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Abstract

We prove the existence of locally distance increasing maps with con-
trollably small curvatures between Riemannian manifolds, where our main
construction depends on the presence of particular spherical and almost
spherical sections of the unit balls in the lp=4 spaces.

In the part II we prove similar results for families of maps and also for
C∞-smooth isometric immersions Xm

→ Y N , where our approach allows
an improvement of the present-day bounds on the dimension N of the
ambient manifold Y in certain cases.

Contents

1 Introduction

1.1 Immersions with Small Curvature and D(m,N)-Approximation
Expansion. A map between metric spaces,

f ∶X → Y,

is λ-expanding, λ > 0, if it increases the the length of curves ξ ∶ [0 ∶ 1] →X by a
factor ≥ λ,

length(f ○ ξ) ≥ λ ⋅ length(ξ) for all continuous maps ξ ∶ [0 ∶ 1] →X.

continuous maps.
Expanding is an abbreviation for "1-expanding".
Riemannian Example. A C1-smooth map f between Riemannian manifolds,

e.g. open subsets in Euclidean spaces, is λ-expanding if and only if ∣∣df(τ)∣∣ ≥
∣∣λτ ∣∣ for all tangent vectors τ ∈ T (X).f

Immersions. A C1-map f ∶ X → Y between smooth manifolds is an
immersion if the differential of f nowhere vanishes,1

df(τ) = 0 Ô⇒ τ = 0.

1Immersions are locally one-to-one but globally they may have self intersections. Im-
mersions without self intersections are called embeddings, where, if X is non-compact, one
sometimes require the induced topology in X to be equal the original one.
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Thus, smooth expanding maps are immersion and every immersion f ex-
pands with respect to some Riemannian metrics g = g(f) in X and h = h(f) in
Y .

Equidimensional example. If dim(X) = dim(Y ) then smooth immersions
X ↪ Y are local diffeomorphisms and smooth expanding maps are locally dis-
tance increasing. 2

The relative (maximal) curvature of an immersion between Riemannian
manifolds,

(X,g) ↪ (Y,h)
is the supremum of h-curvatures in Y , of g-geodesics γ ⊂X,

curv(f) = curvX(f) = curvXY (f) = curvgh(f) = sup
γ⊂X

curvh(f(γ)).

If g = f∗(h) is the induced Riemannin metric in X, this is called the curva-
ture of X in Y ,

curv(f(X)) = curvf(X) = curv(X f↪ Y ) = curv(X ↪ Y ),

where curvf(X) is actually defined for immersions of smooth manifolds with no
metrics on them.

Equidimensional example. If dim(X) = dim(Y ), then curv(X f↪ Y ) = 0,
while curvX(f) measures by how much f deviates from a projective map.

Normal Immersions: When curvf (X) = curvX(f). Call an immersion
between Riemannian manifolds f ∶X(g) ↪ Y (h) normal if for all normal vectors
to X in Y ,

ν ∈ T ⊥x (X) = Tf(x)(Y ) ⊖ df(Tx(X))

the second quadratic form IIν of the immersed X
f↪ is simultaneously diagonal-

izable with the quadratic forms g(x) and f∗(h) on the tangent space Tx(X).
For instance, isometric immersions are normal.

Clearly, curvf(X) = curvX(f) for isometric immersions f .
Curvature in Codimension 1. This curvature of Xm ↪ Y m+1 is the

supremum of the principal curvatures of X in Y over all points x ∈X.
Here normality means that the induced quadratic form f∗(g)(x) on the

tangent space Tx(X) is, at all ∈ X, diagonalizabel in the same basis as the
second fundamental form II of X.

Example. the immersion Sm(r) × S1 → Rm+2 obtained by rotating Sm(r) ↪
Rm+1 around a line in Rm+1 within distance R > r from the origin is normal
with curvature max ( 1

R
, 1
R−r ).

Curvature in Spheres. If an immersion X → SN−1(1) is normal then so
is the corresponding immersion to RN ⊃ SN−1(1), where the spherical curvature
of X is related to the Euclidean one by the Pythagorean theorem:

(curv(X ↪ SN−1(1))2 = (curv(X ↪ RN)2 − 1.

Clifford Embeddings. The product X of spheres Smi(ri) ⊂ Rmi+1, i =
1, ..., l, for ∑li=1 r

2
i = 1 naturally isometrically imbeds3 to the boundary of the

unit N -ball for N = k +∑imi:
2Expanding locally homeomorphic maps are also locally distance increasing, but the abso-

lute value map x↦ ∣x∣, for example, is 1-expanding but not locally homeomorphic.
3Embeddings of compact manifols are immersions with no self-intersection.
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Cl ∶X = Sm1(r1) × ... × Sml(rl) → SN−1(1) ⊂ BN(1) ⊂ Rmi+1 × .. ×Rmi+1

where, clearly,
curv(X Cl⊂ BN) = max

i
1/ri.

This, for r1 = r2 = ... = rl, delivers a codimension l-embedding with curvature√
l:

curv (
l

⨉
i=1

Smi
Cl⊂ BN(1)) =

√
l, N = l +∑

i

mi.

If l = 1, then this is optimal. In fact, it is obvious that

curv (X ↪ Bm(1) ×RN) ≥ 1, for n ≥ 2.

for all smoothly immersed closedm-manifoldsX in the "unit band" Bm(1)×RN .
Also, the Clifford embeddings to SN−1(1) are known to be optimal for l = 2,4

Minimal Curvature Problems. What is the infimum of curvatures of
immersions f ∶X → Y ,

min.curv(X ↪ Y ),

e.g. where Y is a unit ball?
What is the minimal curvature in a given homotopy or regular homotopy 5

class of immersions ?
What is the minimal curvature of expanding immersions between given Rie-

mannian manifolds?
Below are partial answers to these questions.
DDD(m,N): Curvature of Euclidean Expanding Maps. Let D(m,N) be

the infimum of the relative curvatures of the smooth expanding maps f from
the Euclidean m-space to the unit N -ball,

D(m,N) = inf
f
curvemeN (f),

where em and eN denote the Euclidean metrics in Rm and RN ⊃ BN(1).
Example. The composition of the toral Clifford embedding Tm → Bm(1)

with the universal covering Rm → Tm followed the Euclidean homothety x ↦
n
√
nx is an isometric immersion Rm ↪ Bm(1) with curvature

√
m. Hence,

D(m,N) ≤
√
m

Question. Is D(m,2m) equal to
√
m?

1.1.A. Euclidean DDD(m,N)-Theorem.
●≥2m If N ≥ 2m, then

D(m,N) ≤
√

3m

m + 2
+Co

m√
N
,

4 See [Ge202?] and section 3.7.3 in [Gr2022] and section ??? in the present paper.
5A C1-continuous homotopy ft of smooth maps is regular if the maps ft are immersions

for all t.
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where Co is a universal constant (see ???). Moreover, if N ≥ 100m2 then

D(m,N) ≤
√

3m

m + 2
.

●<2m If m + 1 ≤ N < 2m, then

D(m,N) ≤ 6
m

3
2

N −m

See sections???. for the proofs.
Questions. Is D(m,N) equal to

√
3m
m+2

for N ≥m2?
Is D(m,m + 1) bounded by 2m?

1.1.B. δ-Approximation Corollary. Let X =Xm be a smooth manifold
and f ∶X → RN a continuous map.

●≥ If N ≥ 2m − 1 then f can be δ-approximated by smooth immersions

fδ ∶X ↪ RN , δ > 0,

regularly homotopic to f and with curvatures

curvf
δ
(X) ≤ 1

δ

⎛
⎝

√
6m − 2

2m + 1
+Co

m√
N

⎞
⎠
+ o(1

δ
) , δ → 0,

where "δ-approximated" means that

distRN (fδ(x), f0(x)) ≤ δ, x ∈X.

●≤ If X admits an immersion to Rn, n < N , and N ≤ 2m, then f can be
δ-approximated by smooth immersions

fδ ∶X ↪ RN , δ > 0,

with curvatures

curvf
δ
(X) ≤ 1

δ

6n
3
2

N − n
+ o(1

δ
) .

Proof. Let φ ∶X → Rn be a smooth immersion 6 and observe the following.
1.1.C. Stretching Lemma. If n ≥ m + 1, then, for all Riemannin metrics

g on X and all positive functions ε(x), there exists an a g-expanding immersion
ψ ∶ X → Rn regularly homotopic to φ, i.e. it can be joined with φ by a C1-
continuous homotopy of smooth immersion, and such that curvψ(X,x) ≤ ε(x).

Proof. If X is compact, scale φ→ ψ = λφ and send λ→∞.
If X is non-compact and n <m regularly homotop φ it to a proper (infinity

goes to infinity) immersion with a use of Hirsch’ immersion theorem and let
ψλ ∶ X → Rn be the composition of ψ with a λ(y)-expanding map ∶ Rn → Rn,
y ∈ Rn, for a large and fast growing function λ(y).

Now, ε-approximate f by a smooth map f ′ε and add to it the composed map
of δ−1ψλ = ψδ−1λ with an expanding map f⊙ ∶ Rn → RN times δ. It is clear that
if the function λ(x) = λfε(x) is sufficiently large, depending on the norms of the

6All Xm immerse to R2m−1, if m ≥ 2, by the Whitney theorem.
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fist and the second differentials ∣∣df ′ε(x)∣∣ and ∣∣d2f ′(x)∣∣, then the curvature of
this sum

fδ,λ(x) = f ′ε(x) + δ ⋅ f⊙ ○ ψδ−1λ(δ−1x)

is bounded by
curv(f⊙)

δ
+ o(1

δ
)

and the proof follows with ε→ 0.
Remarks. (I) If f = 0, and X immerses to Rn, then the above above

delivers an immersion f1 of X to the unit ball Bn+1(1) with a bound on the
curvature of f1 depending only on the dimension m of X.

This bound on curvf1(X) is, apparently, far from optimal for many X,
e.g. for product of spheres as it is demonstrated by the codimension l Clifford
embeddings of products of l spheres to the unit balls with curvatures l

1
2 << l 32 .

But the Clifford embeddings are not optimal either: there are products
of l spheres, which admit codimension 1 (not l!) immersions with curvatures
bounded by a universal constant, where the best available – we don’t know if
this is optimal – such a constant is 1 + 2

√
3l−3
l+1

according to the following.
1.1.D. Codim 1 Theorem/Example.(See section ???) Let

X = Sk × S1 × ... × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l−1

.

If k ≥ ll
4

, then there exists an immersion

F ∶X ↪ Bk+l(1)

with

curvF (X) ≤ 1 + 2

√
3l − 3

l + 1
< 4.5.

(II) Besides, the above (I) our argument doesn’t apply to immersions to Rn
withut passing to Rn+1 but this is taken care of by the following (see section???).

1.1.E. Regular Homotopy/Approximation Theorem. Let f ∶ X =
Xm → Rn be an immersion. If n > m, then f can be δ-approximated by
immersions fδX ↪ Rn which are regularly homotopic to f and such that

curvf
δ
(X) ≤ 500

δ
m

3
2 + o(1

δ
) .

1.H. Remarks/Questions. We don’t know how close this inequality to the
minimal values of the curvatures of codim1 immersions of products of spheres
is.

(a) For instance let P l−1 be an (l−1)-dimensional manifold diffeomorphic to
a product of spheres where some of these have dimensions ≥ 2. Then, if k >> l,
there exist immersions

Fε ∶ Sk × P l−1 ↪ Bk+l(1)

with

curvFε(Sk × P l−1) ≤ 1 + 2

√
3l − 3

l + 1
+ ε
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for all ε > 0.
But this is unclear for ε = 0, even for the product S1 × Sk, which embeds to

the ball Bk+2(1) with curvature 3 for all k and where we don’t know if there are
immersions of S1 × Sk+2 (or other closed non-spherical manifolds of dimension
k + 1) to the unit ball Bk+2(1) with curvatures < 3.

(b) It is not impossible according to what we know, that m-dimensional
products of spheres of dimensions ≥ 2 admit immersions to Bm+1(1) with cur-
vature <100.

But the best we can do (see section ???) are immersions with curvatures
≲m 4

3 .

1.2 Equidimensional Expanding Maps
Affine Expanding Maps. The product of ri-balls admits an affine equidi-
mensional expanding map to the R-ball

f ∶
k

⨉
i=1

Bni(ri) → BN(R), N = ∑
i

ni,

if and only if

[∑ r2
i ] ∑

i

r2
i ≤ R2,

where – all this is, of course, obvious – in the case of equality ∑i r2
i = R2, such

an f is an isometric embedding.
But – this was pointed out to me by Roman Karasev– it is unlikely that

there is a simple criterion for the existence of such embeddings to cubes, not
even for rectangular solids,

n

⨉
i=1

B1(ri) =
n

⨉
i=1

[−ri, ri] → [−r, r]n.

1.2.A. Non-Affine Example. What is more interesting from our perspec-
tive is a (1 − ε)-expanding map, for a given ε > 0, from the infinite cylinder
X = Bn−1(r) ×R1 to the ball Bn(2r),

fε ∶ Bn−1(r) ×R1 → Bn(2r),

where this fε comes as the composition of two maps.
(1) The first map is the universal covering map from the cylinder Bn−1(r −

ε) ×R1 to the round solid torus embedded to the ball,

f1 ∶ Bn−1(r) ×R1 → Tsld(r, r − ε) ⊂ Bn(2r),

where this torus is equal to the (r − ε)-neighbourhood of a planar circle

S1(r) ⊂ Bn(2r)

of radius r, where the center of S1(r + ε) is positioned at the center of the ball
Bn(2r).
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Observe that the map f1 is isometric on the (n − 1)-balls

Bn−1(r − ε) × t ⊂ Bn−1(r − ε) ×R1, t ∈ R1.

(2) The second map f2 is the linear (scaling) diffeomorphism

f2 ∶ Bn−1(r) ×R1 → Bn−1(r − ε) ×R1 for f2 ∶ (s, t) ↦ ( s

1 − ε
, ε−1t) ;

where, clearly, the composition

Bn−1(r) ×R1 f2→ Bn−1(r − ε) ×R1 f1→ Tsld(r, r − ε) ⊂ Bn(2r)

is the required (1 − ε)-expanding map Bn−1(r) ×R1 fε→ Bn(2r).
1.2.B [f × f]-Corollary. The Cartesian powers of

fε ∶ [−r,+r] ×R1 → B2(2r) ⊂ R2

deliver expanding maps

Bm(r) ×Rm ⊂ [−r,+r]m ×Rm → B2m (1 + 1√
m

)

for all m = 1,2, ... and r < 1√
m
.

1.2.C. 1
2
-Exercise. Show that if r ≤ 2r, then the cylinder Bn−1(r) × R1

admits no expanding map f to the ball Bn(r).
Hint. (i)The axes – the central line 0×R1 of the cylinder – must go by f to

the concentric ball Bn(r − r) ⊂ Bn(r).
(ii) The longest straight segment with respect to the f -induced flat metric

between pairs of points on this axes must have length > 2r − r.
The above ??? is generalized in section ???? as follows.
1.1.D. Rolled Band into Ball Theorem. If M ≥ 100m2, and

r <
√
m + 2√

3m +
√
m + 2

(> 1

3
) ,

then the product BM(r) ×Rm admits an equidimensional expanding map to the
unit ball,

Fr ∶ BM(r) ×Rm → Bm+M(1).

Remark/Question. Ifm = 1, then, by the above 1
2
-exercise, the bound r < 1/2

is optimal, but it is not clear for m = 2.
Here the above inequality for m = 2, which allows expanding maps from

B4(r) ×R2 to the unit ball Bm+M(1), where the supremum of the possible r is

sup r = 2√
6 + 2

− ε(≈ 0.45),

is implemented with M = 4 by means of the normal exponential map for the
2-subtorus in Clifford torus T3 ⊂ B6(1), which is is normal to the principal
diagonal in T3.

7



Similarly the normal exponential map for the Clifford torus T2 ⊂ B4(1) leads
to such maps B2(r) ×R2 ⊂ B4(1) with

sup = 1

1 +
√

2
≈ 0.41 < 0.45,

while the best B1(r) ×R2 ⊂ B3, where

sup r = 1

3
< 0.41,

is obtained with the normal exponential map for the standard round torus in
R3.

And the only known upper bound on r is for M = 1:

r ≤ π

2
√
λ1(B3(1))

= π

2j1/2
= 1

2
> 2√

6 + 2
≈ 0.45,

where this λ1 is the first Dirichlet eigenvalue of the Laplacian in the unit 3-ball,
and j1/2 = π is the first Bessel function zero(see next section).

None of these four inequalities is known to be (or not to be) optimal.

1.3 Obstructions to Expansion and Lower Bounds on Cur-
vatures of Immersions

To get a perspective on our existence theorems for expanding maps and maps
with small curvatures, we summarize below the known upper bounds on expan-
sion and lower bounds on curvatures of immersions, which are derived from ge-
ometric and topological properties of Riemannian manifolds with lower bounds
on their scalar curvatures. 7

1.3.A. Gaussian (∄Sc>0)-Obstruction for Immersion to Sm+k. If X is
∄Sc>0, i.e, it admits no metric with positive scalar curvature (see 5.8 in [Gr2022]
and examples below) then

min.curv(Xm ↪ Sm+k) ≥ max
⎛
⎝

√
m − 1

k
,

√
m − 1

m

⎞
⎠

The proof of this follows from the Gauss theorema egregium, see ???.
Remark. The inequality curv(Xm ↪ Sm+k) ≥

√
m−1
k

is sharp for m = 2 and
k = 1, where the extremal X2 ⊂ S3 is the Clifford torus with curvature 1.

1.3.B. Euclidean secretly gaussian Inequality. If Xm is ∄Sc>0 then the
curvatures of immersions f ∶Xm → Bm+k(1) are bounded from below as follows:

curvf(Xm) ≥ const ⋅
√
m

k
,

for some const < 10. (See [Gr2022] and references therein.)
Questions. Do ∄Sc>0 manifolds satisfy the following inequality?

min.curv(Xm ↪ Bm+k+1(1)) ≥ max
⎛
⎝

√
m − 1

k
+ 1,

√
m − 1

m
+ 1

⎞
⎠
.

7A few simple inequalities with no use of the scalar curvature are indicated in the next
section.
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Do the curvatures of 2-tori in the unit ball satisfy curv(T2 ↪ B3(1)) ≥ 3?
Examples of ∄Sc>0 Manifolds. Tori and product of tori with certain

manifols homeomorphic (but not diffeomorphic) to spheres, Tm × Σn, 8 admit
no metrics with Sc > 0, see ??? and references therein.

The above can be improved for enlargeable manifolds X, e.g. for those
which admit metrics with non-positive sectional curvatures, such as the m-tori
for example.9

1.3. C. Enlargeable Codimension ≤ 2 Theorem . The curvatures
of compact enlargeable Riemannian m-manifolds X immersed to the unit ball
Bm+k(1) satisfy for k = 1,2:

curv(Xm ↪ Bm+k(1)) ≥ 2jν
kπ

− 1,

where ν = m+k
2
−1 and jν is the first root of the Bessel function Jν . (See [Gr2022]

and references therein.)
One knows in his regard that j−1/2 = π

2
, j0 = 2.4048..., and if ν > 0, then

ν + aν
1
3

2
1
3

< jν < ν +
aν

1
3

2
1
3

+ 3

20

2
2
3 a2

ν
1
2

where a = ( 9π
8
)

2
3 (1 + ε) ≈ 2.32 with ε < 0.13 ( 8

8.847π
)2
,

This implies, for instance, that

min.curv(T7 ↪ B8(1)) ≥ 3.

Codimension k Conjecture. The inequality curv(Xm ↪ Bm+k(1)) ≥
2jν
kπ

− 1 holds for all compact enlargeable m-manifolds and all k.
Remark on foc.rad in manifolds with Sc⋊ ≥ n(n − 1)
(Overoptimistic?) Conjecture. If the cohomology of a closed m-manifold

Xm with coefficients in some field K contains l elements with non-zero product,

h1,⌣ ... ⌣ hi ⌣ ... ⌣ hl ≠ 0, hi ∈H∗(X;K),

e.g. Xm = Sm1 × ... × Sml , m1 + ... +ml =m,
Then the curvatures of immersion f ∶ Xm → Bm+k(1) bounded from below

as follows,

curvf(X) ≥ 0.1
l2

mk
?

Clifford Tori Extremality Problem. Does the m-torus admit an immer-
sion to the unit 2m-ball with curvature <

√
m?

For all we know, all flat m-tori admit smooth isometric immersions to
B2m(1) with curvatures < 10.

mβ-Problem, What is the minimal β, such that the tori of all dimensions
m admit immersion to the unit (m + 1)-balls,

f ∶ Tm ↪ Bm+1(1),
8Such Σn exists for all n = 8l + 1,8l + 2, l > 0, see [Hit1973].
9 A compact m-manifold X is enlargeable (see [G 2021]), if it admits a Riemannian metric

g, a sequence of covering X̃i → X and a sequence of λi-Lipschitz maps (X̃i, g̃i) → Sm(1) with
non-zero degrees, such that λi → 0 for i→∞.
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with curvatures curvf(Tm) ≤ 100mβ? (We shall see in section ??? that β ≤ 3
2
)

Simply Connected Codim 1 Curvature Problem. Do all compact
smoothly imbedded simply connected hypersurfaces Xm ⊂ Rm+1, e.g. products
of spheres of dimensions ≥ 2, admit immersion to the unit ball,

f ∶Xm ↪ Bm+1(1)

with curvature curvf(X) ≤ 100?
1.3.D. Rectangular Non-Expansion Theorem. If a rectangular 2ri-

solid admits an expanding map to a product of balls of radii Rj,

n

⨉
i=1

[−ri, ri] →
l

⨉
j=1

Bmj(Rj), ∑
j

mj = n,

then

[∑(ni/ri)2]
n

∑
i=1

1

r2
i

≥ 4

π2
⋅
l

∑
j=1

j2
nj

R2
j

,

for νj = n
2
− 1.

◻m-Example. If all mj = 1 this reads

n

∑
i=1

1

r2
i

≥ 4

π2
⋅
n

∑
j=1

π2

4R2
j

=
N

∑
j=1

1

R2
j

.

Proof of 1.3.D.... ???
1.3.F. Corollary: Expansion with Positive Codimension. Let

n−k
⨉
i=1

[−ri, ri] →
l

⨉
j=1

Bmj(Rj), ∑
j

mj = n,

be an expanding immersion with curvature ≤ α. If k = 1 then ???? and if k = 2
then ????

Proof.
Product of Balls Problem. Given positive numbers ri, Ri and positive

integers mi, ni, i = 1, ...k, such that ∑imi = ∑i ni, evaluate, let it be only
roughly, the maximal λ > 0 , such that the product of mi-dimensional ri-balls
Bmi(ri)Rmi admit a λ-expanding map to the product of ni-dimensional Ri-
balls,

k

⨉
i=1

Bmi(ri) →
k

⨉
i=1

Bni(Ri).

Cube Extremality Problem. Does, the unit n-cube [−1,1]n admits an
expanding map to the n-ball of radius <

√
n?

1.3.1 The m-th Scalar curvature Sc∣m and Focal Radius

Below we outline generalizations of the inequalities from the previous section to
immersions to non-Euclidean manifolds Y .

Let Sc∣m(Y ) be the function on the tangent m-planes Tmy ⊂ T (Y ) in a
Riemannin manifold Y of dimension ≥ m, which is the sum of the sectional
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curvatures κ of Y on the bivectors in Tmy at y, that is the scalar curvature of
submanifold y ∋ Y my ⊂ Y tangent Tmy , i.e. Ty(Y my ) = Tmy ⊂ Ty(Y ) and having
zero relative curvature in Y at y,

Sc∣m(Y,Tmy ) = Sc(Tmy , y) = ∑
i≠j=1,...,n

κ(e1 ∧ ej)

for a frame of ortonormal vectors ei ∈ Tmy .
By the Gauss formula, the scalar curvature of Xm ↪ Y satisfies:

Sc(X,x) = Sc∣m(Y,Tx(X)) + ∣∣mean.curv(X,x)∣∣2 − ∣∣II(X,x)∣∣2

and if Sc∣m(Y ) ≥m(m−1), e.g. if sect.curv(Y ) ≥ 1, then, by an easy calculation,

[Sc∣m] curv(Xm ↪ Y ) < max
⎛
⎝

√
m − 1

k
,

√
m − 1

m

⎞
⎠
Ô⇒ Sc(X) > 0,

which implies and generalize the "Gaussian obstruction" ???.
It is unclear if there is a similar generalization for enlargeable X but this is

possible with the focal radius of X rather than with its curvature.
The focal radius of an immersed manifold X

f↪ Y ,

foc.rad(X) = foc.rad(X ↪ Y ) = foc.radf(X)

is the supremum of those R, for which the differential of the normal exponential
map, denoted

exp⊥ ∶ T ⊥(X) → Y,

is injective along all normal segments of length < R, where, in the case of a
non-complete Y or a presence of a boundary ∂Y , one has to say "defined and
injective...".

1.3.G. Boundary of the Tube Formula. The focal radius of the bound-
ary of the r-neighbourhood of X ⊂ Y satisfies

foc.rad(∂Ur(X)) =min(r, foc.rad(Y ) − r).

If Y has constant sectional curvature, then the focal radii of submanifolds
are intimately related to their curvatures in Y .

For instance,

foc.rad(X ↪ RN) = 1

curv(X ↪ RN)
.

and

foc.rad(X ↪ BN(1)) = min( 1

curv(X)
, dist(X,∂Y )) ,

while the (available) relations between curv(X) and foc.rad(X) are limited for
non-constant sect, curv(Y ). 10

10 If sect.curv(Y ) ≥ 1, and curv(X) ≤ α, then foc.rad(X) is bounded by the radii of circles
in S2 with curvatures α and if sect.curv(Y ) ≤ κ, then foc.rad(X) is bounded from below by
the radii of circles in surfaces with constant curvature κ.
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The inequality ??? generalises in the focal form to immersions with codi-
mensions k = 1,2 of enlargeable manifolds Xm to Y with Sc(Y ) ≥ 0 as follows.

foc.rad(Xm ↪ Y ) ≤ kπ

2
√
λ1(X)

,

where λ1 is the first Dirichlet eigenvalue of the Laplacian in X.
In fact, such an inequality holds for certain "topological focal radius".
For instance, let X → Y be a topological embedding.
●1 If codim(X) = 1 and the the boundary ∂Y contains two connected com-

ponents separated by Y , where Sc(Y ) ≥ 0, then

distY (X,∂Y ) ≤ π

2
√
λ1(X)

.

●2 If codimX = 2, if Y is compact with a boundary, which contains a non-zero
homology class 0 ≠ s ∈H1(∂Y ), which vanishes in Y , then

distY (X,∂Y ) ≤ π√
λ1(X)

.

On Geometry of [Sc∣m]. One expects that positivity of [Sc∣m](Y ) for
m < n = dim(Y ) has greater significance than positivity of Sc(Y)= [Sc∣m](Y ).
Below is, albeit weak, a confirmation to this..

Let Y be a Riemannin manifold, the boundary ∂Y of which is divided into two
disjoint parts, ∂Y = ∂−Y ⊔ ∂+Y , where ∂±Y are unions of connected components
of ∂Y .

Let
dist(∂−Y, ∂+Y ) = 2r,

let the sectional curvature of Y be bounded from below,

κ(Y ) ≥ κ−

and let
Sc∣(n−1 ≥ σ.

Then
Y contains a smooth hypersurface X ⊂ Y , which separates ∂−Y from ∂+Y

(recall that ∂Y = ∂−Y ⊔ ∂+Y ) and such that the scalar curvature of the induced
Riemannian metric in X satisfies:

[σ∣α] Sc(X) ≥ σ − (n − 1)ακ−(r)2,

where ακ−(r) denotes the curvature of the circle of radius r in the standart
surface with constant curvature κ−, e.g.

● α1(r) = cos r
sin r

,

● α0(r) = 1
r
,

● α−1(r) = er+e−r
er−e−r .

Proof. Let X[2r] ⊂ Y be the 2r-equidistance hypersurface to ∂−Y and
X[2r−r] ⊂ Y be the r-equidistant to X2r on the side of ∂−Y . Then clearly
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(○r) the hypersurface X[2r−r] is C1,1-smooth with the curvature, i.e. with
the norm of the second fundamental form, bounded by ακ−(r).

Hence, X[2r−r] can be approximated by C∞-smooth hypersurfaces Xε ⊂ Y
with curvatures bounded by ακ−(r) = ε for all ε > 0. QED.

Remark. If n ≤ 8 then ∂−Y and X2 ⊂ Y can be separated by a smooth stable
µ-bubble X ⊂ Y such that the scalar curvature of a warped product metric
g⋊ = g⋊(x, t) = dx2 + φ(x)2dt2 on X × T1 is bounded from below in terms of
σ = infy Sc(Y, y) and r as follows (see section 3.7 in [G(scalar) 2021]),

Sc(X) ≥ σ − (n − 1)π2

nr2
.

Although this is not formally stronger than [σ∣α], it is by far more general
and informative. Probbaly, a version of this holds true for all n, but the present
day techniques (due to Lohkamp and to Schoen-Yau) fail short of confirming
this for n ≥ 9.

Questions. (a) Does (○r) generalize to submanifolds X ⊂ Y of codimensions
k > 1, where Y is, in some way, "wide in k-directions"?

For instance, let Y be a Riemannin manifold homeomorphic to X0 ×Bk(1),
where X0 is a closed manifold of dimension n − k, let the sectional curvature
of Y be bounded by ∣κ(Y )∣ ≤ 1 and the injectivity radius by inj.rad(Y ) ≥ 1
(compare with [Gr2022]).

What else need you know about Y to effectively evaluate the minimal α, such
that Y contains a submanifold X ⊂ Y homologous to X0 =X0×{0} ⊂X0×Bk(1) =
X, such that the curvature of X in Y is bounded by α?

What is the best bound on α in a presence of a proper (boundary-to-boundary)
λ-Lipschitz map X → Bk(1)?

The known (unless I am missing some) quantitative transversality theorems
applied to maps X → Bk deliver submanifolds X ⊂ Y with α ≤ constn, but we
need X with α ≤ constk for our purposes.

Alternatively, an inductive use of (○r) leads to a bound with

const ∼ 100k(1+diam(Y ))

but this is not satisfactory either.
(b) How much (if at all) do (essential) global (geo)metric and/or topological

properties of Riemannian n-manifolds Y with Sc∣m(Y ) ≥m(m−1) for m ≥ 3 differ
from those with Sc(Y ) ≥ n(n − 1)?

For instance, does the product Tn−2×S2, n ≥ 4, admit a metric with Sc∣3 > 0?

1.4 Remarks, Acknowledgements and the Plan of the Pa-
per

The lower bounds on curvatures of tori (see section ???) in concert with the "nat-
ural symmetry" of Clifford’s manifols may led one to believe that such bounds
persist in all codimensions. But when I mentioned this to Fedia Bogomolov,
"everything is possible in large dimensions" – he responded.

Then my attempts to prove lower bounds on the curvatures of m-tori in
n-dimensional balls for n ∼ 2m were arrested by what Gilles Pisier explained to
me about norms of generic linear families of selfadjoint operators.
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Also Gilles pointed out to me on the criticality of dimensions ∼
√
n (ex-

ample 3.1 in [FLM1977]) and the present state of art with Dvoretzky-Milman
inequalities for the lp-spaces was explained to me by Grigoris Paouris who also
suggested the relevance [K1995] for evaluation of the Kolmogorov diameter D .

Then Bo’az Klartag and Noga Alon patiently explained me the basics on
the spherical designs and construction of these based on binary codes, allowing
sharp bound on D in high dimensions.

Plan of the Paper. (To be written
In sections 3.1-??? we explain how the construction from sections enhance

flexibile of geometric sheaves of maps and prove the h-principle with controlled
curvature including tat for isometric immersions of compact Riemannian man-
ifolds.

In section 4 we explain how the above non-Expansion theorem follows from
the T ⋊ stable cubical multispread inequality.

*************************

2 Kolmogorov’s D = D(m,N, p), Hilbert’s Theo-
rem and Spherical Designs

K-Diameter p
√
D(m,N,p). Let ∣∣y∣∣Lp , y = (y1, ..., yN) ∈ RN denote the

normalized norm lp,

∣∣y∣∣Lp = ( 1

N

N

∑
i=1

∣yi∣p)
1
p

Let D(m,N,p) denotes the infimum of the numbers D > 0 such that RN
contains an m-dimensional linear subspace X, such that

∣∣x∣∣pLp ≤D∣∣x∣∣pL2
, for all x ∈X.

Observe that D(1,N, p) = 1, D(m,m,p) = m
p
2−1, that D(m,N,p) is monotone

increasing in m and decreasing in N and let

D(m,p) =D(m,∞, p) = lim
N→∞

D(m,N,p).

2.1.A. Gamma Function Design Formula. If p = 4,6,8..., then an simple
O(m)-averaging argument, show that

[Γ/Γ] D(m,p) = ∫Sm−1 ∣l(s)∣pds

(∫Sm−1 ∣l(s)∣2ds)
p
2

= m
p
2−1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (p − 1)

(m + 2) ⋅ (m + 4) ⋅ ⋅ ⋅ (m + p − 2)
,

where l(s) is a non-zero linear function on on the sphere.
2.1.B. Hilbert Connection. In his proof of the Waring problem, Hilbert

shows the existence of M = (m+p−1
m−1

) + 1 rational points si ∈ Sm−1 and of positive
rational weight wi > 0, ∑M1 wi = 1, such that ∑iwild(si) = ∫Sm−1 l

d(s)d for all
linear functions on he sphere.

This, after partitioning each si into ∆ atoms for ∆ being the smallest com-
mon denominator of wi, becomes what is no-a-days called spherical design of
cardinality N = NM of wi, which yields (this is nearly obvious, see 2.1.C below)
the following.
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D(m,N)-Stabilization: D(m,N,p) = D(m,∞, p) for all sufficiently large
N ≥= NHilb(m,p)(≤ NM), where – to be safe let it be rough– NHilb ≤mmp .

Design Rationality : If N ≥ NHilb then the space lNp contains a rational
linear subspace X of dimension m, such that

∣∣x∣∣pLp =D(m,p)∣∣x∣∣
p
2

L2
for all x ∈X.

2.1.C. Spherical Designs and the Equality D(m,N) =D(m,∞)
A design of even degree p = 2,4, ... and cardinality N on the sphere Sm−1 is

a map from a set Σ of cardinality N to the sphere, written as σ ↦ s(σ), such
that the linear functions l(s) on the sphere Sm−1 ⊂ Rm satisfy

1

N
∑
σ∈Σ

ld(s(σ)) = ∫
Sm−1

ld(s)ds, d = 2, ..., p,

where ds is the O(m) invariant probability measure on the sphere.
Hence, the linear map from the space Rm⊥(= Rm) of linear functions on the

sphere Sm−1 ⊂ Rm to RN = RΣ preserves both, the L2 and the Lp-norms and,
by the above [Γ/Γ],

the existence a design of cardinality N implies that D(m,N,p) =D(m,p).11

Non-rational designs, at least for p = 4, are known to exit for N << NHilb.
2.2.D 2m2-Design Construction. If p = 4, and if m is a power of 2, then

there exists a spherical designs of cardinality N = 2m2 + 4m. 12

This, now for all m, shows that

(i) D(m,N,4) = 3m

m + 2
for N ≥ 8(m2 +m).

[R2 in l34]-Example. D(2,N,4) = 3
2
for N ≥ 3, with four (rational) planes

X ⊂ R3 = l34, where ∣∣x∣∣∣4L4
= 3

2
∣∣x∣∣∣4L2

: these are the normals to the vectors
(1,1,1,), (1,1, -1), (1,-1,1), (1,-1,-1).

2.2.E. D(m,N)-Inequalities. IfN ≲m2, then upper bounds onD4(m,N,4)
follow from the corresponding estimates in the randomization proofs of the
Dvoretzky theorem for the lp-spaces, where the following inequality follow from
(the argument in) [PVZ201 7] as it was spelled out in details in a mesage by by
Grigoris Paouris to me.

(ii) D(m,N,4) ≤ 3 + const(ii)m
2

N
for N ≥m2;13

(iii) D(m,N,4) ≤ const(iii)m
2

N
for 2m ≤ N ≤m2.14

Nash Connection. Besides applications to lower bounds on curvatures
of immersions (see next section), Hilbert’s argument, combined with a Nash-
like twist, leads to C2-smooth isometric Riemannian immersions with (large)

11See ..... ??? for more about it.
12This was stated and proved in a written message by Bo’az Klartag to me. Also, Bo’az

pointed out to me that the Kerdock code used in [K1995] yields designs for m = 4k and
N = m(m+2)

2
.

13This follows from (i) for N ≥ 8(m2 + m) and, if const1 is large, also for (some) N ≤
8(m2 +m). Besides, the inequality D4(m,m2,4) ≤ const follows from (the proof of) example
3.1 in [FLM1977].

14 Since D(m,N,4) ≤ D(m,m,4) = m for all m and N , the significance of this inequality
for N ∼m depends on the value of const2.
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prescribed curvatures and also to a solution of the differential geometric Warning
problem:

construction of isometric C1-immersions of manifolds with symmetric dif-
ferential forms of degrees d > 2, (see 2.4 (B)(4) on p. 205 in [Gr1986] and
[Gr2017]).

3 Equivariant Immersions Rm → S2N−1 and Eu-
clidean D(m,N)-Theorem for N ≥ 4n.

3.A. Curvatures of the Clifford Tori. Let

TN ⊂ S2N−1 ⊂ B2N(1) ⊂ (B2(1))N ⊂ R2N

be the Clifford torus and observe that the second quadratic form of this torus
in the the ambient Euclidean space R2N ⊃ S2N−1 ⊃ TN , regarded as a quadratic
form with values in the normal bundle, is

II=
√
N ∑Ni=1 νidt

2
i ,

where ti are the cyclic coordinates on the torus and {νi ∈ T ⊥(TN ⊂ R2N)} is the
corresponding orthonormal frame of normal vectors to TN .

This, in terms of the orthonormal tangent frame {ei = ∂
∂ti

∈ T (TN)}, means
that

II∶ ei ⊗ ei ↦
√
Nνi and II∶ ei ⊗ ej ↦ 0 for i ≠ j.

Thus, the curvature of TN in BN along a unit tangent vector x̄ ∈ T (TN),

x̄ = ∑i xiei, where ∑i x2
i = 1,

is
curv(TN , x̄) = ∣∣II(x̄⊗ x̄)∣∣ = ∣∣II(∑i xiei ⊗∑i xiei)∣∣ =

||II(∑ij xixj(ei ⊗ ei)∣∣ =
√
N ∣∣∑i x2

i νi∣∣ =
√
N

√
∑i x4

i =
√
N

√
∑i x4

i

∣∣x̄∣∣2 =

where ∣∣x̄∣∣2 = ∣x̄∣∣2l2 = ∑
N
i=1 x

2
i .

Hence,

(⋆) curv(TN , x̄) = ( 4
√
N

∣∣x̄∣∣l4
∣∣x̄∣∣l2

)
2

= ( ∣∣x̄∣∣L4

∣∣x̄∣∣L2

)
2

,

where, recall, the Lp-norms refer to the finite probability spaces with N equal
atoms,

∣∣x̄∣∣Lp =
∣∣x̄∣∣lp
p
√
N
.

3.B. Proof of the Euclidean DDD(m,N)-Theorem 1.1.A for N ≥ 2m.
The above (⋆) implies the existence of an equivariant isometric immersion
from the Euclidean m-space to the Clifford N -torus,

f⊙ ∶ Rm → TN ⊂ S2N ⊂ R2N
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with the relative curvature curveE(f⊙) (for the Euclidean metrics e in Rm and
E in R2N ) equal to

√
D(m,N) =

√
D(m,N,4).

Hence,
DDD(m,N) ≤

√
D(m,M)

for all m and N ≥ 2M ; thus the above D(m,N)-inequalities (i),(ii),(iii) yield
the corresponding DDD(m,N) inequalities in ???.

In addition to that, if the lN4 -space contains a rational m-subspace X with
∣∣x∣∣4L4

∣∣x∣∣4
L2

=D, then TN contains an m-subtorus with the ambient Euclidean curva-

ture
√
D.

3.C. δ-Approximation in Non-Euclidean Riemannian Manifods. The
derivation of the δ-approximation from expanding Euclidean maps in section ???
easily generalizes, albeit with limitations, to Riemannian manifolds as follows.

Theorem. Let Y be a complete Riemannin manifold15 with the sectional
curvature ∣sect, curv(Y )∣ ≤ κ2 and let f ∶X → Y be a continuous map.

If the induced bundle f∗(T (Y )) → X contains a subbundle isomorphic to X ×
RN , (i.e. a trivial one) and if X admits an immersion to RN , e.g. 2m − 1 ≤ N ≤
dimY −dim(Y )−1, then, for all positive δ ≤ 1

2κ
, the map f can be δ-approximated

by immersions fδ ∶X → Y , such that

curvfδ(X) ≤ 1 + 2κ

δ

√
D(m,N),

where
D(m,N) ≤ 3m

m + 2
+ const m√

N
for N ≥ 2m

and

D(m,N) ≤ 6m
3
2

N −m
for N ≤ 2m.

Proof. Proceed as in the proof of 1.1.B, where instead of adding δ ⋅ f⊙ ○
ψδ−1λ to f ′ε we the compose exponential map with a (fiberwise injective bundle
homomorphism from the trivial bundle X ×RN to X over the smooth map f ′ε,
(this map ε-approximates f).

3.1 Subtori in Non-Equilateral Clifford Tori
All invariant N -tori in the sphere S2N−1 ⊂ R2n are (equal, up to isometries of
S2N−1, to) the orbits of the product action of N -copies of the standard action
of T1 in the plane. where these orbits are equal to the non-equilateral Clifford
tori

TN(r̄)
N

⨉
i=1

S1(ri), for r̄ = (r1, ..., rN), where ∣∣r∣∣2 = ∑i r2
i = 1

Then, similarly to the above (⋆), the values of the curvature operator of
this torus at the unit tangent vectors x̄ = (x1, ....xN) ∈ T (TN(r̄)) are

(⋆R̄) curv(TNr̄ , x̄) = ∣∣∑
i

x2
i

ri
νi∣∣ =

¿
ÁÁÀ∑

i

x4
i

r2
i

15One may allow a boundary, but this is a minor problem.
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where, if all ri = 1√
N
, this reduces to (⋆) for

¿
ÁÁÀ∑

i

x4
i

r2
i

=
√
∑i ∣xi∣4
N

and where we denote

∣∣x∣∣L4(r̄) =
4

¿
ÁÁÀ N

∑
i=1

x4
i

r2
i

3.1.A. Conclusion. There is a one-to-one correspondence between

equivariant Rm ⊂ S2N−1 with curv(Rm) < α

and pairs (r̄,X), where r̄ = (r1, ..., rN) is a unit vector with positive entries,
N

∑
i=1

r2
i = 1, ri > 0,

and subspaces X ⊂ Y = RN = lN2 is a such that all x ∈X satisfy

∣∣x∣∣L4(r̄) <
√
α ⋅ ∣∣y∣∣L2 ,

where, recall, the L2-norm of y ∈ Y , including y ∈X ⊂ Y , is

∣∣y∣∣L2 =

¿
ÁÁÀ∑Ni=1 y

2
i

N
= ∣∣y∣∣√

N
.

Conceivably,m-torical orbits not contained in TNCl, e.g. thosemaximizing the
m-volumes of the respectivem-tori actions, may have slightly smaller curvatures
than Kolmogorov’s D(m,N), that is, as we know, is equal to the infimum of
the curvatures of m-subtori in TMCl.

This can be stated with the r̄-counterpart of Kolmogorov’s D(m,N), de-
noted ◊(m,N)(≤D(m,N)) that is the infimum of the suprema of the ratios of
the two norms:

◊(m,N) = inf
Y,r̄

sup
0≠y∈Y

∣∣y∣∣L4(r̄)

∣∣y∣∣L2

,

where the infimum is taken over all m-dimensional linear subspaces Y ⊂ RN and
all positive unit vectors r̄.

Question. Is, ever, ◊(m,N) <D(m,N)?
The space Iα = I(m,N, α) of isometric equivariant immersions Rm ↪

S2N−1 with curvatures ≤ α is a semi algebraic subset in the (Euclidean) space
JN(m,N) of N -jets at 0 ∈ Rm of smooth maps Rm → RN 16, which is invariant
under the action of the orthogonal group O(2N), and where the O(2N)-orbit
of an I ∈ I in S2N−1 is equal to

WI/O(2N)/TN , whereWI is the subgroup of the Weyl group of O(2N), which
preserves I, (this is empty for generic I).17

There can be something geometrically interesting in the O(N)-topology of
Iα depending on α, but all one can say off hand is the Petrovsky-(Thom-Milnor)
bound on the homology of Iα by the algebraic degree of this set.

16The space Jk(m,N) is isomorphic to the space of polynomial maps Rm → RN of degrees
≤ k

17 The corresponding space X(m,N,
√
α) ofm-subspaces X in LN

4 with
∣∣x∣∣4L4

∣∣x∣∣4
L2

=
√
α, which,

albeit being also semi algebraic, has more combinatorial flavour than I.
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4 Normal Immersions in Small Codimensions

4.1 Proof of Euclidean D(m,N)-Theorem for N ≤ 2m

⋊-Construction. Let φ1 ∶X1 =Xm1

1 ↪ Rm1+n1 , be an immersion with a trivial
normal normal bundle, where this "triviality" is implemented by a smooth map

Φ1 ∶X1 ×Rn1 → Rm1+n1

and let φ2 ∶X2 =Xm2 → Rn1 be another immersion. If φ2 lands in the r-ball in
Rn1 for some r1 > 0,

φ2(X2) ⊂ Bn1

0 (r) ⊂ Rn1

and
curvφ1(X1) ≤ α1 <

1

r
,

then the composed map (x1, x2) ↦ Φ1(x1, φ2(x2) is an immersion, say

φ1 ⋊ φ2 ∶X1 ×X2 → Rm1+n1 .

Recall that the normal connection ∇⊥ in the (trivial) normal bundle

X1 ×Rn1 = T ⊥(X1) = T (Rm1+n1) ⊖ T (X1) →X1

is defined by the field τ⊥of tangent m1-planes in X1 × Rn1 , which are normal
to the Euclidean fibers x1 × Rn1 with respect to the (flat) Riemannin metric
induced by the map Φ1 ∶X1 ×Rn1 → Rm1+n1 .

Flat Split Bundles and ∇⊥-Trivial Immersions The connection ∇⊥ is
called flat split if the map Φ1 is ∇⊥-parallel that is the field ∇⊥ is normal to the
fibers x1 ×Rn1 with respect the product metric in X1 ×Rn1 and the immersion
φ1 is called ∇⊥-trivial in this case.

4.1.A. List of ∇⊥-Trivial Examples. (a) Immersions R1 → Rn are ∇⊥-
trivial.

(b) Codimension 1 immersion of orientable manifolds, Xm → Rm+1, are ∇⊥-
trivial.

(c) Equivariant immersions of tori, Tm → Rn, are ∇⊥-trivial.
(d) Direct products of ∇⊥-trivial-immersions φi ∶Xi → Rni

⨉
i

φi ∶ ⨉
i

Xi → R∑i ni

are ∇⊥-trivial.
(e) The above "semidirect products" φ1⋊φ2 ∶X1×X2 → Rm1+n1 of ∇⊥-trivial

φ1 ∶X1 → Rm1+n1 and φ2 ∶X2 → Rn1 are ∇⊥-trivial.
4.1.B. (Obvious) ⋊-Normality Lemma. Let φ1 ∶X1 → Rn1 and φ2 ∶X2 →

Rn1 be ∇⊥-trivial immersions. Then:
●norm If φ1 ∶X1 and φ2 are normal (see ????) then φ1 ⋊ φ2 is also normal.
●curv If φ2(X2) ⊂ Bn1(r) ⊂ Rn1 , then

foc.radφ1 ⋊ φ2(X1 ×X2) ≥ min(foc.radφ2(X2), foc.radφ1(X1) − r)

and in the normal case the relative curvature of φ1⋊φ2 (as well as the curvature
curv(X) = foc.rad(X)−1 itself), satisfies the corresponding inequality.

curv(φ1 ⋊ φ2) ≤ (min(curv(φ2)−1, curv(φ1)−1 − r))−1.
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4.1.C. Torus-by-Torus Construction. Let

[−1,1] ×T1 → [−2,2]2 ⊃ B2(2)

be the map obtained by rotation of the segment [0,2 around the origin in the
plane (which is an immersion away from the "interior" boundary circle) and let

f1 = f×k0 ∶ [−1,1]k ×Tk = ([−1,1]k ×T1)k =→ ([−2,2]2)k = [−2,2]2k,

f2 ∶ [−1,1]k×T3k = [−1,1]k×Tk×T2k → [−2,2]2k×T2k = ([−2,2]k×Tk)2 → [−4,4]4k

...........................................................................................................................

fi ∶ [−1,1]k ×Tk2i−k → [−2i,2i]k2i .

It follows by the construction, that this map is normal and that the normal
exponential map of the central torus

T2i−1 = 0 ×T2i−1

(immersed actually embedded) to the cube [−2i,2i]k2i is injective in the interior
of [−1,1]k×Tk2i−k.Hence, the curvature of this torus and the (relative) curvature
of the immersion fi are bounded by 1 and the corresponding scaled map f ∶
Tk2i−k → Bk2k satisfies

curvf(Tk2i−k) = curvT
k2i−k

(f) ≤ 2i ⋅
√
k2i,

or, in terms of m = k2i − k,

curvf(Tm) ≤ (m
k
+ 1)

√
m + k,

which implies for all m and k ≤m:

curvf(Tm) = curvT
m

(f) < 6
m

3
2

k
.

The proof of theorem ??? is concluded.

4.2 Proofs of the Codim 1 and the Rolled Band Theorems
.

Let f ∶Xm → Y be an immersion with foc.radf(X) = R and S⊥(r)(X) →X
be the bundle of normal r-spheres SN−m−1

x (r) ⊂ T ⊥x (X) = Tf(x)(Y ) ⊖ Tx(X) =
RN−m.

If r < R then the normal exponential map E ∶ S⊥(r)(X) → Y is an immersion,
where foc.radE(S⊥(r)(X)) = min(r,R − r).

For instance, if X → BN(1) is an immersion with trivial normal bundle and
curvF (X) ≤, then the immersion

Ef ∶ (1 + 1

2c
)
−1

E ∶X × SN−m−1 = S⊥ ( 1

2c
) (X) → BN(1)
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has
curvEf (X × SN−m−1 ↪ BN−m−1) ≤ 2c(1 + 1

2c
) = (2c + 1).

4.2.A. Codim1 Conclusion. This, applied to immersions of tori Tl−1 →
BN(1) with large N curvature Tl−1 =

√
3(l−1)
l+1

, yields codimension codimension
one immersions with small curvature as stated in ???

4.2.B. Generalization from l-Tori to l-Polyhedra. Given a com-
pact polyhedral (or cellular) space P of dimension l, there exists a compact
N -manifold X, for all N ≥ 2l − 1, such that:

●P there is a continuous map K → X, which is a homotopy equivalence in
dimensions < N/2, i.e. this map induces isomorphisms of the homotopy groups,
πi(P ) → π(X) for i < N/2;

●200 if N ≥ 200l2 then, for all ε > 0, X admits an immersion toBN+1(1) with

curv(X ↪ BN+1(1) ≤ 1 +
√

3l

l + 2
+ ε.

In fact, the boundary of the regular neighbourhood of P embedded to RN+1 can
be taken for X.

Embedding Remark. This, X, by its very construction, embeds to RN+1,
but one can show (section???) that there is no universal bound on the curvature
of embeddings of X to the unit ball in RN+1.

For instance if P is a connected sum of different lens spaces, e.g.

Pk = #k

i=1S
3/Zpi ,

where p1 < ... < pi < ... < pk are prime numbers, then the curvatures of all smooth
embeddings F ∶X → BN+1(1) satisfy:

curvF (X) ≥ log log(k)/NN .

Question. What, roughly, is the minimum of the curvatures of embeddings
Tl × SN → BN+l+1(1)?

4.2.C. The proof of the "rolled band theorem proceeds similarly to
the above.

Let f ∶ Rm → Bm+M(1) be an immersion with curvature bounded by D =
D(m,m +M) as in ??? , let

e = ef ∶ Rm ×BM(r) → Rm → Bm+M(1 + r), r < 1

D
,

be the normal exponential map for Rm immersed to Rm+M ⊃ Bm+M and let

Eλ ∶ Rm ×BM(r) → Rm → Bm+M(1) for (x, b) ↦ (1 + r)−1e(λx, b).

If λ is sufficiently large, then the map Eλ is expanding in the Rm directions,
i.e. it expands Rm × b for all b ∈ B and since it is isometric in the BM -directions
it is expanding on Rm ×BM(r)... except for one problem:

the normalM -ball bundle B⊥(r) → Rm of the immersed Rm ↪ Rm+M is trivial,
it is indeed, isomorphic to the product Rm ×BM(r) but the map (x, b) ↦ λ(x, b)
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is not necessarily expanding with respect to the (Euclidean) metric induced by the
exponential map. (Look at the planar map (x, y) ↦ (0,10x + y)

Fortunately, the normal bundles of our immersions constructed in sections
??? and ??? are flat split, (see ???) the map Eλ is expanding and it can be
taken for the required Fr in ???.

4.2.D. Expanding Maps Fr for all m and M . The above argument
delivers expanding maps Fr ∶ Rm ×BM(r) → BM+m(1) provided r ≤ (1 +∆)−1,
where ∆ is taken according to the D(m,N) inequalities in ???,

∆ =
√

3m

m + 2
+Co

m√
M
, for M ≥m,

and

∆ = 6
m

3
2

M
for M <m.

.

4.3 Proof of the Regular Homotopy/Approximation The-
orem.

Step 1. Slicing. Given an immersed manifold

X =Xm φ↪ Rn, n >m,

, and (small) positive numbers ε, δ > 0 there exists an immersion

X
ϕ↪ Rn

regularly homotopic tp φ, such that
●curvϕ curvϕ(X) ≤ ε,
●δ the first coordinate function y1(x) = y1(ϕ(x)) of y = φ(x) ∈ Rn = {y1, ....yn}

is proper Morse, where there are no critical points of y1 on the δi levels of y1

for integer i = ... − 2,−1,0,1,2..., i.e. the hyperplanes where y1 = δi in Rn are
transversal to $(X) ⊂ Rn and

●ε the curvatures of these δi levels are bounded by ε.
Proof. If X is compact, then ●curvϕ achieved achieved by scaling: x↦ λφ(x)

for a large λ and then one gets ●δ by a preliminary generic rotation of φ(X)inRn,
where then the critical values of y1(x) moved to the centers of the segments
[δi, δ(i+1)], let 1

δ
= o(λ)and conclude the proof with the following obvious (but

essential)
4.3.A. Levels Curvature Sublemma. Let y(x) be a Morse function on

a compact Riemannian manifold X and x0 be a critical point, where y(x0) = 0.
Then the curvatures of the δ-levels f−1(δ) ⊂X satisfy

curv(f−1(δ) = o(1

δ
) .

Step 2. Zigzag Folding and Compression. Reflect the X-bands y−1
1 [δi, δ(i+

1) ⊂X in the hyperplanes y1 = δi, i ∈ Z, and thus "compress" ϕ(X) to a zigzag
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map ζ from X to the Euclidean δ-band between a pair of such hyperplane, say
between y1 = 0 and y1 = δ.

Step 3. Twisted Regularization with Controlled Curvature. There exists a
smooth 10δ-approximation of ζ by a smooth immersion ζ○ ∶X → Rn, such that

●ε the immersion ζ○ is equal to ζ outside the ε-neighbourhood of thecorners
of ζ, that is the subset y−1

1 (δZ) ⊂ X, where ε > 0 en is a given number which
may be taken much smaller than δ;

●reg the immersion ζ○ is regularly homotopic to ϕ,
●curv/δ the curvature ζ○is bounded by 1

δ
Proof. To see how it works, let θ○ and θ� be two immersions of the circle to

the plane, each having a single corner point, both with the same corner angle.
If we align these corners properly and attach the immersions one to another at
the corner points, we obtain a composed smooth immersion θ∗ where, if θ� is
�-shaped, this f∗ is regularly homotopic to f○.

Now, in he case of a corner along a hypersurface Xi = ϕ−1δ) attach the
product Xi ×� to ζ(X) along this corner and by doing it to all Xi we obtain a
smooth immersion regularly homotopic toϕ where the conditions ●ε and ●curv/δ
are easily achievable 10δ close to ζ. Details are left to the reader.

Step 4. Rolling Bands into Balls. The band Rn−1 × [−10δ,11δ] ⊃ ζ○(X) is
mapped to Bn(1) by "rolling band" immersion Fr ∶ Rn × [−r, r] → Bn(r) for r
from ???, where Fr is restricted to the subs-band Rn×[−r/2, r/2]Rn×[−r, r] ⊂???
and where we let δ = r

42
.

In order estimate the curvature of the composed map Φ = Fr ○ ζ○,

X
ζ○→ Rn × [−r/2, r/2] Fr→ Bn(1),

by curvζ○(X) ≤ c = 1
δ
we recall the construction of the underlying normal im-

mersion
f = Fr ∣ ∶ Rn−1 × {0} ∶ Rn − 1→ Bn(1 − r)

, where curv(f) ≤ 6(1−r)−1n
3
2 and where also (the differential of) this map has

controllably bounded anisotropy,

∣∣dτ1∣∣
∣∣dτ2∣∣

≤ 2n

for all unit tangent vectors τ1, τ2 ∈ T (X). It follows that the curvature curvΦ(X)
is bounded essentially in the same way as that of Fr,

curvΦ(X) ≤ 420n
3
2 ,

and the corresponding approximation inequality follows as in the proof in the
genera case of the δ-approximation theorem. (This δ and that in [−10δ,11δ],
albeit similar, are not the same.)

4.3.B. Immersions to non-Euclidean Y . The above argument, un-
like the proof of the the δ-approximation theorem as explained in ???, doesn’t
generalize to immersions from X to general Riemannian manifolds Y .

Yet, a combination of the above "twisted regularization" on the top of a
routine induction by skeleta delivers the following.

4.3.C. Rough Exponential Bound on Curvature. Let Y be a complete
Riemannin manifold with ∣sect.curv∣ ≤ κ2 and let f ∶ X = Xm ↪ Y be a smooth
immersion.
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If dim(Y ) >m then, for all positive δ ≤ 1
κ
, the map f can be δ-approximated

by immersions fδ ∶X → Y , which are regularly homotopic to f and such that

curvfδ(X) ≤ (1 + κ)100m

δ
.

4.4 Unfolding Folds and other Singularities.
Below is another proof of the regular homotopy/approximation theorem for
orientable hypersurfaces, which leads to a better, possibly sharp in some cases,
bounds on the curvature.

Unfolding Lemma. Let X = Xm be an orientable manifold and f ∶ X →
Rm+1 be an immersion. Then, for all ε > 0, there is an immersion,

ζ○ ∶X → Rm × [−1,1],

which is reguraly homotopic to f and such that

curvζ○(X) ≤ 1 + ε.

Proof. Apply Poenaru’s h-principle for pleated maps (see (C) on p.56 in
[Gr1986]), and obtain a smooth map f1 ∶ X → Rm+1 regularly homotopic to f ,
such that the only singularity of the normal projection ζ ∶ X → Rm ⊂ Rm+1 is a
folding along a smooth hypersurface Σ = Σm−1 ⊂X.

Make the curvature of the immersion ζ ∶ Σ ↪ Rm as small as you wish by
λ-scaling as we did earlier and thus also separate different part of Σ far one
from another, such that, on the balls of large radii R ∼ λ in X, the scaled map
is ε-close to the standard fold (x1, ..., xm) ↦ (x1, ..., x

2
m).

"Unfold" ζ ; ζ○ = (λζ, y) ∈ Rm+1, where y ∶ X → R is a smooth function on
X, which, in the obvious normal coordinates, depends only on the last coordi-
nate x = xm, where it is ε-close to a lift η○ ∶ R → R+ × [−1,1] of the standard
fold R→ R+, x↦ y = x2, where η○(x) = (x, y(x)) and where

the x-segment [−1,1] is sent by η○ to the semicircle in the half plane {x, y}y≥0

and η○(x) = −1 for x < −1 and η○(x) = 1 for x > 1.
Conclude the proof by rolling the band Rm × [−1,1] into the ball as in the

above step 4.
Remarks. (a) Our unfolding with controlled curvature quantifies a single

step in removal of the singularities argument (see [GE1971] and section 2.1 in
[Gr1986].)

To do the same for all step and thus unfold more general Thom-Boardman
singularities with controlled curvature start by observing that our image curve
η○(R) ⊂ R+ × [−1,1], (which is is only C1-smooth), is equal to the boundary of
the 1-neighbourhood of the ray [1,∞) ⊂ R × [−1, ]1].

Then, to unfold Σ1,...,1, of depth k, where 1, ...,1 = 1, ...,1
´¹¹¹¹¹¹¸¹¹¹¹¹¶

k

, the natural model

to use is the boundary of the 1-neighbourhood of the positive quadrant Rk+ ⊂
Rk × [−1,1], which has curv ≤ 1 as well. But I haven’t checked if this actually
works.18

18Beware of non-coorientable folds, such as of the Möbius strip along he central line.

24



(b) It could be interesting to quantify the approximation procedure of smooth
maps by immersion in Sobolev spaces from [GE 1971’] and also a similar approx-
imation in [Be1991].

(c) It is unclear how to "controllably unfold" in Rm+l more general singular-
ities of smooth maps Xm → Rm ⊂ Rm+l.

This leaves the following question open.
Do smooth immersions f ∶ Xm → Rm+l are regularly homotopic to immersions

f○, the curvatures of which are bounded up to a multiplicative constant by the
minimal relative curvatures of ∇⊥-trivial immersions of flat tori Tm → Rm+l.

For instance it remains problematic if
all m-manifolds X admit immersions f ∶ X → B2m(1) with curvatures

curvf(X) ≤ cost
√
m, say for const = 100.

5 Miscellaneous

5.1 Veronese Maps.
Besides invariant tori, there are other submanifolds in the unit sphere SN−1,
which have small curvatures and which are transitively acted upon by subgroups
in the orthogonal group O(N).

The generalized Veronese maps are a minimal equivariant isometric immer-
sions of spheres to spheres, with respect to certain homomorphisms ( represen-
tations) between the orthogonal groups O(m + 1) → O(m + 1),

ver = vers = verms ∶ Sm(Rs) → Sm = Sms = Sms(1),

where

ms = (2s +m − 1)s +m − 2)!
s!(m − 1!

< 2s+m and Rs = Rs(m) =
√

s(s +m − 1)
m

,

for example,

m2 = m(m+3)
2

− 1, R2(m) =
√

2(m+1)
m

and R2(1) = 2,

(see ???If s = 2 these, called classical Veronese maps, are defined by taking

squares of linear functions (forms) l = l(x) = ∑i lixi om Rm+1,

V er ∶ Rm+1 → RMm , Mm = (m + 1)(m + 2)
2

,

where tis RMm is represented by the space Q = Q(Rm+1) of quadratic functions
(forms) om Rm+1,

Q =
m+1,m+1

∑
i=1,j=1

qijxixj .

The Veronese map, which is (obviously) equivariant for the natural action of
the orthogonal group group O(n+1) on Q, where, observe, this action fixes the
line Q○ spanned by the form Q○ = ∑i x2 as well as the complementary subspace
Q◇ of the traceless forms Q, where the action of O(n + 1) is irreducible and,
thus, it has a unique, up to scaling Euclidean/Hilbertian structure.
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Then the normal projection19 defines an equivariant map to the sphere in
Q◇

ver ∶ Sn → SMm−2(r) ⊂ Q◇,
where the radius of this sphere, a priori, depends on the normalization of the
O(m + 1)-invariant metric in Q◇.

Since we want the map to be isometric, then we either take r = 1
R2(m) =

√
m

2(m+1) and keep Sm = Sm(1) or If we let r = 1 and Sm = Sm(R2(m)) for

R2(m) =
√

2(m+1)
m

.
Also observe that the Veronese maps, which are not embeddings themselves,

factor via embeddings of projective spaces to spheres

Sm → RPm ⊂ SMm−2 ⊂ RMm−1 = Q◇, Mm = (m + 1)(m + 2)
2

.

Curvature of Veronese. Let is show that

curvver (Sm(R2(m)) ↪ SMm−2(1)) =

¿
ÁÁÀ R2(1)

R2(m)
− 1 =

√
m − 1

m + 1
.

Indeed, the Veronese map sends equatorial circles from Sm(R2(m) to planar
circles of radii R2(m)/R2(1), the curvatures of which im the ball BMm−1 is√
R2(1)/R2(m) =

√
2m
m+1

, and the curvatures of these in the sphere,

curv(S1 ⊂ SMm−2(1)) =
√
curv(S1 ⊂ BMm−1(1))2 − 1,

is equal to the curvature of the Veronese Sm(R2(m)) ↪ SMm−2(1)itself. QED.
Conjecture. This is the smallest possible curvature of a non-spherical m-

manifold in the unit ball:
if a smooth compact m-manifold X admits a smooth immersion to the unit

ball BN = BN(1) with curvature curv(X ↪ BN) <
√

2m
m+1

, then X is diffeomor-
phic to Sm.

Remark. Manifolds Xm immersed to Sm+1 with curvatures < 1 are diffeomor-
phic to Sn, see 5.5.?, but, apart from Veronese’s, we can’t rule out such X in SN

for N ≥m + 2 20 and, even less so, non-spherical X immersible with curvatures
<
√

2 to BN(1), even for N =m + 1.
It seems hard to decide this way or another, but it may be realistic to try

to prove sphericity of simply connected manifolds immersed with curvatures < 1
to SN(1) for all N .

The curvatures of Veronese maps can be also evaluated with the Gauss
formula,(teorema egregium) (see section ???), which also gives the following
formula for curvatures of all vers:

From Veronese to Tori. The restriction of the map vers ∶ S2m−1(Rs) →
SNs to the Clifford torus Tm ⊂ S2m−1(Rs) obviously satisfies

curvvers(Tm) ≤ A2m−1,s +
√
m

Rs
=
√

3 − 5

2
m + ε(m,s)

19The splitting Q = Q○ ⊕ Q◇ is necessarily normal for all O(m + 1)-invariant Euclidean
metrics in Q.

20 Hermitian Veronese maps from the complex projective spaces CPm to the spaces Hn of
Hermitian forms on Cm+1 are among the prime suspects in this regard.
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for

ε(m,s) = 2

4m2
− 4m − 2

s(s + 2m − 2)
+ 5(2m − 1)

2ms(s + 2m − 2)
− 2m − 1

(ms(s + 2m − 2))2
.

This, for s >>m2, makes ε(m,s) = O 1
m2

Since Ns < 2s+2m,
starting from N = 210m3

curvvers(Tm) <
√

3 − 5

2
m.

where it should be noted that
the Veronese maps restricted to the Clifford tori are Tm-equivariant
and that
this bound is weaker than the optimal one

∣∣y∣∣2l4
∣∣y∣∣2 ≥

√
3 − 3

m+2
+ ε from the

previous section.
Remarks. (a) It is not hard to go to the (ultra)limit for s → ∞ and thus

obtain an
equivariant isometric immersion ver∞ of the Euclidean space Rm to the unit

sphere in the Hilbert space, such that

curvver∞(Rm ↪ S∞) =

¿
ÁÁÀ(m − 1)(2m + 1)

(m + 1)2
=
√

2 − 5

m + 1
+ 2

(m + 1)2
,

where equivariance is understood with respect to a certain unitary representa-
tion of the isometry group of Rm.

Probably, one can show that this ver∞ realizes the minimum of the curva-
tures among all equivariant maps Rm → S∞.

(b) Instead of verss, one could achieve (essentially) the same result with a
use of compositions of the classical Veronese maps, ver ∶ Smi → Smi+1 , i+1 =
(mi+1)(mi+2)

2
− 2,

Sm1 ↪ Sm2 ↪ ...↪ Smi ,

starting with m1 = 2m − 1 and going up to i =m. (Actually, i ∼ logm will do.)

5.2 Product Manifolds, Connected Sums and Related
Constructions

Let fi ∶ Xmi
i → Bmi+1(1), i = 1, ..., l, be immersions with focal radii r and let

f0 ∶Xm0

0 → Bl(1) be an immersion with foc.radf(Xm0

0 ) = r0,
Then the ⋊-construction (see ???) delivers an immersion

f ∶X =
l

⨉
0

Xi → BN(1), N = l +
l

∑
1

mi,

such that
foc.radf⋊(X×) ≥ max

0<λ≤1

min(r − λ,λr0)√
l + λr0.
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Similarly, if Xm0

0 admits a ∇⊥-trivial (see ???) immersion to BM(1) with
focal radius r0, thenX admits an immersion to BM+k(1) for all k ≥ 1−M+∑l0mi,
such that

foc.radf⋊(X×) ≥ max
0<λ≤1

min(r0 − λ,λr/
√
l)√

l + λr/
√
l

5.2.A. Example: Product of Spheres. Let

X =Xm = ⨉
i

Smi , ∑
i

mi =m,

and let µ = minimi. Then there exists an immersion f ∶ X → Bm + 1(1), such
that

curvf(X) ≤ constµm
µ+2
µ+1

Proof. Adopt the torus-by-torus construction 4.1.C to product of spheres,
where instead of squaring maps at each step, use (Cartesian) product of at least
µ of maps, where then the above inequality for foc.rad translated to curvature
apply.

Embedding Remark. Observe that the resulting maps Xm → Bm+1(1) are
embeddings.

5.2.B. Connected Sums. If m-manifolds Xi, i = 1,2, ..., l, admit immersions
to the unit ball Bn = Bn(1), n >m, with the curvatures bounded by a constant C,
then the connected sum X1#...#Xl can immersed to Bn with curvature bounded
by 5C.

Proof. Make geometric connected sums of all Xi ↪ Bn with the unit equa-
torial sphere Sm ⊂ Sn = ∂Bn, where this is done with each Xi individually with
a copy of Sm ⊂ Bn by connecting Xi with Sm1 = Sm with a tube with curvature
< 5C. Then the connected sum between Xi is implemented by making similar
tubes between Smi .

Example. Since there are 2-Tori in the unit 3-ball with curv = 3, the minimal
possible curvatures of orientable surfaces X satisfy

min.curv(X2
ori ↪ B3(1)) < 15,

while nonorientable ones have

min.curv(X2 ↪ B3(1)) ≤ 5min.curv(RP 2 ↪ B3(1)) < 50,

the Boy surface seem to have curvature about 10, Probably, all surfaces have
min.curv < 10, but it is unclear, not even for the 2-torus, what actually minimal
curvatures of surfaces in B3(1) are.

Attaching k-Handles for k ≥ 2. To attach a handle to a sphere Sk−1 ⊂X
with a controlled the curvature, with a controllable increase of the curvature,
one needs a regular δ-neighbourhood of this sphere in X with δ controllably
bounded from below: this which would allow attaching a k handle with the
curvature increase roughly by 1/δ.

For instance, if k = 2 an S1 ⊂X is the shortest non-contractible curve in X,
then it does admits such a neighbourhood in X with δ controllably bounded
from below by the curvature of X; thus attaching with certain normal frames
2-handles to it is possible with curvature increase by a definite multiplicative
constant.
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In general one can show the following.
5.2.C. Handles Stretch Proposition. (Compare with 4.3.C.) Let an

immersed manifold Xm
◇

φ↪ BN(1) be obtained from Xm f↪ Bn(1) by attaching l-
handles for l ≤ k where, all steps surgery keep in the class of immersed manifolds.

Then φ is regularly homotopic to an immersion φ1 ∶X◇ ↪ Bn(1), such that

curvφq(X◇) ≤ C2kcurvf(X)

for C ≤ 10 000.
Sketch of the Proof. Regularly homotop f in Bn(1) to an immersion f1 with

curvf1(X) ≤ 1002kcurvf(X) and such that that the f1-induced Riemannian
metric in a (small) neighbourhood U of the 2k-skeleton of a smooth triangulation
of X is by an arbitrarily large (independently of U) factor λ greater than the
f -induced metric.

Assume without loss of generality that all spheres Si, at which the surgery
performed are located and in U don’t intersect there (this is possible for m ≥ 2k,
which we may assume with no problem) and choose λ so large that the union
of these spheres has a nice thick regular neighbourhood, where the surgery can
be made with at most 1002k increase in the curvature.

Remark. It is not hard to visualise an actual proof along these lines but I
don’t see how to write it down in a readable form.

5.3 Embeddings with Small Curvatures
Connected Sums of Embedded Manifolds. If X =Xm admits an embedding (i.e.
a immersion with no self-intersection) to Bm+1(1) with curvature ≤ c, then the
connected sums of 2l-copies of X embed to Bm+1(1) with curvatures < 100c.

Proof. Let X1 ⊂ Bm+1(1) be obtained from X by attaching a single 1-handle
Sm−1 × [0,1], such that curvX1 ⊂ Bm+1(1) < 10c.

Let X̃l be the natural cyclic covering of X1 of order l and let X̄l be obtained
by cutting X̃l along the sphere Sm−1 ⊂ X̃l from the handle.

Observe that this X̄l is a manifold with two spherical boundary components
and that it (almost) naturally embeds to m+1(1) with curvature < 10c.

Let X̄ ′
l ⊂ Bm+1(1) ∖ X̄l be obtained by a slight normal displacement of X̄l

and let us attach X̄ ′
l to X̄l along a pair of nearby (m − 1)- spheres and also

fill in the remaining two boundary spheres with m-balls. Clearly, the resulting
manifold, call it X2l, is diffeomorphic to the connected sum of 2l copies of X and
it is not hard to arrange an embedding of X2l to the unit ball with curvature
< 100.

Exercises. (a) Let X = Xm be a connected sum of an arbitrary number of
manifolds diffeomorphic to product of spheres. Show that X embeds to the unit
(m + 1)-ball with curvature< 500m

3
2 . Hint ??? (This is claimed in 3.7.2(6) of

[Gr2021] but i am not now certain about individual products of spheres. Well
...seems OK by imitating "normal neighbourhood construction"for tori)

(b) Let X =Xm be disconnected closed manifold, which contains l mutually
non-diffeomorphic components. Show that

curvf(X ↪ Bm+1) ≥ constml, constn ≥
1

(10m)m
,

for all embeddings f ∶X ↪ Bm+1(1).
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(c) Construct closed m-dimensional manifolds Xi, i = 1,2, .... for all m ≥ 6,
such tat all of them embeds to B7(1) with curvatures < 1 000 000 and such
that embedding of connected sums of l among these manifolds have curvatures
≥ constl.

5.4 Cycles with Small Curvature
Our equidimensional expanding maps are effective in delivering immersed sub-
manifolds with controllably bounded curvatures, because these maps theme-
selves, besides being expanding, have controllably bounded second derivatives.

In general, it is hard to
construct a immersedm-dimensional submanifoldsX ↪ Y with small curvature

and with non-zero homology classes [X] ∈Hm(Y ).
Apparently, all known results of this kind badly depend on the dimension

and/or codimension of X.21

A happy exception is the codimension one case, m = n − 1, where there is
no topological obstructions for the existence of X and where an equidistant
smoothing delivers hypersurfaces with controllably small curvatures as follows.

Let Y be a proper Riemannian band of dimension n, that is a Riemannin
manifold, the boundary ∂Y of which is divided into two disjoint parts, ∂Y =
∂−Y ⊔ ∂+Y , where ∂±Y are unions of connected components of ∂Y , and denote
by d the width of Y ,

d = width(Y ) =def dist(∂−Y, ∂+Y ).

Let us d1-equidistantly push ∂−Y inside Y for d1 < d and then d2-equidistantly
move the resulting hypersurface, denoted ∂−d1 , back toward ∂−Y with d2 < d1.

That is, ∂−d1 is equal to the (topological) boundary of the d1-neighbourhood
Ud1(∂−Y ) ⊂ Y and the result of the second move, call it X○ = ∂−d1∣+d2 ⊂
Ud1(∂−Y ), is the boundary of Ud2(∂−d1) ⊂ Ud1(∂−Y ).

Let us evaluate the curvature of X○ in terms of the sectional curvatures of
Y , where we observe the following.

1. If Y has constant sectional curvature ±κ2, then X○ is C1,1-smooth and

foc.rad(X○) ≥ (min(d2, d1 − d − 2));

accordingly curv(X) ≤ α±κ(min(d2, d1 − d − 2)) for the function α± from 1.B.
2. If.more generally, the sectional curvatures of Y is pinched between two

values, that are the curvatures of two standard surfaces S± with constant cur-
vatures,

sect.curv(S−) ≤ sect.curv(Y ) ≤ sect.curv(S+),

then the curvature of X○ is bounded by the maximum the two numbers:
●1 the first number is the curvature of the circle of the radius d2 in S−;
●2 the second number is the curvature of the circle S1(r) ⊂ S+, such that

the curvature of the concentric circle S1(r + d2) is equal to the curvature of the
d1-circle in S−;

It follows, for instance, that

21see Quantitative nullcobordism by Gregory R. Chambers, Dominic Dotterrer, Fedor Manin
and Shmuel Weinberger.
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(○d) if
−1 ≤ sect.curv(Y ) ≤ 1

and d = width(Y ) ≤ 1, then
Y contains a smooth hypersurface, which separates ∂−Y from ∂+Y and such

that
curv(X) ≤ 4

d
.

Corollary. Let Y be a complete Riemannian n-manifold with ∣sectcurv(Y )∣ ≤ κ2

and with inj.rad(Y ) ≥ r.
Then
(○κ,r) all integer (n − 1)-dimensional homology classes h ∈ Hn−1(Y ) are

realizable by smoothly immersed oriented hypersurfaces X ↪ Y with curv(X) ≤
10κ + 10

r
.22

Indeed, given a homology class h ∈ H1(Y ), apply (○d) to the infinite cyclic
covering of Y , which is defined by this class.

Questions. (a) Do (○○d) and (○r) meaningfully generalize to submanifolds
X ⊂ Y of codimensions k > 1, where Y is, in some way, "wide in k-directions"?

For instance, Let Y be a Riemannin manifold homeomorphic to X0 ×Bk(1),
where X0 is a closed connected orientable manifold of dimension n − k, let the
sectional curvature of Y be bounded by ∣κ(Y )∣ ≤ 1 and the injectivity radius by
inj.rad(Y ) ≥ 1.

What else need you know about Y to effectively bound the minimal possible
curvature of a submanifold X ⊂ Y homologous to X0 =X0×{0} ⊂X0×Bk(1) =X?

What is the best bound on this curvature in a presence of a proper (boundary-
to-boundary) λ-Lipschitz map X → Bk(1)?

Are, similarly to (○○κ, r), non-zero multiples of the homology classes h ∈
Hm(Y ), for all m ≤ dim(Y ), realizable by immersed m-dimensional submanifolds
X ↪ Y with curv(X) ≤ 100m100 (κ + 1

r
)?

D. From Focal Radius to Expansion. Let us turn to the
opposite problem: In what cases does the the r-neighbourhood Ur(X) ⊂ X

of an embedded manifold X ⊂ Y with "large" universal covering, e. g. for X
homeomorphic to Tm, and with large foc.rad(X) receive an expanding map from
a "large manifold" e.g. from Bm(R) ×Bn−m ( r

100
) with large R?

Here the answer is positive for m = n − 1 and m = n − 2:
if X receives expanding maps from the balls Bm(R) for all R (as e.g. the

m-torus does), then, in the case m = n − 1, the neighbourhood Ur(X) receives
expanding maps from Bm(R) ×B1 ( 1√

2
r − ε) for all R →∞ and positive ε→ 0.

And ifm = n−2, then Ur(X) receives such maps fromBm+1(R)×B1 ( r

2
√

2
− ε).

Proof. The required map for m = n − 1 and coorientable X ⊂ Y is obtained
with the obvious splitting Ur(X) = X × B1(r) and the case m = n − 2 follows
by applying this to the hypersurface Z = ∂Ur/2(X) ⊂ Ur(X), where, clearly,
foc.rad(Z) = 1

2
foc.rad(X) ≥ r

2
, and where the case of a non-trivial normal

bundle of X ⊂ Y needs a little thinking about.
22If Y is, Riemannian flat, then the term 10/r is unneeded and if Y is almost flat one can

do without it for multiples of h and I am not certain about examples where the term 10/r is
truly needed.
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But when it comes to m ≤ n− 3 nothing of the kind seems to be true, where
the apparent difficulty stems from the following phenomenon.

If m,k ≥ 2, then the topologically trivial sphere bundle V = Rm × Sk → Rm
admits an orthogonal connection ∇ with an arbitrary small curvature such that
all smooth sections φ ∶ Rn → V satisfy.

sup
x∈Rm

∣∣∇φ(x)∣∣ = ∞.

Despite this, our Ur(X), still looks large for all m and large r = foc.rad(X),
but I don’t know, how to make precise sense of largeness for these Ur.

Here is a specific question.
Let us regard U = Bk(r) × Bm(R) as (the total space of) a Bk(r)-bundle

over the ball Bm(R), let ∇ be a Euclidean connection in this bundle and g∇
the corresponding Riemannin metric on U , that is the sum of the differential
quadratic form induced by the map U = Bk(t) × Bm(R) → Bm(R) with the
Euclidean metrics in the fibers Bkx(r) ⊂ U , x ∈ Bm(R) extended to T (U) by
zero on the ∇-horizontal vectors.

For which r, R andR the manifolds (U, g∇) admit no expanding maps (U, g∇) →
Bm+k(R) for all connections ∇?

Conversely, from what kind of manifolds do (U, g∇) receive expanding maps.?
What is also clear is that if m-manifolds Xi, i = 1,2, ..., l, admit immersions

to Bn with the curvatures bounded by a constant C, then the connected sum
X1#...#Xl can immersed to Bn with curvature bounded by 5C."""

This is done by first making geometric connected sums of allXi ↪ Bn the unit
equatorial sphere Sm ⊂ Sn = ∂Bn, where this is done with each Xi individually
with a copy of Sm ⊂ Bn by connecting Xi with Sm1 = Sm with a tube with
curvature ≤ 5C. Then the connected sum between Xi is implemented by making
similar tubes between Smi.

But I am not certain how much one can control the curvature bound for high
dimensional surgery nor is it unclear what is

the minimal possible C, such that all surfaces can be immersed to B3(1)
with curvatures ≤ C.

5.5 Elementary Lower Bounds on Curvature and upper
Bounds on Expansion

5.6 Additional Problems
2.1.E. Questions. How large can be the ratio

min.curv(Xm ↪ BM(1))/min.curv(Xm ↪ BM+1(1))

provided X immerses to the Euclidean space RM , e.g. for M ≥ 2m − 1?
Is this ratio bounded by a universal constant, say by const ≤ 100?
Does it converge to 1 for M →∞?.
Spectral view on curvature reference to spectra
averaged curvature, Yamabe?
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