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Abstract

Mathematics is about ”interesting structures”. What make a structure
interesting is an abundance of interesting problems; we study a structure
by solving these problems.

The worlds of science, as well as of mathematics itself, is abundant
with gems (germs?) of simple beautiful ideas. When and how may such
an idea direct you toward beautiful mathematics?

I try to present in this talk a few suggestive examples.

1 States, Spaces, Crystals and Entropy.

What is the ”number of states” of a (classical as opposed to quantum) system,
S, e.g. of a crystal?

A ”naive physicist’s” system is an infinite ensemble of infinitely small mu-
tually equal ”states”, where you know nothing about what these states are but
you believe they are equal because of observable symmetries of S. The number
of these states, although infinite, can be assigned a specific numerical value by
comparing with another system taken for a ”unit of entropy”; moreover, this
number can be measured experimentally with a predictable error.

The logarithm of this number is called (mean statistical Boltzmann) entropy
of S, [14].

What is the ”space of states” of S? No such thing exists – would be our
physicists answer (unless he/she is a Shroedinger’s cat). Even the ”number of
states” – the value of entropy – may depend on accuracy of your data. This S
is not a ”real thing”, nor is it a mathematician’s ”set”, it is ”something” that
depends on a class of mutually equivalent imaginary experimental protocols.

This, probably, appeared gibberish to mathematicians of the late 19th cen-
tury, when Boltzmann developed his concept of entropy, and even of the early
20th century, when Lebesgue (1902) and Kolmogorov (1933) expressed the ideas
of measure and probability in the language of the set theory of Kantor (1873).
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But now-a-days this ”gibberish” (almost) automatically translates to the
language of non-standard analysis (Abraham Robinson, 1966) [15], [18] and
even easier to that of category theory (Eilenberg-MacLane-Steenrod-Cartan-
Grothendieck’s, 1945-1957).

For instance, our physists’ description of a crystal (see below) amounts to
Kolmogorov’s theorem on dynamic entropy of Bernoulli shifts (1958) (that was
originally motivated by Shannon’s information theory, 1948). To see this, you
just need to realize that ”something” of a physicist, is a covariant functor from
a suitable ”category of protocols” to the category of sets – outcomes of exper-
iments; all you have to do afterwards is to follow the guidelines prescribed by
the syntax of category theory.

(Arguably, the category language, some call it ”abstract”, reflects mental
undercurrents that surface as our ”intuitive reasoning”; a comprehensive math-
ematical description of this ”reasoning”, will be, probably, even farther removed
from the ”real world” than categories and functors.)

Think of S is an ”ensemble” of molecules located at some sites/points in the
3-dimensional Euclidean space, denoted s ∈ S ⊂ R3, e.g. at the integer points
s ∈ S = Z3 ⊂ R3, (i.e. s = (n1, n2, n3) such that n1, n2, n3 are integers) where
each molecule may occupy finitely many, say ks, different states, e.g. levels
of energy characterized by ks different colors. Represent such a molecule by a
finite set of cardinality ks and declare the Cartesian product of all these finite
sets over s ∈ S to be the space of pure states of S; accordingly, let the product
of numbers ∏s∈S ks = exp∑s log ks (which should be properly normalized for
infinite S) represent the number of states of S.

If, however, molecules exchange pure states exceptionally rarely, we shall
see only one state, the perceived entropy will be zero: a state counts only if
it visited by molecules with a definite frequency with emission/absorbtion of
energy at the change of states that can be registered by experimantal devices.

If the molecules at all sites visit their individual states with equal relative
frequencies 1/ks, then ∑s log ks is, indeed, a fair measure of entropy, provided
the molecules do not interact. Yet, if particles do interact, where, for example,
two neighbors in S only reluctuntly display the same color, then S will have
fewer observable states. How to account for this?

And, remember, you have no direct access to the ”total space of states”, you
do not observe individual molecules, you do not know, a priori, how molecules
interact (if at all) and you do not even know what the numbers ks are.

What you have at your disposal are certain devices – ”state detectors”, call
them P , that are also ”physical systems” but now with relatively few, say nP ,
”pure states” in them. You may think of a P as a plate with an array of nP
windows that are sensitive to different ”colors”. When you ”attach” P to S
(you do not have to know the physical nature of this ”attachment”) you may
see flashes of lights in these windows. But you yourself are color blind and you
do not know beforehand if two windows have identical or different ”colors”. All
you can do is to count the numbers of flashes in the windows at various (small
or large) time intervals.

Moreover, given two P , you do not know if they have identical colors of their
respective windows or different ones; yet, if a window P2 is moved along S, by a
symmetry, that is a group element γ ∈ Γ = Z3, then you assume that P2 is ”the
same” as P1.
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You assign a number ∣p∣ to each window p in a P attached to S that is
the relative frequency of flashes in P ; thus, ∑p ∣p∣ = 1 for all windows. Then
you postulate that ”entropy of S perceived by P” call it ent(P ), is given by
ent(P ) = −∑p∈P ∣p∣ log ∣p∣ and you assume that the probability (relative fre-
quency) of observing a sequence of flashes in given windows p1, p2, ..., pN ∈ P
at consecutive time intervals is roughly exp(−N ⋅ ent(P )) for all sequences
p1, p2, ..., pN of windows where flashes in this order do ”realistically occur”.
(You can not experimentally verify this – the number exp(N ⋅ ent(P )) may be
smaller then nNP but it is still huge.)

If you attach two plates P1 and P2 with nP1 and nP2 windows, you regard
the pair as a new plate (state detector), denoted P1∨P2 with nP1 ⋅nP2 windows.
You count the numbers of flashes in the pairs of windows (p1 ∈ P1, p2 ∈ P2) and
thus define/determine the entropy ent(P1 ∨ P2).

A possible mathematical representation of a ”state detector” P attached to
S is a finite measurable partition ⊔pXp of a measure space X = (X,µ), i.e. X =

⊔pXp, where µ(X) = ∣P ∣, µ(Xp) = ∣p∣ and where P1∨P2 becomes ⊔p1,p2Xp1∩Xp2 .
But a precise definition of this is heavy: X is not quite a set but ”something”

associated with a σ-algebra Σ of all (more than continuum!) its subsets; to
express this rigorously one needs the language of the Zermelo-Fraenkel set
theory.

In mathematical practice, one takes a specific model of X, that is a topo-
logical space with a Borel measure on it, where X is represented by a set. This
is similar to representation of vectors by n-tuples of numbers with a chosen
coordinate system in a linear space.

On the other hand one can define ”measure spaces” without introducing a
particular set theoretic model as follows.

State Detectorw :Finite Measure Spaces . A finite measure space P = {p} is
a finite set with a positive function denoted p ↦ ∣p∣ > 0. We think of it as a set
of atoms p that are one point sets with positive masses ∣p∣ attached to them.
We denote by ∣P ∣ = ∑p ∣p∣ the (total) mass of P . If ∣P ∣ = 1, then P is called a
probability space.

We manipulate with spaces P as with their underlying sets, denoted set(P ),
in-so-far as it does lead to confusion. For example, we speak of subsets P ′ ⊂ P ,
with mass ∣P ′∣ = ∑p∈P ′ ∣p∣ and of maps P → Q that are maps set(P ) → set(Q),
etc.

Reductions and P. Following physicists, we call a map P
f
→ Q a reduction if

the q-fibers Pq = f
−1(q) ⊂ P satisfy ∣Pq ∣ = ∣q∣ for all q ∈ Q. We also express this

by saying that Q is a reduction of P . (Think of Q as a ”plate with windows”
through which you ”observe” P . What you see of the states of P is what ”filters”
through the windows of Q.)

We use the notation P for the category with objects P and reductions taken
for morphisms.

All morphisms in this category are epimorphisms, P looks very much as a
partially ordered set (with P ≻ Q corresponding to reductions f ∶ P → Q and
few, if any, reductions between given P and Q) but we treat it for a time being
as a general category.

Why Category? There is a subtle but significant conceptual difference be-

tween writing P ≻ Q and P
f
→ Q. Physically speaking, there is no a priori given
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”attachment” of Q to P , an abstract ”≻” is meaningless, it must be implement
by a particular operation f . (If one keeps track of ”protocol of attaching Q to
P”, one arrives at the concept of 2-category.)

The f -notation, besides being more precise, is also more flexible. For exam-
ple one may write ent(f) but not ent(≻) with no P and Q in the notation.

Spaces over P. A space X over P is, by definition, a covariant functor from
P to the category of sets, where the value of X on P ∈ P is denoted X (P ).

For example, if X is an ordinary measure space, then the corresponding X
assigns the sets of (classes of) measure preserving maps (modulo ...) f ∶X → P
to all P ∈ P.

In general, an element f in the set X (P ) can be regarded as a morphism
f ∶ X → P in a category P/X that is obtained by augmenting P with an object
corresponding to X , such that every object, in P/X receives at most one (pos-
sibly none) morphism from X . Conversely, every category extension written of
P with such an object1defines a space over P.

∨-Categories and Measure Spaces. Given a set I of morphisms fi ∶ x → bi,
i ∈ I, in a category, we call these x-fans over {bi}, say that an a-fan f ′i ∶ a → bi
lies between x and {bi} if there is a morphism g ∶ x→ a such that f ′i ○ g = fi for
all i ∈ I. To abbreviate we may say ”a between x and bi”.

Call P/X a ∨-category if every X -fan over finitely many Pi ∈ P admits a
Q ∈ P between X and {Pi}.

Definition. An X over the category P of finite measure spaces P , is called a
measure space if P/X is a ∨-category.

Minimal Fans and Injectivity. An x-fan over bi in a category is called mini-
mal if every a between x and {bi} is isomorphic to x. (More precisely, the arrow
x→ a that implements ”between” is an isomorphism.)

It is obvious that every X -fan over finitely many finite measure spaces Pi ∈ P
in a ∨-category over P admits a Q ∈ P between X and {Pi}, such that the
corresponding Q-fan over Pi is minimal. This Q, when seen as an object in
P is unique up to an isomorphism; the same Q is unique up to a canonical
isomorphism in P/X . We call this ∨-(co)product of Pi in P/X and write: Q =

∨iPi.
This product naturally/functorially extends to morphisms g in P/X , denoted

∨igi ∶ ∨iPi → ∨iP
′
i for given reductions gi ∶ Pi → P ′

i .

Observe that the ∨-product is defined (only) for those objects and morphisms
in P/X that lie under X .

An essential feature of minimal fans, say fi ∶ Q→ Pi, a feature that does not
depend on X (unlike the ∨-product itself) is the injectivity of the corresponding
(set) map from Q to the Cartesian product ∏i Pi (that, in general, is not a
reduction).

Let us express the idea of ”number of states” and/or of entropy – logarithm of
this number, in rigorous terms by reformulating Bernoulli’s law of large numbers
(1713) in the language of P as follows.

Cartesian product: P ×Q is the is the set of pairs of atoms (p, q) that are
given the weights ∣p∣ ⋅ ∣q∣ and denoted pq = (p, q). (This corresponds to observing

1This, as was pointed out to me by Thomas Riepe, is uncarefully written. In order to have
the ”at most one” property each P ∈ P, must appear in the category P/X in several ”copies”
indexed by the set X (P ).
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non-interacting ”somethings” with P and Q.) The maps pq ↦ p and pq ↦ q are
called Cartesian projections P ×Q→ P,Q.

Notice that, say pq ↦ p, is a reduction only if Q is a probability space. In
general, one may rescale/normalize the spaces and make these maps reductions.
Such a rescaling, being a non-trivial symmetry, is a significant structure in its
own right; for example, the group of families of such ”rescalings” leads the
amazing orthogonal symmetry of the Fisher metric (see section 2); you are not
supposed to say ”rescale” and forget about it.)

Homogeneous Spaces. A finite measure space P is called homogenous if
all atoms p ∈ P have equal masses ∣p∣. (Categorically speaking, all morphisms
P → Q that are invariant under the group of automorphisms of P factor through
P → ● for terminal objects ● ∈ P, that are monoatomic spaces.)

Entropy of a homogeneous P is defined as the logarithm of the cardinality
of set(P ), that is ent(P ) = log ∣set(P )∣.

Observe that reductions f ∶ P → Q between homogeneous spaces (non-
canononically) split, that is P decomposes into Cartesian product P = P ′ ×Q
where the projection P → Q equals f .

distπ(P,Q) and Asymptotic Equivalence. Let P and Q be finite measure
spaces, and let π ∶ P → Q be an injective correspondence that is a partially
defined bijective map defined on a subset P ′ ⊂ P that is bijectively sent to
Q′ ⊂ Q. Let us introduce a numerical measure of deviation of π from being
an isomorphism. To simplify, we assume P and Q are probability spaces, i.e.
∣P ∣ = ∣Q∣ = 1, otherwise, normalize them by p ↦ p/∣P ∣ in P and q ↦ q/∣Q∣ and
denote

∣p ∶ q∣ = max(p/q, q/p) for q = π(p) and M = min(∣set(P )∣, ∣set(Q)∣).

Let
∣P −Q∣π = ∣P ∖ P ′

∣ + ∣Q ∖Q′
∣,

∣ logP ∶ Q∣π = sup
p∈P ′

log ∣p ∶ q∣

logM
, where 0/0 =def 0,

and
distπ(P,Q) = ∣P −Q∣π + ∣ logP ∶ Q∣π.

Call sequence of injective correspondences πN ∶ PN → QN an asymptotic
equivalence if

distπN (PN ,QN) →
N→∞

0

and say that two sequences of finite measure spaces PN and QN are asymptoti-
cally equivalent if there exists an asymptotic equivalence πN ∶ PN → QN .

The law of large numbers applied to the random variable p → log p on P ,
can be stated as follows.

Bernoulli Approximation Theorem.2 The sequence of Cartesian pow-
ers PN of every P ∈ P admits an asymptoticly equivalent sequence HN of ho-
mogeneous spaces.

Such a sequence HN is called a homogeneous Bernoulli approximation of
PN .

2This is often called asymptotic equipartition property.
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Bernoulli Entropy. This is defined as

ent(P ) = lim
N→∞

N−1 log ∣set(HN)∣

for a homogeneous sequence HN that is asymptotically equivalent to PN .

Entropy can be also defined without an explicit use of Bernoulli theorem as
follows.

Call probability spaces P1 and P2 Bernoulli equivalent if the power sequences
PN1 and PN2 are asymptotically equivalent. The set Ber(P) of the classes of
probability spaces P ∈ P under this equivalence carries a natural structure of
commutative semigroup corresponding to the Cartesian product P ×Q as well
as a topology for the metric lim sup

N→∞
distπN (PN ,QN).

Boltzmann entropy. This, by definition, is the Bernoulli class of P in
Ber(P).

A posteriori, the law of large numbers shows that this is equivalent to
Bernoulli’s definition:

two finite probability spaces P and Q are Bernoulli equivalent if and only if
they have equal Bernoulli’s entropies.

More precisely,
There is a the topological isomorphism of the Bernoulli (Grothendieck) semi-

group Ber(P) onto the multiplicative semigroup R×
≥1 of real numbers ≥ 1 that

extend the homomorphism H ↦ ∣set(H)∣ for homogeneous spaces H ∈ P.
The Bernoulli-Boltzmann entropy is then recaptured by composing this iso-

morphism with log ∶ R×
≥1 → R+. (The mathematical significance of this log is

not apparent until you give a close look at the Fisher metric.)

Boltzmann Formula:

ent(P ) = −∑
p∈P

∣p∣ log ∣p∣ for all finite probability spaces P = {p} ∈ P.

If ∣P ∣ ≠ 1, then

ent(P ) = −∑
p

∣p∣

∣P ∣
log

∣p∣

∣P ∣
= ∣P ∣

−1 ⎛

⎝
−∑

p

∣p∣ log ∣p∣
⎞

⎠
+ log ∣P ∣.

This is obvious with Bernoulli’s approximation theorem but the original
ent(P ) = −K∑p ∣p∣ log ∣pi∣, where K is the unit conversion constant, is by no
means obvious: it provides a non-trivial link between microworld on the 10−9±1m
scale with what we see with the naked eye.

Bernoulli-Boltzmann’s definition (unlike −∑p ∣p∣ log ∣p∣) fully and rigorously
expresses the idea that entropy equals the logarithm of the ”number of mutually
equal states encoded/detected by P” and, thus, makes essential properties of
entropy quite transparent. (There is also an information-theoretic rendition of
Boltzmann’s argument, often presented as a ”bits bargaining” between ”Bob
and Alice”. Probably, it is understandable by those who is well versed in the
stock marked.) For example, one immediately sees the following

(logn)-Bound: ent(P ) ≤ log ∣set(P )∣ with the equality for homogenous spaces
with n equal atoms, since the powers PN ”Bernoulli converge” to measures
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with ”nearly equal” atoms on subsets SN ⊂ set(P )N , that have cardinalities
∣SN ∣ ≤ ∣set(P )∣N and where 1

N
log ∣SN ∣→ ent(P ).

(Text-book proofs, where −∑ ∣p∣ log ∣p∣ is taken for the definition of entropy,
rely on convexity of x logx. In fact, this convexity follows from the law of large
numbers, but the sharpness of the logn-bound, that is the implication

ent(P ) = log ∣set(P )∣⇒ P is homogeneous,

is better seen with ∑ ∣p∣ log ∣p∣, where real analyticity of logx implies sharpness of
this (logn)-inequality. Also Boltzmann’s formula implies continuity of entropy
as a function of ∣p∣ ≤ 0, p ∈ P .)

Functorial Bernoulli. The law of large numbers not only (trivially) yields
Bernoulli approximation of objects (finite measure spaces) in P, but also ap-
proximation of reduction (morphisms) in P. Namely,

given a reduction f ∶ P1 → P2, there exists a sequence of reductions φN ∶

H1N → H2N , where H1N and H2N are homogeneous Bernoulli approximations
of PN1 and of PN2 .

We call this a homogenous Bernoulli approximation of the Cartesian powers
fN ∶ PN1 → PN2 of f .

The existence of such approximation immediately implies, for example, that

Entropy is monotone decreasing under reductions: if P2 is a reduction of P1

then ent(P2) ≤ ent(P1); in particular, ent(P ∨Q) ≥ ent(P ) for all P and Q in
P/X under X .

Let {fi}, i ∈ I be a finite set of reductions between some objects P in P.
Ideally, one would like to have to have homogeneous Bernoulli approximations
φiN of all fNi , such that

[BA]1 [fi = fj ○ fk]⇒ [φiN = φjN ○ φkN ],

and such that injectivity/minimality of all fans is being preserved, i.e.

[BA]2 minimality of fiν ∶ P → Qν⇒ minimality of φiνN ∶HN →HiνN .

Probably, this is not always possible (I have no specific counterexample), but
one can achieve this with the following weaker assumption on the approximating
sequences.

Call a sequence BN = {bN} of finite measure spaces Bernoulli if it is εN -
homogeneous for some sequence εN →

N→∞
0. This means that the atoms bN in

all BN satisfy:

1

N
∣ log ∣bN ∣ + log ∣set(BN)∣∣ ≤ εN +

1

N
log ∣BN ∣.

A Bernoulli approximation of PN is a Bernoulli sequence BN that is asymp-
totically equivalent to PN ; accordingly, one defines Bernoulli approximation φN
of powers fN of reductions f ∶ P → Q.

Now it is easy to see (as in the slice removal lemma from [11]) that the
above {fi} do admit Bernoulli (not necessarily homogeneous) approximations
that satisfy [BA]1 and [BA]2.

Shannon Inequality. If a fan φi ∶ H0 → Hi of homogeneous spaces is min-
imal/injective, i.e. the Cartesian product map ×iφi ∶ H0 → ×iHi is injective,
then, obviously, ∣set(H0)∣ ≤∏i ∣set(Hi)∣ and ent(H0) ≤ ∑i ent(Hi).
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This, applied to a (εN -homogeneous) Bernoulli approximation of a mini-
mal/injective fan P0 → Pi of arbitrary finite measure spaces, shows that ent(P0) ≤

∑i ent(Pi).
In particular, if Pi ∈ P/X lie under X (e.g. being represented by finite

partitions of an ordinary measure space X), then

ent(∨iPi) ≤∑
i

ent(Pi).

The above argument, going back to to Boltzmann and Gibbs, is a transla-
tion of a naive physicist’s reasoning to mathematical language. In fact, this ∨,
physically speaking, is a kind of a sum, the result of pooling together the results
of the joint entropy count by all Pi.

If all Pi positioned far away one from another on your, say, crystal, then you
assume (observe?) that flashes of lights are (essentially) independent: ∨iPi =

∏i Pi and ent(∨iPi) = ∑i ent(Pi).
In general however, the observable states may constrain one another by mu-

tual interaction; then, there are less states to observe and ent(∨iPi) < ∑i ent(Pi)
in agreement with experiment.

Relative Entropy. Since the fibers Gh = φ−1(h) ⊂ G, h ∈ H, of a reduction
φ ∶ G→H between homogeneous spaces have equal cardinalities, one may define
entropy of φ by ent(φ) = log ∣set(Gh)∣, where, obviously, this entropy satisfies:
ent(φ) = ent(G) − ent(H).

Then one defines relative Boltzmann’s entropy ent(f) of a reduction f ∶

P → Q between arbitrary finite measure spaces via a homogeneous Bernoulli
approximation φN ∶ GN →HN of fN as

ent(f) = lim
N→∞

N−1ent(φN).

Alternatively, one can do it in more abstract fashion with the relative (Grothendieck)

Bernoulli semigroup
Ð→

Ber(P) generated by classes [f] of asymptotic equivalence
of reductions f ∈ P with the addition rule [f1 ○ f2] = [f1] + [f2] (compare [1],
[16]).

Relative Shannon inequality. It is clear with Bernoulli approximation as in
the absolute case that reductions fi ∶ Pi ∨Qi → Qi in P/X for spaces Pi and Qi
under X satisfy:

ent(∨ifi) ≤∑
i

ent(fi).

Since ent(fi) = ent(Qi ∨ Pi) − ent(Qi), this is equivalent to

ent(∨i(Qi ∨ Pi)) − ent(∨iQi) ≤∑
i

[ent(Qi ∨ Pi) − ent(Qi)].

Alternatively, one can formulate such an inequality in terms of minimal/injective
fans of reductions P → Qi, i = 1,2, ..., n, coming along with (cofans of) reduc-
tions Qi → R, such that the obvious diagrams commute:

ent(P ) + (n − 1)ent(R) ≤∑
i

ent(Qi).

Another pleasant, albeit obvious (with Bernoulli), feature of the relative
entropy of reductions f ∶ P → Q between probability spaces is the representation
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of ent(f) by the convex combination of the entropies of the q-fibers Pq = f
−1(q) ⊂

P , q ∈ Q.

Summation Formula: ent(f) = ∑q ∣q∣ ⋅ ent(Pq).

Remark. The above definition of ent(f) is applicable to f ∶ P → Q, where
P and Q are countable probability (sometimes more general) spaces. possibly,
with ent(P ) =∞ and ent(Q) =∞ where the formula ent(f) = ent(P ) − ent(Q)

serves as a definition of the difference between these two infinities.

Resolution of Infinite Spaces X . Let P/X be the ∨-category associated with
X and let us formalize the notion of ”equivalent protocols” of our physicist with
sequences P∞ = {Pi} of finite objects in P/X , i.e. of finite measure spaces. Say
that P∞ resolves a finite measure space Q ∈ P/X that lies under X if there is no
eventual gain in state detection if you include Q into your protocol:

ent(Q ∨ Pi) − ent(Pi) ≤ εi →
i→∞

0.

If P∞ resolves all Q, then, by definition, it is a resolution of X .

Infinite Products. Say that X is representable by a (usually countable) Carte-
sian product Ps ∈ P

/X , s ∈ S, briefly, X is a Cartesian product ∏s∈S Ps, if the
finite Cartesian products ΠT =∏s∈T Ps, s ∈ T , lie under X for all finite subsets
T ⊂ S and if these ΠT resolve X , namely, some sequence ΠTi resolves X . (The
subsets Ti ⊂ S exhaust S in this case.)

Examples. A product X =∏s∈S Ps is called minimal if a Q in P/X lies under
X if and only if it lies under some finite product ΠT . For instance, all Q under
the minimal Cartesian power { 1

2
, 1

2
}S are composed of dyadic atoms.

The classical Lebesgue-Kolmogorov product X =∏s∈S Ps is also a product in
this sense, where the resolution property is a reformulation of Lebesgue density
theorem, where translation

Lebesgue’s density⇒ resolution
goes with the following evident property of relative entropy:

Let P
f
← R → Q be a minimal R-fan of reductions, let P ′ ∈ P be a subspace,

denote by Rp′ = f
−1(p′) ⊂ R, p′ ∈ P ′, the p′-fibers of f and let MII(p

′) be the
mass of the second greatest atom in Rp′ .

If
∣P ∖ P ′

∣ ≤ λ ⋅ ∣P ∣ and MII(p
′
) ≤ λ∣Rp′ ∣

for some (small) 0 ≤ λ < 1 and all p′ ∈ P ′, then

ent(f) ≤ (λ + ε) ⋅ ∣set(Q)∣ for ε = ε(λ) →
λ→0

0.

(Secretly, ε ≤ λ ⋅ (1 − log(1 − λ)) by Boltzmann formula.)
To see this, observe that ent(Rp) ≤ ∣set(Rp∣ ≤ ∣set(Q∣ for all p ∈ P , that

ent(Rp′) ≤ ε →
λ→0

0 by continuity of entropy for MII(p
′) → 0 and conclude by

using summation formula.

Normalization and Symmetry. All of the above properties of entropy of finite
spaces appear in Shannon’s information theory. (Probably, this was known to
Boltzmann and Gibbs who had never explicitly formulated something so phys-
ically obvious.) Granted these, we can now understand what ”naive physicist”
was trying to say.
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Infinite systems/spaces X have infinite entropies that need be renormalized,
e.g. with some ”natural” approximation of X by finite spaces PN , such that

”ent(X ∶ size)” = lim
N→∞

ent(PN)

”size”(PN)
.

The simplest case where ”size” makes sense is when you state detector PN
consists of, say k, ”identical parts”; then you may take k for the size of PN .
Physically speaking, ”identical” means ”related by symmetries” of X with de-
tectors attached to it, e.g. for X corresponding to a crystal S.

With this in mind, take a finite P and apply several (eventually many)
symmetry transformations δ of X to P (assuming these symmetries exist), call
the set of these transformation ∆N , denote by ∣∆N ∣ its cardinality and let

entP (X ∶ ∆∞) = lim
N→∞

∣∆N ∣
−1ent( ∨

δ∈∆N

δ(P ))

for some sequence ∆N with ∣∆N ∣ → ∞ where a sublimit (let it be physically
meaningless) will do if there is no limit. (Caution: transformations of categories
are functors, not maps, but you can easily define them as maps in P/X .) The
answer certainly will depend on {∆N} but what concerns us at the moment is
dependence on P . A single P , and even all ∨

δ∈∆N

δ(P ) may not suffice to fully

”resolve” X . So we take a resolution P∞ = {Pi} of X (that, observe, has nothing
to do with our transformations) and define

ent(X ∶ ∆∞) = entP∞(X ∶ ∆∞) = lim
i→∞

entPi(X ).

This, indeed, does not depend on P∞. If Q∞ = {Qi} is another resolution (or
any sequence for this matter), then the entropy contribution of each Qj to Pi,
that is the difference ent(Pi ∨Qj)− ent(Pi) is smaller than εi = ε(j, i) →

i→∞
0 by

the above definition of resolution.
Since δ are automorphisms, the entropies do not change under δ-moves and

ent(δ(Pi) ∨ δ(Qj)) − ent(δ(Pi)) = ent(Pi ∨Qj) − ent(Pi) ≤ εi;

therefore, when ”renormalized by size” of ∆N , the corrspomding ∨-products
satisfy the same inequality:

∣∆N ∣
−1

(ent [ ∨
δ∈∆N

(δ(Pi) ∨ δ(Qj))] − ent [ ∨
δ∈∆N

δ(Pi)]) ≤ εi →
i→∞

0

by the relative Shannon inequality.
Now we see that adding Q1,Q2, ...,Qj to P∞ does not change the above

entropy, since it is defined with i → ∞ and adding all of Q∞ does not change
it either. Finally, we turn the tables, resolve Pj by Qi and conclude that P∞
and Q∞, that represent ”equivalent experimental protocols”, give us the same
entropy:

entP∞(X ∶ ∆∞) = entQ∞(X ∶ ∆∞),

as our physicist has been telling us all along.

Kolmogorov Theorem for Bernoulli Systems. Let P be a finite probability
space and X = PZ. This means in our language that the corresponding X is
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representable by a Cartesian power PZ with the obvious (Bernoulli) action of Z
on it.

If spaces PZ and QZ are Z-equivariantly isomorphic then ent(P ) = ent(Q).

Proof. Let Pi denote the Cartesian Power P {−i,...0,...i}, let ∆N = {1, ...N} ⊂ Z,
observe that

∨
δ∈∆N

δ(Pi) = P
{−i,...,i+N}

and conclude that ent( ∨
δ∈∆N

δ(Pi)) = (N+i)ent(P ) for all, i = 1,2, ... . Therefore,

entPi(X ∶ ∆∞) = lim
N→∞

N−1ent( ∨
δ∈∆N

δ(Pi)) = lim
N→∞

N + i

N
ent(P ) = ent(P )

and
ent(X ∶ ∆∞) = lim

i→∞
entPi(X ∶ ∆∞) = ent(P ).

Similarly, ent(QZ ∶ ∆∞) = ent(Q) and since PZ and QZ are Z-equivariantly
isomorphic, ent(PZ ∶ ∆∞) = ent(QZ ∶ ∆∞); hence ent(P ) = ent(Q). QED.

Discussion (A) The above argument applies to all amenable (e.g. Abelian)
groups Γ (that satisfy a generalized ”(N + i)/N → 1, N →∞” property) where
it also shows that

if QΓ is a Γ-reduction of PΓ then ent(Q) ≤ ent(P ).

(”Reduction” means that QΓ receives a Γ-equivariant measure preserving
map from PΓ that is a natural transformation of functors represented by the
two Γ-spaces.)

To our ”naive physicist’s” surprise, the invariance of entropy for ”Bernoulli
crystals”, was accepted by mathematicians not around 1900 but in 1958 (see
[13] for how it was going after 1958).

Had it taken so long because mathematicians were discouraged by the lack of
”rigor” in physicists’ reasoning? But had this been already known to physicists,
rigor or no rigor? (A related result– the existence of thermodynamic limit for a
physically significant class of systems, was published by Van Hove in 1949, but
no self-respecting physicist, even if he/she understood it, would not care/dare
to write anything about one-dimensional systems like PZ with no interaction in
them.)

Maybe, the simplicity of Kolmogorov’s argument and an apparent inevitabil-
ity with which it comes along with translation of ”baby-Boltzmann” to ”baby-
Groethendieck” is illusory. An ”entropy barrier” on the road toward a concep-
tual proof (unlike the ”energy barrier” surrounding a ”hard proof”) may remain
unnoticed by one who follows the marks left by a pathfinder that keep you on
the track through the labyrinth under the ”mountain of entropy”.

All this is history. The tantalizing possibility suggested by entropy – this is
the main reason for telling the story – is that there may be other ”little some-
things” around us the mathematical beauty of which we still fail to recognize
because we see them in a curved mirror of our preconceptions.

Ultralimits and Sofic Groups. In 1987, Ornstein and Weiss constructed Γ-
equivariant continuous surjective, hence measure preserving, group homomor-
phisms AΓ → (A × A)Γ, for all free non-cyclic groups Γ and all finite Abelian
groups A.
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It is unknown, in general, when there is such a continuous surjective (injec-
tive, bijective) Γ-equivariant homomorphism AΓ → BΓ for given Γ and compact
(e.g. finite) groups A and B but many significant examples of ”entropy in-
creasing” Γ-reductions for non-amenable groups Γ are constructed in [2], and a
general result of this kind is available [7] for groups Γ that contain free subgroups.
For example,

if Γ ⊃ F2, then there exists a Γ-reduction PΓ
1 → PΓ

2 for all finite probability
spaces P1 and P2 except for the trivial case where P1 consists of a single atom.
(In view of [2], this is likely to be true for all non-amenable groups.)

But, amazingly, this was shown by Bowen in 2010,

a Γ-isomorphism between Bernoulli systems PΓ
1 ↔ PΓ

2 implies that ent(P1) =

ent(P2) for a class of non-amenable groups Γ, including, for example, all resid-
ually finite groups such as free groups.

One can arrive at this class of groups, they are called sofic following Weiss
(2000), by implementing ”naive physicist’s reasoning”, (probably close to what
Boltzmann had in mind) in terms of non-standard analysis, namely, by complet-
ing P not with ”projective-like limit spaces” X but with ”non-standard spaces”
that are objects in a non-standard model P∗ of the R-valued first order language
of P that can be represented as an ultra limit (or ultra product) of P as it is
done by Pestov in [19].

Roughly, objects P in P∗ are, collection of N atoms of weights ∣p∣ where
N is an infinitely large non-standard integer, ∣p∣ are positive infinitesimals and
where the sum ∑P ∣p∣ is an ordinary real number. Then sofic groups are defined
as subgroups of automorphism groups of such spaces.

These groups seem rather special, but there is no example at the moment
of a countable non-sofic group. Probably, suitably defined random groups [17]
are non-sofic. On the other hand, there may be a meaningful class of ”random
Γ-spaces” parametrized by the same probability measure (space) as random Γ.

In 2010, Bowen introduced a spectrum of sofic entropies (with some proper-
ties reminiscent of von-Neimann entropy) and proved, in particular, that

minimal/injective fans of reduction of Bernoulli systems PΓ → QΓ
i , i =

1,2, ..., n, for sofic groups Γ satisfy Shannon’s inequality

ent(P ) ≤ ∑
i=1,...,n

ent(Qi).

Moreover, let n = 2 and let QΓ
1 → RΓ, QΓ

2 → RΓ be reductions, such that
the ”cofan” QΓ

1 → RΓ ← QΓ
2 is minimal (i.e. there is no Γ-space Ro between QΓ

i

and RΓ) and such that the diamond diagram with four arrows, PΓ ⇉ QΓ
i ⇉ RΓ,

i = 1,2, commutes.
Then the four Γ-systems in this diamond satisfy the Relative Shannon In-

equality, that is also called Strong Subadditivity:

ent(P ) + ent(R) ≤ ent(Q1) + ent(Q2).

(This and everything else we say about sofic entropies, was explained to me by
Lewis Bowen.)

It may be non-surprising that Shannon inequalities persist in the sofic Γ-
spaces categories, since Shannon’s inequalities were derived by Bernoulli ap-
proximation from the implication [A injects into B] ⇒ ∣A∣ ≤ ∣B∣, rather than
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from [B surjects onto A]⇒ ∣A∣ ≤ ∣B∣, but it is unknown if these inequalities are
true/false for a single non-sofic group Γ, assuming such a Γ exists.

To get an idea why ”injective” rather than ”surjective”plays a key role in
the sofic world, look at a self-map of a set, say f ∶ A→ A. If A is finite, then

[f is non-injective] ⇔ [f is non-surjective],
but it is not so anymore if we go to some kind of (ultra)limit:

(i) non-injectivity says that an equation, namely, f(a1) = f(a2), does admit
a non-trivial solution. This is stable under (ultra)limits and, supported by a
counting argument (of the ”numbers of pairs of pure states” that come together
under fans of reductions), seems to underly some of Bowen’s entropies.

(ii) non-surjectivity says that another equation, f(a1) = b, does not always
admit a solution. New solutions may appear in the (ultra)limit.

(Computationally speaking, you may have a simple rule/algorithm for find-
ing solutions of f(a1) = f(a2) with a1 ≠ a2, e.g. for a polynomial, let it be even
linear, self-map of a vector space over Fp but it may be harder to obtain an
effective description of the image f(A) ⊂ A and even less so of its complement
A ∖ f(A). )

Questions. Is there a description/definition of (some of) sofic entropies in
categorical terms?

More specifically, consider the category of Lebesgue probability Γ-spaces X
for a given countable group Γ and let [X ∶ Γ] be the Grothendieck (semi) group
generated by Γ-reductions f with the relations [f1 ○ f2] = [f1] + [f2], where, as
usual, the Γ-spaces themselves are identified with the reductions to one point
spaces. How large is this semigroup? When is it non-trivial? Which part of it
is generated by the Bernoulli shifts?

If we do not require any continuity property, this group may be huge; some
continuity, e.g. under projective limits of reductions (such as infinite Cartesian
products), seems necessary, but it is unclear what should be a Γ-counterpart of
the the asymptotic equivalence.

Also some extra conditions, e.g. additivity for Cartesian products: [f1×f2] =

[f1] + [f2], or at least, [fN ] = N[f] for Cartesian powers may be needed.
Besides, the semigroup [X ∶ Γ] must(?) carry a partial order structure that

should satisfy (at least some of ) the inequalities that hold in P , e.g. the above
Shannon type inequalities for minimal/injective fans. (I am not certain if there
are entropy inequalities for more complicated diagrams/quivers in P that do
not formally follow from Shannon inequalities, but if there are any, they may
be required to hold in [X ∶ Γ].)

The most naive entropy invariant that should be expressible in terms [X ∶ Γ]

is the infimum of entropies of generating partitions, or rather, the infimum
of (logM)/N , such that the Cartesian power (XN ,Γ) is isomorphic to the
Bernoulli action of Γ on the topological infinite power space Y = {1,2, ...,M}Γ

with some Γ-invariant measure Borel probability on Y (that is not necessarily
the Cartesian power measure).

One may expect (require?) the (semi)group [X ∶ Γ] to be functorial in Γ,
e.g. for equivariant reductions (X1,Γ1)→ (X2,Γ2) for homomorphisms Γ1 → Γ2

and/or for several groups Γi acting on an X , in particular, for Bernoulli shifts
on P∆ for Γi transitively acting on a countable set ∆.
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2 Fisher Metric and Von Neumann Entropy.

Let us ponder over Boltzmann’s function e(p) = ∑i pi log pi. All our inequalities
for the entropy were reflections of the convexity of this e(p), p = {pi}, i ∈ I, on
the unit simplex △(I), ∑i pi = 1, in the positive cone RI+ ⊂ RI .

Convexity translates to the language of calculus as positive definiteness of
Hessian h = Hess(e) on △(I); following Fisher (1925) let us regard h as a
Riemannian metric on △(I).

Can you guess how the Riemannian space (△(I), h) looks like? Is it metri-
cally complete? Have you ever seen anything like that?

In fact, the Riemannian metric h on △(I) has constant sectional curvature,
where the real moment map MR ∶ {xi}→ {pi = x

2
i } is, up to 1/4-factor, an isom-

etry from the positive ”quadrant” of the unit Euclidean sphere onto (△(I), h).
Unbelievable! Yet this trivially follows from (p log p)′′ = 1/p, since the Rieman-
nian metric induced by M−1

R at {pi} equals

∑
i

(d
√
pi)

2
=∑

i

dp2
i /4pi.

This MR extends to the (full) moment map

M ∶ CI → RI+ = CI/TI for M ∶ zi → zizi

where TI is the n-torus naturally acting on CI and where the the restriction of
M to the unit sphere in CI → RI+ factors through the complex projective space
CP (I) of complex dimension ∣I ∣ − 1 that sends CP (I)→△(I).

This tells you what you could have been feeling all along: the cone RI+ is
ugly, it breaks the Euclidean/orthogonal symmetry of RI – the symmetry is in-
visible (?) in the category P unless we write down and differentiate Boltzmann’s
formula.

Now we have the orthogonal symmetry, even better the unitary symmetry of
CI , and may feel proud upon discovering the new world where entropy ”truly”
lives. Well..., it is not new, physicists came here ahead of us and named this
world ”quantum”. Yet, even if disappointed, we feel warm toward Nature who
shares with us the idea of mathematical beauty.

We are not tied up to a particular orthogonal basis for defining entropy
anymore, we forget the coordinate space CI that we regard as a Hilbert space
S, where one basis of orthonormal vectors {s} ⊂ S is as good as another.

An ”atomic measure”, or a pure state P in S is a (complex) line in S with a
positive real number ∣p∣ attached to it. In order to be able to add such measures,
we regard P it as positive definite Hermitian form of rank one that vanishes on
the orthogonal complement to our line, and such that P equals ∣p∣ on the unit
vectors in this line.

Accordingly, (non-atomic) states P on S are defined as convex combinations
of pure ones. In other words, a quantum state P on a Hilbert space S is a
non-zero semipositive Hermitian form on S (that customary is represented by
a semipositive self adjoint operator S → S) that we regard as a real valued
quadratic function on S that is invariant under multiplication by

√
−1. (In

fact, one could forget the C-structure in S and admit all non-negative quadratic
function P (s) as states on S.)

We may think of a state P as a ”measure” on subspaces T ⊂ S, where the
”P -mass” of T , denoted P (T ), is the sum ∑t P (t), where the summation is
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taken over an orthonormal basis {t} in T . (This does not depend on the basis
by the Pythagorean theorem.) The total mass of P is denoted ∣P ∣ = P (S); if
∣P ∣ = 1 then P is called a density (instead of probability) state.

Observe that

P (T1 ⊕ T2) = P (T1) + P (T2) for orthogonal subspaces T1 and T2 in S

and that the tensor product of states P1 on S1 and P2 on S2, that is a state
on S1 ⊗ S2, denoted P = P1 ⊗ P2, satisfies

P (T1 ⊗ T2) = P1(T1) ⋅ P2(T2) for all T1 ⊂ S1 and T2 ⊂ S2.

If Σ = {si}i∈I ⊂ S, ∣I ∣ = dim(S) is an orthonormal basis in S then the
set P (Σ) = {P (si)} is a finite measure space of mass ∣P (Σ)∣ = ∣P ∣. Thus, P
defines a map from the space FrI(S) of full orthonormal I-frames Σ in S (that
is a principal homogeneous space of the unitary group U(S)) to the Euclidean
(∣I ∣−1)-simplex of measures of mass ∣P ∣ on the set I, that is {pi} ⊂ RI+,∑i pi = ∣P ∣.

Classical Example. A finite measure space P = {p} defines a quantum state

on the Hilbert space S = Cset(P ) that is the diagonal form P = ∑p∈P ∣p∣zpzp.

Notice, that we excluded spaces with zero atoms from the category P in
the definition of classical measure spaces with no(?) effect on the essential
properties of P. But one needs to keep track of these ”zeros” in the quantum
case. For example, there is a unique, up to a scale homogeneous state, on S that
is the Hilbert form of S, but the states that are homogeneous on their supports
(normal to 0(S)) constitute a respectable space of all linear subspaces in S.

Von Neumann Entropy. There are several equivalent definitions of ent(P )

that we shall be using interchangingly.
(1) The ”minimalistic” definition is given by extracting a single number

from the classical entropy function on the space of full orthonomal frames in S,
that is Σ↦ ent(P (Σ)), by taking the infimum of this functions over Σ ∈ FrI(S),
∣I ∣ = dim(S),

ent(P ) = inf
Σ
ent(P (Σ)).

(The supremum of ent(P (Σ)) equals log dim(S). In fact, there always ex-
ists a full orthonomal frame {si}, such that P (si) = P (sj) for all i, j ∈ I by
Kakutani-Yamabe-Yujobo’s theorem that is applicable to all continuous func-
tion on spheres. Also, the average of ent(P (Σ)) over FrI is close to log dim(S)
for large ∣I ∣ by an easy argument.)

It is immediate with this definition that
the function P ↦ ent(P ) is concave on the space of density states:

ent(
P1 + P2

2
) ≥

ent(P1) + ent(P2)

2
.

Indeed, the classical entropy is a concave function on the simplex of probability
measures on the set I, that is {pi} ⊂ RI+,∑i pi = 1, and infima of familes of
concave functions are concave.

(2) The traditional ”spectral definition” says that the von Neumann entropy
of P equals the classical entropy of the spectral measure of P . That is ent(P )

equals P (Σ) for a frame Σ = {si} that diagonalizes the Hermitian form P , i.e.
where si is P -orthogonal to sj for all i ≠ j.
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Equivalently, ”spectral entropy” can be defined as the (obviously unique)
unitary invariant extension of Boltzmann’s entropy from the subspace of classi-
cal states to the space of quantum states, where ”unitary invariant” means that
ent(g(P )) = ent(P ) for all unitary transformations g of S.

If concavity of entropy is non-obvious with this definition, it is clear that
the spectrally defined entropy is additive under tensor products of states:

ent(⊗kPk) =∏
k

ent(Pk),

and if ∑k ∣Pk ∣ = 1, then the direct sum of Pk satisfies

ent(⊕kPk) = ∑
1≤k≤n

∣Pk ∣ent(Pk) + ∑
1≤k≤n

∣Pk ∣ log ∣Pk ∣,

This follows from the corresponding properties of the classical entropy, since
tensor products of states correspond to Cartesian products of measure spaces:

(P1 ⊗ P2)(Σ1 ⊗Σ2) = P 1(Σ1) × P 2(Σ2)

and the direct sums correspond to disjoint unions of sets.

(3) Let is give yet another definition that will bring together the above two.
Denote by Tε = Tε(S) the set of the linear subspaces T ⊂ S such that P (T ) ≥

(1 − ε)P (S)) and define

entε(P ) = inf
T ∈Tε

log dim(T ).

By Weyl’s variational principle, the supremum of P (T ) over all n-dimensional
subspaces T ⊂ S is achieved on a subspace, say S+(n) ⊂ S spanned by n mutu-
ally orthogonal spectral vectors sj ∈ S, that are vectors from a basis Σ = {si}
that diagonalizes P . Namely, one takes sj for j ∈ J ⊂ I, ∣J ∣ = n, such that
P (sj) ≥ P (sk) for all j ∈ J and k ∈ I ∖ J .

(To see this, orthogonally split S = S+(n) ⊕ S−(n) and observe that the P -
mass of every subspace T ⊂ S increases under the transformations (s+, s−) →
(λs+, s−) that eventually, for λ→ +∞, bring T to the span of spectral vectors.)

Thus, this entε equals its classical counterpart for the spectral measure of
P .

To arrive at the actual entropy, we evaluate entε on the tensorial powers
P⊗N on S⊗N of states S and, by applying the law of large numbers to the
corresponding Cartesian powers of the spectral measure space of P , conclude
that

the limit

ent(P ) = lim
N→∞

1

N
entε(P

⊗N
)

exists and it equals the spectral entropy of P for all 0 < ε < 1. (One may send
ε→ 0 if one wishes.)

It also follows from Weyl’s variational principle that the entε-definition
agrees with the ”minimalistic” one. (It takes a little extra effort to check that
ent(P (Σ)) is strictly smaller than lim 1

N
entε(P

⊗N) for all non-spectral frames
Σ in S but we shall not need this.)
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Unitary Symmetrization and Reduction. Let dµ be a Borel probability mea-
sure on the group U(S) of the unitary transformation of S, e.g. the normalized
Haar measure dg on a compact subgroup G ⊂ U(S).

The µ-average of P of a state P on S, that is called the G-average for dµ = dg
is defined by

µ ∗ P = ∫
G
(g ∗ P )dµ for (g ∗ P )(s) =def P (g(s)).

Notice that ent(µ ∗ P ) ≥ ent(P ) by concavity of entropy and that the G-
average of P , denoted G∗P , equals the (obviously unique) G-invariant state on
S such that G∗P (T ) = P (T ) for all G-invariant subspaces T ⊂ S. Also observe
that the µ-averaging operator commutes with tensor products:

(µ1 × µ2) ∗ (P1 ⊗ P2) = (µ1 ∗ (P1))⊗ (µ2 ∗ (P2)).

If S = S1⊗S2, and the group G = G1 equals U(S1) that naturally acts on S1

(or any G irreducibly acting on S1 for this matter), then there is a one-to-one
correspondence between G1-invariant states on S and states on S2. The state
P2 on S2 that corresponds to G1 ∗ P on S is called the canonical reduction of
P to S2 . Equivalently, one can define P2 by the condition P2(T2) = P (S1⊗T2)

for all T2 ⊂ S2.
(Customary, one regards states as selfadjoint operators O on S defined by

⟨O(s1), s2⟩ = P (s1, s2)). The reduction of an O on S1 ⊗S2, to an operator, say,
on S2 is defined as the S1-trace of O that does not use the Hilbertian structure
in S.)

Notice that ∣P2∣ = P2(S2) = ∣P ∣ = P (S), that

(∗) ent(P2) = ent(G ∗ P ) − log dim(S1)

and that the canonical reduction of the tensorial power P⊗N to S⊗N2 equals
P⊗N

2 .
Classical Remark. If we admit zero atoms to finite measure spaces, then

a classical reduction can be represented by the push-forward of a measure P
from a Cartesian product of sets, S = S1 ×S2 to P 2 on S2 under the coordinate
projection S → S2. Thus, canonical reductions generalize classical reductions.
(”Reduction by G-symmetrization” with non-compact, say amenable G, may be
of interest also for Γ-dynamical spaces/systems, for instance, such as PΓ in the
classical case and P⊗Γ in the quantum setting.)

A novel feature of ”quantum” is a possible increase of entropy under reduc-
tions (that is similar to what happens to sofic entropies of classical Γ-systems
for non-amenable groups Γ).

For example if P is a pure state on S ⊗ T (entropy=0) that is supported
on (the line generated by) the vector ∑i si ⊗ ti for an orthonormal bases in S
and in T (here dim(S) = dim(T )), then, obviously, the canonical reduction of
P to T is a homogenous state with entropy= log dim(T ). (In fact, every state
of P on a Hilbert space T equals the canonical reduction of a pure state on
T ⊗ S whenever dim(S) ≥ dim(T ), because every Hermitian form on T can be
represented as a vector in the tensor product of T with its Hermitian dual.)

Thus a singe classically indivisible ”atom” represented by a pure state on
S ⊗ T may appear to the observer looking at it through the kaleidoscope of
quantum windows in T as several (equiprobable in the above case) particles.
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On the other hand, the Shannon inequality remains valid in the quantum
case, where it is usually formulated as follows.

Subadditivity of von Neimann’s Entropy (Lanford-Robinson 1968). The en-
tropies of the canonical reductions P1 and P2 of a state P on S = S1 ⊗ S2 to S1

and to S2 satisfy
ent(P1) + ent(P2) ≥ ent(P ).

Proof. Let Σ1 and Σ2 be orthonormal bases in S1 and S2 and let Σ = Σ1×Σ2

be the corresponding basis in S = S1×S2. Then the measure spaces P1(Σ1) and
P2(Σ2) equal classical reductions of P (Σ) for the Cartesian projections of Σ to
Σ1 and to Σ2. Therefore,

ent(P (Σ1 ×Σ2)) ≤ ent(P (Σ1)) + ent(P (Σ1))

by Shannon inequality, while

ent(P ) ≤ ent(P (Σ1 ×Σ2))

according to our minimalistic definition of von-Neimann entropy,
Alternatively, one can derive subadditivity with the entε-definition by ob-

serving that

entε1(P1) + entε2(P2) ≥ entε12(P ) for ε12 = ε1 + ε2 + ε1ε2

and applying this to P⊗N for N →∞, say with ε1 = ε2 = 1/3.

Concavity of Entropy Versus Subadditivity. There is a simple link between
the two properties.

To see this, let P1 and P2 be density states on S and let Q = 1
2
P1 ⊕

1
2
P2 be

their direct sum on S ⊕ S = S ⊗C2. Clearly, ent(Q) = ent(P ) + log 2
On the other hand, the canonical reduction of Q to S equals 1

2
(P1 + P2),

while the reduction of Q to C2 = C⊕C is 1
2
⊕ 1

2
.

Thus, concavity follows from subadditivity and the converse implication is
straightforward.

Here is another rendition of subadditivity.

Let compact groups G1 and G2 unitarly act on S such that the two actions
commute and the action of G1 ×G2 on S is irreducible, then

(⋆) ent(P ) + ent((G1 ×G2) ∗ P ) ≤ ent(G1 ∗ P ) + ent(G2 ∗ P )

for all states P on S.
This is seen by equivariantly decomposing S into the direct sum of, say n,

tensor products:
S =⊕

k

(S1k ⊗ S2k), k = 1,2, ...n,

for some unitary actions of G1 on all S1k and of G2 on S2k and by observing
that (⋆) is equivalent to subbaditivity for the reductions of P on these tensor
products.

Strong Subadditivity and Bernoulli States. The inequality (⋆) generalizes as
follows.

Let H and G be compact groups of unitary transformations of a finite dimen-
sional Hilbert space S and let P be a state (positive semidefinite Hermitian form)
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on S. If the actions of H and G commute, then the von Neumann entropies of
the G- and H-averages of P satisfy

(⋆⋆) ent(G ∗ (H ∗ P )) − ent(G ∗ P ) ≤ ent(H ∗ P ) − ent(P ).

Acknowledgement. This was stated in the earlier version of the paper for
non-commuting actions with an indication of an argument justifying it. But
Michael Walter pointed out to me that if P is G-invariant, then, in fact, one
has the opposite inequality:

ent(G ∗ (H ∗ P )) − ent(G ∗ P ) ≥ ent(H ∗ P ) − ent(P ).
Also he formulated the following (correct) version of (⋆⋆) for non-commuting

actions (that follows by the argument similar to that for the derivation of con-
cavity of entropy from subadditivity):

ent(G ∗ (H ∗ P )) − ∫
H
ent(G ∗ (h ∗ P )dh ≤ ent(H ∗ P ) − ent(P ).

The inequality (⋆⋆), applied to the actions of the unitary groups H = U(S1)

and G = U(S2) on S = S1 ⊗ S2 ⊗ S3, is equivalent, by the above (∗), to the
following

Strong Subadditivity of von Neumann Entropy (Lieb-Ruskai, 1973). Let P =

P123 be a state on S = S1 ⊗ S2 ⊗ S3 and let P23, P13 and P3 be the canonical
reductions of P123 to S2 ⊗ S3, to S1 ⊗ S3 and to S3.

Then
ent(P3) + ent(P123) ≤ ent(P23) + ent(P13).

Notice, that the action of U(S1)×U(S2) on S is a multiple of an irreducible
representation, namely it equals N3-multiple, N3 = dim(S3), of the action of
U(S1) ×U(S2) on S1 ⊗ S2. This is why one needs (⋆⋆) rather than (⋆) for the
proof.

The relative Shannon inequality (that is not fully trivial) for measures re-
duces by Bernoulli-Gibbs’ argument to a trivial intersection property of subsets
in a finite set. Let us do the same for the von Neumann entropy.

The support of a state P on S is the orthogonal complement to the null-space
0(P ) ⊂ S – the subspace where the (positive semidefinite) Hermitian form P
vanishes. We denote this support by 0⊥(P ) and write rank(P ) for dim(0⊥(P )).

Observe that

(⇔) P (T ) = ∣P ∣⇔ T ⊃ 0⊥(P )

for all linear subspaces T ⊂ S.

A state P is sub-homogeneous, if P (s) is constant, say equal λ(P ), on the
unit vectors from the support 0⊥(P ) ∈ S of P . (These states correspond to
subsets in the classical case.)

If, besides being sub-homogeneous, P is a density state, i.e. ∣P ∣ = 1, then,
obviously, ent(P ) = − logλ(P ) = log dim(0⊥(P )).
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Also observe that if P1 and P2 are sub-homogeneous states such that 0⊥(P1) ⊂

0⊥(P2), then

(/ ≥ /) P1(s)/P2(s) ≤ λ(P1)/λ(P2)

for all s ∈ S (with the obvious convention for 0/0 applied to s ∈ 0(P2)).

if a sub-homogeneous state Q equals the G-average of some (not necessarily
sub-homogeneous)state P , then 0⊥(Q) ⊃ 0⊥(P )).

Indeed, by the definition of the average, Q(T ) = P (T ) for all G-invariant
subspaces T ⊂ S. Since Q(0⊥(Q)) = Q(S) = P (S) = P (0⊥(Q)) and the above
(⇔) applies.

Trivial Corollary. The inequality (⋆⋆) holds in the case where all four states:
P , P1 =H ∗ P , P2 = G ∗ P and P12 = G ∗ (H ∗ P ), are sub-homogeneous.

Trivial Proof. The inequality (⋆⋆) translates in the sub-homogeneous case to
the corresponding inequality between the values of the states on their respective
supports:

λ2/λ12 ≤ λ/λ1,

for λ = λ(P ), λ1 = λ(P1), etc. and proving the sub-homogeneous (⋆⋆) amounts
to showing that the implication

(≤⇒≤) λ ≤ cλ1 ⇒ λ2 ≤ cλ12

holds for all c ≥ 0.
Since 0⊥(P ) ⊂ 0⊥(P1), the inequality λ ≤ cλ1 implies, by the above (/ ≥ /),

that P (s) ≤ cP1(s) for all s, where this integrates over G to P2(s) ≤ cP12(s) for
all s ∈ S.

Since 0⊥(P2) ⊂ 0⊥(P12), there exists at least one non-zero vector s0 ∈ 0⊥(P2)∩

0⊥(P12) and the proof follows, because P2(s0)/P12(s0) = λ2/λ12 for such an s0.

”Nonstandard” Proof of (⋆⋆) in the General Case. Since tensorial powers
P⊗N of all states P ”converge” to ”ideal sub-homogeneous states” P⊗∞ by
Bernoulli’s theorem, the ”trivial proof”, applied to these ideal P⊗∞, yields (⋆⋆)

for all P .
If ”ideal sub-homogeneous states” are understood as objects of a non-standard

model of the first oder R-language of the category of finite dimensional Hilbert
spaces, then the trivial proof applies in the case where the action of G and of
H commute, where the role of ”commute” is explained later on.

In truth, one does not need for the proof the full fledged ”non-standard”
language – everything can be expressed in terms of infinite families of ordinary
states; yet, this needs a bit of additional terminology that we introduce below.

From now on, our states are defined on finite dimensional Hilbert spaces SN ,
that make a countable family, denoted S∗ = {SN}, where where N are members
of a countable set N , e.g. N = N with some non-principal ultra filter on it. This
essentially means that what we say about S∗ must hold for infinitely many N .

Real numbers are replaced by families/sequences of numbers, say a∗ = {aN},
where we may assume, using our ultrafilter, that the limit aN , N →∞, always
exists (possibly equal ±∞). This means, in simple terms, that we are allowed
to pass to convergent subsequences as often as we wish to. We write a∗ ∼ b∗ if
the corresponding sequences have equal limits.
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If P∗ and Q∗ are states on S∗, we write P∗ ∼ Q∗ if P∗(T∗) ∼ Q∗(T∗) for all
linear subspaces T∗ ⊂ S∗. This signifies that limPN(TN) = limQN(TN) for all
TN ⊂ SN and some subsequence of {N}.

Let us formulate and prove the counterpart of the above implication P (T ) =

∣P ∣⇒ T ⊃ 0⊥(P ) for sub-homogeneous density states P∗.
Notice that P∗(T ) ∼ ∣P∗∣ does not imply that T∗ ⊃ 0⊥(P∗); yet, it does imply

that

● there exists a state P ′
∗ ∼ P∗, such that T∗ ⊃ 0⊥(P ′

∗).

Proof. let U∗ be the support of P∗ and let Π∗ ∶ U∗ → T∗ be the normal projec-
tion. Then the sub-homogeneous density state Π′

∗ with the support Π∗(U∗) ⊂ T∗
(there is only one such state) is the required one by a trivial argument.

To complete the translation of the ”nonstandard” proof of (⋆⋆) we need a
few more definitions.

Multiplicative Homogeneity. Let Ent∗ = {EntN} = log dim(SN) and let
us normalize positive (multiplicative) constants (scalars) c = c∗ = {cN} ≥ 0 as
follows,

∣c∣⋆ = ∣c∗∣
1

Ent∗ .

In what follows, especially if ”⋆” is there, we may omit ”∗”.
A state B = B∗ = {BN} is called ⋆-homogenous, if ∣B(s1)∣⋆ ∼ ∣B(s2)∣⋆ for

all spectral vectors s1, s2 ∈ 0⊥(B) ⊂ S∗, or, equivalently, if the (unique) sub-
homogenous, state B′ for which 0⊥(B′) = 0⊥(B) and ∣B′∣ = ∣B∣ satisfies ∣B′(s)∣⋆ ∼
∣B(s)∣⋆ for all unit vectors s ∈ 0⊥(B).

Since the number ∣B′(s)∣, s ∈ 0⊥(B′) is independent of s ∈ 0⊥(A′), we may
denote it by ∣B∣⋆.

Let B be a ⋆-homogeneous density state with support T = 0⊥(B) and A a
sub-homogenous density state with support U = 0⊥(A).

If A(T ) ∼ B(T ) = 1 Then there exist a linear subspace U ′ ⊂ U such that

∣dim(U ′
)/dim(U)∣ ∼ 1

and
∣B(s)∣⋆ ∼ ∣B∣⋆ for all unit vectors s ∈ U ′.

.

Proof. Let ΠT ∶ U → T and ΠU ∶ T → U be the normal projections
and let ui be the eigenvectors of the (self-adjoint) operator ΠU ○ ΠT ∶ U →

U ordered by their eigenvalues λ1 ≤ λ2..., λi, ... . By Pythagorean theorem,
dim(U)−1

∑i λi = 1 −B(T ); therefore the span Uε of those ui where λi ≥ 1 − ε
satisfies ∣dim(Uε)/dim(U)∣ ∼ 1 for all ε > 0; any such Uε can be taken for U ′.

●● Corollary. Let B be be a finite set of ∗-homogeneous density states B
on S∗, such that A(0⊥(B)) ∼ 1 for all B ∈ B. Then there exists a unit vector
u ∈ U = 0⊥(A), such that ∣B(u)∣⋆ ∼ ∣B∣⋆ for all B ∈ B.

This is shown by the obvious induction on cardinality of B with U ′ replacing
U at each step.

Let us normalize entropy of A∗ = {AN} by setting

ent⋆(A∗) = ent(A∗)/Ent∗ = {
ent(AN)

log dim(SN)
}
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and let us call a vector s ∈ S∗ Bernoulli for a density state A∗ on S∗, if
log ∣A(s)∣⋆ ∼ −ent⋆(A).

A density state A on S∗ is called Bernoulli if there is a subspace U , called a
Bernoulli core of A, spanned by some spectral Bernoulli vectors of A, such that
A(U) ∼ 1.

For example, all s in the support of a ⋆-homogeneous density state A are
Bernoulli.

More significantly, the families of tensorial powers, A∗ = {P⊗N} on S∗ =

{S⊗N}, are Bernoulli for all density states P on S by Bernoulli’s law of large
numbers.

Multiplicative Equivalence and Bernoulli Equivalence. Besides the relation
A ∼ B it is convenient to have its multiplicative counterpart, denoted A

⋆
∼ B,

which signifies ∣A(s)∣⋆ ∼ ∣B(s)∣⋆ for all s ∈ S∗.

Bernoulli equivalence relation, on the set of density states on S∗ is defined
as the span of A ∼ B and A

⋆
∼ B. For example, if A ∼ B, B

⋆
∼ C and C ∼D, then

A is Bernoulli equivalent to D.
Observe that

Bernoulli equivalence is stable under convex combinations of states.

In particular, if A
⋆
∼ B, then G ∗ A

⋆
∼ G ∗ B, for all compact groups G of

unitary transformations of S∗ (i.e. for all sequences GN acting on SN .)

This Bernoulli equivalence is similar to that for (sequences of) classical finite
measure spaces and the following two properties of this equivalence trivially
follow from the classical case via Weyl variational principle. (We explain this
below in ”non-standard” terms.)

(1) If A is Bernoulli and B is Bernoulli equivalent to A then B is also
Bernoulli. Thus, A is Bernoulli if and only if it is Bernoulli equivalent to a
sub-homogeneous state on S∗.

(2) If A is Bernoulli equivalent to B then ent⋆(A) ∼ ent⋆(B).

We write a∗ ≳ b∗ for aN , bN ∈ R, if a∗ − b∗ ∼ c∗ ≥ 0.
If B is a Bernoulli state on S∗ and A is a density state, write A ≺ B if B

admits a Bernoulli core T , such that A(T ) ∼ 1.
This relation is invariant under equivalence A ∼ A′, but not for B ∼ B′.

Neither is this relation transitive for Bernoulli states.
Main Example. If B equals the G-average of A for some compact unitary

transformation group of S∗, then A ≺ B.
Indeed, by the definition of average, B(T ) = A(T ) for all G-invariant sub-

spaces T . On the other hand, if a G-invariant B is Bernoulli, then it admits a
G-invariant core, since the set of spectral Bernoulli vectors is G-invariant and
all unit vectors in the span of spectral Bernoulli vectors are Bernoulli.

Main Lemma. Let A,B,C,D be Bernoulli states on S∗, such that A ≺ B
and A ≺D and let G be a compact unitary transformation group of S∗.

If C ∼ G ∗A and D = G ∗B and if A is sub-homogeneous, then

ent⋆(B) − ent⋆(A) ≳ ent⋆(C) − ent⋆(D).

Proof. According to ●, there is a state A′ ∼ A, such that it support 0⊥(A′)

is contained in some Bernoulli core of B, and since our assumptions and the
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conclusion are invariant under equivalence A ∼ A′. we may assume that U =

0⊥(A) itself is contained in a Bernoulli core of B.
Thus,

A(s) ≤ cEnt∗B(u) for all c > exp(ent(B) − ent(A)) and all s ∈ S∗

Also, we may assume that C = G ∗ A since averaging and ent⋆ are invariant
under the ∼-equivalence.

Then C = G ∗A and D = G ∗B also satisfy

C(s) ≤ cEnt∗D(s) for all s ∈ S∗.

In particular,

C(u) ≤ cEnt∗D(u) for a common Bernoulli vector, u of C and D

where the existence of such a u ∈ U is ensured by ●●.
Thus, ∣C(u)∣⋆ ≤ c∣D(u)∣⋆ for all c > exp(ent⋆(B)− ent⋆(A)). Since C and D

are Bernoulli, ent⋆(C) ∼ − log ∣C(u)∣⋆ and ent⋆(D) ∼ − log ∣D(u)∣⋆; hence

ent∗(D) − ent⋆(C) ≤ c for all c ≤ ent⋆(B) − ent⋆(A)

that means ent⋆(B) − ent⋆(A) ≳ ent⋆(C) − ent⋆(D). QED.

Proof of (⋆⋆). Let P be a density state on a Hilbert space S, let G and H
be unitary group acting on S, and let us show that

ent(G ∗ (H ∗ P )) − ent(G ∗ P ) ≤ ent(H ∗ P ) − ent(P )

assuming that G and H commute.
In fact, all we need is that the state G ∗ (H ∗P ) equals the K-average of P

for some group K, where K = G×H serves this purpose in the commuting case.
Recall that the family {P⊗N} on S∗ = {SN = S⊗N} is Bernoullian for all P

on S, and the averages, being tensorial powers themselves, are also Bernoullian.
Let A∗ = {AN} be the subhomogeneous state S∗ that is Bernoulli equivalent

to P⊗N , where, by the above, their averages remains Bernoullian. (Alterna-
tively, one could take A⊗M

N , say, for M = 2N .)
Since both states B and D are averages of A in the commuting case, A ≺ B

and A ≺D; thus the lemma applies and the proof follows.

On the above (1) and (2). A density state P on S is fully characterized,
up to unitary equivalence, by its spectral distribution function ΨP (t) ∈ [0,1],
t ∈ [0, dim(S)], that equals the maximum of P (T ) over linear subspaces T ⊂ S
of dimension n for integer n, and that is linearly interpolated to t ∈ [n,n + 1].

By Weyl’s variational principal this Ψ equals its classical counterpart, where
the maximum is taken over spectral subspaces T .

The ε-entropy and Bernoullian property, are easily readable from this func-
tion and so the properties (1) and (2) follow from their obvious classical coun-
terparts, that we have used, albeit implicitly, in the definition of the classical
Bernoulli-Boltzmann’s entropy.

Nonstandard Euclidean/Hilbertian Geometry. Entropy constitute only a tiny
part of asymptotic information encoded by ΨAN in the limit for N →∞, where
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there is no problem with passing to limits since, obviously, Ψ are concave func-
tions. However, most of this information is lost under ”naive limits” and one
has to use limits in the sense of nonstandard analysis.

Furthermore, individual Ψ do not tell you anything about mutual positions
between different states on S∗: joint Hilbertian geometry of several states is
determined by the complex valued functions, kind of (scattering) ”matrices”,

Υij ∶ P i × P j → C, where the ”entries” of Υij equal the scalar products
between unit spectral vectors of Pi and of Pj . (There is a phase ambiguity in
this definition that becomes significant if there are multiple eigenvalues.)

Since these Υij are unitary ”matrices” in an obvious sense, the correspond-
ing Σij = ∣Υij ∣

2 define bistochastic correspondences (customary represented by
matrices) between respective spectral measure spaces.

(Unitarity imposes much stronger restrains on these matrices than mere
bistochasticity. Only a minority of bistochastic matrices, that are called unis-
tochastic, have ”unitary origin”. In physics, if I get it right, experimentally
observable unistochasticity of scattering matrices can be taken for evidence of
unitarity of ”quantum universe”.)

Moreover, the totality of ”entries” of ”matrices” Υij , that is the full array of
scalar products between all spectral vectors of all Pi, satisfy a stronger positive
definiteness condition.

At the end of the day, everything is expressed by scalar products between
unit spectral vectors of different Pi and the values of Pi on their spectral vectors;
non-standards limits of arrays of these numbers fully describe the nonstandard
geometry of finite sets of non-standard states on nonstandard Hilbert spaces.

Reformulation of Reduction. The entropy inequalities for canonical reduc-
tions can be more symmetrically expressed in terms of entropies of bilinear
forms Φ(s1, s2), si ∈ Si i=1,2, where the entropy of a Φ is defined as the entropy
of the Hermitian form P1 on S1 that is induced by the linear map Φ′

1 ∶ S1 → S′2
from the Hilbert form on the linear dual S′2 of S2, where, observe, this entropy
equal to that of the Hermitian form on S2 induced by Φ′

2 ∶ S2 → S′1.
In this language, for example, subadditivity translates to

Araki-Lieb Triangular Inequality (1970). The entropies of the three bilinear
forms associated to a given 3-linear form Φ(s1, s2, s3) satisfy

ent(Φ(s1, s2 ⊗ s3)) ≤ ent(Φ(s2, s1 ⊗ s3)) + ent(Φ(s3, s1 ⊗ s3)).

Discussion. Strong subadditivity was conjectured by Lanford and Robinson
in 1968 and proved five years later by Lieb and Ruskai with operator convexity
techniques.

Many proofs are based on an easy reduction of strong subadditivity to the
trace convexity of the operator function e(x, y) = x logx − x log y. The shortest
present day proof of this trace convexity is due to Ruskai [21] and the most
transparant one to Effros [9].

On the other hand, this was pointed out to me by Mary Beth Ruskai (along
with many other remarks two of which we indicate below), there are by now
other proofs of SSA, e.g. in [12] and in [20], which do not use trace convexity
of x logx − x log y.

1. In fact, one of the two original proofs of SSA did not use the trace
convexity of x logx − x log y either, but relied on the concavity of the map x ↦
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trace (ey+logx) as it is explained in [22] along with H. Epstein’s elegant proof

that ey+logx is a trace concave function in x.
2. The possibility of deriving SSA from the trace concavity of ey+logx was

independently observed in 1973 by A. Uhlmann who also suggested a reformu-
lation of SSA in terms of group averages.

Recently, Michael Walter explained to me that our ”Bernoullian” proof is
close to that in [20] and he also pointed out to me to the paper [8] where the
authors establish asymptotics of recoupling coefficients for tensor products of
representations of permutation groups. This refines the Bernoulli theorem and,
in particular, directly implies the SSA inequality.

Sharp convexity inequalities are circumvented in our ”soft” argument by
exploiting the ”equalizing effect” of Bernoulli theorem that reduces evaluation
of sums (or integrals) to a point-wise estimate. Some other operator convexity
inequalities can be also derived with Bernoulli approximation, but this method
is limited (?) to the cases that are stable under tensorization and it seems poorly
adjusted to identification of states where such inequalities become equalities.

(I could not find a simple ”Bernoullian proof” of the trace convexity of the
operator function x logx−x log y, where such a proof of convexity of the ordinary
x logx − x log y is as easy as for x logx.)

There are more powerful ”equalization techniques” that are used in proofs
of ”classical” geometric inequalities and that involve elliptic PDE, such as solu-
tion of Monge-Kantorovich transportation problem in the proof of Bracamp-Lieb
refinement of the Shannon-Loomis-Whitney-Shearer inequality (see [3] and ref-
erences therein) and invertibility of some Hodge operators on toric Kähler man-
ifolds as in the analytic rendition of Khovanski-Teissier proof of the Alexandrov-
Fenhcel inequality for mixed volumes of convex sets [10]. It is tempting to to
find ”quantum counterparts” to these proofs.

Also it is desirable to find more functorial and more informative proofs of
”natural” inequalities in geometric (monoidal?) categories. (See [4],[23] for how
it goes along different lines.)

On Algebraic Inequalities. Besides ”unitarization” some Shannon inequali-
ties admit linearization, where the first non-trivial instance of this is the follow-
ing linearized Loomis-Whitney 3D-isoperimetric inequality for ranks of bilinear
forms associated with a 4-linear form Φ = Φ(s1, s2, s3, s4) where we denote
∣...∣ = rank(...):

∣Φ(s1, s2⊗s3⊗s4)∣
2
≤ ∣Φ(s1⊗s2, s3⊗s4)∣ ⋅ ∣Φ(s1⊗s3, s2⊗s4)∣ ⋅ ∣Φ(s1⊗s4, s2⊗s3)∣

This easily reduces (see [11]) to the original Loomis-Whitney inequality and
also can proven directly with Bernoulli tensorisation.

But the counterpart to the strong subadditivity – the relative Shannon in-
equality:

∣Φ(s1, s2⊗ s3⊗ s4)∣ ⋅ ∣Φ(s4, s1⊗ s2⊗ s3)∣ ≤ ∣Φ(s1⊗ s2, s3⊗ s4)∣ ⋅ ∣Φ(s1⊗ s3, s2⊗ s4)∣

(that is valid with exp ent(...) instead of ∣...∣) fails to be true for general Φ. (The
obvious counterexamples can be taken care of with suitable Bernoulli-like-core
stabilized ranks, but this, probably, does not work in general.)

Such ”rank inequalities” are reminiscent of inequalities for spaces of sections
and (cohomologies in general) of positive vector bundles such e.g. as in the
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Khovanski-Teissier theorem and in the Esnault-Viehweg proof of the sharpened
Dyson-Roth lemma, but a direct link is yet to be found.

Apology to the Reader. Originally, Part 1 of ”Structures” was planned as
about a half of an introduction to the main body of the text of my talk at the
European Congress of Mathematics in Kraków with the sole purpose to motivate
what would follow on ”mathematics in biology”. But it took me several months,
instead of expected few days, to express apparently well understood simple
things in an appropriately simple manner.

Yet, I hope that I managed to convey the message: the mathematical lan-
guage developed by the end of the 20th century by far exceeds in its expressive
power anything, even imaginable, say, before 1960. Any meaningful idea com-
ing from science can be fully developed in this language. Well..., actually, I
planned to give examples where a new language was needed, and to suggest
some possibilities. It would take me, I naively believed, a couple of months but
the experience with writing this ”introduction” suggested a time coefficient of
order 30. I decided to postpone.
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