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This is an annotated extract from my 2019 course at CIMS called "Mathe-
matics of Life Spaces"

1 Three Perspective on Proteins
There is a three way fork in the road toward mathematical protein spaces.

I. Individual Protein Molecules: Folding, Structure Function. Start
with pictorial images of proteins such as these.

Figure 1: Spatial model
of a folded protein
molecule

Figure 2: Schematic
protein structure.

Then look at the pictures of proteins arriving to these shapes by the folding
process.
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Figure 3: Protein folding in water: little dots depict water molecules which
surround proteins and which are pushed out of the interior regions of the folded
protein molecules.

Making math out of this is hard: following in steps after P.J. Flory and
Orr,1 we turn to something easy: unfolded proteins, thought of as chains of
beads freely floating in solution.

But is it easy? Not at a all:the space of these looks something like this.

Figure 4: The square represents the space of all chains of points x1, ..., xi, ..., xN
in the 3-space, such that dist(xi, xi+1) = 1. The white strips correspond to
the positions of the pairs (xi, xj), where dist(xi, xj1) ≤ 2ε, which corresponds
to impossible positions of material ε-beads with the centers xi and xj . The
remaining "blue" depicts the configuration space of chains of ε-beads in the
3-space.

Despite multiple mathematical papers dedicated to (discretized versions of)
these "strings of beads in the space," called self avoiding random walk(s), amaz-

1P.J. Flory, The configuration of a real polymer chain, J. Chem. Phys.17(1949), W.J.C.
Orr. Statistical treatment of polymer solutions at in

infinite dilution. Transactions of the Faraday Society, vol. 43, (1947).
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ingly little has been rigorously proved so far. But even if we prove 200% of what
we want, it will contribute something like 0.0002% to our knowledge of proteins.

The next level of approximation to "reality" after the self avoiding random
walk model is that of the energy landscape of a protein. This is a real valued
function E on the space S of self avoiding walks.

An essential characteristic of this function is the weighted Kronrod (Adelsson-
Veleski-Reeb-Stein) tree T = TE that is the set of connected components of the
sublevels

{S ∈ S}E(S)≤h,h∈R.

The function E ∶ S → R obviously factorizes via T ,

S → T → R,

where the levels of the quotient map S → T are connected and all continuous
maps S → T ′ with connected pullbacks canonically factor as S → T ′ → T .

The weight we speak of is a measure on T that is the push forward of the
natural measure/volume on S.

Figure 5: The energy is represented by the height function and the weight by
the thickness of the branches of the tree. The leaves correspond to the local
minima of the energy with the global minimum positioned at the lowest leaf;
this corresponds to the folded protein molecule

The energy of the folded protein S, e.g the one serving an enzymatic/catalytic
function may be not fully localized, but distributed over branches of a smaller
tree where chemical reaction(s) between molecules can be seen as certain oper-
ations over such trees.

The simplest such operation is the convolution of trees, call them T1 and T2
with energies Ei ∶ Ti → R and weights/measures on µi and on them, i = 1,2.
This convolution, which corresponds molecules which don’t interact is defined
as

T1 ∗ T2 = TE1+E2 ,
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where E1 + E2 is the energy function on the product T = T1 × T2 with the
measure µ1 ⊗ µ2, where the (2-dimensional) space T plays the role of S in the
definition of the Kronrod tree.

It would be amusing to reformulate what is known (and unknown) about
enzymatic catalysis in the multidimensional geometric language2 of this kind,
which may be more instructive than how it is depicted in the traditional way
exemplified by figure 6 below.

Figure 6: Enzyme speeds up a reaction by lowering the activation energy barrier

II. Sequence spaces, Proteins Families Evolution trees. Proteins P
are (almost) fully3 defined by what is called their primary structure that is a
sequence of 20 letters for 20 basis amino acids and thus, can be thought as
points in the product {20A}∗ where {20A} denotes the stands for the set of 20
amino acids and ∗ for a moderate number N, something between 50 and 300.

Sequence spaces such as {20A}300, especially {0,1}N have been extensively
studied and are as much understood, as anything else in mathematics.

In particular, one has a clear idea of the geometry of the Hamming metric
between sequences (a1, ....aN) and (b1, ..., bN) that is the number of positions
i ∈ {1, ....N}, where ai ≠ bi, that is, biologically speaking, the (minimal) number
of substitution point mutations needed to pass from (a1, ....aN) and (b1, ..., bN).

What is harder is to understand the properties of the subset P ⊂ {20A}∗ of
sequences corresponding to actual proteins in living organisms (that us similar
to the set of sequences in 26 letters in the sentences ever written anywhere in
English).

These constitute a minority of all 300-long sequences, say < 1025 out of
20300 > 10390 could have been be present among proteins in organisms who have
ever lived on Earth about with about 100 000 000 recorded sequences recorded
today4 the essential structure in subset P ⊂ {20A}∗ is that of directed graph,
where the arrow P → P ′ signifies a mutation, e.g. the above point substitution,

2Dimension may play an essential role, since participation of an enzyme in a reaction
increases the dimension of the parameter space of this reaction and which may be relevant for
describing the mechanism which lowers the activation (free) energy of the reaction, where the
increase of dimensionality may radically modify not only and not so much the energy as the
"entropic geometry" of the process. (Think of the entropy of the lock/key system.)

3Proteins may undergo post-translational modifications not encoded by their amino acid
sequences.

4For comparison, the number of atoms on Earth is ≈ 1050.
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where an amino acid ai is substituted by a′i.
5

Then the protein sequences are seen as tree-like clusters in the full sequence
space P ⊂ {20A}∗, where, in fact, only the leaves of these are visible in the
today proteins, while the rest of the tree is obtained by the (conjectural) ances-
tral sequence reconstruction, (mostly) based on the multiple sequence alignment
algorithms.

Figure 7: Evolution trees of protein phosphatases

As far as the functions of proteins go, and this is what, besides neutral
mutations, drives the evolution, the shape of folded proteins is more essential
than their sequential structure.

5Other kinds of mutations are discussed later on
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Figure 8: Evolutionary tree of DapD enzymes in bacteria

But there in no(?) apparent formal mathematical approach to ancestral
reconstruction of protein folds.

III. Proteins Interaction Networks. The two basic classes of relations
between Life’s childrens, be they macromolecules or sentences in a language, are

similarity and cofunctionality.
The main source of similarity in biology is common ancestry, while the most

apparent manifistation of cofunctonality of two proteins in the cell is their ten-
dency to preferentially bind one to another.

Here is how the resulting graph(s) may look like,

Figure 9: Yeast (left) and human (right) interactomes obtained using the yeast-
two hybrid method.

and below is a fragment of such a graph.
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Figure 10: Protein-protein interaction analysis of cluster 4 highlighting protein
networks involved in pancreatic secretion, protein digestion and absorption (or-
ange), metabolic pathways (purple), proteasome (green) and structural molecule
activity (yellow). In the network, proteins are represented as nodes. Colors of
the lines connecting the nodes represent different evidence types for protein
linkage.

The above I,II,III reperesent only an outline of the architecture of the
Protein Unoverse, where, observe, the ancestrial similarity of II applies to the
conbiantorics depicted by III.
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Figure 11: Evolution of the phagosome proteins network

There are (at least) two ways to treat this mathematically.
1. Developing a mathematical teory of random network evolution.
2. Reconstructing ancesral networks by kind of multiple "alignment" of

extant combinatorial network structures.
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