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0.1 Definition and Basic properties of Scalar Curvature
The scalar curvature of a C2-smooth Riemannian manifold X = (X,g), denoted

Sc = Sc(X,x) = Sc(X,g) = Sc(g) = Scg(x)

is a continuous function on X, which is traditionally defined as
the sum of the values of the sectional curvatures at the n(n − 1) ordered

bivectors of an orthonormal frame in X,

Sc(X,x) = Sc(X)(x) = ∑
i,j

κij(x), i ≠ j = 1, ..., n,

where this sum doesn’t depend on the choice of this frame by the Pythagorean
theorem.

Algebraically, this formula defines a second order differential

g ↦ Sc(g)

from the space G+ of positive definite quadratic differential forms on X to the
space S of functions onX, that is characterised uniquely, up to a scalar multiple,
by two properties.⋆ the g ↦ Sc(g) is equivariant under the natural actions of diffeomorphisms of
X in the spaces G+ and S.⋆ the g ↦ Sc(g) is linear in the second derivatives of g.

To make geometric sense of this, let us summarize basic properties of Sc(X).
●1 Additivity under Cartesian-Riemannian Products.

Sc(X1 ×X2, g1 + g2) = Sc(X1, g1) + Sc(X2, g2).

●2 Quadratic Scaling.

Sc(λ ⋅X) = λ−2Sc(X), for all λ > 0,

where

λ ⋅X = λ ⋅ (X,distX) =def (X,distλ⋅X) for distλ⋅X = λ ⋅ dist(X)

for all metric spaces X = (X,distX) and where dist ↦ λ ⋅ dist(X) corresponds
to g ↦ λ2 ⋅ g for the Riemannian quadratic form g.
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Example. The Euclidean spaces are scalar-flat, Sc(Rn) = 0, since λ ⋅ Rn is
isometric to Rn.

●3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds
X and X ′ at some points x ∈X and x′ ∈X ′ are related by the strict inequality

Sc(X)(x) < Sc(X ′
)(x′),

then the Riemannian volumes of the ε-balls around these points satisfy

vol(Bx(X,ε)) > vol(Bx′(X
′, ε))

for all sufficiently small ε > 0.
Observe that this volume inequality is additive under Riemannian products:

if

vol(Bxi(X,ε)) > vol(Bx′i(X
′
i, ε)), for ε ≤ ε0,

and for all points xi ∈Xi and x′l ∈X
′
i, i = 1,2, then

voln(B(x1,x2)(X1 ×X2, ε0)) > voln(B(x′1,x′2)(X
′
1 ×X

′
2, ε0)

for all (x1, x2) ∈Xi ×X2 and (x′1, x
′
2) ∈X

′
1 ×X

′
2.

This follows from the Pythagorean formula

distX1×X2 =
√
dist2X1

+ dist2X2
.

and the Fubini theorem applied to the "fibrations" of balls over balls:

B(x1,x2)(X1×X2, ε0)) → Bx1(X1, ε0) and B(x′1,x′2)(X
′
1×X

′
2, ε0)) → Bx1(X

′
1, ε0),

where the fibers are balls of radii ε ∈ [0, ε0] in X2 and X ′
2.

●4 Normalisation/Convention for Surfaces with Constant Sectional Curva-
tures. The unit spheres S2(1) have constant scalar curvature 2 and the hyper-
bolic plane H2(−1) with the sectional curvature −1 has scalar curvature −2 1

It is an elementary exercise to prove the following.
⋆1 The function Sc(X,g)(x) which satisfies ●1-●4 exists and unique;
⋆2 The unit spheres d the hyperbolic spaces with sect.curv = −1 satisfy

Sc(Sn(1)) = n(n − 1) and Sc(Hn
(−1)) = −n(n − 1).

Thus,
Sc(Sn(1) ×Hn

(−1)) = 0 = Sc(R2n
),

which implies that
the volumes of the small ε-balls in Sn(1) ×Hn(−1) are "very close" to the
volumes of the ε-balls in the Euclidean space R2n.
Also it is elementary to show that the definition of the scalar curvature via

volumes of balls agrees with the traditional Sc = ∑κij , where the definition via
volumes seem to have an advantage of being geometrically more usable.

1The equality Sc(H2
) = −2 follows from Sc(S2

) = 2 by comparing the volumes of small
balls in S2

×H2 and in R4.
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But this is an illusion:
there is no single known (are there unknown?)

geometric argument, which would make use of this definition.
The immediate reason for this is the infinitesimal nature of the volume com-

parison property: it doesn’t integrate to the corresponding property of balls of
specified, let them be small, radii r ≤ ε > 0. 2

The following alternative, let it be also only infinitesimal, property of the
scalar curvature seems more promising:
⊛ the inequality Sc(X,x) < Sc(X ′, x′) is equivalent to the following relation

between the average mean curvatures of the (very) small ε-spheres Sn−1x (ε) ⊂ X
and Sn−1x′ (ε) ⊂X ′:

∫Sn−1
x (ε)mean.curv(S

n−1
x (ε), s)ds

voln−1(Sn−1x (ε))
>
∫Sn−1

x′
(ε)mean.curv(S

n−1
x′ (ε), s′)ds′

voln−1(Sn−1x′ (ε))
.

There are also several non-local inequalities for the mean curvatures of mani-
folds B with boundaries S, in terms of the scalar curvatures of B (and sometimes
of sizes of B) that we shall see in these lectures, e.g. c and ∎ in section ??,
but we are still far from the ultimate inequality of this kind.

[∗] Exercise: Spherical Suspension. Compute the scalar curvature of the
spherical join of two Riemannian manifolds X1 and X2, that is the unit sphere
in the product of the Euclidean cones over these manifolds:

X1 ∗X2 ⊂ CX1 × CX2,

where CX = (X ×R×
+, r

2dx2 + dr2), accordingly

CX1 × CX2 = (X1 ×X2 ×R×
+ ×R×

+, r
2
1dx

2
1 + r

2
2dx

2
2 + dr

2
1 + dr

2
2)

and where the hypersurface X1 ∗X2 ⊂ CX1 × CX2 is defined by the equation

r21 + r
2
2 = 1.

(The manifold X1 ∗ X2 with this metric, which is defined for r1, r2 > 0, is
incomplete; if completed, it becomes singular, unless X1 and X2 are isometric
to the unit spheres Sn1 and Sn2 .)

Show, in particular, that if Sc(Xi) ≥ ni(ni − 1) = Sc(Sni), ni = dim(Xi),
i = 1,2, then

Sc(X1 ∗X2) ≥ (n1 + n2)(n1 + n2 − 1).

Hint. Use the formula for the curvature of warped products from section ??.

0.2 Fundamental Examples of Manifolds with Sc ≥ 0
Symmetric and homogeneous spaces. Since compact symmetric spaces X have
non-negative sectional curvatures κ, they satisfy Sc(X) ≥ 0, where the equality
holds only for flat tori.

2An attractive conjecture to the contrary appears in [Guth(volumes of balls-large) 2011],
also see [Guth(volumes of balls-width)) 2011].
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Since the bi-variant metrics on Lie groups have κ ≥ 0 and since the inequal-
ity κ ≥ 0 is preserved under dividing spaces by isometry groups, all compact
homogeneous spaces G/H carry such metrics, .3

Furthermore,
quotients of compact homogeneous spaces by compact freely acting isometry

groups carry metrics with Sc ≥ 0,
where prominent examples of these are

spheres divided by finite free isometry groups.
Thus, in particular,
all homology classes in the classifying spaces B(G) of finite cyclic groups G

are representable by compact manifolds with Sc > 0 mapped to these spaces.
But, at the present moment, it is unknown if this remains true for all finite

groups G.4

On the other extreme, there are no known examples of ”Sc > 0 representable”
non-torsion homology classes in the classifying spaces of infinite countable groups
or of (possibly torsion) homology classes in the classifying spaces of groups with-
out torsion.

(We shall see in the following sections that majority of known topological
obstructions to metrics with Sc ≥ 0 come from the rational homology and K-
theory of classifying spaces of infinite groups.

Also we shall meet examples – we call these Schoen-Yau-Schick -manifolds
– where non-trivial obstructions to Sc ≥ 0, which reside in the integer homology
classes in B(Zn ×Z/pZ), vanish for non-zero multiples of these classes.)

Fibrations. Since the scalar curvature is additive, fibered spaces X → Y with
compact non-flat homogeneous fiberes carry metrics with Sc > 0.

(This is seen by scaling metrics in Y by large constants.)
Convex Hypersurfaces. Since convex hypersurfaces in Rn as well as in general

spaces with sectional curvatures κ ≥ 0, their scalar curvatures are also non-
negative.

1 Curvature Formulas for Manifolds and Sub-
manifolds.

We enlist in this section several classical formulas of Riemannian geometry and
indicate their (more or less) immediate applications.

1.1 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

3This is also true for non-compact homogeneous spaces the isometry groups of which con-
tain compact semisimple factors.

4This was pointed out to me by Bernhard Hanke.
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Notice that an arbitrary Riemannian metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A

∗
(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) = ∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A
∗
) = ∑

i

A∗
(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Sign Convention. The first derivative of h changes sign under reversion

of the t-direction. Accordingly the sign of the quadratic form A∗(Y ) of a hyper-
surface Y ⊂X depends on the coorientation of Y in X, where our convention is
such that

the boundaries of convex domains have positive (semi)definite second funda-
mental forms A∗, also denoted IIY , hence, positive mean curvatures, with respect
to the outward normal vector fields.5

(2.1.B) First Variation Formula. This concerns the t-derivatives of the
(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) =
dht
dt
voln−1(Ut) = ∫

Ut

mean.curv(Ut)dyt
6

5At some point, I found out to my dismay, that this is opposite to the standard convention
in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

6This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].
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where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for C1-smooth

functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt

ψ(y)mean.curv(Yt)dyt
7

Now comes the first formula with the Riemannian curvature in it.

1.2 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ ⊂ Ty(Y ) ⊂ T )y(X)

y ∈ Y , satisfy
κ(Y, τ) = κ(X,τ) + ∧2A∗

(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧
2A∗

(τ) = α∗1(τ) ⋅ α
∗
2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j

α∗i (y)α
∗
j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a

unit (defined up to ±-sign) normal vector to Y ;
● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j

αiαj = (∑
i

αi)

2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

7This remains true for Lipschitz functions but if ψ is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U ⊂ Y , then the derivative ∂ψνvoln−1(Yt)
may become (much) larger than this integral.
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Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2

for ∣∣A∗(Y )∣∣2 = ∑i(α
∗
i )

2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))
2
−∣∣A∗

(Y )∣∣
2
+(n−1)(n−2) ≥ (n−1)(n−2)−nmax

i
(c∗i )

2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =

0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape that is the symmetric on T (Y ) associated
with A∗ via the Riemannian scalar product g restricted from T (X) to T (Y ),

A∗
(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).

1.3 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry.8 Let Yt be a
family of hypersurfaces t-equidistant to a given Y = Y0 ⊂ X. Then the shape
operators At = A(Yt) satisfy:

∂νA =
dAt
dt

= −A2
(Yt) −Bt,

where Bt is the symmetric associated with the quadratic differential form B∗ on
Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannian geometry. 9

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(
dAt
dt

) = −∣∣A∗
∣∣
2
−Riccig (

d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗

∣∣
2
−Ricci(ν, ν),

8The first main formula is Gauss’ Theorema Egregium.
9Thibault Damur pointed out to me that this formula, along with the rest displayed on

the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.
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where
∣∣A∗

∣∣
2
= ∣∣A∣∣

2
= trace(A2

),

where, observe,

trace(A) = trace(A∗
) =mean.curv = ∑

i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the B) on
the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α
∗
i α

∗
j − ∑i κν,i can be

rewritten as

Ricci(ν, ν) =
1

2

⎛

⎝
Sc(X) − Sc(Y ) −∑

i≠j

α∗i ⋅ α
∗
j

⎞

⎠
=

=
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2)

where, recall, α∗i = α
∗
i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of

Y ⊂X, where mean.curv(Y ) = ∑i α
∗
i and where ∣∣A∗∣∣2 = ∑i(α

∗
i )

2.

1.4 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let Y = (Y,h) be a smooth Riemannian (n-1)-manifold

and ϕ = ϕ(t) > 0, t ∈ [0, ε] be a smooth positive function. Let g = ht + dt
2 =

ϕ2h + dt2 be the corresponding metric on X = Y × [0, ε].
Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal

curvatures of Yt equal to α∗i (t) =
ϕ′(t)
ϕ(t)

, i = 1, ..., n − 1 for

A∗
t =

ϕ′(t)
ϕ(t)

ht for ϕ′ =
dϕ(t)
dt

and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(
ϕ′

ϕ
)

′

= −(n − 1)2 (
ϕ′

ϕ
)

2

−
1

2

⎛

⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(

ϕ′

ϕ
)

2
⎞

⎠
.

Therefore,

Sc(g) =
1

ϕ2
Sc(h) − 2(n − 1)(

ϕ′

ϕ
)

′

− n(n − 1)(
ϕ′

ϕ
)

2

=
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(⋆) =
1

ϕ2
Sc(h) − 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)
ϕ′(t)

ϕ(t)
.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.

(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

(c) What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,

then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation10

Cylindrical Extension Exercise. Let Y be a smooth manifold, X = Y ×R+, let
g0 be a Riemannian metric in a neighbourhood of the boundary Y = Y × {0} =
∂X, let h denote the Riemannian metric in Y induced from g0 and let Y has
constant mean curvature in X with respect to g0.

Let X ′ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension
n as X, let Y ′ = ∂X ′ be its boundary sphere, let, let Sc(h) > 0 and let the mean
and the scalar curvatures of Y and Y ′ are related by the following (comparison)
inequality.

[<]
∣mean.curvg0(Y )∣2

Sc(h, y)
<

∣mean.curv(Y ′)∣2

Sc(Y ′)
for all y ∈ Y.

Show that
if Y is compact, there exists a smooth positive function ϕ(t), 0 ≤ t < ∞, which

is constant at infinity and such that the the warped product metric g = ϕ2h+dt2

has

10See §12 in [GL(complete) 1983].
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