W into V can be homotoped to o map of
W into the 2-skeleton of some triongulation of V.

This imposes a very strong (albeit weird) restriction on the
topology of V, as there are many Kihler manifolds W to which the
theorem may be applied. Important examples of W are compact quo-
tients of bounded symmetric domains (such as the ball B> = ¢»)
by discrete (holomorphic) automorphism groups.

Among manifolds V to which the above theorem applies the
most important are the spaces with constant negative curvature.
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Also there are examples of manifolds V with strictly 1/4-pinched
curvature which are not homotopy equivalent to constant curvature
manifolds.

The non-strict case K¢ (V) < 0 is especially important because
all locally symmetric spaces of non-compact type satisfy this con-
dition and the pluriharmonic conclusion of the above corollary plays
a crucial role in the representation theory of the fundamental group
7, (W) in the isometry groups (e.g. SL,) of symmetric spaces (see
[Cor], [G-Pa]).

Finally, we notice that the theory of harmonic maps extends
to the case where the target is singular with K < 0 in the sense of
Alexandrov-Toponogov (compare § 324). Then one tries to understand
the (stronger)) condition K¢ < 0 for singular spaces (such as the
Bruhat-Tits buildings on whoch p-adic Lie groups act) and harmonic
maps appear quite useful for this purpose (*).

§ 734. METRIC CLASSES DEFINED BY INFINITESIMAL CONVEX CONES.

Every subset C in the space of quadratic forms @ on A2R"
which is invariant under the orthogonal transformations of 1R~
dtfines a class € of metrics on every n-dimensional manifold V by
requiring that the quadratic form @ on T,(V) = R" built with the
curvature of this metric is contained in C for every v € V (Notice
that the identification T',(V)==1R* is unique only up to orthogonal
transformations of 1R” by the required O(n)-invariance of C). All
classes of metrics defined by K > 0 K < 0, Ricci > 0, etc., we have
met so far could be obtained with such a C which is uniquely
determined by the class of metrics in question. Moreover, the subset
C in all our cases was a convex cone in the linear space of quadratic
forms on A2 R*. It is not clear at all why geometrically significant
classes € must be generated by convex cones, but analytically this
corresponds to quasi-linearity of the differential condition defining
< (compare p. 24 in [Gro]).

The greatest cone we met was given by Sc = 0. In fact this
condition defines a half-space in the space of @’s. The smallest of

(*) See Gromov and Schoen in Publications Mathematiques IHES (1993).
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our cones was {Q > 0} corresponding to the strict positivity of the
curvature operator. The closure of this cone (given by @ = 0) can
be defined as the minimal closed convex O(n)-invariant cone which
containg the curvature @ of the product metric on S X fR™-2. This
suggests other definitions of interesting (?) classes of metrics defined
with natural cones C. (Compare curvature positivity conditions in
[Gro]. aimed at bounding the size of V). In the search of interesting
cones C one may be guided by how C interacts with natural dif-
ferential operators on V. (Compare the invariance of {Q > 0} under
R. Hamilton’s heat flow on the space of metrics and various Bochner
formulas we have seen in § 7). More geometrically one may look
at € as a subset in the space @, of Riemannian metrics g on a
given manifold V which are considered as sections of the symmetric
square S? T*(V). Then the above mentioned global analytic features
of the underlying C can often be interpreted in terms of infinitesimal
geometry of €. It is worth noticing at this point that € Q. isa
cone for every C and that € is invariant under the natural action of
Diff V on @, . But € is not a convex cone unless C is emply or
equals the space of all forms Q. In fact, &, (which itself is a convex
Diff-invariant cone in the linear space of sections V —» S2 T* (V)
contains no non-trivial Diff-invariant convex subcones at all, if the
underlying manifold V is compact connected without boundary (see
p. 231 in [Gro]) and also pp. 24 and 111 in this book).

SuMMARY. — This is an expanded version of my ¢ Lezione Leonardesca s
given in Milano in June 1990. I try to reveal to non-initiates the inner working
of the Riemannian geometry by following the tracks of relatively few ideas
from the very bottom to the top of the edifice.
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