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1 Introduction
Immersions are C1-maps f ∶ X → Y between smooth manifolds, such that
their differentials df ∶ T (X) → T (Y ) nowhere vanish,1

df(τ) = 0 Ô⇒ τ = 0, τ ∈ T (X).

The (maximal normal bundle) curvature of an immersed X in a Rieman-
nian Y ,

f ∶X ↪ Y,

is the supremum of the Y -curvatures of geodesics γ ⊂ X, for the induced Rie-
mannian metric in X,

curv⊥(X) = curv⊥(f(X)) = curv⊥f(X) = curv⊥(X f↪ Y ) = curv⊥(X ↪ Y ),

Minimal Curvature Problem. What is the infimum of curvatures of
immersions f ∶X ↪ Y ,

inf.curv⊥(X,Y ) = inf.curv⊥(X ↪ Y )?

Remark: min or inf? Probbaly, the infimum inff curv
⊥
f(X,Y ) is rarely

achieved, where the (only) established examples of immersions of closed mani-
folds with minimal possible curvatures are listed below.

1Immersions are locally one-to-one but globally they may have self intersections. Immer-
sions without self intersections are called embeddings, where, if X is non-compact, one may
require the induced topology in X to be equal the original one.
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● Spheres in the unit balls with curvatures curv⊥ = 1.

Sm ⊂ RN , N ≥m.

● Tori with curvatures
√

3m/(m + 2),

Tm ⊂ BN(1) N >mm4

.

(See 2.1.B, Remark(a) in 5.3. and [Pet2023].)2

● Veronese surfaces in the unit spheres with curvatures 1/
√

3,

RP 2 ⊂ Sn(1) n ≥ 4.

(See 5.2(b).)
● Product of Spheres in Sm1+m2+1 with curvatures 1.

Sm1 × Sm2 ⊂ Sm1+m2+1(1).

(See below, section 1.1 and [Ge2021].)
Product Example. If X is a product of spheres,

X =
l

⨉
i=1

Smi ,

and Y is the unit ball BN(1) ⊂ RN then (apart from the trivial case of l = 1)
we know the exact value of inf.curv⊥(⨉li=1 S

mi ,BN(1) only where all mi = 1,
i.e. for the torus Tl, and where N is large:

[
√

3]T inf.curv⊥(Tl,BN(1)) =
√

3
l

l + 2
, N >> l2.

(See sections 3, 5 and [Pet2023].)
But if all mi = 2, for instance, i.e. X = (S2)l we neither can show that

inf.curv⊥((S2)l,B2l+1) → ∞ for l →∞

nor that
inf.curv⊥((S2)l,B10l)√

l
→ 0 for l →∞.

Clifford Embeddings. The product X of spheres Smi(ri) ⊂ Rmi+1, i =
1, ..., l, for ∑li=1 r

2
i = 1 naturally isometrically imbeds to the boundary of the unit

N -ball for N = k +∑imi:

Cl ∶X = Sm1(r1) × ... × Sml(rl) → SN−1(1) ⊂ BN(1) ⊂ Rmi+1 × .. ×Rmi+1

where, clearly,
curv⊥(X Cl⊂ BN) = max

i
1/ri.

2We shall show in section 2.1.D that inf.curv(Tm ⊂ BN (1)) ≤
√
3m/(m + 2) for n ≥ 8m2+8

but, at the present moment, the existence of immersions with curvatures
√
3m/(m + 2) is

proven only for much larger n.
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This, for r1 = r2 = ... = rl, delivers a codimension l-embedding with curvature√
l. Thus,

inf.curv⊥ (
l

⨉
i=1

Smi ,BN(1)) ≤
√
l, N = l +∑

i

mi.

If l = 1, then this is optimal. In fact, it is obvious that

curv (X ↪ Bm(1) ×RN) ≥ 1, for n ≥ 2.

for all smoothly immersed closedm-manifoldsX in the "unit band" Bm(1)×RN .
But, for instance, the equality

inf.curv⊥(Tm ↪ B2m) =
√
m

is problematic for all m ≥ 2.
Round m-Tori in the Unit (m + 1)-Balls.

inf.curv⊥(T2 ↪ B3) ≤ 3 ∶

the boundary of the 1
3
-neighbourhood of the circle of radius 2

3
in the space has

curv⊥(T2 ⊂ R3) = 3.
Similarly (see section 4.1)

inf.curv⊥(T3 ↪ B4) ≤ 2
√

2 + 1 < 4

inf.curv⊥(T7 = T3 ×T3 ×T1 ↪ B8) ≤ 8 + 2
√

2 + 1 < 12

...................................................................

inf.curv⊥(Tm,Bm+1) <m
3
2 , m = 2k − 1.

Veronese embeddings3 of the real projective spaces satisfy (see 5.1),

curv (RPm ↪ B
m(m+3)

2 ) =
√

2m

m + 1
, e.g.

curv (RP 2 ↪ B5) = 2

√
1

3
< 1.155.

Conjecture.

min.cirv(Xm,BN) <
√

2m

m + 1
Ô⇒ X =diffeo Sm.

(maximal) curvature of an immersion between Riemannian manifolds,

(X,g) ↪ (Y,h)

is the supremum of h-curvatures in Y , of g-geodesics γ ⊂X,

curv(f) = curvX(f) = curvXY (f) = curvgh(f) = sup
γ⊂X

curvh(f(γ)).

3These are flashes from a superior world.
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If g = f∗(h) is the induced Riemannian metric in X, this is our curvature of
X in Y ,

curvgh(f) = curv
⊥(X f↪ Y ).

(This curv⊥(X) unlike curv(f) is defined for immersions of smooth manifolds
with no metrics on them.)

Normal Immersions, where curv⊥F(X) = curvX(f). Call an immersion
between Riemannian manifolds f ∶X(g) ↪ Y (h) normal if for all normal vectors
to X in Y ,

ν ∈ T ⊥x (X) = Tf(x)(Y ) ⊖ df(Tx(X))

the second quadratic form IIν of the immersed X
f↪ is simultaneously diagonal-

izable with the quadratic forms g(x) and f∗(h) on the tangent space Tx(X).
For instance, isometric immersions are normal.

Clearly, curv⊥f(X) = curvX(f) for isometric immersions f
Curvature in Spheres. If an immersion X → SN−1(1) is normal then so

is the corresponding immersion to RN ⊃ SN−1(1), where the spherical curvature
of X is related to the Euclidean one by the Pythagorean theorem:

(curv⊥(X ↪ SN−1(1))2 = (curv⊥(X ↪ RN)2 − 1.

Notice that the Clifford embeddings to the unit sphere are known to be
optimal for l = 2,

inf.curv⊥(Sm1 × Sm2 , Sm1+m2+1(1)) = 1, m1,m2 ≥ 1, 4

but the corresponding Euclidean equality

inf.curv⊥(Sm1 × Sm2 ,Bm1+m2+2(1)) =
√

2,

remains conjectural for all m1,m2 ≥ 1, except for m1 =m2 = 1 [Pet].
.
Curvature in Codimension 1. This curvature of Xm ↪ Y m+1 is the

supremum of the principal curvatures of X in Y over all points x ∈X.
Here normality means that the induced quadratic form f∗(g)(x) on the

tangent space Tx(X) is, at all ∈ X, diagonalizabel in the same basis as the
second fundamental form II of X.

Example. the immersion Sm(r) ×S1 → Rm+2 obtained by rotating Sm(r) ↪
Rm+1 around a line in Rm+1 within distance R > r from the origin is normal
with curvature max ( 1

R
, 1
R−r ).

Remark I. If f = 0, and X immerses to Rn, then the above delivers an
immersion f1 of X to the unit ball BN = BN(1) with a bound on the curvature
of f1 depending on the dimensions n and N , e.g. with

curv⊥(X,BN) ≤
√

3n

n + 2
+ ε for N ≥ 20n2 and all ε > 0

This and the Whitney embedding theorem implies the following.
1.1.D. If N ≥ 100m2, then inf.curv⊥(X,BN) <

√
3(2m−1)

2m+1
.

4See [Ge2021], section 3.7.3 in [Gr2022] and section 5.5 in the present paper.
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In fact,

[N >>] lim
N→∞

inf.curv⊥(X,BN) ≤
√

3m

m + 2
.

Petrunin Theorem. There exist m-dimensional manifolds X for m ≥ 2,
such that

inf.curv⊥(X,SN) >
√

2m − 1

m + 2
for all N ,

i.e. all immersions from X to the unit sphere SN(1) have with curvatures

curv⊥(X ↪ SN(1)) ≥
√

2m − 1

m + 2
+ ε

⎛
⎝
=
√

3m

m + 2
− 1 + ε

⎞
⎠
.

for some ε = ε(X,N) > 0.
(Surfaces of genera ≥ 2 are examples for such X with m = 2.)
1.1.F. Codim 1 Theorem/Example.(See section 4.2) Let

X = Sk × S1 × ... × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l−1

.

If k ≥ ll
4

,5 then there exists an immersion

F ∶X ↪ Bk+l(1)

with

curv⊥F (X) ≤ 1 + 2

√
3l − 3

l + 1
< 4.5.

Remark II. The proof of the remark I doesn’t apply to immersions to Rn
without passing to Rn+1 but this is taken care of by the following (see

1.1.H. Remarks/Questions. We don’t know how close this inequality
to the minimal values of the curvatures of codim1 immersions of products of
spheres is.

(a) For instance let P l−1 be an (l−1)-dimensional manifold diffeomorphic to
a product of spheres where some of these have dimensions ≥ 2. Then, if k >> l,
there exist immersions

Fε ∶ Sk × P l−1 ↪ Bk+l(1)

with

curv⊥Fε
(Sk × P l−1) ≤ 1 + 2

√
3l − 3

l + 1
+ ε

for all ε > 0.
But this is unclear for ε = 0, even for the product S1 × Sk, which embeds to

the ball Bk+2(1) with curvature 3 for all k and where we don’t know if there are
immersions of S1 × Sk+2 (or other closed non-spherical manifolds of dimension
k + 1) to the unit ball Bk+2(1) with curvatures < 3.

5The hugeness of this number is the product of my perfunctory interpretation of Hilbert’s
argument in [H1909].
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(b) It is not impossible according to what we know, that m-dimensional
products of spheres of dimensions ≥ 2 admit immersions to Bm+1(1) with cur-
vature <100.

But the best we can do (see section 4.1) are immersions with curvatures
≲m 4

3 .

2 Kolmogorov’s D = D(m,N, p), Hilbert’s Theo-
rem and Spherical Designs

K-Diameter p
√
D(m,N,p). Let ∣∣y∣∣Lp , y = (y1, ..., yN) ∈ RN denote the

normalized norm lp,

∣∣y∣∣Lp = ( 1

N

N

∑
i=1

∣yi∣p)
1
p

Let D(m,N,p) denotes the infimum of the numbers D > 0 such that RN
contains an m-dimensional linear subspace X, such that

∣∣x∣∣pLp
≤D∣∣x∣∣pL2

, for all x ∈X.

Observe that D(1,N, p) = 1, D(m,m,p) = m
p
2−1, that D(m,N,p) is monotone

increasing in m and decreasing in N and let

D(m,p) =D(m,∞, p) = lim
N→∞

D(m,N,p).

2.1.A. Gamma Function Design Formula. If p = 4,6,8..., then a simple
O(m)-averaging argument, shows that

[Γ/Γ] D(m,p) = ∫Sm−1 ∣l(s)∣pds

(∫Sm−1 ∣l(s)∣2ds)
p
2

= m
p
2−1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (p − 1)

(m + 2) ⋅ (m + 4) ⋅ ⋅ ⋅ (m + p − 2)
,

where l(s) is a non-zero linear function on on the sphere.
2.1.B. Hilbert Connection. In his proof of the Waring problem, Hilbert

shows the existence of M = (m+p−1
m−1

) + 1 rational points si ∈ Sm−1 and of positive
rational weight wi > 0, ∑M1 wi = 1, such that ∑iwild(si) = ∫Sm−1 l

d(s)d for all
linear functions on he sphere.

This, after partitioning each si into ∆ atoms for ∆ being the smallest com-
mon denominator N of wi, becomes what is no-a-days called spherical design
of cardinality N = NM of wi, which yields (this is nearly obvious, see 2.1.C
below) the following.

D(m,N)-Stabilization: D(m,N,p) = D(m,∞, p) for all sufficiently large
N ≥= NHilb(m,p)(≤ NM), where – to be safe let it be rough– NHilb ≤mmp

.
Design Rationality : If N ≥ NHilb then the space lNp contains a rational

linear subspace X of dimension m, such that

∣∣x∣∣pLp
=D(m,p)∣∣x∣∣pL2

for all x ∈X.

2.1.C. Spherical Designs and the Equality D(m,N) =D(m,∞)
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A design of even degree p = 2,4, ... and cardinality N on the sphere Sm−1 is
a map from a set Σ of cardinality N to the sphere, written as σ ↦ s(σ), such
that the linear functions l(s) on the sphere Sm−1 ⊂ Rm satisfy

1

N
∑
σ∈Σ

ld(s(σ)) = ∫
Sm−1

ld(s)ds, d = 2, ..., p,

where ds is the O(m) invariant probability measure on the sphere.
Hence, the linear map from the space Rm⊥(= Rm) of linear functions on the

sphere Sm−1 ⊂ Rm to RN = RΣ preserves both, the L2 and the Lp-norms and,
by the above [Γ/Γ],

the existence a design of cardinality N implies that D(m,N,p) =D(m,p).6

Non-rational designs, at least for p = 4, are known to exit for N << NHilb.
2.1.D 2m2-Design Construction. If p = 4, and if m is a power of 2, then

there exists a spherical designs of cardinality N = 2m2 + 4m. 7

This, now for all m, shows that

(i) D(m,N,4) = 3m

m + 2
for N ≥ 8(m2 +m).

[R2 in l34]-Example. D(2,N,4) = 3
2
for N ≥ 3, with four (rational) planes

X ⊂ R3 = l34, where ∣∣x∣∣∣4L4
= 3

2
∣∣x∣∣∣4L2

: these are the normals to the vectors
(1,1,1,), (1,1, -1), (1,-1,1), (1,-1,-1).

2.1.E. D(m,N)-Inequalities. IfN ≲m2, then upper bounds onD4(m,N,4)
follow from the corresponding estimates in the randomization proofs of the
Dvoretzky theorem for the lp-spaces, where the following inequality follow from
(the argument in) [PVZ2017].

(ii) D(m,N,4) ≤ 3 + const(ii)m
2

N
for N ≥m2;8

(iii) D(m,N,4) ≤ const(iii)m
2

N
for 2m ≤ N ≤m2.9

2.1.F. D(m,N) Concentration Property. The existence of m-subspaces
X ∈ lN4 in [FLM1977] and [PVZ2017], such that

[D] ∣∣x∣∣4L4
≤D∣∣x∣∣4L2

, x ∈X,

is derived from a lower bound the measure of those m-subspaces X ⊂ RN , where
this inequality fails for some x ∈X.

In particular, the argument used in [FLM1977] implies that the measure µD
of those X ⊂ RN with respect to the O(N)-invariant probability measure in the
Grassmanian Grm(RN where ∣∣x∣∣4L4

≥D∣∣x∣∣4L2
, for some x ∈X satisfies:

If ,

D > 3m

m + 2
then

µD → 0, for N →∞.

6See [BB2009], [LW1993] for more about it.
7The Kerdock code used in [K1995] yields designs for m = 4k and N = m(m+2)

2
.

8This follows from (i) for N ≥ 8(m2 + m) and, if const1 is large, also for (some) N ≤
8(m2 +m). Besides, the inequality D4(m,m2,4) ≤ const follows from (the proof of) example
3.1 in [FLM1977].

9Since D(m,N,4) ≤ D(m,m,4) =m for all m and N , the significance of this inequality for
N ∼m depends on the value of const2.
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3 Equivariant Immersions Rm
→ S2N−1

3.A. Curvatures of the Clifford Tori. Let

TN ⊂ S2N−1 ⊂ B2N(1) ⊂ (B2(1))N ⊂ R2N

be the Clifford torus and observe that the second quadratic form of this torus
in the the ambient Euclidean space R2N ⊃ S2N−1 ⊃ TN , regarded as a quadratic
form with values in the normal bundle, is

II=
√
N ∑Ni=1 νidt

2
i ,

where ti are the cyclic coordinates on the torus and {νi ∈ T ⊥(TN ⊂ R2N)} is the
corresponding orthonormal frame of normal vectors to TN .

This, in terms of the orthonormal tangent frame {ei = ∂
∂ti

∈ T (TN)}, means
that

II∶ ei ⊗ ei ↦
√
Nνi and II∶ ei ⊗ ej ↦ 0 for i ≠ j.

Thus, the curvature of TN in BN along a unit tangent vector x̄ ∈ T (TN),

x̄ = ∑i xiei, where ∑i x2
i = 1,

is
curv⊥(TN , x̄) = ∣∣II(x̄⊗ x̄)∣∣ = ∣∣II(∑i xiei ⊗∑i xiei)∣∣ =

||II(∑ij xixj(ei ⊗ ei)∣∣ =
√
N ∣∣∑i x2

i νi∣∣ =
√
N

√
∑i x4

i =
√
N

√
∑i x

4
i

∣∣x̄∣∣2 =

where ∣∣x̄∣∣2 = ∣x̄∣∣2l2 = ∑
N
i=1 x

2
i .

Hence,

(⋆) curv⊥(TN , x̄) = ( 4
√
N

∣∣x̄∣∣l4
∣∣x̄∣∣l2

)
2

= ( ∣∣x̄∣∣L4

∣∣x̄∣∣L2

)
2

,

where, recall, the Lp-norms refer to the finite probability spaces with N equal
atoms,

∣∣x̄∣∣Lp =
∣∣x̄∣∣lp
p
√
N
.

The Euclidean Small Curvature Theorem. The above (⋆) implies the
existence of an equivariant isometric immersion from the Euclidean m-space to
the Clifford N -torus,

f⊙ ∶ Rm → TN ⊂ S2N ⊂ R2N

with the relative curvature curveE(f⊙) equal to
√
D(m,N) =

√
D(m,N,4).

3.1 Veronese Maps.
Besides invariant tori, there are other submanifolds in the unit sphere SN−1,
which have small curvatures and which are transitively acted upon by subgroups
in the orthogonal group O(N).

The generalized Veronese maps are a minimal equivariant isometric immer-
sions of spheres to spheres, with respect to certain homomorphisms ( represen-
tations) between the orthogonal groups O(m + 1) → O(m + 1),

ver = vers = verms ∶ Sm(Rs) → Sm = Sms = Sms(1),
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where

ms = (2s +m − 1)s +m − 2)!
s!(m − 1!

< 2s+m and Rs = Rs(m) =
√

s(s +m − 1)
m

,

for example,

m2 = m(m+3)
2

− 1, R2(m) =
√

2(m+1)
m

and R2(1) = 2,

(see [DW1971]If s = 2 these, called classical Veronese maps, are defined by

taking squares of linear functions (forms) l = l(x) = ∑i lixi om Rm+1,

V er ∶ Rm+1 → RMm , Mm = (m + 1)(m + 2)
2

,

where tis RMm is represented by the space Q = Q(Rm+1) of quadratic functions
(forms) om Rm+1,

Q =
m+1,m+1

∑
i=1,j=1

qijxixj .

The Veronese map, which is (obviously) equivariant for the natural action of
the orthogonal group group O(n+1) on Q, where, observe, this action fixes the
line Q○ spanned by the form Q○ = ∑i x2 as well as the complementary subspace
Q◇ of the traceless forms Q, where the action of O(n + 1) is irreducible and,
thus, it has a unique, up to scaling Euclidean/Hilbertian structure.

Then the normal projection10 defines an equivariant map to the sphere in
Q◇

ver ∶ Sm → SMm−2(r) ⊂ Q◇,
where the radius of this sphere, a priori, depends on the normalization of the
O(m + 1)-invariant metric in Q◇.

Since we want the map to be isometric, we either take r = 1
R2(m) =

√
m

2(m+1)
and keep Sm = Sm(1) or if we let r = 1 and Sm = Sm(R2(m)) for R2(m) =√

2(m+1)
m

.
Also observe that the Veronese maps, which are not embeddings themselves,

factor via embeddings of projective spaces to spheres

Sm → RPm ⊂ SMm−2 ⊂ RMm−1 = Q◇, Mm = (m + 1)(m + 2)
2

.

Curvature of Veronese. Let is show that

curv⊥ver (Sm(R2(m)) ↪ SMm−2(1)) =

¿
ÁÁÀ R2(1)

R2(m)
− 1 =

√
m − 1

m + 1
.

Indeed, the Veronese map sends equatorial circles from Sm(R2(m)) to planar
circles of radii R2(m)/R2(1), the curvatures of which in the ball BMm−1 is
R2(1)/R2(m) = 2

√
m
m+1

and the curvatures of these in the sphere,

curv⊥(S1 ⊂ SMm−2(1)) =
√
curv(S1 ⊂ BMm−1(1))2 − 1 =

√
4m

m + 1
− 1 =

√
3m − 1

m + 1

10The splitting Q = Q○ ⊕ Q◇ is necessarily normal for all O(m + 1)-invariant Euclidean
metrics in Q.

9



is equal to the curvature of the Veronese Sm(R2(m)) ↪ SMm−2(1) itself√
R2(1)/R2(m) =

√
2m
m+1

, and the curvatures of these in the sphere,

curv⊥(S1 ⊂ SMm−2(1)) =
√
curv(S1 ⊂ BMm−1(1))2 − 1,

is equal to the curvature of the Veronese Sm(R2(m)) ↪ SMm−2(1)itself. QED.
It may be hard to prove (conjecture in section 1) that Veronese manifolds

have the smallest possible curvatures among non-spherical m-manifold in the unit
ball: if a smooth compact m-manifold X admits a smooth immersion to the
unit ball BN = BN(1) with curvature curv⊥(X ↪ BN) <

√
2m
m+1

, then X is
diffeomorphic to Sm.

It is more realistic to show that the Veronese have smallest curvatures among
submanifolds X ⊂ BN invariant under subgroups in O(N), which transitively
act on X.

Remark. Manifolds Xm immersed to Sm+1 with curvatures < 1 are diffeomor-
phic to Sn, see 5.5, but, apart from Veronese’s, we can’t rule out such X in SN

for N ≥m + 2 11 and, even less so, non-spherical X immersible with curvatures
<
√

2 to BN(1), even for N =m + 1.
It seems hard to decide this way or another, but it may be realistic to try

to prove sphericity of simply connected manifolds immersed with curvatures < 1
to SN(1) for all N .

The curvatures of Veronese maps can be also evaluated with the Gauss for-
mula, (teorema egregium), which also gives the following formula for curvatures
of all vers:

m = 2 1 − 2c2 = 1/3, 2c2 = 2/3 c
√

1/3
C =

√
1 + 1/3 = 2/

√
3

From Veronese to Tori. The restriction of the map vers ∶ S2m−1(Rs) →
SNs to the Clifford torus Tm ⊂ S2m−1(Rs) obviously satisfies

curv⊥vers(T
m) ≤ A2m−1,s +

√
m

Rs
=
√

3 − 5

2
m + ε(m,s)

for

ε(m,s) = 2

4m2
− 4m − 2

s(s + 2m − 2)
+ 5(2m − 1)

2ms(s + 2m − 2)
− 2m − 1

(ms(s + 2m − 2))2
.

This, for s >>m2, makes ε(m,s) = O 1
m2

Since Ns < 2s+2m,
starting from N = 210m3

curv⊥vers(T
m) <

√
3 − 5

2
m.

where it should be noted that
the Veronese maps restricted to the Clifford tori are Tm-equivariant
and that

11Hermitian Veronese maps from the complex projective spaces CPm to the spaces Hn of
Hermitian forms on Cm+1 are among the prime suspects in this regard.
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this bound is weaker than the optimal one
∣∣y∣∣2l4
∣∣y∣∣2 ≥

√
3 − 3

m+2
+ ε from the

previous section.
Remarks. (a) It is not hard to go to the (ultra)limit for s → ∞ and thus

obtain an
equivariant isometric immersion ver∞ of the Euclidean space Rm to the unit

sphere in the Hilbert space, such that

curv⊥ver∞(Rm ↪ S∞) =

¿
ÁÁÀ(m − 1)(2m + 1)

(m + 1)2
=
√

2 − 5

m + 1
+ 2

(m + 1)2
,

where equivariance is understood with respect to a certain unitary representa-
tion of the isometry group of Rm.

Probably, one can show that this ver∞ realizes the minimum of the curva-
tures among all equivariant maps Rm → S∞.

(b) Instead of vers, one could achieve (essentially) the same result with a
use of compositions of the classical Veronese maps, ver ∶ Smi → Smi+1 , i+1 =
(mi+1)(mi+2)

2
− 2,

Sm1 ↪ Sm2 ↪ ...↪ Smi ,

starting with m1 = 2m − 1 and going up to i =m. (Actually, i ∼ logm will do.)
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