Kolmogorov's Diameter, Hilbert's Rational Designs and Curvature

Misha Gromov

November 11, 2024

Contents

1 Introduction

Immersions are C^1 -maps $f : X \to Y$ between smooth manifolds, such that their differentials $df : T(X) \to T(Y)$ nowhere vanish,^{[1](#page-0-1)}

$$
df(\tau) = 0 \implies \tau = 0, \tau \in T(X).
$$

The (maximal normal bundle) **curvature** of an immersed X in a Rieman- $\min Y$,

$$
f:X\hookrightarrow Y,
$$

is the supremum of the Y-curvatures of geodesics $\gamma \subset X$, for the induced Riemannian metric in X ,

$$
curv^{\perp}(X) = curv^{\perp}(f(X)) = curv^{\perp}_{f}(X) = curv^{\perp}(X \stackrel{f}{\hookrightarrow} Y) = curv^{\perp}(X \stackrel{f}{\hookrightarrow} Y),
$$

Minimal Curvature Problem. What is the infimum of curvatures of immersions $f: X \rightarrow Y$,

$$
inf.curv^{\perp}(X,Y) = inf.curv^{\perp}(X \to Y)?
$$

Remark: min or inf? Probbaly, the infimum $\inf_f curv_f^+(X,Y)$ is rarely achieved, where the (only) established examples of immersions of closed manifolds with minimal possible curvatures are listed below.

¹Immersions are locally one-to-one but globally they may have self intersections. Immersions without self intersections are called *embeddings*, where, if X is non-compact, one may require the induced topology in X to be equal the original one.

• Spheres in the unit balls with curvatures $curv^{\perp} = 1$.

$$
S^m \subset \mathbb{R}^N, N \ge m.
$$

• Tori with curvatures $\sqrt{3m/(m+2)}$,

$$
\mathbb{T}^m \subset B^N(1) N > m^{m^4}.
$$

(See [2](#page-1-0).1.B, Remark(a) in 5.3. and $[Pet2023].$)²

• Veronese surfaces in the unit spheres with curvatures $1/\sqrt{3}$,

$$
\mathbb{R}P^2 \subset S^n(1) \ n \ge 4.
$$

(See 5.2(b).)

• Product of Spheres in $S^{m_1+m_2+1}$ with curvatures 1.

$$
S^{m_1} \times S^{m_2} \subset S^{m_1+m_2+1}(1).
$$

(See below, section 1.1 and [Ge2021].)

Product Example. If X is a product of spheres,

$$
X = \bigtimes_{i=1}^{l} S^{m_i},
$$

and Y is the unit ball $B^N(1) \subset \mathbb{R}^N$ then (apart from the trivial case of $l = 1$) we know the exact value of $inf.curv^{\perp}(\times_{i=1}^{l} S^{m_i}, B^N(1)$ only where all $m_i = 1$, i.e. for the torus \mathbb{T}^l , and where N is large:

$$
\left[\sqrt{3}\right]_{\mathbb{T}} \qquad \qquad inf.curv^{\perp}(\mathbb{T}^l, B^N(1)) = \sqrt{3\frac{l}{l+2}}, \ N >> l^2.
$$

(See sections 3, 5 and [Pet2023].)

But if all $m_i = 2$, for instance, i.e. $X = (S^2)^l$ we neither can show that

$$
inf.curv^{\perp}((S^2)^l, B^{2l+1}) \to \infty
$$
 for $l \to \infty$

nor that

$$
\frac{inf.curv^{\perp}((S^2)^l, B^{10l})}{\sqrt{l}} \to 0 \text{ for } l \to \infty.
$$

Clifford Embeddings. The product X of spheres $S^{m_i}(r_i) \in \mathbb{R}^{m_i+1}$, $i =$ 1, ...,l, for $\sum_{i=1}^{l} r_i^2 = 1$ naturally isometrically imbeds to the boundary of the unit *N*-ball for $N = k + \sum_i m_i$:

$$
\mathsf{Cl}: X = S^{m_1}(r_1) \times ... \times S^{m_l}(r_l) \to S^{N-1}(1) \subset B^N(1) \subset \mathbb{R}^{m_i+1} \times ... \times \mathbb{R}^{m_i+1}
$$

where, clearly,

$$
curv^{\perp}(X \stackrel{\mathbf{Cl}}{\subset} B^N) = \max_i 1/r_i.
$$

²We shall show in section 2.1.D that $inf.curv(\mathbb{T}^m \subset B^N(1)) \leq \sqrt{3m/(m+2)}$ for $n \geq 8m^2+8$ but, at the present moment, the existence of immersions with curvatures $\sqrt{3m/(m+2)}$ is proven only for much larger n .

This, for $r_1 = r_2 = \dots = r_l$, delivers a codimension *l*-embedding with curvature \sqrt{l} . Thus,

$$
inf.curv^{\perp}\left(\bigtimes_{i=1}^{l}S^{m_i},B^N(1)\right)\leq \sqrt{l},\ N=l+\sum_i m_i.
$$

If $l = 1$, then this is optimal. In fact, it is obvious that

$$
curv(X \to B^m(1) \times \mathbb{R}^N) \ge 1, \text{ for } n \ge 2.
$$

for all smoothly immersed closed m-manifolds X in the "unit band" $B^m(1) \times \mathbb{R}^N$. But, for instance, the equality

$$
inf.curv^{\perp}(\mathbb{T}^m \hookrightarrow B^{2m}) = \sqrt{m}
$$

is problematic for all $m \geq 2$. Round m-Tori in the Unit $(m + 1)$ -Balls.

$$
inf.curv^{\perp}(\mathbb{T}^2 \hookrightarrow B^3) \leq 3:
$$

the boundary of the $\frac{1}{3}$ -neighbourhood of the circle of radius $\frac{2}{3}$ in the space has $curv^{\perp}(\mathbb{T}^2 \subset \mathbb{R}^3) = 3.$
Similarly (300.33)

Similarly (see section 4.1)

$$
inf.curv^{\perp}(\mathbb{T}^3 \to B^4) \le 2\sqrt{2} + 1 < 4
$$

$$
inf.curv^{\perp}(\mathbb{T}^7 = \mathbb{T}^3 \times \mathbb{T}^3 \times \mathbb{T}^1 \to B^8) \le 8 + 2\sqrt{2} + 1 < 12
$$

 $inf.curv^{\perp}(\mathbb{T}^m,B^{m+1}) < m^{\frac{3}{2}}, m = 2^k - 1.$ Veronese embeddings^{[3](#page-2-0)} of the real projective spaces satisfy (see 5.1),

$$
\sqrt{2m}
$$

$$
curv\left(\mathbb{R}P^m \to B^{\frac{m(m+3)}{2}}\right) = \sqrt{\frac{2m}{m+1}}, \text{ e.g.}
$$

$$
curv\left(\mathbb{R}P^2 \to B^5\right) = 2\sqrt{\frac{1}{3}} < 1.155.
$$

Conjecture.

$$
min.cirv(X^m, B^N) < \sqrt{\frac{2m}{m+1}} \implies X =_{diffeo} S^m.
$$

(maximal) *curvature* of an immersion between Riemannian manifolds,

$$
(X,g)\hookrightarrow (Y,h)
$$

is the supremum of h-curvatures in Y, of g-geodesics $\gamma \subset X$,

$$
curv(f) = curvX(f) = curvYX(f) = curvhg(f) = \sup_{\gamma \subset X} curvh(f(\gamma)).
$$

³These are flashes from a superior world.

If $g = f^*(h)$ is the induced Riemannian metric in X, this is our curvature of X in Y ,

$$
curv_h^g(f) = curv^{\perp}(X \stackrel{f}{\hookrightarrow} Y).
$$

(This $curv^{\perp}(X)$ unlike $curv(f)$ is defined for immersions of smooth manifolds with no metrics on them.)

Normal Immersions, where $curv_{\mathbf{F}}^{\perp}(\mathbf{X}) = \text{curv}^{\mathbf{X}}(\mathbf{f})$. Call an immersion between Riemannian manifolds $f: X(g) \to Y(h)$ normal if for all normal vectors to X in Y .

$$
\nu \in T_x^{\perp}(X) = T_f(x)(Y) \ominus df(T_x(X))
$$

the second quadratic form Π_{ν} of the immersed $X \stackrel{f}{\rightarrow}$ is *simultaneously diagonalizable* with the quadratic forms $g(x)$ and $f^*(h)$ on the tangent space $T_x(X)$. For instance, isometric immersions are normal.

Clearly, $curv_f^{\perp}(X) = curv^X(f)$ for *isometric* immersions for \tilde{S}

Curvature in Spheres. If an immersion $X \to S^{N-1}(1)$ is normal then so is the corresponding immersion to $\mathbb{R}^N \supset S^{N-1}(1)$, where the spherical curvature of X is related to the Euclidean one by the Pythagorean theorem:

$$
(curv^{\perp}(X \hookrightarrow S^{N-1}(1))^2 = (curv^{\perp}(X \hookrightarrow \mathbb{R}^N))^2 - 1.
$$

Notice that the Clifford embeddings to the unit sphere are known to be *optimal* for $l = 2$,

$$
inf.curv^{\perp}(S^{m_1} \times S^{m_2}, S^{m_1+m_2+1}(1)) = 1, m_1, m_2 \ge 1, \frac{4}{3}
$$

but the corresponding Euclidean equality

.

$$
inf.curv^\perp(S^{m_1}\times S^{m_2},B^{m_1+m_2+2}(1))=\sqrt{2},
$$

remains conjectural for all $m_1, m_2 \geq 1$, except for $m_1 = m_2 = 1$ [Pet].

Curvature in Codimension 1. This curvature of $X^m \rightarrow Y^{m+1}$ is the supremum of the principal curvatures of X in Y over all points $x \in X$.

Here normality means that the induced quadratic form $f^*(g)(x)$ on the tangent space $T_x(X)$ is, at all $\in X$, diagonalizabel in the same basis as the second fundamental form II of X.

Example. the immersion $S^m(r) \times S^1 \to \mathbb{R}^{m+2}$ obtained by rotating $S^m(r) \to \mathbb{R}^{m+1}$ around a line in \mathbb{R}^{m+1} within distance $R > r$ from the origin is normal with current proper $\binom{1}{r}$. with curvature max $\left(\frac{1}{R}, \frac{1}{R-r}\right)$.

Remark I. If $\hat{f} = 0$, and X immerses to \mathbb{R}^n , then the above delivers an existent of X to the unit hall $\overline{PN} = \overline{PN}(1)$ with a hand on the currentum immersion f_1 of X to the unit ball $B^N = B^N(1)$ with a bound on the curvature of f_1 depending on the dimensions n and N, e.g. with

$$
curv^{\perp}(X, B^N) \le \sqrt{\frac{3n}{n+2}} + \varepsilon
$$
 for $N \ge 20n^2$ and all $\varepsilon > 0$

This and the Whitney embedding theorem implies the following. **1.1.D.** If $N \ge 100m^2$, then $inf.curv^{\perp}(X, B^N) < \sqrt{\frac{3(2m-1)}{2m+1}}$ $\frac{(2m-1)}{2m+1}$.

⁴See [Ge2021], section 3.7.3 in [Gr2022] and section 5.5 in the present paper.

In fact,

$$
[\mathbf{N}>>]\qquad \lim_{N\to\infty} \inf.curv^{\perp}(X,B^N)\leq \sqrt{\frac{3m}{m+2}}.
$$

Petrunin Theorem. There exist m-dimensional manifolds X for $m \geq 2$. such that

$$
inf.curv^\perp(X,S^N)>\sqrt{\frac{2m-1}{m+2}}\text{ for all }N,
$$

i.e. all immersions from X to the unit sphere $S^N(1)$ have with curvatures

$$
curv^{\perp}(X \hookrightarrow S^N(1)) \ge \sqrt{\frac{2m-1}{m+2}} + \varepsilon \left(= \sqrt{\frac{3m}{m+2} - 1} + \varepsilon \right).
$$

for some $\varepsilon = \varepsilon(X, N) > 0$.

(Surfaces of genera > 2 are examples for such X with $m = 2$.) 1.1.F. Codim 1 Theorem/Example.(See section 4.2) Let

$$
X = S^k \times \underbrace{S^1 \times \ldots \times S^1}_{l-1}.
$$

If $k \ge l^{l^4}$,^{[5](#page-4-0)} then there exists an immersion

$$
F: X \hookrightarrow B^{k+l}(1)
$$

with

$$
curv_F^{\perp}(X) \le 1 + 2\sqrt{\frac{3l-3}{l+1}} < 4.5.
$$

Remark II. The proof of the remark **I** doesn't apply to immersions to \mathbb{R}^n without passing to \mathbb{R}^{n+1} but this is taken care of by the following (see

1.1.H. Remarks/Questions. We don't know how close this inequality to the minimal values of the curvatures of codim1 immersions of products of spheres is.

(a) For instance let P^{l-1} be an $(l-1)$ -dimensional manifold diffeomorphic to a product of spheres where some of these have dimensions ≥ 2 . Then, if $k \gg l$, there exist immersions

$$
F_{\varepsilon}: S^k \times P^{l-1} \hookrightarrow B^{k+l}(1)
$$

with

$$
curv_{F_{\varepsilon}}^{\perp}(S^k \times P^{l-1}) \le 1 + 2\sqrt{\frac{3l-3}{l+1}} + \varepsilon
$$

for all $\varepsilon > 0$.

But this is *unclear* for $\varepsilon = 0$, even for the product $S^1 \times S^k$, which embeds to the ball $B^{k+2}(1)$ with curvature 3 for all k and where we *don't know* if there are $1 \times S^k$, which embeds to immersions of $S^1 \times S^{k+2}$ (or other closed non-spherical manifolds of dimension $(k+1)$ to the unit ball $B^{k+2}(1)$ with curvatures < 3.

 $\overline{5}$ The hugeness of this number is the product of my perfunctory interpretation of Hilbert's argument in [H1909].

(b) It is not impossible according to what we know, that m-dimensional products of spheres of dimensions ≥ 2 admit immersions to $B^{m+1}(1)$ with curvature $<$ 100.

But the best we can do (see section 4.1) are immersions with curvatures $\lesssim m^{\frac{4}{3}}$.

2 Kolmogorov's $D = D(m, N, p)$, Hilbert's Theorem and Spherical Designs

K-Diameter $\sqrt[p]{\mathbf{D}(m,\mathbf{N},\mathbf{p})}$. Let $||y||_{L_p}$, $y = (y_1,...,y_N) \in \mathbb{R}^N$ denote the normalized norm l_n ,

$$
||y||_{L_p} = \left(\frac{1}{N} \sum_{i=1}^{N} |y_i|^p\right)^{\frac{1}{p}}
$$

Let $D(m, N, p)$ denotes the infimum of the numbers $D > 0$ such that \mathbb{R}^N contains an m -dimensional linear subspace X , such that

$$
||x||_{L_p}^p \le D||x||_{L_2}^p, \text{ for all } x \in X.
$$

Observe that $D(1, N, p) = 1$, $D(m, m, p) = m^{\frac{p}{2}-1}$, that $D(m, N, p)$ is monotone increasing in m and decreasing in N and let

$$
D(m, p) = D(m, \infty, p) = \lim_{N \to \infty} D(m, N, p).
$$

2.1.A. Gamma Function Design Formula. If $p = 4, 6, 8...$, then a simple $O(m)$ -averaging argument, shows that

$$
\begin{bmatrix} \Gamma/\Gamma \end{bmatrix} \qquad D(m,p) = \frac{\int_{S^{m-1}} |l(s)|^p ds}{\left(\int_{S^{m-1}} |l(s)|^2 ds\right)^{\frac{p}{2}}} = \frac{m^{\frac{p}{2}-1} \cdot 3 \cdot 5 \cdots (p-1)}{(m+2) \cdot (m+4) \cdots (m+p-2)},
$$

where $l(s)$ is a non-zero linear function on on the sphere.

2.1.B. Hilbert Connection. In his proof of the Waring problem, Hilbert shows the existence of $M = \binom{m+p-1}{m-1}$ $\binom{n+p-1}{m-1}+1$ rational points $s_i \in S^{m-1}$ and of positive rational weight $w_i > 0$, $\sum_{i=1}^{M} w_i = 1$, such that $\sum_{i=1}^{M} w_i l^d(s_i) = \int_{S^{m-1}} l^d(s) d^d(s)$ for all linear functions on he sphere.

This, after partitioning each s_i into Δ atoms for Δ being the smallest common denominator N of w_i , becomes what is no-a-days called *spherical design* of cardinality $N = \mathcal{N}M$ of w_i , which yields (this is nearly obvious, see 2.1.C) below) the following.

 $\mathbf{D}(\mathbf{m},\mathbf{N})$ -Stabilization: $D(m,N,p) = D(m,\infty,p)$ for all sufficiently large $N \ge N_{Hilb}(m, p) (\le NM)$, where – to be safe let it be rough– $N_{Hilb} \le m^{m^p}$.
Design Betian sliture if $N > N$, then the grace is extense a patient

Design Rationality: If $N \ge N_{Hilb}$ then the space l_p^N contains a rational or where S . So dimension we such that linear subspace X of dimension m , such that

$$
||x||_{L_p}^p = D(m,p)||x||_{L_2}^p
$$
 for all $x \in X$.

2.1.C. Spherical Designs and the Equality $D(m, N) = D(m, \infty)$

A design of even degree $p = 2, 4, ...$ and cardinality N on the sphere S^{m-1} is a map from a set Σ of cardinality N to the sphere, written as $\sigma \mapsto s(\sigma)$, such that the linear functions $l(s)$ on the sphere $S^{m-1} \subset \mathbb{R}^m$ satisfy

$$
\frac{1}{N}\sum_{\sigma\in\Sigma}l^d(s(\sigma))=\int_{S^{m-1}}l^d(s)ds,\ d=2,...,p,
$$

where ds is the $O(m)$ invariant probability measure on the sphere.

Hence, the linear map from the space \mathbb{R}^{m_1} (= \mathbb{R}^m) of linear functions on the creative \mathbb{R}^{m_1} = \mathbb{R}^m to \mathbb{R}^N = \mathbb{R}^N = precedures both the L and the L permus and sphere $S^{m-1} \subset \mathbb{R}^m$ to $\mathbb{R}^N = \mathbb{R}^{\Sigma}$ preserves both, the L_2 and the L_p -norms and, by the above $[\Gamma/\Gamma]$,

the existence a design of cardinality N implies that $D(m, N, p) = D(m, p)$.^{[6](#page-6-0)}

Non-rational designs, at least for $p = 4$, are known to exit for $N \ll N_{Hilb}$.

2.1. $D 2m^2$ -**Design Construction.** If $p = 4$, and if m is a power of 2, then there exists a spherical designs of cardinality $N = 2m^2 + 4m$.^{[7](#page-6-1)}

This, now for all m , shows that

(i)
$$
D(m, N, 4) = \frac{3m}{m+2} \text{ for } N \ge 8(m^2 + m).
$$

 $[\mathbb{R}^2$ in $l_4^3]$ -*Example.* $D(2, N, 4) = \frac{3}{2}$ for $N \ge 3$, with four (rational) planes $X \text{ }\in \mathbb{R}^3 = l_4^3$, where $||x|||_{L_4}^4 = \frac{3}{2} ||x||_{L_2}^4$: these are the normals to the vectors $(1,1,1,), (1,1,-1), (1,-1,1), (1,-1,-1).$

2.1.E. $D(m, N)$ -Inequalities. If $N \leq m^2$, then upper bounds on $D^4(m, N, 4)$ follow from the corresponding estimates in the randomization proofs of the Dvoretzky theorem for the l_p -spaces, where the following inequality follow from (the argument in) [PVZ2017].

- (ii) $D(m, N, 4) \leq 3 + const$ (ii) $\frac{m^2}{N}$ for $N \geq m^2$,^{[8](#page-6-2)}
- (iii) $D(m, N, 4) \le const$ _(iii) $\frac{m^2}{N}$ for $2m \le N \le m^2$.^{[9](#page-6-3)}

2.1.F. $D(m, N)$ Concentration Property. The existence of m-subspaces $X \in l_4^N$ in [FLM1977] and [PVZ2017], such that

$$
||x||_{L_4}^4 \le D||x||_{L_2}^4, \ x \in X,
$$

is derived from a *lower bound the measure* of those *m*-subspaces $X \in \mathbb{R}^N$, where this inequality fails for some $x \in X$.

In particular, the argument used in [FLM1977] implies that the measure μ_D of those $X \subset \mathbb{R}^N$ with respect to the $O(N)$ -invariant probability measure in the Crossmonian C_n , $(\mathbb{R}^N$ where $||x||_2^4 \geq D||x||_2^4$ for some $x \in X$ satisfies: Grassmanian $Gr_m(\mathbb{R}^N$ where $||x||_{L_4}^4 \ge D||x||_{L_2}^4$, for some $x \in X$ satisfies:

 $If,$

$$
D > \frac{3m}{m+2}
$$

then

$$
\mu_D \to 0, \text{ for } N \to \infty.
$$

 6 See [BB2009], [LW1993] for more about it.

⁷The Kerdock code used in [K1995] yields designs for $m = 4^k$ and $N = \frac{m(m+2)}{2}$.

⁸This follows from (i) for $N \geq 8(m^2 + m)$ and, if const₁ is large, also for (some) $N \leq$ $8(m^2+m)$. Besides, the inequality $D^4(m, m^2, 4) \leq const$ follows from (the proof of) example 3.1 in [FLM1977].

⁹Since $D(m, N, 4) \le D(m, m, 4) = m$ for all m and N, the significance of this inequality for $N \sim m$ depends on the value of const₂.

3 Equivariant Immersions $\mathbb{R}^m \to S^{2N-1}$

3.A. Curvatures of the Clifford Tori. Let

$$
\mathbb{T}^N \subset S^{2N-1} \subset B^{2N}(1) \subset (B^2(1))^N \subset \mathbb{R}^{2N}
$$

be the Clifford torus and observe that the second quadratic form of this torus in the the ambient Euclidean space \mathbb{R}^{2N} ⊃ S^{2N-1} ⊃ \mathbb{T}^{N} , regarded as a quadratic form with values in the normal bundle, is

$$
\text{II}{=}\sqrt{N}\text{ }\textstyle{\sum_{i=1}^{N}}\nu_i dt_i^2,
$$

where t_i are the cyclic coordinates on the torus and $\{\nu_i \in T^{\perp}(\mathbb{T}^N \subset \mathbb{R}^{2N})\}\)$ is the corresponding orthonormal frame of *normal* vectors to \mathbb{T}^N .

This, in terms of the orthonormal *tangent* frame $\{e_i = \frac{\partial}{\partial t_i} \in T(\mathbb{T}^N)\}$, means that

II:
$$
e_i \otimes e_i \mapsto \sqrt{N} \nu_i
$$
 and II: $e_i \otimes e_j \mapsto 0$ for $i \neq j$.

Thus, the curvature of \mathbb{T}^N in B^N along a unit tangent vector $\bar{x} \in T(\mathbb{T}^N)$,

$$
\bar{x} = \sum_i x_i e_i
$$
, where $\sum_i x_i^2 = 1$,

is

$$
curv^{\perp}(\mathbb{T}^N, \bar{x}) = ||\Pi(\bar{x} \otimes \bar{x})|| = ||\Pi(\sum_i x_i e_i \otimes \sum_i x_i e_i)|| =
$$

$$
||\Pi(\sum_{ij} x_i x_j (e_i \otimes e_i)|| = \sqrt{N} ||\sum_i x_i^2 \nu_i|| = \sqrt{N} \sqrt{\sum_i x_i^4} = \sqrt{N} \frac{\sqrt{\sum_i x_i^4}}{||\bar{x}||^2} =
$$

where $\|\bar{x}\|^2 = |\bar{x}\|^2_{l_2} = \sum_{i=1}^{N} x_i^2$.

Hence,

$$
(\star) \qquad \qquad \operatorname{curv}^{\perp}(\mathbb{T}^N, \bar{x}) = \left(\sqrt[4]{N} \frac{\|\bar{x}\|_{l_4}}{\|\bar{x}\|_{l_2}}\right)^2 = \left(\frac{\|\bar{x}\|_{L_4}}{\|\bar{x}\|_{L_2}}\right)^2,
$$

where, recall, the L_p -norms refer to the finite probability spaces with N equal atoms,

$$
||\bar{x}||_{L_p} = \frac{||\bar{x}||_{l_p}}{\sqrt[p]{N}}.
$$

The Euclidean Small Curvature Theorem. The above (\star) implies the existence of an equivariant isometric immersion from the Euclidean m-space to the Clifford N-torus,

$$
f^{\odot} : \mathbb{R}^m \to \mathbb{T}^N \subset S^{2N} \subset \mathbb{R}^{2N}
$$

with the relative curvature $curv_{\mathbf{E}}^{\mathbf{e}}(f^{\circ})$ equal to $\sqrt{D(m,N)}$ = $\sqrt{D(m,N,4)}$.

3.1 Veronese Maps.

Besides invariant tori, there are other submanifolds in the unit sphere S^{N-1} , which have small curvatures and which are transitively acted upon by subgroups in the orthogonal group $O(N)$.

The generalized Veronese maps are a minimal equivariant isometric immersions of spheres to spheres, with respect to certain homomorphisms (representations) between the orthogonal groups $O(m+1) \rightarrow O(m+1)$,

$$
ver = ver_s = ver_s^m : S^m(R_s) \rightarrow S^m = S^{m_s} = S^{m_s}(1),
$$

where

$$
m_s = (2s + m - 1)\frac{s + m - 2!}{s!(m - 1)!} < 2^{s + m} \text{ and } R_s = R_s(m) = \sqrt{\frac{s(s + m - 1)}{m}},
$$

for example,

$$
m_2 = \frac{m(m+3)}{2} - 1
$$
, $R_2(m) = \sqrt{\frac{2(m+1)}{m}}$ and $R_2(1) = 2$,

(see [DW1971]If $s = 2$ these, called *classical Veronese maps*, are defined by taking squares of linear functions (forms) $l = l(x) = \sum_i l_i x_i$ om \mathbb{R}^{m+1} ,

$$
Ver: \mathbb{R}^{m+1} \to \mathbb{R}^{M_m}, M_m = \frac{(m+1)(m+2)}{2},
$$

where tis \mathbb{R}^{M_m} is represented by the space $\mathcal{Q} = \mathcal{Q}(\mathbb{R}^{m+1})$ of quadratic functions (forms) om \mathbb{R}^{m+1} ,

$$
Q = \sum_{i=1,j=1}^{m+1,m+1} q_{ij} x_i x_j.
$$

The Veronese map, which is (obviously) equivariant for the natural action of the orthogonal group group $O(n+1)$ on $\mathcal Q$, where, observe, this action fixes the line Q_0 spanned by the form $Q_0 = \sum_i x^2$ as well as the complementary subspace \mathcal{Q}_{∞} of the *traceless forms Q*, where the action of $O(n+1)$ is irreducible and, thus, it has a *unique, up to scaling* Euclidean/Hilbertian structure.

Then the normal projection^{[10](#page-8-0)} defines an equivariant map to the sphere in \mathcal{Q}_\diamond

$$
ver: S^m \to S^{M_m-2}(r) \subset \mathcal{Q}_\diamond,
$$

where the radius of this sphere, a priori, depends on the normalization of the $O(m+1)$ -invariant metric in \mathcal{Q}_{\diamond} .

Since we want the map to be isometric, we either take $r = \frac{1}{R_2(m)}$ = √ ^m $2(m+1)$ and keep $S^m = S^m(1)$ or if we let $r = 1$ and $S^m = S^m(R_2(m))$ for $R_2(m) =$ $\sqrt{\frac{2(m+1)}{m}}$.

 $\overline{\text{Also}}$ observe that the Veronese maps, which are not embeddings themselves, factor via embeddings of projective spaces to spheres

$$
S^m \to \mathbb{R}P^m \subset S^{M_m-2} \subset \mathbb{R}^{M_m-1} = \mathcal{Q}_\diamond, M_m = \frac{(m+1)(m+2)}{2}.
$$

Curvature of Veronese. Let is show that

$$
curv_{ver}^{\perp}\left(S^{m}(R_{2}(m))\hookrightarrow S^{M_{m}-2}(1)\right)=\sqrt{\frac{R_{2}(1)}{R_{2}(m)}-1}=\sqrt{\frac{m-1}{m+1}}.
$$

Indeed, the Veronese map sends equatorial circles from $S^m(R_2(m))$ to planar circles of radii $R_2(m)/R_2(1)$, the curvatures of which in the ball B^{M_m-1} is $R_2(1)/R_2(m) = 2\sqrt{\frac{m}{m+1}}$ and the curvatures of these in the sphere,

$$
curv^{\perp}(S^1 \subset S^{M_m-2}(1)) = \sqrt{curv(S^1 \subset B^{M_m-1}(1))^2 - 1} = \sqrt{\frac{4m}{m+1} - 1} = \sqrt{\frac{3m-1}{m+1}}
$$

¹⁰The splitting $Q = Q_0 \oplus Q_0$ is necessarily normal for all $O(m + 1)$ -invariant Euclidean metrics in Q.

is equal to the curvature of the Veronese $S^m(R_2(m)) \to S^{M_m-2}(1)$ itself $\sqrt{R_2(1)/R_2(m)} = \sqrt{\frac{2m}{m+1}}$ $\frac{2m}{m+1}$, and the curvatures of these in the sphere,

$$
curv^{\perp}(S^1 \subset S^{M_m-2}(1)) = \sqrt{curv(S^1 \subset B^{M_m-1}(1))^2 - 1},
$$

is equal to the curvature of the Veronese $S^m(R_2(m)) \to S^{M_m-2}(1)$ itself. QED.

It may be hard to prove (conjecture in section 1) that Veronese manifolds have the smallest possible curvatures among non-spherical m -manifold in the unit ball: if a smooth compact m-manifold X admits a smooth immersion to the unit ball $B^N = B^N(1)$ with curvature $curv^{\perp}(X \to B^N) < \sqrt{\frac{2m}{m+1}}$ $\frac{2m}{m+1}$, then X is diffeomorphic to S^m .

It is more realistic to show that the Veronese have smallest curvatures among submanifolds $X \subset B^N$ invariant under subgroups in $O(N)$, which transitively act on X.

Remark. Manifolds X^m immersed to S^{m+1} with curvatures < 1 are diffeomor-
the S^n are 5.5 but enout from Vananca's we say't will such with S^m . phic to $Sⁿ$, see 5.5, but, apart from Veronese's, we can't rule out such X in S^N for $N \ge m + 2^{-11}$ $N \ge m + 2^{-11}$ $N \ge m + 2^{-11}$ and, even less so, non-spherical X immersible with curvatures rangement of the contract of t $\sqrt{2}$ to $B^N(1)$, even for $N = m + 1$.

It seems hard to decide this way or another, but it may be realistic to try to prove *sphericity of simply connected* manifolds immersed with curvatures $\lt 1$ to $S^N(1)$ for all N.

The curvatures of Veronese maps can be also evaluated with the Gauss formula, (teorema egregium), which also gives the following formula for curvatures of all ver_s :

$$
m = 2 \cdot 1 - 2c^2 = 1/3, 2c^2 = 2/3 c\sqrt{1/3}
$$

\n
$$
C = \sqrt{1 + 1/3} = 2/\sqrt{3}
$$

From Veronese to Tori. The restriction of the map $ver_s : S^{2m-1}(R_s) \rightarrow$ S^{N_s} to the Clifford torus $\mathbb{T}^m \subset S^{2m-1}(R_s)$ obviously satisfies

$$
curv_{vers}^{\perp}(\mathbb{T}^m) \le A_{2m-1,s} + \frac{\sqrt{m}}{R_s} = \sqrt{3 - \frac{5}{2}m + \varepsilon(m,s)}
$$

for

$$
\varepsilon(m,s)=\frac{2}{4m^2}-\frac{4m-2}{s(s+2m-2)}+\frac{5(2m-1)}{2ms(s+2m-2)}-\frac{2m-1}{(ms(s+2m-2))^2}.
$$

This, for $s \gg m^2$, makes $\varepsilon(m, s) = O\frac{1}{m^2}$
Since $N_s < 2^{s+2m}$, starting from $N = 2^{10m^3}$

$$
curv_{ver_s}^{\perp}(\mathbb{T}^m) < \sqrt{3 - \frac{5}{2}m}.
$$

where it should be noted that

the Veronese maps restricted to the Clifford tori are \mathbb{T}^m -equivariant

and that

¹¹Hermitian Veronese maps from the complex projective spaces $\mathbb{C}P^m$ to the spaces \mathcal{H}_n of Hermitian forms on \mathbb{C}^{m+1} are among the prime suspects in this regard.

this bound is *weaker than the optimal one* $\frac{||y||_{l_4}^2}{||y||^2} \ge$ $\sqrt{3-\frac{3}{m+2}} + \varepsilon$ from the previous section.

Remarks. (a) It is not hard to go to the (ultra)limit for $s \to \infty$ and thus obtain an

equivariant isometric immersion ver_{∞} of the Euclidean space \mathbb{R}^m to the unit sphere in the Hilbert space, such that

$$
curv_{ver_{\infty}}^{\perp}(\mathbb{R}^m \to S^{\infty}) = \sqrt{\frac{(m-1)(2m+1)}{(m+1)^2}} = \sqrt{2 - \frac{5}{m+1} + \frac{2}{(m+1)^2}},
$$

where equivariance is understood with respect to a certain unitary representation of the isometry group of \mathbb{R}^m .

Probably, one can show that this ver_{∞} realizes the minimum of the curvatures among all equivariant maps $\mathbb{R}^m \to S^{\infty}$.

(b) Instead of ver_s , one could achieve (essentially) the same result with a use of compositions of the classical Veronese maps, $ver : S^{m_i} \rightarrow S^{m_{i+1}}$, $_{i+1} = (m_i+1)(m_i+2)$ $\frac{(m_i+1)(m_i+2)}{2}$ – 2,

$$
S^{m_1} \hookrightarrow S^{m_2} \hookrightarrow \dots \hookrightarrow S^{m_i},
$$

starting with $m_1 = 2m - 1$ and going up to $i = m$. (Actually, $i \sim \log m$ will do.)

4 References

[BB2009] Eiichi Bannai, Etsuko Bannai, A survey on spherical designs and algebraic combinatorics on spheres. European Journal of CombinatoricsVolume 30, 2009 pp 1392-1425.

[Be2022] S.M. Berge Eigenvalues on Spherically Symmetric Manifolds, arXiv:2203.11911.

[Bet1991] F. Bethuel, The approximation problem for Sobolev maps between two, Acta Math. 167 (1991), 153–206.

[BHJ]A generalization of Geroch's conjecture Simon Brendle, Sven Hirsch, Florian Johne A generalization of Geroch's conjecture arXiv:2207.08617

[CDM2016] Gregory R. Chambers, Dominic Dotterrer, Fedor Manin and Shmuel Weinberger, Quantitative null-cobordism, Journal of the American Mathematical Society 31(4).

[CMS] Otis Chodosh, Christos Mantoulidis, Felix Schulze. Generic regularity for minimizing hypersurfaces in dimensions 9 and 10 arXiv:2302.02253v2.

[DW1971] M. P. do Carmo and N. R. Wallach, Minimal immersions of spheres into spheres. Ann. of Math. (2)93, 43–62 (1971).

[FLM 1977] T. Figiel, J. Lindenstrauss, V. Milman, The dimension of almost spherical sections, of convex bodies, Acta Math. 139 (1977), 53–94.

[Ge 2021] J. Ge, Gehring Link Problem, Focal Radius and Over-torical width, arXiv:2102.05901 [math.DG]

[GE1971] M. Gromov, Y. Eliashberg, Removal of singularities of smooth maps, Izv. Akad. Nauk, S.S.S.R. 35, #5, pp. 600-627.

[GE1971'] M. Gromov, Y. Eliashberg, Construction of nonsingular isoperimetric films. Proceedings of the Steklov Institute of Mathematics, 1971, 116, 13-28.

[Gr1986] M. Gromov, Partial differential relations Springer-Verlag (1986).

[Gr1988] M. Gromov, Dimension, non-linear spectra and width, Lect. Notes in Math. Springer-Verlag 1317 (1988), 132-185.

[Gr2017] M. Gromov, Morse Spectra, Homology Measures and Parametric Packing Problems, arXiv:1710.03616

[Gr2018] M. Gromov, Metric Inequalities with Scalar Curvature Geometric and Functional Analysis volume 28, pages 645–726 (2018)

[Gr2021] M. Gromov, Four Lectures on Scalar Curvature, arXiv:1908.10612.

[Gr2022] M. Gromov, Scalar Curvature, Injectivity Radius and Immersions with Small Second Fundamental Forms, arXiv:2203.14013.

[Gr2022'] M. Gromov, Isometric Immersions with Controlled Curvatures, arXiv:2212.06122.

[Gr2023] M. Gromov, Product Inequalities for \mathbb{T}^* -Stabilized Scalar Curvature, arXiv:2306.02932.

[Hit1974] N. Hitchin, *Harmonic Spinors*, Advances in Mathematics, 14(1), 1-55 (1974).

[K1995] H. Konig, Isometric imbeddings of Euclidean spaces into finite dimensional l_p -spaces, Banach Center Publications (1995) Volume: 34, Issue: 1, page 79-87.

[Ku2021] Y.Kubota, Band width and the Rosenberg index arXiv:2108.08506 [math.KT]

[LB2021] C. LeBrun, On the Scalar Curvature of 4-Manifolds arXiv:2105.10785 [math.DG]

LW1993] Yu. Lyubich, L. Vaserstein, Isometric imbeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), 327–362.

[PVZ 2017] G. Paouris, P. Valettas and J. Zinn, Random version of Dvoretzky's theorem in l_p^n , arXiv:1510.07284

[Pet 2023] A. Petrunin Gromov's torii are optimal arXiv:2304.00886v1

[Sm1993] N. Smale, Generic regularity of homologically area minimizing hyper surfaces in eight-dimensional mani- folds, Comm. Anal. Geom. 1, no. 2 (1993), 217-228.

[Stolz(survey) 2001] S. Stolz Manifolds of Positive Scalar Curvature [http:](http: //users.ictp.it/~pub_off/lectures/lns009/Stolz/Stolz.pdf) [//users.ictp.it/~pub_off/lectures/lns009/Stolz/Stolz.pdf](http: //users.ictp.it/~pub_off/lectures/lns009/Stolz/Stolz.pdf)

[SY1979] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979). 159-183.

[SY2017] R. Schoen and S. T. Yau, Positive Scalar Curvature and Minimal Hypersurface Singularities, arXiv:1704.05490.

[WXY2021] J. Wang, Z. Xie, G. Yu, An index theoretic proof of Gromov's cube inequality on scalar curvature, ¯arXiv:2105.12054