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1 Lecture 1
The grandfather of all spaces, denote it AB , is the space of

all conceivable texts written on a background set/space B
in the letters from an alphabet A,

or, in mathematicians parlance,
the space of maps B → A.

In physics, which is dominated by numbers, and in the branches of math-
ematics oriented toward physics, A is the set of real numbers and the corre-
sponding multidimensional space is the Euclidean one denoted RN , where this
N is also a number, now a natural rather than a real one, that stands for the
cardinality (possibly infinite) of some background space B.

Then this N , the cardinality of a non-specified B, is identified with the ordi-
nal number N , that is represented by the set {1, ...,N}; thus making elements
of RN written as sequences of real numbers (a1, ..., ai, ..., aN), which are called
N -vectors.

The space RN with the Euclidean (Pythagorean) metric, where the distance
between sequences (ai), (bi) ∈ RN , i = 1, ...,N , is

dist ((ai), (bi)) =
√
∑
i

(ai − bi)2,

is implausibly symmetric:
not only the the action of the isometry group on RN is transitive, that is

any point/vector x can be moved to another y by an isometry of the space RN ,
but this is also true for arbitrary k-tuples of points X = {xj} and Y = {yj}:

whenever

dist(xj1 , xj2) = dist(yj1 , yj2) for all j1, j2 = 1, ..., k,

there is an isometry of the ambient Euclidean space RN which moves X to Y .
For instance, the configuration space of N points/particles in the 3-space,

seen as R3N = (R3)N , comes along with an enormous ( 3N(3N−1)
2

+ 3N)-dimensional
isometric symmetry group1 most of which is invisible to an eye blind to the
Pythagorean theorem.

1The rotations of R3N make what is called the orthogonal group O(3N) of dimension
3N(3N−1)

2
and there are also 3N parallel translations.
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In physics, the same exponent 2, which is responsible for this miraculous
symmetry, plays a similar role, where it enters, for instance, the formula for the
kinetic energy:

energy = mass × velocity
2

2
.

Modulo the omnipresence of the magnificent 2 in mathematics and in physics
alike, and a couple of similar miracles,

the effectiveness of mathematics in physics shouldn’t strike you as
"unreasonable".

But why, as some say,
is mathematics unreasonably ineffective in biology?

Here one has to pause and ask himself/herself:
What kind of mathematics? If it is the above kind of mathematics which is

modulated by physics and saturated by numbers, why should it be adapted to
an effective description of the tangle of live structures?

These structures are as much miraculous as the ones you see in the physical
worlds but these are different kind of miracles. A traditional physicist’s mind’s
eye is blind to them and the physical style math. is no match for them.

Imagine, your visual system were trained on a planet bare of life, where the
only patterns to learn were clouds in the sky, waves in the water and random
arrangements of rocks in the planes.

Then the mental image in your brain of a moving object of a kind of we see
in Life, be it a running elephant or a running truck, would, probably, register
as a solitary wave, if at all.

And human psychology apart, the traditional tools of "physical mathemat-
ics" are too refined, polished and smooth to catch the essence of live things.
Doing this is would be like trying to drive a car in the world without friction:
mathematics is beautiful, logic is perfect but the car has no intention to move,
the steering wheel is too slippery to turn and, in a few moments, bolts and nuts
get loose and the car dissociates into pieces.

(Probably, one can rigorously prove that no life-like structure would be pos-
sible in the world governed by ideally symmetric math, similarly to impossibility
of assembling an electronic device from "perfect" materials – all satisfying the
Ohm law.)

Although this kind of mathematics reduces to a bunch of numerical trivial-
ities when it comes to such Life spaces as

the space of bacteria in human guts,
the space of sentences in a language,
the space of ideas in one’s brain,

there are remarkable instances of mathematical spaces in Life, where "physical
mathematics" does tell you something substantial, e.g.

the spaces of proteins molecules in solvents
and

phylogenetic trees of protein sequences
We say a couple of words about these below, and then return to such spaces

in lectures ???.
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1.1 Proteins and Proteins Folding
Proteins come to life2 as long molecules build of 20 (sometimes 21 or even 22)
units, called amino acid residues, where the number of these is, for (globular)
proteins we speak about now, is in the range of 100-300 residues.

Figure 1: Schematic picture of a heteropolymer with homopolymeric main chain

Formally, this a string in 20 symbols, kind of a word or a sentence in 20
letters, where the chemistry of this is as depicted below.

Figure 2: Chemical picture of an amino acid chain

Then, granted a proper temperature, acidity etc, these chains "fold" in frac-
tion of a second into compact densely packet fairly stable potato shaped blobs
of protein molecules.

Figure 3: protein folding and unfolding

This folding process, that transforms
sequence ; structure

2They are synthesized by ribosomes in the cells.
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is a key elementary step toward Life:
informations encoded by a sequence in 20 letters turns into something corporeal:
a structurally organised functional protein.

Figure 4: Spatial model
of a folded protein
molecule

Figure 5: Schematic
protein structure.

But given a sequence, one can’t theoretically tell if the protein folds, if it does,
than how fast, and what will be the shape of the resulting compact molecule.

1.2 Self Avoiding Random Walks
A (very) rough mathematical model of an unfolded protein molecule in a solvent
is that of the N -step self avoiding random walk, that is a random imbedding of
the standard linear graph

●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−− ...−−●
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

to the 3D lattice, where "random" refers to the uniform measure on the set of
imbeddings, i.e. with equal weights assigned to all embeddings. 3

The most amazing thing about this model is that, despite being a gross over-
simplification of the structure of unfolded proteins, which is hardly considered
as problem at all by the protein folding community, it remains mathematically
inaccessible: none of the "intuitively obvious" properties of these "walks" have
been rigorously proved so far.

It is conjectured that the diameter of a random N -chain in the plane grows
with N as ∼ N 3

4 and the expected growth of this diameter in the 3-space is
something like N0.588,

But it is unknown if the diameter of random N -chain in the 3-space grows
at last as

√
N , i.e. no slower than what happens for the ordinary random walk.

What is obvious is that, since the ball of radius R in the lattice Zd can’t
contain more than const ⋅Rd distinct points, the diameters of all self avoiding
N -chains in Zd satisfy

diamN ≥ constd ⋅N
1
d .

3As we shall explain later on, the very applicability of the concept "random", accompanied
by the physicist’s intuition attached to it, remains problematic for this model.
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Figure 6: Self avoiding walk in Z2

But what is proven is that
the expectation of the squared displacement of the self avoiding walk in Zd

satisfies √
E∣∣x1 − xN ∣∣2 ≥ const ⋅N

2
3d , 4

which, observe, even for d = 2, doesn’t imply the obvious bound
√
Ediam2

N ≥
const ⋅N 1

2 . 5

And, as far as the lower bound on the diameter diamN is concerned, it is
proven, for self avoiding walks in Rd for all d ≥ 2, that this diameter grows
sublinearly, in the sense that

the probability of diamN ≥ εN is at most (1 − δ(ε))N for all ε > 0 and
some function δ(ε) > 0.6

,
What we want to understand, however, is not only and not so much the

geometry of the images of random embeddings or "walks", depicted as

●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−− ...−−●
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

↪ R3,

but rather of
the space S of all such embeddings

also called self avoiding walks in the present context.
In what follows, we return to the geometric setting closer to what happens

to proteins, where we deal with self avoiding walks in all of R3 instead of the
integer lattice Z3 and where all ● in ●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−− ...−−●
stand for small rigid balls, rather than dimensionless pointsand where this S is

4Madras N. (2014) A lower bound for the end-to-end distance of self-avoiding walk. Canad.
Math. Bull. 57, 113 -118.

5It may seem obvious that Ediam2
N can’t be significantly greater than E∣∣x1 − xN ∣∣

2, but,
apparently, this also remains only conjectural.

6Hugo Duminil-Copin, Alan Hammond (2012), Self-avoiding walk is sub-ballistic.
arXiv:1205.0401v1.
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a fairly complicated subset in a larger but much simpler space W of all "walks"
in the 3-space R3.

Formal Definitions of W and S. A (unitary) N -step walk W in the 3-space
is a sequence of points x1, x2, ..., xN ∈ R3, such that

dist(xi, xi+1) = 1 for i = 1,2, ...N − 1.

Thus the space of these "walks" is a submanifold

WN =WN(1) ⊂ R3N

of codimension N − 1.
Equivalently, WN can be described as the product space,

WN = R3 × S2 × ... × S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−1

,

where the factor R3 represents the positions of the first vector x1 from the
string x1, ..., xn ∈ R3 and where the unit vectors in the ith sphere S2 ⊂ R3 in the
product are the differences xi+1 −xi, which, for i = 2, ...N − 1, can be thought of
as the "2-dimensional angles" between the segments [xi−1, xi] and [xi, xi+1].

Then the the subspace of self avoiding walks

SN = SN(ε) ⊂WN

is obtained by removing thoseW fromW, where theW -images of some balls/beads
● from the chain intersect in the 3-space, where they are mapped by W .

More formally, the subspace SN = SN(ε) ⊂ WN ⊂ R3N is distinguished by
the inequalities

dist(xi, xj) ≥ 2ε, i ≠ j,
where ε < 1

2
is the radius of ● in the chain ●−−●−−●−−●−−●−−● ...7

Figure 7: The square representsW, the white strips correspond to the positions
of pairs of intersecting ● and the blue complementary to these strips depicts S

Notice that the measure of the subset S ⊂W of self avoiding walks is expo-
nentially small compared to the measure of all maps (walks) ●−−●−−●−... → R3,
that is

mes(SN) ∼ (1 − δ)Nmes(WN) for N →∞,
7This space is more complicated for real proteins, see lecture ???

6



but this is not properly represented by the above drawing.
Also notice that the diameter of SN is significantly greater than that of the

ambientWN ⊃ SN , where this diameter is measured for the distance in S defined
by the lengths of shortest paths between points S1, S2 ∈ S.

Probably, this diameter is infinite for large N , i.e. the space SN of embeddings
of strings of beads ●−−●−−●−... to the 3-space may be disconnected due to the possible
presence of of so densely packed strings of or their fragments that they can’t be
unfolded.

If this happens, then SN is divided into exponentially many connected compo-
nents, each carrying an exponentially small part of the full measure of SN , where
the largest component is the one of the "fully unfolded" string (001,002, ...00N).8

Also there should be strings S, at least for special values of ε – the radius
of the beads, certain parts of which being so densely packed/folded that they are
unmovable. Then the connected components of such S would display all kind of
dimensions in the range between d and DN , where d = d(ε) is a constant and
DN = dim(S) = 2N + 1.

Exercise. Prove or disprove the above statements.9

Besides the geometry of S per se , we want to understand the structures of
natural functions/observables on S, such, for instance, as

W ↦ diameter(S(●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−−●−− ...−−●)).

We shall return to all this in lecture??? but now let us take a glimpse
on spaces of natural proteins sequences and "biological observables" on them
such as the shape of a folded protein regarded as a function on the amino acid
sequence space 20N .

1.3 Suggested Reading
1. Protein Physics, A Course of Lectures by Alexei Finkelstein Oleg Ptitsyn
(2nd Edition).

2. Crystals, Proteins, Stability and Isoperimetry, M. Gromov.
https://cims.nyu.edu/~gromov/
3. The Science and Technology Behind the Human Genome Project by

Charles R. Cantor and Cassandra L. Smith.
4. Unraveling DNA: The Most Important Molecule Of Life, by Maxim Frank

Kamenetskii (Revised And Updated Edition).
5. The Logic of Chance: The Nature and Origin of Biological Evolution, by

Eugene V. Koonin
6. The Plausibility of Life Resolving Darwin’s Dilemma by MarcW. Kirschner

and John C. Gerhart.
7. Cell Biology by the Numbers, by Ron Milo, Rob Phillips.
8. Lateral DNA Transfer: Mechanisms and Consequences, by Frederic

Bushman.
9. Self-Avoiding Walk by Gordon Slade,

8The distance between an S in this component and (001,002, ...00N)may serve as an upper
bound on the folding time of S in some model.

9I didn’t try to solve this exercise, but it seems not very difficult.
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https://www.imsc.res.in/~sitabhra/teaching/asm17/Slade_MathIntelligencer_
1994_Self_avoiding_walks.pdf

10. The Self-Avoiding Walk :A Brief Survey by Gordon Slade,
https://www.math.ubc.ca/~slade/spa_proceedings.pdf
11. Lectures on Self-AvoidingWalks by Roland Bauerschmidt, Hugo Duminil-

Copin, Jesse Goodman, and Gordon Slade.
https://www.ihes.fr/~duminil/publi/saw_lecture_notes.pdf
12. Self-avoiding walk, spin systems and renormalization by Gordon Slade.
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2018.0549
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