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1 Introduction

Immersions are C'-maps f : X — Y between smooth manifolds, such that
their differentials df : T(X) - T'(Y") nowhere vanishﬂ

df (1) =0 = 7=0,7 e T(X).

The (maximal normal bundle) curvature of an immersed X in a Rieman-
nian Y,
f:X =Y,

is the supremum of the Y -curvatures of geodesics v ¢ X, for the induced Rie-
mannian metric in X,

curvt(X) = curv* (f(X)) = curvy(X) = curv* (X EA Y) = curv' (X = Y),

Minimal Curvature Problem. What is the infimum of curvatures of
immersions f: X <Y,

inf.curv'(X,Y) =inf.curv'(X - Y)?

Remark: min or inf? Probbaly, the infimum inf; cum};(X,Y) is rarely
achieved, where the (only) established examples of immersions of closed mani-
folds with minimal possible curvatures are listed below.

Immersions are locally one-to-one but globally they may have self intersections. Immer-
sions without self intersections are called embeddings, where, if X is non-compact, one may
require the induced topology in X to be equal the original one.



e Spheres in the unit balls with curvatures curv* = 1.

ST cRY, N >m.

e Tori with curvatures \/3m/(m +2),
T c BN(1) N >m™ .

(See 2.1.B, Remark(a) in 5.3. and [Pet2023].)E|
e Veronese surfaces in the unit spheres with curvatures 1/v/3,

RP? c S™(1) n>4.

(See 5.2(b).)
e Product of Spheres in S™*™2*1 with curvatures 1.

Sm1 x Smg c Sm1+m2+1(1).

(See below, section 1.1 and [Ge2021].)
Product Example. If X is a product of spheres,

l
X =X S™,
=1

and Y is the unit ball BY (1) c RY then (apart from the trivial case of [ = 1)
we know the exact value of inf.curv* (X', §™, B¥ (1) only where all m; = 1,
i.e. for the torus T, and where N is large:

, Lol BN(1Y) 2 [t >
[\/g]T inf.curvt (T, BY (1)) = 3l+2,N>>l.

(See sections 3, 5 and [Pet2023].)
But if all m; = 2, for instance, i.e. X = (5?)! we neither can show that

inf.curvt((S%)!, B**1) - oo for | - oo

nor that
inf.curvt((5%)!, B1o)

Vi

— 0 for [ - oo.

Clifford Embeddings. The product X of spheres S™:(r;) c R™i*l, g =
1,...,1, for Zﬁzl 7"1'2 = 1 naturally isometrically imbeds to the boundary of the unit
N-ball for N =k + >, m;:

Cl: X =8™(r) x ... x §™ (1) = S¥7H(1) ¢ BN (1) c R™* x .. x R™*!

where, clearly,

curv(X ¢ BY) = max1/r;.

2We shall show in section 2.1.D that in f.curv(T™ c BN (1)) < \/3m/(m + 2) for n > 8m?+8

but, at the present moment, the existence of immersions with curvatures \/3m/(m +2) is
proven only for much larger n.



This, for ry = r9 = ... = ry, delivers a codimension I-embedding with curvature
V1. Thus,

l
inf.curv* (X Smf’,BN(l)) <VI, N=1l+ > m;.
i=1 i
If [ = 1, then this is optimal. In fact, it is obvious that
curv (X = B™(1) x RN) >1, forn>2.

for all smoothly immersed closed m-manifolds X in the "unit band" B™(1)xRY.
But, for instance, the equality

inf.curvt (T™ < B*™) = \/m

is problematic for all m > 2.
Round m-Tori in the Unit (m + 1)-Balls.

inf.curvt(T? - B3) <3

2

the boundary of the i-neighbourhood of the circle of radius 5

3
curvt(T? c R3) = 3.
Similarly (see section 4.1)

in the space has

inf.curv (T = BY) <2/2+1<4

inf.curv*(TT = T3 x T3 x T! - B®) <8+ 2v/2+1 <12

inf.curvt(T™, B™) <m?, m=2"—1.

Veronese embeddingﬂ of the real projective spaces satisfy (see 5.1),

m(m+3) ) 2m
2

Vo O

curv (RP?  B%) = 2\/§ < 1.155.

curv (RPm - B

Conjecture.

2m
in.cl Xm7BN < —— = X =giffeo S
min.cirv( ) \/m+1 dif f

(maximal) curvature of an immersion between Riemannian manifolds,
(X,9) = (Y,h)
is the supremum of h-curvatures in Y, of g-geodesics v c X,

curv(f) = curv™ (f) = curvys (f) = curvy (f) = su);; curvy (f(7)).
"YC

3These are flashes from a superior world.



If g = f*(h) is the induced Riemannian metric in X, this is our curvature of
XinY,

curvy (f) = curvt (X EA Y).

(This curvt(X) unlike curv(f) is defined for immersions of smooth manifolds
with no metrics on them.)

Normal Immersions, where curvi (X) = curv®(f). Call an immersion
between Riemannian manifolds f : X (g) = Y (h) normal if for all normal vectors
to X in Y,

v e TH(X) = Ty (2)(Y) 0 df (T (X))

the second quadratic form II,, of the immersed X EA is simultaneously diagonal-
izable with the quadratic forms g(z) and f*(h) on the tangent space T,(X).
For instance, isometric immersions are normal.

Clearly, curvy(X) = curvX (f) for isometric immersions f

Curvature in Spheres. If an immersion X — S™~1(1) is normal then so
is the corresponding immersion to RY > S™¥=1(1), where the spherical curvature
of X is related to the Euclidean one by the Pythagorean theorem:

(curv* (X = SN71(1))? = (curv* (X - RY)? - 1.

Notice that the Clifford embeddings to the unit sphere are known to be
optimal for [ = 2,

inf.curvt(S™ x 82, §™mL (1)) = 1 my my > 1
but the corresponding Euclidean equality
inf.curvt(S™ x §™2, Bmtmat2 (1)) = \/2,
remains conjectural for all my,ms > 1, except for m; =mg =1 [Pet].

Curvature in Codimension 1. This curvature of X™ < Y™*%! is the
supremum of the principal curvatures of X in Y over all points = € X.

Here normality means that the induced quadratic form f*(g)(z) on the
tangent space T, (X) is, at all € X, diagonalizabel in the same basis as the
second fundamental form II of X.

Ezample. the immersion S™(r) x S' - R™*2 obtained by rotating S™(r) =
R™*! around a line in R™*! within distance R > r from the origin is normal
with curvature max ( %, Rl_r).

Remark 1. If f =0, and X immerses to R", then the above delivers an
immersion f; of X to the unit ball BY = BV (1) with a bound on the curvature
of f1 depending on the dimensions n and N, e.g. with

curvt (X, BY) </ 3:&2 +¢ for N >20n? and all € > 0
n

This and the Whitney embedding theorem implies the following.
1.1.D. If N > 100m?, then inf.curv* (X, BN) </22m=D,

4See [Ge2021], section 3.7.3 in [Gr2022| and section 5.5 in the present paper.




In fact,

3m
N >> lim inf. HX,BN) </ —/——.
[ ] Nl_r)r;omfcurv ( ) i

Petrunin Theorem. There exist m-dimensional manifolds X for m > 2,
such that

inf.curvt (X, SN) > for all N,

i.e. all immersions from X to the unit sphere SN 1) have with curvatures

curvt (X = SN (1)) > ( \/m+2—1+5).

for some € =¢(X,N) > 0.
(Surfaces of genera > 2 are examples for such X with m = 2.)
1.1.F. Codim 1 Theorem /Example.(See section 4.2) Let

X =8FxS"x.. xSt
N———
-1

If k> ll4 then there exists an immersion
F: X - B* (1)

with
3l-3
#(X)<1+2v/ ——<4.5.
curvgy(X) 1
Remark II. The proof of the remark I doesn’t apply to immersions to R™

without passing to R™*! but this is taken care of by the following (see

1.1.H. Remarks/Questions. We don’t know how close this inequality
to the minimal values of the curvatures of codiml immersions of products of
spheres is.

(a) For instance let P!~ be an (I -1)-dimensional manifold diffeomorphic to
a product of spheres where some of these have dimensions > 2. Then, if k >> [,
there exist immersions

};\E . Sk x Pl—l o Bk+l(1)

with
3-3
F(SPx PPy <142y [ S—
curvg_ (S” x )<1+ o1 C
for all € > 0.

But this is unclear for € = 0, even for the product S x S¥, which embeds to
the ball B**2(1) with curvature 3 for all k and where we don’t know if there are
immersions of S x S¥*2 (or other closed non-spherical manifolds of dimension
k+1) to the unit ball B*2(1) with curvatures < 3.

5The hugeness of this number is the product of my perfunctory interpretation of Hilbert’s
argument in [H1909].



(b) It is not impossible according to what we know, that m-dimensional
products of spheres of dimensions > 2 admit immersions to B™**(1) with cur-
vature <100.

But the best we can do (see section 4.1) are immersions with curvatures
4
Sm3.

2 Kolmogorov’s D = D(m,N,p), Hilbert’s Theo-
rem and Spherical Designs

K-Diameter {/D(m,N,p).  Let |lyllz,, ¥ = (y1,...,yn) € RY denote the

normalized norm 1,
1 N %
- | = P
e, = 217

Let D(m, N,p) denotes the infimum of the numbers D > 0 such that RY
contains an m-dimensional linear subspace X, such that

||9U||ip < D||:16||1£27 for all z € X.

Observe that D(1,N,p) =1, D(m,m,p) = m2~1, that D(m, N, p) is monotone
increasing in m and decreasing in N and let

D(m,p) = D(m, 00,p) = lim D(m, N, p).

2.1.A. Gamma Function Design Formula. If p =4,6,8..., then a simple
O(m)-averaging argument, shows that

Jgm [U(s)[Pds ms1.3.5-.-(p-1)

S (Jonr l1(5)Pds)E (M +2)-(m+d) - (m+p-2)°

where I(s) is a non-zero linear function on on the sphere.

2.1.B. Hilbert Connection. In his proof of the Waring problem, Hilbert
shows the existence of M = (mn;le) +1 rational points s; € S™ ! and of positive
rational weight w; > 0, ¥ w; = 1, such that ¥, w;l%(s;) = Jgm-1 14(s)d for all
linear functions on he sphere.

This, after partitioning each s; into A atoms for A being the smallest com-
mon denominator A of w;, becomes what is no-a-days called spherical design
of cardinality N = N'M of w;, which yields (this is nearly obvious, see 2.1.C
below) the following.

D(m,N)-Stabilization: D(m,N,p) = D(m,oco,p) for all sufficiently large
N >= Ngip(m,p) (£ N M), where — to be safe let it be rough— Ny < mm".

Design Rationality: If N > Ny, then the space lév contains a rational
linear subspace X of dimension m, such that

||96||1£p = D(m,p)||3v||1£2 for all z € X.

2.1.C. Spherical Designs and the Equality D(m, N) = D(m, o)



A design of even degree p = 2,4, ... and cardinality N on the sphere S™! is
a map from a set ¥ of cardinality N to the sphere, written as o — s(o), such
that the linear functions [(s) on the sphere S™! c R™ satisfy

1
= ﬁ%ld(s(a)) - [Smfl 14(s)ds, d=2,....p,
where ds is the O(m) invariant probability measure on the sphere.

Hence, the linear map from the space R (= R™) of linear functions on the
sphere S™71 c R™ to RY = R¥ preserves both, the Ly and the L,-norms and,
by the above [['/T],

the existence a design of cardinality N implies that D(m, N,p) = D(m,p)ﬁ

Non-rational designs, at least for p = 4, are known to exit for N << Ny .

2.1.D 2m?-Design Construction. If p =4, and if m is a power of 2, then

there exists a spherical designs of cardinality N = 2m? + 4m.
This, now for all m, shows that

3m

(i) D(m,N,4) = for N >8(m?+m).

m+2

[R? in I3]-Ezample. D(2,N,4) = 2 for N > 3, with four (rational) planes
X c R® = 3, where |lz[[}, = 3||z[||7,: these are the normals to the vectors
(1a1>17)7 (Lla '1)a (15'171)a (17'17'1)'

2.1.E. D(m, N)-Inequalities. If N $m?, then upper bounds on D*(m, N, 4)
follow from the corresponding estimates in the randomization proofs of the
Dvoretzky theorem for the l,-spaces, where the following inequality follow from
(the argument in) [PVZ2017].

2

(ii) D(m, N,4) <3 + const 3y 5~ for N > m2

(iii) D(m,N,4) < const(iii)mﬁZ for 2m < N < mQH

2.1.F. D(m, N) Concentration Property. The existence of m-subspaces
X ey in [FLM1977] and [PVZ2017], such that

[D] 2z, < DllllL,, = €X,

is derived from a lower bound the measure of those m-subspaces X c RV, where
this inequality fails for some x € X.

In particular, the argument used in [FLM1977] implies that the measure pp
of those X ¢ RV with respect to the O(N)-invariant probability measure in the
Grassmanian Gry,, (RY where [|z|3, > Dl[z||1_, for some z € X satisfies:

If

D> 3m

m+2
then
up = 0, for N - oo.

6See [BB2009], [LW1993] for more about it.

"The Kerdock code used in [K1995] yields designs for m = 4% and N = W

8This follows from (i) for N > 8(m? +m) and, if const; is large, also for (some) N <
8(m? +m). Besides, the inequality D*(m,m?,4) < const follows from (the proof of) example
3.1 in [FLM1977].

9Since D(m, N,4) < D(m,m,4) =m for all m and N, the significance of this inequality for
N ~m depends on the value of consts.



3 Equivariant Immersions R™ — §2N-1

3.A. Curvatures of the Clifford Tori. Let
TN c SQN—I c B2N(1) c (B2(1))N CRQN

be the Clifford torus and observe that the second quadratic form of this torus
in the the ambient Euclidean space R?Y 5 §2V=1 5 TN regarded as a quadratic
form with values in the normal bundle, is

VN %Y, vidt?,

where t; are the cyclic coordinates on the torus and {v; e T*(TY c R2V)} is the

corresponding orthonormal frame of normal vectors to TY.

This, in terms of the orthonormal tangent frame {e; = -2- ¢ T(T")}, means

ot;
that
Ie;®e; = VNy; and Il e; ® ej = 0 for 7 # 5.

Thus, the curvature of TV in BY along a unit tangent vector z € T(T%),
=Y, ze;, where ¥, 27 =1,
is
curvt (TN, z) = [II(z @ Z)|| = ||[II(Z; zie; ® ¥, wie;)]|| =
Vi)
IL(E3; zizs (e ® e3)ll = VNI T 23vill = VNV af = VN Y =

- - N
where [1Z]|* = |2]7, = £, 27

Hence,

_ 2 _ 2
(*) CUT”L}J'(TN75_C):(W|$HM) :(HxHsz) ,
[12]]2, 1]l
where, recall, the L,-norms refer to the finite probability spaces with IV equal
atoms,
ol = 1
P {7/]_\[
The Euclidean Small Curvature Theorem. The above (*) implies the

existence of an equivariant isometric immersion from the Euclidean m-space to
the Clifford N-torus,

f@ :Rm—)TNCS2NCR2N
with the relative curvature curvg(f®) equal to \/D(m,N) =+/D(m, N, 4).

3.1 Veronese Maps.

Besides invariant tori, there are other submanifolds in the unit sphere S™V-1,
which have small curvatures and which are transitively acted upon by subgroups
in the orthogonal group O(N).

The generalized Veronese maps are a minimal equivariant isometric immer-
sions of spheres to spheres, with respect to certain homomorphisms ( represen-
tations) between the orthogonal groups O(m +1) - O(m +1),

ver = vers = very' : ST (Rs) - 8™ = §™s = 8™ (1),



where

-2)! -1
o= (25 4m-1)2 "D gsem i 2 R(m) =/ 2D
sl(m -1 m

for example,

meo = w —1, Ry(m) =/ % and Ro(1) =2,
(see [DW19T1]If s = 2 these, called classical Veronese maps, are defined by

taking squares of linear functions (forms) I = I(x) = ¥, l;z; om R™*1,

VGT:Rerl _)RMm MTn, _ (m+ 1)2(m+2)’

where tis RM= is represented by the space Q = Q(R™*!) of quadratic functions

(forms) om R™*1,
m+1,m+1

Q= )  amiw;.
i=1,j=1

The Veronese map, which is (obviously) equivariant for the natural action of
the orthogonal group group O(n+1) on Q, where, observe, this action fixes the
line Q, spanned by the form @, = 3, 2 as well as the complementary subspace
Q, of the traceless forms @, where the action of O(n + 1) is irreducible and,
thus, it has a unique, up to scaling Euclidean/Hilbertian structure.

Then the normal projectionIE defines an equivariant map to the sphere in

Qe

ver: 8™ - SMn=2(r) c Q,,

where the radius of this sphere, a priori, depends on the normalization of the

O(m + 1)-invariant metric in Q,.
1 _ m
Ra(m) = \/ 20m+1)

and keep S™ = S™(1) or if we let r =1 and S™ = S™(Ra(m)) for Ry(m) =
2(m+1)

Since we want the map to be isometric, we either take r =

.
Also observe that the Veronese maps, which are not embeddings themselves,
factor via embeddings of projective spaces to spheres

Sm N RPm c SI\/[,,,,*Z c RMmfl — Qo7 Mm _ (m + 1)2(m + 2) )

Curvature of Veronese. Let is show that

9 R m—
b (870 m) =+ 872 0) | s 1=

curv:

Indeed, the Veronese map sends equatorial circles from S™ (R2(m)) to planar
circles of radii Rg(m)/Ra(1), the curvatures of which in the ball BM=~! is
Ra(1)/R2(m) =2,/ and the curvatures of these in the sphere,

+1

4 -1
curvt (St ¢ SMm72(1)) = \/eurv(St ¢ BMm=1(1))2 -1 = \/ mo_q- sm

m+1 m+1

10T he splitting Q = Qo ® Q. is necessarily normal for all O(m + 1)-invariant Euclidean
metrics in Q.




is equal to the curvature of the Veronese S™(Rg(m)) = SMm=2(1) itself

VR2(1)/Ra(m) =/ niTl, and the curvatures of these in the sphere,

curvt(S* ¢ SM72(1)) = \Jeurv(St ¢ BMm-1(1))2 - 1,

is equal to the curvature of the Veronese S™(Ry(m)) = SM==2(1)itself. QED.

It may be hard to prove (conjecture in section 1) that Veronese manifolds
have the smallest possible curvatures among non-spherical m-manifold in the unit
ball: if a smooth compact m-manifold X admits a smooth immersion to the

unit ball BN = BN(1) with curvature curvt(X — BY) < /2™ then X is
diffeomorphic to S™.
It is more realistic to show that the Veronese have smallest curvatures among

submanifolds X ¢ BN invariant under subgroups in O(N), which transitively
act on X.

Remark. Manifolds X™ immersed to S™*! with curvatures < 1 are diffeomor-
phic to S™, see 5.5, but, apart from Veronese’s, we can’t rule out such X in SV
for N>m+2 |E| and, even less so, non-spherical X immersible with curvatures
<V2to BN(1), even for N =m +1.

It seems hard to decide this way or another, but it may be realistic to try
to prove sphericity of simply connected manifolds immersed with curvatures < 1
to SN (1) for all N.

The curvatures of Veronese maps can be also evaluated with the Gauss for-
mula, (teorema egregium), which also gives the following formula for curvatures
of all ver,:

m=21-2c%=1/3,2¢ =2/3 c\/1/3

C=\/1+1/3=2/V3

From Veronese to Tori. The restriction of the map ver, : S*™ }(R,) -
SNs to the Clifford torus T™ c S 1(R,) obviously satisfies

curvye, (T™) € Aopis + éﬁ = \/3 - gm +e(m,s)

for

2 Am-2 52m-1) 2m -1
4m?  s(s+2m-2) 2ms(s+2m-2) (ms(s+2m-2))%

e(m,s) =

This, for s >>m?, makes e(m,s) = O#
Since N, < 25+2m,

starting from N = 910m”

curvy,, (T™) <y/3- gm.

where it should be noted that
the Veronese maps restricted to the Clifford tori are T™ -equivariant

and that

M Hermitian Veronese maps from the complex projective spaces CP™ to the spaces H,, of
Hermitian forms on C™*! are among the prime suspects in this regard.

10



2
this bound is weaker than the optimal one ‘Ill?’;/lllll;‘ >4/3- m + ¢ from the

previous section.

Remarks. (a) It is not hard to go to the (ultra)limit for s - oo and thus
obtain an

equivariant isometric immersion ver,, of the Euclidean space R™ to the unit
sphere in the Hilbert space, such that

- (m-1)(2m+1) 2m+1) 5 2
R™ < S 2-
curvuer., (R )= \J (m+1)2 ml (m+1)2’

where equivariance is understood with respect to a certain unitary representa-
tion of the isometry group of R™.

Probably, one can show that this ver., realizes the minimum of the curva-
tures among all equivariant maps R"™ — 5.

(b) Instead of vers, one could achieve (essentially) the same result with a

use of compositions of the classical Veronese maps, ver : S™i — S™i1 .4 =
(mi+1)(mi+2) 2
2 )

ST 812 o o ST
starting with my = 2m — 1 and going up to i = m. (Actually, i ~ logm will do.)
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