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I. What is probability?
II. What is it good for?
III. What are limitations

of the concept of probability?
IV. What alternatives are

desirable and what is available?
Below are a few classical answers

to I and II.
We define the art of conjecture, or

stochastic art, as the art of evaluat-
ing as exactly as possible the prob-
abilities of things...

Jacob Bernoulli
(the author of one of 10 greatest
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theorems of all time).
Lavoisier echoes:
The art of drawing conclusions from

experiments and observations con-
sists in evaluating probabilities.
Laplace amplifies:
Probability theory is nothing but

common sense reduced to calcula-
tion.
George Boole, a logician, put it

somewhat differently:
Probability is expectation founded

upon partial knowledge. A perfect
acquaintance with all the circum-
stances affecting the occurrence of
an event would change expectation
into certainty, and leave nether room
nor demand for a theory of proba-
bilities.
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This idea is expressed more picto-
rially by Bart Kosko:
The probability that the bowman’s

arrow hits the deer does not lie in
the arrow or the deer. It lies in the
bowman’s mind.
And all this makes Jay Gould, an

evolutionary biologist, lament:
Misunderstanding of probability may

be the greatest of all impediments
to scientific literacy.
One cannot help but conclude by

saying:
a curious aspect of the probability

theory is that everybody thinks he
understands it.

Jacques Monod, misquoted.
(We selected certain quotes for this

lecture because they appear inter-
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esting and thought provoking, never
mind if what in them is wrong or
meaningless. They are not intended
to confirm any view or opinion but
rather to invite the reader to pon-
der on the ideas of the authors of
these quotes.)
A few words on history.
5 000 years ago, Rituparna – a

king of Ayodhya – proudly said:
I of dice possess the science
and in numbers thus am skilled.
3000 years later, Titus Lucretius

outlined a stochastic model of what
was discovered and analysed by Jan
Ingenhousz around 1785 and called
for brevity

Brownian motion.
... small compound bodies...
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are set in perpetual motion
by the impact of invisible blows.

The movement mounts up
from the atoms
and gradually emerges
to the level of our senses.
Two thousand years have passed

by and physicists and mathemati-
cians (... Maxwell, Boltzmann, Gibbs,
Einstein... , ... Cardano, Bernoulli,
Laplace) have understood what Lu-
cretius had in mind and worked out

the calculus of probabilities
which, in the words of Maxwell, con-
stitutes [the]
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true logic of this world,
which takes account of the magni-
tude of the probability which is, or
ought to be, in a reasonable man’s
mind.
Then this calculus was planted on
the measure-theoretic soil (Borel, Kol-
mogorov) made ready by Cantor’s
set theory where it stretched to al-
most all regions of mathematics and
physics.
In fact, probability displays the

full beauty of its colors not so much
at the core of the theory, but where
its ideas intermingle with ideas from
other fields.
And later several non–classical seedlings

sprouted from the roots around the
gorgeously branched tree of the clas-
sical probability:
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non-commutative (quantum, free)
probability(Von Neumann, Voiculescu)
algorithmic probability (Von Mises,

Kolmogorov, Chaitin, Martin Löf...)
categorical probability theories.
Non-standard probability (Nelson,

Loeb)
Fuzzy probability.
If somebody starts telling you
he/she knows what probability is

spit in the eye of this individual.
And it is not so much the immen-

sity of the field which has been al-
ready developed, but rather the dif-
ficulty of an assessment of the lim-
itations of the present day theory
and discerning new directions – this
is what makes "I know" sound
ridiculous.

7



Sample Questions.
Stochastic Generation of

Bizarre Objects
and

Natural Conjectures.
Given a class/set O of "mathe-

matical objects" ob it may be diffi-
cult to say much significant about
all ob ∈ O and/or to single out in-
teresting representatives ob in O.
But it may be easy to pinpoint

a natural probability measure µ or
a class of such µ on O, where the
µ-random (µ-typical) objects ob ∈
O demonstrate their peacock’s tail
brightness.
For instance, little of substance

can be said or even asked about ge-
ometry/topology of general subsets
ob in the integer lattice Zn ⊂ Rn.
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But there are volumes of known
and conjectural properties of ran-
dom ob ⊂ Zn, coming under the
heading of percolation theory.
Problem 1. Identify/generalise

the logical mechanism(s) that em-
powers the idea of probability to
generate new mathematical ques-
tions.

An effective construction of ob-
jects in O with typical properties,
which are enjoyed by random/typical
ob, may be difficult.
For instance, nobody has ever seen

a specific subset in Z2 with essen-
tial features of a µ-random subset
for any natural probability measure
µ.
Problem 2. Rigorously formu-
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late, prove (disprove?) and gener-
alise this impossibility of determin-
istic imitation of properties of ran-
dom objects.
Now let us formulate two concrete

questions on the border of proba-
bility with two (quite elementary)
mathematical structures which fur-
ther illustrates limitations of our un-
derstanding of probability.
Linearised LW Inequality. Let

Φ = Φ(s1, s2, s3, s4) be a 4-linear
form over some field and denote ∣...∣ =
rank(...). Then
the rank of the bilinear form

Φ(s1, s2 ⊗ s3 ⊗ s4),
denoted

∣1, 234∣ = rank(Φ(s1, s2⊗s3⊗s4)),
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is bounded by the ranks
∣12, 34∣ = rank(Φ(s1⊗s2, s3⊗s4)),
∣13, 24∣ = rank(Φ(s1⊗s3, s2⊗s4))
and
∣14, 23∣ = rank(Φ(s1⊗s4, s2⊗s3))
as follows.
∣1, 234∣2 ≤ ∣12, 34∣ ⋅ ∣13, 24∣ ⋅ ∣14, 23∣.

This can be reduced to the 3D
Loomis-Whitney isoperimetric inequal-
ity (and/or to the Shannon entropy
inequality); also this can proven by
applying the Bernoulli law of large
numbers to theN th tensorial power
ΦN⊗, where N is a nonstandard
(infinitely large) integer.
Question 1. Is there a link of the

linearised LW inequality and simi-
lar "large numbers" phenomena with
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algebra-geometric inequalities con-
cerning ranks of cohomology groups,
e.g. in the Esnault-Viehweg proof
of the sharpened Dyson-Roth lemma?
Fisher Metric. Recall (Archimedes,

287-212 BCE) the real moment map
from the unit sphere Sn ⊂ Rn+1 to
the probability simplex △n ⊂ Rn+1

for

(x0, ..., xn)↦ (p0 = x2
0, ..., pn = x2

n)
and observe following R. Fisher that
the spherical metric (with constant
curvature +1) thus transported to
△n, call it ds2 on △n, is equal, up
to a scalar multiple, to the Hessian
of the entropy
ent{p0, ..., pn} = −∑i pi log pi.

ds2 = const∂
2ent(pi)
dpidpj

.
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If, accordingly, we take the "in-
verse Hessian" – a kind of double
integral "∫ ∫ ds2" for the definition
of entropy – we arrive at
Question 2. Are there interest-

ing "entropies" associated to (real
and complex) moment maps of gen-
eral toric varieties? Is there amean-
ingful concept of "generalised prob-
ability" grounded in positivity en-
countered in algebraic geometry?
*******************************

The calculus of probabilities, when
confined within just limits, ought
to interest, in an equal degree, the
mathematician, the experimental-
ist, and the statesman.

Francois Arago.
Probability works fantastically well
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in the classical physics, e.g. in the
statistical mechanics and in its non-
commutative version in the quan-
tum physics as well, apparently due
to the enormous symmetry of the
systems it applies to.
Amusingly however, the famous

second law of thermodynamics, which,
apparently, is rooted in symmetry
as much as in randomness, admits
no mathematically satisfactory jus-
tification (formulation?) in the lan-
guage of the classical probability the-
ory.
Unable to justify this law logically,

physicists glorify it poetically.
...the entropy of the universe tends

to a maximum.
Rudolf Clausius (1865).
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... though the energy itself is in-
destructible, the available part is li-
able to diminution by the action of
certain natural processes, such as
conduction and radiation of heat,
friction, and viscosity.

James Clerk Maxwell.

.......a given system can never of
its own accord go over into another
equally probable state but into a
more probable one.

Ludwig Boltzmann.
... Nature prefers the more prob-

able states to the less probable be-
cause in nature processes take place
in the direction of greater probabil-
ity.

Max Planck (1903).
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... if... the universe is in disagree-
ment with Maxwell’s equations– then
so much the worse for Maxwell’s
equations. ... But if your theory
is found to be against the second
law of thermodynamics... – there
is nothing for it but to collapse in
deepest humiliation.

Arthur Eddington.
...the second law of thermodynam-

ics has played in the history of sci-
ence a fundamental role far beyond
its original scope.

Ilya Prigogine.
Not only particles and fields of

force had to come into being at the
big bang, but the laws of physics
themselves, and this by a process
as higgledy-piggledy as genetic mu-
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tation or the second law of thermo-
dynamics.

John Wheeler.
... classical thermodynamics... will

never be overthrown, within the frame-
work of applicability of its basic con-
cepts.

Albert Einstein.
But let us be humble:
Every mathematician knows it is

impossible to understand any ele-
mentary course in thermodynam-
ics.

Vladimir Arnold.

The further we go from physics to
the worlds of biology, psychology,
linguistic, economics, ... the more
we lose symmetry – the use of clas-
sical probabilistic concepts in het-
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erogeneous environment becomes prob-
lematic.
This was articulated already by

Claude Bernard who said around
1865 that
Averages confuse while aiming to

unify and distort while aiming to
simplify.

But in his 1866 paper Mendel demon-
strated that probabilistic rendition
of
the striking regularity with which

the same hybrid forms always reap-
peared
in his experiments reveals the key

players in the game of Life- – the
genes.
Forty years later, in 1908, an as-

pect of Mendelian theory was (re)formulated
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in the 19th century probabilistic terms
and became one of the most cited
mathematical theorems (more than
1 000 000 for "Hardy-Weinberg" on
Google), yet, unknown to majority
of mathematicians.
A few years prior to Mendel’s ar-

ticle, Darwin andWallace proposed
a description of evolution in terms
of
random variations of organisms
+
potentially exponential growth of
populations
+
cut-off of most of this growth by
extinction,

called by Darwin natural selection.
However, even nowadays, nobody
can say for certain what random
signifies.
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Jacques Monod says in this re-
gard:
The universe was not pregnant with

life nor the biosphere with man. Our
number came up in the Monte Carlo
game....
and that.
it is legitimate to view the irre-

versibility of evolution as an expres-
sion of the second law in the bio-
sphere.
This may sound paradoxical, since

the directionality of the time ar-
row of Life (in the tiny islets where
there is Life) is opposite to that of
the rest of the physical universe:
thermodynamic dissipation homogenises

whilst evolution diversifies.
But, possibly, what the two ther-
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modynamic dissipation and biolog-
ical evolution – have in common is
(unknown) mathematics which sup-
ports both of them and may, in par-
ticular, provide an abstract reason
for why
natural selection is a mechanism

for generating an exceedingly high
degree of improbability as Ronald
Fisher remarks,
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But the usage of the word "prob-
ability may be, and often is, con-
fusing, because, as Niels Bohr says

We are trapped by language to
such a degree that every attempt
to formulate insight is a play on
words.
For instance if your probability is

the one (tacitly and often uncon-
sciously) accepted by physicists, you
run into problems as Fred Hoyle –
a possessor one of the finest minds
of the 20th century – does when he
says:
there are about two thousand en-

zymes, and the chance of obtaining
them all in a random trial is only
one part in 10 to the 40,000 power,
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an outrageously small....
It is therefore almost inevitable

that our own measure of intelligence
must reflect ... higher intelligences
... even to the limit of God ...
Definitely,

probability≠probability.
Also one can object to Hoyle as

Richard Dawkins does:
I think the probability of a super-

natural creator existing is very very
low.
Fine... except nobody, even the

super-natural creator herself, can
make sense of this probability.
Joking apart, a quantitatively minded

Hoyle, was refusing to unquestion-
ably accept the highly improbable
in his view idea that mere poten-
tiality of exponential in the naked

23



natural selection model of evolution
was powerful enough to make the
stochastic gradient ascent in the fit-
ness landscape – natural selection
in biologists’ parlance – implement
the observed evolution rate, given
real life limitations on reproduction
rates and population sizes.
What about linguistics? Psychol-

ogy, Economics?
Having no idea of what, math-

ematically speaking, economics is
we limit ourselves to quoting Nas-
sim Nicholas Taleb:
If you hear a "prominent" economist

using the word equilibrium or nor-
mal distribution ... just ... put a
rat down his shirt.
Linguistics feels closer home and
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we – mathematicians – may even
venture out our own definition of
language, something like
a probability measure on the set of

strings of symbols from a finite set.
Smart and cute, isn’t it? – es-

pecially in view of what linguists
think about it.
probability of a sentence is an en-

tirely useless [concept], under any
known interpretation of this term.

Naum Chomsky.
Question. Should we listen to

linguists and shut up with our def-
initions or could we try to think of
something better?
Our only hope lies in the Chom-

skian known – we must come up
with a new concept of probability.
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Apparently, life sciences, broadly
understood,: biology, psychology,
linguistics, machine learning.... need
probability p(event), where p is
NOT a number.
But...
... all the mathematical sciences

are founded on relations between
physical laws and laws of numbers,
so that the aim of exact science is
to reduce the problems of nature to
the determination of quantities by
operations with numbers.
This is what Maxwell says speak-

ing of Faraday’s Lines of Force (1856).
Well..., we shall be content to be

alive rather than exact.

Conceivably, Life starts with com-
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partmentalisation, such as forma-
tion of micelles – a process which
is describable by means of the clas-
sical probability immersed into a
beautifully intricate physical/mathematical
structure and which, however, has
not been studied much by pure math-
ematicians.
Next comes the basic biological

instance of self-organisation – pro-
tein folding: a polypeptide chain
P in a watery environment, driven
by attraction/repulsion forces be-
tween residues and Brownian bom-
bardment by water molecules, takes
a definite 3D shape P-
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Formally speaking, one has an en-
ergy function E on the configura-
tion space P of chains P in the Eu-
clidean 3-space, where the dimen-
sionN of P is roughly proportional
to the number of residues in P .
The space P comes with (more or

less) natural topology and measure
structures; these endow the space
TP of sublevels of E into a forest
of weighted trees, which play the
role of numberical probability val-
ues p in the traditional statistical
mechanics.
(The higher connectivity/homology

invariants of these sublevels can be
described in terms of homological
probability, which, albeit mathemat-
ically attractive, doesn’t seem to have
a biological significance.)
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The tree TP doesn’t come in iso-
lation but as a member of an evolu-
tionary family F(P ) which makes
a tree (modulo the horizontal gene
transfer) in its own right.

Besides protein related structures,
tree-like patterns can be seen in gen-
erative grammars of natural languages
as well as in statistical descriptions
of words in a corpus of a language,
where their "meaning" is determined
not by their "brute frequencies" but
by distributions of their associations
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with other words.
And the above kinds of trees sug-

gest a direction that may lead to
"denumerification" (categorisation?)
of the probability theory.
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