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"Dimension" brings to mind the idea of "space", but the word "large", doesn’t
belong with mathematics. It isn’t our business to know how many grains make
a heap.

Yet, we ask:
Which spaces are qualified as large dimensional?

To get an idea, look at:
A. Finite dimensional Euclidean spaces RN .
B. Finite combinatorial power spaces, such as {●.○}N .

Motivated by the Life on Earth examples (see below), we declare that "large"
begins somewhere around N = 100 and may go up to 1010-1012, maybe even up
to 1015, while dimensions N which are well above 1015, say starting with 1018,
are too close to infinity from our perspective to be called "finite".1

Then the second question arises:
What is so special about these spaces, what are properties characteristic for

these N?

A pronounced feature of N -dimensional power spaces X with large N is
tendency of functions on X to be nearly constant..

For instance,
the angle (function) between two random unit vectors in RN is

almost constant: close to 90○ with overwhelming probability for large N .
This is most conspicuous for very large N , greater than 1012, and if

you wish > 1018, which is common in statistical mechanics, where propensity of
functions (macroscopic observables) to be constant is articulated as the identity

average = typical,
1Live systems, unlike physical ones, are numberphobic. We shall see later on that virtually

all meaningful entities N , be they large or small, enter the scene of Life in non-numerical
gowns.

In fact, logic of Life, brings into question the common convention of XN defined as the set
of "strings" x1, ...xi...xN , which depends on an ad hoc representation of numbers N by sets
{1, ...,N}.
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which means that the values of functions on these spaces tend to concentrate
near their averages.2

This concentration of measure phenomenon is ubiquitous in mathematics and
in mathematical physics, we return to it in section???, but it is not always
there. For instance, in lotteries of Life, where the winners take all, exactly
the opposite happens:

instead of concentration of functions f in the domains of their values, one
sees Dirac like δ-concentrations of f in their domains of definition. This makes
averages of such functions f as far from typical as it is conceivably possible.

However, none of these two concentrations is visible, at least not directly,
in functions, often called features of (almost) anything related to Life. These
features come ablaze in billions colors, nothing you can call "constant" or "ap-
proximately constant".

And albeit the domains X of definitions and domains Y of values of these
functions/features f are associated with power spaces, these X and (not always)
Y have intricate internal structures and relevant f ∶ X → Y are far from being
plain and simple.

But what are these spaces? What are functions on these spaces
– features of their members?

How about this?
1. The space of all live things on Earth.
But is it a space in any sense? Does it possess any geometry? Can one

attach a number to this "space" and justifiably call it "dimension"?
A possible (but not the only) way to bring this "space" to the dominion of

Math is to view it as a (randomised?) quotient space of another space.
2. The space of genomes of individual organisms on Earth,

where the latter can be regarded as
2# a subset of the set of the space of finite strings in four symbols.3

This is still far from the true definition (if such a definition exists at all),
where the main reason for this is a difficulty with a proper mathematical inter-
pretation of "a" in the above "a quotient" and "a set".

But regardless of what this "proper" is – this we shall discuss later – one can
safely say that the dimension of the "space" of (significantly different individual)
organisms on Earth is in the range 104 - 109.4

The difficulty faced by a mathematician in studying, or even in defining
"spaces" of organisms and genomes, besides their size and complexity, is their
accidentally: these "spaces" are come as end-points of a single, possibly non-
representative, branch of a grand random process: biological evolution.

2Without this the statistics would be inapplicable in physics, since average is what is
amenable to a mathematical evaluation and typical is what is observed in an experiment.

3Customary, these are A, C, G, and T for the nucleotides: Adenine, Cytosine, Guanine and
Thymine making DNA.

4The length of genomes of certain viruses goes below 103, humans have almost 3 ⋅ 109-long
genomes and the genomes of some amoeba like creatures may reach close to 1011. But most
of "information" carried by genomes, especially by the long ones, is, apparently, erased by the
"quotient map" from genomes to organisms. Probably, every organism (class of organisms?)
can be identified and adequately described – modulo stochastic variations – by 104-106 (not
necessarily numerical) parameters – the (mainly physiological) features of this organism.
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Thus, a mathematician should either turn to the larger "space" of all conceiv-
able5 organisms and/or genomes or, on the contrary, to focus at representative
fragments of these spaces.

The most studied such fragment, which is located near the boundary of Life
with the physical world, is

3. The space of proteins,
This, similarly to the "space of organisms", can be seen as a quotient of a

larger but more accessible space:
4. The space of polypeptide chains,

that is a sequence space in 20 letters:
polypeptides which make proteins are (hetero)polymeric chains of length N ,

roughly, between 30 and 30 000 6 composed of 20 (sometimes 21) basic amino
acids,7

The arrow
polypeptides → proteins8

is physically implemented by the process of protein folding, which takes place in
the polypeptide configuration spaces.

Mathematically, the configuration space CP for a polypeptide P , is a domain
in the torus of dimension (2+σ)N , where N is the length of P and σ is, roughly,
the average number of the side chains in the amino acids in P .

Folding of a polypeptide to a protein in a water environment can be modelled
by a randomised gradient descent for the energy function EP on CP defined by
the mutual physical/chemical interactions between the residues in P as well as
their interaction with the water molecules.

Albeit the principles of the protein folding (essentially, the shape of the
energy landscape in CP ), unlike how it is with the arrow genomes to organisms,
are, at least in general terms, understood, the protein folding problem in most
respects remains unresolved.

But the true biological problem, which is more subtle and more interesting
than the (essentially physical/mathematical) folding problem, concerns not in-
dividual spaces (CP ,EP ), but their totality parametrised by the space P ∋ P of
the polypeptide (sequences) P , where the present day Pnow can be seen as a set
of quasistationary points of the evolutionary dynamics acting on P, which, up
to some extent, may be represented by a protein fitness landscape in P.9 (We

5"Conceivable" and "mathematically expressible" are are synonimous for a mathematician.
6Short polypeptide chains, even if they serve some functions in cells, are, somewhat arbi-

trarily, called peptides.
7In the course of polymerisation – synthesis of polypeptides – amino acids are slightly

curtailed; what remains of them in polypeptides are called amino acid residues.
8There is also an opposite arrow as well, proteins → polypeptides, since proteins "remember"

the order of amino acids in them: strictly speaking the protein space is bigger than that of
polypeptides. But a working protein is as little aware of this order as an organism of the order
of nucleotides in its chromosomal DNA.

9According to the orthodox Darwinism, evolution is adequately described by the fitness
function defined as the relative reproduction rate, similarly to how a physical system is run
by a single energy function. But when you look at this "relative" with an open mind ready
to accept the ubiquitous numberphobicity of evolutionary biology, you realise that what come
out of "rate" is not a mere number but an elaborate structural entity and you will see a new
mathematical picture of the evolutionary landscape much richer in colors than what is offered
by the model(s) of the (neo)classical Darwinism.
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shall return to this in section ???. )
"Space" is an attractive concept, but does it apply to all Life’s children.
Are, for instance :
5. the space of states of the mind

and
6. the space of states of the brain

which are so close and dear to us, true spaces? There is no simple answer (some
non-answers are given in section???) but there are several bona fide spaces which
contains traces of the above which we shall discuss in detail later. Among these
are:

7. memory spaces, including Kanerva model as an example.
and

8. weight spaces of neural networks with composed functions on them.

Also Life has several beautiful grandchildren spaces, such as
9. spaces of natural languages and sentences in these

and
10. space of mathematical ideas,

where even the tiny fragments of the latter:
11. spaces of chess positions and chess games,

hide more charming surprises (we shall demonstrate them later), than a tradi-
tional mathematical picture of these spaces shows.

We do not expect close similarities between these spaces but we want to
develop a mathematical language applicable to all of them.

That would help in overcoming the most serious difficulty in approaching
unknown: our disability to ask questions.

A good language would allow articulations of questions about B inspired by
certain knowledge about A.
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1 Probability, Symmetry, Concentration.

1.1 The Law of Large Numbers, Pythagorean
√

N-Rule
and Exponential Tail Bounds.

The fist (?) recorded instance of what is now called "measure concentration"
was the Law of Large Numbers stated by Cardano (1501 – 1576) in qualitative
form:

the typical value of the sum of many independent random variables is (rel-
atively) close to the sum of expectations of these variables,
which was was proved by Jacob Bernoulli almost two hundred years later for
independent equidistributed (0,1) variables. 10

In this case the sum of ΣN of these takes the values 0,1,2, ..,N , where the
probability pi of ΣN = i, for i = 0,1, ...N , equals the ith binomial coefficient11

normalises by 2−N in order to have p0 + p1 + ...+ pN = 1. Thus, pi are defined by

(1 + x)N = 2N(p0 + p1x + ... + pNxN), i.e. pi = 2−N(N
i
).

They say, it took 20 years for Bernoulli to prove his theorem, but today it
is effortlessly derived from the (Hilbertian) Pythagorean theorem as follows.

Let F be the (Hilbert) space of functions f on a measure space M (e.g.
a finite set of atoms with unit weights), where the distance is defined by the
formula

dist2(f, g) = ∫
M

(f − g)2dµ.

Let f1, f2, ...fN be mutually orthogonal (i.e. ∫M(fi ⋅ fj) = 0) functions.

10I haven’t check what and how was originally proven by Bernoulli.
11However simple, this representation of the numbers pi, which are the values of the N -

th convolution power of the dyadic measure on the set of integers, by the coefficients of
the algebraic power (1 + x)N is an instance of the Fourier transform that, in the present
case, establishes an isomorphism between the group algebra of Z and the algebra of Laurent
polynomials.
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Then the norm (i.e the distance from the zero function) of the sum of these
functions satisfies

∣∣f1 + f2 + ... + fN ∣∣2 = ∣∣f1∣∣2 + ∣∣f2∣∣2 + ... + ∣∣fN ∣∣2.

(It is hard to appreciate the greatness of this formula – familiarity breeds
contempt. Yet, try to rationally explain why nothing of the kind holds true if
the exponent "2" is replaced by any other number.12)

Back to Bernoulli, think of random variables as functions f on a probability
spaceM.

This may (justifiably) strike you as artificial but there is a distinguished
space M where the action takes place, namely the set {0,1}N ⊂ RN with the
2−N weights assigned to all points in this set, where the ith random variable is
given by the projection of {0,1}N to the ith Euclidean coordinate.

These, of course, are non-orthogonal, but we can render them such by sub-
tracting the constant functions equal 1/2 from all of them and, to save notation,
we multiply each of them by 2.

Now the resulting, (still independent!) variables, call them fi, i = 1,2, ...,N ,
take values −1 and 1 and, since they are independent and have zero means,
they are orthogonal. (This can be seen directly for our fi.) Therefore, by the
Pythagorean theorem the norm of their average

AN = 1

N
(f1 + ... + fN)

satisfies

∣∣AN ∣∣ = ∣∣f1 + ... + fN ∣∣
N

=
√

∣∣f1∣∣2 + ... + ∣∣fN ∣∣2
N2

= 1√
N
,

since
∣∣f1∣ = ∣∣f2∣∣ = ... = ∣∣fN ∣∣ = 1.

Now, obviously, if a random variable A, seen (naturally or or unnaturally)
as a function on a probability spaceM , have small norm it must be small on
the most part ofM.

Indeed if A were > c on a subset inM of measure > ε then its norm would
satisfy

Markov (Chebyshev-Bienaymé) Inequality (in reverse).

∣∣A∣∣ > c
√
ε.

Thus,
the probability of AN being > c is bounded by by
Bernoulli Inequality

Prob{∣AN ∣ > c} < 1

Nc2
.

12A physicist would say this is so because the Nature has chosen the exponent "2" to relate
energy to velocity, but a mathematician would maintain that this choice was forced on Nature
by the Pythagorean theorem.
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Exponential Tail Bound. There is a sharper bound on this AN = 1
N ∑i fi,

Prob{∣AN ∣ > c} < 2 exp−Nc
2

2
.

Proof. [Abraham de Moivre 1733] Rewrite this inequality as the following
bound on the sum of the first k binomial coefficients (N

i
) = N !

i!(N−i)!
.

2−N
k

∑
i=0

(N
i
) ≤ exp−2α2N

for all k ≤ N/2 and

α = 1

2
− k

N
,

and evaluate binomial coefficients with Stirling’s approximation formula13: n! ∼√
2πn (n

e
)n.

Remarks.(a) It is instructive to think of the numbers pi = 2−N(N
i
) as prob-

ability weights of the N + 1 atoms of the quotient space of the binary power
set {0,1}N divided by the permutation group ΠN . In fact, other interesting
probability spaces come this way, when a (homogeneous or non-homogeneous)
space is divided by a group of its automorphisms. Examples of these are the
spaces of unitary matrices with the Haar measures divided by conjugation and
moment maps resulting from factorisation symplectic manifolds

their symmetry groups
.

(b) Bernoulli’s inequality say in geometric terms that
the majority of vertices of a high dimensional N -cube

◻N = [0,1]N

is located near the hyperplane H0 and which passes through the center of the
cube,

(1

2
, ...,

1

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

∈ [0,1]N ,

and which is normal to the principal diagonal, that is the line between the
opposite vertices

(0, ...,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

and (1, ...,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

in the cube.
In fact, by the exponential tail bound, the percentage of points that lie

within the Euclidean distance > c
√
N from H0 exponentially decays for all c > 0

and N →∞
(c) On Random Walk and Random Spread. Bernoulli’s Pythagorean√
N is most vividly demonstrated by random walks, e.g in the integer lattice

Zk ⊂ Rk, where a typical path of length N has the (Euclidean) diameter about√
N .14

13Stirling in his 1763 paper proved a sharper formula.
14Accordingly, Fourier’s law implies that the time needed for a noticeable amount of heat

to propagate through a wall of thickness l is proportional to l2. (What is proportional to l is
the rate of the steady heat flow, for which you have to wait time t ∼ κl2.) This is what helps
the Earth core to keep its heat.
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This suggests that a typical configuration of a molecular chain CN of N
monomers, e.g. a polypeptide chain freely floating in (hot) water, must have
the diameter about Nα for 1

2
+ ε1 ≤ α ≤ 1 − ε2.

The rational behind this is that CN looks like a path of a self avoiding random
walk in Z3, where the self-avoidance (or self-repulsion) condition15 would make
CN spread/stretch on the average more than for the unrestricted random walk
– conjecturally ε1 > 0 – yet, not enough to make CN virtually straight, i.e. ε2

should be > 0.16

Amazingly, none of the two inequalities ε1,2 > 0 has been proved,17 and
neither one knows (this seems easier) if the typical diameter of CN is equal to
the average one.18

(d) On General Random Variables. The Pythagorean proof of the law of
large numbers applies to the sums of independent random variables fi(x) with
bounded first and second moments, that are the integrals ∫ fidµ and ∫ f2

i dµ. In
fact, what one needs for this is mere orthogonality of fi.

The exponential tail bound also extends to general independent random vari-
ables fi under the name Hoeffding’s inequality, where one needs fi themselves
be bounded, e.g. i take values in the interval [−1,1]. Then average of fi

AN = 1

N

N

∑
i=1

fi

exponentially sharply concentrates near its expectation E(AN),

Prob{∣AN −E(AN)∣ ≥ c} ≤ 2 exp−Nc
2

2
.

where the proof, that fully relies on the independence of fi, proceeds, roughly,
as follows.

15This condition says, in effect, that the relevant probability measure is supported on the
set of all non-self-intersecting paths in the lattice graph of Z3, and all these paths are assigned
equal weights.

16This is expected for the self avoiding random walk in Z2 and in Z3, while the higher
dimensional random walks are oblivious of the self-avoidance condition.

17Lectures on Self-Avoiding Walks by Roland Bauerschmidt, Hugo Duminil-Copin, Jesse
Goodman, and Gordon Slade,

https://www.ihes.fr/~duminil/publi/saw_lecture_notes.pdf
18Conceivably (but unlikely) 49% of chains have diameters approximately

√

N and another
49% are close to N .
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Since fi are independent, the functions λ exp fi are also independent for all
λ, and the multiplicativity property of expectations applies:

E(expλ∑
i

fi) = E(∏
i

(λ exp fi)) =∏
i

E(λ exp fi).

This, in conjunction with the (obvious) Markov inequality yields the proof. (Do
it yourself or consult [High Dimensional Probability].)

(e) On Euclidean Cube ∎N= [−1,1]N . The geometric interpretation of the
above for the random variables uniformly distributed on the segment [−1,1],
shows that if d >> 1 then for all N ,

almost all Euclidean volume/measure of the cube lies within distance d
from the hyperplane normal to the principal diagonal of the cube, that is
H0 = {xi}∑i xi=0.

Here, it is worth mentioning that
All vertices of the cube [−1,1]N lies within distance

√
N from the

centre of the cube.
However obvious it worthwhile observing that it is exactly the same Pythagorean√
N which underlines the law of large numbers and the average displacements

of random walks.

Concentrated? Yes, but where?

There are 2n−1 hyperplanes in the cube [0,1]N ⊂ RN geometrically indistin-
guishable from H0: one hyperplane H for each pair of opposite vertices. The
band ow width ε

√
N around every of one of these H contains most of cube

volume, if N >> ε−1.
It follows, that the intersections of such bands around several H, if this

"several" is significantly smaller than 2N , contain most of the cube. But if
ε < e−1, e = 2.718..., then the intersection of all these bands in the cube around
all these H, carries only δN -fraction of the volume of the whole cube [0,1]N for
δ only negligibly greater than εe.

In fact this intersection is contained in the "diamond" of "radius" εN/2
around the center of the cube, that is isometric to the standard ⧫N ( εN

2
) ⊂ RN ,

defined by

⧫N (εN
2

) = {x1, ...xi, ...xN}
∑i ∣xi∣≤

εN
2
,

the volume of which is (εN)
N

N !
≈ (εe)N .19 (Isn’t it amazing that the diamond

of radius N/6, which looks pretty large, say for N > 600, has negligibly smaller
volume than that of the unit cube?)

But despite probability shouting in you ear that:
the measure of the N-cube is stuck to its boundary

you can’t dismiss the center of the cube as something non-essential.
What one probabilistically perceives of a high dimensional object is sensitive

to the position of the observer.
19Since only a small part of our "diamond" is contained in the cube, the volume of this part

must be significantly (?) smaller than (εN)N

N !
≈ (εe)N .
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Exercise. Figure out how much of the mass of the unit N -dimensional cube
[0,1]N is concentrated near its k-dimensional faces. That is, evaluate the vol-
umes of the ρ-neighbourhoods Uk(ρ) ⊂ [0,1]N of the unions of the k-faces in
[0,1]N . (Relevant ρ are ε

√
N)

Hint. It is instructive to start with such an evaluation for the cubical lattice,
where is also useful to look at the dual lattice and where the computation
simplifies if instead of the Euclidean/Pythagorean norm ∣∣x∣∣ =

√
∑i x2

i one takes
supi ∣xi∣ for the norm.

1.2 Hamming Geometry and Kanerva Memory
The Hamming distance between two elements in a product space20

X =⨉
i∈I

Fi,

such as the power spaces F I , e.g. for F = {0,1}, equals, by definition,
the number of those i in the set I, where

ai ≠ bi.

For example , if I is a one point set and X has no nontrivial product struc-
ture, then

distHam(x, y) = 1 whenever x ≠ y.
Exercise. Check the triangle inequality for the Hamming distance, observe

that the Hamming diameter of X = F I equals the cardinality of I,

sup
x,y∈X

distHam(x, y) = ∣I ∣,

and show that every two points x, y ∈ X = F I with distHam(x, y) = d can be
joined by a chain of immediate neighbour points zk ∈X,

x = z1, ...zk, ...zd = y, distHam(zk, zk+1) = 1.

Hamming Concentration. The most essential feature of this metic is
the concentration of the Hamming distance function which follows from the
Bernoulli (exponential tail) inequality which, in terms of distHam, says that

for majority of the pairs (x, y) ∈ X ×X, the distance distHam(x, y) is close
to the mean distance that is half cardinality of the set I.

For instance, the distances of 98% of "(0,1)-strings" x ∈ {0,1}1000 from a
given x0 ∈X are in the range:

distHam(x,x0) = 500 ± 37 ≈ 500 ± 0.135 ⋅ 500,

where there are only 70 points out of 1000 within this distance from x0.21

20The Hamming metric is most commonly (but not exclusively) used for binary spaces F I ,
where F is a two element set and where distHam reasonably well quantifies the concepts of
similarity between "binary strings" {fi} ∈ X.

21Here, A = B ±C means ∣A −B∣ ≤ C.
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Hamming Connectivity. The balls of radii 250 contain only negligible
proportions of X, namely less than exp−125 <0.000 000 000 000 000 000 000
000 000 000 000 1 of all 21000 points in X.

Yet all point x in X = {0,1}1000 can be reached from any given point x0 in
four 250-long steps

x0 ←→
250

x1 ←→
250

x2 ←→
250

x3 ←→
250

x4 = x.

Exercise. Show that the there are more than 21500 and less than 22000 triples
(x1, x2, x3) that can serve in such chains between given x0 and x in X.

Imagine, conceivable (potential?) memory items x being described by their
features φ the list Φ of which is known to you beforehand.22 (This is unrealistic,
but let it go.)

This means, our x are represented by {yes, no}-valued functions on a (fixed)
set Φ and the set X of all conceivable memory items is equated with the binary
{yes, no}-space,

X = {yes, no}Φ.

We denote the value of such a function x at φ by

φ↦ x ◽ φ

that is "yes" if x has feature ”φ and "no" otherwise.
Dually, one may regard φ being a function (observable in physicist’s parlance)

of x, write
x↦ φ ◽ x

instead of φ↦ x ◽ φ, and following the rules of the common language, read this
as the feature φ is present in/absent from x.

Then, the reason for this will become clear below, we represent yes by +1
and no by −1 and, often, call our functions φ ↦ x ◽ φ strings or ±1-strings,
despite the fact that there is no natural order in Φ. This turns x ◽ φ look to a
kind of a numerical scalar product.23

The realistic number N of features in Φ may range, according to Kanerva,
from 100 to 10 000 which make the cardinality ∣X ∣ of the space X quote large ,
more than 1030 already for N = 100 and truly enormous, > 10100, for N > 330.

No realistic memory is large enough to encode all these items, but we don’t
need it anyway.

All we want is to be able to encode any single item and then to continue
encoding up to, say 109 of these, which is quite satisfactory, at least from a
human point of view:

if you record one item each second 8 hours a day every day, such a memory
will suffice for more than 90 years.24

22We write "Φ" instead of "I" not to be tempted to think of this set Φ as {1,2, ..., ∣Φ∣}.
23From a neurobiological point of view taken by Kanetva, the features φ correspond to

"hard physical units" e.g. neurones and/or synapses in the brain, while memory items x are
recorded by variable states of these units. But psychologically speaking, features are parts of
the dynamical memory, very much the same as our x. In this picture, "◽" serves as a coupling
rather than function evaluation sign, where such a coupling is a (higher order?) memory item
in its own right.

24(Approximately) 365.25 days of the full turn of Earth around the sun make,
31 557 6 00 seconds.
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And a reliably registering of this amount of information needs only a few
billion memory locations.

KMM. Below is a (slightly mathematised) description of a memory model
suggested by Kanerva , called KMM, that, despite its shortcomings, displays
certain features of the human memory (we discuss pros and cons in section ???)

Registers, Counters and their Contents. Let the "hardware" of KMM be
represented by a set R of registers, say of cardinality ∣R∣ = 109, where each
register r consists of a set of counters and where each counter corresponds to a
feature φ ∈ Φ.

According to this correspondence, the counters from an r ∈ R are denoted
φr and the set of these by Φr.

The memory content of each counter is an integer m(φr). Thus, the full
memory kept in all registers is an integer valued function m on the product set,

m ∶ Φ×R → Z,

where we agree that "no recorded memory" is represented by zeros in the cor-
responding counters.

These numerical functions m, unlike R and Φr, are modified when new items
enter the memory according to the rules described below.

Vicinity Structure of KMM. The main architectural attribute, which allows
recording memory items from X in R, is a subset D ⊂X×R, where the inclusion

(x, r) ∈D

reads as "x and r are D-neighbours", or "in D-vicinity, of each other".25

Memory Recording in KMM. Whenever a new item x enters the memory,
the numbers x ◽ φ, φ ∈ Φ, are added to the contents of the counters φr ∈ Φr = Φ
for all registers r in the D-vicinity of x.

For instance, if, originally, all registers were set on zero, then x is recorded,
exactly as it is, in all D-neighbour registers r of x.

However, as we add more and more memory items, the sets of D-neighbours
of different x may start overlapping and some registers will contain sums of
several ±1-strings.

Reading from Memory in KMM. We want to decide if our memory
have earlier recorded an item x, or, it contains an item similar to x.

For this we introduce a cut-off operation σ(φ) ↦ σ̄(φ) on functions σ on Φ,
such that the result of this cut-off is an item x ∈ X regarded as a ±1-function.
We agree (this is negotiable) that

σ̄(φ) = +1 if σ(φ) > 0,
σ̄(φ) = −1 if σ(φ) < 0,
σ̄(φ) = ±1 randomly with probabilities 1/2, if σ(φ) = 0.
Granted such a cut-off, let is construct the following (memory) search trans-

formation on the set X,
S ∶X →X,

where S(x) is defined in two steps.
25Think of "D-vicinity" as shorthand for "distance between x and r is less than D".
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1. Add the contents mr = m(φr), φr ∈ Φr = Φ, of the counters φr for those
r ∈ R which lie in the D-vicinity, say Vx ⊂ R, of x; this makes sense, since all
sets Φr of counters in all registers r are identified with Φ.

2. Regard the resulting sum as a function on Φ,

σ = σ(φ) = ∑
r∈Vx

mr

and let
S(x) ◽ φ = σ̄(φ).

If S(x) = x we conclude that x was introduced to the memory at some point.
More generally, we regard all
fixed points of the iterated maps

S○k = S ○ ... ○ S ∶X →X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

for moderate k, say for k ≤ 5, as the items recorded by the memory or at least
as approximations to the actually recorded items.

The essential features of KMM, which are motivated by properties of the
human memory, are:

A. KMM is distributive: the information encoding an individual item is
contained in several registers of KMM.

B. KMM is, up to certain extent, dynamic: reading from KMM relies on
iterations of transformations on the set of (possible) memory items.

These suggest further study and mathematical development of similar classes
of memory models (see section???), where, in order to have a psychological
plausibility, the closeness of the memory records m1 and m2 of x1 and x2 must
match the closeness between x1 and x2 themselves

In the present KMM case, where in x1, x2 ∈X = {−1,1}Φ, the latter "close-
ness" refers to the Hamming metric and the former one is defined via the l1-
metric on the space of (integer valued) functions m on Φ×R. Namely if m1 and
m2 are records of x1 and x2 with the same initial state m0 ∶ Φ ×R, e.g. m0 = 0,
then we want to have an approximate equality

∑
φ∈Φ,r∈R

∣m1(φ, r) −m2(φ, r)∣ ≈ Θ (distHam(x1, x2))

for a suitable (positive, bounded, monotone increasing and linear for small d)
function Θ = Θ(d), d ≥ 0,

(The Hamming distance for binary (-1,1)-strings also admits an l1-description:

distHam(x1, x2) =
1

2
∑
Φ

∣x1 ◽ φ − x1 ◽ φ∣)

To achieve this, we need an adequate vicinity structure D ⊂X ×R, which is
convenient to regard here as a set valued map from X → R, denoted

D→(x) ⊂ R,
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and defined by
r ∈D→(x)⇔ (x, r) ∈D.

The "adequacy" of D can be now expressed in how the map D→ from the

binary space X = {−1,1}Φ to the, also binary, space of subsets in R, denoted
2R, behaves with respects to the Hamming metrics in these two spaces. Namely,
what we want of this map

D→ ∶X = {−1,1}Φ → 2R,

is some approximate relation

distHam(D(x1),D(x2)) ≈ Θ→(distHam(x1, x2))

for some function Θ→(d) similar in its properties to the above Θ(d).

Kanerva’s suggestion for such a D, hence, for D→, is as follows.

Implement R by a subset inX by a 1-to-1 map R ↪X, which is possible since
R, e.g. of cardinality ≈ 109, is much smaller than X = {−1,1}Φ for ∣Φ∣ ≥ 100,
and define D ⊂ X × R, where now R is regarded as a subset R ⊂ X, by the
condition

(x, r) ∈D⇔ distHam(x, r) ≤ ∆

where ∆ > 0 is chosen, such that the expected numbers of R-points in the
Hamming balls of radii ∆ around (almost) all points x ∈X are close to something
like 100,26

∣R ∩Bx(∆)∣ ≈ 100

for
Bx(∆) = {y ∈X}distHam(y,x)≤∆ ⊂X

Notice that the corresponding map

D→ ∶X = {−1,1}Φ → 2R

for such aD =D(∆) and ∣∆∣ ≤ 100, lands in the subspace 2R≤100 ⊂ 2R of subsets in
R of cardinalities ≤ 100, and that the cardinality of this 2R≤100, say for ∣R∣ = 109,
is not very far from 10900 = 1 000 000 000100,

10900 > ∣2R≤100∣ > 10800.

It follows, for example, that if Φ = 10 000, then the map D→ can’t be 1-to-1, since

∣X ∣ = 210 000 > 103 000 > 10900

But if ∣Φ∣ = 1 000, then
∣X ∣ = 21 000 << 10800

and, in principle, D→ = D(∆ = 100) can (and likely to) be 1-to-1 for many

embedding R ↪X, but I have not check if this is indeed is so.
26Models of this kind always contains quite a few parameters that must be adjusted accord-

ing to to what you expect of such a model.
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To conclude the construction of D, we need to indicate a specific embedding
R ↪ X or a class of such embeddings. What Kanerva suggest is taking a
random subset in X of cardinality ∣R∣ for R ⊂ X. The essential attribute of
this, guaranteed by the (Bernoulli) Hamming geometry is a relative uniform
distribution if the R-points in X, e. g. concentration of the cardinality function

x↦ ∣R ∩Bx(∆)∣

near its mean value27

This concentration and also connectivity properties of the Hamming spaces,
bring along certain properties of KMM close to these of the human memory
as it is explained in [Sparse Distributed Memory].

Another source of justification of "random" is a compelling biological reason
– poverty of information encoded in the Human genome – to believe that, albeit
the overall organisation of the human brain is genetically (pre)determined, the
details (of the embryonic and post-embryonic development of the brain) are
(almost) 100% random.28 But this randomness – we shall explain in section
???– is not so straightforward as in the Kanerva memory model.

1.3 Balls, Spheres, Gaussian Measures and Maxwell Dis-
tribution

The concentration properties of N -Dimensional Euclidean balls and spheres are
similar to those of cubes, where "roundness" of balls renders the pictures more
transparent and the proofs easier.

[ N
ε ] The "law of large numbers" for balls. The Lebesgue measure of the

unit BN = BN(1) ⊂ RN is concentrated near the equatorial subball

BN−1 = {x1, ...xN}x1=0 ⊂ BN ,

where "near" means in the band defined by the inequality ∣x1∣ ≤ ε.
More precisely the percentage of the volume of BN in the complement to

this band than consist of two (1 − ε)-thick "spherical caps", defined by the
inequalities x1 ≤ −ε and x1 ≥ ε and denoted CapN±ε ⊂ BN , satisfies

vol(CapN±ε)
vol(BN) →

N→∞
0 for all (fixed) ε > 0.29

This can be clearly seen by looking at the normalised push-forward 30 νN
of the Lebesgue measure of the ball under the projection of the ball to the first
coordinate line,

BN → R, for (x1, x2, ..., xN)↦ x1,

27Deterministic as well as stochastic maps like R ↪ X = {−1,1}N andD
→
∶ X = {−1,1}Φ → 2R

have been extensively studied under the headings of error correction codes, see, e.g.
http://www.cs.yale.edu/homes/spielman/561/2009/lect11-09.pdf
28This also applies to large animal brains but not to small ones. For instance, for all we

know, all Caenorhabditis elegans worms have identically wired nervous systems of about 300
neurones.

29We shall see below that this convergence is exponentially fast.
30The push-forward, sometimes called projection of a measure µ on X under a (continuous)

map from X to Y is a measure ν on Y , such that ν(U) = µ(f−1
(U)) for all open subsets

U ⊂ Y , where f−1
(U) ⊂ X is the f -pullback of U .

The normalisation of a measure µ on a space X with finite total mass m = µ(X) is the
probability measure m−1

⋅ µ.
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where Bn−1 ⊂ BN equals the pullback of zero under this projection and

νN =m−1 (
√

1 − x2
1)
N−1

dx1 for m = vol(BN).

Since the relative volume31 of the ε-band around Bn−1 ⊂ BN is equal (by the

definition of νN ) to νN [−ε, ε], our concentration property says in terms of νN
that

νN converges to the Dirac atomic δ-measure on the real line located at
zero.

In fact, since the function

σ(x) =
√

1 − x2, x ∈ [−1,1],

is continuous with a unique maximum at zero, almost all mass of the (N −1)-th
power of σ, for large N , is located close to zero with exponentially small "tail"
of what stays ε-away from zero. Namely,

∫
−1

−ε
σN−1(x)dx + ∫

1

ε
σN−1(x)dx ≤ (1 − δ)N−1∫

ε

−ε
σN−1(x)dx

for all ε > 0 and δ = δ(ε) > 0. (We shall see later in this section that, because of
the vanishing of the first derivative of our σ at zero and strict negativity of the
second derivative, this δ around ε2.)

From Balls to Spheres and Back. The above concentration property
for the N -ball, implies that

the spherical measure of the boundary sphere SN−1 = ∂BN for large N is
concentrated near the equator Sn−2 = SN−1 ∩BN−1.

In fact there is little difference between volume distributions on balls and on
spheres, since

the measures of the balls are concentrate near their boundary spheres:
the points x in BN that are ε-far from SN−1 sit in the concentric ball BN(1−ε) ⊂

BN = BN(1), the relative volumes of which are negligibly (exponentially) small:

vol (BN(1 − ε))
vol (BN(1)) = (1 − ε)N → 0 for ε > 0

Isoperimetric Exercise. Show that the Euclidean volumes (Lebesgue mea-
sures) of all domains in the ball of radii R, say U ⊂ BN(R)< are concentrated
at their boundaries as much as for the ball itself:

31"Relative volume" of a subset A ⊂ B is vol(A)/vol(B).
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the proportion of the measure of a U ⊂ B = BN(R) in the set of points in
U with distance ≥ δR from ∂U is ≤ ∣1 − δ∣N , where the equality holds only for
U = BN(R).

Hint. Compare the volume of U to that of the cone from the center of B
over the boundary ∂U and show that vol(U) ≤ R

N
vol(∂U). Then apply this to

the subdomains U−ε ⊂ U ∩BN(R−ε) defined by dist(u, ∂U) ≥ ε for all ε ∈ [0, δ].

Isoperimetric Remark. The above inequality is valid for all domains U ⊂ RN ,
with vol(U) ≤ vol (BN(R)):

vol{x ∈ U}dist(x,∂U)≥δR
vol(U) ≤ ∣1 − δ∣N ,

but you can’t (at least nobody has succeeded in it) get it by brute force of
straightforward integration as in the case of U ⊂ B(R): all known proofs are
more imaginative than that.32

Equatorial concentration for the sphere SN−1 (and hence for the ball BN ⊃
SN−1) can be also derived from the relation

E(x2
1)SN−1 = 1

N
→ 0,

where E(x2
1)SN−1 denotes the expectation (average over SN−1) of the squared

coordinate x2
1, and where the identity E(x2

1)SN−1 = 1
N

follows from the equalities

E(x2
i )SN−1 = E(x2

1)SN−1 , for all i = 1,2, ...N,

and

1 = E(
N

∑
i=1

x2
i)
SN−1

=
N

∑
i

E(x2
i )SN−1 = NE(x2

1)SN−1

for ∑Ni=1 x
2
i = 1 on SN−1. (To pass from E(x2

1)SN−1 → 0 to concentration one
uses the Markov inequality as in 1.1, which is obvious anyway.)

Yet another way to visualise the concentration of the measures of spheres
at their equators is by observing that the spherical distance function x ↦
distSN−1(x,x0) pushes forward the spherical measure to the segment [0, π],
where it’s density function is equal, up to a scaling constant, to (sinx)N−2,
which sharply concentrates at x = π/2 for large N for the same reason the

function (
√

1 − x2)
N−1

does at x = 0.

[⊥] Random and Orthogonal. The concentration properties of the unit
balls BN and spheres SN−1 = ∂BN have the following corollary.

Randomly independently chosen vectors xj , j = 1,2, ..., k, in the unit ball
BN are, with high probability, nearly unitary and nearly mutually orthogonal,
provided N is sufficiently large.

32This is called the isoperimetric inequality and it must be on the list of ten (may be
five) greatest theorems in geometry (in all of mathematics?), in the company of Pythagorean
a2

+ b2 = c2 – the numero uno theorem in mathematics – and Bernoulli’s law of the large
numbers together with Leibniz’ 1 − 1

3
+

1
5
−

1
7
+ ... = π

4
which compete for being the second

greatest ones.
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This may be not especially exciting for k < N , but remarkably, (and coun-
terintuitively) the almost orthogonality holds true for k much larger than N .

Namely,
there exists a strictly positive function ε(ε) > 0, ε > 0, such that if, for a given

ε > 0,
logM ≤ ε(ε)N

then
∣∣xj ∣∣ > 1 − ε and ⟨xj1 , xj2⟩ ≤ ε

with probability > 1 − 1
(1+ε(ε))N

.

This trivially follows from the Exponential Tail Bound for balls, which is
proven below with a Gaussian approximation of the measure (

√
1 − x2)N−1dx.√

N-Scaling of Balls and Gaussian Measures. The concentration
of measures of unit balls at their equators can be seen in a finer detail under√
N -magnification, that is by looking at the balls of radii R =

√
N , instead of

R = 1 and at the projections of their (normalised) measures to lines.
The densities of the normalised push-forward measures now visibly
converge to the density functions of normalised Gaussian measures G =

exp−x2

2
dx, for

⎛
⎜
⎝

¿
ÁÁÀ1 − ( x√

N
)

2⎞
⎟
⎠

N−1

=
⎛
⎝
(1 − 1

x−2N
)
x−2N⎞

⎠

N−1
N

x2

2

= (e + ε)− x
2

2 .

where ε = ε(x,N) (as well as the function
√

1 − x2/N itself) is defined for ∣x∣ ≤√
N and where ε→ 0 for x

√
N
→ 0.

This implies the following quantitative version of the above [ εN ]concentration.33

[ λ/
√

N ] Almost all volume of the unit N -ball BN = BN(1) is contained
in the 2λ

√
N
-thick band

{x1, x2, ..., xN}∣x1∣≤
λ√
N

⊂ BN

for λ >> 1 and N →∞.
In fact, the relative volumes of the complementary δ-thick spherical caps for

δ = 1 − λ/
√
N , denoted CapNδ ⊂ BN = BN(1), are bounded by

vol (CapNδ )
vol (BN) ≤ ∫

∞

λ (e − ε)− x
2

2 dx

∫
∞

−∞
(e + ε)− x

2

2 dx
, λ =

√
N(1 − δ)

For instance, if λ ≤ 0.1
√
N , then a rough estimate shows that ε < 1/2 and the

above inequality implies that

vol (CapNδ )
vol (BN) ≤ 2−

λ2

2 = 2−
N
4 (1−δ)

2

.

33A sleeker version of is presented in section 2.2.
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[#ρ] Spherical Geodesic Balls. Let us even rougher evaluate the spherical
volumes of geodesic balls BN−1

○ (ρ) ⊂ SN−1 of radii ρ ≤ π/2,

vol (BN−1
○ (ρ))

vol(SN−1) = ∫
ρ

0 sinN−2 tdt

∫
π

0 sinN−2 tdt
≤ ρ sinN−2 ρ

2 ∫
π/2

0 tN−2dt
= 2N−2(N − 1)ρ sinN−2 ρ

πN−1
.

For example, the geodesic balls of radii π/6, π/4 and π/3 satisfy

vol(BN−1
○ (π/6)) < (N − 1)

6πN−2
vol(SN−1) ≲ 1

3N
vol(SN−1),

vol(BN−1
○ (π/4)) < (N − 1)(

√
2)N−2

6πN−2
vol(SN−1) ≲ 1

2N
vol(SN−1)

and

vol(BN−1
○ (π/3)) < (N − 1)(

√
3)N−2

6πN−2
vol(SN−1) ≲ 1

1.8N
vol(SN−1),

where "≲" turns to "<" for N > 10.

1.4 Gaussian Cubes and Maxwell Distribution.
It is satisfying to see that the normalised Gaussian measure,

G(x)dx = (2π)− 1
2 e−

x2

2 dx,

albeit in analytic garments, arrives from geometry as the limit for N → ∞ of
the coordinate projections of the normalised measures of N -balls (of N -spheres
if you wish) of radii

√
N.

But the full beauty of "Gaussian" comes to life in the Cartesian powers
G×N(x)dxN of G, kind of "Gaussian cubes", that are the measures on RN ,
which are also called Gaussian, defined as follows

G×N(x)dxN =
N

∏
i=1

G(xi)dxi = (2π)−N2 e− 1
2 (x

2
1+x

2
2+...+x

2
n)dx1dx2...dxn.

The amazing – obvious once being said – property of these "cubes" is that
they are

fully rotationally symmetric, i.e. invariant under the orthogonal group O(N).
Equally obviously,
the Gaussian measure G×N(x)dxN on RN is the only rotationally symmetric

measure the projection of which to the x1-line is equal to G(x1)dx1.

Exercises. (a) Recall the standard proof of the identity ∫
∞

−∞
e−x

2

dx = √
π by

computing the integral ∫ ∫ e−x
2
1−x

2
2 in the polar coordinates.

(b) Let µ be a Borel measure on R and let µ × µ on R2 be the Cartesian
square of µ , that is a measure on R2, such that

µ × µ(U × V ) = µ(U) ⋅ µ(V )
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for all open subsets U,V ⊂ R.
Show that if µ×µ is rotationally symmetric, then µ is Gaussian ae−bx

2

dx, or
it is a (weak) limit of Gaussian, namely Lebesgue’s cdx or Dirac’s cδ(x)dx. 34

(c) Show that Gaussian function G(x) = (2π)−1/2e−x
2
/2 is distinguished

among all ae−bx
2

by the two normalisation conditions

∫
∞

−∞
ae−bx

2

dx = 1 and ∫
∞

−∞
x2ae−bx

2

dx = 1.

(d) Show that the push-forwards νN,k of the normalised measures of the balls
BN under the normal projection BN → Rk, k ≤ N , for the subspace Rk ⊂ RN
spanned by the first k-coordinate vectors converge, for a fixed k and N →∞, to
the Gaussian measure,

νN,k(U)→ ∫
U
G×k(x)dxk = (2π)− k2 ∫

U
e−

1
2 (x

2
1+x

2
2+...+x

2
k)dx1dx2...dxk

for all open subsets U ⊂ Rk.
(e) Show that the Gaussian N -power measure on RN

G×N(x)dxN = (2π)−N2 ∫
U
e−

1
2 (x

2
1+x

2
2+...+x

2
n)dx1dx2...dxN

concentrates near the sphere S = SN−1(
√
N ⊂ RN : the value of this measure on

the subset
Uρ = {x ∈ RN}dist(x,S)>ρ

satisfies
∫
Uρ
G×N(x)dxN → 0 for

ρ√
N
→ 0.

Two Words about Gas Kinetics. All of the can be traced to Maxwell’s
papers on the kinetic theory of gases,35 where, instead of our

√
N -ball, one deals

with the sphere of radius
√
M in RM for M = 3N , where this RM = R3N comes

as (R3)N and where the points in this sphere

n

∑
i=1

∣∣xi∣∣2 =M, equally defined by
1

N

n

∑
i=1

1

2
∣∣xi∣∣2 = 3/2, xi ∈ R3

represent the velocity vectors of N particles in the 3-space with average kinetic
energy per particle equal 3/2.36

Then the velocity distribution of an individual particle averaged over this
sphere, which equals the projection of the normalised spherical measure on
S3N−1 to R3 by evaluating the x1-coordinate on this sphere, converges, according
to the Maxwell law, to the Gaussian distribution on R3, that is

(2π)−3/2e−
1
2 ∣∣x1∣∣

2

dx1,

34See chapter 4 in Normal Distribution characterisations with applications by Wlodzimierz
Bryc for a stronger result,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.1799&rep=rep1&type=pdf

35Possibly the mathematical aspects of it which we are concerned with here, discussed here
were known, in different terms, prior to Maxwell/s work.

36Following physicists’ convention we use the 1
2
-coefficient for the kinetic energy, which,

however, makes little sense unless a particular system of units is chosen.
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where dx1 stands for the Euclidean (Lebesgue’s) volume element in R3.
Finally, the concentration property of the spherical measure shows, accord-

ing to Maxwell, (this needs a little thought) that the average Gaussian limit
behaviour is also typical, which is seen in the particle picture as follows.

Let δx̄,i, x̄ = (x1, ...xi, ...xN) ∈ R3N be the Dirac atomic δ-measures in R3

located at the points x = xi ∈ R3, i = 1,2, ...N . Then
the average of these measures (weakly) converges to the Gaussian one for an

overwhelming majority of points x̄ ∈ S3N(
√

2N),37

1

N

N

∑
i

δx̄,i(x) →
N→∞

(2π)−3/2e−
1
2 ∣∣x∣∣

2

dx.

Typical Versus Average. Recall – this was mentioned earlier – that
averages over configuration spaces, such as SN−1, are (with a luck) are analyt-
ically computable. But they remain pure mathematical abstractions having no
physical meaning and being non-accessible to experimental verification, while
typical behaviours are what physicists can observe.

For instance, in the classical Stern-Zartman verification of the Maxwell dis-
tribution law, one sees, mathematically speaking, that the averages of the Dirac
measures

1

n
∑
i∈Sn

δx̄,i(x)

for random samples Sn of n particles, where n is large but much smaller than
N , are indeed close to the Gaussian distribution predicted by Maxwell.

1.5 Cubes, Diamonds, Simplices, and Balls
To gain some high dimensional intuition let us compare geometric invariants of
the four most symmetric N -dimensional convex Euclidean bodies, which are:

0-Centered Cube :

∎ = ∎N = [−1,1]N = {xi}∣xi∣≤1 ⊂ RN ,

Diamond:
⧫ = ⧫N = {xi}∑i ∣xi∣≤1 ⊂ RN ,

N -Simplex:
▲ =▲N = {xi}∑i xi=1 ⊂ RN+1

+ ,

Unit ball:
 =  N = {xi}∑i x2

i≤1 ⊂ RN ,

The invariants we want to include in our list are as follows:
Dimensionless Volume:

N
√

∣X ∣ = ∣X ∣1/N = N
√
vol(X),

Dimensionless Boundary Volume:

N−1
√

∣∂X ∣ = ∣∂X ∣1/N−1 = N
√
volN−1(∂X),

37"Overwhelming" means, that the convergence takes place for x̄ away from "bad" subsets
ΣN ⊂ S3N

(

√

2N) the (probability) measures of which exponentially fast converge to zero.
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Diameter
diam(X) = sup

x,y∈X
dist(x, y),

Inradius:
inrad(X) = sup

x∈X
dist(x, ∂X)

Square Root of the Average/Expectation of the Distance Squared:

√
Edist2(X) =

√
1

∣X ∣2∫X×X
dist(x, y)2dxdy,

These invariants "inv" were tailored to satisfy the following two conditions.

●1 Monotonicity under inclusions.

X ⊂ Y ⇒ inv(X) ≤ inv(Y ).

●2 Linearity under scaling.

inv(λX) = λinv(X) for all λ > 0.

Besides, the most relevant at the present moment inv =
√
Edist2 enjoys the

following two properties. which help its evaluation in specific examples.
⋆1 if X ⊂ RN is centred, i.e. if the center of mass of X is at 0, then, by the

Pythagorean theorem,
Edist2(X) equals 2N -times the the "double average" of the squared L2-

norms of unit linear functions l ∶ RN → R:

√
Edist2(X) =

√
2N

∣SN−1∣ ⋅ ∣X ∣ ∫SN−1
dl∫

X
l(x)2dx,

where this SN−1 denotes the unit sphere in the (dual to RN ⊃ X)) space of
linear functions l(x) on RN ⊃X of norm 1;38

⋆2 moreover, if X ⊂ RN is centred and irreducibly (orthogonally) symmetric,
i.e. the isometry group of X , as it acts on RN , is irreducible,39 Then

X is isotropic:
the integral ∫X l(x)2dx is constant in l for ∣∣l∣∣ = 1.

On Isotropic Bodies and Measures. A Borel measure µ on RN , e.g the
Lebesgue measure restricted an X ⊂ RN is called isotropic if the integral

∫
RN

l(x)2dµ

is constant in l for ∣∣l∣∣ = 1.
38Recall that ∣∣l∣∣ = sup

∣∣x∣∣=1l(x), x ∈ RN ; conversely, ∣∣x∣∣ = sup
∣∣l∣∣=1 l(x).

39"Irreducible" means that there is no G-invariant linear subspace in RN except for {0} and
RN itself.
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An equivalent way to put is by saying that the norm the scalar product on
the space of linear functions l ∶ RN → R is equal, up to a scalar multiple, to that
on the Hilbert space of linear functions on X,

∣∣l∣∣ = C
√
∫
RN

l(x)2dµ.

⟨l1, l2⟩RN = C ∫
RN

l1(x)l2(x)ldµ.

for a constant C > 0 which depends on µ.
It follows - this is classical – (Bernoulli? Laplace? Legendre? Binet?) that

if
µ is central,
µ has finite mass, µ(RN) <∞,
the support of µ linearly spans RN ,
then there is a Euclidean/Hilbertian norm ∣∣...∣∣new on RN with respect to

which µ is isotropic.
Indeed, define the scalar product ⟨...⟩new corresponding to ∣∣...∣∣new by pre-

scribing
⟨li, lj⟩new = ∫

RN
l1(x)l2(x)dµ

for some linear basis {li} in the (dual to our RN ) space of linear functions on
RN . 40

Also observe here (this is obvious) that the scaler product that makes µ
isotropic is unique up to scaling. Thus, in particular,

irreducibly symmetric (as in ⋆2) finite Borel measures on RN are isotropic.

Let us look at the values of the above invariants for our bodies for large
N →∞ where the most interesting point is comparative values of dimensionless
volume N

√
∣...∣ = N

√
V ol and

√
Edist2 .

N
√

∣∎∣ = 2, N−1
√

∣∂∎∣ ∼ 2, diam∎ = 2
√
N, inrad∎ = 1,

√
Edist2∎ = 2

√
N
3

N
√

∣⧫∣ ∼ 2e
N
, N−1

√
∣∂⧫∣ ∼ 2e

N
, diam⧫ = 2, inrad⧫ = 1

√
N
,

√
Edist2⧫ ∼

√
2
N

N
√

∣▲∣ ∼ e
N
, N−1

√
∣∂▲∣ ∼ e

N
, diam▲ =

√
2, inrad▲ ∼ 1

N
,

√
Edist2▲ ∼

√
2
N

N
√

∣ ∣ ∼
√

2eπ
√
N

, N−1
√

∣∂ ∣ ∼
√

2eπ
√
N

, diam = 2, inrad = 1,
√
Edist2 ∼

√
2.

Comments. (I) Among the relations in this table the only ones that need
explanation are those for

√
Edist2 =

√
1

vol2 ∫ ∫ dist(○, ●)2.
This is computed for the N -cube ∎ = ∎N by integrating a single coordinate,

say x1 over ∎ and by applying the above ⋆1,2.
Similarly Edist2 is evaluated for the N -diamond ⧫ and for the regular N -

simplex ▲ (hopefully, there is no mistake with the constants here) where (and
everywhere) A ∼ B signifies that A/B → 1 for N →∞.

40The Euclidean/Hilbertian norm ∣∣...∣∣new on RN ⊃ X is often defined via what is called
Binet (Legendre?) ellipsoid that is the unit ball BNnew = {xi}∣∣l∣new≤1 ⊂ RN .
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Finally,
√
Edist2 for  is evaluated by observing that, since the measure of

he N -ball is concentrated near its boundary sphere ∂ N = #N−1,
√
Edist2( ) ∼

√
Edist2(#) =

√
2.

(II) It is instructive to compare the volume of the cube ◾ = 1
√
N
∎ inscribed

in the unit sphere, that is the unit cube ∎ scaled down by the factor 1
√
N
, to the

volume of the unit ball,

vol (◾) ∼
⎛
⎝

√
2

eπ

⎞
⎠

N

⋅ vol( ),

which implies, at least for N > 10, that

1

3N
vol( ) < vol (◾) < 1

2N
vol( ).

(III) The relation

∫
∎N

x2
1dx1, ..., dxn = ∫

1

−1
x2

1dx1 = 2/3,

which we used to prove
√
Edist2∎ = 2

√
N
3
, implies, by the irreducible symmetry

of the cube the same equality for all unit liner functions l on RN , which for
l being the projection to the principal diagonal of the cube, yields, as it was
explained in section 1.2, Bernoulli’ law of large numbers in agreement with the
general principle:

Symmetry Begets Statistics.

(IV) In all four cases, our X satisfy:
√
Edist2(X) = const

√
N N

√
vol(X) for 0.01 ≤ const ≤ 100.

Conjecturally
this relation holds for all centred isotropic convex bodies X in RN .

(This is a long standing conjecture related to Bourgain’s slicing problem, as
was pointed out to me by Vitali Milman.41)

(V) The (unit size) diamond and the cube 1
N
∎N with the edge size 2/N

inscribed into this diamond have comparable volumes:

N

√
vol ( 1

N
∎N) = 2√

N
≈ 2e

N
∼ N

√
vol(⧫N).

Furthermore, the (obvious) exponential concentration of the volume of ⧫N
near ⧫N−1 ⊂ ⧫N , implies that cubes scaled by λ >> 1 contain almost all of ⧫N .

Namely, the part of ⧫N with the coordinates xi ≥ λ/N satisfies

vol (⧫N ∖ λ
N
∎N)

vol (⧫N) ≤ exp−cλ for c > 0.1

41See Notes on isotropic convex bodies by A Giannopoulos,
users.uoa.gr/~apgiannop/isotropic-bodies.pdf and
http://users.uoa.gr/~apgiannop/isotropic-sections.pdf
https://arxiv.org/pdf/1511.05525

24



(VI) It follows, the same is true for intersections of diamonds with balls
r N =  N(r) of radii r = λ/

√
N , since these balls contain the cubes r

√
N
∎N .

vol (⧫N ∖ N (λ/
√
N))

vol (⧫N) ≤ exp−cλ for c > 0.1.

Thus,
most of the volume of the N -diamond is located close to its center.
Similarly, one shows that
most of the volume of the regular N -simplex is is located close to its
center of mass.

Exercise. Evaluate the percentage of the volume of the unit ball  N con-
tained in the intersection of this ball with the cube with the edge length λ/

√
N .

for 1 < λ <
√
N .

1.6 High Dimensional Convex Polyhedra
Let us briefly describe some remarkable polyhedra besides simplices, cubes and
diamonds and also say a few words about about volumes, of general convex
polyhedra. often called polytopes in the Euclidean RN .

1. Besides simplices, cubes and diamonds there are other remarkable convex
polyhedra.

Symmetric and Bisymmetric Polytopes. A polytope P ⊂ RN is sym-
metric if the isometry group of P is transitive on the set of vertices and it is
bisymmetric if this group is transitive on the sets of the top dimensional faces
of P as well.

For instance, the Cartesian products of simplices: P =▲N1×...×▲Ni×...×▲Nj

are symmetric and if N1 = N2 = ... = Nj these P are bi-symmetric.
Another power-like operation, which applies to all N -dimensional convex

polyhedra P and which preserves (bi)symmetry, is as follows.
Let G be a finite group of orthogonal transformations of RM and AN ⊂ RM

be an N -dimensional affine subspace, such that g(A) is normal to A for all
non-identity elements g ∈ G.

Imbed P into A and let P ∗G be the convex hull of the G-orbit of P .
Clearly
if P is symmetric then P ∗G is also symmetric and if P is bisymmetric then

P ∗G is bisymmetric as well.
For instance the (N − 1)-simplex ▲N−1 and the N -diamond ⧫N are thus

obtained from the segment [−1,1] by suitably embedding it to RN with the
coordinate permutation group ΠN action on it.

Besides [−1,1], there are two other "prime" bisymmetric polyhedra: the
regular icosahedron and dodecahedron in the 3-space, which generate higher
dimensional ones by successive application of "×j" and "∗k" to them.

Bistochastisity versus Bisymmetry I am not certain –this may be known
– if there are other sources of bisymmetric polyhedra, but there is a family of
symmetric polyhedra which are as beautiful as the bisymmetric ones.
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These are the spaces BSNN ⊂ RN
2

of bistochastic matrices that are convex
hulls of the sets of coordinate permutations in the space RN2

of linear transfor-
mations of RN .

Remarkably, these BSNN , which are symmetric of dimension N2 − 2N + 1
with N ! vertices, have only N2 + 2N top dimensional faces, where the action
of the automorphism group of BSNN on the set of these faces has only two
orbits, the one of which consists of the faces defined by N2 inequalities xij ≥ 0
and the faces from the second orbit are defined by 2N equations ∑i xij = 1 and
∑j xij = 1.

(Traditionally, the polyhedra BSNN are defined by these inequalities and
equations, while identification of the extremal points with permutation matri-
ces makes the content of the Birkhoff-von Neumann theorem, while the fre-
quently used combinatorial interpretation/corollary of this goes under the name
of König’s matching theorem. The proof of the Birkhoff-von Neumann theorem
is nontrivial but not difficult either – we invite you to find it by yourself.)

Cyclic Polyhedra and the Upper Bound Theorem. The moment
curve momc ⊂ RN is the image of the map η ∶ R→ RN for

η ∶ t↦ (x1 = t, x2 = t2, ..., xN = tN).

A cyclic polyhedron CyPk ⊂ RN is the convex hulls of k points from this curve
momc.

An amusing feature of such a CyPk is that it has lots faces of all dimensions.42

For instance, if M ≤ N/2, then the number of the M -faces is

k(k − 1)...(k −M)
M !

,

that is
every M -tuple of vertices of CyPk spans a face.

In fact, if M ≤ N/2, then, given M points on the moment curve, say,

η(tj) ∈ momc, j = 1,2, ...,M,

there is a supporting hyperplane for momc defined by a non-constant linear
(better to say affine) function f(x) on RN , which is non negative on momc and
which vanishes at these M points.

Indeed, let p(t) be a non-zero polynomial of degree N , which vanishes at our
M points – such a p exists for M ≤ N/2 – and write

p(t)2 =
N

∑
i=0

cit
i.

. Then the function f(x1, ..., xN) = ∑Ni=0 cixi is the one we want.
It follows that every M -tuple of vertices in CyPk is contained in a supporting

hyperplane for CyPk, hence, it spans a face of CyPk.
What is less obvious is that
the number of M -faces of a polytope with k vertices in RN , is bounded by

that number for CyPk.
42https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node12.html
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This is called the Upper Bound Theorem conjectured by Motzkin in 1957,
proven by MucMullen in 1970, generalised by Stanley in 1975 to all triangula-
tions of the sphere SN−1 and extended to Minkowski sums of polyhedra by
Adiprasito and Sanyal in 2014. 43

2. Now let us turn to volumes and start with the following pretty observa-
tion44 concerning the volumes of the convex hulls of k-tuples of points xi45 in
the Euclidean space, denoted

conv{x1, ..., xk} ⊂ RN .

Lemma. The subset conv{x1, ..., xk} ⊂ RN is contained in the union of the
balls

Bi = B 1
2xi

(1

2
∣∣xi∣∣) , i = 1, ..., k,

which have radii 1
2
∣∣xi∣∣ and centers at 1

2
xi ∈ BN .

Indeed, since the segments [0, xi] ⊂ Bi serves as diameters in these balls Bi,
a point x ∉ Bi if and only if the angle of the triangle [0, x, xi] at x is acute,

∠x([0, x], [x,xi]) <
π

2
,

where these inequalities for all i imply that
some hyperplane normal to the segment [0, x] and crossing it next to x sep-

arates x from {x1, ..., xn}.
Hence, every x ∈ conv{x1, ..., xn} is contained in some of Bi. QED.
Corollary. The volumes of the convex hulls of all k-tuples of points in the

unit ball BN ⊂ RN are bounded by

[ /2N ] vol(conv{x1, ..., xk})
vol(BN) ≤ k

2N
.

This inequality gives a fair idea of what happens for k = cN if 1ε ≤ c ≤ 2 − ε
but dismally fails for subexponential k and for c ≥ 2.

3. Let us prove a simple volume bound applicable to all k = cN .
The volumes of the convex hulls of all k-tuples of points in the unit ball BN

with k ≤ cN satisfy

[ β(c)]
vol(conv{x1, ..., xk})

vol(BN) ≤ βN + 1

2N
(1 − βN)

for some β = β(c) < 1, where a specific (rough) bound on β is as follows:

β ≤
√

1 − 1

16c
2N
N−1

.

43See https://en.wikipedia.org/wiki/Upper_bound_theorem and https://arxiv.org/
abs/1405.7368

44[G. Elekes 1986] A geometric inequality and the complexity of computing https://www.
math.cmu.edu/~af1p/Teaching/MCC17/Papers/elevol.pdf, also see section I.2 in Combinato-
rial complexity by Pach and Agarwal.

45Depending on context, xi may denote either points in RN or coordinates of points.
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This is shown similarly to [ /2N ] with a cruder but more general
Covering Lemma. If positive numbers, r, ρ and h = 1 − r satisfy

ρ2 + r2 ≥ 1 + h2,

then the balls
Bxi(ρ), i = 1, ...k, together with B0(r)

cover all of the hull conv{x1, ..., xk} ⊂ BN = B0(1).
Proof If the points xi lie on the unit sphere SN−1 = ∂BN (which is the only

case we need) the covering property is clear from the picture below46 and then
the general case follows.

Using this, a simple evaluation of the volume of the part of the h-band in
BN around SN−1 = ∂BN covered by the ρ-balls shows that

vol(conv{x1, ..., xk})
vol(BN) ≤ rN + (1 − rN)cN(2ρ)N−1

and if we set
ρ = 1

4c
N
N−1

and r =
√

1 − ρ2,

then

rN + (1 − rN)cN(2ρ)N−1 = (1 − 1

16c
2N
N−1

)
N
2

+ 1

2N
⎛
⎝

1 − (1 − 1

16c
2N
N−1

)
N
2 ⎞
⎠
.

QED.

4. Convex polyhedra circumscribed around the unit ball satisfy lower bounds
on their volumes dual to the above [ β(c)].

For instance, if a convex polyhedron Q contains the unit ball BN = B0(1)
and if the number k of the (N − 1)-dimensional faces Fi of P is bounded by
k ≤ (10)N , then the volume of P is bounded from below by

[CIRC10]
vol(Q)
vol(BN) ≥ 1.0008N .

Sketch of the Proof. Let yi ∈ SN−1 = ∂BN be the nearest points to the faces
Fi an let U ⊃ RN be obtained by removing the balls Byi(ρ) from the external
h-band around SN−1 in RN ,

U = B0(1 + h) ∖B0(1) ∖⋃
i

Byi(ρ).

46The only notation in this picture which agrees with ours is h, while s corresponds to some
of xi and R must be 1.
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If ρ ⪆ 2
√
h, then the set U is contained in Q, and the proof follows with a

suitable choice h and ρ.

5. Let the above Q ⊃ BN be actually circumscribed around the unit ball BN ,
which means that the faces Fi of Q meet BN at the points yi.

Santalo Inequality. If Q is symmetric with respect to the origin,

−Q = Q,

then the volume of the convex hull P = conv{yi} satisfies

vol(Q)
vol(BN) ⋅

vol(P )
vol(BN) ≤ 1.

Consequently,
the maximal volume of an arbitrary, not necessarily symmetric, inscribed

convex polyhedron with k vertices in BN is bounded in terms of the minimal
volume of the circumscribed ones with 2k faces as follows,

maxkvoliscr
vol(BN) ≤ vol(BN)

min2k volcirc
.

6. Inverse Santalo Inequality. According to a Bourgain-Milman theorem,
circumscribed symmetric Q satisfy

vol(Q)
vol(BN) ⋅

vol(P )
vol(BN) ≥ constN .

Therefore,
minkvolcirc
vol(BN) ≥ constN vol(BN)

max2k volinscr
.

(According to the Mahler conjecture the extremal Q is the cube
∎N = [−1,1]N ⊃ BN and P dual to ∎N is the diamond ⧫N ⊂ BN , thus, the

(still conjectural) optimal constant comes from the relation
vol(∎N) ⋅ vol(⧫N) = 4

n!
= constopt ⋅ (vol(BN))2.)

7.Questions. The above upper and lower bounds on the volumes are sharp up
to a constN factor. This is more or less satisfactory for c >> 2, where, moreover,
one can get a better estimate for this universal const with a little extra work.

Also, I guess there is an inequality interpolating between [ /2N ] and [ β(c)]
buried somewhere in textbooks on convexity.

It is also known47 what happens for subexponential k, but I am not certain
if the following questions have been answered.48

7.A.What is an asymptotically sharp bound on of the volumes of convex polyhe-
dra P with k = cN vertices in the unit ball BN for N, c→∞ and, more interestingly,
when N, c−1 →∞?

47I Bárány„ Z. Füredi. Computing the Volume is Difficult.
https://pdfs.semanticscholar.org/d443/b44c8037c27426445c2694411447fa5f729b.pdf
48There are hundreds of papers on volumes of polyhedra inscribed in and circumscribed

around balls and other convex sets as well as estimates on the volume efficiency of approxi-
mation of convex sets by polyhedra. (Some papers listed at the end of this section.) But I
mainly failed to extract relevant information. Maybe you’ll have better luck.
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(Nothing of the above tells you, for instance, that the volume of conv{x1, ..., xk},
where xi ∈ BN , k ≤ 0.000001N , andN ≥ 1 000 000 000, is bounded by vol(BN)/10N .)

7.B. How close is the volume of the cube inscribed in SN−1 to the maximum of
the volumes of polyhedra in the ball with 2N vertices? 49

7.C. What are upper bounds on the volumes of polyhedra with k = cN vertices
in the N -cube for c < 2?

7.D. How do other (bi)symmetric polyhedra fare in this regard?
7.E. .What are lower bounds on the volumes of convex polyhedra P ⊂ RN , with

k vertices, which intersect the unit ball across a "significantly large" set, i.e. where

vol(P ∩BN)
vol(BN) ≥ cN

for a given positive c < 1, e.g. for k = 1,1N and c = 0.9?
7.F Veronese Polyhedra. Besides the moment curve there other dis-

tinguished algebraic subvarieties in RN , where the most beautiful one is the
Veronese variety VERn ⊂ RN for N = (n+1)(n+2)

2
− 1 that is the image of the map

from the unit sphere Sn ⊂ Rn+1.
What is the geometry of convex hulls VERPk of k-tuples of points from VERn?
(Every VERPk defines a convex cone in the space of positive definite quadratic

forms on Rn+1 which also can be seen as a curve-linear polyhedron in the sym-
metric space SL(n + 1)/SO(n + 1).)

1.7 Random Convex Hulls and Error Correcting Programs
Let µ, be a probability measure in RN , and let {x1, ..., xk}µ denote a µ-random
k-tuple of points xi ∈ RN , which is a shorthand for the power measure µ⊗k on
(RN)k.

Questions. What are expectations, i.e. µ⊗k-mean values, of geometric invari-
ants of the convex hulls conv{x1, ..., xk}µ ⊂ RN?

What is the overall geometry of a typical conv{x1, ..., xk}µ?
Our basic (but not the only) example is where k-tuples of points xi are taken

on random from the unit ball BN ⊂ RN , where their convex hull is denoted

conv{x1, ..., xk} ⊂ BN ,

with " " referring to the Lebesgue measure "dx" in the ball.
A significant feature of these conv{x1, ..., xk} , is as follows.

If k ≤ cN , 1 ≤ c ≤
√

2, then, with probability ≥ 1 − ( c2
2
)
N
, the convex hull

conv{x1, ..., xk} ⊂ BN , regarded as a convex polyhedron, has exactly k vertices,
i.e. all k points xi ∈ conv{x1, ..., xk} are extremal – none of xi is contained in
the convex hull of the remaining (k − 1) points; in other words, each xi can be
separated by a hyperplane from the subset {x1, ..., xi−1, xi+1, ..., xk} ⊂ BN .

49János Pach pointed out to me that the maximum volume inscribed polyhedra must be
simplicial.
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In fact, the probability of non-separability of an individual xi+1, from {x1, ..., xi−1},
that is the relative volume of conv{x1, ..., xi−1}○ ⊂ BN , is bounded by

vol(conv{x1, ..., xi−1} )
vol(BN) ≤ i − 1

2N

by Elekes inequality (the above [ /2N ]) and non-separability of at least one of
xi from the rest is at most

k

∑
i=1

i − 1

2N
≤ k

2N

2N
.

QED. separated
This is already refreshingly counterintuitive and then you may be not suf-

ficiently impressed to learn – we shall explain this below – that, typically, not
only individual xi can’t be separated but even i-tuples of several of them. But
high dimensions are, I believe, full of much greater surprises the time of which
is yet to come.

m-Faces Estimate. Denote by P[△m,N, k] the probability that all (m+1)-
sub-tuples in the random k-tuples of points xi ∈ BN span m-faces in the convex
hull conv{x1, ...xk} ⊂ BN . Then,

If m ≤ N
100

and k ≤ 1.01
N
m2 ,then, for all N = 1,2, ..., this probability satisfies:

P[△m,N, k] ≥ 1 − 0.99
N
m2 .

Proof. Start by observing that the distance dN(m) between an m face and
the opposite (N −m − 2)-face in the (N − 1)-simplex spanned by orthonormal
unit vectors in RN that is,

dN(m) =
√

1

m + 1
+ 1

N −m − 1
,

is bounded from below for 1 ≤m ≤ N/10 by

dm ≥ 1

2
√
m
.

Then we recall (see[⊥] and [ λ/
√

N ] in section 1.3) that a random x ∈ Bn

has ∣∣x∣∣ ≥ 1− ε with probability 1− (1− ε)N and, for a given x0 ∈ RN , the scalar
product ⟨x,x0⟩ is bounded by ε with probability

P(ε) ≥ 1 − 2−
Nε2

4 .

(This is written in [ λ/
√

N ] with 1 − δ instead of ε.)
It follows by a simple computation that

all edges in the random polyhedron conv{x1, ..., xk} ⊂ BN for k ≤ 1.01
N
m2

have the lengths in the range

√
2 ± 1

10
√
m
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with probability p ≥ 1 − 0.99
N
m2 .

This in combination with the above lower bound dm ≥ 1
2
√
m
, shows that,

with the same probability p, the convex hulls of disjoint l + 1-sub-tuples and of
N − l sub-tuples for l ≤m don’t intersect, and the proof follows since, obviously,

if an l-dimensional simplex △l ⊂ RN intersect the interior of a compact convex
subset C ⊂ RN , then the intersection of an n-face △n ⊂△l, n ≤ l, with the interior
of C non-trivially intersects some (N − n)-simplex △N−n ⊂ C spanned by N − n
extremal points of C,

and since
every point in a regular (N − n)-simplex with edges

√
2 lies within distance

≤ 1
√
N−n

from some (N − n − 1)-face of this simplex,

where the proof is concluded by actually performing all computations, which
is not difficult with our generous choice of constants.

Remarks (a) The above argument applies to the convex hulls conv{x1, ....xk}µ
of µ-random k-tuples of points in RN , whenever the distance function ∣∣x − y∣∣
is µ⊗2-concentrated with exponential tail bound. This includes the uniform
measure in the N -cube ∎N , as well as the Bernoulli measure supported on the
vertices of ∎N and, probably, (this seem easy is, probably, written somewhere)
the natural measures supported on the n-skeleta of ∎N for all n.

(b) In their 2006 paper50 Donoho and Tanner establish, – this takes about
30 pages of calculation in their 80 page paper – a much stronger lower bound
on m which allows m = const ⋅N for const ≥ 1

6
in some cases. Strictly speaking,

their result (corollary 7.1 on p.38), as it is stated in the paper, applies only
to subexponential k = k(N), but, probably, their techniques do say something
about k = cN .

However, it seems to remain unclear what the maximal m could be, say for
k = 2N . Is it N−ε

2
?

Cutting away erroneous vertices.

In a 2017 paper, Gorban, Burton, Romanenko and Tyukin51 prove sharp
bounds for linear separability of members of random k-tuples {x1, ...xk}µ for
several classes of probability measures µ in RN and propose effective and rel-
atively simple algorithms A for correcting errors of a certain class of existing
fairly complicated (heuristic) algorithmsA, where xi represent the input, output
and internal parameters of A, where the errors are represented by certain ex-
tremal points of conv{xi}µ and where the correcting algorithms A are designed
to linearly separate these errors.

1.8 Archimedean and Other Measure Preserving Maps.
Start with a question.

50Counting faces of randomly-projected polytopes when the projection radically lowers di-
mension.

https://arxiv.org/abs/math/0607364
51A. Gorban, R Burton, I. Romanenko, I. Tyukin, One-Trial Correction of Legacy AI Sys-

tems and Stochastic Separation Theorems. https://arxiv.org/abs/1610.00494 . Also see
[Blessing of dimensionality] in the reference list in section 1.10.
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What are measure preserving maps, preferably simple and natural ones, between
simple spaces with simple measures on them?

Here is a beautiful instance of this.
⋆1 the (Archimedean) map from the complex plane C to the positive ray

R+, for
A = A1 ∶ z ↦ ∣z∣2

sends the Euclidean (Lebesgue) measure in the plane to π times the usual
(Lebesgue) measure on R+.

In fact, the A-pullback of the segment [x,x + δ] ⊂ R+ is an annulus in the
plane between the circles of radii r = √

x and r +∆ for

∆ = ∣dr
2

dr
∣
−1

⋅ δ + o(δ) = (1

2
r)

−1

δ + o(δ),

which makes
area(A−1[x, δ]) = 2πr∆ + o(∆) = πδ + o(δ)

for infinitesimally small δ; hence,

area(A−1[x, δ]) = πδ

for all x ∈ R+ and δ > 0. QED.
However simple, this is amazing. If you disagree, try to find another polyno-

mial map from the unit disc B2 to the segment [0,1] that would push forward
the normalised Lebesgue measure on B2 to that on [0,1].)

But this is not the original Archimedean map, which, in fact,
sends the unit sphere S2 ⊂ R3 to the segment [−1,1] and pushes forward the

spherical measure to 2π times the Lebesgue measure.

Figure 1: Archimedes’ Theorem

The map itself is plain and simple: it is the normal projection of the sphere to
the vertical coordinate line, as in the picture. What is remarkable – Archimedes
believed that was his main accomplishment – is that

this projection sends the spherical measure to
2π times the linear Lebesgue measure.

Archimedes’ Proof. By the Pythagorean theorem, this map – think of it as
the hight function h on the sphere for −1 ≤ h ≤ 1 – slices the sphere into circles,
which are, on the level h, have length 2π

√
1 − h2, while the the differential of

this map at the hight h is
√

1 − h2, also by the Pythagorean theorem.
Hence, the areas of the spherical annuli between the circles on the levels h

and h + δ, for −1 ≤ h,h + δ < 1 are, independently of h, equal to 2πδ, for

(2π
√

1 − h2) (
√

1 − h2)
−1
δ = 2πδ.
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Let us give an alternative proof of Archimedes’ theorem by deriving it from
the corresponding measure preservation property of the map A1 in above ⋆1.

Let AN = A×(N)
1 be the (N + 1)th Cartesian power of A1, that is the map

from the complex (N + 1)-space to the positive "quadrant" RN+ ,

AN ∶ CN → RN+ ,

defined by
AN ∶ (z1, ..., zN)↦ (∣z1∣2, ∣z2∣2, ..., ∣zN ∣2).

Since A1 "multiplies" measure by π, its power A×(N)
1 multiplies measure by πN ,

that is
⋆N the map AN pushes forward the Euclidean (Lebesgue) measure on CN

to πN times the Euclidean (Lebesgue) measure on RN+ .
Next, observe that AN sends the unit ball B2N ⊂ CN = R2N to the "rectan-

gular" simplex

{x0 ≥ 0, x1 ≥ 0, ...xN ≥ 0,∑
i

∣xi∣ ≤ 1} ⊂ RN+ ⊂ RN

which equals the positive part of the (N +1)-diamond from the previous section,
and, accordingly denoted by

⧫N+ = ⧫N ∩RN+ ⊂ RN .

Thus, for instance, the relation ⋆N yields the usual formula for the volumes
of even dimensional balls: vol(B2N) = πNvol(⧫N+ ) = πN /N !.

This, in turn, gives the formula for odd dimensional spheres, for vol(Sn−1) =
n ⋅ vol(Bn) for all n, odd or even. But ⋆N does not cover the Archimedean case
of (even!) n = 2.

To this end, restrict AN+1 the unit sphere in CN+1 and observe that this
sphere S2N−1 goes to the regular N -simplex ▲N ⊂ RN+1

+ , defined by ∑i xi = 1
in RN+1

+ and that, because of ⋆N , the map AN pushes forward the spherical
measure on S2N−1 to πN times Lebesgue measure on the N -simplex.

It is worth observing at this point that the map AN+1 ∶ S2N−1 →▲N can be
seen as the quotient map S2N−1 → S2N−1/TN+1 =▲N for the (N+1)-torus which
acts on CN+1, hence on S2N−1 ⊂ CN+1, by multiplication of the coordinates by
complex numbers τi with norm one,

(z0, z1, ...xN)↦ (τ0z0, τ1z1, ...τnzN).

Thus, AN+1 factors via the Hopf quotient map

S2N−1 → S2N−1/T1
○ = CPN →▲N = CPN /TN

for T1
○ ⊂ TN+1 being the diagonal circle in the torus which acts on CN+1 by:

(z0, z1, ...xN)↦ (τz0, τz1, ...τzN).

If n = 2, then (the complex projective line) CP 1 = S3/T1
○ naturally identifies

with the two sphere S2 where the circle acts by rotation around an axes and
where the Archimedean appears as the quotient map S2 → S2/T1.
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The naturality/symmetry of the above maps shows that, indeed, the spheri-
cal measure on S2 goes to a multiple of the Lebesgue measure on [−1,1] = S2/T1,
where evaluation of this "multiple" needs that for the Hopf map between the
unit spheres S3 → S2.

To do this notice that the diameter of S2 with the quotient metric is equal
to π/2 = 1

2
diam(S3) = 1

2
diam(S2), since the pullbacks of opposite points in S2

are orthogonal as vectors in C2 ⊃ S3.
Hence, area(S3/T1

○) = 1
4
area(S2), and since vol(S3) = 2π ⋅ area(S3/T1

○), we
come up with the Archimedean value for the area of the unit 2-sphere:

area(S2) = 4

2π
vol(S3) = 4

2π
⋅ 4π2

2
= 4π.

Exercises.(i) Show that the pullbacks A−1(x) ∈ CN , x ∈ RN+1
+ , are tori of

dimensions ≤ N + 1, where, actually, dim(A−1(x)) is equal to the number of
non-zero components in the vector x = (x0, x1, ...xN).

(ii) Show that the N -dimensional volume of A−1(x) for x ∈ ▲N ⊂ RN+1
+ –

such a torus lies in S2N−1 ⊂ CN – is bounded by ( 2π
N

)N .
(iii) Show that the tori A−1(x) are ortogonal to RN+1 ⊂ CN+1 = RN+1 ⊕√

−1RN+1

(iv) Show that the interior of the positive cone RN+1
+ ⊂ RN+1, call it RN+1

++ ⊂
RN+1
+ , meets each torus ar a single point; thus, the region F ⊂ CN , where the

action of TN+1 is free, naturally decomposes into the product , F = RN+1
++ ×TN+1.

Two Words about Moment Maps. Apparently –this is suggested by how his
theorem is usually depicted52 Archimedes himself had not visualised his theorem
by mentally focusing at the image of the normal projection S2 → [−1,1], but
he saw it more geometrically and more informatively in the light of the radial,
with respect to the vertical axes, projection from the sphere to the circumscribed
cylinder S1 × [−1,1] for S1 being the (unit) equatorial circle in the sphere.

The radial projection map S2 → S1 × [−1,1] is area preserving.
Yet another way to think of the Archimedes theorem – this was explained to

me by Michael Atiyah many years ago – is as of the moment map for the (area
preserving!) action of T1 on S2, where the circle T1 acts on the sphere S2 ⊂ R3

by rotation around the vertical axes.
We shall explain this in ???; now let us return to our main topic and look

more closely at the geometry of the map (which is also an instance of a moment
map) AN+1 ∶ SN−1 →▲N for large N .

|●| Predominant Distance Contraction by the Archimedes Map. The
relative volume of the subset ∆ = ∆N ⊂ ▲N , such that the the map A = AN+1 ∶
SN−1 →▲N , for (zi)↦ (∣zi∣2), is log2N√

N
distance decreasing over ∆ tends to one

for N →∞.
Namely,
for every ε > 0 and all sufficiently large N , the inequality

dist(A(s1),A(s2)) ≤
log2N√

N
dist(s1, s2)

52According to Cicero, a sphere with the circumscribed cylinder was surmounted on
Archimedes’ tomb in Syracuse.
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is satisfied for all s1, s2 in the pullback A−1(∆) ⊂ S2N−1 of a subset ∆ ⊂ ▲N ,
such that

vol(∆)
vol(▲N) ≥ 1 − ε,

where, recall, vol(∆)/vol(▲N) = vol(A−1(V ))/vol(S2N−1) by the Archimedes’
theorem.

Proof. Take the intersection of▲N with the (N+1)-cube [−δ2, δ2]N+1 ⊂ RN+1

for ∆ = ∆δ ⊂▲N and observe the following.
●1 The norm of the differential dA over ∆δ is ≤ 2δ.
In fact, the A-pullback of ∆δ is defined by the inequalities ∣zi∣ ≤ δ and since

dA is given by the diagonal matrix with the entries 2z0,2z1, ...2zN .

●′1 The bound on ∣∣dA(s)∣∣ on ∆̃ = A−1(∆) implies the same bound on the
dilation (Lipschitz constant) of A:

dist(A(s1),A(s2)) ≤ (sup
s∈Ã

∣∣dA(s)∣∣) ⋅ dist(s1, s2) for all s1, s2 ∈ ∆̃.

This would be automatic if the set ∆̃ ⊂ S2N−1 ⊂ CN were convex but it is
not even geodesically convex in the sphere S2N−1.

However, albeit straight segments [s1, s2] ⊂ CN ⊃ ∆̃ are not necessarily
contained in ∆̃, the norm of dA on such a segment is bounded by

max(∣∣dA(s1)∣∣, ∣∣dA(s2)∣∣) ≤ sup
s∈Ã

∣∣dA(s)∣∣

by the convexity of the function maxi∣∣z1∣∣. Hence, the length of the curve
γ = A[s1, s2] ⊂ RN+1

+ , which joins x1 = A(s1) with x2 = A(s2) is bounded by

sup ∣∣dA(s)∣∣ ⋅ dist(s1, s2)

and since, obviously,
dist(x1, x2) ≤ length(γ),

this distance is bounded by sup ∣∣dA(s)∣∣ ⋅ dist(s1, s2).
●2 If δ = 2λ/

√
N + 1, then the relative volume of the complement ▲N ∖∆ is

bounded by 4(N + 1)2−λ2

.
Indeed, the A-pullback of this complement in the (2N − 1)-sphere53 equals

the union of N + 1 regions in the sphere, which are defined by ∣zi∣ ≥ δ and
where each of them is contained in the union of four spherical caps, defined by
∣xi∣ ≥ δ/

√
2 and ∣yi∣ ≥ δ/

√
2 for xi + yi

√
−1 = zi.

According to the "spherical remark" after [ λ/
√

N ] in section 1.3, the vol-

umes of these caps are bounded by 2−λ
2

, which yields ●2.

Now |●| trivially follows from the above for ∆ = ∆δ with δ = log2N

2
√
N

.

Remark/Questions. The above estimate on the volume of the complement to
∆δ ⊂ ▲N can be improved a little, but it remains unclear if our A ∶ S2N−1 → ▲

53One doesn’t have to go to the sphere: the relative volume estimates one needs is as easy
(slightly easier) to make in ▲ as in the sphere.
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is the optimal map, in the sense that it has maximal distance contraction (i.e.
minimal Lipschitz constant) among all measure preserving maps S2N+1 →▲.

In general, it may be interesting to look for measure preserving maps, similar
to the Archimedean A, between standard high dimensional Euclidean (and not
only Euclidean) domains and/or natural measures, where these maps would be
as contracting as possible away from small parts of these domains.

Exercises. (a) Construct a (non-strictly) distance decreasing map from the
unit N -sphere to a real segment, f ∶ SN → [0, δ], for

δ = vol(SN)
vol(SN−1) ∼ π√

N
,

such that f pushes forward the normalised spherical measure to the normalised
Lebesgue measure on the segment [0, δ].

Hint compose the normal projection SN → [−1,1] with a suitable distance
decreasing map [−1,1][0, δ].

(b) Given n ≤ N , construct a (non-strictly) distance decreasing map from
the unit N -sphere to the n-ball B, n ≤ N , such that

vol(B) = vol(SN)
vol(SN−n) ,

and such that this map pushes forward the normalised spherical measure to the
normalised Lebesgue measure on B.

Remark. One can show54 that this is sharp: there is no such maps from SN

to the ball Bn with vol(Bn) > vol(SN )
vol(SN−n) .

Symmetry and Entropy: Archimedes → Boltzmann → Fisher.

By the above (iv), the quotient space CN+1/TN+1 can be identified with the
positive cone RN+1

+ , and the complex Archimedean map A ∶ CN+1 ∶ CN+1 → RN+1
+

factors through the real one,

RA ∶ RN+1
+ → RN+1

+ for (x0, x1, ..., xN)↦ (x2
1, x

2
2, ..., x

2
N).

Since the quotient metric in CN+1/TN+1 is equal to the standard Euclidean
metric in RN+1

+ = CN+1/TN+1, the Riemannian metric in the receiving positive
cone RN+1

+ which is induced from CN+1 equals the transport of the Euclidean
(regarded as Riemannian) metric ∑i dx2

i from RN+1
+ = CN+1/TN+1 to RN+1

+ =
RA(RN+1

+ ) by the map RA, where this metric is

RA∗(gEu) =
N

∑
i=0

1

2xi
dx2

i ,

since the differential of the map RA is given by the diagonal matrix with the
entries 2xi = dx2

i

dxi
.

Remarkably – only exceptional quadratic forms have this property –
54This follows from a lower bound on the waist of the sphere, see
https://pdfs.semanticscholar.org/9e73/ae93261043a0c721f77e631a130a78daf379.pdf

and references therein.
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there exists a smooth function, say Φ on RN+1
+ , the Hessian of which is equal

to the (differential) quadratic form RA∗(gEu),

∂ijΦ

dxidxj
dxidxj = RA∗(gEu).

In fact, the function 1
2 ∑i xi logxican be taken for Φ, since d2

dx2 (x logx) = 1
x
.

It follows that
the entropy function on the simplex ▲N ⊂ RN+1

+ ,

ent(x0, x1, ...xN) = −(x0 logx0 + x1 logx1 + ... + xN logxN)

is concave, where, moreover - this, apparently, goes back to Ronald. Fisher–

Hess(ent)) = −2RA∗(gEu).

In particular, the Riemannin metric defined by −Hess(ent) has constant posi-
tive curvature.55

It is also clear that the entropy is the only function which satisfies this
equality and vanishes at the vertices (1,0, ...0), (0,1, ...0)„ „ (0,0, ...1) of the
simplex ▲N . Therefore one can take the equality Hess(ent)) = −2RA∗(gEu)
for the definition of entropy56 entropy by Boltzmann-Shannon computational(!)
formula −∑i pi log pi is as inappropriate as defining (rather than computing)
the area of the disk as the limit of the areas of the inscribed regular n-gons.
(The original Boltzmann’s definition, translated to the 21st century mathe-
matical language, is described in "search for a structure-entropy" on my page
https://cims.nyu.edu/ gromov/).

Conversely, by taking the Hessian of ∑i xi logxi, one arrives from the clumsy
simplex to the beautifully round sphere with the huge symmetry group.

(This, possibly, may explain the "unreasonable effectiveness" of entropy in
mathematical physics and in math generated by physics, and which points to-
ward "quantum nature" of entropy. But exactly this beautiful hidden symmetry
makes one wary of transplanting the idea of entropy from physics to mathemat-
ical models of Life.)

1.9 Selected References to Chapter 1

[Blessing of dimensionality] A.N. Gorban, I.Y. Tyukin, Blessing of dimensionality:
mathematical foundations of the statistical physics of data.

https://arxiv.org/abs/1801.03421
[Concentration of Measure] Michel Ledoux, The Concentration of Measure Phe-

nomenon. American Mathematical Society (2001).
[Concentration Property] A. A. Giannopoulos and V. Milman, Concentration
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https://core.ac.uk/download/pdf/82426777.pdf
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55A direct computation of the curvature tensor of Hess(ent)) seems cumbersome and I

don’t know whether Fisher proved that curv(− 1
2
Hess(ent)) = +1 this way.

56Defining
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2
in Metric structures for Rieman-
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2 Compression versus Concentration.

2.1 Comparison between Concentrations.

A. Definitions. Given two probability measures on metric spaces, µ1 on X1 and µ2

on X2, say that that
µ1 is more concentrated at a point x1 ∈X than µ2 at x2 ∈X2,

if the measures of the r-balls in these spaces with the centers at the points x1 and
x2 satisfy

µ(Bx1(r)) ≥ ν(Bx2(r))
for all r ≥ 0.

In general, when we speak in this context of concentrations of non-probability
measures µ of finite mass, we automatically normalise the measures. Thus, our
comparison inequality becomes

µ1(Bx1(r))
µ1(X1)

≥ µ2(Bx2(r))
µ2(X2)

.

Concentration of Functions and Maps. Concentration of a map f ∶X → Y ,
at a particular value y = f(x), where X = (X,µ) is a measure space and Y is
a metric space, e.g. Y = R, means, by definition, concentration of the push-
forward measure f∗(µ) at y in Y .

This comparison relation between µ1 and µ2 entirely depends on the push-
forwards of these measures to the the half line R+ = [0,∞) by the maps

d1 ∶X1 → R+ and d2 ∶X2 → R+

for d1 ∶ x ↦ distX1(x,x1) and d2 ∶ x ↦ distX2(x,x2), denoted µ1∗ = (d1)∗(µ1)
and µ2∗ = (d2)∗(µ2). Namely

µ1 is is more concentrated at a point x1 in X1 than µ2 at x2 in X2 if and only
if the function d1 is more concentrated at the value 0 than d2, that is the measure
µ1∗ is more concentrated at 0 in R+ than µ2∗ .

Measures on the Half Line.
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B. Concentration comparison between probability measures on half lines,
call them now µ1 on [x1,∞) and µ2 on [x2,∞) can be implemented by maps
f ∶ [x1,∞)→ [x2,∞). Namely,

(∗)if µ1 is more concentrated at x1 than µ2 at x2, then, provided µ2 has
no atoms, there exists a monotone increasing map f ∶ [x2,∞)→ [x1,∞), which
pushes forward the measure µ2 to µ1,

f∗(µ2) = µ1

and which shrinks the segments [x2, x], that is

f(x) − x1 ≤ x − x2

for all x ≥ x2.
Proof. Let the values of the function f ∶ [x2,∞)→ [x1,∞) at all x ∈ [x2,∞)

be defined as the the infima of x′ ≥ x1, such that

µ1[x1, x
′] ≥ µ2[x2, x]

and observe that if µ2 is atomless µ1 is more concentrated than µ2 than, indeed,
f∗(µ1) = µ2 and f(x) − x1 ≤ x − x2.

Exercises. (a) Let µ and ν be probability measures without atoms and
having connected supports. Then there exists a unique monotone increasing
homeomorphism f from the support of µ to the support of ν, such that f∗(µ) = ν
(with an obvious convention in the case where µ has finite support and nu an
infinite one. some of the supports is infinite).

(Thus, to a horror of a statistician, an arbitrary probability distribution on
the line with strictly positive measurable density can be made normal by a mere
change of variable.57)

(b) Formulate and prove a version of (∗) for purely atomic measures µ1 and
µ2.

(C) Let µ1 = φ1(x)dx and µ2 = φ2(x)dx) be probability measures on [0.∞
with continuous density functions φ1(x) and φ2(x). Notice that since

∫
∞

0
φ1(x)dx = ∫

∞

0
φ2(x)dx (= 1),

the the difference φ1(x) − φ2(x), unless it is identically zero, must somewhere
change sign and let it change sign at most once. This means that subset where
the functions are strictly positive and mutually equal is connected. (Typically
there would be a single such point.)

In this case – it is (almost) 100% obvious –
one of the two measures is more concentrated at 0 than the other.
For instance,
if φ1(0) > φ2(0) than µ1 is more concentrated than µ2.
In general
if φ1(x) = φ2(x) up to a point x0, and φ1(x) > φ2(x) for x = x0 + ε, then the

same conclusion holds: µ1 is more concentrated at 0 in [0,∞) than µ2.
57This is not a laughing matter, at least not in biology and psychology, where numerically

expressed features may have no natural parameters attached to them.
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[6]Corollary. If the functions φ1 and φ2 are differentiable and

dφ1(x)
dx

< dφ2(x)
dx

,

whenever φ1(x) = φ2(x), then the measure µ1 = φ1(x)dx is more concentrated at
0 than µ2 = φ2(x)dx.

2.2 Convexity and Concentration
The bulk of published results on concentration of measure58 explicitly or im-
plicitly relies on the concept of convexity, with the motto

the more concave you are the more concentrated you are.
Below are simple examples of this.
A. Let µ1 = φ1(x)dx and µ2 = φ2(x)dx) be probability measures on [0,∞)

with continuous density functions φ1(x) and φ2(x) which are C2-differentiable
on the (finite or infinite) segments [0, a1) and [0, a2) correspondingly and vanish
outside these segments, i.e. φi(x) = 0 for x ≥ ai, i = 1,2,. Also let

dφ1(0)
dx

≤ 0 and
dφ2(0)
dx

≥ 0.

Let one the following ???? inequalities on the second derivatives be satisfied
for all x ∈ [0,min(x1, x − 2)].

[A1]
d2φ1(x)
dx2

≤ d
2φ2(x)
dx2

,

[A2]
d2 logφ1(x)

dx2
≤ d

2 logφ2(x)
dx2

,

[A3] dφ2(x)dx ≤ 0
d

dx
log−dφ1(x)

dx
≤ d

dx
log−dφ2(x)

dx
,

Then the measure µ1 = φ1(x)dx is more concentrated at 0 than µ2 = φ2dx.
Proof. All three inequalities imply that the first derivative of φ1 decay faster

than that of φ2. Therefore, when the two functions meet at a point x6 ≥ 0, i.e.
where

φ1(x6) = φ1(x6),
the derivative of φ1 will be smaller than that of φ2,

dφ1(x6)
dx

≤ dφ2(x6)
dx

,

and the proof follows by the above [6]. (One needs a minor additional effort
to handle the case where dφ1(x6)

dx
≤ dφ2(x6)

dx
, which is not formally covered by

the strict "<" in [6].)

58See https://en.wikipedia.org/wiki/Concentration_of_measure and references therein
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Regularity Remark.The above 3 conditions which, a priori, need both func-
tions to be twice differentiable, in fact, makes sense if ψ1 is continuous and ψ2 is
C2-smooth. But, to simplify, we always assume our function C2-differentiable.

In Praise for log-Convexity. A positive function φ on an affine, e.g. Eu-
clidean, space is log-convex/log-concave if log f is convex/concave. Thus, log-
convexity means that

φ(x1 + x2

2
) ≤

√
φ(x1)φ(x2)

and log-concavity says that

φ(x1 + x2

2
) ≥

√
φ(x1)φ(x2)

Then the second derivative

d2 log phi(x)
dx2

serves as a measure of log-convexity/concavity:
the greater this derivative is the more φ(x) is log-convex and less log-concave.
This is well adapted to the study of concentration of densities φ of mea-

sures µ = f(x)dx, since both: concentration and d2 log phi(x)
dx2 is invariant under

multiplications of φ by a constant.
B. Concentration of (

√
1 − x2)N−1dx Revisited. (Compare section 1.3.) Since

the second derivative of the logarithm of the function φN = (
√

1 − x2)N−1 satis-
fies

d2 logφN(x)
dx2

= −N − 1

2
( 2

1 − x2
+ 4x2

(1 − x2)2
) ≤ −(N − 1) =

d2 log exp− (N−1)x2

2

dx2
,

the measure φNdx is more concentrated at 0 than the Gaussian measure exp− (N−1)x2

2
dx

by the above [A2].
Therefore, the coordinate function (x1, ..., xi, ...xN)↦ x1 on the unit ball

BN = {x1, ..., xi, ..., xN}∑i x2
i≤1 ⊂ RN

with the usual (Lebesgue’s) measure dx1dx2...dxN is more concentrated than
exp− (N−1)x2

2
dx.

2.3 Convexity and Levy-Milman Concentration of Lips-
chitz Functions.

The Levy mean of a function f ∶X → R on a measure space X with finite mass
M = µ(X) is the value y ∈ R, such that, essentially, the y-level f (y) ⊂X, divides
X into equal halves. More precisely, both, the sub-level and the sup-level of f ,
have measures ≥ M

2
,

µ(f−1(−∞, y]) ≥ M
2

and µ(f−1[y,∞)) ≥ M
2
.
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(This is equivalent to µ(f−1(−∞, y]) = µ(f−1[y,∞)) in the typical case of
µ(f (y) = 0.)

This concept was introduced in 1951 book by Paul Levy who has made the
following key observation.

The isoperimetric inequality in the sphere SN−1 ⊂ RN implies that
∗ all 1-Lipshitz function f ∶ SN−1 → R are more concentrated at their Levy

means, than the signed geodesic distance function to the equator SN−2 ⊂ SN−1.59

To make it clear, recall, that
(i) the signed distance is the function x ↦ ±dist(x,SN−2), x ∈ SN−1, with

the "+"sign in the upper hemisphere and with "−" in the lower hemisphere.
(ii) The isoperimetric inequality in SN−1 says that
⋆ among all domains V ⊂ Sn−1 with a given (n−1)-volume the geodesic balls

have the minimal (n − 2)-volumes of their boundaries.
There several interpretation of this for domains with non-smooth boundaries

∂V depending on how the (n − 2)-volume of ∂V is defined.
What we need here is the following rendition of ⋆ which entirely relies on

the spherical measure in Sn−1 with no reference to any (n − 2)-measure.)
⋆ε among all domains V ⊂ Sn−1 with a given (n − 1)-volume the geodesic

balls have the minimal (n−1)-volumes of the ε-neighbourhoods of V for all ε ≥ 0.
Notice, that ⋆ε for ε → 0 implies ⋆ with (n − 2)-volume understood as

Minkowski content of the boundary.
Conversely, ⋆, interpreted as ⋆ε with infinitesimal ε, (almost) obviously

integrates to ⋆ε for all ε.
Granted this, we see that the distance function to an arbitrary subset V ⊂

SN−1 of half measure is more concentrated than the distance to a hemisphere,
and then∗ easily follows.

2.4 Concentration for maps to Metric Spaces of Dimen-
sion>1

Such concentration is known for maps from SN−1, but not, for instance. from
hypersurfaces with all principal curvatures > 1

A. Convexity and concentration,
Levy-Milman-Talagrand
Topology and measure
Questionable Meaning of Probability And Measure in High Dimensions.

59Apparently, this was the first instance of the relation between isoperimetric and functional
inequalities which was explicitly stated and proved. This idea became widely used in geometry
and analysis since the contributions by Maz′ya (1960), Federer-Fleming (1960) and by Cheeger
(1970).
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3 Polypeptide and Protein Spaces.
Polypeptides are molecular chains, think of them as "words" in an alphabet of
20 "letters" – molecules of amino acids.60

Figure 2: generic amino acid

In a friendly (water + something) environment, polypeptides turn into pro-
teins by acquiring a particular spacial structure by the process of protein folding.

60No statement in biology comes without an exception. For instance, there are two rare
genetically-encoded amino acids selenocysteine (discovered in 1950s) and pyrrolysine (discov-
ered in 2002 in archaea and bacteria). See https://en.wikipedia.org/wiki/Selenocysteine

http://www.pitt.edu/~koide/group/Selenocyst-AG.pdf
https://en.wikipedia.org/wiki/Pyrrolysine
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Figure 3: protein folding and unfolding

The length of proteins found in cells ranges between 40 and 40 000 "laters",61

while most "easily foldable" globular (potato shaped) proteins are composed of
100-300 amino acid residues.62

At this point, don’t get depressed by your non-understanding of the physi-
cal/chemical meaning of the words "protein", "amino acid" etc,63 – the time for
worry is ahead of you – but attempt to formulate the Protein Problem(s)" in
(quasi)mathematical terms being content (at this stage only!) with a minimal
input from biology.

Direct your thinking of proteins toward a subset P in the set of all sequences
of length 300 in 20 symbols,

P ⊂ 20300,

try to define what this P could conceivably be and what kind of properties it
makes sense to ask about it. 64

Biologists think of P as of "Protein Universe" – the set of all proteins of all
organisms and ask the following questions.

61The longest known proteins, – titin or connectin, which is the third most abundant in
human muscle, is composed of ≈ 30 000 amino acids. https://en.wikipedia.org/wiki/Titin
The actual "physical" length of titin, if a molecule is stretched, is more than a micron, and

its full chemical name, if written in English, would go in more than 180 000 letters.
No "natural" English word, however, exceeds 30 letters in length, but agglutinative lan-

guages, such, for instance as Afrikaans, German, Tagalog, Turkish, may, in principle, contain
arbitrary long words, where the longest recorded one is a 136 letter word in Afrikaans which
can be translated as

issuable media conference’s announcement at a press release regarding the convener’s speech at
a secondhand car dealership union’s strike meeting.

See https://en.wikipedia.org/wiki/Longest_words
https://www.quora.com/Which-language-uses-the-longest-words-in-their-daily-speech-vocabulary

62Polypeptide synthesis is accompanied by dehydration – loss of a few atoms from amino
acids molecules in the form of water; what remain of these molecules in the polypeptide are
called residues.

63What is really depressing is the difficulty of specifically articulating what you don’t un-
derstand. Saying I know that I know nothing is senseless if you don’t know what stands behind
this "nothing".

64Limiting to 300 doesn’t seem to change the overall picture
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Figure 4: Protein Folding and Unfolding

How many protein sequences are there? How many sequences are novel vs.
repetitious? How many sequences are characterised at structural and functional
levels? Are sequences of prokaryotes, eukaryotes, and viruses different? Is the
number of sequence families saturating or is it still expanding rapidly?"65

The first question we, mathematicians, understand; a preliminary answer is
≈ 5 ⋅ 107 - the number of protein sequences in the data banks.66

From another angle: one estimates the number of non-bacterial species of
organisms on Earth by 107, while the number of different bacteria may be in
the range 109-1012 with, possibly, a comparable number of different kinds of
viruses. 67

Since bacteria have 1-2 thousand of protein coding genes, there may be
1012-1015 different proteins on in living organisms on Earth, and, probably, in
the range below 1020 << 20100 > 10130 even if you count the, by now extinct,
organisms that have ever lived on Earth.

All in all, we are faced with the problem:

describe in mathematical terms a given subset P ⊂ 20300

of the size between 1010 and 1020.
To start thinking of this, we need first to clarify the meaning of "a given"

in "a subset" and then specify "mathematics" we are allowed to use.
The problem with "a" is that P – the protein universe – is not, strictly

65Nature of the protein universe by M. Levitte, PNAS, 2009,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698892/
66https://www.gqlifesciences.com/the-largest-public-or-private-biological-sequence-

database-on-earth/
67Here is what I found about it on the web:
https://www.livescience.com/54660-1-trillion-species-on-earth.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160642/
https://www.sciencedaily.com/releases/2011/08/110823180459.htm
https://mbio.asm.org/content/7/4/e00999-16
http://www.virology.ws/2013/09/06/how-many-viruses-on-earth/
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speaking "a set", it is not described in terms easily translatable to mathematical
language and it is by no means "given" to us. The only thing we truly (modulo
errors) know about P is what is contained in data banks, say a sample S ⊂ P,
of size 108 of P. Apart from this we have no and will never have knowledge of
when a given sequence p is contained in P.

In fact, we do not expect from a mathematical description, better to say
modelMP, of S ⊂ P to deliver such knowledge, since the actual P is the result
of billions historical accidents,. This renders a mathematical description of P,
even is an approximate one, unrealistic, since the construction/description of a
desired modelMP must (mostly) rely on general principles (whatever they can
be).

To better appreciate illogic of P, see how it is with languages:
"define" the set R of grammatically correct and meaningful sentences in twenty

words in English that have been and will have been written, say in the four hundred
year interval between July 5, 168768 and July 5, 2087.

A simple counting shows that the set R can’t contain more than 1015 en-
tries69 while the number of all such conceivable sentences can be estimated above
1020. (The actual number depends on where you put the border line between
meaning and balderdash. 70)

This number juggling + rules of logic inescapably tell you that there exists
a bona fide English sentence which is not in R. But where is it? Can you show
it to me? No, you can’t.

The definition of R doesn’t allow one to write down such a sentence until
July 5, 2087.71

But don’t get despondent. Instead, take the lesson from languages: tempo-
rally forget about the real P and try to define
CP – the "set" of all conceivable grammatical and meaningful protein sequences.

The word grammar must be understood in a broad sense, specifically here,
as

a set of rules restricting possible structure of individual proteins as well as of
relations between different proteins.

The structure of an individual protein often refers to its spacial structure,
which is customary presented in graphical language as in the figure below.

This structure is somehow encoded by the protein sequence, but a universal
decoder:

sequence ; structure
remains unavailable at the present day.

68This is publication date of Newton’s Mathematical Principles of Natural Philosophy , origi-
nally, in Latin and translated to English in 1728.

69It may be more with future computer programs generating billions sentences per second
for the sake of other computers, but we leave it as it is.

70Write down a sentence in 20 words (better, counting twenty only for nouns, verbs adjec-
tives, and adverbs) and try to evaluate how many variations of individual words the sentence
can sustain and remain meaningful.

71Do you see a loophole? – You may present this sentence orally. But instead of resolving
the difficulty this adds a new layer of perverted logic to the problem.
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Figure 5: protein structure

3.1 Secondary Structure of Proteins, Folding and Unfold-
ing.

Against logic and reason: knots in proteins.

3.2 Relations Between Proteins
1. Similarities between sequences and between patterns within sequences.

1○ Similarities/dissimilarities between amino acids of two kinds: given a
priori by their structure and implied by their positions in protein sequences.

Compare this to similarities/dissimilarities between phonemes/morpheme/letters/words
in languages

2. Evolution and alignment.
3. Protein networks.
4. Alternative splicing.
5. Similarities of 3d structures, protein domains.
6. Similarities in functions.
7 Stability under mutations.
8. Presence in the same organism(s).

4 Lessons from Protein Folding.
Proteins seen on different spacial scales
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sequence, secondary, super-secondary tertiary quaternary structure protein
interactions, protein, functions https://www.khanacademy.org/science/biology/macromolecules/proteins-
and-amino-acids/a/orders-of-protein-structure

Secondary Structures: Symmetries, Fast Evolution and Fast Folding.
Protein Knots.

4.1 Structure of Functions on Large Spaces.

4.2 Symbols, Information, Structure, Function, Meaning.

Figure 6: Alignment

5 Mathematics of Life.

5.1 Sources id Symmetry, Doubling, Conservation, Repe-
tition, Complementarity

5.2 Trees Everywhere

(more to come)
/Users/misha/Desktop/large dimensions +applications /landscape.jpg

6 Structures on the Chess Board
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Figure 7: Protein Structures

Figure 8: Protein network
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Figure 9: alpha helix

51



Figure 10: beta sheet

Figure 11: fitness landscape
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Figure 12: DNA

Figure 13: sefsimilarity

53


