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Abstract

These notes are to accompany my lectures at the Courant Institute in
the Fall 2023. Besides presenting basic theorems, we try to show several
different proofs of most of them.
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1 Magnificent Seven

1.1 Classical Eucleadean and non-Euclidean Isoperimetry

The volumes of all bounded domains X c R™ are bounded by "areas" their
boundaries

[1s]x Vol (X) < CpVol, 1 (0X)M" 1,



where the constant C,, is such that the unit balls B® = B"(1) c R" satisfy the
equality
Voln(a Bn) =C,Volp 1 (Sn—l)n/n—l’

where S™°! = 9B™ is the unit sphere. For instance Cy = ﬁ = ﬁ and C3 =
1 _ @3)x
6v/m — (4m)F/2

Furthermore, the equality Vol, (8X) < C,,Vol,_1(X)™" implies that X
is a round ball.

Thus

Among all domains with a given volume, balls and only balls have minimal
surface area.

(This is obvious for n = 2 by calculus of variations: extremal Y = 0X are
closed curves with constant curvature, hence, circles, where justification of reg-
ularity of extremal Y is easy for dim(Y) =1.)

1.1.1 Sharp Isoperimetric Inequalities in Spheres, Balls, Hyperbolic
Spaces and Gaussian SpacesMOVE?

Besides the above, the sharp isoperimetric inequalities are known in all simply
connected fully homogeneous Riemannian manifolds X, where "fully homo-
geneous" signify that all isometries between subsets X; < X5 between subsets
X1, X5 c X extends to isometries X <> X and where the extremal hypersurfaces,
ie.

hypersurfaces of given "areas" enclosing maximal volumes are metric spheres.

(The only fully homogeneous Riemannian, as well as finite dimensional
geodesic, spaces besides the Euclidean ones are spheres, real projective spaces,
and hyperbolic spaces, where the real projective spaces S™/ ¥ 1 are non-simply
connected.

According to [Vil 2023], the extremal hypersurfaces in S™/¥1, are S¥xS'/*1
for Oélgc +1) x O(I + 1)-equivariant (Clifford) embeddings. S* x St S, k+1=
n-1

Also one knows (we prove this in section???) that

the extremal hypersurfaces S in the (say open) balls B ¢ X in the above (sim-
ply connected fully homogeneous Riemannian manifolds) X are totally umbilical.

(These, in the present case, are intersections of fully homogeneous, hence
complete, hypersurfaces Y ¢ X with B.)

For instance, hypersurfaces, which divide Euclidean n-balls B in equal halves
are intersection of B with hyperplanes.

(This brings to one’s mind Bourgain’s Difficult Slicing Problem. E| Let
X c R"™ be convex body of unit volume. Does there exist a hyperplane H c R™,
such that

volp-1(HNK) 26

for some universal ¢ > 0, say for 6 = 0.1?)

1.1.7?7 Metric&Measure, p-Isoperimetry&p-Extremaliy. Let us
extend the range of isoperimetric phenomena to Riemannin manifolds X, e.g,

T have not studied yet the proof of this theorem.
%https://www.weizmann.ac.il/math/klartag/sites/math.klartag/files/uploads/
bourgain_slicing_problem.pdf


https://www.weizmann.ac.il/math/klartag/sites/math.klartag/files/uploads/bourgain_slicing_problem.pdf
https://www.weizmann.ac.il/math/klartag/sites/math.klartag/files/uploads/bourgain_slicing_problem.pdf

X = R" with smooth non-Riemannian measures u(z) = ¢(x)dz on them, e.g.
to measures p on R™ with finite mass M = u(R™).

Here a cooriented hypersurface Y ¢ R™, which divide the space into halves
with given masses, say M_ and M, , M+ M, = M, is called p-extremal if it min-
imizes the integral [, ¢(y)dy. and thus solves the —mu-isoperimetry problem,

In general, the solution to such a problem seems fairly complicated but for
the Gaussian p it comes up with an unexpectedly neat solution.

1.1.7?7 Tsirelson-Sudakov-Borell Theorem. If

w(z) = e 17 gz,

then the p-extremal hypersurfaces are affine hyperplanes.

This follows from the isoperimetric inequality for S for N — oo, since the
Gauss measure on R" is equal to the limit of the push-forwards of the normalized
spherical measures on the spheres S¥*""1(R), R = \/N +n, under the normal
projections RV*" — R™ (see section 777).

1.2 Sobolev and Gagliardo—Nirenberg

Smooth functions f with compact support in R" satisfy

([ w@rrta) ™" <c. [ 1aretas

with the above constant C,,.
In fact, as we shall see presently, if all compact domain V in a Riemannian
n-manifold X satisfy

vol(V) < Cvoly,_1 (V)" <

for some constant C, then the inequality

([ w@rrta) ™" <c. [ 1areias

holds for the functions f with compact supports in XE|[Maz 1960)].

1.3 Minkowski Concavity

Given subsets X,Y c L in a linear n-space L(= R™), the Minkowski sum is
X+Y={r,ytcL,xeX,yeY,
that is the image of the product X xY c L x L under the addition map
LxL5L, (Iy,l) m 1 +1s

Minkowski ~!/"-Inequality. The volume of the Minkowski sum of arbi-
trary open subsets in R" satisfies

[“Un]M (vol (X + Y))l/” > (UOZ(X))l/n + (UOZ(Y))U”,

3This, applied to powers of |f| yields all Sobolev Inequalities {/[ |f|P < cons ¢/ [ |df]e for
p,q>1 and p<ng/(n-q).



Equivalently,

(vol (X ; y))l/” > % (vol(X)l/" + vol(Y)l/n) ’

where 22X geometrically is the set of the centers of the segments [z,y] ¢ R"

for:z:eXander. il
If'Y is an infinitesimal ball Y = B"(o(1)) then [ﬁl/"]M implies the isoperi-
metric inequality for X.

1.4  Almgren’s Sharp Filling Inequality

Let Y c RY be a piecewise smooth (n -
1)-cycle e.g. a smoothly embedded sphere

Sn_l(l) ‘L RN. Then Y bounds a piece—wise Optimal Isoperimetric Inequalities
smooth n-chain X c RY, F. ALMGREN

8X = 1/, §0. Introduction
which satisfy the above [Is]x b s e oo e e e

(1)  Optimal lsoperimetric inequality. Corresponding to each m-dimen-
sional closed surface T in R™*" there is an (m +1)~dimensional sur-

VOln(aX) < CnVOZn—l (aX)"/”_l, face Q having T as boundary such that

Q] < (m+ )|+ m
with equality if and only if T is a standard round m sphere (of some

where the equality holds only for flat round radiue) and Q s the comesponding fat 1 disk
N Here |Q| and |T| denote the areas in dimensions m + 1 and m respectively, and
Spheres Sn ( R) cR*"cR the optimal isoperimetric constant ~(m + 1) is defined by the required equality.

Moreover, if Y = f(S"71(1)), then the map f: S"1(1) = R extends to a
smooth map F: B"(1) - R¥ | such that

VOln(F : Bn(l)) < Cn(’UOln,lf(Sn_l))n/n_l,

where this F' can be chosen to be a smooth embedding for 2N > 3n

1.5 Loomis-Whitney Inequality and Subadditivity of En-
tropy

Let X ¢ R™ be a measurable subset and let
X; ¢ RY” L' = R"4 = 1,...,n, be the normal
prOJeCthHS of X to the hyperplanes A SOPSRIMETRIC TNEQUALITY

L. H. LOOMIS AND H. WHITNEY

Rn ! { (.7;1 Ty ) } 2:=0 C R"™ In this note we shall prove the following theorem.
y ey =

THEOREM 1. Let m be the measure of an open subset O of Euclidean
n-space, and let my, - - -, my be the (n—1)-dimensional measures of the
of O on the coordinate hyperplanes. Then

n
. 1/n—-1 &) LS s
[Loo — Whi] vol,,(X) < X vol,1(X;)/" Note tha for imnsional v with e paal f the

i=1 coordinate hyperplanes, (1) holds with the equality sign.

This, almost obviously, implies a non-
sharp isoperimetric inequality, namely

vol(X) < o )) YTy v n/n l(aX)

with equality for cubes X = [01]"
In turn, [Loo-Whi] also almost obviously, follows from the Shannon (Boltz-
mann? inequality:

4This makes sense for subsets in Riemannian manifols, while the additive [Al/ "] o 8ener-
alises to subsets in Lie Groups.



Strong Subad-

d itivity of Ent ropy. 3. Suppose there are two events, x and y, in question with m possibilities for the first and » for the second.
Let p(i, j) be the probability of the joint occurrence of i for the first and j for the second. The entropy of the
Let 12 = H123 be joint event is
a probability measure Hxy) = =2 p(0))logp(i.)
on R3 let gy, po, f13  whike
be the push-forwards H(X) == pli,)) log ¥.p(i,)
inj J

of p to the coordi-
nate lines (coordinate
marginals Of /_L) and 1t is easily shown that
Hiz, i3 and Has3 be with equality only if the events are independent (i.e., p(i. j) = p(i)p(j)). The uncertainty of a joint event is
the pUSh— forwards of less than or equal to the sum of the individual uncertainties.
1 to the coordinate - T
planes. (Thus, gy is
the marginal of p15 as  Figure 1: From "The mathematical theory of communi-
well as of pq3, etc.) cation" by Shannon

Then Boltzmann’s
entropies of these satisfy

H(y) = =3 p(i,j) log ¥.p(i.)).
7 :
H(x,y) < H(x) +H(y)

ent(p123) < ent(p12) +ent(uis) —ent(uy),

where the entropy of a measure u = p(x) = ¢(x)dx for a positive function
¢(x) > 0, such that [y ¢(x)dr = 1 and such that log¢ is summable on the
support S = S(¢), ([q|log ¢(z)|dx < o), are evaluated by the Boltzmann-Gibbs

formula:
l ent(p(w) = - [ 6()log o(x)di]

1.6  Poincaré Inequality on the unit n-Sphere X = 5(1).

If
dr =0

[ @z =0,

then .
2 2 2
[ P@aa? < — [ JariPar,
Equivalently, all smooth maps
F:X ->RY

satisfy

n? 1
P F(z1)-F 2drydry < 9, F(z)|?drpdz,
2v0l(X) fXxX |£(@) = F(22) [P derdr, Vol(S* 1) Jur(x) |07, F(2)|"dryda
where UT(X) is the unit tangent bundle of X and 0,, = dF(7,) , 7, € S771 =
UT,(X), is the derivative of F' by the vector 7,.

5This can be taken for the definition of entropy for all measure spaces (X,dz), e.g. for
X =RV (Boltzmann’s N-partical gas) and/or for Shannon’s finite or countable sets X = {z;}
with atoms z; of equal weights, where ent(u) = — Y ;e5logy p(x;), compare https://www.
crmarsh.com/pdf/Charles_Marsh_Continuous_Entropy.pdf.


https://www.crmarsh.com/pdf/Charles_Marsh_Continuous_Entropy.pdf
https://www.crmarsh.com/pdf/Charles_Marsh_Continuous_Entropy.pdf

1.7 Selberg Theorem, Selberg ;ll-Conjecture and Ramanu-
jan Graphs.

Preparation to Selberg. There is a strictly decreasing sequence of subgroups of
finite index in the free group on two generators,

Fo=T1oT3>..0Iy>...,

with the following property.

Let X be a compact connected Riemannian manifold, such that the fundamental
group 71 (X ) admits a homomorphism onto F5, e.g. X is a smooth bounded planar
domain with at least two holes, such as a small neighbourhood of the figure 00.

Then there exist compact Riemannian manifolds X; and [-sheeted coverings
X — XE| where | — oo and such that all smooth functions f(z;) on X; with

[x, f(z1)dz; = 0 satisfy

o e Pz const- [ f2(ada,

where the constant const = const(X) > 0 doesn’t depend on .
Equivalently maps F': X; - R satisfy
vol(%)(,)2 lexXl HF(‘TZ) - F(Q?Z)szfﬂl,d{t; 2

< 7
m Jx, |dF (1) |[2da, const

In truth, the above are "coarse corollaries" of a particular instance of a
precise form of such an inequality for a specific family of complete non-compact
Riemann surfaces X; with constant curvatures —1 and with finite volumes proved
by Selberg in 1965.

These Selberg’s X; are the quotients,

X, = H?|Ty,

where H? is the hyperbolic plane and I'; are subgroups in the group of (2 x 2)-
matrices (a;;) with integer entries and determinants one,

T, c SL(2,7Z),

where SL(2,7Z) naturally acts on H? by isometries and where where I'; consists
of matrices congruent to upper triangular ones mod [, i.e. where the entry
a1 = 0 mod lﬁ

6These are locally isometric maps with I pullbacks of all € X. In particular vol(X;) =
d-vol(X).

7One’s experience in the classical PDE — (Hersch S?-eigenvalue theorem,
Rayleigh—Faber—Krahn Inequality...) points to the opposite:

Jxpxx, 1F (@) = F(a) |2 dzy, day
Ix, |dF (@) |2 dz;

for l-sheeted coverings of compact manifolds: the ground frequency of an oscillating membrane
X must tend to zero for size(X) — oco. This is true in the "real world", and, probbaly, true in
mathematics under some reasonable assumptions on X, but... this is not so in general.

8Strictly speaking, these X; are not quite coverings of X = HQ/SLZ(Q), since torsion
elements in SL(2,7Z) do not act freely on the hyperbolic plane H?, but this needs only a
minor adjustment of our terminology.




Selberg proved that the above constant in his case, call it A\ = const(Xgew)
is bounded from below by 3/16 and conjectured that A > 1/4; The best current

bound is A> (&) 7]

Remark. Mathematics behind A is fundamentally different from what is seen
in the other six famous "isoperimetric theorems".

The later essentially depend on similarities between the geometries of the
spaces these theorems apply to with the geometries of the corresponding FEu-
clidean models, where everything boils down to the inequality |f(1) — f(0)|| <
[01 |f(¢)|dt with occasional use of the O(n)-symmetries.

But the geometry of the spaces X; for [ - oo is maximally non—EuclideanE
which, in fact, follow from the inequality

1i}nian(Xl) > 0.

2 Methods of Proofs

2.1 Coarea Inequality, Volumes of Cones, Divergence and
Green’s Formula

2.1.A. Coarea Equality. Let X be a Riemannian manifold, e.g. the Euclidean
N-space X = RY let Xy c X be a subset, e.g. the origin {0} c R" and let

do(z) = dist(x, Xo)

be the distance function to X (e.g. do(x) = |x| for X = {0} e RY).

Let V ¢ X\ X be a measurable, e.g an open subset in the complement of Xj.
Then the (N -1)-volumes, N = dim(X), of the intersections V,. = V ndg'(r) c V
of V' with the r-levels of the function dy satisfy:

[ voly_1 (V. )dr = UOZN(V)
0

2.1.B. Coarea Inequality. Let V c X be a smooth n-dimensional sub-
manifold. Then the intersections V;. = V ndy'(r) ¢ V, which are smooth (n-1)-
submanifolds for almost all » by the Sard theorem, satisfy:

[oo v0ly,—1(V;)dr < voln(V)
0

2.1.C. Cone Inequality. Let Cone,, (Y) c RY be the cone over a subman-
ifold Y = Y™ ! c RY from a point zo € R™.
Then the n-volume of this cone is

1 . 1
voly(Cone,, (¥)) = — [ o =yl sin 2 (zo =, T,(")dy < - [ lao = yldy

9Kim & Sarnak 2003)/https://www.ams.org/notices/199511/sarnak. pdf

10These X; admit no approximately isometric embeddings to the Hilbert space. In fact,
1-Lipschitz maps f: X; - R satisty vol(X;)™! [y, x dist(f(z), f(y))/dist(z,y)dzdy — O for
| — oo.

M This, for do(z) = ||z| in the 3-space, may be attributed to Cavaleri (1635) and in general
to Fubini (1907) and Fedrer (1959), see https://www3.nd.edu/ lnicolae/Coarea.pdf .

12This is seen clearly for intersections V;- of a curve or surface V c R with (a family
of) parallel planes H, c R3. In fact, this inequality applies to Lipschitz maps d : X — R
between general metric spaces and measures dv in X, see https://en.wikipedia.org/wiki/
Eilenberg/27s_inequality.

10


https://www.ams.org/notices/199511/sarnak.pdf
https://www3.nd.edu/~lnicolae/Coarea.pdf
https://en.wikipedia.org/wiki/Eilenberg%27s_inequality
https://en.wikipedia.org/wiki/Eilenberg%27s_inequality

1 1
< —vol,—1(Y)sup|zg — y| < —diam(Y") - dist(zo,Y").
n er n

Therefore, the volume of the cone from some point zq is bounded by the volume
and the diameter of Y as follows

[Cone] vol,(Cone, (Y)) < diam(Y )vol,,_1(Y),

N
ny/2(N +1)
since

there exists a ball B,(r) c R™, 0 e RN, of radius %, which contains
Y by Jung’s theorem.

If N=nand Y c R” is a closed naturally (say, inward) cooriented hypersur-
face, then the angle between the vector x —y e R” and he tangent space Ty, (Y)
comes with a F-sign and the volume of the domain X c R™ bounded by Y is
equal to the absolute value of the "signed volume" of the cone, i.e.

1 .
[Conels. 00l()| = | [ o =yl sin < (a0 - 9., (V))dy

This yields a non-sharp isoperimetric inequality for n = 2 by Jung’s theorem,

area(X) < ﬁlength(}/)z.
(Yung’s heorem for closed curves gives you area(X) < llength(Y)Zlfl)

But since the diameters of (connected) hypersurfaces for n > 3 are not con-
trolled by their (n—1)-volumes for n > 3, this only indirectly leads to non-trivial
bounds on vol(X) by vol,,—1 (0X) and actual proofs of isoperimetric inequalities
often amounts to particular specifications of this "indirectly".

2.1.G Gauss-Green Formula. If 7 is a vector field in R™ with divergence
n, then

[div = n] wol(X) = - [ () vy <+ [ Irldy,

where v is the unit normal vector field on the boundary Y = 0X and which
reduces to the above [Cone]s applied to grad|xo — x||?, that is the

gradient of the squared distance function x v |xo - z|>.

2.2 Volumes of Radial Projections and Isoperimetry in
Balls

Let Y be a smooth. (or piecewise smooth) (n — 1)-dimensional submanifold in
the unit ball
Y =YY"t cBN(1)cRY
Since N > n -1, the integral [ ”m”%dx converges at zero in RV and the

mean of the dist™ !-function in the ball BY (1) c RY satisfies,

1
- - —zallm D g < i
voln (BN (1)) Jov |z — 20| x < cons

13 The sharp inequality for n = 2 is area(X) < iﬂlength(Y)Q.
MSince the measures of balls concentrate near their boundaries, this consty — 1 for N — oo.
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for all zg € RV.
It follows, that for all submanifolds Y in RY, (not necessarily contained in
particular balls) and all r-balls BY (r) ¢ R¥ | there exist = € B (r), such that

o =(n-1) const yvol,_1(Y)
[ ly= Dy < Ot

Therefore, for all domains V ¢ RY, which contain an r-ball BV (r),
BYN(r)cV cRY,

the cylinder of the radial projection, cal it 1) = 1., x € BY (1), of a submanifold
Y = Y"1 c BN(r) from some point 2 € B"(r) to the boundary 0V of V satisfies:

const ( diam(V') )n

voly, (cyly) <voly,1(Y)
n

r

2.1.D. Corollary: Smaller Half Inequality. Let VV c RY be a connected
domain and let a hypersurface Y = YV~ c V c RY divide V in two subdomains.
V1,Vo ¢ V with common boundary V3 n Vo =Y in V. Then

consty [ diam(V)\"
inrad(V) ) ~
2.1.D. Ezercises. (a) Let V c RY be a conver domain and Y = Y"1 c V.,

Show that there exists a point x € V77?7
(b) Let V satisfy 777

min(voln (Vi,voly (V2)) < volp-1(Y)
n

2.2.1 "Involutive" Proof of Isoperimetry in Convex Sets and Cheeger
Constant in Manifolds with Ricci > —const

Cheeger Constant for Convex Sets. Let Y, W71, W5 c¢ R™ be closed subsets. of
finite volumes , such that all straight segments [wi,2] ¢ R™, w; € W;, i=1,2
intersect Y.

Then — this 99% obvious — one of the subsets, say W contains a point w;
and the second subset contains a subset Wy c Wa, such that

o vol, (W3) > $volWa;

e each segment [wy,ws], w) € W3, intersect Y at a point y € Y, such that

dist(wy,y) > dist(y,ws)

Conclusion. Let Y a smooth hypersurface divide a convex domain W c R"
into two parts W7 and W5. Then

min(vol (W1),vol(W3)) < 2"vol,—1(Y) x diam(W).
Sharp Needle Remark. The sharp inequality
min(vol(W1),vol(W2)) < voly,—1(Y') x diam(W)

(this is sharp for all partitions of infinitesimally thin cylinders, W = W, x [0,d],
where W, is infinitesimally small) is proven in section ??? by the (1960) Payne-
Weimberger [PW1960] needle decomposition argument

prove

2.1 E. Cones, Mapping Cylinders and Volumes /Measures of non-
Injective Maps 777

2.1.E. Geodesic Cones: Riemannian and non-Riemannian 77?7

12



2.3 Parallel Displacement of Volume and Isoperimetry

[

Given a a bounded domain V c R"™ with a smooth boundary, (or any Borel
subset for this matter) it is geometrically obvious and is justified below that
V' can’t be almost invariant under parallel translations by vectors x € R™ with
norm |z < d for d >> vol (V)™

For instance if d > R, where R = Ry is the radius of the ball B"(R =Ry ) c
R™ such that vol(B™(R)) = 2vol(V'), that is

R~ (2vol(V))1/"

~ wol(Bn(1))Y/n’
then
*1/2 at least half of the volume of V is transported out of V' by an x with
Hm“ < Ry.

This means that 1
vol(VnV +x)< ivol(V)7

where V + x = {v + 2} is the z-translate of V.
Then clearly, since |z| < R,

(200l (V)™ -vol,,_1 (OV)
vol(B"(1))Y/n

vol(Vz) < R-vol,—1 (V) =

and
2200l (V)™ -vol,,_1 (OV)

vol(V') < 2vol(V,) < vol (B (1)) )

which can be rewritten as an
isoperimetric inequality with a non-sharp constant,

2n+1/n—1

n/n-1
vl (B (1)) T voly,_1 (OV)™

[Is02]. vol(V') <

Proof of X1/2. Let D c V x B"(2R) c R?" be the subset of the pairs (v, z),
such that v+ x € V and let us evaluate the 2n-volume of D in two ways.

volan(D) = fv ol (V 1 (By(2R))dv < voly (V)2
where B]'(2R) c R™ is the 2R-ball with center v. Thus,
volay, (D) = / ( )voln(V n(V +z)dz <vol(V)* < %UOZ(V) x vol(B"(R)),
B"(2R

since vol(B™(R) = 2vol(V).
Therefore, there exits an z € B"(R), such that

1
vol,(Vn(V+z)< ivol(V)

15Compare with ???
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by the mean value theorem. QED. ?77Reference to Minkowski (for small R)
and to Saloff-Coste???

?77similar proof for subdomains in a convex sets.

777

Euclidean Geometry and Descendants : Semi-Algebraic Integral Formulas,
Calculus of variations, Rearrangements

Non-Euclidean Symmetry: Amenability, T-property and ...

Probability 777

Linear Algebra and Algebraic Geometry

2.4  Sharp Santalo’s Argument for n = 2 and non-Sharp
for n>3

Let X c R? be a bounded planer domain with smooth boundary ¥ = X and
proceed with the proof of the isoperimetric inequality
Y 2
area(X) < length(Y)”
47

as follows.

?7?7A. Let ¢(x,y) be the norm of the differential of the radial projection
from Y to the unit circle S1(1) c R

Let V ¢ X x Y be the set of pairs (z,%), such that the segment [z,y] c R?
is contained in X and let

Ve=Vn{z}xYcVand V, =VnXx{y}cV.
Let X’ be the disk B? = B2(R(a)) with
area(X' = X'(a)) = a = area(X).

Then, clearly,

[lenght] [V d(x,y)dy =2m for all z € X

and

[area] [ d(z,y)de < f o2,y )dx' = c¢(v) for all y e Y,
v, X’

since the levels of the z-function ¢, (z) = ¢(z,y) are r-circles tangent to ¥ = 90X
at y and ¢ is monotone decreasing in r.
It follows that on the one hand

qub(m,y)dxdy = fde fvx o(x,y)dy > 27 - area(X)-
and on the other hand
[/qﬁ(x,y)dxdy = ﬁdy /Vy o(xz,y)dx < length(Y)c(a)

Thus
length(Y)c(a) > 27 - area(X)

14



and since this becomes the equality for X',

27 - area(X")

length(Y") (= vma),

c(v) =

this implies that
area(X) < area(X")

length(X)? ~ length(X')?

(= 1/47).

QED.

Commentary. Santalo’s argument is, logically, the most elementary among
known proofs of the sharp 2d-isoperimetric inequality; besides, this proof gives
an exemplary form of the deviation of the ratio area(X)/length(0X?) from
that for the ball X’ = B2 c R2.

??7? [area], [length]-Divergence and Greens Formula. There is a (unique)
vector field v = v, = vy(x), for all y € Y = 0X, normal to the levels of the
function ¢, (x) = ¢(x,y), such that

div(vy)(x) = divx (vy) = ¢y (x) and |vy(z)| = 1/2 for all y and «

and the Green’s formula delivers an alternative proof of the key inequality [area]
in the length form

/v o(z,y)dx < length(Y)/2.

If sect.curv + 0. The above generalizes to surfaces with non-zero, e.g
constant<0, curvatures, as follows

Non-Sharp Santalo for all dimensions n. Let X c R" be a compact
domain with a smooth boundary Y and let

U(w,y) = dist(z,y) "
(instead of the above ¢(x,y)). Then, clearly,
[ 0@ y)dy > an = vola (57 (1)), we X,

and
f Y(z,y)dr < bpr = f |z~ Vdz, yeY =X,
X B (r)

where B" = By (r(v)) c R™ is the ball with volume v = vol,, (X).
Evaluate the integral of ¢ over X xY (instead of V ¢ X xY). as earlier,

Ay - vol, (X) < /X . W(x,y)dady < by -1 -vol,_1(Y).
Write vol,, (X) = vol, (B™(r)) = B,r™ and conclude to the inequality

00l (X) 1 = voly (X )" Y™ < Cpvol,_1 (), for Cp = a7 b, BH™.

222 On Divergence and Green’s Formula
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2.5 Santalo Formula and Croke Inequality

A point z in a Riemannin manifold X, e.g. x € X =R", is ray-surrounded by a

subset Y c R™ if all geodesics in X issuing from x intersect Y.
<~——>

Let [Y] ¢ X be the set of all z surrounded by Y.

<>

Observe that [0V] oV for all bounded domains V c R™.
Theoremm Let X be a complete simply connected Riemannian n-manifold
with
sect.curv(X) <0,

e.g. X =R" andlet Y =Y" ! c X be a smooth submanifold. Then

<>

(vol, [Y )™ < const, (vol,_1(Y))"

for where

n—-2
voly o (S"72)" 72 (.[077/2 cos(t)"/m=2 sin(t)"_2dt)

UOln—l (Sn—l )n—l

const,, =

Proof. 777
Sharp 4d-Isoperimetric Corollary. Bounded domains V' in complete
simply connected Riemannian 4-manifolds X with sect.curv(X) < 0 satisfy:

voly (V) < (consty(voly,_1 (8V))*?

for

2
vol(B*)? voly(S52)? - ([Oﬂ/z cos(t)? sin(t)2dt)
vol (53)% B v0olp-1(53)3 '

consty =

stk sk fsk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok
Bound on v0ly,, +m,+1 of the set
>
N N _ aN-1
[Y1,Yo] cUT(RY) =R™ x S77(1)

of the unit tangent vectors to the segments [y1,y2] ¢ RY joining points y; € Y7,
and yg € Y2, Y1 = Y™, Yy = Y;"2RY by

constyvoly,, (Y1) - v0ly,, (Ya).

Measure of flags of affine (k,k — 1)-subspaces A¥, Ay —1) in R™** such that
both half-spaces A¥ ¢ A* intersect Y = Y"1 c R™*,
(Alternatively, where A*~! is linked with Y.)

2.6 Steiner Symmetrizations and Isoperimetry in Balls
with Constant Curvature

16https://1ink.springer.com/content/pdf/10.1007/BF02666344 . pdfh
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7?77 A. Mirror Symmetry by Parallel Rearrangement
.IZ] Let V c R™ be a bounded Borel (e.g closed or open) subset
and let H c R™ be a hyperplane. Then there exists a unique
subset

Vi =symmg (V) cR",

such that

o' the intersections of Vy with all lines L ¢ R"™ normal
to H are closed segments, the Lebesgue measures (lenghts
for segments) of which are equal to those of the intersections
LnV.

®,ym Vu is symmetric under the reflection in H, that is
all segments L NV intersect H at their middle points.

Ist durch die tr SchluBweise S wenn Wir uns
die "darin verwendeten Begriffe wie ,geschlossene ebene Kurve«,
Bogenliinge* und ,Flacheninhalt¢ genau umg denken — woranf
wir bald zuriickkommen — wirklich der Nachweis fir die isoperi-
metrische Eigenschaft des Kreises erbracht? Wiederholen wir, es

wurde gezeigt: Ist K eine geschlossene ebene Kurve, aber kein Kreis,
80 kann man durch das Viergelenkverfahren dazu immer eine neue
geschlossene ebene Kurve K* konstruieren, die gleicken Umfang und
groperen Flicheninhalt besitzt. X kann also keine Losung des iso-
perimetrischen Problems sein.

Wenn es also unter allen geschlossenen ebenen Kurven gegebenen
Umfangs eine gibt, deren Flicheninhalt = dem Flicheninkalt jeder
anderen ist, so kann sie nur ein Kreis sein. .

Die Voraussetzung aber, daB eine solche Losung unserer Auf-
gabe wirklich existiert, wird man zunschst als selbstverstindlich er-
fiillt ansehen. Bei tieferem Eindringen jedoch zeigt sich, daB gerade
in diesem Punkte eine Hauptschwierigkeit verborgen ist.

?777B. Central Symmetrization. If we symmetrize V successively in the n
mutually orthogonal linear hyperlanes, then the resulting subset, call it Vg~ will
be centrally symmetric with respect to the origin 0 € R™ and this central symme-
try will be preserved by all further H-symmetrizations "0" -symmetrizations."

7?77 C. Trivial Observation and Useful Corollary. Let V c R" be
a bounded centrally symmetric. domain Then H-symmetrizations increase the
volumes of the intersections of symmetrized sets Vi = symmy (V') with balls,

vol(Vi n B (1) 2 vol(V n Bj(r), r20,

for all (linear) hyperplanes H c R™.

Moreover, if e-much of addtional measure of V' could have been put to B (r),

that is if

min(vol(V ~ By (r)),vol(Bg(r),\V) >¢e >0,

then there exists an H such that the above inequality is controllably strict;

vol(Vi n Bi(r) 2 vol(V n Bi(r), r2d >0,

where this strictly positive § depends (only) on € > 0 as well as on R and vol(V).
Corollary. If Vol(V') = vol,(B§(R)), then there exists a sequence of hy-
perplanes H;, such that the sequence V; of H;-successive symmetrizations of

V,
Vi =symmy (Vio1)

volume-wise converges to B (R), that is

vol(Bg (R)) N V; = 0 for i — oo.

Now comes the basic step in Steiner’s (attributed to Steiner?) symmetriza-

tion proof of the isoperimetric inequality.

77?7 B. Area Decrease of the Boundary. The boundaries of sym-

metrized of polyhedral domainﬁ satisfy
00lp-1(O(VE) < vol,,—1(0V)).

In fact this inequality trivially reduces to the special case, where V is a

trapezoid in the plane.

Thttps://www.math.utah.edu/ treiberg/Steiner/SteinerSlides.pdf

18997
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??? A. Symmetric Trapezoid Lemma. Among all trapezoid T c R?
with a given hight and the lengths of the two parallel bases, an isosceles T has
the minimal sum of the lengths of its two side legs because the differential of the
distance function ¢g : x — dist(z,z¢) depends only on the direction (but not
the length length) of the segment [z, x(], namely

dpo(r) = {2 70)

R

the horizontal derivative of the sum of the m lengths of the legs of T' vanishes
if and only if T is isosceles.

In fact, the derivative of the sum of distances dist(x,x1) + dist(x, 22 in an
arbitrary Riemannian manifold X, where x runs along a geodesic L ¢ X vanishes
iff the angles a; and s of minimizing segments [x,21] and [z, 22] with L > x
at x are w-complementary i.e. oy +ag = .

However simple, this is sole of Steiner’s symmetryzation, which, together
with the cone inequality 2.1.C?7?7 yield the following.

77?7 B. Isoperimetric Conclusion. All bounded polyhedral domains in
R™ satisfy

vol (V)" Jvol (dV)"™ < wol (B"(1))™ ! Juol (S™*(1))".

Complezity Remark The statement and the above proof of this inequality
for n = 3 is limited to the high school level of geometry and if you comfortable
with calculus and rudimentary differential geometry, this trivially generalizes to
domains V' with almost everywhere smooth boundaries in all complete simply
connected spaces with constant sectional curvatures (i.e. inspheres and hyper-
bolic spaces).

Strangely however,

this (19th century)

argument was COHSid— With any reasonable definition of the (z—1)-dimensional measure
. s of the boundary of O, s = 2m; for each 4, so that (1) gives
ered incomplete and

(2) m < sn/2m
difficult by the early this is the isoperimetric inequality, without the best constant. Since
20th Century math- the proof of the isoperimetric inequality with the best constant is
.. difficult,! and since its applications do not necessarily require the best
ematlclans, e.g. Blaske constant, our elementary proof of the theorem may be of some

interest.

(above is from his
book " Kreis und Kugel",
1916) and Loomis and
Whitney 1949™

Correction Term in Symmetrization and Isoperimetric Stability of
Balls.

2.7 Formal Schwarz Symmetrization

The Geometric Schwarz Symmetrization transforms domains V c R” = R*"! xR
to V, c R", such that

9Here is a quote from their 1949 paperhttps://www.ams.org/journals/bull/1949-55-10/
50002-9904-1949-09320-5/50002-9904-1949-09320-5.pdf where they refer to E.Schmidt’s
99 pages 1939-paper https://link.springer.com/article/10.1007/BF01210681Compare
with https://maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf.
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V, are invariant under the orthogonal group O(n—1) of rotation around the
0 xR axes

and

the intersections of V, with the hyperplanes parallel to R"™* c R”, say H, =
R™! x {t} are balls, say B" '(R;) = H; 0V, with the (n - 1)-volumes equal to
these of the intersections V n H;.

vol,_1 (B"Y(Ry)) = vol,_1 (V n Hy).

The isoperimetric inequality in H;, along with the trapezoid lemma ?777A
and an obvious integral (same Schwartz?) inequality show that

v0olp-1 (V) < woly—1 (OV).

This, technically speaking, seems as a trivial generalization of the area de-
crease property for the Steiner symmetrization, but it has a much wider range
of application when combined with the 1-dimensional calculus of variation.

In fact, a single Schwarz symmetrization reduces the general isoperimetric
problem for V c R™ to that for O(n — 1)-invariant domains, that are obtained
by rotating a domain V, in the plane P = R? 5 R?2 5 R” which contains the 0 xR
axes.

Thus, the (first) variation extremality condition for the isoperimetric prob-
lem, that is the is the constancy of the mean curvature of the hypersurface
OVezir, translates to a certain second order ordinary differential equation for
the boundary of V, c R2.

Then (by the same argument Newton shown that the elliptic orbits are the
only solutions of the second law with the inverse quadratic attraction):

among all O(n — 1)-invariant closed FEuclidean hypersurfaces S with given
(n —1)-volumes, spheres maximize the volumes of domains V c R™ bounded by
S.

This implies, by Schwratz, similar extremality of spheres among all domains
S in the Fuclidean space R™.

Isoperimetry in FEuclidean and Non-FEuclidean Balls. The Schwartz
symmetrization equally applies to intersections of V with concentric spheres
H; = S"71(t) c R", thus deriving the sharp isoperimetric inequality in R™ from
those in the (n — 1)-spheres (rather than in R™™1).

In fact, the spherical Schwartz symmetrization effortlessly extends to all
complete simply connected spaces X,, with constant sectional curvatures x, i.e.
spheres and hyperbolic spaces; this yields

the isoperimetric extremality of balls in all X .

Moreover, this applies to bounded subdomains V' inside (possibly concave
and unbounded) domains D = Dy c X, bounded by complete connected umbilic
hypersurfaces Y =Y, c X, E

20These Y =c X, are

e, » spheres and (totally geodesic) hyperplanes (which are spherical for A = k > 0);

e,..0 horosperes and equidistants to hyperplanes.

In all cases, the isometry group of X, which preserves Y, is (bi)transitive on Y, where the
induced Riemannian metric gy on Y =Y, has constant curvature A > k. The only bounded
domains D) with 0Dy =Y, are balls bounded by spheres, (where A > 0) and where unbounded
D include complements to balls, for instance.
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among all bounded domains V c D, the ones with minimal vol,_1(0V'),(here
OV denotes the topological boundary of V in the ball) are those, where their
boundaries OV c B™. are umbilic hypersurfaces normal to'Y = 0D.

Remark. If D = D) is concave, then the boundaries of the extremal V have
sectional curvatures p > A and if D) is the complement to a ball or to a horoball
(when & < 0), then the extremal V c D are balls, the boundaries of which don’t
have to intersect 0D).

Formal Schwartz. The above symmetrization argument essentially de-
pends on the trapezoid and Schwartz inequalities but it doesn’t truly need any
symmetry as it applies, for instance, to domains V in cylindrically split Rie-
mannian manifolds,

VecX=XgxR,

where it leads to a lower bound on vol,,-10(V) in terms of vol, (V) provided
the "corresponding” bounds hold for domains

Wi=VnX;cXy=Xx{t} =Xo, teR

and where "corresponding" means "some bounds" on vol,_1(W;) in terms of
0l (OWy).

For instance, if all W c X satisfy the (n—1)-dimensional Fuclidean isoperi-
metric inequality,

UOln_l(W)/’Uoln_2(aW)n_1/”_2 < Uoln_l(Bﬂ—l)/Uoln_z(Sn—2)n—1/n—27

then all V c Xg x R satisfy the n-dimensional Euclidean isoperimetric in-
equality,

00l (V) [00l_1 (OV )™ < wol,, (B™) Jvol,_1 (8711,

(Here B™ = B"(1) c R™ is the unit ball and S™ ! = 9B™ is the unit sphere.)

Furtermore, a simple elaboration of this argument shows that

if X = Xy x Xy, where X; = X", i = 1,2, are Riemannian manifolds, such
that

all V; ¢ X;, i = 1,2, satisfy the n;-dimensional Euclidean isoperimetric in-
equalities, then

all V ¢ X satisfy the (ny +ns)-dimensional Euclidean isoperimetric inequal-

ity

2.8 '"Isoperimetric" Proof of Sobolev’s bounds on the in-
tegrals [ | f|7 by [ |df]

Let X be a Riemannian n-manifold without a boundary and f(z) > 0 be a
Lipschitz function on X with a compact support. Let B(t) = f71(t) ¢ X be
the t-levels of f and let A(t) = f7![t,00) c¢ X be the compact domains in X
bounded by B(t).

21See https://math.williams.edu/symmetrization/#: ~:text=Steiner%20and%20Schwarzy
20symmetrization’20can, ball%200f%20the’,20same,20volume| and p.p. 204-214 inhttps:
//www.ihes.fr/~gromov/wp-content/uploads/2018/08/waists.pdf for this and similar in-
equalities for fibered metric measure spaces.
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2.6.A. Maz’ya-Cheeger Conditional Inequality. If
[isop]., volp (A(t)) < e(vol,—1(B(t)))” for some v >1 and all t >0,

(e.g. v=n/n -1 as in the Euclidean isoperimetric inequality) then

Uedpand Uz, = {/ [ s@ywde < Zdple, = 2ei/ [ lar(@)loda

forallp>1 and
1 v-1

1_
p oa v

Proof for q =1 and p = v. Here this inequality reads:

Ul Ul =) [ Sy de<cldfin, <c [ 1df@)ldz,

where it is immediate if f is the characteristic function x = x4 of a smooth
domain A c X, since |f|r, = vol, (V) for all p and |df|r, = vol,-10C, where,
either the integral [y dx(z)dz is understood in the distribution sense, or, more
geometrically, as the limit of smooth or Lipshitz approximations of y, of f, e.g.
by the trapezoidal functions

1
XA\e(7) = max (0, 1- —dist(x, A)) , €—0.
€

Thus, [|...|, ] is the same as [isop], for ¢ = 1.
Next, if f =3, cixa, then

1flz, < X leallxa, L,
K2

by convexity of the norm ||...|,, and if a; >0, then

ldfllz, = 3 levllxa, Llﬁ

It follows that [isop], does imply [|...||,] for such f =3, a;x(A;).

Then we approximate our general positive Lipschitz function f(z) by such
sums, where one takes A(t;) = f~'[t1,00), (or smooth approximations to At;),
see remark 777 below) (see Lemma??? below), and thus conclude he proof for
q=1.

The proof for ¢ > 1. The above applied to f+ and the Golder (7, q)-inequality,
where (2 -1) =p, ¢ = (1 - %)_1 yield:

z P v Cp, ,p_ Cp, ,2_ cp L
1£5 = 1F7 1o < df > o= 1> df o< 127 e ldf lg = =21 F1g ldf s

thus b ep
I£ls =151 " < —~ldflq-

220ne may be justifiably worried with possible intersections of boundaries A; of different
subsets A; but this introduces no correction terms at least for smooth 0A;; besides our
8A;0A; = B(t;) = f~'(t;) do not intersect anyway.
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QED.

On Sharp Sobolev. 1f q = 1 the inequality [|...|v] = []...]l,, 1]v] is sharp but
it is only exceptionally sharp with our constant pe/nu for ¢ > 1 and p > v, since
the extremal functions fe,:. are not like xx in general, but they are associated
to smooth solutions of certain Bessel-like (ordinary) differential equations, (see
7777 below), from which sharp constants can be derived.

2.6.B. Lo-Example. If v =1 and p = ¢ = 2, then the above inequality for
c =1, which says that

[ £z < 20df | 2.,

is sharp for the cylinder X = R, x S! with the the (hyperbolic) metric dz? =
dt? + e7*'ds® (compare with ?77?).

2.6.C. Obvious Approximation Lemma. Let ¢(z) be a smooth function on
a Riemannin manifold, e.g. on the Euclidean n-space, with compact support
X. Then there exist decreasing families of smooth bounded domains

XoXioXsc....0 X,

, such that (multiples of) the sums of trapezoidal functions

su x k
O

uniformly, hence L, for all p converge to f for & - oo and ¢ — 0 and the
differentials of these sums L, converge to df,

dfpe(x) >L, df
o< The set X; is contained in the interior of X, for all 7,
XieX;,i=...-2,-1,01.2,...

2.6.D. Remark: Sard Theorem and Lipschitz ¢. 777
2.6.D. Sharp Sobolev.

2.8.1 Cavalieri Principle, Coarea Formula, Pushforward Measures
and Formal Symmetrization

. Let ¢ : x — t € R be a smooth function on R", let
Ag(t) = {z e R"}4(2)<t
be the sublevels of ¢ and
By(t) = ¢ (1) c 04,(t)

be the levels of ¢.
Then

A /R vol(Ag(t))dt = fR o(z)de
and

B fR vol1(By(t))dt = fR |dé(a)|da.
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To see this, check A and B for the function which is equal to z ~ ||z]| in an
annulus r < ||z|| < R and which is zero outside this annulus and then extend this
to all ¢ by linearity of integrals and differentialsﬁ

More generally, and equally obviously, all continuous (or just Borel) functions
() with compact supports on an arbitrary Riemannian manifold X = (X, g)ﬁ
e.g. on X = (R, gy = ¥, dz?)

t=+o00
[coar] [ e@ldo@lda= [~ “ar [ Vel

for all smooth functions ¢ = ¢(z) on X.
This, in terms of the ¢-pushforward of the Riemannin measure dz, reads:

0. (da) = p(t)dt for p(t) = | o, ldo] b

[ ooy = [ euwar

/X |do ()| da = /_m b(1)dt for b(t) = voly_1 (B:)

Let us assume (to avoid irrelevant terminological complications) that the
support S of the function b(t) is a union of disjoint intervals and replace the
t-parameter in S by s, such that ds = b~ (t)dt

Formal Symmetrization. From now on, we think of S = S(X) = S4(X) as
an oriented 1-dimensional Riemannian manifold with the metric ds?, where the
function ¢(s) is viewed as a kind of symmetrization of ¢(x), now denoted ¢(s).

Thus, for instance

and

Observe that ds? depends only on the partition of X to the levels of the
function ¢(x) (but not on the values of ¢ on these levels) and that there is a
natural map, say o : X - S, such that, for all segments Sy c S.

volp(071(S0)) = fs b(s)ds.

where b(s) = b(¢(s)) = voly—1 (07" (s)).
Also observe that

[Symm] /Xqﬁp(x)d:czfsgp(s)b(s)ds,

[Symm] [ Nao@)ldz = [ do(s)Ib(s)ds
and
[Symm?, [ Ndé@)|dz > [ Ido(s)|b(s)ds for p> 1,

where the later follows from [Symm]s and convexity of the function z — 2P,
p>1.

23 Alternatively, refer to Cavalieri/Fubini for A and to the coarea formula for B.
24The Riemannin metric g on X is assumed continuous, although bounded Borel measurable
will do here.
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Symmetrization and Comparison Inequalities . Let Y = (Y,h) be a Rie-
mannian m-manifold, e.g. m =n -1, or m = 1. with vol,,,(Y) = 1 and let
X =Y x S with the (warped product) metric g = ds* + b(s)w h, i.e. such that
00l (Y, b(8) 7T h) = b(s) = vol,_1(o7(s)).

Then

Sp(s) (X =Y x 5) = 54 (2)(X)

and if Y is a homogeneous manifold, e.g. the sphere, this is commonly called a
"'symmetrization of" X.

2.9 Metric Measure Spaces, Moment Maps, Maxwell Law,
and Gaussian Isoperimetry

All of the above symmetrizations equally applies to Riemannin manifolds with
(more ore less) arbitrary measures g on them, where the Riemannin metric is
used for evaluation of the norms of differentials |df| while integrals are taken
with respect to p rather then with the Riemannin measure.

Thus symmetrizartion keeps us within he same the category of metric mea-
sure spaces.

But if you want you can return, at least for smooth measures p(z)p(x)dz,
to the pure metric Riemannian category by passing from (X, g, u to the warped
product of X with the circle X x S* with the metric dz? + p(x)*"ds?.

2.10 Cabré’s ABP-Proof of the Classical Isoperimetric In-
equality

=l

Logic of the Proof. Assume without loss of generality that the boundary of
a smooth bounded domain X c R™ has the same (n — 1)-volume as the unit
sphere,
vol,_1(0X) = vol,_1(S™1),

and let f(x) be a smooth function, such that
A(f)=a and df(v) = 1.
Then the proof would trivially follow from the inequaliy
a™ Ywol,_1(0X) = a™vol (X)>n"vol(B"(1)) = n™ ‘wvol,_1(S™ ) = " vol,_1 (0X)

where > is proven below by constructing a map from a part of X onto B"™(1)
with Jacobian < a™/n™.

Let X ¢ L =R"™ be a bounded domain with a smooth boundary dX and let
f: X - R be a smooth function.

Let L' = R™ be the linear dual of L, let us identify the tangent spaces T, (L),
z e L >X with L and let df : X - L’ be the map, which thus corresponds to
the differential df : z — T,,(L).

25https://pdfs.semanticscholar.org/0b0f/91abb26f8ae7c6d304f0881f646d28cabf7a.
pdf

24


https://pdfs.semanticscholar.org/0b0f/91abb26f8ae7c6d304f0881f646d28cabf7a.pdf
https://pdfs.semanticscholar.org/0b0f/91abb26f8ae7c6d304f0881f646d28cabf7a.pdf

ABFﬁ-Lemma, Let X_ ¢ X be the subset, where he function f is locally
convez, i.e. where the Hessian of f, (full second differential) {d?f/0x;0z;} of f
is semipositive definite.

If the normal derivative of f on he boundary ofX is bounded from below by
a positive constant R,

df(v) 2 R,

where v : X - T(X) is the outward looking unit normal vector field, then the
image d(X.) c L' = R™ contain the R-ball inZ’,

df(X.) > B"(R)c L' =R™.

Let S’ = S"1(1) c L' = R™ be the unit sphere in the dual space to L and let
R(s") be the infimum

and let T, (0X) c T(0X) be the set of the supporting hyperplanes to X that
are the hyperplanes tangent to 0X at the intersection points of X with the
boundary of the convex hull conv(X) = conv(0X).

Let S’ = S" (1) c L' = R™ be the unit sphere in the dual space to L and
1 c L denote the supporting hyperplanes to X parallel to the hyperplanes at
the origin in L, which correspond to s’ € S’.

let R¢(s")f, s" € S’, be the maximum of the values of the differential d( f) at
the outward looking unit normal vector field to the boundary of X at the points,
where the supporting hyperplane is tangent to 90X, i.e. at z € 90X ng TE

Let Ry >0 and let U'(Ry) c L' be the set of the vectors r(s")s" € L' for all
s"e€S" and r(s") < Ry(s"). (if R is constant this is the R-ball.)

777

ABP Corollary. The Laplacian of f satisfies

ABP fX IACH)|"dz > fX IA(S)["dz > n"vol(B™(R)).

Proof. The arithmetic/geometric inequality applied to the (real positive)
eigenvalues of the Hessian of f at he points in X_ shows that the Jacobian of
he map df : X. — B"(R) satisfies

Jac(df) < (A(f))" [n",

while the integral of this Jacobian over X_ is bounded from below by the integral
over our R-ball of the multiplicity of the map df,

fx |Jac(f)\"dmz[Bn(R) card(@f " (I'))dl', I e B*(R) c L,

where card(@il(l')) >1 on B"(R) by the ABP-Lemma.

Linear PDE-Recollection. (Neumann Boundary problem.) Let a(z) and
b(y) be smooth functions in z € X and y € 9X. If

[GF) [ at@ydz = [ by

26 Aleksandrov—Bakelman—Pucci.
27 A supporting hyperplane to an X can be tangent to X at several points x.
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(this is Green’s formula), then there exists a smooth function f(x), such that
the Laplacian of f and the normal derivatives of f satisfy

Af(x) = a(z) and df (v(y)) = b(y).

Proof of the Isoperimetric Inequality. Let us assume without loss of
generality that the boundary of X has the same (n — 1)-volume as the unit
sphere,

vol,_1(0X) = vol,,_1(S™™),

let b=1 and let a > 0 be a constant, such that
[a/1] a-vol(X) =voly,_1(0X).
Let f(x) be a smooth function, such that
A(f)=a and df(v) = 1.
Then the above ABP inequality reads
a" Y vol,_1(0X) = a™vol(X) > n™vol(B™(1)) = n" *vol,_1 (8™ ) = n" twol,,_1 (0X)

Hence a > n and [a/1] shows that

vol(X) < —vol,-1(0X).

3|~

QED.
Question. Is there a natural Borel (measurable) correspondence

X xSt & 9X x B"
which would geometrically implement the inequality
v0lop_1 (X x S"_l) <volgp-1(0X x B™)?

Or, maybe a natural family of similar correspondences between powers of

these sets
(X % Sn—l)N PN (aX x Bn)N

N =1.2,..., which implements the inequality

J\IIEEO N/ 00l (2n-1) (X x SN < ]\lflfio ]{/volN(gn_l)(aX x Bn)N

2.11 Dimension 2: Steiner, Santalo, Cabre, Wirtinger...

3 Laplace Operators on Riemannian manifolds X
and Eigen Values \(X) and \y(X).

Let X be a smooth Riemannian n-manifold, e.g. a domain in R™ or a smooth
closed hypersurface, such as the n-sphere S™ c R"*!.
Recall that the Laplace operator on X is defined as

Af(z) =divgrad f(z) = iaff(a:)
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where §; [, (X) are orthonormal tangent vectors at 2 and 0? is the second deriva-
tives along the geodesic issuing from z in the 0;-direction, where this is inde-
pendent of a choice of orthonormal vectors by the Pythagorean theorem.

7?44 Exercises. (a) Show that %A f(z) equals the spherical average of the
second derivatives of f along geodesics issuing from =z,

A @)= e [ 9@

where S”7! c T,(X) is the tangent unit sphere of X at =,

(b) Express the integrals [y [Af(z)|? by lifting f(x) to a function f(7) on
the unit tangent bundle UT(X), twice differentiating f along the orbits of the
geodesic flow and integrating |92 f(7)}? over UT(X ) with the Liouville measure
(which is invariant under the geodesic flow) .

(c) f: X - RY be an isometric embedding (immersion will do) and show
then the Laplace operator coordinate-wise applied to f = (f1,..., fn) as Af =
(Af1,...,Afn) is equal the mean curvature vector field of X < RY interpreted
as a map X — R" (by identifying the tangent spaces T,(R") with RY for all
yeRY),

Af = mean.curv(X = RY),

where the mean curvature vector of X at x € X is the n-times spherical average
of the Euclidean curvature vectors of geodesic in X issuing from =z.

For instance, the mean curvature of the sphere S™(R) c R™! is 2u(s),
where nu(s) € Ts(R™*1) is the outward looking unit normal vector to the sphere
at s € S"(R).

(d) Using this definition of the mean curvature, show that it is equal to the
gradient of the function X ~ vol,,(X) on n-submanifolds in R™.

Observe that A is a negative operator as

[ ar@. p@)de =~ [ 1

on closed manifold by the Green’s formula (integration by parts) and the same
is true for compact manifolds with boundaries for functions f if either f or df
vanish on 0X.

Poincaré inequality concerns the smallest non-zero eigenvalue of the operator
-A = -Ax on the space of smooth Lo-functions f on X |§| with either Dirichlet
or Neumann boundary conditions, that is either for functions which vanish on
the boundary 0X or with the gradient grad f on the boundary 0X normal to
0X.

If all connected components of X are compact with nonempty boundaries
then there is no zero eigenvalue: harmonic function zero on the boundary vanish.

Thus the first non-vanishing Dirichlet eigenvalue is the smallest one, denoted
A1(X).

But since constant functions satishy Neumann’s condition, the first non-
vanishing Neumann’s eigenvalue on a compact connected manifold with or with-
out boundary is actually the second smallest one, which we denote Ay(X). E

281 5" means that [y f2(s)dz < oo.
29 According to our notation, compact disconnected manifolds X have Neumann’s A = 0.
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Ezamples. (a) The segment [a,b] has A\; =0,

7_‘_2

Aala,b] = —,
2la. 0] = 503

since the only bounded eigen functions of A = j—; on the line are sin and cos

and, for all 4,

(- 1)272

~ (b-a)?

(b) 7?7? Spectra of Riemannian Products One knows that the eigenval-
ues of —~Ax,y are the sums A\;(X) + \;(Y).

In fact, this follows from general properties of elliptic selfadjoint opera-
tors(See 77?7 below for a direct proof).

(c) The eigenvalues of the cube [0,7]" are the sums 47 + i3 + ... + i2. Thus,
there are roughly R™? eigenvalues \; < R.

Variational Principle and Green’s Formula. The (infinite dimensional
in the present case) linear algebra tells you that the eigen values A1, Aa,,,, Ai, ...
of A be they Dirichlet’s or Neumann’s ones, are equal to the critical values of
the quadratic function

)\1' [a, b]

o8N = [ f@Afde

on the unit sphere in he Hilbert space of Lo-functions f(x),where the corre-
sponding eigen functions ¢;, or spaces if these for multiple )\;, are mutually
orthogonal.

Green’s Formula. "Integration by Parts" shows that he above quadratic func-
tion is equal to the Dirichlet (energy) functional,

(£ AN =Lz, = [ ldfIPde

for smooth functions f on compact manifolds, such that either f vanishes on
the boundary X or the normal derivative of f on Jf vanish.

(In the case of disconnected boundary, one may have f wvanishing on some
components of 0X and the normal derivative of f vanishing on the remaining
components.)

Thus

d 2
M - IR
flos=0 [ ]z,

and )
d d
=0 [x | (@)]?dz
??? Remarks (a) Since the orthogonality to constants condition [, f(x)dx =0
(easily) implies that

f fA(z)dx = ﬁ(){) /XXX |f (z1 = f(z2)[Pdzydxy

30Probably there is a direct proof of the inequality fj;—//22 FA(t)dt < fj;//é(f'(t))th for func-

tions f such that ]_7;//22 f(t)dt =0, but I couldn’t find it.
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one can define Ao, as

1 in fXxX |f(x1 - f(x2)‘2d$1d$2
2v0l(X) '/ [x 1 f(2)]?da ’

A2(X) =

where this definition makes sense for maps f froX to an arbitrary Riemannian
(and Finsler) manifold with |a — b] understood as dist(a,b)

(b) The definition of A; via the Dirichlet functional |df|7, without a direct
reference to the Laplace operator makes sense for manifolds X with bounded
measurable Riemannin metrics and it is quasi-invariant under bi-Lipschitz maps:

if ®: Xy - X, is a l-Lipschitz (i.e. |d®| < I) homeomorphism, where
&~!: Xy - X; is also I-Lipschitz, then, clearly, both Dirichlet and Neumann
eigenvalues saisfy:

1
12n-1

Ai(X1) € A (Xo) <2771 (XY)

foralli=1,2,....

Ezercises. (a) Show that Dirichlet’s eigen values of subdomains Xy ¢ X
satisfy A\;(Xo) 2 \i(X)

(a) Let @ : X7 - X be an [-Lipschitz map, where the (compact Riemannian)
manifolds X; and X5 may have different dimensions and let the pushforward of
the Riemannian measure dz; be

é*(dl‘l) = 5(I2) . d.ﬁEQ

for some positive function d(z2) > 0 on Xo. (This makes dim(X;) > dim(X3).)
Show that the Neumann’s eigen values satisfy

_ pSeex, 8(a2)

Ai(X .
( 1) infwst (5(.’1?2)

(b) Show that, for all pairs of compact Riemannian manifolds X; and Xo
where dim(X1) > dim(X2) (e.g where X is the n-cube [0,1]" and X = X" is
arbitrary) there exist positive constants ! > 0 and ¢ > 0 depending on X; and
Xs and I-Lipschitz maps,

D Xl - )(7

such that the pushforward measures ®,(dz;) are constant §-multiples of dz.

Remark. Arbitrarily large balls B(R) in hyperbolic spaces may have arbi-
trarily large Dirichlet’s A;.

Less obviously, one can show, using Riemann surface expanders, that all
compact manifolds X of dimension n > 3 (4 maybe) admit arbitrarily large
Riemannian metrics with arbitrary large Neumann’s As.

(c) Derive the above formula for the eigenvalues of A x .y from the variational
principle.

(d) Combine this with (b) for Xy = [0,7]™ and show that Neumann’s eigen-
values of compact connected manifolds X satisfy

Ai > constx (i"? - 1),

(e) Derive a similar bund from this for Dirichlet’s eigenvalues of compact con-
nected n-manifolds with boundaries by applying (d) to a connected n-manifold
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X, which contains two copies of X e.g. to the double of X obtained by gluing
two copies of X across their boundaries.

(f) Let X be a compact manifold with a boundary and show that he first
Dirichlet’s eigenvalue of X is equal to the

supremum of numbers A, such that X admits a smooth positive function

f(x) >0, such that
-Af(z) 2 Af(x),

that is A
A1(X) = sup inf m
0 2eX  f(x)

Hint. Use the maximum principle for the first Dirichlet eigenfunction fi,

(g) Divide a closed Riemannin n-manifold X into two domains X_ and X,
with common smooth boundary ¥ = X_nX, c X, let A0 (Y) = max(Aq (X A1 (Xy)
and show that

)\2(X) = }}IClg( )\max(y)a

where ” sup” is taken over all smooth closed cooriented hypersurfaces Y c X.
Laplacian on Riemannin Metric Measure Spaces. This A is defined
on X =(X,g,u) as
A(f) = div,grad, (f),

where themu-divergence of the vector field 7 on X is the ratio of the 7-Lie
derivative of u by p, which makes sense for u(z) = p(x)dz where p(z) > 0. In this
case the u-Laplacian at least for smooth p has the same properties as the pure
Riemannian one which can be seen, for instance, by looking at the Riemannian
Laplacian on the S'-invarian functions on the warped product X x S with the
metric gy + p?/"ds?.

3.1 Spectra of Cubes, Spheres, Balls and Hyperbolic Cusps
3.1.1 Rayleigh—Faber—Krahn Inequality

rewrite
Let f: X — R, be a non-negative measurable function on a measure space
X =(X,un) eg. on X =R", which is supported on a subset with finite measure.
Recall that the f -pushforward of p is the measure on R, such that

1(S) = nf1(S)

for all Borel subsets (segments [a,b] will do] will do) S c R,.
Define the O(n)-invariant model f(z) = io(n)(HgH) of f as the radial func-

tion on R™, such that the f-pushforward of the Euclidean measure dz is equal
to the f -pushforward of p, that is such that the Euclidean volumes of the
balls B"(a) c R™ for all @ > 0 , where the function f is < a, are equal to the
p-measures of the corresponding subsets in X, i.e. where f(z) <a,

Remark. In the case of the Faber-Krahn theorem, the functions f and f are
defined on the same space R"™, but one also may compare a function f on an
arbitrary n-dimensional Riemannin manifold with its O(n)-symmetric model
on R™ as well, more generally, on another n-manifold with O(n)-symmetry, e.g.
the sphere S™ or the hyperbolic n-space.
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Now, similarly to the above proof of the Sobolev&... inequality, the Eu-
clidean isoperimetric inequality

0L, (X0) [0l (D(X)™™ 1) < vol,y (B™) fool,1 (8™ 1)

and the coarea formula [coar] imply that the differentials of Euclidean O(n)-
symmetric models f(z) of Lipschitz functions f on X = R" with bounded sup-
ports satisfy the following

|df| L, -Symmetrization Inequality.

l4fls, = §/ [ ldr@)lrde < lafls, = 3/ [ lds@)l»
for all p > 1.

It follows that the infimum of the ratio

Vo.a(X) = (ldf |, /|f 2, a>1

over all Lipschitz functions on R™ with supports in a given bounded domain
X c R" is bounded from below by ~yp q(B"(a)), where B™(a) c R™ is the ball
with the volume equal to that of X.

This, for p = ¢ = 2 is called the Faber-Krahn inequality, which, as ex-
plained below, shows that

among all bounded domains in R" with a given volume, balls have the highest

bottom oscillation frequency.

3.1.2 Bochner Formula and Lichnerowicz \;-Inequality
3.2 777
More specifically the "spherical Poincaré" says that

A2(S"(1) =n

where the corresponding eigen functions are the linear ones. In fact a straightfor-
ward computation (see section ??? below) shows that the Euclidean coordinates
x; regarded as functions x;(s) on

S™ =420, Tnty, w221

satisfy
Agnzi(s) = x;i(s) - mean.curv(S", s) = —nx;(s),

which agrees with the identities
2
> i (s)|2ds = f 1ds = vol (S"
Jon TlaPds= [ 1ds = vol(s)

and

dﬂ:f ds = n- vol(S™),
fsn;Hx” o, s n-vol(S™)

Bochner Formula
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SALr? = Hess [ + (dAf.df) + Ricci(df, df)

0= fX |Hess f||% = Mdf, df) + Ricci(df, df)

[Hess f[? > L] Af]
Riccign = (n—1)ggn
and Lichnerowicz Ai-theorem
A1 for convex domains by needle integration and by needle decomposition.

3.3 Cheeger’s constant and Cheeger’s )\, inequality

change!

Let X be Riemannian n-manifold(possibly with a boundary and let che(X)
be the supremum of the numbers ¢ > 0,such that all smooth domains V c X
with vol(V) < 2vol(X) satisfy

vol =n—1(0V) > ¢-vol, (V).

3.3.A. Cheeger Inequality [Chel1969]. Let a smooth function on X satisfy
one of the following conditions

¢, the volume of the support of f is finite and it is smaller than the volume
of its complement, i.e. vol,(suppf < 2vol(X);

o, the function f is orthogonal to constants,

[X f(x)dz =0.
Then

he?
h Jarae 22 [ s
[chels [ NarPaz> = [ e

Proof. The o7 case in the form

£l =/ [, f@p2dr < TEarle =/ [ 1ar(o)12dn

follows from he Maz’ya-Cheeger conditional inequality (Lo-Example???) while
o, reduces to e; by the following.

[\ = X2]-Lemma. If the first Dirichlet eigenvalues of all smooth domains
V ¢ X with vol(V) < %vol(X) satisfy A(V') 2 ¢, for some ¢ = ¢(X) >0, then the
second Neumann eigenvalue of X is also > c.

In fact, let f be a non-zero Neumann’s A-eigen-function in X, let Y c X be
the zero set of f,which divide X into two reagins, X, and X; with common
boundary Y.

Then

f& de(x)dx:fX;f(x)Af:)\[X; FPde

by the Green’s formula, since, in both regions, f vanishes on Y and its gradient
is normal to he remaining boundaries of X=.
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Since the minimum of the ratio

2
min IX af
A
on functions in X normal to the constants is achieved on a non-zero As-eigen-
function fy,an application of e; to the smallest of the two X5 yields e5.

3.3.B. On Logic of Proofs of 1 and e5. The reduction of e to e; appears
less elementary than the proof of e;.

For example, if X is a polyhedral domain and f is a piecewise linear function,
the proof of the e;-case of [che];/, in section ?77 can be rendered in a purely
algebraic (first order) language, namely that of ordered real fields and piecewise
affine (or semialgebraic if you wish) function, while the reduction e; = ey
depends on eigenfunction that are minima of the Dirichlet functional in the
space all(!) functions.

Besides, while the proof of e; given in 77?7 depends only on the isoperimetric
properties of the domains A(t)) bounded by the t-levels B(t) = f~(t) of our
function f, while, in the ey case, one needs this for all domains in X with
volumes < 1/2vol(X).

However, if one doesn’t care for sharpness of constants one can proceed as
follows.

function on a compact Riemannian n-manifold, possibly with a boundary,
and let, as earlier,

B(t) = f71(t) = 0A(t) c X, for A(t) = f'[t, ).

Let, for some to > 0, all domains A(t) ¢ X with ¢ > satisfy the same isoperi-
metric inequality as in 2.6.A:

vol, (A(t)) < ¢+ (vol,—1 B(t))" for some v > 1.

Then the L, nom of f is bounded in terms of its L; norm, the L,-norm of the
differential of f, where, as in and he volume vg of A(tg), where

1 v-1

1_
P oa v

7

as follows )
pc 5o
”f“psjﬂdeLq*'vo Il

Indeed, this follows from the Maz’ya-Cheeger inequality 2.6.A applied to the
function h(t) = f(x) — to restricted to A(ty), where h is positive and vanishes
on B(0) = 0A(t), and where, clearly, |df|r, = |dh|L,, and

13
1 fllp < 1Alp + to &/vo < [Rlp +v5 [ £l

Next, let [ f(xz)dz =0 as in e3 and let X_ and X, be the negative/positive
regions of f of volumes v_ and v_, and let f_(z) = min(f(z),0). Then

1-1
11 < Zdfle, + (=) 71D

Vo
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Finally, let v<vg and let the domains At) = fH(~o00,t] for t < 0 satisfy the
isoperimetric inequality

vol, (A™(t) < c(volp,-1(0A™(1))",

1-1
|f||ps(pj(1+§) )Idflq-

For instance, if v =1 and p = ¢ = 2, then

7]z < 2c\/§|df|2

This proof uses the isoperimetric inequality only for the levels of f, but the
factor \/g > 1 makes it non-sharp.

To make it sharp, let S = Sy(X) = (S,ds? b(t)ds?) be the formal sym-
metrization of (X, f) (see section??), that is a one dimensional Riemannian
manifold S = (S, ds?) isometric to (R with a measure b(t)ds.

The above argument applies to (Sds? b(s)ds) — in fact, it applies to all
metric measure spaces and yields Cheeger’s inequality for (S, f, that is

but by applying Cheeger’s argument to the formal symmetrisation of f...
777

then

on sharpness on hyperboluc cisps ec,

evaluation of Cheeger Constant [che] for specific manifolds convex sets, hy-
perbolic spaces, hyperbolic balls, hyperbolic quotients.

[Chel969].

4 Minkowski and Brunn

DIvVIDE AND RULE.(Hadwiger-Ohmann?) cut Let two subsets X,Y c R™ be
divided by a hyperplane into X_u X, = X and Y_uY, =Y, then the Minkowski
sums of corresponding "half-subsets" X_+Y_ and X_+Y, in R" do not intersect
— they lie in different half-spaces of R™ divided by H — and, since

X+Yo (X +Y)u(X,+Y,),
vol(X +Y) 2vol(X_ +Y_) +vol (X, +Y,).
Therefore, if H equidivides both sets,

vol(X_) =vol(X,) = %’UOZ(X) and vol(Y_) = vol(Y;) = %vol(Y),

Then the Minkowski ~'/"-inequalities for the pairs (Xz,Y%)
vol(X_ + Y )™ > wol(X_)Y™ + wol(Y_) V™,

and
vol (X, + Y )™ > wol(X,)Y™ + wol (Y, )™,
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imply this inequality for (X,Y)

vol (X +Y)Y™ >(vol(X_ +Y.) +vol(X, + Y+))1/” >

((UOZ(X—)IM + UOZ(Y—))l/n)n + (Uol(X+)1/" + vol(Y+)1/”)n)1/n =

vol (X) Y™ + pol(Y)H™

Since all sets in R™ can be translated to a position where they are equidivided
by a given hyperplane H c R™, the ~'/"-inequality for (X,Y") reduces to those
for two pairs of twice "thinner" sets (X3, Yz).

Then by equidividing further and further we reduce ~/™ for (X,Y) to in-
equalities for arbitrary thin sets, i.e. to intersections of X and Y with regions
H"™ 1 x[0,e] c R™ between pairs of mutually e-close hyperplanes.

If X is a smooth or piecewise domain and H is transversal to X then

vol, (X n H™ ' x [0,e]) = €-vol, (X n H™™) + 0(5)

ie.
[vol,, (X n H" ™ x [0,¢]) - € vol, (X n H"|/e - 0 for ¢ - 0.

Moreover, the intersection X n H"! x [0,¢] c R” is "physically" o(e)-close
to the product
(X nH" ') x[0,e] cR",

that is the volume of the symmetric difference between the two subsets is o(e).

It follows, in the limit for € — 0, that the ~/"-inequality for (X,Y") reduces
to ~1/" for pairs of products X’ x [0,e] Y’ x [0,8] for X', Y'R™ ! which is
obviously equivalent to the ~/("~D_inequality for (X’,Y")

Then he Minkowski ~'/"-inequality for piecewise smooth domains follows by
induction on n and, if you care, this inequality for general measurable subsets
follows by approximation.

Isoperimetric Corollary. Isoperimetric inequality for smooth and piecewise
smooth domains X c R" follows from ~/™ applied to X and the e-ball B"(¢)
fore - 0.)

Indeed, since

00l (X + B"(€)) = vol,, (X) + evol,,—1(0X) + o(e),
the ~™ implies that
(0ol (X) + €voly,_1 (0X))™ + 0(€) 2 vol,y, (X )™ + evol,, (B™(1)) " —
00l (X)) +ev0l,_1 (0X) > voly, (X )+nvol(X) " D/mevol, 1 (B™ (1)) "+o(e) =

vol,_1(0X) 2 nvol(X)(n_l)/nUOanl(Bn(1))1/n =

v0ly—1(0X)

__onmANTE 7 . n 1/n
sol(X) D =1 Voln-L (BH (L),

31Here R™ is represented as H" ! x R.
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which is recognizable for the constant-wise sharp isoperimetric inequality, as it
becomes equality for X = B™(1):

volp-1(S™(1))
vol(B™(1))(n-1)/n

=n-vol,_1(B"(1))Y".

(This proof, unbelievably primitive, sharply contrasts with the elegance of
the ABP-proof, but, at the bottom, the two arguments rely on the same prin-
ciple.)

Ezercises. (a) Prove ~'/™ for connected solvable simpy connected n-dimensional
unimodula@ Lie groups G. Hint. Use a normal codimension one subgroup in
G for HP

(b) Show that If the Haar measures of subset X and Y in a compact topo-
logical group G satisfy mes(X) + mes(Y') > mes(G), then X -Y = G.

Remark . (a) There are similar results for infinite discrete groups G, e.g.
Mann’s theorem for G = Z, but the proofs of these are more subtle. may (b) If G
is an infinite, e.g discrete non-abelian group then it may satisfies much stronger
isoperimetric and Minkowski type inequalities for sufficiently large and /or dense
subsets as we shall see in section 777

Projection Concavity Theorem. A measure p = p(x)dz on R™ with
Borel measurable density p(z) , z € X, is called *'/*-concave if the function
p(z)Y is concave on the support of .

BRUNN’S THEOREM. Let 1 be a *'/*-concave measure on R” with convex
support V c R™ and let 7 : R® - R"* be a surjective linear map. Then the
pushforward measure m,pu on R" % is 2k _concave.

Ezample. If V c R"™ is a convex subset and u(z) is constant on V, this says
that the function

1/n

y = (voln_1 (771 (y)) 7%,y e R"7F,

is concave on the image 7(V) c R*7*,

4.1 Needle Decomposition
Let a convex set W c R™ be divided by a hypersurface Y ¢ W into two parts,

W=WyuWy, WinWy=Y =dwW, = dw Wi

such that vol(W7)/volW = X< 1/2.
Payne-Weimberger "Needle" Inequality.

vol (W)

lno1(Y) > ex———
voln-1(¥) C/\diam(W)

for ¢y = 1.
Remark. This inequality is sharp, for instance if W is a "thin" (think of a

needle) cylinder,

W=Vx[0,1], VcR" 1, diam(V) < 2.

_27

32The Haar measure is biinvariant.

33See https://link.springer.com/article/10.1007/s00039-023-00647-6| for such an in-
equality for more general locally compact groups.

349y stands for the topological boundary of a subset in W.
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but if W has strictly convex boundaries, then (this will be clear with the proof
below) ¢y > 1 for all A.

Proof. Cut W be by a hyperplanes H c R™
W=WuW" WnW"=WnH
such that H cuts the volumes of Wy and W5 in equal proportions, that is
Wi =W/ oW/, W/nW/=W,nH,i=1,2,

where
vol(W7) Jvol (W3) = A(= vol (W) JvolW3),

and where we assume for the simplicity sake that H is transversal to Y and thus
divides
Y=Y uY”,

such that
0ol 1 (Y") +vol, 1 (Y") = vol,_1 (V).

One knows in this regard that such a cut always exists. In fact an obvious
continuity argument (the trivial case of the Borsuk-Ulam sandwich theorem) shows
that there always exists a hyperplane H, which divides W7 and W5 into equal part,
i.e. with vol(W/) = vol(W/").

Then observe that, given such a cut,

the lower (isoperimetric) bounds on'Y' and Y

vol (W)
diam(W")

vol (W'

dvol,—1 (Y") > cn—->n
and vol,-1(Y) C’\dmm(W”)

vol,_1(Y") 2 e

imply the same inequality for Y,

vol (W)

not1(Y) > cy——m——.
voln-1(Y) 2 ex diam(W)

Keep cutting the resulting convex subsets into equal parts,
WS LW (WD} S LW (WD) (W™ (W) 5 ..

g cut A\ 7y cut IANAY ININIT IANAY AN AR
Wi = AW, (W)™ = L)) (W)™, (W)™, (W) = .
and thus reduce the inequality

vol (W)
volp—1(Y) > ecn—"-"—<
n1(Y) )‘diam(W)

with the desirable constant ¢y = n to such inequalies for "infinitesimally narrow
needle shaped" convex subsets W® c R™, where each such W€ is contained in the
o(1)-neighbourhood [] of a straight segment [21,22] ¢ W, and where the corre-

35This o(1) means € —» 0
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sponding hypersuface Y® ¢ W® equals the intersection of W® with a hyperplane
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normal to the segment [y, 2] Y|

36See [http://www.math.tau.ac.il/~klartagb/papers/seoul_slides.pdf| for more expla-
nations and references.

4.2 Reparamerization, Knéte Map and Prekopa-Leindler
inequality

4.3 Mass Transportation, Brenier Maps...
4.4 Alexandrov-Fenchel and Hodge Inequalities
4.5 Minkowski Inequality in Arakelov Geometry

5 Filling Inequalities
5.1 Non-Sharp Federer Fleming Filling Inequality in RV

???7A. Euclidean Filling-by-Collapsing with Codimension one Theorem. Let Y =
Y™ 1 c RN be a smooth submanifold .

Then there exist constants Cy and Dy and a smooth homotopy ®:(y) of the embedding
Y < RY, that is a smooth map

(I):YX[Oal]%RNa (I)y,():y»

with the following properties.
oy, the partial t-derivative. of ® is bounded by:

10:®| < Dy voly (X 7T );

®ap|n-1 The Ln_1 norm of the differential of the map ® on the subset Yy =supp A"df c Y,
where rank(®) =n is Cyp-boundd

, tdr @)ty < o

Consequently, the n-dimensional volume of the map {1{3_7] satisfies
®0l ol (P) < DNC'Kflvolnfl (V).
e,_o The image of ®i=1 is a piecewise smooth subset in RN of dimension (n —2),

dim(®1(Y)) =n-2.

Remark. If N=mn and Y c R" is closed hypersurface, then the above implies a non-sharp
isoperimetric inequality, since the domain X bounded by Y is, because of e,,_3, contained in
the image of the (cylinder) map .

(A natural candidate for a collapsing ¢-like map. from the boundary X of a closed hyper-
surface X c R" is the canonical retraction of X to the cut locus of Y = 9X in X, but there is
no apparent simple geometric map, which would also satisfy ®df|n-1 and or e,_s.)

In fact, ey, and e, o show that closed submanifolds Y;,_; ¢ RY (this effortlessly ex-
tends to quite general (n — 1)-cycles) bound "cylindrical" mn-chains with volumes bounded
by constholn_lY"/”_l.

Proof of ?22A. Since N > n -1, the integral [ Wdz converges at zero in RY | the mean
of the dist™ !-function in the ball BV (r) c RY satisfies,

1

- - _ 7(n71)d < " n
’UOZN(BN(T)) BN (r) HI 1‘0” T < Ccons N/T'

for all zg € RV,
It follows, that for all submanifolds (not necessarily of dimension n — 1) in RY, there exist
points z € BN (), such that

gD gy ¢ COnStNOlY)
[ Iy =l Dy < RS
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Therefore, the radial projection 15, € BN (r), of Y = Y™ ! from such a point z to the
boundary of a convex subset V 5 BN (2r) satisfies:

di V). thvolp_1 (Y NV
vl sV a V)< [ vy s PO oot (VO V)
ynv rN

Now, let us partition RN oY into parallel translates of the cube [o, d]N c RV, where d is
much larger than vol,_1(Y)Y/"" ! say

d = (10N) 0Nyl (V)1

Then radially project the intersections of Y with these cubes, say Y n ([0,d]Y +z;, where x;
are vectors in the lattice dZVRY, to the boundaries of these cubes with a controlled increase
of their volumes, say by factors (2N)¥.

Then apply the same to the images of these maps intersected with the(/N — 1-faces of the
cubes and continue until you land up in the n — 1-faces.

Since the cubes were chosen so large, none of these maps is onto, hence their imagers can
be radially projected to the (n — 2)-dimensional boundaries of these faces.

Then composition of all these radial projections naturally included into a homotopy of maps
satisfies ep, *|aa|n-1 ®vol and e,_o. QED.

Questions. (a) What are the optimal constants C'y and/or Dy in ep,, ®|dp|n-1 and e,q7
Do they depend on n rather then on N? (Compare with ???7C below).

(b) Does ?7??A hold for submanifolds Y in complete simply connected spaces with sect.curv <
07

Does ???A hold with logarithmic bound on |0¢| and on ||d®|
sect.curv < 0 and with rank <n-1=dim(Y)?

Does 7??A hold in complete N-dimensional manifolds with sect.curv > 0 (and singular
Alexandrov spaces) with volume growth constRYN?

in symmetric spaces with

n-1

5.1.1 Slicing by Parallel "Planes

. Let us show that an isoperimetric (filling) inequality for maps — we allow non-embeddings
Y < Z but keep notation as if these are embedding — for manifolds (or cycles) of dimensions
n-1 and n -2 in a Riemannian manifold Z, e.g. Z = RN~1 implies a similar inequality for
maps Y"1 - Z xR.

In fact, given Y — Z x R, the mean/mean value argument, implies, as earlier, that, for all
d there a "greed of parallel Z-planes within distance d one from another", that is a subset
Z' = Z x (dZ + t). for some t € R, such that

volp-2(Y N Z") <volp-1(Y)/d.

Let d = voln—1(Y)Y™ 1, let is fill in all intersections Y N Z x {di +t}, i € Z by (n - 1)-chains
in the "planes" Z; = Z x {di+t} and thus decompose the (n —1)-cycle (represented by) Y into
the sum Y =+, Y;, where each Yj is contained in the "d-band between two "planes",

YicZx[di+t,d(i+1)]+t.

Then, fill in all Y; by firstly normally projecting them to Z; = Z x {di + t} and then filling
them in these Z; = Z.

Ezample. Let Z =R? and Y ¢ Z xR = R3 be a surface with unit area. Then d = 1 and the
total sum of the planar domains in all Z; encompassed by their intersections with Y is < 1/2
by the (rough) 2-dimensional isoperimetric inequality. Then we project each Y; to Z; which
needs d-area of filling 3-volume, while nothing is added in Z; since dim(Z;) = dimY; in the
present case.

Thus we conclude that the domain X c R3 bounded by Y satisfies

vol3(X) < Cearea(Y)?/? with C, = 2 instead of C3 = ﬁ = (::)/33/2 of the sharp inequality.

Question. Does the Euclidean type filling inequality hold for (n — 1)-cycles Y in product
manifolds Z7 x Z3, where Z;7 and Zs are complete contractible Riemannian manifolds, such
that sect.curv(Zy) <0, sect.curv(Zs > 0 and where Zs has (at least) consta R4™(22)_yolume
growth?

Remark. The (n1-1)-cycles Y c Z;. are known (see [???] and section ???) to bound chains
X with

ny
v0ln, (X) < constn,voly, —1(Y) 171, ny =2,3,...
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Proof. Let Bf c V be as above, apply Vitali's lemma to the covering of V' by

and Y"271 ¢ Z5 bound X with

constn.,

no
v0lny (X) < volp-1(Y)"2"1, no=2,3,..,

N
const;2/

(see section 777 in [?77]).

Such inequalities with n1 = dimZ; and na = dimZ2 imply the corresponding Euclidean-type
isoperimetric inequality for hypersurfaces in Z; x Za by the (formal) Schwarz symmetriza-
tion argument (see section ??? below, [grigorian???95]|, section 9 in [waists???72003], [mor-
gan????2006] and references therein) but a similar product property is unlikely to hold, in
general, for cycles of higher codimension.

However, this may work in the (annoyingly eclectic) [curv < 0] x [curv > 0]-case.

5.2 Filling Lipschitz Cycles in Riemannian Manifolds

Let X be a Riemannian manifold and

Cy = (C*(Xv]Fva*) = ({81 G — i*l}i:0,1,4.4,n:dim(X)

be the complex of Lipschitz singular chains: the i-chains are finite sums ¢ = Zj fjoj, where
0t A* - X are Lipschitz maps of the standard i-simplex to X and f; € F. _

If F comes with a norm (e.g. F equals R, Z, or Zg = Z/27), then each chain ¢ € C* is given
the Riemannian i-volume norm, vol;(c) = ||cllvor; = X; || fjllvoli ().

Clearly ||0;|| = oo for all ¢ > 2 (and also for ¢ = 1 if the norm in F is unbounded).

The corresponding minimal norm on the homology H;(X) = Kerd;/Imd;;1, that is the
infimum of the volumes of the cycles ¢ € Kerd;-1 representing an h € H;(X) is called the
volume or the mass norm,

wvoli(h) = in fr-pvol;i(a).
If X is compact, or, more generally, admits a co-compact isometry group, then one easily

sees that this norm does not vanish: infy.qvol;(h) > 0, for h # 0.
The i-th F-systole of X is then defined as

syst;(X) = }ilril;voli(h), where h € H;(X).

5.2.1 Riemannian Federer-Fleming

A minor modification of Federer-Fleming’s "filling-by-collapsing" argument from section 77?7
yields. the following general filling inequality for "small" Lipschitz chains in all Riemannian
manifolds with bounded Lipschitz geometries.

Let X be a Riemannian manifold and

+ = (C(X,F,04) = ({0 : Ci = Cic1}im0,1,...,N=dim(X)

be the complex of Lipschitz singular chains: the i-chains are finite sums c¢ = ¥, fjo;, where
;¢ A' > X are Lipschitz maps of the standard i-simplex to X and f; € F.

If F comes with a norm (e.g. F equals R, Z, or Zz = Z/2Z), then each chain c € C? is given
the Riemannian i-volume norm, vol;(c) = ||cllvor; = X; || fjllvoli ().

Clearly ||9;|| = oo for all ¢ > 2 (and also for ¢ = 1 if the norm in F is unbounded).

The corresponding minimal norm on the homology H;(X) = Kerd;/Imd;;1, that is the
infimum of the volumes of the cycles ¢ € Kerd;-1 representing an h € H;(X) is called the
volume or the mass norm,

voli(h) = infi)-pvoli(a).

An N-dimensional Riemannian manifold (possibly with a boundary) X is bLg (bounded
Lipschitz geometry) if there exit numbers 7o >0 and A > 0, such that all ball B(r) c X, r <rg
admit A-bi-Lipshitz embeddings B(r) — RY.

For instance compact manifolds and those admitting co-compact isometry groups are bLg

Ezercise. Show that the mass/volume norm does not vanish in the bLg manifolds:
infp.ovol;(h) >0, for h #0.
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77?7 A. Theorem Let X be an N-dimensional Riemannian bLg manifold. Then there
exists a positive constant By = Bo(X) >0, such that if n—1>1, then every (n—1)-cycle b in
X with ||b]| < Bo satisfies

1Bl fa1 < cons||b||ﬁ7 where const = const(N,rg, \),

where the n-fillings ce, varepsilon >0 of a (n—1)cycle b, i.e. chains Oce, such that dce = b
and || < cons||b]| =T =&, & - 0, are (implemented by) the cylinderes of Lipschitz map ®.
from the support of b to X, such that dist(x,Pc(x) < const + € for all x in the support of b
and such that the rank of the differential of ®. is almost everywhere <n —2.

If, moreover, X 1is compact, then all b homologous to zero satisfy

lIbll iz < constx|[b]|.

mostly move to ?77?From const(N) to const(n). A Riemannin manifold X is
ulLe(uniformly locally Lipschitz contractible) if there exist positive constants constants
,r0 > 0 and A > 0 such that all balls B(r) = Bz(r) ¢ X, z € X, with r < r9 admit A-Lipschitz
homotopies Hg, t € [0,1] to points in X:

these homotopies are A-Lipschitz maps H : B(r) x [0,1] - X, such that Hy : B(r) - X
are equal to the original embeddings B(r) — X and H; are constant maps, B (r) — z'(z) =
Hy(Bg(7)).

77?7 B. Theorem. Let X be an UulLc Riemannian manifold. Then there exists a positive
constant Bo = Bo(X) >0, such that if n—12>1, then every (n—1)-cycle b in X with ||b]| < Bo
satisfies

1Bl £az < consHbHﬁ, where const = const(n,rg, \),

If, moreover, X is compact, then all b homologous to zero satisfy

[1b]] £51 < const x [b]].

Remark. Unlike the above theorem ?77A, it is unclear if there are n-fillings ¢ of b, which
can be implemented by the cylinderes of dim(b)-controllably Lipschitz homotopies ®; with
dist(x,®c(x)) < const(n)|b]|¥/?~" and with the ranks of the differentials of ®; almost every-
where bounded by n — 2.

5.3 Vitali Decomposition of Submanifolds and Measures
into e-Round Peacies

??77A. Vitali Covering Lemma. Let a metric space X, e.g. X c R™, be covered by finitely
many subsets B; ¢ X, i € I, of diameters §; (e.g by balls of radii r; = §;/2). Then there exists a
subset J c I, such that the sets B;, j € J, do not pairwise intersect and such that the closed
d;-neighbourhoods™| Us, (B;) (e.g. the concentric balls B(3r;) in the case of r;-balls) cover X.

Proof. Let By be the subset with the largest diameter, let B2 be the largest subset which
doesn’t intersect B, let B3 be the largest one, which doesn’t intersect BjuB2 , and, in general,
let Bj;1 be the largest subset, among B;, which don’t intersect the union By U...uU B;.

Since each B; intersects some Bj; with 6; = diam(B;) > diam(B;)

Us;(Bj) = Bi
and the proof follows. ,

Corollary "Round" (Quasi) Decomposition of Measures and Submanifolds.

Let V be a metric space, e.g. V ¢ RV with the Euclidean metric (distance function)) and p
be a Borel measure in v, e.g. the n-volume measure on a smooth n-dimensional submanifold
in V cRY and let v(r), 7 > 0, be a positive monotone increasing function, e.g. v(r) = er™.

A Borel (e.g. closed) subset B c V is called v-round with respect to p if

w(V) 2 v(diam(V)).
More specifically an n-dimensional submanifold V' c X is called e-round if
voln (V) > e-diam(V)™

For instance the Euclidean n-balls B™(r) in R" are ep-round with €, > n™", while the
cylinders B"~1(r) x [0, R] are &(n,r, R)-round with e(n,r, R) — 0 for R/r — oo as well as for
R/r - 0.
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Uj = Uq,(BY), for dj = diam(B}) and let Uy, = Uqg, (Bj) ¢ V be Vitali's disjont
subsets, which, observe, cover at least vol,,(V)/3™.
Then let pp(v) be the distance functions on Uy,

pi(v) = dist(v, By),

let S;* = p~' (k) c Uy, be the level of the function p, which minimizes vol,,_1 (p~' (1))
for 0 <r < dj = diam(B}) and observe that the subsets

Bit =pp'[0,rk] cUrc Vike K c J,

satisfy the requirements of 777C by. the coarea inequality.

5.3.1 From const(N) to const(n) by Cutting off Bubbles on Narrow
Necks.

Let Z be a Riemannian manifold and A, B, d be positive numbers, such that
o4 (n—2)-cycles Y’ in a Riemannian manifold Z bound (n-1)-chains X’ with
volumes

n—1
1—2
’

[Voly-2] vol(X") < A-voly,_1 (V')
o5 (n—1)-cycles Y with dimeters D, bounds chains X in Z with
[D -volp-1] voln(X) < BD -vol(Y)™"" 1

e, (n—1)-cycles Y in the é-balls B, (0) c Z for 6 < d bound n-chains X c B,(9)
of volumes

[6-Voly 1] vol, (X) < BS -vol(Y)Mn?

?777B. Let V' be covered by finitely many v-round subsets B; c V, iel. If
v(3r) < Cu(r) for all r >0 and some C > 0,

(e.g. v(r) = er™, where C = 3™). Then there exit finitely many disjoint v-round subsets
B;.r c 'V, jeJ, which contain a "substantial amount"” of the measure of V', that is

+ w(V)
M(]%Bj)z o

Proof. Let pj > 0 be the maximum of the numbers p > 0 such that the p-neighbourhood
U,(B;) cVis v—roundlﬂ and apply Vitali ’s lemma to the covering of V by B} = Up;f (Bi),
iel. E’This [argument, I guess, is used everywhere in analysis; I learned it from the geometric
paper [We???77]

?7?7?7C. Let X be a Riemannian Manifold V ¢ X a compact n-dimensional submanifold with
a (possibly empty) boundary OV let u = dv be the Riemannian measure of V, let v(r) = er™
and let B; ¢ X be a covering of V' by v-round subsets.

Then there exit finitely many disjoint ©/9™-round n-dimensional submanifolds By* c V/,

k € K, such that
1% ln (V
#(UB;+):UOln(UB;+)ZH( ):'UOn( )
KeJ kekK 9n 9"

and such that the (n - 1)-dimensional volumes off the boundaries of B**k in V satisfy
2"voln (BE™")

voln-1(0v Bi*) < diam(B)
k
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and (n - 2)-cycles Y’ c B,(§) bound (n - 1)-chains X’ ¢ B,(4) of volumes
[0-Vol,—2] voly_1(X) < B§ - vol(Y)""1/"2

Then there exists a constant C, which depends only on n, A, B (but not on d),
such that (n - 1)-cycles in Z bound chains X with

00l (X)) < volp_q (V)7L

Remark. The condition e, with some d > 0 is satisfied by all compact manifolds
Z and also non-compact complete ones with locally bounded geometries.

Idea of the Proof. Property e 4 allows a decomposition of Y into a sum Y =
Y7 = Yp + Y5, such that e applies to ("connected components" of) Y, and where
vol(Yz) < (1 —€)vol(Y1). Then this applies to Y3, etc and eventually reduces the
problem to cycles of volumes << d"~!, where e, leads to termination of the iteration
process.

5.3.2 References

[Avva-Nabut 2023]. S. Avvakumov, A. Nabutovsky, Boxing inequalities in Ba-
nach spaces, https://arxiv.org/pdf/2304.02709.pdf

[Gro1983]. M. Gromov, (1983). Filling Riemannian Manifolds. J. Diff. Geom.
18 (1): 1-147.

https://www.ihes.fr/ gromov/wp-content/uploads/2018/08/fillingRiemannianManifolds.
pdf

[Weng2003] Stefan Wenger, Isoperimetric inequalities of euclidean type in metric
https://arxiv.org/pdf/math/0306089.pdf

[Weng2007] Stefan Wenger, A short proof of Gromov's filling inequality
https://arxiv.org/pdf/math/0703889.pdf,

Questions.

(Hypebolic case? sharp constant /27

2. proof induction with hyperplanes.

3. Induction with spheres, Banach spaces

5.4 Dehn-Levy-Almgren Local-to-Global Argument

Here we are mostly concerned with explicite bounds on the constants const,, and
const x for "simple” manifolds and we start with

Sharp evaluation of |07} |lrand for round spheres. If X is the round Euclidean
sphere S™ with the O(n + 1)-invariant i-volumes normalized so that the equatorial
spheres S* c S™ have volume 1, then the average (i + 1)-volume of the geodesic
cones from the points s € SV over an equator S? c S™ (with respect to every
probability measure on S™), obviously, equals 1/2. Since the group O(n +1) is
transitive on the set of tangent i-planes in S™, the equality ||S%||;qna = vol(S?)/2
for the averages with respect to the O(n +1)-invariant measure on S™ implies that
lle|lrand = vol(c)/2 for all i-chains ¢; hence
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1074 lrana(8) =1/2 forall i=1,2,....,n -1 and > 0.

Notice that the resulting bound ||0;} | i1(8) < 1/2 is not sharp unless 8 =1,
but, as one everybody would guess,

If X is either R™ or S™, then round (umbilical) i-spheres of volume vo (filled-
in by flat (i + 1)-discs) have mazimal filling volumes (i.e. ||..||fii) among all
i-cycles b in X, with vol(b) = vg.

If X = R™ this is due to Almgren [?] and the spherical case was reduced to
R™*! 5 S™ by Bruce Kleiner (private communication.)

Remarks. If X = S™, this leaves open the sharp bound on ||9;} ]| ri1(3) for
B > 1 that may depend on n (if n >4+ 1) and on the coefficient field F in a rather
complicated manner.

Also, the "filling extremality" of round i-spheres (filled -in by flat (i + 1)-discs)
remains unproven in the hyperbolic spaces X; but the Almgren-Levy argument
provides rather sharp bounds on the filling volume of cycles in manifolds with lower
bounds on curvatures (see below).

Local-to-Global Variational Principle: ||...|| ¢y < ||||lf"ﬁ Let (C.,d.) be normed
chain complex, h € H;(C.) a homology class and let B = B;(h) c C; be the space
of 4-cycles in the class of h with the filling metric distz (b1, b2) = ||b1 —ba|| 1. Define
the supremum norm of the "downstream gradient" of the function b — ||b|| on B as
follows,

14 Bloup = limsup P10+ Gt (O]

for ce Ci1 ~ {0}.
llcfl—~0 llc|

Observe that this norm on smooth submanifolds Y representing cycles b in
Riemanniann manifolds X equals the supremum of the norm of the mean curvatures
of Y, denoted sup,||M(Y)|],.

Let m(v) = infjp)= || | Dl|sup, define

-1 ||loc A -1
o555 = [ m™ @)
and say that 0;,1 satisfies local-to-global principle if
— _1 11loc
1075 11 5at < ||8i+11||foﬁ-

This would hold if we had a gradient flow b(v) in B parameterized by v = ||b(v)||
starting from b with ||b]| = 8 and terminating with b = 0. One can not, in general,
guarantee such flows; yet,

if Cy is the complex of Lipschitz chains in a smooth Riemannian manifold
X with (possibly empty) i-mean convex boundary 0X (i.e. where the traces of
the second fundamental form are non-negative on all tangent i-planes in 0X ),
then

1055 0 par < 10341157
foralli=1,2,....
In fact, there is the following better bound. Call a compact i-dimensional subva-
riety (rectifiable set) Y in X quasiregular if the subset reg(Y) c Y of C2-smooth
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points has full --measure in Y and such that the function d.(y) = distx(z,y) as-
sumes its minimum in Y at a regular point y € reg(Y) c Y for almost all z ¢ X.
Set

Myeg(V) = |)i/I\1=fu sszM(Y)Hy (thisis >m(v))

where the supremum is taken over all compact quasiregular i-dimensional subva-
rietyies Y in X with Y| =4cf vol;(Y') = v, where ||[M||, denotes the norms of the
mean curvature vectors at regular points y € reg(Y) and where the supremum is
taken over all y € reg(Y"). Define

B
1025 (8) = [ omil, (v (ehis s < R 1555))

and conclude, appealing to the geometric mesaure theory, to the (intuitively obvious
but technically non-trivial)
Local-to-Global Inequality. —————— -

1055 1l < NOFA NS

foralli=1,2,....

Remark. The local-to-global principle is ubiquitous in the geometric measure
theory, albeit it is rarely stated explicitly (see [?] and references therein). It holds
for complete non-compact X with "decent" behavior at infinity e.g. for e-locally
contractible X with some € > 0 where every ball of radius ¢ is contractible in
the concentric unit ball. (This principle seems to hold for many classes of non-
Riemannian X, e.g. for Alexandrov spaces with a lower bound on curvatures and
for smooth strictly locally convex Finsler spaces.)

Ezample: Dehn’s Lemma. Let X admit a family of properly immersed coori-
ented smooth hypersurfaces S,., r > 0, such that

(a) the i-mean curvatures M;_1(S,) of all S, i.e. the traces of the restrictions
of the second fundamental form of S, to all tangent i-planes to S,., are bounded
from below by a positive constant my.

(b) There exists a locally compact space X, a proper continuous map p: X — X
and a continuous function f : X - R., such that

(b1) p72(S,) = f1(r) for all 7 > 0;

(b2) the map p properly embeds the O-level f~1(0) c X to X, where the image
is a rectifiable set and where either dim(f~1(0)) <i-1 (e.g. f71(0) is empty) or
f71(0) is contractible of dimension i.

Then every quasireqular Y, that is not contained in p((f71(0)), (obviously)
has sup,, ||[M (Y, y)[| = mo; hence,

107417 (B) < mg?

for all B > 0.

Example. The concentric r-spheres S, in the hyperbolic n-space X, and in
every complete simply connected manifold of curvature < -1, have M;(S,) > i;
thus, [|074 11 7i1(B) <7 for all i > 1 in these X.

Remark. The Dehn inequality is never sharp (at least in the natural examples)
and the true value of ||0; || y; remains unknown in most cases, even in the hyperbolic
n-space for 3<i<n-1.
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5.5  Tube Formulas and Generalized Levy-Almgren In-
equalities move tubes to an appendix

Given a submanifold Y c X, possibly with a boundary 0Y" denote by Up(Y) ¢ X
the subset of those x € X for which distx(x,Y) < R and such that all distance
minimizing segments [z,y] c X (of lengths = dist(z,Y) have their Y-ends y in the
interior Y N 9Y of Y.

Observe that if Y has no boundary, then Uz (Y") equals the R-neighbourhood
Ur(Y) and, thus, vol,(Ux(Y)) = vol,Ur(Y') > vol,(Ur(y)) for n = dim(X)
and all y €Y (where Ugr(y) is the r-ball around y).

If X = X™(k) is the complete simply connected n-dimensional manifold of
constant sectional curvature k and Y = Y*(M) is a round (umbilical) i-sphere of
mean curvature m, let VI;(R;,m, k) = vol,,(Ur(Y))/vol(Y).

The Hermann Weyl tube formula implies that every quasiregular Y = Y c
X" (k) with sup,e,eq(vy M (Y)ly <m has

0ol (Ur(Y) < VI;,(R,m, k) -vol;(Y).

If K =1 and R = 2 this, combined with the local-to-global-principle, immediately
yields the Almgren-Kleiner result on filling extremality of round subspheres in S™
and a similar filling inequality in X = S™/G for finite isometry groups G (fixed
points are allowed) of order |G|:

the filling norm in X is bounded by that in S™ as follows:

10X 7(8) < 1052117 (IG1- B) for all B <vols(S")/|G|.

If & =0 this yields, with R - oo, Almgren's sharp filling inquality in R™ and
similar inequalities in the quotient spaces R"/G.

Question. Does this bound on |b|¢;; remain valid if vol;_1(b) is substituted by
the measure of the set A.p05(b) € Afp_iv1 (R™) of the (n—i+1)-dimensional affine
subspaces g in R™ that intersect b7 (See the last three lines in 5.7 of [?] for such
bound for hypersurfaces.).

Let X be an n-dimensional Riemannian manifold, and V, = VEZ c X an eg-germ
of a smooth i-submanifold at a point vy € X.

The normal R-tube around V., denoted V.+R c X, is the union of the geodesic
segments v = [v,z] ¢ X normal to V, such that, every v has lenght(v) < R and
such that no point in vy is focal with respect to V., (which is essentially equivalent
to dist(x,)Ve = dist(z,v) = lenght(7)).

If ¢ - 0, then the volume of the tube depends on the second jet of V. at vy,

0ol (Ve+R) = vol;(V2) - VLi(X, R, vg, 70, Ko) + 0(vol;(V2))

where 7 is the tangent space to V. at vg and K the second fundamental form of
‘/5 at vg.
Denote by MV L;(X, R,m) the supremum of VL;(X, R, ugTy, Ko) over all K,
with the norm of the trace (mean curvature) bounded by m, over all tangent i-planes
T at vg and all vy € X.
For instance, if X is a complete simply connected space of curvature x then
MV L;(X, R,m) equals the above VI;(R, m, ), since the supremum of V L;(X, R, ug7o, Ko)
is asssumed on umbilic submanifolds V.

47



Clearly, every qusiregular Y with mean curvature bounded by m satisfies

vol;(Y)[vol,,(X) > MV L;(X, R,m)

for all R > diam(X) and so an upper bound on MV L can be used in a conjunction
with the local-to global-principle same way as the Weyl tube formula.

On the other hand, the function MV L; can be evaluated in a variety of cases.
This provides lower bounds on the volumes of quasiregular Y c X in terms of the
the mean curvature, namely sup,||M(Y)|,. However, the such bounds are sharp
only in rather special cases.

Ezamples. (A) If X is a symmetric space (where the equation for Jacoby fields
along geodesics v in X satisfy a linear ODE-system with constant coefficients) it
satisfies a Weil type formula and MV'L is, in principle computable. The result-
ing lower bound on vol(Y) by sup, |[M (Y], is sharp for manifolds of constant
curvature.

Also, if X = CP" is a complex projective space and Y is minimal, i.e. M(Y)=0,
then the above indicated bound is sharp: every 2j-diminsional quasiregular Y ¢ CP*
has vola;(Y) > voly;(CP7).

However, the corresponding sharp bound is unknown for odd dimensional Y.
For instance, if Y c CP* is a hypersurface, dim(Y") = 2k — 1, one expects that its
volume is bounded from below by the volume of some homogeneous Yy c CP* with
|IM(Yo)| = sup,, [[M(Y)],, where "homogeneous” means that the isometry group
of CP* preserving Yy is transitive. on Yj.

On the other hand, if, for instance, M(Y) = 0 (i.e. M is minimal), then a
potential Yy with minimal volume guarantied by the tube formula would be a totally
geodesic submanifold. But there is no odd dimensional totally geodesic Yy ¢ CP*
for dim(Yp) > 1.

It follows by compactness argument, that, there is a non-zero correction term
to the lower bound on vol;(Y") impruving the bound with the tube formula, but it
still leaves far from a sharp bound.

Also, one does not know if domains U ¢ CP* solving the isoperimetric problem
have homogeneous boundaries, unless they have (very) small volumes.

(B) If Ricci(X) 2 (n-1)x and i =n -1, then

MVLi(X,R,m) < VI;(R,m,k),

by the Paul Levy tube bound.
(C) If X is a Riemannian manifold where the sectional curvatures are bounded
from below by &, then

MVLi(X,R,m) <VI;(R,m.k),

for all ¢ by Buyalo-Heintze-Karcher comparison theorem [?], [?]

(D) If Ricci(X) > (n-1)/p? >0, then, MV L;(X,R,m) < MV L;(X,7p,m)
for all R. and if, moreover, curv(X) > k, then MV L;(X, R,m) < Vi;(7wp, mk).

These, together with the local-to-global principle, provide bounds on the filling
volumes in X, e.g. as follows.

Let X = X" be a complete no-compact Riemannian manifold with sectional
curvature> 0 and let the R-balls around some (and, hence each) point satisfy,

limsupvol, (B(R; X))/R" > c-vol,(B(1;R™)).

R—oco
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Then, for each i =1,2,...,dim(X) -1, every i-cycle of volume c-a bounds an
(i + 1)-chain of volume c- 3 where 8 = B(a)) equals the volume of the (i +1)-
dimensional Euclidiean ball B with vol;(0B) = a. Furthermore, if i = dim(X) -
1, then the condition curv >0 can be relazed to Ricci > 0.

Remarks and Questions. (a) If X =R" this reduces to Almgren's inequlity.

(b) If The sectional curvatures of X are bounded from below by 1, then the
corresponding filling inequality generalizes that of Kleiner for S™, where the case
i=n-1and Ricci >n -1 goes back to Paul Levy.

(c) Does every quasiregular Y in a complete simply connected manifold X
with non-positive curvature (or in any C'AT(0) space for this matter) and with
Riccij1 (X) < =i have supye,cq(v) [[M(Y)lly greater or equal than the mean cur-
vature of a round (umbilical) sphere S* with vol;(S*) = vol;(Y) in the hyperbolic
space of constant curvature —17 (The lower bound on sup,,.q¢v) [[M(Y)l], and
the issuing bound the filling inequality issuing from Weyl's formula are non-sharp in
the hyperbolic spaces of constant curvature k < 0.)

(b) Can one "hybridize" Dehn’s and Almgren's inequalities, e.g. for Cartesian
products of manifolds of positive and of negative curvatures?

(c) If X = X* is an infinite dimensional Riemannian manyfold that densely and
isometrically contains an increasing union of finite dimensional submanifolds, X o
2 X™N 5 5 X" such that all X", N =1,2, ... have 07| :1(Bo) < do,
for some i(< o), then, obviously, X* also has ||0;!||i1(Bo) < do. This applies,
for example, to the Hilbert space R*, to the Hilbertian sphere S c R=*! and to
other infinite dimensional symmetric spaces of "compact type", where the argument
depends on the N-asymptotic of the (n + N)-volumes of X"V,

Is there a dimension free proof applicable to more general X*° (e.g. to S
divided by an infinite discrete isometry group)?

(d) Is there a (sufficiently) sharp generalization of Almgren's filling bound in R™
to non-Euclidean Banach-Minkowski spaces X" in the spirit of the Brunn-Minkowski
inequality (corresponding to i = n —1)7 Are there such inequalities in the metric
spheres in these X and other flag (e.g. Grassmannian) manifolds?

(e) Does the variational method apply to A(V') and similar measurable com-
plexes, and improve the bound ||(0%)™!|| i < 17

(f) Is there an algebaric/topological version of |||lf°ﬁ in the context of our
chpter 47

6 Isoperometry on Submanifolds

6.1 n-Divergence, Mean Curvature, Minimal Surfaces and
Allard-Michael&Simon Inequality

?77?A. The n-Divergence div™ () = divl™] (7, V) of a vector field 7 in a Riemannian
manifold X is the rate of increase (decrease) of the volumes of n-submanifolds
V =V"™c X under the flow generated by 7.

That is, if the the-e-initial 7-flow moves

VE (1+er)(V)cX.
then 1((1 1% L.(V
div[”](T,V):[“)Tvoln(V):limvon(( +en)(V)) —voln (V).

e—=0 3
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where, for smooth fields 7, divl™ (=) = —div["(7,V) by the basic rules of the
calculus.
?777B.Ezamples. (a) If n.= N, this is the ordinary divergence,

divi"l () = div(7),
(b) if X =RY and 7 is the radial field x ~ 7, € T,(RY), z € R” that is
7 = grad|z|?,

then
divi"l(7) = n,

since the multiplicatively written one-parameter group, generated by this field is the
group of homotheties, x — tx, which expands the volumes of all n-submanifolds by
the factor nt.

(c) Let X be a Riemannian manifold, where the inverse exponential map exp}!
X - T,,(X) is a homeomorphism onto a (star convex) domain in the tangent
space Ty, (X)(=RN, N =dimX,),.i.e. all x € X are joint with x5 € X by a unique
geodesic segment [zg,x] c X.

Let T9(z) be the field tangent to [z, z] at 2 with norm |7(z)| = length[zo, z],
that is 79 is equal to the gradient of the squared distance function to g,

0 = grad dist(z, z0)>.
If sect.curv(X) <0, then
divil () > n

and if sect.curv(X) < -1 then the corresponding unit field T, = 10/|70]| satisfies
a similar inequality
diviMl(7) > n.

777C. First variation of the n-Volume. Let X be a Riemannian manifold
and V ¢ X an n-dimensional submanifold with a boundary S = 9V, e.g. a curve or
surface in the Euclidean space, and let 7: V — Ty (X) be an X-tangent field along
V. Then the 7-derivative of the volume of V is equal to the sum of two terms:

w0l (V) = fS(T(s),V(S))ds+ H*(V,7),

where:

og thefield v v: S - Tg(V)©T(S) is the external looking unit normal field to
S'in V, thus, (7(s),v(s)) is the (signed) length of the normal projection of 7 to V'
along S;

oy the second term H*(V,7) = mean.curb(V') is the mean curvature of V,
that is a cotangent vector filed along V,

mean.curv=H":V - Ty (X),

42Here 7, is the tangent vector corresponding to the point (Euclidean vector) 2 € R™ under
the obvious identification Ty (R™) = RY.
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which is the differential of the n-volume function(al) on the space of submanifolds
in X obtained by normal deformatiom{zf] of V', which is customary represented by
the scalar product of tangent fields 7 with a normal (also called mean curvature)
field

H:V >TYV)=Ty(X)eT(V),
which represents the "normal gradient" of the volume function. Thus, the value of
H* on the tangent fields 7: V - Ty (X) is:

H*(VvT)=fVH*(v)dv:fv<T,H(v)>d

1d Ezample. If V1 < RY is a curve parametrized by the ark length ¢, then the
mean curvature vector H(v) is equal to the second derivative of v(t)

d*v(t)
dt2
"From-1-to-n" Example. If VI c V. = V" c RN, i = 1,...,n, are mutually

normal geodesic (with respect to the Riemannian metric induced from RY 5 V)
lines in V at v eV, then

H(t) =

H(V.0)= S H(VE v).

i=1

"Spherical" sub-Example. The (normal) mean curvature field of the sphere
S™"(R) c R™*! c RY is contained in (tangent to) R™*! 5 §"~1) and the norm of
this field is everywhere

|mean.curv(S™(R),s)| =n/R

"Closed" Evample. Let V c BN(R) c RY be a closed (i.e. compact without
boundary) n-submanifold in the R-ball. Then (the mean value of) the norm of
the mean curvature of V' is bounded from below by that of the sphere S™(R) =
8Bn+1(R),

fv R||mean.curv(V,v)||dv > n-vol, (V).

In fact,
d-vol, (V) < / ||| - mean.curv(V, v)|dv
\%4

for all fields 7, and the proof follows by applying this to the above radial field
7(z) = grad|z|*.

??? D. Ezample "with a Boundary". Let V ¢ BN(R) c RY be a compact
manifold with a boundary S =9V then

fv R||mean.curv(V,v)|dv+ R-vol,-1(S) >n-vol, (V).

Proof. Argue as above with 7 = |z|? and observe that the [o-term in the first
variation formula (eg in ?77C) is bounded by

/S<T(s), v(s))ds < R - voln_y(S).

43This means "along vector fields normal to V.

44 A priori, the mean curvature is a vector valued measure on V but it is represented by a
(co)vector valued function on V, i.e. a section of the bundle Ty (X) — V, in the present case
of a Riemannian X and smooth V and .
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Minimality: Definition/Exercise. A smooth submanifold V c X is called
manimal if one of the following four equivalent conditions is satisfied.

e, O,v0l, (V) =0 for all fields v normal to V;

o O;vol, (V') = 0 for all fields 7 with compact supports away from the boundary
of V, supp(7) c \OV.

ey the mean curvature of V is zero;

e..in Vis locally volume minimizing: all points v € V \ 9V admit neighbout-
hoods, U = U(v) c V, such that all n-submanifolds U’ ¢ X with 9U’ = OU have
larger volumes than U,

vol, (U") > wvol,, (U),

where this inequality is strict unless U’ = U.

Miranda-Allard-Michael-Simon Inequality. Let X be a Riemannian mani-
fold and let § > 0 and Ry > 0 be constants, such that all balls BY (), z € X,
r < Ry admit vector fields T = 7, such that

diol™(r) < -6

and the norms of 7 on the boundaries of these balls are bounded by r. (E.g.
X =R¥, Ry=o00,and §=n.)

Let V = V™ be a smooth compact n-dimensional submanifold with a (possi-
bly empty) boundary.

Then either vol,, (V) > R} /6™ or

/ |mean.curv(V,v)|dv + vol,_1(S) > const, - vol, (V)" "
v

for some strictly positive const = const(n,d) > 0.
Proof. 777

6.2 Mass Transportation: Castillon-Brendle Inequality
7 Bolzmann-Gibbs-Shannon Entropic Inequalities

7.1 Holder Inequality via Tensorisation.

We introduce below the Gibbs tensorisation trick and then use it for the proof of
the Shannon inequalities relating the entropy of a measure and its pushforards
under the maps (partitions) in a given family.

Hélder Inequality. The log of the integral

fX gfz(x)’gdx

is a convex function of B ={B;} e RT for arbitrary positive functions f; on X.
Proof. The inequality

log(fXgfi(x)aiﬁi)dxgi;ailog(/ fz(x)ﬁ) :logg(f fi(:r)ﬁi)ai

for Y, = 1, o; 2 0 is (trivially) true if the functions f;(z) are constant on the
intersection S c X of their supports (with the equality for functions with a common
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support S c X, where all f; are constant) and the general case reduces to this by
the law of large numbers via the tensorisation.
This argument also shows by how much the inequality deviates from equality.
Denote p; = g;dx for g; = ff’ and let pp = (Tl;er 97" )dx. Then

log / [Tgdx <> azent,, (1) <. ailog(pi(X)) =log [ | (/x gidx)ai .

iel iel

The Holder Inequality can be equivalently stated as follows
let v be a measure on the linear space X, and let Y be the linear dual to X.
Then the function

U(y)=V,(y) = log([X ewp(ff:,y)dV)

is conver on Y, where the entropy of a measure with the density function
exp(p(x)), = € R equals the derivative V'(y = 1) for ¢(y) = [ exp(z,y)dx
by the Boltzman formula.

This appears in the Gibbsian thermodynamics as the concavity of the entropy
of the ideal gas and represents a tiny instance of Boltzmann's and Gibbs’ ideas (see
7).

Remarks.(a) The information theoretic rendition of the Gibbs argument is often
presented as a chat between Alice and Bob. (See [?] and references therein.)

(b) The differential DV : Y — X injectively sends Y to X, where

the closure of the image equals the convex hull of the support of .

Thus, if X =Y =R", then the volume of this hull equals the integral of the
determinant of the Hessian of the (convex!) function ¥, where the R, -valued map

U M() =gef fydet(Hess(\Il(y)))dy
obeys non-trivial convexity relations: the Minkovski inequality, M%(\Ill +05) >
M (Uy) + M#(03), and the Alezandrov-Fenchel-Hodge inequality. (See [?] for
a survey and references).

Let (X,)\) be a Borel measure space, where \ is regarded as a background
measure and where we use the notation |Y|=|Y]y = A(Y) for all Y c X.

The basic examples are given by countable spaces (X,\) with the wunitary
measures, where all atoms have unit weights (thus, |Y| = card(Y)) and by the
Euclidean spaces with the Lebesgue or with the Gaussian measures .

Consider measures 11 = f(z)A for (non-strictly) positive measurable functions
f on X and first define the entropy of such a p where f(x) is constant on its
(essential) support S = supp(f) c X by

entx(p) = log|S| = log(1(S)) = u(S) ™" /S log(f)dp,

where, observe, f = u(5)/|S].

Then, for a general = fA, let |u|e = A:(u) denote the infimum of the A-
measures of the subsets S. ¢ X with u(S:) > (1 -¢)u(X), where we assume that
e has finite total mass, |u| =ger | X, = p(X) < oo.

Take the Cartesian (tensorial) powers (XN AN = A\®N N = ,®N) and with
A8V for the background measures on X~ Set

53



1
N _ TR N
ent(p” - [g]) llNHngf Nlog|u le)

and

ent(p) = ent (i) = lim ent (™ ~ [¢]).

Observe that, this entropy is invariant under scaling of u, that is ent(c-pu) =
ent(p), while ent.y = enty + log(c)|ul-

If 1 is a probability measure with a A-measurable density function f = du/dA
and with the support denoted S c X, then ent) () < logA(S) with equality (only)
for ;= A(S). On the other hand, ent)(u) > log(sup,.q f(x))-1.

We shall use the above definition only for log-LLN-measures p, i.e. where
= fA for a \-measurable function f, such that log(f) satisfies

The Law of Large Numbers. The u®" measure of the subset

Y(e,N)c XN of the points y € X, where

Hoa(r®¥ W) - [ tog(dul> e

satisfies
(LLN) (Y (e, N)) =0 for N — oo.

One knows that (LLN) is satisfied if and only if the function |log( f)| is summable
on its support S, e.g. if |log(f)| is bounded on S.

If v is not log-LLN, one can LLN-regularize it, e.g. by cutting away the part
of the suppopt of f where |log(f)| approaches infinity and then define a suitable
regularized entropy with such an approximation.

Cartesian Additivity of the Entropy. Observe that LLN ensures the additivity of
the entropy under the Cartesian product of measure spaces and yields the celebrated

Boltzman Formula. All log-LLN-measures 1 satisfy,

fmtx(u)=log|ul—Iul’lfslog(f)du=log|ul—Iul’lfsflog(f)dA

(for || denoting the total mass u(X) = 1(.9)).
In other words,

the p-average of log(f) plus enty(u) equals the log of the total mass of p.

In particular, the entropy of a probability measure i is expressed by the Boltzman
integral,

ent(u)z[slog%dp=/sflog%d)\.

This formula is customary taken for the definition of the entropy without assum-
ing LLN, but only the convergence of the Boltzman integral, possibly to +oo. This
definition is equivalent to the above “regularized entropy” but in all our applications
we can (and do) assume that p is log-LLN.
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7.2 Entropic Profiles and Stable F, Functions of Families
of Partitions.

Given a finite mass measure u on a Borel measure space X = (X, \) with a family
of partitions P;, we denote by p; = u/P; = the pushforward of p to X; = X/P;, call
this the P;-reduction of p, and write

ent(u/P;) = ent(p;) = entx, (1)

for the background measures A; in X;.

For example, if i equals the restriction of the background measure A on X to
a subset Y c X, then the value of the density function of u; with respect to the
background measure \; on X/P; at each point x; € X/P; equals the Fubini mass
of the corresponding P;-slice of Y.

Denote by p,, z; € X; = X/P; the measure fdP(z) on the slice P7'(z;) for
the background Fubini measure dP(z) on this slice and f = dp/dX and let ent,,
be the entropy of p,, with respect to dP(x) on this slice. Define the entropy of
(X, p) over X;, also denoted ent(P;) as the average

ent(P;) = p(X)™" [X ent, dj;.

It is obvious (but significant) that
Entropy is additive.

ent+ ent(P) + ent(pu/P) = ent(p).

Finite Example. Let P be a partition of X, a finite set with the unitary atoms
and take a subset Y ¢ X. Denote by |P(y)| the cardinality of the P-slice of YV’
through y € Y, and observe with the Boltzman (and Shannon in the finite case)
formula that

ent(PY) = log [T [P(y)] *7".
yeY

Entropic Profile. Consider a family P of partions P;, i € I, of X, where we
usually assume that the single slice partition, corresponding to the map of X to
a single point, is among our P. Every LLN measure pu on X defines the point
e(p) = {ent(P;)} € R!; the set ENT(P) of these points for all 4 is called the
entropic profile of P. In what follows we shall evaluate the conical convexr hull of
ENT(P) c R! in the simple cases.

The definition of the entropy and the slice removal lemma from 4.4 imply the
following

Sliced Tensorisation Lemma. Given a finite family P of partitions P;,
ie€l, of X and an LLN measure pn on X, there exists, for every e > 0, an
integer No = No(&, 1, P) and a subset Y = Yy in the Cartesian power X, for
every N > Ny, such that

Y e supp(u®), where p®~ (V) > (1 -2)p®N(X),

and the Fubini measures ¢ = AN NN of the PN -slices of Y satisfy,

N(ent(PY) - ) < log(é (PN (y) nY)) < N(ent(PN) + ¢)
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forallyeY and alliel.
Next, observe that the E,-functions of Cartesian powers of partitions P; of X,
satisfy,

Eo(n}'; PY) - Eo(n)Y?; PN?) > Eo(n) N2 PV1HY2)

and define
Eeo(ni; P;) = lim (Eo(n; PY)¥.

The above lemma implies the following

Shannon E.-Inequality. Let P = {P;} be a finite family of partitions on
X and p a measure of finite mass on X = (X, \). Then the entropies ent(P;) =
ent(p) — ent(p/P;) of P; with respect to p satisfy,

ent(p) > logFEx (exp(ent(P;)); P).

Remark on Hélder. The tensorisation lemma also implies the Holder version of
the above inequality.
Let f; > 0 be measurable functions on X; = X|P;, let

ity = ([supp(fi) ff);

and let |Ilp fil1 denote the integral of the product of the pullbacks of f; to X.
Then

TIp fil1 2 Eeo (|tp fil1 /| filp:; P)

for all {p;} e REL.
If all P; are single slice partitions, this reduces to the Hoélder inequality from 5.1
with positive p; (and with no entropic correction term).

7.3 Shannon and Harper Inequalities for the Coordinate
Line and Plane Partitions.
Let (X,A) = x¢(Xi,N), @ = 1,2,...,k. Then the partitions P; of X into the

“coordinate lines” with the slices isomorphic to X; and corresponding to the

projections P;: X — X; = (X;, ;) = %jer iy (X5, Aj) satisfy

Shy ent(p) > ent(P;),

or, equivalently,
1

k-1

ent(p) <

> ent(u/Pi)
i
for all measures pn on X. Furthermore, the partitions Py of X into the fibers of

the projections X = X1 — Xj oy = XijerngX; (with ”J-plane® slices representing
X7 = %x4e5X;) satisfy
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She, ent(p) > > ay-ent(Py)
Jcl

for all partitions of unity oy of I (see 4.3).

Proof. Here, obviously, F., = FE, and the above applies.

Loomis-Whitney Inequality. This is an upper bound on |Y| = A(Y") for sub-
sets Y ¢ X in terms of the background measures of Y/P;, (assuming these are
measurable) written as if it were a lower bound,

Y]z [TIVICY/P))

This follows from the Shannon Inequality, since enty. (1)) < A; (supp(p;)) and
ent(p) = log(A(Y)) for p=MY. '

Similarly one derives the Shearer Inequality that is the bound on log|Y]| by
log|Y'| = log(\;(Y/Py) substituting ent(P;) in Sh,. (The role of the entropy in
such inequalities was pointed out to me by Noga Alon.)

If X; are countable sets with the atoms of unit weights, then the Shannon
inequality for subsets Y ¢ X = x;X; with the restricted product unitary measures
reads,

Combinatorial Shannon Inequality for the Coordinate Line Partitions. Let
|P;(y)|, v € Y, denote the cardinality of the P;-slice of Y through y. Then the
geometric means

L

™
|MPj| = (H |Pi(y)|)

yeY

satisfy

[1IMP < V]

(2

Harper Inequality. The Shannon inequality, when applied to the vertex set X
of the edge graph of a Euclidean n-cube with the edges for slices, says that

the vertex and the edge numbers of every subgraph Y in the cubical graph
satisfy,

(4N) Nyert > gNeag/Nuvers

For example, if all vertices in' Y have the valency (degree) at least d, then |Y| >
27,

Another corollary of the combinatorial Shannon inequality is the following (well
known) relation between the three numbers: the cardinality [Y|, the number N of
the slices of Y with respect to all P; and the sum C of the cardinalities of all these
slices.

AB.Inequality. Let A=C/N and B =C|/|Y|. Then

Y] > AP,

Proof. Since the function s® is log-convex, log(s®)" =1/s,
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[El
AP <TTISI% <,
s
where the product is taken over all slices S of the partitions P;.

7.4 Strict Concavity of the Entropy and Refined Shannon
Inequalities.

A probability measure p on X7 x X5 can be regarded as a family of probability
measures (i, on Xo parametrized by x1 € X1, where the density f,, (z2) of (almost)
every measure i, on Xs equals the restriction of the density of u to 1 x Xo c
X1 x Xy divided by p(x1) = [, fo, (x2)d)s.

The Shannon inequality written as ent(u/P2) > ent(P1)(= ent(u)-ent( p/Py))
says that the entropy is a concave function on the space of probability measures on
Xo, since the measure s on Xo, that is the pushforward of u, equals the p(z1)-
weighted convex combination of the probability measures 1., , while the entropy is
(defined as) the corresponding convex combination of the entropies of 1, .

In fact, the entropy is strictly concave as follows from the Boltzmann formula
and the strict convexity of the function ¢ -log(t). (This is the common way for
deriving the Shannon inequality). Then the quantity ent(u)—ent(P1)—-ent(P) >0
tells us how far u is from equilibrium, i.e. a probability measure ' on X x X,
for which the probability measures p, on X, are mutually equal for all 2; € X3, or
equivalently all z,, on X; are equal.

Here is another characteristic of (non-)equilibrium for measures 11 on product
spaces X =x;X;, 1€ 1.

The index set T u I, (disjoint union of I with itself) and, hence, the Cartesian
power X2 of X, is naturally acted by the Mendelian recombination group 71 =
(Z]27)" generated by |I| coordinate involutions on I LI and/or on X; x X; for all
i € I. By strict convexity, a measure i on X is at equilibrium, where (by definition if
you wish) all Shannon inequalities Sh,, becomes equalities, if and only if the measure
u®2 on X2 is invariant under Zé and (where, observe, u®2 is invariant under the
diagonal involution on X2 for all 1 on X)

We introduce the entropic displacement of u®? by z,

1 1
1% = 2(1) et =aey ent(S(u +2(u®2)) = o (ent(u®?) + ent(2(4*))) 2 0
and then identify involutions z € Z1 with subsets .J c I by

z<o J=J(z)=supp(z)cI

where the support of z is defined by z(4) + i.

The composition of involutions corresponds to the symmetric difference of sub-
sets that we denote Jy - Jy =gcf (J1 U J2) N (J1 nJ2). We also abbreviate by
writing

|J|ent(ﬂ) = |.u®2 - Z(‘])(.u®2)|ent7

where, observe, |J|ent (@) = |J*|ent (@), for Jt =TI~ J.
A measure 1 on X satisfies the equality
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ent(Py) + ent(Py.) = ent(u)

if and only if u®2 is z(.J)- (or,equivalently z(.J*))-invariant; this is also equivalent
to

|J|ent(ﬂ) =0.

Since the entropy is strictly concave, the function |J|en:(p) of J c I satisfies
some triangle-type inequalities,

(A) |J1 : J2|ent(ﬂ) < A/L(|J1|ent(ﬂ)v |J2|ent(,u))v

where A,(0,0) =0 for all x and A, (a,b) is uniformly continuous in (a,b) with the
modulus of continuity 6 depending on p. Moreover, § is uniformly bounded on
certain (compact in a suitable sense) classes of measures p.

For example, if the density function f of i satisfies

[ g f(@))ldp < const < oo,

then § is bounded by some universal §.,,s¢ as a simple continuity argument shows.

This is useful, for instance, if log(f(z)) < 0, eg. if X is a discrete space
with unitary atoms, where (A) becomes a relation between the entropies of P;
depending only on ent(u),

(A) |J1 ’ J2|ent(,u) < Aent(u)(|J1|ent(M)v ‘J2|ent(,u))v

for some function A.(a,b) that is continuous in a,b and e and such that A.(0,0) =
0.

Remarks. (a) All this is, apparently, well known but | could not find a reference;
nor do | know a specific sufficiently “elegant” A.(a,b). | guess, there are sharp
“mixed symmetric mean inequalities” for measures on xX; similar to the classical
Muirhead’s inequalities, such as the mixed discriminant inequality of Alexandrov
(that is GL(k)- rather than just Si-symmetric).

(b) The above generalizes to the Cartesian powers X* with the Cartesian prod-
ucts of I-copies of the permutation group S acting on it. The resulting inequalities
become, in a sense, asymptotically sharp for N — oo due to the law of large numbers
(applied to convolution of measures on the spaces of measures).

A possible framework for this is suggested by the Mendelian dynamics

7.5 Equipartitions, Tensorization and the Holder-Looms-
Whitney-Shearer Inequality

https://web.mit.edu/paigeb/www/994paper.pdf
Recall the classical Hélder inequality

[oser < (frer) sz0 S a1

el iel iel

which takes more familiar form for 8; = 1/p;.
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Exercise. Show that the Holder inequality implies log-convexity of the function
H(ps) = Higy (00) = [ fio)”

in (p;) € RY for all positive measurable functions f;(z) on a measure space X, that
is convexity of logH(p;).

The Holder-Looms- Whitney-Shearer Inequality refines classical Holder as fol-
lows.

Let K be a finite or countable set, let X, k € K, be measure spaces, e.g.
Xi =R or X ={0,1}, let J; c K, be subsets indexed by a finite or countable set
I >4 and let 8; > 0 satisfy the following partition of unity condition:

Zﬁllah(k) =1,
i€l
where 1, (k) are the characteristic functions of the subsets J;, ¢ K
For instance, if all J; = K, this becomes ¥ ,.; 5; = 1.
Let Y = Xpexr Xk and let f;(y), y = () € X be positive measurable functions,
such that f; depends only on the variables zy, for k € J;.
In other words f; is equal to the pullback of a function on Xy ;, Xi under the
projection
V=X X, > X Xp.
ke K keJ;

Then
[HLWS] fygffiﬁisg(fyf“)ﬂi,

Proof. Observe that the integral [, a(y) is multiplicative under product of

measure spaces
[ e = [ aw) [ o)

Therefore [HLWS] for the functions f;(y) is equivalent to this inequality for the
corresponding product functions

Jini, o yn) = filyr) x .o x fi(yn)

and/or their geometric means X/ f; y on the Nth power spaces

Y=Y xYx..xY.
—_—
N
Next, let X be finite sets with atoms of unit weight, observe that the general
case of [GLWS] reduces to that by an obvious approximation argument. F‘E] and also
observe. that if a function f(y) > 0 satisfies [y, f(y) = ¥ ey f(y) = 1, then, the
law of large numbers for the sums of independent random variables

N
> log f(y;)
=1

45This is unnecessary, if you are comfortable with the abstract measure theoretical termi-
nology.
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on the power probability spaces (Y, f(y))" yields the following.

Bernoulli Approximation Theorem. There exist (automatically measurable
under our assumptions) subsets Vi c YN such that some constant multiples
of the characteristic functions of these subsets are asymptotically equivalent to
functions fn, according to the following definition.

Definition. Two sequences of probability measures ¢ and ¥y defined by
positive functions ¢ (y) and ¥ (y) on finite sets Yy are asymptotically equivalent
if there exist subsets Y}, ¢ Yy, such that both functions ¢n(y) and ¥ (y) are
strictly positive on Yy, and

* dn (YY) > on(Yn) =1 and Yy (YY) = ¢n(Yn) =1 for N — oo;

log|o(y) /¥ (y)l
® SUp,y W -0 for N - oo.

CONCLUSION. [HLWS] reduces to [LWS], that is where the functions f; are
characteristic functions of measurable subsets V; cY.

This settles the problem for card(K) <1 (the classical Holder inequality) and
card(K) = 2, where [LWS] is obvious but if Y = Xcx Xi and card(K) > 3, which,
geometrically, is the most interesting case, one needs to use the law of large numbers
for the second time as follows.

Lemma. Let X; = (X;,dz1) and X5 = (X5,dx2) be measure spaces, let V c
X1 x Xo be a measurable subset with measure one and let x be the characteristic
functions of power subsets VY c XV x X2V.. Then there exists subsets V; y ¢ Xi¥
and Vo ¢ X2, such that the characteristic functions of the products

‘/LNX‘/Q’NCX{VXXQIV

are asymptotically equivalent to x -

Proof. Apply Bernoulli approximation theorem to ¢1 = ¢1(y1) and ¢2 = P2(y2)
that are the pushforwards of the measure x (21, z2)dz1dzs to X7 and to Xy under
the projections maps X7 x X5 = X1, Xo.

Proof of [LWS]. Apply lemma to the subsets V; c Y = X = Xy Xk and the
splittings Y = X ;, x X, for all decomposition K = J; U jy and thus reduce the
general [LWS] to the trivial case, where all V; are products sets, V; = Xyex Vik,
Viec X QED

[LW]-Corollary (Loomis-Whitney theorem V from section 1) The volumes of
subsets V. c R™ are bounded by the volumes of their n projections V; to the
coordinate hyperplanes as follows:

vol, (V) <[] voly,_1 (V;)H 1,
i=1

Indeed, this is [LWS] for subsets J; ¢ K, which are complements to points k € K.
Non-Sharp Isoperimetric Subcorollary. Let V' ¢ R™ be a domain with a
smooth boundary. Then

1 n/n-1
vol(V') < (—vol,,b_l(@V)) .
2n

In fact, vol(V;) < 2vol,—1(8V) and the arithmetic/geometric mean inequality
applies.
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Ezercises. (a). Derive [HLWS] from the classical Holder by induction on
card(K).

(b) Prove the following Bollods- Thomason Box Theorem. Given a bounded
measurable subset VIR™, there is a rectangular parallelepiped U of the same volume
as V', such that the projection of U onto any coordinate subspace is at most as
large as that of the corresponding projection of V.

Apology. | couldn't find the above "Bernoulli proof" of [HLWS] in the literature
and recorded it in [?77] and [?77]. My apologies to the person who was the first to
use it.

Remark. Besides Bernoullian, there are other "equalization techniques" such as
Knéte map, Brenier's solution to Monge-Kantorovich transportation problem in
the proof of Bracamp-Lieb refinement of the Shannon-Loomis- Whitney-Shearer
inequality (see [?] and references therein) and invertibility of some Hodge operators
on toric Kdhler manifolds as in the analytic rendition of Khovanski-Teissier proof
of the Alexandrov-Fenhcel inequality for mixed volumes of convex sets [?]. It is
tempting to to find "quantum counterparts" to these proofs.

Also it is desirable to find more functorial and more informative proofs of "nat-
ural" inequalities in geometric (monoidal?) categories. (See [?],[?] for how it goes
along different lines.)

7.5.1 Reverse Loomis-Whitney Inequality

Let
ViacVcR"

be the union of straight segments I, contained in V,

which are parallel to the i-th coordinate axes in R™

and such that lenght(I) = d.

Observe that the

volume of the complement to V; 4 is bounded by the (n — 1)-volume of the
boundary of V as follows,

[Vol. <d...] vol(V NV 4) <d-vol(0V).
Next, given numbers d; >0, i =1,...,n, let
gi =vol(V NV, 4,)[vol(V)
and rewrite [Vol. <d...] as

[Vol < d;fe;...] vol(V) < @voln,l(éﬂ/'), i=1,...,n.
&

Let
Vo= ﬂVi,d,, cV,

observe that

[Volg > ...] vol(Vp) 2 (1 - i ei) vol(V).

n=1
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and that, by the mean value theorem, there exists an affine hyperplane 4 = A™! c
R™ parallel to the first n — 1 coordinate axes, such that

vol_1(VognA) > (1 - Z si) vol,-1(V N A).

n=1

Since
VNnA)g >VonAi=l,.,n1,

this shows that

’UOln_l(V n A)Ldi > (1 - Z Ei) UOln_l(V n A)

n=1
m our V contains a large part of the volume, say more than one half, of a
Euclidean rectangular x;d;-solid

X[ai,bi] cR"=Rx... XR7 [ai,bi] CR7 bz —Qa; = dz
———

i=1
n

It follows, that

dio = mjn d; <23/ UOl(V)

and [Vol < d;/e;...] for i =i, shows that

vy 2 1w,

to

vol

that is the isoperimetric inequality with an albeit depending only on m, but an
comfortably large constant,

[isop: C,] vol (V)Y < Cyvol,,_1(BV) for Cg = 2/e;, .

Here is a justification of m and [isop: C,].
77?7 Proposition. There

Let 0" = X4 [0, a;] be the rectangular solid and
V < 0" be an open subset. and let the (topological) boundary of V in 0" is
bounded by
v0olp-1(0V) < evol, (V'), for some € > 0.
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Then V contains a product subset

Vo =X 8;, 8 c[0,a;],

i=1
such that the volume of V is bounded from below by
vol, (Vg) > (1 - ne)vol, (V)

Let V; c V,i=1,...,n, be the union of [0, a;]-segments which are fully contained
inV,

Vi={x1,.... %5, ..., xn}, such that (z1,...,2},..,2,) € V, for all 2/ € [0,a;].

If the (n —1)-volume of the boundary of V in 0¥ is e-small compare to the volume
of V vol,—1(0V) < evol,(V'),e >0

SECOND ISOPERIMETRIC APPLICATION OF [LW]

Let A,B cY = Xpee Xk, k € K, where Xy, = (Xg, ux) are be pmbabilitﬂ
measure spaces, be measurable subsets, such that the images. of A and B under
the projections

Y > Y= X
jeK~{k}
do not intersect Y for all ke K.
Lemma. If the (product probability) measure of the union of A and B in
Y is bounded from below by

w(AuB)>1+4§

then

min(u(A), u(B))
<Cpd
max((p(A), n(B))
where C,,, <777, n = card(K).
Proof. 777
Corollary. Let U c [0,1]" be a subset in the unit cube with vol(U < 4.
Then there exits a connected subset in the complement of U, say V c [0,1]"\U,

with volume
V>1-D,0,

where D,, =777 Proof.77?

Rewrite ... be disjoint as well I';-disjoint subsets, i.e. there is no edge in I'y
between their points. Let p} (M) > pi(M<) and let py (M. U M) > 15 Then

i (M) < Cyo,

where C,,, <777

let the pullbacks of points by the natural maps (projections) Y — Y. = Xcre iy X,
be called Xj-"lines" or just "lines", and where the set of X-"lines" is naturally
identified with Y.

46This is just to simplify notation.
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Let 'z, be be the (naturally K-colored) graph. of "lines" with the vertex set

L=|] Y keK,
keK

where the pairs of intersecting lines in Y are taken for the edges.

Prelsometric Lemma Let K = {1,....n}, let (X, ux) be probabilitﬂ measure
spaces, i.e. up(Xx) = 1, let the product spaces Yj be given the. correspond-
ing product measures, denoted pj, and let M}, c Y; be measurable subsets with
measures

NZ(Mk) >1—-6e2>0

Then there exists a connected subgraph in T'z, with the vertex set M{ c M;, where

P (M) > 1= Ay 3 ey,
keK
for A, <777

Proof. Let is introduce another ({2, ...,n}-colored) graph I'; now on the vertex
set Y) where two points are joint by an k-colored edge if they lie on the projection
of an Xj-"line" to V3.

Sublemma. Let M-, M. c Y] be disjoint as well I';-disjoint subsets, i.e. there is
no edge in I'; between their points. Let pf (M) > pf (M<) and let pf (Mo UML) >
1s Then

i (M) < CLo,

where C,,, <777

Proof. Let

7T1’k1Y1—>Y1’k >< Xj,k:2,...,n
jeKN1,k

be the natural maps (projections) and let a and aj, be the measures of the images
of M. and of M. under these maps.

I';-disjointnes of M. and of M. says that these images are disjont and the
[LW]-inequality shows that

n/n-1 n/n-1
e + o /] e >1+06.
k+1 k#1

ofITar+ o /[]as<1

k+1 k%1

Since

by the geometric.arithmetic mean inequality, and since (1 -t)"/"*>1-tn/n -1,

0<t<l,
n/n-1
[Lk(M)S(n/H(LZ) <(n-1)d
k#1
QED.

47T This is just to simplify notation.
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Let I' be a finite edge colored graph on a set V, where the set of colors k is
denoted K > k of a finite set K, let V}, ¢ V be the sets of ends of k-colored edges
and V; be the sets of connected components of V. and let 7; : V' — V; be the
natural (quotient) maps.

Let V' and V; be endowed with measures p and p; structures, such that the
subsets Vi subsetV are measurable (e.g. Vi =V')) and the maps 7; : V — V are
measure preserving.

Let ¢t = ¢*(T is the infimum of the numbers ¢ > 0 with the following property;

Given measurable subsets U c V. there exists a connected subgraph in I" on a
measurable vertex subset U* such that

e the 7 -images of U* lie in the complements to U},

W}%(V];) c Vfc N U];;

p(VNUH) <e Y p(U;)
keK

Cubical Example. Let K ={1,...,n}, let V = [0,1]", let p; be the projections
of the cube to its coordinate faces V;,

p]; : (xlv s Lp=1y Ty Thot 1,5 7"Ln) = (mla ~'~7xk717wk+17"'7xn);

such that the edges of the graphI" are pair of vertices (v, v2) on same coordinate
lines in the cube, i.e. p;(v1) = p;, (v for some k.

Then, given Uy, c V, let U* be the union of all lines which meet through the
intersection nkwlgl(Vhatk N Up).

Thus,

p(U) 2 p(O) 7 (Vi N UR)) 2 Y w(Us)
keK keK

and all lines in 1(U*) meet other lines in the remaining (n - 1) directions.

The latter implies the connectednes of the subset U*; thus, the inequality ¢* <1
for this T.

Isoperimetric Corollary. (Compare with 7?7 in section 3.3.) Let Y c [0,1]"
be a hypersurface, which divides the cube into two parts, say Wi and Ws. Then

min(vol (Wh),vol(W3)) <n-vol,-1(Y).
Proof. Apply the above to the projections Uy = m; ¢ V. and show that

max(vol(Wy),vol(Va2)) > 1 —nvol,_1 Y.

7.5.2 Combinatorial Shannon and Harper Inequalities.
7.5.3 Linearized Loomis-Whitney-Shearer Inequality

Let

YCXKZ >< Xk, K={1,...,n},
keK
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be a finite set let L be the linear spaces of functions on Xy, let Lo = Ly be the
space of functions on Y and let

(I’(lo,ll, ...,lk) = Z lo(y) ~l1(x1) teelt Z,L(.’L‘k)

yeyY

be an (n + 1)-linear form in the varlables [;, i = 0,1,...,n, where every subset
J c K = {1,...,n} turns this ® into a bilinear form ®; between tensor product
spaces, Ly and L.,

LJ=®L1‘ and L . :L0®( ® Ll)
ieJ ieK~NJ
Since rank(® ;) = card(Yy), where Y; ¢ X; = x5 X, is the projection of Y to
Xy (check it!) the [LWS] inequality (for functions constant on their supports Y;)
says in this terms that

(Po) [1 (rank(®;,))% = rank(Y)
JicK iel

for all partitions of unity (J;,5;), i€ on K.

Linearized [LWS] claims that this inequality holds true for all (n + 1)-linear
forms (I)(l07 117 ceey lN)

This can be reduced (this is easy) to the original combinatorial [LWS] by using
a suitable basis in L or proven by the Bernoulli approximation argument applied
to L&V . with N — oo (see ?77[strfucure]. [action]).

Example: The linearized Loomis- Whitney 3D-isoperimetric inequality for
ranks of bilinear forms associated with a 4-linear form ® = ®(ly,ly,1ls,13,) reads

D¢, 123]% < |®o1,23 - [Po2,13] - [Po3 12|

where |...| stands for rank(...).

Remark. Probably, the linear [LWS]-inequalities are the only universal relations
between the ranks of ®;, but there are further inequalities of this type for partic-
ular polylinear forms, e.g. defined by the “-product in the cohomology algebras
of certain manifolds (see [expanders, singularities]) and also in spaces of sections
and (cohomologies in general) of holomorphic vector bundles such e.g. as in the
Khovanski-Teissier theorem and in the Esnault-Viehweg proof of the heneralized
Dyson-Roth lemma, but a direct link. between all such inequalities is yet to be
found.

7.6 Isoperimetry in the Exterior Algebras

7.7 Strong Subadditivity of the von Neumann Quantum
Entropy

8 Fixed Points, Amenability, T-property and Isoperime-
try in Groups and Algebras

von-Neumann
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8.1 "Parallel" Mass Transport in Groups and Saloff-Coste
bound on the Folner-Vershik function

8.2 Kazhdan’s T-Property, Margulis’ Expanders, Spec-
tral Logic, Garland theorem, High dimensional Ex-
panders

X c BN(R) = Vol(X) < 1/nvol(9X) In fact,

vol(X) = fY:PV(X_wO)dy P, is the projection to the normal line to Y at y.
(This integral doesn’t depend on zg.)

Average intersection of Y with the (n — 1) faces of an e-cubilation of R™

9 Measure Concentration

9.1 Talagran Inequality

9.2 Poincare Concentration Inequalities for Mapping to
Wirtinger and other Spaces

9.3 Stability of Matter

10 Waist Inequalities

11 TIsoperimetry Settings and Directions of Gen-
eralizations

1. Given Euclidean vector bundles over a Riemannian manifold
Vo, Vi, .. Vi = X,
and linear differential operators on spaces of sections X — V;.
D;:C¥(Vy) > C=(Vy),i=1,...k
evaluate (the size of) the set of values of the L,,-norms of these sections for given

Dbi,
F= {(fx Dif(x)mda:)l/pi} cR¥

fEC":’(Vo)

For instance, decide when F # R’f_.

More generally, study possibilities for the joint distribution of |D;f| regarded
as random variables on X.

Example
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12 Isoperimetry for Families, Spectra and Morse
13 Poincare-Hahn Banach duality

14 Isoperimety Problems Inspired by Biology

14.1 Micella, Nash Blow up and and Higher Order Soap
Bubbles

14.2 Viral Isoperimetry: Minimization of Information for
Building the Wall around the Carrier of this Infor-
mation

15 Appendices

15.1 Basics on Curvature

§2 https://link.springer.com/article/10.1007/BF02925201

§2 https://arxiv.org/pdf/1908.10612.pdf

We enlist in this section several classical formulas of Riemannian geometry and
indicate their (more or less) immediate applications.

15.2 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let h;, t € [0,¢], be a family of
Riemannian metric on an (n — 1)-dimensional manifold Y and let us incorporate h;
to the metric g = hy +dt? on Y x [0,¢].

Notice that an arbitrary Riemannian metric on an n-manifold X admits such a
representation in normal geodesic coordinates in a small (normal) neighbourhood
of any given compact hypersurface Y c X.

The t-derivative of h; is equal to twice the second fundamental form of the hy-
persurface Y; = Y x {t} c Y x[0,e], denoted and regarded as a quadratic differential
form on Y =Y}, denoted

A7 =A%)

and regarded as a quadratic differential form on Y =Y;.

In writing,
dhy
O,h = — =247},
dt ¢
or, for brevity,

dh = 2A%,

where
v is the unit normal field to Y defined as v = %.
In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y"1 c X"
Recall, that the principal values o (y), i = 1,...,n—1, of the quadratic form A}

on the tangent space T,(Y), that are the values of this form on the orthonormal
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vectors 7;° € T;(Y'), which diagonalize A*, are called the principal curvatures of
Y, and that the sum of these is called the mean curvature of Y,

mean.curv(Y,y) = zaf(y),
i

where, in fact ,

Za:(y) =trace(A*) = ZA*(TZ,)

for all orthonormal tangent frames 7; in T, (Y") by the Pythagorean theorem.

SIGN CONVENTION. The first derivative of h changes sign under reversion of
the t-direction. Accordingly the sign of the quadratic form A*(Y") of a hypersurface
Y c X depends on the coorientation of Y in X, where our convention is such that

the boundaries of conver domains have positive (semi)definite second funda-
mental forms A*, also denoted Ily, hence, positive mean curvatures, with respect
to the outward normal vector fields ¥

(2.1.B) First Variation Formula. This concerns the t-derivatives of the (n -
1)-volumes of domains U, = U x {t} c Y;, which are computed by tracing the above
(1) and which are related to the mean curvatures as follows.

dh
[OU] Oypvolp,_1(U) = d—ttvoln,l(Ut) = fU mean.curv(Ut)dy

where dy; is the volume element in Y; o U;.
This can be equivalently expressed with the fields v = ¢ - v for C'-smooth
functions 1 = ¢ (y) as follows

[ow] 8¢,,v0ln,1(Yt):/Yw(y)mean.curv(Yt)dy

Now comes the first formula with the Riemannian curvature in it.

15.3 Gauss’ Theorema Egregium

Let Y ¢ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of ¥ and X on a tangent 2-plane 7 c T, (Y) c T)y(X) ye Y,
satisfy

w(Y,T) = k(X,T) + A2A*(T),

where A2A*(7) stands for the product of the two principal values of the second
fundamental form form A* = A*(Y) c X restricted to the plane T,

ANAY(T) = (1) - a3 (7).

48 At some point, I found out to my dismay, that this is opposite to the standard convention
in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

49This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].

50This remains true for Lipschitz functions but if 4 is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U c Y, then the derivative 9y, voln—1(Y%)
may become (much) larger than this integral.
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This, with the definition the scalar curvature by the formula Sc = ¥ k5, implies
that

Se(Y.y) = Se(X,y) + 3 af ()a (¥) = X ks
%] %

where:

e ai(y), i = 1,...,n—1 are the (principal) values of the second fundamental
form on the diagonalising orthonormal frame of vectors 7; in T,,(Y);

e a*-sum is taken over all ordered pairs (i,7) with j # 4

e £, ; are the sectional curvatures of X on the bivectors (v, 7;) for v being a
unit (defined up to +-sign) normal vector to Y;

e the sum of k,; is equal to the value of the Ricci curvature of X at v,

z Ky, = Riccix (v,v).
i

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the
case of Y = §""! c R" = X this gives the correct value Sc(S™ ™) = (n-1)(n-2).
Also observe that

i*j
which shows that
Sc(Y) = Se(X) + (mean.curv(Y))? - ||A*(Y)|]* - Ricci(v, v).
In particular, if Sc(X) >0 and Y is minimal, that is mean.curv(Y') =0, then
(Sc > —2Ric) Sc(Y) > —2Ricci(v,v).

Example. The scalar curvature of a hypersurface Y c R™ is expressed in terms
of the mean curvature of Y, the (point-wise) La-norm of the second fundamental
form of Y as follows.

Sc(Y) = (mean.curv(Y))? - [|A*(YV)|]?
for [|A*(Y)|]?> = ;(a})?, while Y c S™ satisfy

Se(Y) = (mean.curv(Y))2—\|A*(Y)||2+(n—l)(n—2) > (n—l)(n—2)—nmlax(c;)2.

It follows that minimal hypersurfaces Y in R"”, i.e. these with mean.curv(Y’) =
0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values < v/n -2 have Sc(Y) > 0.

Let A = A(Y) denote the shape that is the symmetric on T'(Y) associated
with A* via the Riemannian scalar product g restricted from T'(X) to T(Y"),

A*(1,7) = (A(1),7)g for all Te T(Y).
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15.4 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry[| Let V; be a
family of hypersurfaces t-equidistant to a given Y = Y; ¢ X. Then the shape s
A; = A(Y}) satisfy:

dA,

dyA=—"=-A%(Y;) - By,
dt (Yo - By

where B, is the symmetric associated with the quadratic differential form B* on
Y, the values of which on the tangent unit vectors 7 € T, ;(Y;) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(r,v=-41).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on the
pages of most textbooks on Riemannian geometry.

Tracing this formula yields
(2.3.B) Hermann Weyl's Tube Formula.

trace(dd—/it) = —||A*|]* - Ricciy, (%, %),

or
trace(9,A) = d,trace(A) = -||A*||* - Ricci(v,v),

where
|A*]I? = |A][* = trace(A?),

where, observe,

trace(A) = trace(A*) = mean.curv =y o
i

and where Ricci is the quadratic form on T'(X) the value of which on a unit vector
v eTy(X) is equal to the trace of the above B*-form (or of the B) on the normal
hyperplane vt c T,,(X) (where v* =T, (Y) in the present case).
Also observe — this follows from the definition of the scalar curvature as Y &;;
- that
Se(X) = trace(Ricci)

and that the above formula Sc(Y,y) = Sc(X,y) + ¥;.ja7af — ¥, K., can be
rewritten as

%]

Ricci(v,v) = % (SC(X) -Sc(Y)-> oy - a;) =

51The first main formula is Gauss’ Theorema Egregium.

52Thibault Damur pointed out to me that this formula, along with the rest displayed on
the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.

72



(Se(X) - Se(Y) - (mean.curv(Y))? +[|A*||?)

N |

where, recall, o} = af(y), yeY, i =1,..,n—1, are the principal curvatures of
Y c X, where mean.curv(Y) = ¥; o and where [|[A*|]> = ¥, (af)?.

15.5 Umbilic Hypersurfaces and Warped Product Metrics

A hypersurface Y c X is called umbilic if all principal curvatures of Y are mutually
equal at all points in Y.

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres ST, Euclidean spaces R™ and hyperbolic spaces
H} ) are umbilic.

In fact these are special case of the following class of spaces .

Warped Products. Let Y = (Y, h) be a smooth Riemannian (n-1)-manifold and
0 =¢(t) >0, te[0,e] be a smooth positive function. Let g = hy + dt? = p?h + dt*
be the corresponding metric on X =Y x [0,¢].

Then the hypersurfaces Y; = Y x{t} c X are umbilic with the principal curvatures

of Y; equal to o (t) = %, i=1,...,n-1 for

A; = %ht for ' = dfigt) and A; being multiplication by % .

The Weyl formula reads in this case as follows.

(n-1) (“g), - (n-1)? (g)2 - % (Sc(g) = Se(hy) - (n-1)(n-2) (:‘;’)2).

Therefore,

Sc(g) = ESC(h)—Q(n—l)(d) —n(n—l)(@,) _
2 © 0

i / 2
(%) :25c<h)—2(n—1)“”—<n—1)<n—2)(@) ,
14 ¥ P
where, recall, n = dim(X) = dim(Y) + 1 and the mean curvature of Y} is

¢'(t)
o(t)

Ezamples. (a) If Y = (Y, h) = S"" is the unit sphere, then

mean.curv(Y; c X) =(n-1)

" ! 2
Sey = W—Q(n—n‘p_(n_n(n_z)(@) :
' ¥ ®

which for ¢ = t? makes the expected Sc(g) = 0, since g = dt? + t?h, t > 0, is the
Euclidean metric in the polar coordinates.

If g = dt? +sint?h, -7/2 <t < /2, then Sc(g) = n(n - 1) where this g is the
spherical metric on S™.
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(b) If h is the (flat) Euclidean metric on R™! and ¢ = expt, then
Sc(g) = -n(n-1) = Se(H™).
(c) What is slightly less obvious, is that if

t nt T ™
w(t):expf —tan —dt, — —<t<—,
—r/n 2 n n

then the scalar curvature of the metric <p2h+dt2, where h is flat, is constant positive,
namely Sc(g) =n(n—-1) = Sc(S™), by elementary caIcuIatio

Cylindrical Extension Exercise. Let Y be a smooth manifold, X =Y xR, let
go be a Riemannian metric in a neighbourhood of the boundary Y =Y x {0} = 0X,
let h denote the Riemannian metric in Y induced from go and let Y has constant
mean curvature in X with respect to go.

Let X’ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension n as
X, let Y’ = 90X’ be its boundary sphere, let, let Sc(h) > 0 and let the mean and the
scalar curvatures of Y and Y are related by the following (comparison) inequality.

Imean.curvg, (Y)>  |mean.curv(Y")[?

[<] Sc(h, y) Se(Y)

forall yeY.

Show that

ifY is compact, there exists a smooth positive function p(t), 0 < t < oo, which
is constant at infinity and such that the the warped product metric g = p?h+dt?
has

the same Bartnik data as gg, i.e.

g|Y = ho and mean.curvg(Y') = mean.curvg, (Y'),

Then show that

one can’t make Sc(g) > Sc(X') in general, if [<] is relaxed to the corresponding
non-strict inequality, where an example is provided by the Bartnik data of Y/ ¢ X’
itself 4]

Vague Question. What are "simple natural" Riemannian metrics g on X =
Y xR, with given Bartnik data (Sc(Y'), mean, curv(Y)), where Y c X is allowed
variable mean curvature, and what are possibilities for lower bound on the scalar
curvatures of such g granted |mean.curv(Y,y)*/Sc(Y,y) < C, e.g. for C =
[mean.curv(Y")|?/Sc(Y") for Y’ being a sphere in a space of constant curvature.

Curvature Formulas for Manifolds and Submanifolds.

53See §12 in [GL(complete) 1983].

541t follows from [Brendle-Marques(balls in S™)N 2011] that the the cylinder S™~! x Ry
admits a complete Riemannian metric g cylindrical at infinity which has Sc(g) > n(n-1), and
which has the same Bartnik data as the boundary sphere X, in the hemisphere X’ in the unit
n-sphere. But the non-deformation result from |[Brendle-Marques(balls in S™) 2011], suggests
that this might be impossible for the Bartnik data of small balls in the round sphere.
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15.5.1 Comparison Inequalities

15.6 Carno-Caratheodory Spaces

16 Amenability and Isoperimetry in Groups and
Algebras
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