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Heinz Hopf (19 November 1894 – 3 June 1971)
In 1925, he proved that any simply connected complete Riemannian 3-

manifold of constant sectional curvature is globally isometric to Euclidean,
spherical, or hyperbolic space.

In 1931, Hopf discovered the Hopf invariant of maps S3 → S2 (“element of
the architecture of our world” in the words of Penrose) and proved that the
Hopf fibration has invariant 1. This:

(1) disproved the then standing intuitive conjecture that the continuous maps
between spheres SN → Sn, N > n, are contractible;

(2) Opened the door to the world of vector bundles and the topology of
spinors, where the curvature of the Hopf bundle is 1/2 curvature of the 2-sphere.

(Hopf bundle and Dirac Monopole https://personal.math.ubc.ca/~mihmar/
HopfDirac.pdf,https://www.sciencedirect.com/science/article/abs/pii/
S0393044002001213 https://ncatlab.org/nlab/show/Hopf%20fibration)

Peter David Lax (1 May 1926 – 16 May 2025)
After the war ended, Lax remained with the Army at Los Alamos for another

year and eventually returned to NYU for the 1946–1947 academic year.
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1 Definitions, Problems and First Examples

Notation: ÐÐÐ→curvτ , curv⊥x and curv⊥(X). Let f ∶ X → RN be a smooth
immersion, let τ = τx ∈ Tx(X) be a tangent vector and let γτ ⊂X be a geodesic
in X issuing from x with the speed τ . Then the normal curvature vector

ÐÐ→curvτ(X) ∈ Tf(x)(X) ∈ RN) = RN

is equal the acceleration (the second derivative) at f(x) of a point moving along
the curve f(γ) in RN .
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Granted this, define

curv⊥x(X) = sup
∥τx∥=1

curvτx(X) and curv⊥(X) = sup
x∈X

curvx(X).

If dim(X) = 1, say X = [0,1] and the curve X
f↪ RN is parametrized by arc

length, that is

∥df(x)
dx

∥ = 1,

then this is the usual curvature of a curve,

ÐÐ→curv(X,x) = d
2f(x)
dx2

and curv⊥(X) = supx∈X ∥d
2f(x)
dx2 ∥.

Thus,

the normal curvature curv⊥(X f↪ RN) is equal to the supremum of the nor-
mal curvatures of the f -images in RN of the geodesics from X.

"Immersion" signifies a C1-map f ∶ X → Y between smooth manifolds,
such that the differentials df ∶ T (X) → T (Y ) nowhere vanishes, df(τ) = 0 Ô⇒
τ = 0, τ ∈ T (X).

Immersions are locally one-to-one maps, but globally they may have self
intersections; immersions without self intersections are called embeddings, where,
for non-compact X, one usually require the induced topology in X to be equal
the original one.

"Geodesics" γ ↪X ↪ RN are locally shortest among curves in X between
pairs of points in X.

Locality of the Curvature and Curvature of Submanifolds. Since
curvature of an immersion at a point x ∈X is a local invariant and since immer-
sions locally are embeddings, the definition and many properties of curvatures
of immersions formally follow from those for submanifolds X ⊂ XN . In this in
mind, we may often (but not always) speak of curvatures of "immersed sub-
manifolds", and, accordingly to simplify our notation.

Curvatures of Spheres. Spheres Sn(R) of radius R of all dimensions n
in the N -space RN , N > n, satisfy

curv⊥(Sn(R)) = ∥ÐÐ→curv⊥τ(Sn(R))∥ = 1/R for all unit tangent vectors τ ∈ T (Sn(R)).

T The unit n-spheres Sn(R = 1) ⊂ BN(1), are the only closed immersed
n-sub-manifolds X ↪ BN(1) for n ≥ 2 with curvatures ≤ 1, which are contained
in the unit Euclidean N -balls and multiple covering of the unit circle are also
such manifolds for n = 1.

This follows by the maximum principle applied to the distance function from
X to the boundary ∂BN(1)) or equivalently to the squared distance to the center
of the ball BN denoted r2(x).

In fact, since curv⊥(X) ≤ 1, the second derivatives of r2 along geodesics
parametrized by the arc length satisfy:

∥r′′r∥ ≤ 1 and (r2)′′ = 2(r′′r + ∥r′∥2) ≥ 0, since ∥r′∥2 = 1.

This says that r2 is a convex, hence constant=1 function on X. Thus,
X is contained in the unit sphere SN−1(1) = ∂B(1), where it has zero normal
curvature (see ???), i.e. totally geodesic. (compare with ???focal.raD)
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Compact, Closed, Complete. Curvature has a limited effect on topology
and on global geometry of immersion of open manifolds, i.e. those which contain
no compact connected components without boundaries, called closed manifolds.

For instance, according to the generalized Smale-Hirsch h-principle2, an ar-
bitrary immersion f of open manifold X to an open subset U ⊂ RN admits a
homotopy (even a regular homotopy3 to an immersion fε, such that

curv⊥(X fε↪ U) ≤ ε for a given ε > 0.

Yet many global features of closed immersed manifolds influenced by their
curvatures often remain valid for complete immersed manifolds X ↪ RN , i.e.
where the induced Riemannian metrics in X, sometimes called inner metrics,
are geodesically complete: geodesics starting at all point x ∈X extend infinitely
in all directions τx ∈ Tx(X).

Exercise. Generalize T to complete immersed X ↪ BN(1).
curv⊥-Extremal Immersions between Riemannian manifolds, f ∶ X ↪ Y ,

e.g. for Y = RN , are those which minimise some geometric size invariant of the
image f(X) ⊂ Y , such as diamY (f(X)), among all immersions with curv⊥ ≤ c4
or among all such immersion regularly homotopic to a given one. Beside the
diameter, it may be, some kind of width, the radius of the minimal ball which
contained f(X), etc.

If we don’t ¯specify any invariant, we call an immersion f0 ∶ X ↪ Y simple
extremal if it admits no regular homotopy ft ∶ X ↪ Y , such that curv⊥(f1) <
curv⊥(f0), where the local version of this says that all regular homotopies ft,
satisfy curv⊥(ft) ≥ curv⊥(f0) for t > 0.

If Y = RN , then this may be applied to the convex hull Y0 = conv(f(X)) ⊃
f(X) and then an immersion f0 ∶ X ↪ RN is called conv-curv⊥-extremal if one
can’t decrease the normal curvature of f0 by a regular homotopy of immersions
ft ∶X ↪ conv(f0(X)).

Basic Spherical Example. By T, spheres Sn(1/c) ⊂ RN are extremal
with respect to all above criteria.

Piecewise C2 Circular Example. Some naturally arising submanifolds
with bounded normal curvatures, e.g. many extremal ones are C1-smooth and
only piecewise C2.5

For instance, immersed closed curves, which go around several circles (possi-
bly going around each circle many times) in the figure below, have curv⊥ equal
to the curvature of the smallest circle.

These curves are C1-smooth but they are not C2: their curvatures jump as
they switch the tracks from one circle to another at the contact points between
circles.

##-Subexample. Let f ∶ S1 ↪ B2(1) ⊂ R2 be a C1 immersion with
2See [El-Mi], section ??? and references therein
3A regular homotopy is a path in the space of C1 immersions with the usual C1-topology,

that is ft ∶ X → Y , t ∈ [0,1], where the differential dft of ft in x-variables, x ∈ X, is continuous
in t.

4Our definitions of curv⊥ naturally generalize to all Riemannian manifold Y receiving
immersions from X.

5This is a well know phenomenon in the optimal control theory, where one is predominantly
concerned with n = 1, [Feld], compare ???.
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curvature
curv⊥(S1 f↪ R2) ≤ 2.

If the corresponding oriented Gauss map to the unit circle

Ð→
Gf =

df

∥f∥
∶ S1 → S1 ⊂ R2

has degree zero (hence contractible), then the image of f is equal to the union
of two circles of radii 1/2, which meet at the center of the disc B2(1), where
they are tangent one to another. Thus the figure ∞ immersion is "radially
extremal": it minimises the radius of the 2-ball. around it. (We shall explain
why this is so in section ???).

Bi-invariants curv⊥min(X,Y) and Imm⊥≤c(X,Y). Let X be a smooth
closed manifold and and Y a Riemannian manifold and let curv⊥min(X,Y ) be
the infimum of normal curvatures of smooth immersions X ↪ Y .

Now, if we choose and fix a particular Y , e.g. the unit ball in RN , the
number curv⊥min(X,Y ) becomes a topological invariant of X, the value of which
is unknown for most n-manifolds and N > n .

Dually, given a topological n-manifold, e.g. (homeomorphic to) the product
of spheres, the minimal curvmin(X,Y ) of immersionsX ↪ Y appears as ametric
invariant of Y , which is unknown in most cases, for instance, for the N -balls
and cubes Y ⊂ RN .

The number curv⊥min(X,Y) carries only a small part of the information
about immersions f ∶X ↪ Y with curvatures curv⊥(f) ≤ c.

A more comprehensive information is contained in the homotopy types of
the spaces of immersions with curv⊥(f) ≤ c, denoted Imm⊥≤c(X,Y ) and the
homotopy classes of the inclusion maps

Imm⊥≤c1(X,Y ) ⊂ Imm⊥≤c2(X,Y ), c1 ≤ c2,

where much of this information is encoded by the diagram of the natual (co)homology
homomorphisms between these spaces.

1.1 Alternative Definitions of Normal Curvature
The full second order infinitesimal information of a smooth submanifold X in
a Riemannian manifold Y , e.g. in the Euclidean N -space, at a point x ∈ X is
algebraically represented by the second fundamental form that is a symmetric
bilinear form on X with values in the normal vector space T ⊥(X) ⊂ T (Y ),
denoted

II(X,x) = II(X,x, τ1, τ2) = IIx(τ1, τ2),
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where τ1, τ2 ∈ Tx(X) are tangent vectors to X and where the value II(τ1, τ2) is
a vector in Tx(Y ) normal to the tangent (sub)space Tx(X) ⊂ Tx(Y ). This form
in the case Y = RN is defined as the second differential of a vector function, say
Φ ∶ Tx(X) → T ⊥x (X), such that the graph of Φ in a neighbourhood of x ∈ RN ⊃X
is equal to X ⊂ RN = Tx(RN) = Tx(X) ⊕ T ⊥x (X),

IIx(τ1, τ2) = ∂τ1∂τ2Φ(x)

In the general case, this definition applies by equating Tx(Y )) with a small
neighbourhood in Y via the exponential map expx ∶ Tx(Y ) → Y .

Exercises. 1.1.A. Show that II(τ, τ) is equal to the second (covariant)
derivative in Y of the geodesic in X issuing from x with the velocity τ , and
that

[τ1τ2]≤ ∥IIx(τ1, τ2)∥ ≤ curv⊥x(X)

for all x ∈X and all unit tangent vectors τ1, τ2 ∈ TX(X).
1.1.G. Let X ↪ Y ↪ Z be isometric embeddings (or immersions) between

Riemannin manifolds, i.e the Riemannian metrics in Y and in X are induced
from a Riemannian metric in Z. Show that

curv⊥τ (X ↪ Z) =
√

(curv⊥τ (X ↪ Y ))2 + (curvv⊥τ (Y ↪ Z))2

for all tangent vectors τ ∈ T (X) ↪ T (Y ) ↪ T (Z).
For instance, if X ↪ Y = SN−1(1) ↪ Z = RN then

curv⊥τ (X ↪ RN) =
√

(curv⊥τ (X ↪ SN−1))2 + 1.

1.1.B. Geodesic free definition of curv⊥. Show that the normal cur-
vature curv⊥τ (X ↪ RN) = ∥ÐÐ→curvτ∥, ∥τ∥ = 1, is equal to the infimum of the
Euclidean curv⊥-curvatures of the curves in X tangent to τ .

1.1.C. Metric Definition of II. Let Y = (Y, g) be a Riemannian manifold,
e.g. Y = (RN , g = ∑Nj=1 dy

2
j ), let X ⊂ Y be a smooth submanifold, let ν ∈ T ⊥x (X)

be a normal vector to X at x and ν̃ be a smooth vector field on Y , which extend
νx.

Let g∣X be the restriction of the Riemannian quadratic form g to X and let
g̃′∣X be the restriction of (Lie) derivative of g by the field ν̃ to X.

Show that the value g̃′∣X(τ1, τ2) for τ1, τ2 ∈ Tx(X) depends only on ν but not
on the extension ν̃ of ν.

Moreoever, show that

g̃′∣X(τ1, τ2) = ⟨ν, IIx(τ1, τ2)⟩g,

and that the second fundamental form II is uniquely determined by this identity.
(The definition of the second fundamental form II as the derivative g̃′∣X of

the induced Riemannian form uses no covariant derivatives or geodesics either
in X or in Y .)

1.1.D. Normal Curvature Defined via the Gauss Map. Let H =
Grn(N) be the space of n-dimensional linear subspaces H ⊂ RN and natuarally
identify the tangent space TH(H with the space of linear maps from H to the
normal space H⊥ ⊂ RN ,

TH(H) = hom(H,H⊥).
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Let f ∶ X ↪ RN be a smooth immersed submanifold and
←→
G ∶ X → Grn(N),

n = dim(X), be the (non-oriented) Gauss map where
←→
G(x) is the linear subspace

parallel to tangent subspace of X in RN (regarded as an affine subspace) at x.
Let Dx

←→
G ∶ Tx(X) → Tx(X)⊥ be the differential of the map

←→
G at x ∈ X

regarded as a linear operator Tx(X) → T ⊥x (X)⊥.
Show that
the normal curvature of X at x is equal to the norm of the operator Dx

←→
G ,

[D
←→
G]⊥ curv⊥x(X) = sup

τ∈Tx(X),∥τ}=1

∥Dx
←→
G(τ)∥

and derive from this the following corollary.
1.1.E. Angular Arc Inequality. If the (inner) distance between two points

x1, x1 ∈X satisfies

distX(x1, x) ≤ α(curv⊥(X))−1, α ≤ π/2,

then the angles between vectors τ ∈ Tx1(X) and their images τ̄ under the normal
projection Tx1(X) → Tx1(X) satisfy

∠(τ, τ̄) ≤ α,

where the equality holds if and only if there exists a
planar α-arc of radius 1

curv⊥(X) , which is contained in X, which join x1 with
x and such that τ is tangent to this arc at its x1-end.

Conversely, the inequality ∠(τ, τ̄) ≤ ε/c + o(ε), c ≥ 0, for all pairs of ε-
infinitesimally closed points implies that curv⊥(X) ≤ c.

no non-zero tangent vector τ1 ∈ Tx1(X) is normal to Tx(X).
Moreover the same non-normality conclusion holds if

distX(x1, x) ≤
π

2
(curv⊥(X))−1,

unless there exists a
planar semicircle of radius 1

curv⊥(X) contained in X and joining x1 with x.
Polygonal ApproximationADD????
8 Let P be a closed spacial polygonal curve with k vertices pi. Then a

decomposition of P into triangles △j
6 shows that the sum of the angles between

the edges of P at these vertices satisfies:

k

∑
i=1

(π −∠pi) ≥ 2π,

where the difference ∑ki=1(π−∠pi)−2π, is the sum of (positive!) excesses of the
angles of triangles △ji adjacent to pi with respect to the angles of the angles
∠pi(P ),

k

∑
i=1

(π −∠pi) − 2π = ∑
i

exci

6One can decompose P into k − 2 triangles with a common vertex e.g. p1 but one can do
it more efficiently with about log2k triangles.
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where
exci = ∑

ji

∠pi(△ji)

and where exci = ∑ji = 0 for all i if and only if P is a planar convex curve.
Application-Exercise: Fenchel ≥ 2π-Inequality Let X, written as x(s), be

a closed smooth spacial curve parametrised by the ark length parameter, s ∈
[0, l] l = length(X). Approximate X by polygonal curves, prove the following
Fenchel’s Inequality

∫
l

0
curv⊥(x(s))ds ≥ 2π,

generalize this to piecwise smooth curve and show that equality implies that X
is a planar convex curve. 7

2 Products of Spheres, Clifford’s sub-Tori with
Small Curvatures and Petrunin Inequality

The product X of spheres Sni(Ri) ⊂ RNi=ni+1, i = 1, ...m,

X = Sn1(R1) × Sn2(R2) × ... × Snm(Rm) ⊂ RN=(n1+n2+...+nm)+m,

has the curvature equal to the maximum of 1/Ri, i = 1....,m, and if

R2
1 +R2

2 + ... +R2
m ≤ 1,

then X is contained in the unit ball in RN . (If R2
1 +R2

2 + ...+R2
m = 1, then X is

contained in the unit sphere SN−1(1) = ∂BN(1) ⊂ RN .)
For example, the product of m-copies of Sn admits an embedding to the

unit ball in Rmn+m, where

curv⊥((Sn)m ⊂ Bmn+m(1)) =
√
m

The main instance of this is the Clifford n-torus, that the product of n circles
imbedded to the unit 2n ball, such that

curv⊥(Tn ⊂ ∂B2n(1)) =
√
n.

It is conceivable that the above (Clifford’s) products of spheres Sn1(R1) ×
Sn2(R2) × ... × Snm(Rm) ⊂ RN are conv-curv⊥-extremal, where this seems real-
istic for m <minini, but we have no idea, for instance, if there are immersions
of n-tori to B2n(1) with curv⊥ <

√
n.

Yet, if N >> n, then the n-torus can be immersed to the unit ball BN(1)
with unexpectdly small curvature.

1.C.
√

3-Clifford Sub-Torus Theorem. (Section ?) [a] If N is much
greater than n, then the Clifford torus

TN ⊂ S2N−1 ⊂ B2N(1),
7See [Chern] and also section ???for other proofs and applications of this inequality; also

see ?? for a Riemannian version of it.
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contains an n-subtorus Tno ⊂ TN , such that the normal curvature of this n-torus
the ambient Euclidean space R2N ⊃ B2N ⊃ Tn0 satisfies

[ 3n
n+2

]Tn curv⊥(Tno ⊂ B2N(1)) ≤
√

3n

n + 2
.

One has a poor bound on the best (i.e. the smallest) N for this purpose,
(something like 1010n , see section ???) but

[b] if N ≥ 8n2 + 8, then, there exists a a locally isometric (with respect to
the Euclidean metrics in Rn and TN ) map, that is a group homomorphism

g ∶ Rn ↪ TN ⊂ B2N(1),

such that

[ 3n
n+2

]Rn . curv⊥(Rn ↪ B2N(1)) ≤
√

3n

n + 2
.

[c] It follows that for all ε > 0, there exists a sub-torus ¯

Tnε ⊂ TN ⊂ B2N(1),

such that

[ 3n
n+2

+ ε]Tn curv⊥(Tnε ⊂ B2N(1)) ≤
√

3n

n + 2
+ ε.

1.D.
√

3-Immersion Corollary. Let f ∶ X ↪ Rm be an immersion then,
for all ε > 0, there exist an immersion (actually an embedding) fε to the unit
ball B16m2+16m with curvature

curv⊥(X
fε⊂ B16m2+16m(1)) ≤

√
3m

m + 2
+ ε.

Proof. Let λ be a large constant, λ >> 1/ε, scale the manifold X
f↪ Rm by λ and

compose the scaled map λ ⋅ f ∶ X ↪ Rm with the map g ∶ Rm ↪ TN ⊂ B2N(1)
from the above [b].

Then, if one one wishes, one slightly perturbs the resulting immersionX ∶→↪
TN . and makes it an embedding.

the embedding Tmε ⊂ T8m2+8m as in the theorem. make it embedding????

On sharpness of [ 3n
n+2

]. It is not hard to show that the Euclidean curvatures
of all Clifford subtori Tn ⊂ TN ⊂ R2N (these Tn are very special submanifolds in
B2N(1) ⊃ TN)) satisfy curv⊥R2n(Tn) ≥

√
3n
n+2

, but the following is not so obvious.
1.E. Petrunin’s

√
3-Inequality. (Section???) All immersions Tn ↪ BN(1)

satisfy

curv⊥(Tn ↪ BN(1)) ≥
√

3n

n + 2
for all n ≥ 1 and all N .
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It is unclear what is, in general, the geometry of immersions Tn ↪ BN(1)
with curv⊥ ≈

√
3n8 depending on the ambient dimension N . Conceivably the

n-tori admit no immersions Tn ↪ BN(1) with curv⊥ ≤
√

3 for N << n2, but we
have no means to rule out such immersions, say for for N ≤ 3n and n ≥ 4.

3 X+ρ = T⊥ρ(X) the Focal Radius and +ρ-Encircling
.

Let Y be a complete Riemannian manifold, letX ↪ Y be a smooth embedded
or immersed submanifold, let x0 ∈X, let ν0 ∈ T ⊥x0

(X) be a unit normal vector at
the point x0 and γν ↪ Y be a geodesic ray issuing from x0 in the ν0-direction.

Define ν0-focal radius rad⊥ν0(X) as the supremum of r ≥ 0, such that the
the segment [x0, y] ⊂ γ0 locally minimises the length of curves in Y between y
and X, that is all curves, which are sufficiently close to the segment [x0, y] in
C0-topology and which join y and X, have length > r.

Then let

rad⊥x0
(X) = inf

ν0∈Tx0(X)
rad⊥ν0(X) and rad⊥(X) = inf

x0∈X
rad⊥x0

(X).

1.I. Example: Curvatures and Focal Radii in Spheres. The spherical curva-
tures of immersions

X ↪ SN−1(R) ⊂ RN

are related to the Euclidean curvatures by the Pythagorean formula:

(curv⊥RN (X ↪ RN))
2

= (curvSn−1(X ↪ SN(R)))
2

+ (curv⊥(SN ⊂ RN))
2

=

= (curvSn−1(X ↪ SN(R)))
2

+ 1/R2,

(see section»>???) while the Euclidean focal radii are related to the Euclidean
one by the realition

focrad⊥RN (X) = 2R sin
1

2
focrad⊥SN−1(R)(X).

For instance,
● the spherical focal radii of the equatorial subspheres (with zero spheriacal

curvatures) in the unit sphere SN−1(1) are equal to π/2, while their Euclidean
focal radii are equal to one;

● the spherical focal radii of the subspheres with spherical radii π/4 are
also π/4, while their spherical curvatures are equal to one and the Euclidean
curvatures

√
2 with agreement with he identity sinπ

4
= 1/

√
2.

Exercises.(OOO???) Let rad⊥x0
(X) ≥ r and let B(R) ⊂ Y be an R-ball, which

contains a (small) neighbourhood V0 ⊂ X of x0 and such that the boundary
sphere S(R) = ∂B(R) contains x0. Then

● R ≥ r,
● if R = r + ε for a small ε ≥ 0, then the sphere S(R) is smooth at the point

x0,
8Petrunin informed me that there exist extremal tori in BN (1). which are not contained

in SN−1.???
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● if S(R) is smooth at x0, then the radial component of the second funda-
mental form of X at x0 is greater than that of S(R),

⟨IIX(τ, τ), ν⟩ ≥ ⟨IIS(R)(τ, τ)ν⟩,

where ν is the inward looking unit normal vector to S(R) at x0 and τ ∈ Tx0(X) ⊂
Tx0(S(R).

(If the sphere S(R) is convex at x0, then 0 ≤ ⟨IIS(R)X(τ, τ), ν∣⟩ =
√

∥IIS(R)X(τ, τ)∥)
(i) Show that the focal radii of submanifolds in Euclidean spaces are equal

to reciprocals of their normal curvatures.

rad⊥x(X ↪ RN) = 1

curv⊥x(X ↪ RN)
.

(ii) Show that the focal radius of X ↪ Y is equal to the supremum of r, such
that the normal exponential map expT ⊥(X) → Y is an immersion on the r-ball
subbundle B⊥X(r) ⊂ T ⊥(X).

Given an immersed X ↪ RN let T ⊥ρ (X) → RN , ρ > 0, be the normal ex-
ponential (tautological) map from the ρ-spherical normal bundle of X to RN ,
where this "ρ-spherical normal bundle T ⊥ρ (X)" is the set of vectors normal to
X of length ρ.

For instance if X ↪ RN is an embedding and ρ > 0 is small then the image
of this map is equal the the boundary of the ρ-neighbourhood of X, denoted

X+ρ = ∂Uρ(X) = {y ∈ RN}dist(y,X) = ρ.

In general, if X
f↪ RN is an immersion and if ρ < (curv⊥X ↪ Rn)−1

then the
exponential map is also an immersion and we abbreviate this by writing

X+ρ
f+ρ↪ RN

and observe that

[ρ−1] curv⊥(X+ρ
f+ρ↪ RN) = max (ρ−1, (curv⊥(X ↪ Rn))−1 − ρ)−1)

and that if X ↪ RN is contained in R-ball, then X+ρ ↪ RN is contained in the
(R + ρ)- ball.

1.G. [1 + 2c]-Example. Let curv⊥(X ↪ BN(1)) ≤ c and move X to the
smaller ball BN(r) by scaling X ↦X ′ = rX for r = 1 − ρ, for some 0 < ρ < 1/c.

Then X ′
+ρ is contained in the unit ball,

(curv⊥(X ′
+ρ ↪ BN(1)))

−1

≥ min(1

ρ
,(r
c
− ρ)

−1

)

and if ρ is such that ρ = r
c
− ρ, then

curv⊥(X ′
+ρ ↪ BN(1)) = 1/ρ ≤ 1 + 2c = 1 = 1 + 2 ⋅ curv⊥(X).

11



1.H. Focal Riemannian Remark. Much of the above make sense for an
arbitrary ambient Riemannian manifold Y instead of RN , e.g. for Y = SN−1 ⊂
RN , where d2f(x)

dx2 in the definition of the curvature for curves in Y is understood
as a covariant derivative and where curvatures immersions Xn ↪ Y for n > 1
are defined accordingly.

If Y is complete, e.g. compact without a boundry, then the normal expo-
nential map

exp⊥ρ ∶ T ⊥ρ (X) ↪ Y

for am immersed X ↪ Y is defined for all ρ > 0; if Y has a boundary, then
normal exp-map is defined for ρ ≤ dist(X,∂Y ).

Then focal radius of X ↪ Y , sometimes denoted rad⊥(X ↪ Y ), is the supre-
mum of r > 0, such that the map exp⊥,ρ is defined (i.e. r ≤ dist(X,∂Y )) and is
an immersion for all ρ < r.

One knows that if the sectional curvature of a complete Y is ≤ 0, then

rad⊥ ≥ (curv⊥(X ↪ Y ))−1

and, this is obvious, the equality holds for Riemannian flat manifolds.
Thus the above [ρ−1] for immersions X ↪ RN can be rewritten in more

transparent form in terms of focal radii:

rad⊥(X+ρ) = min(ρ, rad⊥(X) − ρ).

4 Focal Radius and the Maximum Principle
(iii) Let x0 ∈ X be a local maximum point in X for the distance function x ↦
distY (x, y0) for some y0 ∈ Y . Show that

dist(x0, y0) ≥ rad⊥x0
(X).

(iv) maxrad⊥ and the Maximum Principle. Let Y be a metric space,
let X ⊂ Y be a subset and let x0 ∈X.

Define maxrad⊥x0
(X) as the infimum of the numbers R, such that there

exists a point y0 ∈ Y such that dist(x0, y0) ≤ R and the distance function
x↦ distY (x, y0) assumes local maximum at x0.

Reformulate the above inequality dist(x0, y0) ≥ rad⊥x0
(X) as

maxrad⊥x0
(X) ≥ rad⊥x0

(X),

for smooth submanifolds X in Riemannin manifolds Y .
(vi) Show that

maxrad⊥x0
(X) = rad⊥x0

(X) for dim(X) = 1,

for smooth submanifolds X in Riemannian manifolds Y , provided the normal
exponential map exp ∶ T ⊥x0(X) → Y is immersion on the R-ball BN−n

0=x0
(T ⊥x0

(X).
Show that the condition dim(X) = 1 is necessary.

(vii) Show that if a compact subset X ⊂ Y is contained in an R-ball By0(R) ⊂
Y , then

inf
x∈X

maxrad⊥x(X) ≤ R

12



Show that the inequality infx∈Xmaxrad
⊥
x(X) ≤ R remains valid for smooth

immersed complete, possibly non-compact, submanifoldsX ↪ Y , provided curv⊥(X) <
∞.

(The condition curv⊥(X) = supx curv
⊥(X) < ∞ is necessary: there are ex-

amples due to Rosendorn [???] of complete surfaces X in the unit 3-ball with
negative Gauss curvatures, hence with maxradx(X) = ∞ for all x ∈X.) 9

(vi) Let D(ρ) ⊂ BN(1) ⊂ RN , N ≥ 3 be the boundary of the convex hull
of a truncated unit ball, where D(ρ) is equal to the union of a spherical cap
CN−1(ρ) ⊂ SN−1(1) = ∂BN(1), 0 < ρ < π and a flat (n − 1)-ball BN−1(r =
sinρ) ⊂ BN(1),

D(ρ) = CN−1(ρ)cupBN−1(r),

where ρ is the radius of CN−1(ρ) regarded as a ball in the spherical geometry
in SN−1(R), and where the (edge-like) intersection E of the two parts of D(ρ),
¯

E(r) = CN−1(ρ) ⊂ SN−1(R) ∩BN−1(r) = (∂CN−1 = ∂BN−1

is an (N − 1)-sphere contained in SN−1(R) of (Euclidean) radius r.
Let x0 ∈ Er and show that
●conv if ρ ≤ π

2
then maxrad⊥x0

(D(ρ)) = r = sinρ,
●concv if ρ ≥ π

2
then maxrad⊥x0

(D(ρ)) = R.
(vi) Non-Smooth Maximum Principle. Let X ⊂ BN(R) ⊂ RN be a

closed connected subset in an R ball, such that

maxrad⊥x(X) ≥ r for some r ≤ R qnd all x ∈X.

Observe that if r = R then ??? implies that the intersection X ∩ ∂BN(R) ⊂
SN(R) = ∂BN(R) is non-empty and show that no connected component of this
intersection X ∩ ∂BN(R) ⊂ SN(R) = ∂BN(R) is contained in a spherical cap

CN−1 (ρ < π
2
r) ⊂ SN−1(R).

Consequently, this intersection has no isolated ponts moreover,
the topological dimension of all connected components ofX∩∂BN(R) satisfy

dim(compX ∩ ∂BN(R)) ≤ 1.

(viiii????) Show that there exists a smooth convex (topologically spherical)
rotationally symmetric surface in the unit 3-ball, X ⊂ BN(1) ⊂ R3, which is not
equal to the boundary sphere S2(1) = B3(1) and such that maxrad⊥x(X) ≥ 1 for
all x ∈X.

(....) Generalise the above (??) to subsets X (e.g. smooth submanifolds) in
balls B(R) in Riemannian manifolds Y , where the boundary of B, as well as
the boundaries of concentric balls of radii 0 < r ≤ R are smooth and where the
inequality ρ ≥ π

2
should be be replaced by ρ ≥ δ = δ(B) > 0.

Thus show that if a compact connected subset X ⊂ B(R) satisfies

maxrad⊥x(X) ≥ R

for all x ∈X, then
9Nadirashvilly etc???
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● the intersection X ∩ ∂BN(R) is non-empty,
● the connected components of this intersection satisfy

dim(compX ∩ ∂BN(R)) ≤ 1,

● no connected component ofX∩∂BN(R)) can be diffeomorphic to segments
[0,1] and/or (0,1].

Consequently,
if all geodesics γ in a smoothly immersed closed submanifold in a ball

BN(R)) ⊂ Y satisfy focrad⊥(γ ↪ Y ) ≥ R, then X is contained in the boundary
∂B(R).

(////????) Let X be a smoothly immersed complete connected submanifold
in a ball B(R)) ⊂ Y , such that the intersection X with the boundary sphere
S(R) = ∂B(R) isnonempty and such that each point x0 ∈ X ∩ S(R) admits a
neighbourhood X0 ⊂ X such that radial component of the second fundamental
form of X at all x ∈ X0 is non greater than that of the concentric sphere S(r),
which contains x,

⟨IIX(τ, τ), ν⟩ ≤ ⟨IIS(r)(τ̄ , τ̄), ν⟩,

where τ and ν(as in ???) ... and τ̄ ∈ Tx(S(r) is the normal projection of
τ ∈ Tx(X) ⊂ Tx(Y ) ⊃ Tx(S(r)) to Tx(S(r)).

Then X is contained in the boundary of the ball, X ⊂ ∂B(R).
Hint. Prove convexity of a φ(dist(x,S(R)) for a suitable function φ(d).

(Compare with T in section 1.)
Question Is there a better verson of the ’maximum principle’ which would

incorporate ??? and ??.
where
● y′(t)) ∈ Ty(t)(Y )b is the unit tangent vector to the curve y(t).
● Hess,(yh(τ + ν, τ + ν)
where, observe, the gradient of h is a unit vector field normal to the concen-

tric spheres Sy0(h) with the centre y0 and the Hessian of h2(y) restricted to a
sphere Sy0 equal the second fundanetal

(h ○ f(t))” = (h′f ′)′ = hess(h)(f ′) + h′f ′′

4.1 Topological Definition of Focal Radius
Let Y be a complete Riemannian manifold, X ⊂ Y a smooth immersed subman-
ifold and let us define the focal curvature of X in Y as the reciprocal of the
focal radius of X,

curvfocx (X ↪ Y ) = 1

rad⊥x(X ↪ Y ))
.

Let Xn ⊂ Rn+1 be a smooth hypersurface and let x ∈X Then
such that curv⊥x(X) ≤ c, c ≥ 0 and let
is equal the infimum of the curvatures c of the spheres Sn± (1/c), which are:
(i) tangent to X at x0,
(ii) the balls bounded by these spheres do not intersect (small) neighbour-

hoods of f(x0) in f(X) minus f(x0) itself,
(iii) do not mutually intersect away from x0.

14



Generalise this to submanifolds Xn ⊂ RN for all N ≥ n + 1 as follows.
Let B(c) be a family of balls BNy (1/c)RN with centers y ∈ RN such that
(i)’ all balls from B(c) contain x ∈X,
(ii)’ the balls do not intersect (small) neighbourhoods of x0 in X minus x0

itself,
(iii)’ for all ε > 0, there exists a family of points in RN continuously parametrized

by B(c), say
φε ∶ B(c) ∋ B → RN ,

such that
φε(B) ∈ B for all B ∈ B(c),
dist(φε(B), x0) ≤ ε for all B ∈ B(c),
the set B(c) contains an (N − n − 1)-cycle the φ-imagef this cycle. is non-

trivilally linked with X for all sufficiently small ε.10

Then show that curv⊥x0
(X) is equal to

 the infimum of c > 0, such that a family B(c) with all these properties
exists.

1.1.D.. Use # as a definition of curvature, observe that it doesn’t need X
to be smooth and show that if this  -curvature of a submanifold X ⊂ RN is
finite at all x ∈X, then X is C1-smooth, moreover, it is C1,1-smooth–the partial
derivatives are Lipschitz. ADD: Rotation of segments of curves in R3 around tan-
gent lines and folding polypeptide chains to proteins, https://www.ihes.fr/
~gromov/wp-content/uploads/2018/08/proteins-crystals-isoper.pdf.

1.1.E.. Express  -curvature of a smooth submanifold in a complete Rie-
mannian manifold, X ⊂ Y in terms of the focal radius rad⊥(X) (see section
???).

1.1.F. Maximum Principe. Assume that all balls in Y are smooth and
strictly convex, and show that that if a closed immersed submanifold in Y
contained in a ball of radius R has

This description of curv⊥, which doesn’t refer to geodesics, has an advantage
of being applicable to mechanical systems with non-holonomic constrains that
are submanifolds in the tangent bundle of the ball, rather than the ball itself.

??? maximum principle for the ball curvature
ıExercises (a) If the signed (one sided) curvature of a closed planar curve X

is≤ 1/R then the (closed) domain X+ bounded by X contains a disk of radius
R. In fact there are at least two such discs unless X itself is a circle of radius
R.

(b) if X is convex, then every circle of radius ≤ R tangent to X a point x ∈X
, either is contained in X+ or intersect X+ only at x. (c) Find a counter example
to (a) for surfaces in R3 and prove a version of (b). (see "A Reverse Isoperimetric
Inequality, Stability and Extremal Theorems For Plane-Curves With Bounded
Curvature" by Howard and Treibergs https://scholarcommons.sc.edu/cgi/
viewcontent.cgi?article=1024&context=math_facpub#:~:text=This%20gives%
20a%20preliminary%20reverse,over%20to%20general%20Riemannian%20surfaces.
and references therein.

10Think of X as a relative n-cycle in the pair (BNx0(2ε), ∂(B
N
x0

)(2ε)).
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5 Products of Spheres in Bn+1 with Small Cur-
vatures

1.J. Products of Spheres Represented by Hypersurfaces Let X be a
product of m spheres and k ≥ m − 1. Then Xm × Sk admits a codimension one
embedding to the unit ball with normal curvature 1 + 2

√
m.

Proof. Imbed X to BN+m(1) ⊂ BN+k+1(1) for N = dim(X) with curvature
c =

√
m (see 1.A), let ρ = 1 + 2

√
m and observe that X ′

+ρ ⊂ BN+k+1(1), (this is
the boundary of the ρ-neighbourhood of X ′ ⊂ BN+k+1(1) in the present case) is
diffeomorphic to X × Sk. Since curv⊥(X ′

+ρ) ≤ 1 + 2c (see ???) the proof follows.
Two Examples and one Theorem.

(●1) Products of two spheres admit codimension one embeddings to the unit
balls with normal curvatures 3:

[2/3] × [1/3]. curv⊥(Sn1 × Sn2 = Sn1

+1/3(2/3) ⊂ B
n1+1+n2(1)) = 3,

(●2) Products of three spheres Sn1 × Sn2 × Sn3 , e.g. 3-tori T3, admit codi-
mension one embeddings to the unit balls with curvatures 1 + 2

√
2 < 4.

We don’t know answers to the following questions:
are there immersions Sn1 × Sn2 ↪ Bn1+n2(1) with curv⊥ < 3?
are there immersions immersions Sn1 × Sn2 × Sn3 ↪ Bn1+n2+n3(1) with

curv⊥ < 1 + 2
√

2.
But the situation changes starting from m = 4 and C = 1 + 3

√
2 = 5.24264....

with the following.
1.K. Codimension one Immersion Theorem. Let X be a compact

orientable n-manifold, which admits an immersion to Rn+1, e.g. X is (diffeo-
morphic to) a product of spheres Sni of dimensions ni, ∑i ni = n.

Then, for all ε > 0, the product S20n2

×X admits an immersion fε to the
(20n2 + n + 1)-ball, such that

(???) curv⊥((SN ×X) fε↪ B20n2+n+1(1)) ≤ 1 + 2

√
3(n + 1)
n + 3

+ ε < 4.5.

Proof. The
√

3-immersion corollary 1.C with m = n+1 delivers an immersion
X → B20n2

(1) with curv⊥ ≤
√

3(n+1)
n+3

+ ε and the manifold X ′
ρ as in [1 + 2c]-

example (1.G) does the job since it is diffeomorphic to X ×S20n2

in the present
case.

[X = Tn]-Case. If N >> n, then the
√

3-Clifford sub-torus theorem 1.C
implies that SN ×Tn admits an immersion to the (N + n + 1)-ball, such that

(???) curv⊥((SN ×X) fε↪ BN+n+1(1)) ≤ 1 + 2

√
3n

n + 2
.

Embedding Remark. Unlike how it is in (●1) and (●2), the construction of
fε in 1.K creates self-intersection of Sk ×X in the ball.
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Sharpness Conjectures. The constant 1 + 2
√

3n
n+2

, probbaly, is optimal for
tori Tn of dimension n ≥ 3

We also conjecture that there are no embeddings Tn ×Sk → Bn+k+1(1) with
curv⊥ ≤ 1 + 2

√
3n
n+2

+ ε for all n ≥ 3 and ε < 1/n2.

But it is hard to say if the constant
√

3(n+1)
n+3

for general orientable XnRn+1

can be improved, even to
√

3n
n+2

.
Also it is unclear what to expect in this regard from non-orientable immersed

hypersurface Xn ↪ Rn+1

Products of Equidimensional Manifolds. The codimension one immersion
theorem doesn’t deliver immersions of products of equidimensional manifolds
with "interesting" curvature bounds, while by arguing as in (●1) and (●2) we
show the following.

(●3) The product of (m + 2) copies of Sm admits an embedding to the ball
Bm(m+2)+1(1) with curv⊥ ≤ 1 + 2

√
m + 1.

For instance, (as in ●2) the 3-torus embeds to the unit 4-ball, such that

curv⊥(T3 ⊂ B4)) ≤ 1 + 2
√

2 < 4.

Conjectrally, the constant 1+2
√
m + 1 is optimal for allm = 1,2, ...4, possibly,

not only for embedding but also for immersions

(Sm)m+2 ↪ Bm(m+2)+1(1).

6 Extremality, Rigidity, Stability: Spheres and
Veronese Varieties

The natural candidates for extremal immersions X ↪ BN , which implement
maximal topological complexity with minimal curvatures are the most symmet-
ric ones that are immersions, which are equivariant under large isometry groups
G acting on X and BN

For instance the standard (O(n)-equivariant) embedding Sn ↪ BN ⊂ Bn+1×
RN−n−1 is extremal.

1.3. A. All closed immersed n-submanifold X
f↪ BN have curv⊥ ≥ 1, where

the n-dimensional spheres of radius one, are the only ones with curv⊥ ≤ 1. (If
n = 1 these may be multiple coverings of the circle).

This follows by the maximum principle applied to the distance function
from X to the boundary ∂BN(1)) or equivalently to the squared distance to
the center of the ball BN denoted r2(x).

Since, curv⊥(X) ≤ 1, the second derivatives of r2 along geodesics parametrized
by the arc length satisfy: ∥r′′r∥ ≤ 1 and (r2)′′ = r′′r + ∥r′∥2 ≥ 0, since ∥r′∥2 = 1.

This says that r2 is a convex, hence constant=1 function on X. Thus,
X is contained in the unit sphere SN−1(1) = ∂B(1), where it has zero normal
curvature (see ???), i.e. totally geodesic. QED
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Rigidity and Stability. Most (all?) sharp geometric inequalities are accom-
panied by the rigidity/stability of the extremal objects11.

To establish stability in this in the present case we start by observing that the
above argument equally applies to all complete (for the induced Riemannian met-
rics) manifolds C1,1-immersed to Bn(1) and that the space of C1,1-|immersions
curv⊥ ≤ const of immersed complete manifolds to the ball is compact.

Thus we conclude that there exists ε > 0, such that if a closed immerses
submanifold satisfies

curv⊥(Xn ↪ BN(1)) ≤ 1 + ε and n ≥ 2,

then X can be obtained by a δ-small C1-perturbation of a unit n-sphere Sn ⊂
BN , where δ → 0 for ε→ 0.

A priori, this ε could depend on n and N , but the above proof of the curva-
ture curv⊥-extremality of the unit spheres shows that this in not so; moreover,
this, essentially 1-dimnsional proof suggests an effective, albeit rough, bound on
ε, e.g. ε = 0.01 will do. (See below and section ??? for Petrunin’s sharp results
in this regard.)

Immersions to Tubes. The maximum principle applied to closed immersed
n-submanifolds in "unit tubes" BN(1) ×Rk ⊂ RN+k shows that

curv⊥(Xn ↪ BN(1) ×Rk) ≥ 1 for k ≤ n + 1.

Extremal X, i.e. where curv⊥(Xn ↪ BN(1)×Rk = 1 for k ≥ 1 are not unique, for
k ≥ 1; yet, the aspects of extremal geometry, which are dictated by the rigidity
of half circle lemma ( ???) are stable, i.e. traceable in X with curv⊥(X) ≤ 1+ ε
(compare with section???) of where much of geometry of extremal X, where
curv⊥(Xn ↪ BN(1) × Rk = 1 is dictated by the half circle lemma (see ??? ??
????)

About Mean Curvature. The maximum principle argument also applies to
immersed n-submanifolds X in BN with mean.curv ≤ n − 1 (compare with ??
in section???) and shows that these X lie in SN−1, where they are minimal, i.e.
have zero mean curvatures.

There are lots of such submanifolds in SN−1 and the unit subspheres are not
mean curvature stable and it is probably not hard to show that all n-manifolds
admit δ-dense immersions X ↪ BN(1), N ≥ 2n, with mean.curv(X) ≤ 1 + ε for
all n ≥ 2 and ε, δ > 0.

N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively
curved and minimal surfaces. Invent. Math. 126 (1996), 457-465. MR 98d:53014

E. R. Rozendorn, The construction of a bounded, complete ‘ surface of non-
positive curvature, Uspekhi Mat. Nauk, 1961, Volume 16, Issue 2, 149–156

Veronese Manifolds.(Elements of the architecture of our world?) Besides
n-spheres, there are other O(n + 1)-equivariant immersion Sn ↪ BN(1), where
the most interesting ones are the (quadratic) Veronese maps.

These are (minimal) isometric immersions of the n-spheres of radii Rn =√
2(n+1)
n

to the unit balls, which factors through embeddings of the projective

spaces RPn = Sn(Rn)/{±1} to the balls B
m(m+3)

2 , where these embedding have
amazingly small curvatures:

11See stability Gr. for a general discussion
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curv(V ern) = curv⊥ (RPnV er ↪ B
n(n+3)

2 ) =
√

2n

n + 1
, e.g.

curv(V er2) = curv (RP 2
V er ↪ B5) = 2

√
1

3
< 1.155,

Observe that the radii Rn of the Veronese n-spheres, which covers RPnV er,
satisfy

[2/curv⊥] Rn =
2

curv(V ern)
.

Conjecture.

curv⊥(Xn,BN) <
√

2n

n + 1
Ô⇒ X =diffeo Sn.

The "homeo-version" of this proven by Petrunin for n = 2. (See Pet ???and
section ??? where we also explain the above and say more about Veronese maps
and their generalizations.)

Exercise. Identify Veronese manifolds with the spaces of quadratic forms of
rank one and trace one.

7 Hypersurfaces Inscribed in Convex Sets
Given a subset V ⊂ Rn+1, let ext+r(V ) denote the r-neighbourhood of V , that is
the subset of points in Rn+1 within distance ≤ r from V .

ext+r(V ) = {y ∈ Rn}dist(y,V )≤r ⊂ Rn+1,

and let
int−r(V ) ⊂ V

be the complement of the interior of the r-exterior of the complement of Rn+1∖V ,
that is equal to the set of points in V with distance ≥ r from the boundary of
V ,

int−r(V ) = {v ∈ V }dist(v,∂V )≥r ⊂ V.

Clearly,
ext+r(int−r(V )) ⊂ V and int−r(ext+r(V )) = V.

Let R = R(V ) denote the in-radius of V , that is the maximal distance from
the boundary of V in V ,

R = inrad(V ) = sup
v∈V

dist(v, ∂V )

and let
cntr(V ) = int−r(V )

be the set of the centers of the R-balls in V , that is the subsets of v ∈ V with
dist(v, ∂V ) = R = inrad(V ).

Let V ⊂ Rn+1 be a compact convex domain, e.g. the (n + 1)-cube ◻n+1 =
[−1,1]n+1 or an (n + 1)-simplex △n+1.
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Then, clearly, the r-interior of V is convex and if r = R = inrad(V ) then
intR(V ) called the central locus in V ,

intR(V ) = cntr(V )

is a non-empty compact convex subset in V of dimension ≤ n = dim(V ) − 1.
For instance, if V is a cube or a simplex, then cntr(V ) consists of a single

point and ext+r(int−r(V )) is equal to the (unique maximal) ball inscribed into
V .

(If V is a general (n + 1)-dimensional rectangular solid then int−r(V ) is a
subsolid of certain dimension 0,1, ..., n.)

1.4.A. Exercises. (a) Let the boundary of V be C1,1-smooth12 (e.g. piece-
wise C2-smooth) with curvature bounded by a constant c,

curv⊥(∂V ⊂ Rn+1) ≤ c.

Show that if r ≤ 1
c
, then, the r-balls B ⊂ Rn+1 tangent to ∂V either are fully

contained in V or lie outside V , meeting W at a single contact point between
the boundaries of B and V ; consequently:

ext+R(cntr(V )) = V for R = inrad(W ).

(b) Let X ↪ Rn+1 be a C2-smooth compact immersed hypersurface in Rn+1

and let
W = conv(X)

be the convex hull of (the image of) X ↪ Rn+1.
Show that the boundary of W is C1,1-smooth13 with curvature bounded by

that of X,
curv⊥(∂W ⊂ Rn+1) ≤ curv⊥(X ↪ Rn+1).

(c) Sphericity. Let V ⊂ Rn+1 be a convex bounded domain, e.g. a polytope,

such as (n+1)-cube ◻n+1 = [−1,1]n+1 or an (n+1)-simplex △n+1, and let X
f↪ V

be a C2-smooth immersion, where X is a closed n-manifold.
Apply (a) and (b) to the convex hull W = conv(X) ⊂ V of X and show that

if
inrad(V ) = R ≤ 1

curv⊥(X ↪ V )
,

then, in fact,

inrad(V ) = 1

curv⊥(X ↪ V )
.

Firermore, if cntr(V ) consists of a single point o ∈ V , (e.g. V = ◻n+1 or
V = △n+1), show that the image of the immersion f is contained the R-ball
centred at o for R = inradV .

Consequently, (see 1.3.A)

the image of X
f↪ V is equal to the R-sphere centered at o ∈ V .

12Locally, the hypersurface ∂V ⊂ Rn+1 is representable by the graph of a C1-function with
bounded measurable second derivatives.

13Locally, the hypersurface ∂W ⊂ Rn+1 is representable by the graph of a C1-function with
bounded measurable second derivatives.
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(d) Stability. Argue as in section 1.3 and, assuming as above that cntr(V )
consists of a single point o ∈ V , show that the (only) R-sphere in V is stable:

there exists an ε = ε(V ) > 0, such that all immersed closed hypersurfaces
X ↪ V with curv⊥(X) ≤ R+ε are δ-close in the C1-topology to to the R-sphere
Sno (R), where δ →

ε→0
0.

More on Stability. Unlike 1.3.B, this ε is sensitive to dimension.
For instance if V is the regular unit simplex then ε(△n+1) ∼ ε0/n and if it is

the cube ◻n+1 = [−1,1]n+1, then ε(◻n+1) ∼ ε0/
√
n.

On dim(cntr(V ) > 0. If int−r(V ) has positive dimension, then there are
many non-spherical C2-immersed (and even more C1,1) hypersurfaces in V with
curvatures ≤ 1

inradV
, see section???.

?????????????????????????????
On dim(cntr(V)) > 0. Let dim(cntr(V )) = k > 0, let Z ⊂ Rn+1 be an affine

k-dimensional subspace which contains the (convex!) subset cntr(V ) ⊂ Rn+1

and let Bn+1
Z (R) = ext+R(Z) ⊂ Rn+1 be the R-neighbourhood of Z.

Unlike that case of dim(Z) = 0, there are many non-spherical C2-immersed
(and even more C1,1) hypersurfaces X in Bn+1

Z (1) with normal curvatures
curv⊥ ≤ 1

Examples. (a) Let Xo ↪ Z be a smooth closed immersed submanifold with
curv⊥ ≤ 1/2.

Then the 1-encircling14 Xo+1 = (Xo)+1 ↪ Rn+1 of the immersion Xo ↪ Z in
Rn+1 is an smooth immersed hypersurface in Bn+1

Z (1) with curv⊥(Xo+1) ≤ 1.
(b) Let Xo ↪ Z be a smooth compact submanifold with a boundary, such

that curv⊥(Xo) ≤ 1/2 and curv⊥(∂Xo) ≤ 1/2.
Then the 1-encircling Xo+1 = (Xo)+1 ↪ Rn+1 of the immersion Xo ↪ Z

in Rn+1 is a piecewise C2 smooth C1-immersed hypersurface in Bn+1
Z (1) with

curv⊥(Xo+1) ≤ 1.
(c) Let X○ ↪ R2 be the figure ∞ curve made of two unit circles (as in ??)

and let S1 × Sn−1 = X○○ ↪ Rn+1 be obtained by rotating X○ around an axes
A ⊂ R2 ⊂ Rn+1 = R2+(n−1).

If this axes is normal to the line between the centers of the circles, then the
image of the immersion X ↪ Rn+1 is contained in the unit tube Bn+1

R2 (1) and
if dist(A,X○) ≥ 1 then curv⊥(X○○) ≤ 1. This X○○ ↪ Rn+1 is C1-smooth and
piecewise C2 smooth as in Xo+1 (b) but the geometry of X○○ is significantly
different from that of Xo+1.

These (a)(b)(c) well represent immersed hypersurfaces with curvatures one
in the unit "tubes". Bn+1

Rk (1),especially for k = 1, where all immersions of
closed n-manifolds to Bn+1

Rk (1) for n ≥ 2 are embedding, which are 1-encirclings
(boundaries of 1-neighbourhoods) of segments in the line R1 (see section ??).

8 Bowl Inequalities

Let X ↪ RN be an immersed complete (e.g. closed) connected n-dimensional
submanifold in the Euclidean N -space, let x0 ∈ X, let T = Tx0 ⊂ RN be the
tangent space to X at x0 (represented by an affine subspace in RN ) and let
Px0 ∶X → Tn0 be the normal projection map.

14"R-Encircling" is a generalisation of "boundary of the R-neighbourhood" for embeddings,
see section ???.
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Let Ux0 ⊂ X be the maximal connected neighbourhood of x0, such that the
normal projection P = Px0 , from Ux0 to Tx0 is a one-to-one diffeomorphism onto
a domain Vx0 ⊂ Tx0 = Rn, which is star convex with respect to x0.

Clearly such a Ux0 exists and unique. where,
Let S = Sn(R) an n-sphere of radius R, which is tangent toX at the point x0,

(such spheres S = Sν are parametrised by the unit normal vectors ν ∈ T ⊥x0
(X))

let P→Tx0 , be the normal projection map and observe that the corresponding
neighbourhood Ux0

⊂ S is the hemisphere S+ that is the ball Bx0(π2R) ⊂ S = Sn
around x0.

Let d(x) = distT (P (x), x0) and let d(s) = distT (P (s), x0) = R sin 1
R
distS(s, x0)

be the corresponding function for the sphere S.
Let h(x) = dist(x, y = P (x)), x ∈ X, and let h(s) = R cos 1

R
distS(s, x0) be

the corresponding function for the sphere S.
Remark. Both d–functions and both h-functions have their gradients bounded

by one, in fact,

∥gradS(d(s))∥2+∥gradS(h(s))∥2 = 1 and ∥gradX(d(x))∥2+∥gradX(h(x))∥2 ≤ 1,

The gradients of both d-functions have unit norms at x0,15, they don’t vanish
in the interiors of the domains Ux0 and Ux0

correspondingly; grad(h) vanishes
on the boundary. of Ux0

and Ux0
vanishes at at least 2 ponts at the boundary

of Ux0 .
The gradients of the h-functions have norms < 1 in (the interiors of) domains

Ux0 and Ux0
correspondingly, and these norms. are equal to one the boundaries

of these domains.
In fact, Ux0

is the same as the maximal connected neighbourhood of x0,
where ∥gradX(h)∥ < 1 and the P -image of which is star convex.

Hemisphere Comparison Inequalities. Let

curv⊥(X) ≤ curv⊥(S) = 1/R.

Then:
The gradient of the h-function on X,

h ∶ x↦ dist(x,P (x))

for x ∈ Ux0 is bounded by that for the h-function on S+

∥grad(h)∥ ≤ ∥grad(h)∥ for distX(x,x0) ≤ distS(s, x0)∥ and s ∈ S+

Consequently, the domain Ux0 ⊂X contains an open R-ball centered at x0.
●d The gradient of the d-function on X in the radial direction is bounded

from below by that for d:
if s ∈ S+ and a unit vector τ ∈ Tx(X) which is tangent to a geodesic segment

γ in X issuing from x0 and termnating at x satisfy

length(γ) ≤ dist(s, x0)

then
⟨grad(d), τ⟩ ≥ ∥grad(d(s))∥,

15These functions are non-differentiable at x0 but the norms of their gradients continously
extend to one at x0.
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Consequently, the P -images in T of the r-balls from Ux0 ⊂ X centered at x0,
contain the P -images of the corresponding spherical balls from S+,

P (Bx0(r)) ⊃ Bx0 (R ⋅ sin 1

R
r) ⊂ T for all r ≤ π

2
R,

●−1
h The inverse function h−1(y), y ∈ Bx0(R) ⊂ T , and the norm of its gradient

are bounded by h−1(y), and ∥grad(h−1(y))∥ correspondingly.
Corollary. Let BN(R) ⊂ RN be a ball, such that the boundary sphere

SN−1(R) = ∂BN(R) is tangent to X at x0, i.e.

Tx0(S
N−1(R)) ⊃ Tx0(X).

If curv⊥(X) ≤ 1/R, then the subset Ux0 ⊂X doesn’t intersect the interior of
this ball. Thus, Ux0 lies in the closure of the complement of the union of the
R-balls tangent to X at x0.

Spherical Bowl Theorem. Let Ux0(+r) ⊂ X be the r-neighbourhood of
Ux0 in X. Then the gradient of the function d(x) = distT (P (x), x0) doesn’t
vanish in the interior of the complement Ux0(+R) ∖ Ux0 and the P -mage of
the complement Ux0(+r) ∖ Ux0 , r ≤ R, doesn’t intersect the interior of the ball
Bx0(R − r) ⊂ T .

Proof The bounds on the gradients of the functions h in the hemisphere
comparison inequalities follow from the angular arc inequality. 1.1.E, while the
bowl theorem follows from these inequalities applied to X at x0 and at all ponts
x ∈ ∂Ux0 .

If dim(X) = 1, then the bowl theorem, where the proof16 becomes especially
transparent 17 implies the following.

"Circular Arm" Inequality. Let a planar circular arc A ⊂ R2 (a segment
of a circle) and a smooth spatial curve X ↪ RN satisfy:

length(X) = length(A) = l and curv⊥(X) ≤ curv⊥(A).

Then the distance between the endpoints of X is greater than or equal to that
in A, where the equality holds if and only if X is congruent to A.

Example Let X ⊂ RN is a closed curve of length 2π. If curv⊥(X) ≤ 1, then
the Euclidean distances between opposite points x,xopp ∈ X are ≥ 2, where an
equality dist(x0, (x0)opp = 2 implies that X is circlular.

Exercise. Show that all closed curves of length 2π in the Euclidean space
contain pairs of opposite points x,xopp ∈X,(i.e. with the X-distance π between
them), such that dist(x,xopp) ≤ 2.

n-d Corollaries Then the geometry of such anX mainly (but not fully ) deter-
mined by the behaviour of geodesic segments from X, which are 1-dimensional
submanifolds RN – curves with curv⊥ ≤ 1.

Remarks (a) Other proof Proof of the Circular Bowl Inequality, and ref to
Schmid by Hopf

The following proposition, says that f(U0) lies at least as close to Y0 in the
C1-metric as S1

c to YS .
16Hopf Schimd
17he abive Hopf Schimdt, oter proofs
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5.C. C1-Flatness Theorem. Let curv⊥(U0) ≤ c = curv⊥(S1
c ). Then

(i) the domain V0 ⊂ Y0 contains the (open) unit ball Bnx0
(l/2), where l =

length(S1
c ),

(ii) dist(f(u), Y0)) ≤ diam(S1
c ) for all u ∈ U0.

Moreover, this distance function is bounded by the corresponding function
for S1

c in two ways:

distS1
c
(s, s0) ≥ distX(u,u0) Ô⇒ distY (f(u), Y0)) ≤ dist(s, YS));

and

distY (PS(s), s0) ≥ distY (P0 ○ f(u), f(u0)) Ô⇒ dist(f(u), Y0)) ≤ dist(s, YS)).

(iii) The gradient of the distance function between f(X) and Y0 is also
bounded by that for S1

c in two ways;

distS1
c
(s, s0) ≥ distX(u,u0) Ô⇒ ∇Xdist(f(u), Y0) ≤ ∣ d

ds
dist(s, YS)∣ ,

and

distY (y = PS(s), s0) ≥ distY (P0○f(u), f(u0)) Ô⇒ ∇Y0(dist(v, p−1
0 (v) ≤ ∣ d

dy
dist(y,P −1

S (y)∣ .

(iv) the X-gradient of the distance function u ↦ dist(f(u), Y0 tends to one
for u → ∂U , while the Y0-gradient of the inverse function v ↦ dist(v.P−1(v).
tends to infinity for v → ∂V .

Clearly such a U0 exists and unique, where, this an essential example, if
X = Sn ⊂ Rn+1, then such a U0 is the hemisphere around x0.

=============
Let f ∶X ↪ Y be an a C1,1-smooth (e.g. C2) immersion with

curv⊥(X f↪ Y ) ≤ c,

where the manifold Y is complete simply connected with constant curvature,
(e.g. Y = RN or X = SN(1)) and where X is geodesically complete with respect
to the induced Riemannian metric (e.g X is compact without boundary).

5.B. Remarks. (a) The [2 sin]bow-inequality for infinitesimally close points
x1, x is equivalent to curv⊥ ≤ 1.

.
Let YS be the tangent (line) to the above circle S1

c ⊂ Y at some point s0 ∈ S1
c

and PS ∶ S1
c → YS be the normal projection.

Let f ∶X ↪ Y be an a C1,1-smooth (e.g. C2) immersion with

curv⊥(X f↪ Y ) ≤ c,

where the manifold Y is complete simply connected with constant curvature,
(e.g. Y = RN or X = SN(1)) and where X is geodesically complete with respect
to the induced Riemannian metric (e.g X is compact without boundary).

Then the Y -distance between the ends of γ is bounded from below by the
Y -distance between the ends s0 and s1 of S, where the equality holds if and
only if γ is congruent to S in Y .

For instance,
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8.1 High Dimensional Applications of the Circular Bowl
inequality

Basic geometry properties of immersed n-submanifolds X in Euclidean spaces
with

curv⊥(X f↪ RN) ≤ c,

can be reduced to the case n = 1 applied to the geodesic segments from X, which
are, by the definition of the normal curvature curv⊥(X), are curves in RN with
curv⊥ ≤ c.

The circular bow inequality applied to geodesics in immersed n-submanifolds

X
f↪ RN , dim(X) = 1,2, ...n, ...

yields the following.
5.A. Geodesic Lower Expansion Bound.18 Let γ ↪ Y be a geodesic

segment in X and let S ⊂ Y be a planar arc with constant curvature curv⊥(S) =
curv⊥(S1

c ) = c. 19

Then the Y -distance between the ends of γ is bounded from below by the
Y -distance between the ends s0 and s1 of S, where the equality holds if and
only if γ is congruent to S in Y .

For instance,
1.4.A.[2 sin]bow-Inequality. Let γ ↪ X be an (not necessary minimising)

geodesic segment20 between two points x0, x1 ∈X. If the normal curvature of X
is bounded by 1/R and if length(γ) = l ≤ 2πR, then

Then the Euclidean distance between these points is bounded from below:

[2 sin]bow, distY (f(x0), f(x1)) ≥ 2R sin
l

2R

and, the equality implies that the f -image of γ is a circular ark in a plane in
RN .

Corollaries
?? If X is connected and the induced metric in X is complete (e.g, X is

compact without boundary), then

[2 sin]dist distY (f(x0), f(x1)) ≥ 2 sin(distX(x0, x1)
2

)

for all x0, x1 ∈X, such that dist(x0, x1) ≤ 2π.
5.B. Remark. The [2 sin]bow-inequality for infinitesimally close points x0, x1

is equivalent to the inequality curv⊥ ≤ R.
(b) The [2 sin]bow-inequality holds for immersions to (complete simply con-

nected) manifolds Y with non-positive sectional curvatures and the full geodesic
lower expansion bound also admits a generalisation to manifolds with non-
constant curvatures.

18See ??, ?? and references therein for the full Bow Lemma.
19If Y has zero or positive curvature, then this S is a part of a circle (or a straight line for

c = 0) and if Y is a hyperbolic space, then S may also be a segment in an infinite planar curve
of constant curvature, e.g. a horocycle.

20Recall "Geodesic" refers to the induced (inner) Riemannian metric in X,
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.
5.C. 2π-Injectivity Let TBx(r) ⊂ Tx(X) gent space be the r-ball in the

tangent space at a point x ∈ X and let expx ∶ TBx(r) → X be the exponential
map. If r < π, then the composition of this map with our immersion f ∶X ↪ RN
is one-to one.

Here are two obvious sub-corollaries.
2π-Geodesic Loop Inequality. Geodesic loops γ in X have length(γ) ≤

2π.
5.C. 2π-Diameter Inequality. If the intrinsic diameter, i.e. the diameter

with respect to to the induced Riemannian metric, of X
f↪ RN , satisfies

diamint(X) < 2π,

then X is embedded to RN : the map f is one-to-one.
This inequality is sharp: the equality holds for SnV er(Rn) → RPnV er ↪

B
n(n+3

2 (1) by the above [ 2
curv⊥

]

diamint(SnV er) = πRn =
2π

curv⊥(SnV er)
.

Question. Are Veronese the only ones with this property? (Compare with
pet and also with section ???)

9 Bow, Arms Riemannian displcaement Controle
 Circular Bow inequality. Let a planar circular arc A ⊂ R2 (a segment of
a circle) and a smooth spatial curve X ↪ RN satisfy:

length(X) = length(A) = l and curv⊥(X) ≤ curv⊥(A).

Then the distance between the endpoints of X is greater than or equal to that
in A, where the equality holds if and only if X is congruent to A.

Example Let X ⊂ RN is a closed curve of length 2π. If curv⊥(X) ≤ 1, then
the Euclidean distances between opposite points x,xopp ∈ X are ≥ 2, where an
equality dist(x0, (x0)opp = 2 implies that X is circlular.

Exercise. Show that all closed curves of length 2π in the Euclidean space
contain pairs of opposite points x,xopp ∈X,(i.e. with the X-distance π between
them), such that dist(x,xopp) ≤ 2.

First Proof of  . Parametrize the curves X and A by the ark length
parameter s ∈ [0, l], l = length(A) = lenght(X), write x(s) for X and a(s) for
A and let x′(s) and a′(s) denote the derivatives of these (vector) functions.

Let
ÐÐÐÐÐÐÐÐ→
[x(s0), x(s1)] ⊂ RN be the oriented chord (straight segment) between

the points x(s0), x(s1) ∈ RN and let us use the same notation for the points on
the curve A ⊂ R2.

Angular Bow Inequality. If l ≤ π/curv⊥(A), then the angles between the
X-cord and the tangent vectors to X at the endpoints of X are bounded by the
corresponding angles for A,

[∠0] ∠(x′(0),
ÐÐÐÐÐÐÐ→
[x(0), x(l))]) ≤∠(a′(0),

ÐÐÐÐÐÐÐ→
[a(0), a(l))])
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and

[∠l] ∠(x′(l),
ÐÐÐÐÐÐÐ→
[x(0), x(l))]) ≤∠(a′(l),

ÐÐÐÐÐÐÐ→
[a(0), a(l))]) ,

where equality in either of two implies that X is congruent to A. 21

Consequently, if A+ ⊂ RN is a circular arc of the same curvature as A between
the points x(0) and x(l),22 then the angles between the X-cord and the tangent
vectors to X at the endpoints of X are bounded by the angles of the same chord
ÐÐÐÐÐÐÐ→
[x(0), x(l))] with the tangent vectors to A+ at the endpoints of A+.

Proof. Let
Ð→αX(s) =∠(x′(s),

ÐÐÐÐÐÐÐÐ→
[x(0), x(s))])

←ÐαX(s) =∠(x′(0),
ÐÐÐÐÐÐÐÐ→
[x(0), x(s))])

and observe the following three inequalities.
(1) the derivative of ←Ðα is bounded by Ð→α and the distance r = rX(s) =

dist(x(0), x(s)) as follows

∣←Ðα ′
X(s)∣ ≤ ψ(Ð→αX(s), rX(s))

where the ψ is a smooth function monotone increasing in Ð→α for 0 ≤ Ð→α ≤ π/2
and deceasing in r ≥ 0.

In fact, this inequality holds for

ψ(Ð→α , r) = sinÐ→α
r

where it turns to equality for A in place of X,

←Ðα ′
A(s) =

sinÐ→αA(s)
rA(s)

, 0 ≤ s ≤ 2π/curv⊥(A)

for

←ÐαA(s) = Ð→αA(s) =
1

2
s ⋅ curv⊥(A), rA(s) = 2

curv⊥(A) sin
1
2
s ⋅ curv⊥(A).

and
←Ðα ′
A(s) = Ð→α ′

A(s) =
curv⊥(A)

2
.

(2) The derivative of rX(s) is monotone decreasing in Ð→αX(s).
In fact

r′X(s) = cosÐ→αX(s).

(3) The derivative of the angle Ð→αX(s) is bounded by the curvature c = c(s) =
cX(s) = curv⊥(x(s)) of X at x(s) ∈X as follows

Ð→α ′
X(s) ≤ ϕ(cX(s), rX(s),Ð→αX(s)),

21Notice that ∠(a′(0),
ÐÐÐÐÐÐÐ→
[a(0), a(l))] = ∠(a′(l),

ÐÐÐÐÐÐÐ→
[a(0), a(l))]) = l

2
curv⊥(A) and that the

inequalities[∠0] and [∠l] follow one from another by reversing the direction of the s-
parameter, but it is instructive to keep track of both angles.

22Such an ark exists only if dist(x0, x1) ≤ 2 sin π
2πcurv⊥(A)
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where ϕ is a smooth function, which is monotone increasing in c.
In fact, this inequality holds with

ϕ(s, r,Ð→α ) = c − sinÐ→α
r

,

which becomes equality for A instead of X for

Ð→α ′
A(s) = curv⊥(A) − sinÐ→αA(s)

2
curv⊥(A) sin

1
2
s ⋅ curv⊥(A)

= curv⊥(A)/2.

Remarks. (i) ADD Relation to Robotics
ADDADDADDADDADDADDADDADDADDADD
Conclusion of the proof of of the angular inequality
ADDADDADDADDADDADDADD
Derivation of Circular Inequality from the Angular one. Divide X by the

point x(l/2) ∈X into two arcs of length l/2 and apply the angular bow inequality
to these arcs. Thus we see that both distances

dist(x(0), x(l/2)) and dist(x(l/2), x(l))

are greater or equal than dist(a(0), a(l/2)) = dist(a(l/2), a(l)) and that the
angle between of the cords

(
ÐÐÐÐÐÐÐÐÐ→
[x(0), x(l/2))]) and (

ÐÐÐÐÐÐÐÐÐ→
[x(l/2), x(l))])

at the point x(l/2) is greater or equal than the corresponding angle for A. Since
dist(a(0), a(l/2)) = dist(a(l/2), a(l)), we conclude that

dist(x(0), x(l)) ≥ dist(a(0), a(l)).

QED.

9.1 Riemannian Bow Inequalities.
The bow inequalities straightforwardly generalise to immersions to Rieman-
nian manifolds Y with constant sectional curvatures κ – spheres and hyperbolic
spaces and then extend in a comparison form to all CAT (κ)-spaces (see sec-
tion???).

z Exercise: Derive circular bow inequality on the sphere Sn ⊂ Rn+1 from
that for Rn+1

Hint: use planarity of geodesics in Sn

Exercise Prove the circular bow inequality in the hyperbolic space Hn

Hint: Aegue as in ??? with horofunction h instead of a linear function.
Examples (1) Let h(y), y ∈ RN , be a linear function and let a curve y(s)

starts with zero h-growth, i.e. ⟨τy(s0),grady(s0)(h)⟩ = 0. Then the fastest
growth of h(y(s)) among curves y(s) with curv⊥(y(s)) ≤ 1 is achieved by a
circular arks of length π/4 followed by a straight ray in the direction of grad(h).

(2) Let h(y) be the distance to the origin, h(y) = ∣∣y∣∣, let S be a half circular
(of length π) ark and let

curv⊥(y(s)) ≤ curv⊥(S) = 1.
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(A) If S ⊂ RN and the curve y(s) start at zero,s0 = y(s0) = 0. Then

∥y(s)∥ ≥ ∥s∥ for all s ∈ S.

Furthermore, the first point s○ where the derivative of h(y(s)) vanishes, i.e.
⟨τy(s○),grady(s○)(h)⟩ = 0, lies further from the origin then s1 ∈ S,

∥s○∥ ≥ ∥s1∥

and
lenght(y[s0, s○]) ≥ lenght(S) = π.

(B) Let S ⊂ RN be as above and y(s) start within distance ≥ 2 from the
origin normally to grad(h),

∥y(s0)∥ ≥ 2 and ⟨τy(s0),grady0(h)⟩ = 0.

Then the function h(y(s)) decays slower than ∥s∥ on S for s running from s1

to s0,
∥y(s)∥ ≥ ∥π − s∥, s ∈ S.

The proofs of ??? are straight forward, where A and B together yield the
[2 sin]bow-inequality, where this argument generalises to several classes of Rie-
mannian manifolds.

be monotone decreasing follow the "general direction" of the gradient of h,
i.e.

⟨τ(s),grads(h)⟩ ≥ 0 for s0 ≤ s ≤ s1

and let
⟨τy(s0),grady(s0)(h)⟩ ≤ ⟨(τ(s0),grads(h)⟩

and the tangent unit vector τ(s0) to S is equal to τy(s0) and compare the
behaviours of the functions h(s) and h(y(s)), where, due to umbilicity of H
(hence of all level hypersufaces of the function h(y)), the function h(s) doesn’t
depend on a specific position of S in RN , but only on the point s0 ∈ RN and the
unit vector τ(s0) ∈ RN . (All such positions make a unit sphere SN−2 identified
with the set of unit vectors normal to τ(s0).

Specifically, we want decide when the inequality curv(y(s) ≤ curv(S, s)
yields the inequality h(y(s)) ≥ h(s).

and let D0(y) be the differential of the distance function y ↦ dist(y, y0).
Let y(s) be a (planar) curve congruent to our S ⊂Y (with constant curvature c
now issuing from y0, that is y(s0) = y0.
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Denote τ(s) = dy(s) ∈ T (Y ) and τ(s) = dy(s) ∈ T (Y ) denote the unit
tangent vectors to y(s) and to y(s) and let [s0, s+] ⊂ S be the maximal segment
where the value D0(τ(s)) is nonnegative and [s0, s+] ⊂ S the maximal segment,
where D0(τ(s)) > 0.

Let
curv⊥(y(s)) ≤ c = curv⊥(y(s)).

Since

[dτ/ds] curv⊥(y(s)) = ∥dτ(s)
ds

∥ and curv⊥(y(s)) = ∥dτ(s)
ds

∥

this inequality implies that the the functionD0(τ(s)) decays slower thanD0(τ(s))
on the segment [s0, s+] and also implies the inequality s+ ≥ s+ Therefore,

D0(τ(s)) ≥D0(τ(s), s ∈ [s0, s+].

and

dist(y(s1), y0) = ∫
s1

s0
D0(τ(s)) ≥ ∫

s1

s0
D0(τ(s)) = dist(y(s1), y0), s1 ∈ [s0, s+].

9.2 Axel Schur’s Bow Inequality and Cauchy’s Arm lemma
.

9.2.1 Displacement Lemmas

????Linear Displacement Lemma LetX andX be two curves parameterised
by ark length 0 ≤ s ≤ l in the Euclidean N -space, written as s ↦ x(s) ∈ RN and
s↦ x(s) ∈ RN .

Let these curves be tangent at s = 0,

x(0) = x(0) and x′(0) = x′(0)

and let X be a locally convex curve contained in the plane P ⊂ RN generated by
τ = x′(0) and another unit vector ν linearly independent from τ .

Let h(x) = be the linear function on RN with gradient ν, i.e.

h ∶ x↦ h(x) = ⟨x, ν⟩.

Let X be contained in the half space H+ above the zero hyperplane H0 =
{h(x) = 0} ⊂ RN , i.e.

h(x(s)) ≥ 0

and let X be "downward oriented" with respect to h, i.e.

⟨x′′(s), ⟩ν ≤ 0 s ∈ [0, l],

which means that the curve X in the plane is the graph of of a concave function.
If the normal curvature of X is bounded by that of X,

curv⊥(x(s)) = ∥x′′(s)∥ ≤ ∥x′′(s)∥ = curv⊥(p(x(s)),
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then

[x ≥ ⌢] x(s) ≥ x(s) for all s ∈ [0, l].

where the equality x(l) = x(l) implies that X =X.
Furthermore, if the normal projection of X to the plane P ⊃ X meets X at

a point x(l0) ∈ P , l0 ≤ l, then x(s) = x(s) for s ∈ [0, l0].
Proof. The angular variation of the tangent vectors to the first curve satisfies

the following simple version of the angular arc inequality (1.1.E)

∠(x′0(s0), x′1(s1)) ≤ ∫
s1

s0
∥x′′1(s)∥ds

while the convexity of X and the inequality and the bound length(G[s1, s2]) ≤ π
imply the equality

∠(x(s0), x(s1)) = ∫
s1

s0
∥x′′(s)∥ds.

This applies to s0 = 0 and all s = s1 ≤ l and show that

⟨grad(h), x′1(s)⟩ ≥ ⟨grad(p), x′(s)⟩ for all 0 ≤ s ≤ l.

Then the proof follows by integration:

h(x1(l)) − h(x1(0)) = ∫
l

0
⟨grad(h), x′1(s)⟩ds ≥

∫
l

0
⟨grad(h), x′(s)⟩ds = h(x(l)) − h(x(0)).

Convexity and Rigidity. Convexity of the curve X is necessary as well
as sufficient for the validity of the displacement inequality.

In fact, given an arbitrary positive continuous function c(s), s ∈ l the there
exist a unique up to congruence locally convex planar curve x(s), such that
curv⊥x(s) = c(s).

However, the inequality curv⊥(x(s)) = c(s) imposes non-trivial global con-
strains on the geometry of X only for "small" values of the integral ∫

l
0 c(s)ds,

such as the circular bow inequality and more general Axel Schur’s bow Inequality
(see ???) for ∫

l
0 c(s)ds.

But if this integral is bounded by a "sufficiently large" constant C then the
curves with ∫

l
0 c(s)ds ≤ C display much flexibility (see ???), where the critical

C is somewhere (I am not certain exactly where) between 4π and 7π.
Proof of Circular Bow inequality.(Compare with ???) Let us parametrise X

and S by the length parameter s ∈ [−l, l] let T ⊂ RN be the line tangent to X at
the middle point x(s = 0), let h ∶ RN → T0 be the normal projection regarded as
a real valued (linear) function, where we identify TR, where x(0) ∈ T serves for
0 ∈ R = T , and let us position S in RNR2 such that T is tangent to S at s = 0 as
well.

Let X± and S± be the two halves of these curves corresponding to s ≷ 0.
and let us apply the lemma to the pair of curve (X+,X = S+) parametrised by
s ∈ [0, l] and the function h and also to the pair (X−,X− = S−) parametrised by
−s, s ∈ [0, l] and the function h− = −h.
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Then we add the inequalities

h(x(l)) − h(x(0)) ≥ h(x(l)) − h(x(0))

and
h−(x−(l)) − h−(x−(0)) ≥ h−(x−(l)) − h−(x−(0))

and see that
h(x(l)) − h(x(−l)) ≥ h(x(l)) − h(x(−l))

where, by the definition of h, the circular arc S represented by x(s) wth the
ends x(±l)) satisfies the equality

h(x(l)) − h(x(−l)) = dist(x(−l), x(−l)),

while the curve X satisfies the inequality

h(x(l)) − h(x(−l)) ≤ dist(x(−l), x(−l).

QED
move from the two ends of a curve to the center and evaluate the contraction

rate
In general, the Axel Schur’s bow comparison inequality.(See /////, and

???below)
applies to arcs S in arbitrary planar closed convex curves and to curves Y

in RN , parametrised by the length parameter, which is identified with that of
S, S ∋ s↦ y(s) ∈ Y ↪ RN , where the curvature inequality for the corresponding
points in the two curves,

curv(Y, y(s)) ≤ curv(S, s), s ∈ S,

implies the distance inequality

dist(y(s0), y(s1)) ≥ dist(s0, s1).

Here, Y may be only piecewise smooth (see ???), which includes as a special
case the Cauchy’s Arm lemma.

Arm Lemma. Let S be a planar polygonal arc that makes a part of closed
convex curve and let Y be a polygonal curve in the Euclidean N -space obtained
by "straitening" S:

Y composed of segments of same lengths as S and the angles between con-
secutive segments in Y are bounded by the angles between the corresponding
segments in S. (see ???)

Then the distance between the ends of Y is greater than or equal to the
distance between the ends of S.

(This lemma implies the general bow inequality by approximating general
curves Y by piecewise linear ones.)

Proof of the Bow Inequality For Smooth Curves.23 Let S = [s0, s1],
called an arc, be a segment of a smooth planar convex curve and let y ∶ s ↦
y(s) ∈ RN be a curve parametrised by the arc-length identified with that in S.

23See ???and references therein for the proof general bow inequality.
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Let τy(s) = dy(s)/ds be the (unit in the present case) tangent vector to y(s)
at s and let h(y) y ∈ RN be a function on RN , e.g. a linear function or the
distance function y ↦ distRN (y, y(s0)).

Let the arc S be positioned in (some plane in) RN and let us compare the
variation of the functions h(s) and h(y(s)), where¯these variations are the
integrals of the scalar products of the gradient of h with the (unit tangent)
vector functions s↦ τy(s) and s↦ τ(s),

h(s1)−h(s0) = ∫
s1

s0
⟨τ(s),grads(h)⟩ds and h((y(s1))−h(y(s0)) = ∫

s1

s0
⟨τy(s),grady(s)(h)⟩ds.

Then evaluate these scalar products by integrating their derivatives, which
satisfy

[dτ/ds], ∥
dτy(s)
ds

∥ = curv⊥(y(s)) and ∥dτ(s)
ds

∥ = curv⊥(S, s)

and where the vector dτ(s)
ds

lies in the plane of S, where it is normal to τ(s).
"Monotone" Lemma. Let the scalar product of ⟨τ(s),grad(h)⟩ be monotone

decreasing in s, let curv⊥(y(s) ≤ curv⊥(S, s) and let

⟨τy(s0),grady(s0)(h)⟩ ≥ ⟨τ(s0),grads0(h)⟩

for s0 ≤ s ≤ s1.
If h(y) is a linear function on RN , then

h((y(s1)) − h(y(s0)) ≥ h(s1) − h(s0).

Proof. Since the gradient of h is constant and the scalar product ⟨τ(s),grads(h)⟩
is monotone decreasing, the inequality curv⊥(y(s) ≤ curv⊥(S, s) and the rela-
tions [dτ/ds] imply that the derivatives of the two scalar products satisfy

∣
d⟨τy(s),grady(s)(h)⟩

ds
∣ ≤ −

d⟨τ(s),grads0(h)⟩
ds

By integrating this, we see that

⟨τy(s),grady(s)(h)⟩ ≥ ⟨τ(s),grads(h)⟩,

and by integrating the second time we arrive at the required inequality h((y(s1))−
h(y(s0)) ≥ h(s1) − h(s0).

(2) Now, argue as in ??? and divide a general convex ark into two halves by
a point s1/2 in S, such that a unit tangent vector τ1/2 to S at s1/2 is parallel to
the difference s1 − s0 ∈ RN .

Let h(y) = ⟨y, τ1/2⟩, where τ1/2 is a unit tangent vector to S at s1/2 observe
that the "monotone" Lemma applies to ±h and the segments [s0, s1/2] and
[s1, s1/2] and conclude the proof of the bow theorem by adding the "monotone"
inequalities for the two segments:

∣h(y(s1) − h(y(s0)∣ = ∣(h(y(s1/2)) − h(y(s0)) + (h(y(s1)) − y(s1/2)∣ ≥

∣h(s1) − h(s0)∣ = dist(s1, s0).
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5.B. Half Circle Lemma. Let S = [s0, s1] be a convex ark in the plane,
S ⊂ R2 and let H1 ⊂ R2 be a line, which contains the point s0 and which is
normal to S at this point.

Let y(s) = (y1(s), y2(s), ...yn(s)) ∈ RN , s ∈ S, be a smooth curve in RN isometrically
parametrized by S, i.e. ∥dy(s)

ds
∥ = 1, and let Hn−1 ⊂ RN be a hyperplane, which

contains the point y(s0) and which is normal to y(s) at this point, i.e. normal
to the vector dy(s0)

ds
.

If curv(y(s)) ≤ curv(S, s), s ∈ [s0, s1] and if the total curvature of S is at
most π, i.e. ∫

s1

s0
curv⊥(S, s)ds ≤ π, then

dist(y(s1),Hn−1) ≥ dist(s1,H
1).

5.C.Furthermore, extremality implies rigidity:
if dist(y(s1),Hn−1) = dist(s1,H

1), then the curve y(s) is congruent to S.
Optimal Control Remark. Maximisation/minimisation of variations of func-

tions, h(y), by curves y(s) with curv⊥ ≤ const is an instance of an optimal
control problem24 where solutions are often piecewise smooth rather than smooth
(Optimal Control Systems by A. A. Fel’dbaum https://www.scribd.com/document/390018919/Optimal-
Control-Systems-Feldbaum-pdf) https://encyclopediaofmath.org/index.php?
title=Pontryagin_maximum_principle Add more remarks

observe that 1
rX(s) is equal the curvature of the circle of radius rX(s) and

that
Parametrize X and A be the length parameter s ∈ [0, l], l = length(A) =

lenght(X), write X and A as x(s) and a(s) and derive  from
Let [x(0), x(l)] ⊂ RN and [a(0), x(l)] ⊂ R2 be straight segments (the chords)

between the ends of the two curves,
There are several proofs of this theorem,25 where the quickest one is by ap-

proximation of X and S by broken polygonal curves and applying the following
24Think of piloting a jet plane, where acceleration must be limited by a couple of G for your

comfort.
25(see ?????)
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theorem.
Cauchy-Legendre Arm’s Lemma. Let P ⊂ R2 be a convex polygon in the

plane with vertices p1, p2, ...pk and segments si = [pi, pi+1], where sk = [pk, p1]
and let P ′ ⊂ RN be a polygonal curve composed of segments s′i = [p′i, p′i+1] ⊂ RN ,
i = 1, ,2, ...k − 1 for some points p′i ∈ RN .

If the lengths of the segments s′i (that are distances between p
′
i and p

′
i+1) are

equal to the lengths of si and the angles between these segments at the vertices
p′2, ..., p

′
k−1 are greater then those in P ,

length(s′i) = length(s′i), i = 1, ...k−1, and ∠p′i
(si−1, si) ≥ ∠pi(si−1, si), i = 2, ...k−1,

then the end points p1 and pk of P ′ are further apart then these of P ′,

dist(p′1, p′k) ≥ dist(p1, pk),

where the equality implies that P ′ is congruent to P .
About the Proof. It is intuitively obvious and easy to prove (seventh grade

school math) that increasing an angle between two edges in a convex polygonal
curve P increases the dstance between the end points of P . But – this is
counterintuitive – the resulting curve may become non-convex and one can’t
conclude the proof by induction on k.26

In any case, we need this lemma for spacial curves P ′, where there are at
least two different proof, (see ??? and references therein) where the idea of one
of them is well illustrated by the following observation going back to Euclid if
not earlier.

Exercises (a) (b) Let X be a non-closed closed smooth spacial curve with
curvature bounded by a positive function c = c(s), s ∈ [0, l = lengthX

curv⊥(x(s)) = ∥x′′(s)∥ ≤ c(s).

and S = Sc be a (unique up to congruence) locally convex planar curve with
curv⊥(S, s) = c(s).

Let the curve S be globally convex, i.e. it lies on the boundary of its convex
hull, 27

approximate X and S by polygonal curves and prove the following general-
isation of the above CIRCLE.
cAxel Schur’s Bow Inequality. The distance between the two ends of

X is bounded from below by that in S. 28

////////??????????????
5.B. Remarks. (a) The [2 sin]bow-inequality for infinitesimally close points

x1, x is equivalent to curv⊥ ≤ 1.

(b) The [2 sin]bow-inequality holds for immersions to (complete simply con-
nected) manifolds Y with non-positive sectional curvatures and the full geodesic
lower expansion bound also admits a generalisation to manifolds with non-
constant curvatures.

.
26See Fig 3 in [Sabitov] and references to the contributions by Legendre, Cauchy and

Steinitz.
27A sufficient condition for this is the inequality ∫

l
0 c(s)ds ≤ π.

28See ????? for the history of this theorem.
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10 Hypersurfaces in Balls and Spheres.
Let N = n+ 1, n = dim(X), a let the image of an immersion f ∶X ↪ Rn+1 (with
curv⊥(X) ≤ 1 as earlier) be contained in the ball Bn+1(2).

(a) If n = 1 and the degree of the Gauss map S1 = X → S1(1) ⊂ R2 equals
zero, then (this was stated in ???) the image f(X) ⊂ B2(1) equals the union of
two unit circles which tangentially meet at the center of the disk B2(2).

(b) If n ≥ 2, then either f(X) is star convex, and the radial projection
X → Sn(2) is a diffeomorphism, or f(X) is equal to a unit n-sphere Snyo(1),
where the center of this sphere is positioned half way from the boundary of the
ball Bn+1(2), i.e. ∥yo∥ = 1.

(c) There exists an ε > 0.01, such that if n ≥ 2 and the image f(X) is
contained in the ball Bn+1(2ε)) then f(X) ⊂ Bn+1(2) is star convex with respect
to some point in Bn+1(2 + ε).

Proof. If f(X) is not star convex with respect to the center of the ball
Bn+1(2) then then some radial ray is tangent to f(X) at some point y0 =
f(x0) ∈ f(X) and the half circle lemma implies that y0 is equal to the center of
Bn+1(2) and the bow rigidity(see ???) implies that f(x) equals a unit sphere
passing through y0.

This proves (b) while the bow stability argument (see???) yields an approx-
imate unit sphere in Bn+1(2 + ε) and (c) follows as well.

Remarks (a)
Remark/Example. The boundary X+1 of the ρ-neighbourhood for ρ = 1 of a

circular ark S with radius 2 has curvature bounded by 1. If such an S is slightly
shorter than half circle, then, because of "shorter", X+1 can be fit to the ball of
radius 3 − ε and X+1 and it is non-star convex because of "slghtly".

Question Do ε and ε ever meet or there is a definite gap between their
possible values?

Encouraging Example with width > π
2
. Let a proper compact Riemannian band

Xof dimension n admits an immersion to a complete n-dimensional Riemannian
manifold X+ with sectional curvatures κ ≥ 1, such that the width of X with respect
to the induced Riemannian metric is > π

2
. Then

X contains a subband X− ⊂ X of width d = width(X) > π
2
, which is homeo-

morphic to the spherical cylinder Sn−1 × [0,1].
Acknowledgement. A similar result for n = 3 is proved in [Zhu(width) 2020],

while our argument below follows that of Jian Ge from [Ge(linking) 2021], who
sent me his preprint prior to publication.

Proof. Let, following a geometric idea from Ge’s paper, X− be the intersec-
tion of the d-neighbourhoods of the ∂∓-boundaries of X,

X− = Ud(∂−) ∩Ud(∂−),

and observe that the ∂∓-boundaries of this X− are concave for κ ≥ 1 and d > π
2
.

Therefore, ∂∓ are diffeomorphic to Sn−1 and the immersions

∂∓ →X+

extend to immersions of n-balls the locally convex boundaries of which are equal
to ∂∓ (with their coorientations opposite to those in X−). 29

29Recall that a closed immersed locally convex hypersurface in a complete Riemannian
manifold of dimension n ≥ 3 with sectional curvatures > 0 bounds an immersed ball.
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It follows, that if X+ is simply connected, then it is homeomorphic to the
n-sphere, the immersion X− → X+ is one-to-one and the complement to X− in
X+ is the union of two disjoint topological balls with convex boundaries; hence,
X− is homeomorphic to Sn−1 × [0,1] for all X+. QED.

(Probably, it is not hard to show that if X+ is simply connected and X is an
open band immersed to X+ with width = π

2
, then ether X is homeomorphic to

Sn−1 × (0,1), or X+ is isometric to Sn and X is equal to the π
4
- neighbourhood

of Sk × Sn−k−1 ⊂ Sn.)
∞-Figure Corollary (compare 1.A )

(2+δ)-Corollary letX
f↪ Bn+1(1) be a smooth closed connected n-dimensional

hypersurface in the unit (n + 1)-ball and let

curv⊥(X ↪ Bn+1(1)) ≤ 2 + δ,

where δ > 0 is an universal constant (probably δ > 0.2. If n ≥ 2, then either the
radial projection X → Sn(1) is an immersion, hence f is a star convex embed-
ding with respect to the origin 0 ∈ Bn+1(1), or f is a star convex embedding
with respect to a point x0 ∈ Bn+1(1) with ∥x0∥ = 1/2.

2. Let X be a C1-smooth closed n-dimensional immersed hypersurface in
Rn+1 positioned between two parallel hyperplanes with distance 2 between them,

X ↪ Rn × [−1,1] ⊂ Rn+1

in the unit ball wit
Let X ↪ RN be a compact (complete suffices) immersed n-submanifold, let

x0 ∈X, and let U0 ⊂X of x be the maximal connected neighbourhood such that
the normal projection from U0 the tangent space T0 = Tx0(X) ⊂ RN ,

P0 ∶ U0 → T0

is a one-to-one diffeomorphism onto a domain V0 ⊂ T0 = Rn, which is star convex
with respect to x0 ∈ T0.

11 Immersed Submanifolds in Balls, in Bands and
in (k,R)-Tubes

Let an n-dimensional manifold X be immersed to the k-tube BNRk(R) of radius
R,

X
f↪ BNRk(R) = BN(R) ×Rk ⊂ RN+k

(where BN(R) = BN0 (R) ⊂ RN is the R-ball), let p ∶ X → Rkax = {0}× = Rk be
the projection of X ↪ BNRk(R) to the central axes of the tube, let

K = K(p) ⊂ T (X) ↪ T (BNRk(R))

be the kernel of the differential dp ∶ T (X) → T (BNRk(R)) and let

Σ = Σ(p) = {x ∈X}rank(Kx)>0 ⊂X
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be the support of K.30
Let the induced Riemannian metric in X be geodesically complete, e.g. X is

compact without boundary, and let

γτ(l) ↪X ↪ BNRk(R), τ ∈ Kx

be the geodesic segment of length l issuing from x ∈ Σ in the τ -direction, where
τ is a non-zero vector in the vector (sub)space Xx ⊂ Tx(X),X ∈ Σ.

If
curv⊥(X ↪ BNRk(R) ⊂ RN+k) ≤ 1/R,

then the definition of curv⊥ (section ???) and the half circle lemma applied to
the curves γ±τ( 1

2
πR) in the R-tube BNRk(R) and to the hyperplane H = H⊥τ ⊂

RN+k ⊃ BNRk(R), which contains f(x) ∈ BNRk(R) and is normal to τ imply the
following.

?? Either Σ = ∅, i.e. p ∶ X → Rk is an immersion, (in this case one may
have curv⊥(X) < 1/R) the curves f(γτ( 1

2
πR)) and f(γnecssarilymade−τ( 1

2
πR))

are. quoters of planar circlers, both of which reach the boundary of the tube.
Thus, f(X) ⊂ BNRk(R) intersect the boundary of BNRk(R) at at least two

points.
(a’) C2-Remark. If an immersion f is C2-smooth, so is the πR-curve in the

tube made of f(γτ( 1
2
πR)) and f(γ−τ( 1

2
πR)). This necessarily make this curve

a planar half circle.
But piecewise C2-curves made of circular arc of same curvature 1/R are

not always planar arks themselves. This, however can’t happen to geodesic of
n-dimensional piece-wise C2-smooth X for n ≥ 2 (see section???).

Thus
every point x ∈ Σ ⊂Xn, n ≥ 2, serves as the center of a geodesic R-hemisphere

(Sm+ )x ⊂X of dimensionm = rank(K)x, such that the map f isometrically sends
(Sm+ )x to an equatorial m-hemisphere in the (N − 1)-sphere S−1

p(x), where the
boundary of this hemisphere is contained in the boundary of the tube BNRk(R).

Exercises. (a). Recall that the real projective spaces of dimension n =
2l, admit no immersions to Rk for k ≤ 2n − 2, and show that they admit no
immersions to the tubes BNRk(R) with curv⊥(f) < 1/R.

(b) Let let the f -mages all geodesic segments of length πR in Xn f↪ BN(R)
issuing from a point x0 ∈X have curvatures ≤ 1/r in the ball BN(R).

Show that the image f(X) ⊂ BN(R)is equal to an equatorial n-sub-sphere in
SN1(R) = ∂BN(R) and if X is connected and dim(X) ≥ 2 then the immersion
f is an embedding.

(c) Let a closed connected n-manifold X, n ≥ 2, be immersed to a (cylindri-
cal) (1,R)-tube

X
f→ BNR1(R) ⊂ RN+1.

Show that the only critical points x ∈X of the function p ∶X → R = R1
ax, i.e.

where rank(Kx) = n, are a maximum and a minimum ponts of p, and that the f -
images of both of them in the tube are positioned on the axial line R1

ax = {0}×R1,
30If k < n, then Σ = X and rank(Kx(p)) = n − k, for generic maps p ∶ Xn → Rk and generic

points x ∈ X. If k ≥ n, then ether p is an immersion, i.e. Σ = ∅, or dim(Σ(p)) = 2n − k − 1 for
generic p and and rank(Kx(p)) = 1 at generic x ∈ Σ.
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where they serve as the centers of n-hemispheres (Sn+ )max(R) and (Sn+ )min(R),
both of radius R and where both are contained in the f(X) ⊂ BNR1(R) and where
the spherical (Sn−1(R)) boundaries of them are contained in the boundary of
the tube.

Show that the (n − 1)-hemispheres (Sn−1
+ )f(x)(R) in the tube tangent at

their centers y = f(x) to the (topologically (n − 1)-spherical) fibers of the map
p for all non-critical points x ∈X continuously depend on x.

Show that the image of the immersion f ∶ X → BNR1(R) equals the union of
the two hemi-sperical cups (Sn+ )max(R) and (Sn+ )min(R) and a region between
them contained in the boundary of the tube. (This is not so for n=1.)

(i) Let n ≥ 2 and N = nand show that f is an embedding, the image of which
is equal the +R-encircling of a segment in the central line R1 in BR1(R)N , that is
a (convex) region between to half-R-spheres normal to this line, which is equal in
the present case to the boundary of the convex hull of f(X) ⊂ BR1(R)N . (Unless
the half-R-spheres have a common boundary, this region is only piecewise C2.)

(ii) Let n ≥ 2 and N > n. Show that f is an embedding into the +R-encircling
of a central segment [a, b] ⊂ R1 in BR1(R)N , where this image contains two n-
hemispheres of radius R and a cylindrical region between them which is fibered
over [a, b], where the fibers are equatorial (n − 1)-subspheres in the (N − 1)-
spheres SN−1

y (R) ⊂ ∂BR1(R)N , y ∈ [a, b].

12 Veronese Revisited
Besides invariant tori, there are other submanifolds in the unit sphere SN−1,
which have small curvatures and which are transitively acted upon by subgroups
in the orthogonal group O(N).

The generalized Veronese maps are a minimal equivariant isometric immer-
sions of spheres to spheres, with respect to certain homomorphisms ( represen-
tations) between the orthogonal groups O(m + 1) → O(m + 1),

ver = vers = verms ∶ Sm(Rs) → Sm = Sms = Sms(1),

where

ms = (2s +m − 1)s +m − 2)!
s!(m − 1!

< 2s+m and Rs = Rs(m) =
√

s(s +m − 1)
m

,

for example,

m2 = m(m+3)
2

− 1, R2(m) =
√

2(m+1)
m

and R2(1) = 2,

(see [DW1971]If s = 2 these, called classical Veronese maps, are defined by

taking squares of linear functions (forms) l = l(x) = ∑i lixi om Rm+1,

V er ∶ Rm+1 → RMm , Mm = (m + 1)(m + 2)
2

,

where tis RMm is represented by the space Q = Q(Rm+1) of quadratic functions
(forms) om Rm+1,

Q =
m+1,m+1

∑
i=1,j=1

qijxixj .
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The Veronese map, which is (obviously) equivariant for the natural action of
the orthogonal group group O(n+1) on Q, where, observe, this action fixes the
line Q○ spanned by the form Q○ = ∑i x2 as well as the complementary subspace
Q◇ of the traceless forms Q, where the action of O(n + 1) is irreducible and,
thus, it has a unique, up to scaling Euclidean/Hilbertian structure.

Then the normal projection31 defines an equivariant map to the sphere in
Q◇

ver ∶ Sm → SMm−2(r) ⊂ Q◇,

where the radius of this sphere, a priori, depends on the normalization of the
O(m + 1)-invariant metric in Q◇.

Since we want the map to be isometric, we either take r = 1
R2(m) =

√
m

2(m+1)
and keep Sm = Sm(1) or if we let r = 1 and Sm = Sm(R2(m)) for R2(m) =√

2(m+1)
m

.
Also observe that the Veronese maps, which are not embeddings themselves,

factor via embeddings of projective spaces to spheres

Sm → RPm ⊂ SMm−2 ⊂ RMm−1 = Q◇, Mm = (m + 1)(m + 2)
2

.

Curvature of Veronese. Let is show that
CURvature of veronese by Petrunin formula

curv⊥ver (Sm(R2(m)) ↪ SMm−2(1)) =

¿
ÁÁÀ R2(1)

R2(m)
− 1 =

√
m − 1

m + 1
.

Indeed, the Veronese map sends equatorial circles from Sm(R2(m)) to planar
circles of radii R2(m)/R2(1), the curvatures of which in the ball BMm−1 is
R2(1)/R2(m) = 2

√
m
m+1

and the curvatures of these in the sphere,

curv⊥(S1 ⊂ SMm−2(1)) =
√
curv(S1 ⊂ BMm−1(1))2 − 1 =

√
4m

m + 1
− 1 =

√
3m − 1

m + 1

is equal to the curvature of the Veronese Sm(R2(m)) ↪ SMm−2(1) itself√
R2(1)/R2(m) =

√
2m
m+1

, and the curvatures of these in the sphere,

curv⊥(S1 ⊂ SMm−2(1)) =
√
curv(S1 ⊂ BMm−1(1))2 − 1,

is equal to the curvature of the Veronese Sm(R2(m)) ↪ SMm−2(1)itself. QED.
It may be hard to prove (conjecture in section 1) that Veronese manifolds

have the smallest possible curvatures among non-spherical m-manifold in the unit
ball: if a smooth compact m-manifold X admits a smooth immersion to the
unit ball BN = BN(1) with curvature curv⊥(X ↪ BN) <

√
2m
m+1

, then X is
diffeomorphic to Sm.

It is more realistic to show that the Veronese have smallest curvatures among
submanifolds X ⊂ BN invariant under subgroups in O(N), which transitively
act on X.

31The splitting Q = Q○ ⊕ Q◇ is necessarily normal for all O(m + 1)-invariant Euclidean
metrics in Q.
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Remark. Manifolds Xm immersed to Sm+1 with curvatures < 1 are diffeomor-
phic to Sn, see 5.5, but, apart from Veronese’s, we can’t rule out such X in SN

for N ≥m + 2 32 and, even less so, non-spherical X immersible with curvatures
<
√

2 to BN(1), even for N =m + 1.
It seems hard to decide this way or another, but it may be realistic to try

to prove sphericity of simply connected manifolds immersed with curvatures < 1
to SN(1) for all N .

The curvatures of Veronese maps can be also evaluated with the Gauss for-
mula, (teorema egregium), which also gives the following formula for curvatures
of all vers:

m = 2 1 − 2c2 = 1/3, 2c2 = 2/3 c
√

1/3
C =

√
1 + 1/3 = 2/

√
3

From Veronese to Tori. The restriction of the map vers ∶ S2m−1(Rs) →
SNs to the Clifford torus Tm ⊂ S2m−1(Rs) obviously satisfies

curv⊥vers(T
m) ≤ A2m−1,s +

√
m

Rs
=
√

3 − 5

2
m + ε(m,s)

for

ε(m,s) = 2

4m2
− 4m − 2

s(s + 2m − 2)
+ 5(2m − 1)

2ms(s + 2m − 2)
− 2m − 1

(ms(s + 2m − 2))2
.

This, for s >>m2, makes ε(m,s) = O 1
m2

Since Ns < 2s+2m,
starting from N = 210m3

curv⊥vers(T
m) <

√
3 − 5

2
m.

where it should be noted that
the Veronese maps restricted to the Clifford tori are Tm-equivariant
and that
this bound is weaker than the optimal one

∣∣y∣∣2l4
∣∣y∣∣2 ≥

√
3 − 3

m+2
+ ε from the

previous section.
Remarks. (a) It is not hard to go to the (ultra)limit for s → ∞ and thus

obtain an
equivariant isometric immersion ver∞ of the Euclidean space Rm to the unit

sphere in the Hilbert space, such that

curv⊥ver∞(Rm ↪ S∞) =

¿
ÁÁÀ(m − 1)(2m + 1)

(m + 1)2
=
√

2 − 5

m + 1
+ 2

(m + 1)2
,

where equivariance is understood with respect to a certain unitary representa-
tion of the isometry group of Rm.

Probably, one can show that this ver∞ realizes the minimum of the curva-
tures among all equivariant maps Rm → S∞.

32Hermitian Veronese maps from the complex projective spaces CPm to the spaces Hn of
Hermitian forms on Cm+1 are among the prime suspects in this regard.
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(b) Instead of vers, one could achieve (essentially) the same result with a
use of compositions of the classical Veronese maps, ver ∶ Smi → Smi+1 , i+1 =
(mi+1)(mi+2)

2
− 2,

Sm1 ↪ Sm2 ↪ ...↪ Smi ,

starting with m1 = 2m − 1 and going up to i =m. (Actually, i ∼ logm will do.)

12.1 Petrunins Veronese Rigidity Theorem
Large Simplex Property.(Compare with section 5 in pet.) Let the curvature
of a complete 33 connected n-submanifold in an n-ball of radius r be bounded
by one,

curv⊥(X ↪ BN(r)) ≤ 1,

and let x0, ..., xm ∈X be m + 1 points (e.g. m=n), such that

distX(xi, xj) = π,0 ≤ i < j ≤m.

Then

r ≥
√

2m

m + 1
.

In fact, the Euclidean distances between xi are ≥ 2 by [2 sin]bowinequality,
the minimal ball which contains these point cant be smaller than the ball cir-
cumscribed about regular m-simplex with the edge length 2 by the Kirszbraun
theorem.

Petrunin’s two Balls Covering and the Sphere Theorem. Let the
f -mage of X be contained in the ball of radius r < 2/

√
3 and let x−, x+ ∈ X be

two points joint by a geodesic segment of length π. Then the two geodesic balls
Bx±(π) ⊂X cover X.

It follows that X is homeomorphic to the sphere and, except for n = 1, the
map f ∶X ↪ RN is an embedding.

Proof. The above for m = 2 shows that the boundaries of these balls don’t
intersect and since these boundaries are connected for n ≥ 2 the balls do cover
X.

Petrunin’s Veronese Planes Rigidity Theorem. If the image f(X)RN
is contained the ball BN(2/

√
3) and is not homeomorphic to the sphere then

f is an embedding and all geodesic segment in f(X) are planar (contained in
planes).

Consequently, X is either (congruent to) a Veronese plane or its complex,
quaternionic or Cayley numbers counterpart.

Proof . Track the two balls covering argument in the extremal case with the
bow rigidity at you hand or consult [Pet].

Embedding Remark. Petrunin requires that f is embedding, but this seems
? unneeded for his argument.

33"Complete" refers to the induced Riemannian metric .
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13 Hilbert’s Rational Spherical Designs and Op-
timal Tori

Let
E ∶ RN → B2N(1) ⊂ R2N

be the composition of the Clifford embedding Tn ⊂ B2N and the exponential
(locally isometric covering) map

RN = T0(TN) exp→ TN .

A simple computation shows (see ???) that the Euclidean curvature of E on
the line x̄ ⊂ RN generated by a non-zero vector x ⊂ Rn is

(⋆) curv⊥(x̄ E↪ RN) = (∥x∥L4

∥x∥L2

)
2

,

where x = (x1, ..., xN) for the standard Euclidean (corresponding to the cyclic
torical) coordinates xi and

∣∣x∣∣Lp =
p

√
∑N1 ∣xi∣p

N
.

Let P (n,4) be the linear space of homogeneous polynomials of degree 4 on
Rn, this has dimension (n+4

n
) = n(n−1)(n−2)(n−3)

24
, and let

V4 ∶ Rn → P (n,4), V4 ∶ (c1, ..., cn) ↦ (c1x1 + ...cnxn)4

be the 4th degree Veronese map.
Then A (n−1)-spherical N -multi-set, that is map from a set Σ of cardinality

N to the unit sphere S = Sn−1 ⊂ Rn written as σ
D↦ s(σ), is called is a called a

design of degree 4 and cardinality N in S = Sn−1 if
the center of mass of the N -multi-set V4D in the image V4(Sn−1) ⊂ P(n,4) is

equal to the center of mass of V4(Sn−1) itself with respect to the usual spherical
measure or, equivalently, if

1

N
∑
σ∈Σ

l4(D(σ)) = ∫
S
l4(s)ds

for all linear functions l on S = Sn−1, where ds is the normalised (i.e, of the full
mass one) spherical measure.

Yet another way to characterise the design property of a muti-set D on Sn−1

of cardinality N is via the tautological map

Rn = RD ↪ RN

from the Euclidean n-space of linear functions l(s) on Sn−1 to the space RN of
(all) functions on Σ.

In these term D is a a design (of degree 4 and cardinality N in S = Sn−1) if
and only if – this follows by the standard Γ-formulas for the ∫S l

p(s)ds-integrals,
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the L2 and the L4 norms on the non-zero vectors x ∈ RN which are contained
in RD satisfy:

∥x∥L4

∥x∥L2

= 4

√
3n

n + 2

Thus, in view of⋆,
every Design D of degree 4 and cardinality N on Sn−1 defines a homomor-

phism (which is a locally isometric immersion), call it ED, from Rn = RD to
the Clifford N -torus, such that the curvature of ED in the ball B2N(1) ⊃ TN
satisfies:

curv⊥(Rn ED↪ B2N(1)) =
√

3n

n + 2
.

A design D is rational if all points in D are rational.
Hilbert’s Lemma.34 If N >> n, then Sn−1 contains a rational design of

cardinality N .
Proof. Use three simple facts.
(i) the center of mass co ∈ P (n,4) = R(

n+4
n
) lies in the interior of the convex

hull of the image V4(Sn−1) ⊂ P (n,4)
(ii) co is a rational point in P (n,4),
(iii) rational points in Sn−1 are dense
and proceed in four steps;
(1) Because of (i) and (iii) there exit finitely many rational points si ∈ Sn−1,

i = 1, ....,M , such that the convex hull of these ponts contains c′o.
(2) Because of rationality of co, there exist rational numbers pi ≥ 0, p1 + ...+

pM = 1, such that p1V4(s1) + ...pMV4(sM)1 = co.
(3) Let Q be the common denominator of these numbers and write them as

Pi
Q

for integer Pi, i = 1, ...,M , where P1 + ... + PM = Q.
(4) Let D be the multi-set in Sn−1, which consists of the points si, each

taken with multiplicity Pi.
Then the center of mass of V4D is

1

Q
∑
i

P1V4(si) = ∑
i

piV4(si) = co.

QED.
A. 2n2-Designs. The number N delivered. by the above proof is very big,

a rough estimate is N ≤ but non-rational designs are known to exist for much
smaller N .

For instance If n is a power of 2, then there exists a design of cardinality
N = 2n2 + 4n. 35

homomorphism, (which is a locally isometric immersion) from the Euclidean
n-space to the Clifford N -torus in the ball B2N for N = 8(n2 +n), such that the

34In his solution of the Waring problem, Hilbert uses this lemma (for all even degrees)
in the form of an identity ∑Ni=1 l(xj)2d = (∑Nj=1(x2j))

d for some linear form li with rational
coefficients.

35This was stated and proved in a written message by Bo’az Klartag to me. Also, Bo’az
pointed out to me that the Kerdock code used in [K1995] yields designs for N = 4k and
N = n(n+2)

2
. See ??? for references
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normal Euclidean curvature of this immersion is

(⋆⋆) curv⊥(Rn ↪ B16(n2+n)(1)) =
√

3n

n + 2

Since rational points are dense in the sphere, we conclude to the extence of
subtori Tnε ⊂ T8(n2+n), such that

(⋆ ⋆ ⋆). curv⊥(Tnε ↪ B16(n2+n)(1)) ≤
√

3n

n + 2
+ ε for all n and all ε > 0.

if N >> n as in Hilbert’s Lemma, then there exist n-subtori Tn ⊂ B2N , fsuch
that

curv⊥(Tn ↪ B2N) =
√

3n

n + 2
.

Example/Non-Example. Regular pentagons serve as designs of cardinality
five and degree four on the circle; these are irrational and there is no apparent
simple rational design on S1.

14 Link with the Scalar Curvature via the Gauss
Formula

The curv⊥ problem came up (see ???) in the context of Riemannian geometry
of manifolds X with positive scalar curvatures, where

the scalar curvature of an X at x ∈ X, denoted Sc(X,x), is the sum of
the values of the sectional curvatures κ at the n(n − 1) (ordered) orthonormal
bivectors in Tx(X), for n = dim(X).36

For instance, scalar curvatures of surfaces are equal to twice their sectional
(Gauss) curvatures.

Spheres Example. The n-spheres of radii R in the Euclidean space Rn+1

(which have constant sectional curvatures 1/R2), satisfy:

Sc(Sn(R)) = n(n − 1)/R2 for all n.

Additivity. It follows from the definition that the scalar curvature is addi-
tive under Riemannian products,

Sc(X1 ×X) = Sc(X1) + Sc(X).

For instance, the scalar curvature of the n-th power of the unit 2-sphere is

Sc(S2 × S2 × ... × S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

) = 2n = Sc(S2n(R =
√

2n − 1)

36One knows that Sc(X,x) > 0 if and only if the volume of the ball Bx(ε) ⊂ X is smaller
than the volume of the ε-ball in Rn, provided ε > 0 is sufficiently small: ε ≤ ε(X,x) > 0. Albeit
looking explanatory, this is only an illusion of understanding the geometric meaning of the
inequality Sc(X) > 0.
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This also shows that the topology of manifolds with positive scalar curvatures
of dimensions n ≥ 4, can be arbitrary complicated37 for

Sc(X × S2(ε)) →
ε→0

+∞ for all compact Riemannian manifolds X.

Yet, there are limits to this complexity: there are compact manifolds of all
dimensions, which admit no metrics with Sc > 0, called ∄PSC, where the three
basic examples are as follows.

Basic ∄PSC Manifolds

A. Lichnerowicz Theorem. The (Kummer) surface defined by the equa-
tion z4

1+z4
2+z4

3+z4
4 = 0 in the complex projective space CP 3 and, more generally

orientable spin manifolds with non vanishing Â genus (dimensions of these are
multiples of 4) admit no Riemannian metrics with Sc > 0.

Proved in 1963 with the first (1963) Atiyah–Singer index theorem for the
Dirac operator.

B. Hitchin theorem: there exist manifolds Σ homeomorphic (but non-
diffeomorphic!) to the spheres Sn for all n = 8k + 1,8k + 2, k = 1,2,3..., which
admit no metrics with Sc > 0.

Proved in 1974 with the second (1971) Atiyah–Singer index theorem.
C. Geroch Conjecture. n-Tori admit no metrics with Sc > 0.
Proposed in 1975, proved in 1979 by Schoen-Yau for n ≤ 7 with via minimal

hipersurfaces by induction on n and by Gromov-Lawson in 1980 for all n with
the index theorem for the Dirac operators twisted with almost flat bundles. D.
Product Manifolds. Products of the above manifolds, e.g. of tori by Hitchins
spheres are also ∄PSC.

This is proven with the index theorem for the (generalized) Dirac operators.
Sectional Curvature Remarks. Although the inequality Sc > 0 is much weaker

then sect.curv > 0 (which is equivalent to geodesic triangles having the sums of
the angles > π) no alternative proofs of non-existence of metrics with sect.curv >
0 on manifolds from A and B are available, while the sect.curv > 0 (and Ricci >
0) version of C follows by an elementary argument relying on the geometry of
geodesics in X.

(The ancient Bonnet-Myers theorem says that Ricci(X) ≥ κ > 0 Ô⇒
diam(X) ≤

√
1/κ, which rules out closed manifolds with infinite universal cov-

erings, such as tori.)
Turning to Constant Sectional Curvature. If one requires the strongest pos-

sible condition of this kind, namely the sectional curvature to be constant as
well as positive, then everything about X appears 100% transparent.

Indeed, one knows. that these metric are locally spherical; hence all simply
connected n-manifold X with sect.curv(X) = κ > 0 admit locally isometric
immersions to Sn(R) for R =

√
1/κ.

Consequently,
the universal coverings of closed (compact without boundaries) manifold X

with sect.curv(X) = κ are isometric to Sn(R). This is the end of the story.
Yet, this may be hard to believe, there are non-trivial links between geometry

and topology of manifolds X with constant sectional curvatures if these X have
37Three manifolds with Sc > 0 are not too simple either : connected sums lens spaces and

copies of S1 × S2 admit metrics with Sc > 0 by a theorem by Schoen and Yao.
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non-empty boundaries, where the available proofs of these properties rely on the
scalar curvature inequality Sc(X) ≥ n(n − 1)/R2 and where one doesn’t know
how to exploit to full power of the condition sect.curv = const = 1/R. (see ???)

14.1 Gauss Formula and Petrunin’s Curvature
LetX ⊂ Y be a smooth n-dimensional submanifold in a RiemannianN -manifold,
e.g. in Y = RN and let II= II(X,x)II=II(τ1, τ2) be the second fundamental form
(corresponding to the shape operator) of X at x ∈ X, where τ1, τ2 ∈ Tx(X) are
tangent vectors to X and the form II takes values in the normal space T ⊥x (X)
and where II(τ, τ) is equal to the second derivative of the geodesic in X issuing
from x with the velocity τ .

The normal curvature of X ⊂ Y at x ∈X, in these terms is

curv⊥x = sup
∥τ∥=1

∥II(τ, τ)∥.

The l2-norm of II at x is

∥II∥2
l2 = ∑

i1,i2=1,...m

∥II(τi1 , τi2)∥2,

where {τi}, i = 1, ..., n = dim(X), is a frame of orthonormal vectors in the
tangent space Tx(X).

We shall need the simple inequality

∥II∥2
l2 ≤ kn ⋅ curv

⊥(X)2,

which is useful for k < n. One can also show that ∥II∥2
l2
≤ n2 ⋅ curv⊥(X)2, for all

k but the following inequality. will serve us better.
Petrunin curvature Π = Πx(X ⊂ Y ) is the average of

∥II(τ, τ)∥2

over the unit vectors τ ∈ Sm−1
x ⊂ Tx(X), where clearly,

(curv⊥x)2

n − 1
≤ Πx ≤ (curv⊥x)2

and where the equality (curv⊥x))
2

n−1
= Πx holds if the form II has rank one and

Πx = (curv⊥x)2 if ∣∣II∣∣2l2 = ∣∣mean.curv(X,x)∣∣2.
For instance, if codim(X) = 1, the latter means that all principal curvatures

X at x are mutually equal.
More interestingly [Pet2023])

Π = 2
n(n+2)(∣∣II∣∣

2
l2
+ 1

2
∣∣mean.curv⊥∣∣2)

or
∥mean, curv∥2 − ∥II∥2

l2 =
3

2
mean, curv2 − n(n + 2)

2
Π,

which is proven with the same Γ-function formula for the integrals of polyno-
mials of degree four on Sn−1, which goes along with spherical designs and used
for construction of immersions Tn → RN with curv⊥ =

√
3n/(n + 2) + ε.
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(One wanders if there is a geometric reason for this, e.g. a "Riemannian
curvature averaging formula" of some kind.)

For instance, if n = dim(X) = 2, N = dim(Y ) = 3 and α1 and α2 dnote the
principal curvatures of X at x, then

curv⊥(X,x) = max(∣α1∣, ∣α2∣),

∣∣II∣∣2l2 = α
2
1 + α2

2,

∣∣mean.curv⊥∣∣ = ∣α1 + α2∣

and
Π = 1

4
(α2

1 + α2
2) +

1

8
(α1 + α2)2 = 3

8
(α2

1 + α2
2) +

1

4
α1α2;

if X = S2 ⊂ Y = R3, where α1 = α2 = 1, this makes Π = 1 as well.
Gauss Formula. Let Y have constant sectional curvature κ and let Sc∣n =

Sc∣n(Y ) = nk(k − 1). Then the scalar curvature of X satisfies:

Sc(X,x) = Sc∣n + ∣∣mean.curv⊥(X,x)∣∣2 − ∥II∥2
l2
,

where by Petrunin’s formula

Sc(X,x) = Sc∣n +
3

2
∥mean.curv(X,x)∥2 − n(n + 2)

2
⋅Π,

Hence, the inequality Sc∣m(Y ) ≥ σn implies that

Sc(X) ≥ σn − ∣∣ II(X,x)∣∣2.

Therefore

[kn] Sc(X) ≥ σn − kn ⋅ curv⊥(X)2

for k ≤ n and
Sc(X) ≥ σn − n2curv⊥(X)2.

for all k, where Petrunin’s formula yields better, in fact optimal, inequality for
k >> n

Sc(X) ≥ σn −
n(n + 2)

2
Π ≥ σn −

n(n + 2)
2

curv⊥(X)2.

It follows that if the manifold X is ∄PSC, i.e. it admits no metric with
Sc > 0, then

curv⊥(X) ≥
√

Π ≥
√

2σn
n(n + 2)

for all k and N = n + k = dim(Y ), Y ↩X,

and
curv⊥(X) ≥

√
σn
kn

for k < n/2.

Examples and Corollaries.

Let X be an n-dimensional ∄PSC manifold, e.g. the n-torus Tn, Hitchin’s
exotic n-sphere Σn or a product Σm ×Tn−m.
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(∗Sn+k) Then immersions from X to the unit sphere satisfy

[A] curv⊥(X ↪ Sn+k(1)) ≥
√

n − 1

k

and

[B] curv⊥(X ↪ Sn+k(1)) ≥
√

Π ≥
√

2n − 2

n + 2
.

Inequality [A] is better than [B] roughly for k ≤ n/2, while Petrunin’s [B]
takes over for larger N , where it is, as we known (see sections ???) , optimal
for k >> n2.

14.2 Petrunin’s
√
3 Extremality Theorem

The above doesn’t directly apply to immersions to the Euclidean balls, since
these have Sc∣n = 0, where the Gauss and Petrunin formulas for the induced
metric g, reduce to

[a] Sc(g) = ∣∣mean.curv⊥∣∣2 − ∥II∥2
l2

and

[b] Sc(g) = 3

2
∥mean.curv∥2 − n(n + 2)

2
Π.

Yet, inequality [A], applied to the image of X ↪ BN(1) in SN under the
radial projection of of the unit ball in tangent hyperplane BN ⊂ RN = Ts(SN) ⊂
Rn+1 ⊃ SN to SN shows that

[ 1
8−ε ] curv⊥(X ↪ Bn+k(1)) ≥

√
n − 1

(8 − εn,k)k
.

for some (moderately small) εn,k > 0.
This is crude, but in the Π-case Petrunin proves the sharp curv⊥-inequality

[B⋆] curv⊥(X ↪ BN(1)) ≥
√

3n

n + 2
.

for all n-dimensional ∄PSC manifolds X, all n and N .
This is done by showing that if

curv⊥(X f↪ BN(1)) <
√

3n

n + 2
,

then a conformal change of the induced metric g on X has positive scalar cur-
vature. Namely, if n ≥ 338, then

Sc(u
4
n−2 g) > 0 for u(x) = exp−l 1

2
∥f(x)∥2 and l = 3

4
⋅ n−2
n−1

⋅ n.

38If n = 2 then the average value of Π is ≥
√

3
2
, see ???
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Remark. One might think, that Petrunin’s argument with the Gauss formula

Sc(g) = ∥mean.curv∥2 − ∥II∥2
l2 ≥ ∥mean.curv∥2 − k(curv⊥)2

rather than Petrunin’s

Sc(g) = 3

2
∥mean.curv∥2 − n(n + 2)

2
Π ≥ 3

2
∥mean.curv∥2 − n(n + 2)

2
(curv⊥)2

would improve the above inequality [ 1
8−ε ].

In fact, if one uses Petrunin’s formula for the Laplace operator ∆ = ∆g

applied to the above function u(x) on X:

−∆u

u
= lrc ⋅ ∣H ∣ + (ln − l2r2s2),

where H =mean.curv(X f↪ Bn+k(1)), r = r(x) = ∥f(x)∥, and c = c(x), s = s(x)
are function (cos and sin of certain angles), which are bounded in the absolute
values by one, ∣c∣, ∣s∣ ≤ 1, one arrives at the following version of [ 1

8−ε ]. :

curv⊥(X ↪ Bn+k(1)) ≥
√

n

k(8 + (4/(n − 2)))

This is no better [ 1
8−ε ]. but can be slightly improved with the inequalities

c2 + s2 ≤ 1 and r2 + s2 ≤ 1 proved in [Pet] under the assumption curv⊥ ≤ 2.

14.3 Lower Bounds on curv⊥(X ↪ Y ) for Manifolds Y with
Scn ≥ σn.

Let us define the n-dimensional scalar curvature Scn(Y ) for general Riemannian
manifolds Y of dimension N ≥ n, that is a function on the tangent n-planes
Tny ⊂ T (Y ) in Y , which is eual to the sum of the sectional curvatures κ of Y on
the bivectors in Tny at y.

Equivalently, Scn(Y,Ty) is the scalar curvature of the submanifold exp(Ty) ⊂
Y at y, that is is the germ of the image of the exponential map from Ty to Y .

Then the Gauss’ and Petrunin’s formulas for the scalar curvature of X ↪ Y
remains as they were for manifolds Y with constant sectionl curvatres

Sc(X,x) = Sc∣m(Y,Tx(X)) + ∣∣mean.curv⊥(X,x)∣∣2 − ∥II∥2
l2
,

and

∣∣mean.curv⊥(X,x)∣∣2 − ∣∣ II(X,x)∣∣2l2 = ∣∣ 3
2
mean.curv⊥(X,x)∣∣2 − n(n+2)

2
Π.

Thus, the above inequalities [A] and [B] concerning immersions of n-manifolds
X to the unit sphere Sn+k generalize to immersions to (n+k)-dimensional man-
ifolds Y , such that Scn(Y ) ≥ n(n − 1):

[AY] curv⊥(X ↪ Y ) ≥
√

n − 1

k
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and

[BY] curv⊥(X ↪ Y ) ≥
√

Π ≥
√

2n − 2

n + 2
.

Example. Let Y = Sn+k0(R)(1) ×H l
−1, where the sphere Sn+k0(R) has con-

stant curvature +1/ρ2 and H l
−1 is the hyperbolic space with the sectioanal cur-

vature −1 and let n ≥ l + 2. Then

Scn(Y ) ≥ 1

ρ2
(n − l)(n − l − 1) − l(l − 1)

and the two above inequalities hold with k = k0 + l, if

ρ2 ≤ (n − l)(n − l − 1)
n(n − 1) + l(l − 1)

.

For instance, if l = 2, and n ≥ 4 one needs ρ2 ≤ 1
7
. for this purpose.

Notice in conclusion, that neither
the above inequalities [ 1

8−ε ] and Petrunin’s [B⋆] for immersion to unit balls
nor such inequalities from the previous sections based on the 2p

n
inequalities

admit (not at lest obvious) counterparts for these Y .

15 Second Link with the scalar Curvature: Width
Inequalities for Riemannian Bands

D. Example: Torical 2π
n

-Inequality. Let V be a Riemannian manifold home-
omeorphic to the product of the n-torus by the unit interval V = Tn × [−1,+1],
such that Sc(V ) ≥ σ > 0. Then the distance between the two components of the
boundary of V is bounded as follows:

dist(Tn × {−1},Tn × {+1}) ≤ 2π

√
n

σ(n + 1)
.

(See ??? below for a few words about the proof.)
E. Corollary: No Wide Torical Bands in the Spheres. If a Rie-

mannian (n + 1)-manifold V homeomorphic to Tn × [−1,+1] admits a locally
isometric immersion to the (n + 1)-sphere of radius R then

dist(Tn × {−1},Tn × {+1}) ≤ 2πR

n + 1
.

F. Large Normal Curvature Sub-corollary. Let

f ∶ Tn ↪ Bn+1(1)

be a smooth immersion from the n-torus to the unit Euclidean (n+1)-ball Bn+1 ⊂
Rn+1. Then the curvature of f is bounded from below by:

curv⊥(Tn f↪ Bn+1(1)) ≥ n + 1

π
− 1.
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Proof of D Ô⇒ E. Let

Ef ∶ TN ×R1 → Rn+1 ⊃ Bn+1(1)

be the normal exponential map, i.e. such that the restriction Ef ∣TN × {0} = f
and where Ef isometrically sends the lines {t}×R1, t ∈ Tn, to the straight lines
in Rn+1 normal to the immersed torus f(Tn) ⊂ Rn+1 at the points f(t) ∈ f(Tn).

If curv(f) < c, then, (this is the same as it is for circles of radii 1/c in the
plane) the map Ef is an immersion on TN × [−r, r] ⊂ TN ×R1 for r = 1/c, while
the image of f(Tn) is contained in the ball Bn+1(1 + r).

Let
Rn+2 ⊂ Sn+1

+ (1 + r) p→ Rn+1 ⊃ Bn+1(1 + r)
be the normal projection from the hemisphere, compose Ef on TN ×[−r, r] with
the inverse map to p and let

Ẽ ∶ p−1 ○Ef ∶ TN × [−r, r] → Sn+1
+ (1 + r).

Since the projection p is distance decreasing, the spherical distance between
the two components of the boundary of TN × [−r, r] with respect to the Rie-
mannian metric g̃ in TN × [−r, r] induced by Ẽ from the spherical metric in
Sn+1
+ (1 + r) V is bounded from below by 2r. Then D applied to

(TN × [−r, r], g̃) Ẽ→ Sn+1
+ (1 + r) ⊂ Sn+1(1 + r)

shows that
d̃ = distg̃(Tn × {−r},Tn × {+r}) ≤ 2π(1 + r)

n + 1

and since d̃ > 2r = 2/c the inequality c ≥ n+1
π

− 1 follows. QED.
Exercise. Generalise the large normal curvature sub-corollary to immersions

of tori to products of balls:

curv⊥(Tn+k f↪ Bn+1(1) ×Bk(R)) ≥ n + 1

π
− 1.

for all k = 0,1,2, ... and all R ≥ 0.
On Low Dimensions. The inequality curv⊥((Tn ↪ Bn+1(1)) ≥ n+1

π
− 1 may

be asymptotically optimal for n→∞ but its performance for small n is poor.
For instance, if n ≤ 5 then n+1

π
− 1 < 1 and our inequality is weaker than

curv⊥(Xn ↪ Bn+k(1) ≥ 1, which follows for all closed n-manifolds X and all
n, k by the obvious "maximal principle" argument.

Furthermore, since

curv⊥((Xn ↪ Bn+1(1)) > 2

for all non-spherical X (this is elementary, see section ...), our (≥ n+1
π

− 1)-bound
is of any interest only for n ≥ 9.

T⋊-Remark. In section ???, we introduce the notion of T⋊-stabilized scalar
curvature, Sc⋊(X), improve the inequalities E and F and will see, for example,
that

curv⊥(Tn ↪ Bn+1(1)) > 2.5 for n ≥ 7.

Codimension two Remark. The inequality E applied to the unit tangent
bundles of immersed n-tori with codimensions 2,39 shows (see [1+ 2c]-Example

39If the Euler class of such an immersion is non-zero one needs a mild generalisation of E.
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in ???)
curv⊥(Tn+1 ↪ Bn+2(1)) ≤ 1 + 2curv⊥(Tn ↪ Bn+2)

and
curv⊥(Tn ↪ Bn+2) ≥ 1

2
curv⊥(Tn+1 ↪ Bn+2(1)) − 1

2
≥ n + 2

2π
− 1.

This has any merit only for n ≥ 11, where n+2
2π

− 1 > 1, and it becomes better

than Petrunin’s inequality only for n ≥ 15, where n+2
2π

− 1 >
√

3n
n+2

.
(The improvement with the T⋊-remark doesn’t significantly change the pic-

ture.)
G. Conjecture. Immersed n-tori in the unit (n + k)-ball satisfy

curv⊥(Tn ↪ Bn+k(1)) ≥ n
k
.

This, by no means (not even conjecturally) optimal, inequality is motivated
only by its simple form.

(????)Immersions with curvatures ∼ nα. It not impossible (but unlikely)
that all immersion of n-tori to unit balls satisfy

curv⊥(Tn ↪ Bn+k(1)) ≥ cn
α

k

for some small c > 0, α > 1, e.g. c = 0.001 and α = 3
2
, where the exponent α = 3

2
is maximal possible.

Indeed, n-tori embed to Bn+n(1) with curvatures n
1
2 and also there exit

codimension one embedding of n-tori with curvatures about n
3
2 ,

curv⊥(Tn ⊂ Bn+1(1)) < 6n
3
2 .

In fact, arguing as in bullet1, ... in ??? one construct Xm = Sn1 × ...×Snm ⊂
Bn1+...nm+1(1) by induction on m as boundaries of ρm-neighbourhoods of

Xm−1 = Sn1 × ... × Snm−1 ⊂ Bn1+...nm−1+1(1 − ρm) ⊂ Bn1+...nm+1(1),

where the curvatures of these embeddings grow exponentially with m, roughly
as 2m−1.

Thus one embeds Xm to the ball Bn1+...nm+1(1) with the curvature growing
polynomially in n = dim(Xm) (rather than in m):

curv⊥(Xm ⊂ Bn+1(1)) ≤ constµn
µ+2
µ+1 , n = dim(Xm) = n1 + ...nm, µ = mini ni.

For all we know, if all ni are equal to a single no, then all immersions of
(Sno)m immersions to the unit (mno + 1)-ball satisfy

curv⊥((Sno)m ↪ Bmno+1(1)) ≤ constno(mno)
µ+2
µ+1 .
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15.1 On Three Proofs of 2π
n -Inequalities

All three proofs apply to manifolds V , where their boundaries are decomposed
into two disjoint parts ∂V = ∂− ⊔ ∂+, and show that

dist(∂−, ∂+) > 2π

√
n

σ(n + 1)
for σ = infx∈X Sc(X,x).

under certain topological assumptions on V specific to each proof.
1. The first proof applies to suitably enlargeable manifolds (see ???) V , e.g.

to V =X × [−1,1], where X admits a metric with sect.curv ≤ 0.
This proceeds by induction on n with minimal hypersurfaces with boundaries

as in §12 from GL, where the original Schoen-Yau argument was augmented with
Fischer-Colbrie&Schoen warped product symmetrization idea.

If dim(V ) > 7, the proof encounters a technical difficulty where minimal hy-
persurfaces may have singularities, but this was resolved by a partial regularity
theorem of Schoen and Yau ???40

2. The second proof whenever applies, delivers a hypersurface (µ-bubble)
X ⊂ V which separates ∂−. from ∂+ and which admits a metric with positive
scalar curvature. This shows, in particular that in the following three cases,

V can’t be diffeomorphic to X × [−1,1], where X admits no metric with
Sc > 0,

(i) X is a spin manifold , e.g. as in the above A and B.
(ii) X is as in the original Schoen-Yau paper ??? or a manifold as in [GH]
(iii) X is an aspherical manifold of dimension| ≤ 5 or a closely related man-

ifold (see ???,???)
(These (i), (ii) and (iii) cover all known classes of manifolds, except for

dimension 4, which admit no metrics with Sc > 0.)
This second proof also encounter the singularity problem for dim(V ) > 7,

where it is more serious the]an in the first proof, since the Schoen-Yau partial
regularity theorem is not sufficient in this case.

However if dim(V ) = 8 then a requred desingularisation follows by a version
of Nathan Smale argument (see ????) and if n = 9,10, then the desingularisation
from ????? most probably apply in the present case.

3. The third proof, relies on the generalized Callias-Dirac operators tech-
nique (see ?????), needs V to be a spin manifold.

This proof applies, in particular, to V diffeomorphic to X ×[−1,1], where X
admits no metric with Sc > 0, ad where non-existence of such a metric follows
via the index theorem for a generalized Dirac operator, as for instance, for X
from the above A and B. 1mm

As far as the curvature of immersion is concerned, this is most useful for the
Hitchin’s spheres Σn for n = 8l + 1,8l + 2 and which admit immersions to Rn+1

by Hirsch theorem41 and all immersions Σn to the unit (n + 1) ball satisfy the
same inequality as tori

curv⊥(Σn ↪ Bn+1(1)) ≥ n + 1

π
− 1

40The proof is difficult...
41Lichnerowicz’s manifolds, which have non-zero Â-genus admit no Euclidean immersions

with codimenension one and two.
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and, by a similar argument,

curv⊥(Σn ↪ Bn+2(1)) ≥ n + 2

π
− 2.

These inequalities can be improved for small n the same way as in the above
(b) for tori, but unlike conjecture G for tori, there is no reason to expect that
immersions of Σn to the unit balls Bn+k, k ≥ 3, satisfy curv⊥ ≥ constkn. (We
say more about it in section???)

Question. Do all Milnor’s spheres Σn, including those, which carry metrics
with Sc > 0, develop large normal curvatures when immerssed to the balls
Bn+1(1)?

On Generalized Geroch’s conjecture?????

15.2 T⋊-Stabilized Scalar Curvature.
Given a compact Riemannian manifold X, let

Sc⋊(X) = 4λ⋊1(X),

where λ⋊1(X) is the lowest eigenvalue of the operator −∆ + 1
4
Sc on X with the

Dirichlet (vanishing on the boundary) condition.42

It is easy to see that Sc⋊ is additive for Riemannian products

Sc⋊(X1 ×X) = Sc⋊(X) + Sc⋊(X).

and, more relevantly,
Sc⋊(X) is decreasing under equidimensional locally isometric immersions:

if X immerses to Y then Sc⋊(X) ≥ Sc⋊(X).
About −∆ + β ⋅ Sc. The two above relations remain valid for the first

eigenvalues of the operators

f(x) ↦ −∆f(x) + β ⋅ Sc(X,x) ⋅ f(x)

for all β ≥ 0, but β = 1/4 is essential for the 2π√
Sc⋊

-inequality below.

Besides 1/4, a significant value is β = 1
4
n−2
n−1

, where positivity of the operator
−∆X + β ⋅ 1

4
n−2
n−1

Sc(X) for n ≥ 3 on X implies that X admits a metric with
positive scalar curvature (as in the proof of the Petrunin’s inequality in section
???).

Since 1
4
n−2
n−1

< 1
4
the inequality Sc⋊ > 0 also implies the existence of a metric

with positive scalar curvature on X.
This shows that the conditions ∄PSC and ∄PSC⋊ are equivalent.
But unlike how it is with the effects of the positive signs of Sc(X) and of

Sc⋊(X) on the topology of X, the Sc(X) and S⋊(X) plays different roles in the
geometry of X.

Let V be a Riemannian manifold homeomorphic to the product X×[−1,+1],
where X is a basic ∄PSC n-manifold, i.e. where the underlying reason for non-
existence of a metric with Sc > 0 on X is of the same kind as what is presented

42See ??? for justification of this definition/notation and for the proofs of the properties of
this Sc⋊-curvature used in this paper.
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in section ???.43 For instance X isdiffeomorphic to the product of the torus by
Hitchin’s sphere.

2π√
Sc⋊

-Inequality. Let V be a Riemannian manifold homeomorphic to the
product X × [−1,+1], where X is a basic ∄PSC n-manifold, i.e. where the
underlying reason for non-existence of a metric with Sc > 0 on X is of the same
kind as what is presented in section ???.44 For instance X isdiffeomorphic to
the product of the torus by Hitchin’s sphere.

Then the distance between the two boundary components of V is bounded
as follows:

dist(X × {−1},X × {+1}) ≤ 2π

√
n

Sc⋊(V )(n + 1)
.

Examples of Evaluation of Sc⋊. The rectangular solids satisfy

Sc⋊ (
n

⨉
1

[−ai, bi]) = 4
n

∑
1

λ1[ai, bi] =
n

∑
1

4π2

(bi − ai)2
,

the unit hemispheres satisfy:

Sc⋊ (Sn+ ) = n(n − 1) + 4n = n(n + 3),

the unit balls satisfy
Sc⋊(Bn) = 4j2

ν ,

for the first zero of the Bessel function Jν , ν = n
2
− 1, where j−1/2 = π

2
, j0 =

2.4042..., j1/2 = π and if ν > 1/2, then

ν + aν
1
3

2
1
3

< jν < ν +
aν

1
3

2
1
3

+ 3

20

2
2
3 a2

ν
1
2

where a = ( 9π
8
)

2
3 (1 + ε) ≈ 2.32 with ε < 0.13 ( 8

2.847π
)2 < 0.1.

Corollary. Let X be a basic ∄PSC⋊ manifold of dimension n − 1, e.g.
X = Tn−1, and f ∶X → Bn(r) be a smooth immersion. Then the focal radius and
thetisfy normal curvature of f sa then the focal radii of immersions X ↪ Bn(r)
satisfy:

[foc.rad]jν rad⊥(X ↪ Bn(r)) ≤ πr

2jν

√
n

n + 1

and

[curv⊥]jν curv⊥(X ↪ Bn(r)) ≥
⎛
⎝

2jν
πr

√
n + 1

n

⎞
⎠
− r

where
2jν
πr

≥ n − 1/2 + 3.68(n/2 − 1)1/3

πr

This implies, in particular, the low curvature bounds from the T⋊-remark in
section ???.

43Conjecturally, all ∄PSC manifolds will do, at least for n ≠ 4
44Conjecturally, all ∄PSC manifolds will do, at least for n ≠ 4
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Also this can be used along with the following.
Mean Curvature/Ricci 4j2

ν–Inequality. Let Y be a compact connected
Riemannian n-manifold with a non-empty boundary, such that the Ricci curva-
ture of Y is nonnegative, e.g. Y is a bounded Euclidean domain, and the mean
curvature of the boundary of W is bounded from below by that of the unit ball,

mean.curv(∂Y ) ≥ n − 1 =mean.curv(∂Bn).

Then
Sc⋊(Y ) ≥ Sc⋊(Bn) = 4j2

ν .

Thus, the above inequalities
[foc.rad]jν and [curv ⊥]jν remain valid for immersions X ↪ Yr for all com-

pact connected Riemannian n-manifolds Yr with non-empty boundaries, such
that Ricci(Yr) ≥ 0 and mean.curv(∂Yt) ≥ n−1

r
.

Remark/Question. Let V ⊂ Rn be a bounded domain with two boundary
components, let d(V ) be the distance between these componets and let λ1(V )
the first eigenvalue of the Dirchlet problem in V .

The above shows that
topology of V may impose a non-trivial bound on the product d2(V )λ1(V ).
What are other cases of a similar role of the topology of a V ⊂ Rn on metric

invariants of V ?

15.3 Curvatures of Regular Homotopies of Immersions
Due to the Atiyah-Singer index theorem for families of Dirac operators, the
index theoretic obstructions to Sc > 0 apply to families of metrics with Sc > 0,
which imply the following (see Hit)

3.5.A. The spheres Sn−1, n = 8k+1,8k+2, k = 1,2, ... admit (Smale/Milnor)

diffeomorphisms µ ∶ Sn−1 → Sn−1,

such that the usual spherical metric go (sect.curv(go) = 1) and the induced
metric g∗o = µ∗(go) (also sect.curv(g∗o) = 1) can’t be joined by a C2-continuous
homotopy gt, such that Sc(gt) > 0.

(The diffeomorphism µ establishes an isometry of (Sn−1, g∗o) with the usual
sphere (Sn−1, go), where Milnor’s theorem doesn’t allow a homotopy gt between
go and g∗o , such that the metrics gt have constant sectional curvatures.)

3.5.B. O(
√
n)-Curvature Corollary. Let fo ∶ Sn−1 → Sn(1), be the

standard equatorial embedding of the sphere and let ft ∶ Sn−1 → Sn(1), t ∈ [0,1],
be a C2-continuous regular homotopy, (a family of C2-immersions45) between
fo and f∗o = fo ○ µ ∶ Sn−1 → Sn(1). Then there exists t0 ∈ [0,1], such that the
normal curvature of the immersion ft0 satisfies :

curv⊥(Sn−1
ft0↪ Sn(1)) ≥

√
n − 2.

Indeed, if curv⊥(Sn−1
ft0↪ Sn(1)) <

√
n − 2. for all t then, by 3.3.???, the

ft-induced metrics gt on Sn−1 would have Sc > 0 in contradiction with 3.5.A.
45Such a family does exist by the Smale immersion theorem.
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3.5.C. O(n)-Curvature Conjectural Corollary. Let fo ∶ Sn−1 → Bn(1) ⊂
Rn be the standard embedding of the sphere and let ft ∶ Sn−1 → Bn(1), t ∈ [0,1],
be a C2-continuous regular homotopy, (a family of C2-immersions46) between
fo and f∗o = fo ○ µ ∶ Sn−1 → Bn(1). Then there exists t0 ∈ [0,1], such that the
normal curvature of the immersion ft0 satisfies :

curv⊥(Sn−1
ft0↪ Bn(1)) ≥ jν/π > n + 1

π
− 1.

To show this one needs an index theorem for families of Callias operators on
Riemannian bands.

3.5.D. Higher Homotopy Remark. There is a body of results on higher
homotopy groups of the space GSc>0(Sn) of metrics g with Sc(g) > 0 on Sn,
but it is unclear what to do with (the homotopy structure of) the map from
the space of immersions Sn → Bn+k(1) (and/or Sn → Sn+k(1)) with sufficiently
small curvatures to GSc>0(Sn).

Not only Hitchin’s spheres but all ∄PSC manifolds X of dimension n ≥ 5
contain hypersurfaces H ⊂ X, which support pairs of Riemannian metrics g0

and g1, such that Sc(gi) > 0, i = 0,1, and where these metrics can’t be joined by
a C2-continuous homotopies gt, such that Sc(gt) > 0, 0 ≤ t ≤ 1.

To see that, let ψ ∶X → R be a Morse function and let Z = ψ−1(r0) ⊂X, for
some r0 ∈ R be a level of ψ, such that all critical point x ∈ X of ψ with indices
≤m lie below Z, i.e. ψ(x)(x) < r0.

Then Z serves as the common boundary of the regions X0 ⊂X and X1 ⊂X,
where

X0 = {x ∈X}ψ(x)≤r0 and X1 = {x ∈X}psi(x)≥r0 .
Since X0 represents a regular neighbourhood of a (ψ-cellular) m-skeleton

of X the manifold X0 carries a natural Riemannian metric g0 with Sc(g0) > 0,
provided n−m ≥ 3 and sinceX1 represents a regular neighbourhood of a n−m−1-
skeleton ofX there is another "natural"metric g1 on Z with Sc(g1) > 0 form ≤ 2.
(see ????)

Also on knows (see ???) that if g0 and g1 lie in the same connected compo-
nent of GSc>0(Z), then X admits a metric with Sc > 0.

Similarly, if g0 and g1 lie in the same connected component of GSc⋊>0(Z),
then X admits a metric with Sc⋊ > 0.

3.5..??? Higher Homotopy Problem. Is there a developement of this con-
struction in the spirit of 3.5.D. Higher Homotopy Remark, e.g. something about
the fundamental group of the space GSc⋊>0(Z ′) for some hypersurface Z ′ ⊂ Z?

3.5.C. Toral Example/Question. Let X = Tn and 2 ≤ m ≤ n − 3. Then,
one can show that Z admits an immersion f0 ∶ Z → Bn(1) with

curv⊥(Z f0↪ Sn(1)) ≤ cm.

It follows that if n >> m, then the induced metric gf0 . on Z has Sc > 0;
moreover, one can find an f0 such that gf0 is homotopic to g0 in GSc>0(Z).

When does Z also admits a similar immersion f1 to Sn with a sufficiently
small curvature and a homotopy between gf1 and g1?

When do manifolds like Z admit pairs of regularly homotopic immersion
f0, f1 ∶ Z ↪ Bn(1) with curvatures ≤ c, yet not regularly homotopic by immer-
sions with curvatures ≤ C for some costants c and C >> c?

46Such a family does exist by the Smale immersion theorem.
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16 Overtwisted Immesrdions.

17 1.A. Unknowledge Conjectures/Problems
47: curv⊥ > 3. Since (disjoint unions of) products of spheres are the

===========================
Immersions of manifolds with boundaries: 2 versions
with control of the curvature of the boundary and/or wide base around

boundary or with bounary of X in (and normal to ?) the boundary of Y ⊃X
===============
extension of immersions with small curvature from the boundary ∂X to X
++++============
rho-regularisition of wide bands
============
immersions and thickening of polyhedra (skeletons of triangulations)
=============
immersion with small curvature problem for (the boundary of) the comple-

ment of the 2-skeleton of the torus
=============
versions of the the Sc-obstructions to small curvature to mean.curv obstruc-

tion to ???
immersions of TnsSk → Bnk+1

conjecture: curv⊥(Tn → Bn
1+α

∼ dnβ???? Heat flow and the mean curvature
flow on immersions with small curvatures

.
2. Let X be a C1-smooth closed n-dimensional immersed hypersurface in

Rn+1 positioned between two parallel hyperplanes with distance 2 between them,

X ↪ Rn × [−1,1] ⊂ Rn+1

in the unit ball wit
Let X ↪ RN be a compact (complete suffices) immersed n-submanifold, let

x0 ∈X, and let U0 ⊂X of x be the maximal connected neighbourhood such that
the normal projection from U0 the tangent space T0 = Tx0(X) ⊂ RN ,

P0 ∶ U0 → T0

is a one-to-one diffeomorphism onto a domain V0 ⊂ T0 = Rn, which is star convex
with respect to x0 ∈ T0.

Clearly such a U0 exists and unique, where, this an essential example, if
X = Sn ⊂ Rn+1, then such a U0 is the hemisphere around x0.

=============
hypersurfaces (and their stability) with curv⊥ ≤ 1 in cylinders Bk ×Rn−k
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