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Abstract

This a brief introduction to the formal genetics centered around two
mathematical ideas going back to Gregor Mendel and Alfred Sturtevant.

Preambule. The road from biology (or from any branch of science on the
fundamental level) to mathematics goes in several ( often Brownian rather than
straight) paths in parallel.

• Identifying a class of phenomena–”particular trees in a forest”–that appear
with a regularity suggesting an underlying (mathematical) structure. (Are there
non-mathematical structures?)

•• Designing and performing experiments/observations purifying and ampli-
fying what is seen by the naked eye (e.g. by planting our ”trees” to an ”artificial
soil”).

•••Making (often implicitly) ad hoc hypotheses, (e.g. continuity, symmetry,
functoriality)– that provide a logical framework for the experimental data.

For example, the ”theory of coin tossing” derives its mathematical beauty
and the (probabilistic) predictive power not from such ”definitions” as ”the
probability is a measure of uncertainty” but from the assumption that the the
probability distribution on the space Zn

2 of the imaginary outcomes (binary n-
sequences) equals the (normalized) Haar measure that is, moreover, invariant
under the permutation group Sn.

Such hypotheses (assumptions), fragments of the grammer of the language
in which Nature delievers her messages, are what a mathematician is primerly
interested in, while a scientist is concerned with the ”meaning” of a message–the
structure that is harder to formilize.

Desiphering the grammer of Nature, or, biologically speaking, guessing the
design of a seed by looking at (sample branches of) the grown tree, is rarely (if
ever) done by mathematicians (Newtons do not count), even when the experi-
mental data are abundant (as in the present day molecular biology). The past
mathematical experience channals your imagination toward the old rather than
new mathematical concepts.

Even rigorously reformulating such hypotheses is not a straighforward task.
For example, the Dirac δ-function needed the theory of distributions to be ac-
cepted by mathematicians and the functoriality of the (derivation of the) Boltz-
mann equation was recognized (albeit not much exploited till now) only with
the advent of the ”functoriality paradigm” within pure mathematics.

When a ”seed” is cultivated in a ”mathematical soil”, what grows out of
it– mathematician’s tree–might look not quite as the real one. But a math-
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ematician is content if the tree growth strong and beautiful regardless of the
non-mathematical origin of the seed.

Can one predict which seed will grow to a tree and which is a dead grain
of dust, not a seed at all? This is the first and the most formidable question
facing a mathematician who is looking for a problem from science: identify a
mathematically promising problem.

Even in the pure mathematics the viability of a seed is seen only with the
hindsight. Who could divine e2πi = 1 and the Riemann mapping theorem at
seeing

√
−1 as the 90◦-rotation in the plane, or realize that the ”reduction”

4 ⇒ 3 implemented by the (exactly!) three 2 + 2 partitions of the four element
set solves algebraic equations of degree 4 (modulo degree 3), points toward the
Yang-Mills equations and would grow in a proper soil to the Donaldson theory?

We present below two ideas coming from biology:
Menedel’s multilinear dynamics that has undergone a significant mathemat-

ical developement but on the essentially 19th century soil –”mathematics of the
multiplication-table type” citing Godfrey Harold Hardy,

and
Sturtevant’s structure recognition paradigm that has not been absorbed yet

by the present day mathematics.

Mendel’s Model of Heredity. Imagine some species of flowers that come in
two possible pure colors, say white and red but nothing else, no pink, no matter
how you interbreed them. Moreover,

•certain red couples have white as well as red children;
•• sometimes a red couple has the descendants in all generations being ex-

clusively red;
• • • the descendants of white parental flowers are always white.
A possible mechanism was suggested by Gregor Mendel in his paper ”Ver-

suche über Pflanzen-Hybriden” that appeared in Verhandlungen des natur-
forschenden Vereines, Abhandlungen, Brunn 4, pp. 3-47 (1866) (seven years
after Charles Darwin’s Origin of Species) where Mendel writes in the intro-
duction: ”The striking regularity with which the same hybrid forms always
reappeared whenever fertilization took place between the same species induced
further experiments to be undertaken, the object of which was to follow up the
developments of the hybrids in their progeny”.1

He postulated that each pure phenotypic feature F of an organism, such as
the above color, is determined by what is now-a-days called the gene occupying a
specific locus responsible for F . Mendel hypothized that each gene was made of
two ”halves”, one inherited from the mother and one from the father. We denote
by A = A(locus) the set of all such possible ”halves”, called allels (”alternative
(half)genes” usually called gametes2) and think of F as a function of the gene
composition, i.e. a function in two A-variables, F = F (a, b), a, b ∈ A, where,
after Mendel it is assumed to be symmetric and genes are formally written as
quadratic monomials in the A-variables, ab’s instead of (a, b)’s.

In the case of flowers, a natural candidate for A is a two point set A = {r, w},
where the presence of the r-allele in the gene ensures the production of the red

1The original article as well as its English translation can be found at
http://www.mendelweb.org/

2Our choice of words is adapted to their mathematical usage and often deviates from
traditional terminology accepted by geneticists.
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color pigment, while the w-allele is color deficient3. This suggests the following
values of the function4 F = COLOR,

F (ww) = white, F (wr) = red, and F (rr) = red.
In the above example one can not discriminate between wr and rr allele

composition by the apparent color, since both wr and rr flowers are red; yet,
this is possible with the following rule:

? parents with ab and a′b′ genes may have children of four kinds:
aa′, ab′, ba′ and bb′.
In particular, among (sufficiently many) children of two rw parent flowers

there will be whites as well as reds but rw and rr parents will have all their
children red. These two may have, however, white grandchildren (with two rw
parents) but all descendants of an rr couple will be red.

This distinguishes rr from rw but is not sufficiently quantitative so far.
Mathematics truly enters with the following

Mendel’s Rule.The above four outcomes aa′, ab′, ba′ and bb′ , are equiprob-
able.

For example, if both father and mother are rw then rr- and ww-children
come with probabilities both equal to 1/4, while the probability of an rw-child
is 1/2.

Mendel supported his ideas by cultivating and testing (properly interbred)
≈ 30000 pea plants and provided, for example, the data confirming the expected
3:1 proportion of the numbers, |reds|/|whites| for the children of two rw parents,
where |...| denote the cardinalities of the respective sets.

Remarks. (a) The above ”halves” have nothing to do with the two strands of
DNA but rather with diploidy of certain organisms, e.g. human and pea plants,
who have two sets of chromosomes inherited from the two parents.

(b) There is a relatively small group of genes, namely the genes positioned on
the sex chromosomes5,where the symmetry between the parental genes breaks
down. However, following a tradition common in biology, we make unconditional
statements allowing exceptional cases.

(c) Mendel’s postulate expresses a common ”equalizing idea” in mathemati-
cal modelling: two similar constants are assumed equal unless there is informa-
tion to the contrary.

(d) The data provided by Mendel, such as the sharpness of the above 3:1
proportion, looked so good, that in 1936, R.A. Fisher, one of the founders of
the population genetics, concluded, on the basis of a χ2-analysis, that Gregor
Mendel had falsified his data.6

3Such a pigment is usually synthesized in some cells of a flower plant by concerted activity
of several proteins P along a specific metabolic pathway where one of them, say P?, may
be crucial for the pigment production. Such a P?, as we know it now-a-days, is coded by
the corresponding gene – a specific segment on the (very long) DNA molecule making a
chromosome. Every diploid cell contains two sets of chromosomes and thus two genes coding
for P?, where one of the two may code for a protein P ′

? that is slightly different from P? and
does not work properly in the pigment synthesis.

4The function F = F (a, b) can be often reduced to a function in one variable by something
like F (a, b) = max(f(a), f(b)). In the case of flowers the production of a pigment by P? coded
on a single chromosome is sufficient for the ample color.

5http://en.wikipedia.org/wiki/Chromosome
http://biology.about.com/library/weekly/aa091103a.htm
6See http://www.mcn.org/c/irapilgrim/men05.html
for a criticism of Fisher’s view.
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(e) Our exposition is too short for what it stands for− one of the most
intellectually innovative step ever made in biology and arguably in the all of
science. Curt Stern stated in 1966: ”Gregor Mendel’s short treatise, ’Experi-
ments on Plant Hybrids’ is one of the triumphs of the human mind. It does
not simply announce the discovery of important facts by new methods of ob-
servation. Rather, in an act of highest creativity, it presents these facts in a
conceptual scheme which gives them general meaning. Mendel’s paper is not
solely a historical document. It remains alive as a supreme example of scientific
experimentation and profound penetration of data”.7

Unlike the ready acceptance/rejection of the Darwinian Origin of Species
by scientists and laymen, it took several generations of biologists to absorb
Mendel’s ideas and to reconcile the (suitably modified) Darwinian concept of
selection and evolution with Mendelian genetics.

Hardy-Weinberg Principle for Allele Distributions. A distribution on
a set X or an X-distribution is an assignment of a real (often positive integer)
weight nx to each x ∈ X where only finitely many among nx are different from
zero. (In what follows the relevant sets are finite anyway). We write such
distributions as formal (finite) linear combinations x =

∑
x nxx and regard

them as linear forms, i.e. polynomials of degree 1 in the x-variables. We denote
by R(X) ⊃ X the set of all distributions and observe that every map X → Y
extends to a linear map R(X) → R(Y ), where the correspondence X  R(X)
is a covariant functor. Moreover, every map from X to a linear space R (e.g.
X → R(Y )) uniquely extends to a linear map R(X) → R.

〈〉-Function and the group G〈〉. The space R(X) comes along with
a natural linear function on it (invariant under permutations of x’s) that is
x =

∑
x nxx 7−→ 〈x〉 = 〈x,1〉 =def

∑
x nx, where 1 denotes the distribution

assigning weights 1 to all x’s. We shall see presently that the standard com-
putations in formal genetics are invariant under the group G〈〉 = GL(R(A), 〈〉)
of linear transformations of R(A) which preserve 〈〉 and even under a larger
symmetry group G defined in the next section.

On measure and probability. Distributions with positive weights are
naturally identified with finite measures on X and if, moreover 〈x〉 =

∑
x nx =

1, we usually write px instead of nx and regard sums
∑

x pxx as probability
measures (distributions) on X, where our notations follow the algebraic rather
than the analytic tradition.

Gene Distributions. These are distributions on the Cartesian square A×A
that are symmetric under the involution (a, b) 7−→ (b, a). We represent them
by polynomials in a-variables,

∑
a,b na,bab, where, recall, monomials represent

genes at a given locus.
Allele Content Map For each gene g = ab we denote by ag its allele

content defined by ag = a + b that is a distribution on A. The resulting content
map G −→ R(A), for g 7−→ ag (linearly) extends to its linear counterpart
R(G) −→ R(A) for

g =
∑
a,b

na,bab 7−→ ag =
∑
a,b

na,b(a + b)

7Compare http://www.weloennig.de/mendel02.htm
http://www.library.adelaide.edu.au/digitised/fisher/144.pdf
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.
Since ∑

a,b

na,b(a + b) =
∑

a

(
∑

b

na,b)a +
∑

b

(
∑

a

na,b)b,

the above linearized allele content map R(G) −→ R(A) has the following
Additivity Property. If (the quadratic polynomial representing) g splits

into product of two linear forms (polynomials),

g = ab =
∑

a

naa
∑

b

nbb =
∑
a,b

nanbab

, then ag equals a linear combination of a and b, namely

ag = 〈b〉a + 〈a〉b.

In particular, if a and b are probability distributions then ag = a+b; moreover,
if a = b, i.e. g = a2, then ag = 2a.

Corollary: G〈〉-Invariance.The linearized content map R(G) −→ R(A) is
equivariant under the natural action of the group G〈〉 = GL(R(A), 〈〉) on the
space R(G) identified with the tensorial symmetric square of R(A).

Remark.It is easy to see that two G〈〉-equivariant maps differ by a multiplica-
tive constant and so the equivariance property uniquely, up to a scalar multiple
characterizes the linearized content map.

Algebraic Formulation of Mendel’s Rule. The distribution of genes of
the children of a g- and a g′-parent equals the product of their allele contents,
gchildren(g,g′) = agag′ .

In fact, if g = ab and g′ = a′b′, then agag′ = (a + b)(a′ + b′) = aa′ + ab′ +
ba′ + bb′ with the agreement with the equiprobability formulation of his rule.

Remark on normalization. If one insists on probability distributions (that
we do not always do) one has to normalize the above by taking 1

4agag′ = 1
4aa′+

1
4ab′ + 1

4ba′ + 1
4bb′. Or equivalently, one had to divide the content map by 2 in

order to make it 〈〉-preserving.
”Next Generation” Map for Random Mating.Let X be a populations

of organisms of some species and gx denote the gene of x ∈ X at a given locus.
Then the distribution of genes in X is gX =

∑
x gx =

∑
g ngg, where ng denotes

the number of individuals (organisms) in X carrying gene g, i.e. with gx = g
and where, observe, the sun n =

∑
g ng equals the cardinality #X. If we pick

on random some x from X its gene is represented by the probability distribution
g =

∑
g pgg for pg = 1

nng. If we take independetly another ”random individual”,
possibly from another population X ′ with gene distribution g′ =

∑
g′ pg′g

′ then
the genes of their children will be distributed by the random next generation
rule:

gchildren(g,g′) =
∑
g,g′

pgpg′gchildren(g,g′).

Randomness and Symmetry.The ”randomness” amounts in the present
context to the symmetry of our choice of an x with respect to the permutation
group acting on X: a ”random individual” x is represented by the probability
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distribution on X assigning equal weights(= 1
n ) to all x ∈ X, where the corre-

sponding distribution on genes, gX = gx =
∑

x gx =
∑

g ngg equals the value
at x of the linear extension of the map x 7−→ gx to a map R(X) −→ R(G).
Random x′ has a similar meaning while ”independence” of the two choices, en-
coded by bilinearity (in pg and pg′) of the above formula for children, reflects
the symmetry of (probability of) mating with respect to the permutation group
acting on X ×X ′.

Mendel’s rule for random mating. The genes of children of indepen-
dently chosen random parents are distributed by the same rule as those for in-
dividuals, namely they abide the following

Allele Product formula:

gchildren(g,g′) = agag′ .

In particular, if the parents have equal allele distributions, say a, then the
next generation gene distribution equals the square of this allele distribution,

gchildren = a2.

P roof . Substitute gchildren(g,g′) in the ”random next generation” rule with
agag′ in accordance to (individual) Mendel’s rule and decompose

∑
g,g′ pgpg′agag′

into the product (
∑

g pgag)(
∑

g′ pg′ag′).
Corollary A.The gene distribution of ”random children” depends only on

the allele distributions of their parents rather than on the parental gene distri-
bution in the population.

Since allele distributions depend on k = #A parameters while gene distribu-
tions depend on #G = k(k+1)

2 parameters, the corollary reduces the dimension
from k(k+1)

2 to k.
Corollary B.The allele distribution of children is expressed by these of their

random parents x and x′ according to the
Allele Addition Formula ( Leibniz rule): achildren = 〈ax′〉ax +

〈ax〉ax′ .
In particular, if both parents have equal gene (or just allele) distributions

then the normalized allele distribution for the children equal those of the par-
ents (where the normalization amounts to scaling the outcome of the above
formula by 1

2 thus making it a probability distribution). In other words,
the normalized ”next generation” map on the space of allele probability dis-

tributions equals the identity, i.e. the distribution of alleles in a population does
not change under random mating.

Remarks.(a) If one of the parents serves as a male and the other one is female,
their gene distributions can be, a priori, different but if we deal, for example,
with self pollinating plants then we may assume that the parents are taken from
the same population X and thus have equal gene and allele distributions.

(b)The stability of the allele distribution under random mating can be also
derived from the G〈〉-equivariance of the random mating map R(A) −→ R(A)
that assigns to each parental allele distribution that of the children. This map
(when normalized in order to preserve probability distributions) fixes the mono-
mials (that make the basis) in the space R(A) and hence fixes all points since the
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orbit of each monomial (basis vector) under the action of G〈〉 = GL(R(A), 〈〉) is
(Zariski) dense.

Summary: (Castle)-Hardy-Weinberg Equilibrium Principle. As-
sume that both (populations of) parents have equal gene distributions, say g0,
and denote by g1, g2, ... the gene distributions of their random children, grand
children, etc., that are normalized to probability distributions. Then g1 = g2 =
.... In fact, gi = ( 1

2agi−1
)2 where agi

= agi−1
for i ≥ 1. If, moreover, g0 equals

the square of a linear polynomial then also g0 = g1 and the square condition is
necessary as well as sufficient for this equality.

Remarks. (a)The proof of the equilibrium property appears in Hardy’s
one page letter to the editor: ”Mendelian proportions in a mixed population”.
Science 28: 49a50 (1908) , where Hardy, who deals with the symmetric 2 × 2
-matrices, (proportionly) represented by the numbers p : 2q : r, writes

”...suppose that the numbers are fairly large, so that mating may be regarded
as random, that the sexes are evenly distributed among the three varieties, and
that all are equally fertile. A little mathematics of the multiplication-table
type is enough to show that in the next generation the numbers will be as
(p + q)2 : 2(p + q)(q + r) : (q + r)2, or as p1 : 2q1 : r1, say.

The interesting question is in what circumstances will this distribution be
the same as that in the generation before? It is easy to see that the condition
for this is q2 = pr. And since q2

1 = p1r1, whatever the values of p, q, and r
may be, the distribution will in any case continue unchanged after the second
generation.”

These nine lines had cleared up the confusion of Hardy’s contemporaries on
the implications of Mendel’s theory8 and, ironically, brought Hardy the fame ex-
ceeding that of his as a pure mathematician. (Google’s ratio (”Hardy theorem”
+ ”Hardy-Littlewood theorem”):(”Hardy-Weinberg law ”) is about 1 : 30.)

(b) Instead of normalizing, one could projectivize, i.e. factor away nor-
malizing scalars, and then express the Equilibrium Principle by saying that
the projectivized ”next generation” map R is a retraction or an idempotent,
i.e. R ◦ R = R; our R retracts the projective space PR(G) onto the subspace
PR(A) ⊂ PR(G), where the projectivized allele space PR(A) is embedded to
PR(G) via the so called Segre-Veronese map a 7−→ g = a2 and where the re-
traction PR(G) −→ PR(A) is a rational (rather than regular) map whose all
fibers are projective subspaces in PR(G).

(c) All of the above trivially generalizes to d-ploid organisms having d ≥ 2
copies of each chromosome where the corresponding gene distribution space is
represented by the space of homogeneous polynomials g in a-variables of degree
d. Here the normalized next generation map can be conveniently described with
the (d − 1)th power of the operator δf = (degf)−1∂1f acting on polynomials f
of all degrees, where ∂1 denotes differentiation along the vector 1 = (1, 1, ..., 1);
namely, gchildren = (δd−1gparents)d and the Equilibrium Principle amounts to

8see http://en.wikipedia.org/wiki/Hardy-Weinberg. The point made by Hardy, as I see
it, was not the ”multiplication table” but rather identifying ”random” (mating) ”evenly dis-
tributed” and ”equally” (fertile) as mathematical concepts. This, most probably, was obvious
to Mendel by 1866 and if, fantasizing, Riemann (who died in 1866) had become acquainted
with Mendel’s explanation of ”the striking regularity with which the same hybrid forms always
reappeared” he would have been be amazed and delighted, unlike the biologists of that time
who dismissed Mendel’s results as ”non-interesting”.
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the easily verifiable identity: (δd−1(δd−1g)d)d = (g(1)d2−d(δd−1g)d, that is valid
for all homogeneous polynomials g of degree d.

(d) The ”random mating” assumption is rather stringent and is hardly ever
observed in its pure form. In reality, there may be some selection mechanism
at work that distorts Menedel’s equiprobability rules and makes the next gen-
eration map more complicated. For example, a breeder may systematically
eliminate white flowers from the breeding pool. In a case like that one still has
a homogeneous quadratic ”next generation” self map on the space R(G) (and/or
on PR(G)) which often reduces to a similar kind of map on R(A). Such map
does not have to stabilize at a finite step but it may asymptotically converge to
some stable attractive fixed point(s), where the likely candidates for such points
in simple models are the vertices of the unit simplex ∆ ⊂ R(A) spanned by the
monomials and/or the center of the simplex. (see [2])

Also one may take into account restrictions imposed by positions occupied
by organisms, and hence by their genes and/or alleles, in a physical space: indi-
viduals mate preferably with their neighbors and children remain in the vicinity
of the parents, where an extremal case is that of exclusively self pollinating
plants.

It is not hard for a mathematician to come up at this point with a variety of
specific aesthetically attractive models (such as Kolmogorov-Petrovskii-Piskunov
equation) but it is hard, even for a biologist, to pinpoint a biologically feasible
one.

(e) The Mendel rules are similar to the law of mass action in the ideal
chemical kinetics9 (the first approximation to the ”true chemistry”) formulated
by Cato Maximilian Guldberg and Peter Waage10. This law says that the rate
of transformations of compounds Ai to B is proportional to the product of the
concentrations of Ai, since the probability of the thermally moving molecules of
Ai in a pot coming sufficiently close together in order to participate in a reaction
is proportional to the product of their concentrations. (If the production of a
molecule of B needs ki molecules of Ai the concentration of Ai enters in the
kith power.) This leads to a multilinear system S of ODE on the concentrations
of the compounds, that is a polynomial vector field on the Euclidean n-simplex
∆n ⊂ Rn+1 of the (normalized) concentrations. (If the production of a molecule
of B needs k molecules of some Ai the concentration of Ai enters in the kth
power.)

The fundamental mathematical problems arising in chemistry that (simi-
larly to those in the Mendelian genetics) can not be expressed in the language
of the smooth dynamical systems, i.e. in terms of invariants of transforma-
tions up to conjugation in the group of all diffeomorphisms (homeomorphisms).
There is more to the structure in S than mere Diff : the dimension n is not
”just a number” but a combinatorial object implemented by the vertex set V
of a (weighted) graph with an additional structure reflecting the hierarchy of
the rates of different reactions. Operation normally performed by a chemists
(introducing a catalyzer, removing a product, etc.) ”naturally” correspond to
transformations/degenerations of graphs that are, in turn, functorially reflected
by the dynamics, where the objects corresponding to ”degeneration” are asymp-
totic limits of S that are not dynamical systems in the ordinary sense.

9see http://www.sussex.ac.uk/chemistry/documents/rates.pdf for a historical overview.
10see http://chimie.scola.ac-paris.fr/sitedechimie/hist−chi/text−origin/guldberg−waage/Concerning-

Affinity.htm for the English translation of the original 1864 Norwegian presentation.
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Besides, while a mathematician strives on the dynamical subleties of appa-
rantly simple systems (e.g. diffeomorphisms of the circle), a scientists seeks the
islands of simplicity in the ocian of impenetrable complexity of the ”real world”
dynamics.

In the case of the linear systems, the separation of the reaction rates allows
( see [3]) a reduction of the continues dynamics to the combinatorial one on V
(with the numerics associated the metric/measure invariants of the singularities
of the discriminant variety in the space of linear operators that has a flavor of
the ”tropical reduction” in the algebraic geometry).

There is no conceptual mathematical framework yet for non-linear systems
(despite a huge number of particular systems that has been analyzed) but there
are some combinatorial criteria for a ”simple/robust” behavior of S that are
(believed to be) frequently fulfilled in the metabolic pathways , for instance [1].

Recombination. The next generation map g 7−→ ( 1
2ag)2 can be defined on

the space R(A×A) = R(A)
⊗

R(A) of all, not only symmetric distributions on
A × A represented by k × k matrices for k denoting the number of the alleles
(i.e. the cardinality of A) as follows,

substitute each (i, j)-entry in such a matrix by the product of the sum of
entries in the i- row by the sum of entries in the j-column.

Here the proof of the equilibrium property reduces to a tautology as follows.
Consider two linear spaces A and B with distinguished non-zero linear func-

tions on them both denoted 〈〉. The tensor product C = A
⊗

B of such spaces is
given 〈〉 by linearly extending 〈c〉 = 〈a〉〈b〉 from monomials c = a

⊗
b to all of

C. There are two 〈〉-natural linear maps from C = A
⊗

B to the tensorial com-
ponents: EA : C −→ A is defined as the linear extension of the (bilinear) map
a

⊗
b 7−→ 〈b〉a and similarly one defines the map EB to B. (EA and EB corre-

spond to summations of rows and column in matrices). With these two we define
the ”next generation map” E from C to itself by E(c) = EA(c)

⊗
EB(c),where

the equilibrium property reads:
E ◦E(c) = 〈c〉E(c); thus E is an idempotent (i.e. E ◦E = E ) on the subset

(hyperplane) in C of vectors normalized by 〈c〉 = 1.
Indeed, E(c) is a monomial, and each monomial, say c′ = a′

⊗
b′ goes under

E to 〈b′〉a′
⊗
〈a′〉b′ = 〈c′〉c′.

Let us generalize the above to multiple tensor products of 〈〉-spaces,
⊗

l∈L Al

for an arbitrary finite set L. Such a product can be seen as a subspace in the
polynomial algebra A∗ = A∗(X) on the Euclidian space X that is the sum
(Cartesian product)

⊕
l∈L Xl of the linear spaces Xl dual to Al: the product⊗

l∈L Al is identified with the set of homogeneous polynomials of degree 1 in
each xl-variable where 〈a〉 is represented by the value a(x0) at some vector
x0 ∈ X. Since one can go from one vector to another by a parallel translation of
X and translations induce automorphisms of the algebra A∗(X), the choice of
x0 makes no difference; in what follows, instead of taking x0 = 1 = (1, 1, ..., 1)
as we did for distribution spaces in the previous section, we save notation by
taking x0 = 0 in X.

With each subset K ⊂ L we associate the coordinate projection PK from
X to the coordinate plane XK =

⊕
l∈K Xl ⊂ X and denote by EK = P ∗

K

the induced endomorphism of the algebra A∗. (In simple words, applying EK
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to an a(xl) amounts to equating all xl in a with l ∈ L − K to zero.) Since
PK are commuting idempotents so are EK for all K ⊂ L, where E associated
to the empty set sends A∗ to the constants. Given a collection K of subsets
K ⊂ L we define EK as the (polynomial) product of EK for all K ∈ K, i.e.
EK(a) =

∏
K∈K EK(a). Since the multiplicative semigroup of polynomials is

commutative and the maps EK are endomorphisms, the transformations EK
are multiplicative endomorphisms of A∗ (but not additive ones for more than
one K in K). Since all EK commute, so do EK and the composition of EK’s
is expressible in terms of intersections of the underlying subsets K ⊂ L by the
simple rule: EK ◦EK′ =

∏
K∈K,K′∈K′ EK∩K′ , that follows from the similar rule

for the composition of the maps PK ’s.
Equilibrating Maps. IfK is made of d non-intersecting non-empty subsets,

e.g. K is a partition of L into d subsets, then E = EK is called an equilibrating
map of degree d. Equilibrating maps obviously satisfy:

(A) Composition property. A composition of equilibrating maps of degree d
and d′ is an equilibrating map of degree dd′ with the following ”self-composition”
rule: E ◦E(a) = a(0)d2−dE(a), where the exponent corresponds to the presence
of d2−d empty intersections between different subsets K1, ...,Kd in L underlying
E.

(B) Polynomiality. Equilibrating maps preserves subspaces A≤k ⊂ A∗ of
polynomials of degree ≤ k in each variable. Thus A∗ is representable as a union
of finite dimensional E-invariant subspaces and if K is made of d subsets K ⊂ L
then the corresponding equilibrating map is a polynomial map of degree d on
each linear space A≤k.

(C) Linearizability. One can regard A≤k as the algebra of k-truncated poly-
nomials that is a quotient of (rather than a subspace in) A∗ obtained by adding
the relations xk+1

l = 0 to A∗. The maps EK (not only equilibrating ones)
act on this algebra as multiplicative endomorphisms; they can be ”simultane-
ously linearized” with the exponential map, exp(a) = 1 + a + 1

2a
2 + 1

6a
3 + ...,

that isomorphically maps the additive group of k-truncated polynomials to the
multiplicative group of k-truncated polynomials satisfying a(0) > 0.

(D) Retraction to Veronese. It follows from (A) (and also from (C)) that
each equilibrating map E = EK, K = (K1,K2, ...,Kd), retracts the normalizing
hyperplane A× = A×(X) ⊂ A∗ defined by a(0) = 1 to the Veronese product set
V = VE = E(A×) = A×

1 ·A×
2 · ... ·A×

d ⊂ A× for A×
i = A×(XKi), that is the

set of products of d polynomials ai ∈ A×
i , where composition of E’s corresponds

to intersection of V ’s: VE◦E′ = VE ∩VE′ .
The fibers E−1(v) ⊂ A× are affine subspaces: they are, obviously, equal the

fibers of the additive counterpart to E = EK, that is EK1 + ... + EKd
, where

Ki ⊂ L are the constituents of K = (K1, ...,Kd).
(E) G-equivariance. The equilibrating maps E commute with the group

G of linear transformations of X preserving the decomposition X =
⊕

l∈L Xl

that naturally act on polynomials. (For example, the Veronese varieties are
G-invariant.) In particular, All E commute with the scaling transformation Λ
corresponding to x 7→ λx in X which fixes constant polynomials, e.g. 1 ∈ A×,
and has other eigenvalues equal λ, λ2, λ3, etc. Thus, for λ > 1, the transfor-
mation Λ expands A× with the fixed point 1 and so global properties of maps
commuting with Λ, e.g. of equilibrating maps and linear combinations of these,
can be derived from the corresponding local ones at the fixed point 1 of Λ by
transporting all points close to 1 by applying Λ−N with large N →∞.
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Remark on Λ-equivariant maps. Let A be a linear space (e.g. A× ⋂
A≤k

with the constant polynomial 1 taken for the origin) with a linear transformation
Λ, where A splits into n eigenspaces of Λ with the corresponding eigenvalues
λ, λ2, ..., λn, where λ is not a root of unity, e.g. λ > 1. It is easy to see
that every smooth transformation F of A commuting with Λ is a polynomial
map of degree at most n; a transformation F is invertible (necessarily by a
polynomial transformation) if and only if its differential D0(F ) at 0 is invertible;
transformations F with D0(F ) = 1 make a nilpotent Lie group. For example,
all iterates F j are polynomials of degrees bounded by the same n that, non-
surprisingly, admit explicit (albeit complicated) expression in terms of n. (See
[5]).

Robbins-Geiringer Convergence Property. Consider a convex com-
bination F = c1E1 + c2E2 + ... + cmEm of equilibrating maps E1, E2, ..., Em

restricted to A×. Since c1 + c2 + ... + cn = 1 and since all Ei fix the Veronese
variety V = E(A×) =

⋂
i Vi of the composition E = EF = E1 ◦E2 ◦ ...◦Em, so

does F and for the same reason F sends each (affine!) fiber E−1(v) into itself.
The differentials D1 of Ei on A× at 1 have all their eigenvalues≤ 1 where

the equalities are achieved on the vectors tangent to the corresponding Veronese
varieties Vi = Ei(A×), because Ei are smooth retractions to Vi (and where
the eigenvalues equal 0 tangentially to their respective fibers).

The differential of F equals the convex combination of those of Ei; if we
assume all ci > 0, we conclude that all eigenvalues of the differential D(F ) on
V on the tangent vectors transversal to V are< 1, since the tangent space to
V equals the intersection of those to Vi. (Tangentially to V the eigenvalues of
D(F ) equal 1 since V is fixed under F .) In other words, the differential D(F )
strictly contracts the tangent vectors at V that are transversal to V. It follows
that F also contracts some neighborhood U ⊂ A× of V; therefore, each point
v ∈ U exponentially fast approaches V under iterates of F . In fact, the F -orbit
of v converges to E(v) ∈ V since F preserves the fibers of E.

This local property obviously globalizes with the expanding transformation
Λ from (E) and shows that:

If all ci are strictly positive, then the iterates F 1 = F , F 2 = F ◦F 1, ..., F j =
F ◦ F j−1, ... on A× converge to the equilibrating map E = EF : A× −→ V ⊂
A×, where the convergence is uniform and exponentially fast on the compact
subsets in A× ⋂

A≤k for all k = 1, 2, ....
Remark. This conclusion remains valid if we replace the projections PK by

transformations PK,ε =def x 7→ (1 − ε)x + εPK(x), 0 < ε < 1, (that make a
one parameter semigroup converging to PK for ε → 1) and construct F with
the corresponding endomorphisms EK,ε’s for some ε = εK > 0 instead of plain
EK ’s. If one takes infinitesimally small ε’s, one obtains a vector field on A×,
represented by a system D of non-linear differential equations, whose solutions
F t, t ∈ R+, describe a time-continuous version of the above F j , j = 0, 1, 2, ...,
where F t, unlike F j , are multiplicative endomorphisms on polynomials. These
can be linearized with the map exp from the above (C) and thus one obtains an
”explicit” solution of D in terms of elementary functions.

Crossover and Recombination. Let us return to genes and their alleles
, now at several loci making a set L, i.e. instead of a single set of alleles
as in the previous section we consider sets Al, l ∈ L. The L-collections of
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alleles, a = (al)l∈L, i.e. points in the Cartesian product A = ×l∈LAl, are called
gametes; their symmetric pairs written as monomials ab are called (partial)
genomes or, more traditionally, zygotes .

The set G of genomes (zygotes) is acted upon by (commuting) involutions
interchanging al with bl in the monomials with l ∈ K for all possible K ⊂
L. These involutions make the Abelian group Γ = ZL

2 , that is the set of Z2-
valued functions on L, naturally acting on G, where, observe, the diagonal
involution simultaneously interchangings all al’s with all bl’s acts trivially on G
since ab = ba. There is a one-to-one correspondence between the involutions γ
and partitions of L into pairs of subsets: the first one is K0 = fix(γ), consisting
of those l ∈ L where al and bl are not interchanged by γ and K1 = supp(γ) is
where al and bl are interchanged.

A crossover is an arbitrary involution from Γ acting on G. Every crossover
linearly acts on the space G of genome distributions that is the symmetric
tensorial square of the space of gamete distributions, G = A2 for A =

⊗
l∈L Al

and for Al denoting the space of allele distributions at the locus l ∈ L (i.e.
distributions on the set Al).

The action of Γ linearly extends to that by distributions µ on Γ denoted
Rµ : G −→ G. If µ is a probability measure on Γ then Rµ is regarded as
random crossover and is called recombination.

The gametes in diploid organisms, prior to (random ) mating, undergo re-
combination (e.g. crossovers) and what they contribute to the next generation
is not the gametes inherited from their parents but recombined gametes.

Let us describe what happens to distributions of gametes under the ran-
dom mating composed with a crossover, where we assume that all individuals
recombine according to the same γ.

We represent gamete distributions as earlier by polynomials on X =
⊕

l∈L Xl

and realize G by polynomials on the space X
⊕

X that are symmetric under
the involution (x, x′) 7→ (x′, x). The group Γ naturally acts on X

⊕
X by in-

terchanging xl’s with x′l’s in the Xl

⊕
Xl’s, where xl and x′l are unmoved for

l ∈ K0 = fix(γ) and they are interchanged for l ∈ K1 = supp(γ). Thus X
⊕

X,
temporarily denoted X

⊕
X ′ to keep track of who is who, splits into four spaces

X
⊕

X ′ = (X0

⊕
X1)

⊕
(X ′

0

⊕
X ′

1).
A gamete distribution, represented by a polynomial a(x0, x1), goes under

random mating to g(x0, x1, x
′
0, x

′
1) = a(x0, x1)a(x′0, x

′
1). Then it recombines

to γg = g(x0, x
′
1, x

′
0, x1) = a(x0, x

′
1)a(x′0, x1) whose gamete content equals

g(x0, x
′
1, 0, 0) = g(0, 0, x′0, x1) = a(x0, 0)a(0, x′1). This can be equally writ-

ten as a(x0, 0)a(0, x1), since X = X ′ and X1 = X ′
1. By observing that the

latter equals EK(a) for K = (K0,K1), we see that
each crossover γ acts on A∗ by the equilibrating operator Eγ = EK associated

to K = (K0 = fix(γ),K1 = supp(γ)).
Consequently, a recombination µ = µ(γ) acts on gamete distributions as the

convex combination F =
∑

γ∈Γ µ(γ)Eγ , and by the Convergence Property the
iterates of this F converge to the equilibrating map E = EF corresponding to
the partition of L into the subsets Ki defined as follows: l1 and l2 from L belong
to two different subsets of the partition if and only if there is γ ∈ Γ = ZL

2 , such
that µ(γ) > 0 and one of the two components γl1 and γl2 is the trivial involution
(i.e. the identity in Z2) while the other one is non-trivial. This yields

Robbins-Geiringer Asymptotic Equilibrium Theorem. Consider a
population X0 with some gamete probability distribution a = a(X0), where
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the corresponding allele (also probability) distributions at the loci l ∈ L are
denoted by al = al(X0). Observe that al, are (obviously) conserved under
all recombinations; they are also invariant under random mating according to
Hardy-Weinberg equilibrium principle; therefore, their product (that is a certain
gamete distribution generally different from a), call it aequi = aequi(X0) =def∏

l∈L al is stable under random matings and recombinations as well.
Let µ be a probability measure on the group Γ = ZL

2 , such that the support of µ
generates Γ. Then the gamete probability distributions a(Xi) of the populations
X0, X1, X2,..., Xi,... resulting from consecutive rounds of random matings and
µ-recombinations, converge to aequi = aequi(X0), for i →∞.

Remarks. (a) This can be also seen by observing that the entropy ( intro-
duced by Boltzmann in 1877) of a distribution a increases by an ε > 0 at each
round of the recombination-next-generation map unless a reaches an equilibrium
(see 5.4 in [4] for the related discussion and references therein).

(b) Let A∗ be a topological algebra and consider polynomial selfmappings

F =
∑

J

µJEJ : A∗ → A∗,

where EJ = Ej1Ej2 ... are products of some endomorphisms Ejk
of A∗. One

can not expect much of such maps F in general as these are may be rather
dense by the Weierstrass approximation theorem, but if the dynamics of the
semigroup generated by Ejk

on the space B of the maximal ideals of A∗, say for
commutative algebras A∗ realized by functions on B, is sufficiently simple, one
may have fixed points a ∈ A∗ of F (equilibrium states) with controlled basins
of attractions, where, moreover, these a maximize some (entropy) function on
A∗.

The classical example (of slightly different nature) is where A∗ is the algebra
of l1-functions a on Rn under convolution and F (a(x)) = a2(

√
2x). The centered

Gaussian probability measures c·e−Q(x), where c = (
∫

e−Q(x))−1, are fixed under
this F , they maximize the entropy among all centered measures with given
second momenta and the basin of the F -attraction of the Gaussians contains all
centered measures with finite second momenta.

Probably, (I could not find a reference) this remains true for more general
monomial maps F =

∏
Ek ( and, possibly, some convex combinations of these)

where the endomorphims Ek are induced by linear maps Pk : Rn → Rn and
where the needed condition on Pk (and on the basin of attraction) is seen by
looking at the corresponding linear map on the (Tailor expansions at 0 of the )
logarithms of the Fourier images â of probability measures a.

Furthermore, if X is the total space of a vector bundle with the fiberwise
convolution product of measures on X, then a similar ”central limit/ergodic
theorem”, probably, remains true for monomilas (and some polynomilas) in the
endomorphisms Ek indiced by fiberwise linear self-mappings of X that satisfy
suitable assumptions.

There is, yet, another setting where a map F goes from A∗ to some tenso-
rial power A

N
d that is motivated by the entropic Shannon-Loomis-Whitney-

Shearer-Brascamp-Lieb inequalities (see [4] and references therein). For exam-
ple, polynomials in three groups of variables go to polynomials in six groups
of variables under the map F : a(xi, yi, zi) 7→ a(xi, yi, 0)a(x′i, 0, z′i)a(0, y′′i , z′′i ).
Apparently, the iterates of such maps are asymptotic in a certain sense to the
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tensorial products of some equilibrium distributions that are extremal for the
corresponding entropic inequalities.

Question. Is there a comprehensive theory encompassing all this?
(c) The rendition of Mendel’s ideas presented in the present paper is also,

in Hardy’s words, ”mathematics of the multiplication-table type” but now not
with the ”tables” of numbers but of something else–the rings of truncated poly-
nomial in the above discussion. This ”something” directly descends from the
universality/functoriality of Mendel’s (not fully formalized) model but it be-
comes virtually invisible once everything is reduced to mere numbers.

As it usually happens, the mathematical descendants of an idea coming
from science can be seen only in the light of the abstract concepts available
at the time; Mendel’s inheritance rules have been studied by (applied) math-
ematicians in the context of the population genetics and quantitative genet-
ics for about hundred years in the conceptual frames specific to each period
(see http://en.wikipedia.org/wiki/Population genetics and references therein
and also [2], [5] [6], where the ”post-functorial” mathematics have not said
its word yet.

Gene Linkage and Linear Arrangement of Genes. A conceptually new
idea, the idea of using recombination as a device for looking inside a cell and
seeing how genes are arranged on a chromosome came from a biologist.

In the 1913 paper ”The linear arrangement of sex-linked factors in Drosophila,
as shown by their mode of association” Alfred Sturtevant11, long before the ad-
vent of the molecular biology and discovery of DNA, has deduced the linearity
of the arrangement of genes on a chromosome from the statistics of simultane-
ous occurrences of particular morphological features in generations of suitably
interbred Drosophila flies. Thus he obtained the world’s first genetic map, i.e.
he determined relative positions of certain genes on a chromosome, where he
used his ideas of linearity and of gene linkage.

A mental picture here is as follows: genes are seen as beads on a string
(chromosome), i.e. the set L of gene locations is regarded as a set (inter-
val) of integers between 1 and n = #(L), denoted [1, 2, 3, ..., n]. A typical
crossover γ is given by interchanging alleles, al’s with bl’s, on a subinterval,
l ∈ [l1, l1 + 1, l1 + 2, ..., l2] ⊂ [1, 2, 3, ..., n] for some 1 ≤ l1 ≤ l2 ≤ n (i.e. supp(γ)
equals [l1, l1+1, l1+2, ..., l2] in the so described set L) and/or by composing a few
of such transformations. In other words the string may be cut (and recombined)
at several (random) locations, where such a cut disengages the corresponding
phenotypic features that were linked in the generations before the cut occurred.
Sturtevant postulated that the probability of a separating cut is roughly pro-
portional to (or at least monotone increasing with ) the distance between the
genes and checked out that the available data agree with the idea of linearity.

Thomas Hunt Morgan, who posed the problem to Sturtevant, a 19 year old
undergraduate working in his lab, described the result as ” one of the most
amazing developments in the history of biology”12

11see http://www.esp.org/foundations/genetics/classical/browse/ for this and other classi-
cal papers on genetics.

12See
http://www.ias.ac.in/resonance/Nov2003/pdf/Nov2003ArticleInABox.pdf
http://www.esp.org/books/sturt/history/
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On the mathematics side, Sturtevant’s reasoning may seem to be limited to
the banal remark saying that if in a finite metric space the triangle inequality
reduces to equality on every, properly ordered, triple of points then the metric
is linear, i.e. inducible from the real line. But this is not exactly what is
truly needed as the Sturtevant’s linearity is more about the order or, rather the
”between” relation, than about metrics.

More interestingly, the idea of Sturtevant suggests the following, novel even
from the to-days perspective, way of thinking of geometric structures on a set
L that are, according to this point of view, encoded by probability measures µ
on the set 2L of all subsets K ⊂ L or by something similar to such measures.

Typically, one does not have a full direct access to such a measure: the set
2L is usually too large and individual values µ(K),K ∈ 2L are too small to have
any observational meaning. But one may have at one’s disposal some quantities
– observed samples and/or results of controlled specially arranged experiments
– that provide some information about µ. In the Sturtevant’s case, an essential
point was designing breeding experiments with the Drosophila flies and below
is an example where one relies on an uncontrolled observation.

Reconstruction of the geometry of the physical space from the
data provided by the ”real world” images. In the model case, the relevant
L is the set of pixels on a screen (or of light sensitive cells in the retina of an
eye) where we regard L at this stage as just a finite set (of the cardinality from
a few thousand to several tens of millions) stripped of any structure, such as
the actual geometry of the screen.

An image is a partitions of this L into two subsets Kwhite and Kblack; ran-
dom observations of the world provide us with a collections of such partitions
regarded as samples that are distributed according to some measure µ on 2L.
Reconstructing µ may seem hopeless as we never have enough samples, the set
2L is huge, but fortunately, the measure (or rather an unknown ”something”
that we model by a measure) µ governing the real world images is very special:
the closer are the points the more probable they have same color. In fact, just
by ”looking” at the images without a preconceived idea of any distance, we can
notice that white/black values are strongly positively correlated for some pairs
(l1, l2) in L while for the majority of the pairs there is no correlation at all; then
we may interprets this as a manifestation of a distance geometry in L.

Question. Is there, yet unknown, mathematical theory (”multiplication-
table type” will do) incorporating these ideas and being useful not only for
”specifying parameters” in a (given class of) structures but for also for predicting
and/or generating new (classes of) structures?

Mathematics and Pre-mathematics in Biology. Nobody can expect
to live through an instance similar to what happened to Hardy and to Wein-
berg13, where a purely mathematical thought has clarified a true biology prob-
lem: most current applications of mathematics to biology are rather technical
and are concerned with a treatment of large amount of dirty data.

However, mathematical thinking may help to generate new useful concepts
starting from poorly formalized hints from biology. It may be naive to aim at
something comparable to Mendel’s formalization of heredity or to Sturtevant’s

13http://en.wikipedia.org/wiki/Hardy-Weinberg
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linearity principle for gene mapping, but having these great examples in mind
is encouraging.

Even if not resolving a biology problem one may hope for a flexible formal
language for encoding experimental data or/and for something mathematically
non-trivial and yet not fully biologically absurd. An example of a simple yet
expressive conceptual ”book keeping device ” is the evolutionary tree of life
(introduced by Darwin in 1872) while an example of the second kind is Von
Neumann’s construction of self-reproducing automata (somewhere in 1940’s),
where still there is no theory that would allow a meaningful formulation pre-
ceding the construction in some ”category of models of reproduction”, of the
creatures inhabiting the living world along with the imaginary mathematical
creatures.14). Finding such a formulation is an instance of a pre-mathematical
problem.
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