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Abstract
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The real problem is that of developing a hypothesis about initial structure that
is sufficiently rich to account for acquisition of language, yet not so rich as to
be inconsistent. Noam Chomsky

Nothing in linguistics makes sense except in the light of language learning.
Theodosius Dobzhansky misquoted1

The study of Language and Language acquisition spreads over several do-
mains of linguistics, such as cognitive and developmental linguistics and of com-
puter science, e.g. the theory/practice of artificial neural networks and machine
learning in general.

Surprisingly for a mathematician, there is a sharp disagreement between
linguists on several basic issues.2

1. What is Language? What is its main function?
2. What makes natural languages learnable? Is it an innate universal grammar

in our minds?
3. Can a statistical analysis of texts reveal the structure of language?
A mathematician’s answer would be
a natural class M of modelsM of languages and of (learning) transformations

of M 3 which, when applied to (a collection of texts from) a given library (corpus)
L, somehow embedded into M , would result in a modelM ∈ M of the language
L behind L.
We don’t claim we know exactly what kind of mathematics is adequate for this
purpose. All we can say is that it should not be bound to the formal language
theory and/or to (traditional) probability and statistics4, but must be developed
along the lines of Grothendieck’s ideas of

functorial naturality of mathematical concepts and constructions
and compatibly with

● basic linguistic principles,
● realities of natural languages,
● data of experimental psychology,
● experience of the machine learning theory.
In the following sections, 1.1-1.9 we shall briefly describe what kind of math-

ematics we have in mind and what we intend to achieve with it.

1.1 Library: a Shadow of a Mind
We do not understand, and, for all we know, we may never come to understand
what makes it possible for a normal human intelligence to use language as an
instrument for the free expression of thought and feeling. Noam Chomsky

Thoroughly conscious ignorance is the prelude to
every real advance in science. James Clerk Maxwell

1Nothing in biology makes sense except in the light of evolution.
2See https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_linguistics,

[11], [?] , [13] [16] [26], [2], [20].
3We don’t say algorithms to avoid an inappropriate association with Turing machines and

alike.
4See [?] for a brief overview of the probability problem
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Figure 1: Library

Our starting point is an imaginary library L, a collection of billions strings in
25 symbols found on the bottom of the Indian Ocean.5 We try, notwithstanding
what Chomsky says, to build a dynamic mathematical structure/model that,
in the case where L represents a natural language L,6 will be similar to what
would be (conjecturally) happening in the (subliminal) mind of a child exposed
to L in a natural way.

Compute, as physysts do, (relative) frequencies of different strings in L and
evaluate correlations between them.

Then we discover
(1) a systematic aperiodic recurrence

of a few million, seemingly random substrings in 10-50 symbols.7

From a physicist’s perspective this is highly improbable, virtually impossible.8

Yet, this is how it is in Life: multiple copies – let them be only approximate ones
– of improbably complicated patterns are seen everywhere – from DNA sequences
and genetic code(s) to human speech and human artifacts.

The second essential, also Life-like, formal feature of languages is discrete-
ness: texts are fragmented into

(2) individual (almost) non-ambiguously identifiable units:
words, phrases, sentences, paragraphs and other less pronounced ones. Because
of this you can talk about what you read, similarly to how you make little stories
of what you see in these pictures.

5We don’t make any assumptions on where this library come from and/or on how it is
organized. Yet, we speak of L as if it were an ordinary human library, say in English, where
our use of such terms as "word", "phrase", etc. albeit metaphorical at the first stage prepares
us to working out general mathematical definitions later on.

6Can the so mutilated idea of language be viable ? Depends on how you call this. Transform
mutilation ↦ idealization and quote Chomsky again: Opposition to idealization is simply
objection to rationality.

7A Google search for "don’t spend your time trying to figure out how" returns 10 000
results, a single one for "don’t spend your time trying how" and none for "don’t your time
trying how".

8Yet, it may be instructive to design a simple dynamical system with a recurrence similar
to the kind seen in natural languages.
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Figure 2: Too long to go around
Figure 3: Sleeping
beauty

But it is hard to make an informative story about a dead landscape, be it
on Mars or on Earth.9

Figure 4: Mars Figure 5: Earth

Despite their existence as independent entities, textual units, e.g. words, are
(3) connected by a dense network of functional linkages in texts,

neither mathematical definition of which nor their automatic recognition are
obvious.

To appreciate the problem, try to justify in general terms, with no ad hoc
grammar (or semantic) rule, why, in the following quote by Ferdinand de Saus-
sure, far refers to idea but not to language.

Everyone, left to his own devices, forms an idea about what goes on in
language which is very far from the truth.

(Read this sentence fast and you associate far with Everyone.)

9Natural languages are primarily adapted for narrations about Life, since 99% of what
your senses receive is: people, animals, plants, human behavior, human relationships, and
everything made by human hands. But once it comes to non-Life mathematics takes over.
For instance, the concepts of random field and/or of fractalmay describe textures of landscapes
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(4) Language – as Chomsky says – is a process of free creation: learning to
understand language, be it be written or spoken, is inseparable of learning to
speak (or write); mathematically, this is a process of

generation of new fragments of a language by string modification,
where these "modifications" decompose into

several elementary steps
such as

string insertion.10

The fifth essential feature of our intended model M of a language L, also
motivated by how human’s subliminal mind works, is

(5) a structural division of M into several weakly interacting parts, often
called moduli, and of the building process of M from L, into several parallel
subprocesses. 11

This parallel is, in fact, an interconnected network of elementary processes of
analysis of incoming language flows12 and of synthesis of outgoing flows.

The structure of this network will be an essential part of our model of lan-
guage and of language learning algorithms.

Classification and Similarities

The key to extraction of the structure of a language L from (samples taken
from) L, lies in developing a dynamic hierarchical13 network of similarities be-
tween (recurrent) patterns in L and of classification/clusterization schemes as-
sociated with (some of) these similarities.

Conceivably the rules for construction and use of this network may, at least
functionally, stand for the Chomskyan initial [linguistic] structure hidden in the
depth of the human mind.

1.2 Learning Transformations, Annotation of Texts, Effi-
ciency Functions, Modularity and Quasi-Commutativity,
Initial, Final and Intermediate Models of Languges

... we are interested in the operating principles of language because we hope
that this will give us some clues about the operating principles of the human
brain. Eric H. Lenneberg

Although library14 L is presented as a subset of the set A∗ of finite strings
in letters/symbols a from an alphabet A,

L ⊂ A∗
= ⋃

i=1,2,3,...

Ai
= A ∪ (A ×A) ∪ (A ×A ×A) ∪ ...,

10This is reminiscent of insertions and deletions of segments of DNA by mobile genetic
elements.

11Brain’s bottleneck is the low speed of sequential processing. This is compensated by
multichannel parallelism and a large volume of the long term memory.

Parallel recognition, which relies on different independent cues, goes much faster than se-
quentially following one letter after another, where the time is (at least) proportional to the
length of a string.

12Some of such "flows" in the human brain/mind may come from within.
13"Dynamic" means that the descriptions of (some of) similarities include the (algorithmic)

processes they are obtained with and "hierarchical" signifies that this network contains second
order similarity links between certain (first order) similarities.

14A linguist would call it "corpus".
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it would be misleading to define the corresponding language as such a subset,
where the obvious, albeit non-decisive issue, is non-existence of a natural set
A: alphabets of letters are pronouncedly artificial, while words don’t come in
packages of well defined sets.15

In any case, we are not after definition of Language — what we want to
eventually obtain is a mathematical model of representation of Language in the
human mind.

We envisage such a modelM of a language L, or of competence in L derived
from a library L,16 as a hierarchical network of units, kind of

Dictionary & Extended Grammar of L,
and of

algorithms for manipulating with these dictionary units and describing/prescribing
their relations/interactions with textual units, such as annotation, e.g parsing, of
texts from L, 17 where the decoration of (texts from) L with these annotations
is denoted

A = A(L) = AM(L).

For instance one of the read algorithms compares words/strings w from L
with these represented by units in the dictionary, thus recording all appearances
of each w in L.

Unlike what a linguist would do, we don’t attempt to straightforwardly de-
scribeM, but will characterise it as

a member of a certain simple general explicitly mathematically defined, class/space
M of conceivable modelsM.
The location ofM =M(L) in M can be specified in (at least) two ways.18

(1) Implicit Localization of M = M(L) in M . This is done by imposing
some mathematical criteria onM, e.g.

optimality of the speed of the read algorithm in balance with descriptive
complexity ofM.

(2) Constructive/Algorithmic Localisation. This is obtained by following a
path of learning, that, in the first approximation, is an orbit of a transformation

Λ ∶ M →M ,

where Λ consequently applies to an input M0 = M0(L) ∈ M . This latter is
defined on the basis of texts from the library L, and our path is the Λ-orbit of
M0,

M0
Λ
↦M1

Λ
↦ ...

Λ
↦Mst,

which is followed until you arrive at a stationary or approximately stationary
pointMst ∈ M , i.e. such that

Λ(Mst) =Mst or, at least, Λ(Mst) is sufficiently close toMst.
19

15Language is no more a subset in A∗, than a human being is a subset of atoms in the Milky
Way galaxy. And speaking of probability measures on A∗ instead of subsets doesn’t help.

16Our concept of linguistic competence is not limited to grammar, but includes much of
semantics and some aspects of pragmatics as well.

17These units may come from another library or generated by the learning algorithm itself.
18M stands for Chomskyan universal grammar: ... system of principles and structures

that are the prerequisites for acquisition of language, and to which every language necessarily
conforms; specification of the position ofM in M corresponds to the choice of parameters.

19To get an idea, think of M as the class of all finite graphs and of Λ as an instruction
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Maximising Efficiency. Ideally, we would like to have a short description for
an efficiency function E = EL(M), M ∈ M , and then define (the scheme of)
learning as an optimization process for this E on M .20

Parallelism and Commutativity. Learning, as all subliminal mental
processes, is not linearly organized, it is not ●

Λ
→●

Λ
→●

Λ
→●

Λ
→●

Λ
→●

Λ
→●

Λ
→●

Λ
→●..., but runs

in several (probably, a few hundred) parallel channels,21 which correspond to
the moduli, i.e. the weakly interacting parts into which M , and, accordingly,
M decompose:
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Λ
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●
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Λ
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Λ
→●

Λ
→●
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→●

Λ
→●

Λ
→●
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→...

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
... ... ... ... ... ... ......................

What is essential, and what greatly enhance efficiency of learning is that
(most of) these parallel processes are (locally approximately) commute, where
this quasi-commutativity is due to the structural and dynamic quasi-independence
of the corresponding moduli.22

Keeping this in mind, the second approximation of what we call the scheme
of learning is pictured as a partially ordered and approximately commutative
semigroup Λ generated by Λ, Λ, Λ, Λ ..., that operates on M . This allows many
different paths of learning corresponding to different compositions, e.g.

Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ... and Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ ○Λ...,
which, when applied to M0, terminate close each to another in M . (Later on
we clarify and refine this picture.)

Decomposing E . The beneficial role of modularity&commutativity in learn-
ing is most clearly seen in terms of E .

In fact, since M and Λ decompose into weakly interacting parts, the full
efficiency function E , if it were something like energy, would (approximately)
decompose into the sum

E ≈ E + E + E + E ...,

and optimisation of E would (approximately) reduce to optimisation of all sum-
mands independently. (Some of these E are described in the following section.)

Beside "naked sums", the non-cancellation property – that is what makes
one-at-a-time optimization possible – is satisfied by linear combinations with
positive coefficients as well as by non-linear functions in E ,E ,E ,E ... that are
monotone increasing, e.g. inf(E ,E ,E ,E ...).

for modifications (building and rebuilding) graphs, where such a Λ is qualified as a learning
algorithm only if it is robust and simple.

20The existence of such an E is postulated in most versions of the mathematical/machine
learning theory, but we don’t take this for granted.

21When it comes to programming, this needs to be represented by a sequential algorithm,
which is, however, by no means equivalent to the original parallel one.

22Besides grammars of natural languges, where it makes little difference, for instance, in
which order one learns conjugation of irregular verbs in English or conjugations of verbs
and inclinations of nouns in Russian, modularity&quasi-commutativity is present in many
domains of human intellectual activity, e.g. in mathematics, which is organized in a networks
of quasi-independent "theorems".
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But in any case, there is no a priori reason to think of E as a number valued
function and to be concerned with linearity. What is essential, at least at the
present stage, is the partial order induced by E on M .

Summing up, we are faced by the following issues.
1. Description in most general terms of mathematical structures we expect to

see in mental modelsM of languages and furnishing the totality M of all suchM
with a (preferably mathematically natural) structure, adapted for effectuating 2, 3,
4 below.

2. Representation of L by anM0 in M .
3.Construction of parallel (algorithmic learning) families of transformations

Λ ∶ M ⇉M ,

possibly based on efficiency criteria for a positioningM =M(L) in M
4. Finding criteria for the quality of performance of a givenM and/or of Λ.
Between M0 and M. Even if we roughly know what the immediate input

from L to the mind of a learner is and and what, in general terms, the structure
of languges could be, an essential conceptual difficulty remains, since we have
no direct data on the structure of

imperfect models corresponding to intermediate stages of learning,
which are present, for instance, in the mind of a child who learns a language.

All we can do at this point is to quote Darwin:
Every new body of discovery is mathematical in form, because there is no

other guidance we can have.
An instance of such a "form" that is suggested by the mathematical category

theory is a model of learning represented by a function (functor?)

L ;M =M(L)

defined on a certain class of libraries L, e.g. sub-libraries of some L or of mental
sub-quotients23 of L.

Although this, as much as any ad hock mathematical idea, can’t be directly
applied to the real life problem of learning, it does set you mind on a new course
of thinking which we shall pursue in the following sections.???

1.3 Numbers, Probability, Statistics
The grand aim of all science is to cover the greatest number of empirical facts
by logical deduction from the smallest number of hypotheses or axioms.24

Albert Einstein

Small and Large Numbers. Since our model M of the language L is
supposed to imitate the pristine mind of a child, it will explicitly include only the
numbers 1,2,3, rarely, 4, while everything from 5 on will be in the same basket as
infinity. But to simplify, we shall allow manipulation with larger numbers, e.g.

23Such a sub-quotient will be formally defined later on as a kind of a mental perception of
a sub-library of L by a learner.

24A physicist’s ambition is a theory based on few, say k < 10, basic rules with exponentially
many, k ; k

n, n = 1,2,3,4,5, .... logically deducible empirical facts. In biology, one would be
happy with K ; Kn=2 for large (about million?) K with admissible 80% error rate. And in
linguistic the realistic exponent, I guess, is n = 3.
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for evaluation of relative frequencies of words in L, without explaining every time
how it could’ve been performed in a number free combinatorial environment.

On the other hand, we use numbers in our (external) description of properties
ofM, such as the size ofM where – this is crucial in design ofM–

no model of a language, or of anything else associated with Life, makes sense
outside a narrow range of numerical possibilities.25

Unlike the exponential size (> 10100) of the number all conceivable strings/sentences
in a language L, our L,M, M , Λ must be moderate.

Thus, the realistic size of a library L needed for learning L,
although above 106-108 words, must be below 1012- 1014 words.26

The description of the expected modelM (a representative list of vocabulary
of L, the grammar and the read and write algorithms) must be

in the range 106-108 words,
while the "universe" M of all possibleM and the learning instructions that de-
fine the learning ( transformation) Λ of M must admit fairly short descriptions:

a few pages for M
and at most

a couple of hundred pages for Λ,27,
where, an implicit description of Λ via a suitable efficiency function E derived
from universal principles of learning, may be describable just on a dozen pages.)

*****************************************************************
The true logic of this world is in the calculus of probabilities.

James Clerk Maxwell

... probabilistic models give no particular insight into some of the basic
problems of syntactic structure. Noam Chomsky

Probability beautifully works in symmetric environment, e.g in homoge-
neous or nearly homogeneous spaces, such as the spaces of (states of) identical
molecules of a gas in a box. But in order to be meaningfully applicable to het-
erogeneous structuresidentical one encounters in "non-physical worlds", e.g. in
the world of languages, the traditional probabilistic formalism and its use must
be limited and modified in several ways. For instance, one can’t unrestrictedly
iterate product formulas, e.g. chain rule P (A&B) = P (A∣B) ⋅ P (A), since ac-
cumulation of errors renders results meaningless, even, where, which is rare in
languages, these P (A∣B) and P (A) are meaningfully defined.28

In any case, since we don’t admit large numbers into out model M, it will
be, at least overtly, predominantly combinatorial rather than stochastic.

25"Infinite", "arbitrarily small", "arbitrarily large", etc, are bona fide mathematical con-
cepts. Their application in modeling physical systems (e.g. via differential equations) is (non-
trivially) justifiable and (often inexplicably) successful. But their unrestrained use in biology,
psychology, linguistics and philosophy of AI breeds nothing but pointless speculations.

26109 words corresponds to a ten thousand average books, and 1014 to a hundred billion
Google pages, where the number of all books in the world is of order 108 and the number of
Google pages is about 3 ⋅ 1013.

27This is, probably, how much the inborn language learning programs/moduli, most of them
operating in parallel, occupy in the brains/subliminal minds of humans.

28If each consecutive word in the sentence ... probabilistic models... is assigned probability
≈ 1

5
– this, albeit inaccurate, is meaningful – then the probability of the whole sentence will

come up as meaningless 5−15 ≈ 1
3⋅1010 , where a minor perturbation, of 1

5
to 1

4
increases the

result by huge (>28) factor. See ?? section for more about it.
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Yet, the construction of M and evaluation of its performance will rely on
statistics, such as (properly interpreted) distribution of (small) textual units,
e g. of words, in our library L, where, if it seems admissible, we use basic
probabilistic concepts, such as frequency, correlation, entropy.

1.4 Operational Segments and Contextual Domains
The full picture of the universe of models M may still remain vague but an
essential part of the first step of the learning process Λ ∶ M ⇉ M is quite
apparent. It is

Segmentation of L: identification of operational segments in the library, 29

where the basic such segments S, called words are, typically, 2 - 20 letters long.
(Recall, there are 25 letters in the alphabet of L.)

These may contain significant subsegments called morphemes, while certain
consecutive strings of words make larger segments called phrases and sentences,
say, up to 50 words in them.30

We stop at paragraphs (100-200 words),31 but we identify large contextual
domains, called LCD in the language L, where the corresponding, slightly am-
biguous, fragments of L may be of various, often unspecified, size, say of at
least million words in them (about 10 books) and where certain LCD may be
decomposed into subdomains, subsubdomains, etc, e.g.

biology ⊃ molecular biology...

⊃

science ⊃ chemistry ⊃ organic chemistry ⊃ chemistry of hydrocarbons...

⊂ ⊂

physics... chemistry of metals...
The number of such domains depends on diversity of cultures of contributors

to L. In English, I guess, the number of linguistically significant LCD may be
counted in hundreds (maybe thousands?), but languages spoken by small groups
of people (who make no libraries) may have only 2-3 contextual domains32

These (large) domainsD are identified in parallel with (short) significant/operational
segments S by the following (seemingly circular) properties.
↺ A segment S is operationally significant if the string contained in it,

denoted,
...

S, unreasonably frequently appears in some (or several) D.
↻ A domain D is semantically significant if a particular significant segment

(or a group of segments) appears in D abnormally high frequency.
From Numbers to Structures.

Turning↺ and↻ into actual definitions will be done later on along the
following lines.

Unreasonable will be defined by requiring the probability P (S) of a significant
S to be significantly greater than the product of probabilities of subsegments,

29We assume that the learner understands the geometry of the (imaginary) line which
supports the symbols/letters from L.

30These numbers, may depend on peculiarities of L, but all languages generated by minds
comparable to ours, are likely to be divided into segments with the information contents
similar to how it is in English.

31Division into pages, chapters, volumes, and topical shelves, albeit helpful to the learner
(if recognizable) is rather arbitrary.

32Properly linguistically defined, these domains may be multiple in all human languges.
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S1, S2 ⊂ S for all decompositions S = S1 ∪ S2,

P (
...

S)

P (
...

S1) ⋅ P (
...

S2)
>> 133

(One may assume that S1, S2 ⊂ S don’t overlap.)
Besides, S must be maximal in the sense that

P (
...

S)

P (
...

S+)
>> 1

for all segments S+ ⫌ S
(This will be generalized to include rare words and phrases e.g. by introduc-

ing some equivalence between certain rare strings.)
Then, abnormally high will be defined by giving a precise meaning to S

appearing in D much more frequently that outside D, where, additionally, this
frequency must be, statistically speaking, uniform that is (roughly) the same in
different parts of D.34

The above "definitions" illustrate the idea that

combinatorial structures of a (quasi)deterministic model of a
language L can be derived from statistical analysis of texts
from a sufficiently representative library L.

Segments instead of Strings and the Relation
...
∼. Each string of

letters in L defines a segment on the imaginary real line, where different seg-
ments may contain equal strings. When speaking above about frequencies or
probabilities of segments S, we always mean the string contents of S, denoted

...

S,
and observe that equality of the strings,

...

S1 =
...

S2, defines an equivalence relation
on the segments, denoted

S1
...
∼ S2.

In fact, this equivalence relation on the segments in L uniquely defines the
linguistic content of L with no reference to any alphabet.

Thus the set of segments in L turns into a vertex set of a graph, call it
SG = SG(L), where some edges correspond to ...

∼-relations35 and some encode
the geometry of mutual positions of segments, e.g. indicating adjacency and/or
inclusions between them. Then the resulting 3-colored graph on the set of signif-
icant segments provides a combinatorial representation of L which will be used
later on for the definition/construction of the initial modelM0 =M0(L) ∈ M .

33Although the definition of probabilities of S, S1 and S2 is problematic without specifying
the contextual domain D these belong to, the ratio P (S)

P (S1)⋅P (S2) is rather independent of D,
while specific meaning of >> 1 is a parameter that must be eventually adjusted to the reality
of L.

34Large contextual domains, similarly to those of landscapes (be them on Mars or on Earth
as in pictures on p.4) are characterized by distributions of various patterns, which, besides key-
words and key (short) phrases may include, for instance, specific grammatical constructions,
such as particular (longish) sentences with subordinate clauses.

35In spoken language, the sound matching between utterings is only an approximate one
while the (almost) perfect linguistic matching between clouds of sounds emerges at a later
stage of speech analysis.
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Composable Transformations. Some of the edges in the graph SG, e.g. those
representing an inclusion of stings, such as rtyui↪ eatyrtyuiabcyc.

An essential feature of these and some other transformations of segments, is
composability: given

f12 ∶ S1 → S2 and f23 ∶ S2 → S3 there is a composition f13 = f12 ○ f23 ∶ S1 → S3,

which satisfies the associativity relation

(f12 ○ f23) ○ f34 = f12 ○ (f23 ○ f34),

that brings to one’s mind the formalism of the mathematical category theory.
Warning. Most linguistic transformations even if composable but then only

approximately, and also there are limits to the number, probably < 5, of consec-
utive compositions one can meaningfully perform.

1.5 Linguistic Trees and Linguistic Cores.
It seems, that the main mathematical actors in models M of languages must
be trees rather than numbers.

Most common in linguistic are parsing trees that correspond to nested seg-
mentations of texts, e.g.
([.....][(.......)(...... )(.......)][.......][.......])([......]{[....][.....][...]}[......... ][...]),

where the corresponding tree is as follow.

Figure 6: Tree of Segments

Definition of T (
...

S). Bulkier but logically simpler trees T , which represent
branchings of strings

...

S in L, are defined as follows.
Given a string

...

S, assume, to be specific, it is a word, let
...

S∗ denote the copies

of
...

S in L and let
↔

S ⊃
...

S∗ ⊂ L be the segments in L, which extend
...

S∗ on the left
and/or on the right by at most k words on both side, say, for k = 10. (Thus,

each
...

S∗ is contained in ten or less of such
↔

S .)

Then, glue pairwise all pairs of these extended segments, say
↔

S1,
↔

S2 along
subsegments

↔

S
′

1 ⊂
↔

S1 and
↔

S
′

2 ⊂
↔

S2,

such that
●
↔

S
′

1 contains
...

S1 and
↔

S
′

1 contains
...

S1,
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● the segments
↔

S
′

1 and
↔

S
′

2 have equal string contents, moreover – this is a nec-
essary precaution – that there is an isomorphism between the strings contained
in them which sends

...

S1 to
...

S2.

● the subsegments
↔

S
′

1 and
↔

S
′

2 are the maximal ones in
↔

S1 and
↔

S2 with the
above two properties.

It takes a bit of thinking to realize that that these gluing mutually agree
for triples of segments on the subsegments where all three gluings (arrows) are
defined,

↔

S1

↔

S2

↔

S3

and that the graph obtained by gluing all these is a tree, which we denote

T (
...

S) = TL(
...

S) = Tk,L(
...

S).

Notice that the direction in L – we assume that the strings in L are directed–
induces directions in the trees T (

...

S) for all strings/words
...

S. Accordingly, T (
...

S)
decomposes into the union of the the backward tree and forward tree,

T (
...

S) =
←

T (
...

S) ∪
→

T (
...

S),

which intersect over a single segments corresponding to
...

S.36

Figure 7: Tree
←

T (
...

S) ∪
→

T (
...

S)

Since k = 10 is pretty big, an overwhelming majority of k-strings uniquely
extends to longer strings; hence, the left(red) leaves as well as the right (blue)
ones represent essentially all appearances of the string

...

S in L, which allows a
36It is unclear if there is a formal criterion, e.g. in terms of combinatorics of the forward

and the backward trees, that would (correctly) foretell directionality of human languages.
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reconstruction of the (relative) probability of (presence of)
...

S in L from either
←

T (
...

S) or
→

T (
...

S).37

However, the combinatorics of these trees, especially if pruned by limiting

the segments
↔

S in L to certain fragments of L, e.g. corresponding to specific
contextual domains, may be linguistically more informative, than brute proba-
bilistic numerology.

About Cores. An (approximate) tree-like organization is also present at
the other extreme – in partitions of natural languages L into large contextual
domains.

Conceivably, there always exist a formally identifiable distinguished domain
in any human language L – the linguistic core of L, which (almost) fully represent
the grammar and the basic semantic rules of L

Figure 8: Core and around

Possibly, in order to succeed on a later stage, learning a language must
start with this core (unless pledgor hereby grants and assigns to Patentee the
un-litigatable right for peremptory challenge activities).

1.6 Links, Units, Equivalence Classes and Similarity Net-
works

... no language has ever been described that does not have
a second order of relational principles... .

Eric H. Lenneberg

Understanding of texts starts with detection of textual units (words, phrases,
sentences) and of functional links between them with simultaneous classification
of these units and links.

For instance, in the sentence
"The dog smiled, approached a linguist and gave him fleas"

37Only a minority of the pairs ([left-leaf]→[right-leaf]) correspond to strings in L, where the
set of these carries a significant combinatorial information that may be (or may be not) also
linguistically significant.
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there present five distinct classes of words (articles, nouns, verbs, pronoun,
conjunction) and several relation between them, including six nouns/pronouns
- verbs links:

dog⇆smiled/approached/gave,
approached⇆linguist/gave⇆him,
gave⇆fleas,

and also a noun - pronoun link with quite different function;
linguist↶him.38

There are also larger significant operational segments that are subunits of
this sentence, such as "dog smiled" and "gave him" along with certain linkages
between them, as well as subquotient-units such as "dog gave flees to the linguist",
but not "linguist gave fleas to the dog, as it is in

"The dog smiled [and] approached a linguist who gave it fleas".
All this seems boringly simple, unless you start thinking of a language L

behind our library L, where the answers to following questions are far from
clear.

Questions. Do these ⇆, ⇆, ,⇆, ↶ "really" exist or are they chimeras of
the common sense or phantoms of linguistic imagination?

If real, can they be mathematically defined?
Our Answer. In the first approximation, links between words are defined

via
equivalence classes of particular recurrent patterns of words in L.

Thus, for instance, amazingly (for some), Google, which can’t be blamed for
understanding the concept of size, convincingly pinpoints the antecedents of it
in the following sentences by telling who is small and who is large.

This package doesn’t fit into my bag because it is too large.
This package doesn’t fit into my bag because it is too small.39

The Google search shows:
10 000 results for "the package is too large"&"doesn’t fit",
5 results for "the package is too small"&"doesn’t fit",
20 000 results for "the bag is too small"&"doesn’t fit",
10 results for "the bag is too large"&"doesn’t fit".
Unambiguously, "doesn’t fit" goes along with small bags and large packages.
However, the following (logically perfect and unbearably trivial) pair of state-

ments causes Google a problem.
This package fits into my bag because it is large/small.

Indeed, there are 20 000 results for "fits"&"the bags are large" and 25 000
for "fits"&"the bags are small".

But "being large/small"&"package fits" works again.
This indicates that "recurrent patterns" must be set into

hierarchical networks of (quasi)equivalence relations between such "patterns"
that would bridge, for instance, "fits" with "doesn’t/fit’ and, on the next level,
would connect the above "...doesn’t fit into my bag..." with

"The truck can’t go under the bridge since it is not low enough"
along with other such sentences.

38Unlike the above ⇆, referential links such as ↶ don’t glue words into textual units.
39These are tailored for the Winograd schema challenge.
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In fact,
networks of equivalences and of associated classification trees, along with
weaker similarity realtions are pivotal in representations of whichever
enters the human brain.
Identification and classification of these relations between textual patterns

in the library L is an essential part of building the model(s)M of the language
L.

Summing up, the role of similarities in (learning) Languages is threefold.
1. The network of similarities by itself is an essential ingredient of the

structure of a language.
2. Most structures in languages can be defined only in a presence of certain

similarity/equivalence relations.
(For instance, grammar operates with equivalence classes of textual units,

such as "word", "phrase", "verb", etc.40)
.
3. Systematic division of large sets of (textual) units into small sets of classes

allows detection of systematic patterns in languages despite poverty of data.
(For instance, only an exponentially small minority, < 10−20, of strings in

seven English words can be found in the text in all libraries in the world, since
these contain less than 1015 out of possible, > 1035 = 100 0007, such strings.
But if we replace each word by a part of speech, then a modest library with
109 > 400 ⋅ 87 words in it will suffice.)

Mastering these, a (universal) computer program will have no trouble in
finding the missing word, in the following sentence,

When the green man stumbled upon a colorless idea, [?] wiggled furiously.41

1.7 Bootstrapping of Similarities, Coclustering and Com-
position of Functions.

If an x is systematically observed to be related to a y and an x′ is similarly
related to y′ and if there are weak similarity realtions y ∼ y′, for many pairs
(y, y′), then we conclude that x is strongly similar x′.

For instance, if two words x and x′ are often surrounded by weakly similar
words, then x and x′ themselves. must be strongly similar.

Formally, let ρ(x, y) be a function in the two variables x ∈ X and y ∈ Y
with values in a set R, that expresses a link between x and y by the relation
r = ρ(x, y) ∈ R,

x↔
r
y.

For instance, x and y may be words from a dictionary, say with 100 000
entries and r stands for the relative probability of x being immediately followed
by Y ,

ρ(x, y) =
P (xy)

P (x)P (y)

40The traditional definition of these concepts is not acceptable for a mathematician.
41It is the poor.
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What happens in many real world situations is that functions r(x, y), defined
on fairly large pairs of sets X ∋ x and Y ∋ y, say of cardinalities around 106,
can be reduced to functions r(a, b) on much smaller sets A ∋ a and B ∋ b,
say of cardinalates around 100, where this reduction is accomplished by maps
α ∶X → A and β ∶ Y → B, such that

ρ(x, y) = ρ(α(x), β(y)).

Such a reduction, IF it exists, serves, two purposes.
1. Clusterizations of X and Y . The sets sets X and Y are naturally

(for ρ) divided into classes/clusters42 that are the pullbacks of points from A
and from B,

X = {Xa}a∈A, Y = {Yb}b∈B , where Xa = α
−1

(a) and Yb = β−1
(b).

2. Compression of information. Let, for instance, R be a two ele-
ment set. Then ρ(x, y), as it stands, needs ∣X ∣ ⋅ ∣Y ∣ bits for its encoding, while
ρ(a(x), b(y)) needs

∣A∣ ⋅ ∣B∣ + ∣X ∣ log2A + ∣Y ∣ log2B bits.

This, in the case of a 105-dictionary and division of words into 100 classes,
compresses the information by four orders of magnitude,

from 1010 to 1.5 ⋅ 106(> 104 + 2 ⋅ 105 ⋅ log2 100),
And for ternary relations r = ρ(x, y, z), the enormous 1015, that lies beyond

the resources of any human library, thus reduces to the modest 107 – the size
of a moderate pdf file.

Compositions of Listable Functions. Nature is not imaginative: what-
ever she does, she repeats it again, be these big steps of evolution or little
syntactic operators in your brain.43

Mathematicians, who are no exceptions, love iterating maps and composing
functions; thus we are lead to expressions like

σ(x, y) = σ(ρ
1
(α1(x), β1(y)), ρ2

(α2(x), β2(y)), ρ3
(α3(x), β3(y))).

44

But we deviate at this point from the pure math tradition by limiting the
classes of functions to which this applies.

We start with what we call listable functions ϕ ∶X → F , where the domains
X have moderate size, and where the ranges F are log-moderate (i.e. log ranges
are moderates).

This is supposed to correspond to what happens in the real life (of lan-
guages45), where, to be specific, we agree that our "moderate" reads as follows:

the product ∣X ∣ ⋅ log2 ∣F ∣ lies in the range 103-108.
such as it is done by indications of parts of speech in dictionaries, for example.

42Clusterization means an ambiguous classification: clusters, unlike what is called classes,
may overlap. This happens, which is common in our cases, when the relation r(x, y) =
r(α(x), β(y)) holds only up to a certain error.

43Repetitive use of the latter is called "recursion" by linguists.
44There are several domains in mathematics where one studies repetition and iteration: dy-

namical systems, abstract algebraic systems, operads, (multi)categories, just to name a few.
45Parts of speech tags in your mind dictionary is an instance of such a function.
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In what follows, we shall be concerned with functions in several variables,
ϕ(x1, x2, ...), where listability imposes a much stronger constraint on the cardi-
nalities of X1, X2, ..., namely,

∣X1∣ ⋅ ∣X2∣ ⋅ ... ⋅ log2 F < 108,

which is not, in general, satisfied by moderate X1, X2,... and where one is faced
with the following

Fundamental Problem. Find, whenever possible, an effective representa-
tion/approximation of a function in several variables, say ϕ(x1, x2, x3), where the
domains Xi of xi, i = 1,2,3, are moderate and the range F of ϕ is log-moderate.

Example. Let X1 =X2 =X3 be the set of 1000 most common English words
and χ(x1, x2, x3) expresses the plausibility of the string [x1x2x3] in terms of
{yes,maybe, no} outcomes.46

A modest library with 1010 words can provide a fair list of all plausible three
word sentences.

But no realistic library would list all plausible strings in five (six?) or more
words.

We postpone a precise formulation of this problem until sections ??? ???
but now state the following more special

Composability Problem.Develop algorithms for representation and/or ap-
proximations of plausibility functions χ(x1, x2, ...) in languges by compositions (also
called superpositions) of few, say, a couple of dozen, listable functions.

Besides, we want to have a similar composition description of other linguistic
functions and transformations such as depicted by the following red arrows.

This man is an infamous car eater. ↦ Who is this man?
↓ ↓

What is this man infamous for? How many cars has this man eaten?
↓

Who knows what this man is infamous for? ↔ I do. I know what this man
is infamous for. ↱

Has he eaten your car? ; Have you ever tried to eat a car yourself?...
Motivation. The human (and animal) brains/minds keep extensive "lists"

of information in their long term memories, while an (the?) essential feature
of mental (sub)processes is a tendency of repeating and composing (some of)
them.47

This suggests an algorithmic mental representation of functions/transformations
e.g. as above, by compositions of listable ones.

1.8 Four Levels of Understanding
...grammar is autonomous and independent of meaning,.. .

Noam Chomsky
46What will be sense/nonsense judgement of the following sentence by people with different

backgrounds?
Neither/nor, that is, simultaneously either or; the mark is also the marginal limit, the

march, etc.
47The latter, as we mentioned earlier in section 1.4 invites the mathematical category theory

and/or, depending on your background, the theory (and practice) of artificial neural networks.
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In the realm of grammar, understanding involves the extraction of relations
between word classes; an example is the understanding of predication.

Eric H. Lenneberg

Level 1: Grammar and Semantics. Chomsky illustrates the power of
grammar over semantics with the following examples.

He thinks Hobbs is clever ↔ Hobbs thinks he is clever.
Bill is easy to please ↔ Bill is eager to please.
John is too angry to talk to ↔ John is too angry to talk to Mary.
Instinctively, eagles that fly, swim.
This, and "formal" properties of Languages in general, can be described in

terms of spaces of sequences in letters, say from a 25-letters alphabet A, with
no reference to learning and/or to grammar, as follows

To be concrete, assume that sequences from a library L,

L ⊂ A∗
= ⋃

i=1,2,3,...

Ai
= A ∪ (A ×A) ∪ (A ×A ×A) ∪ ....

are of length l = 10-103 and let the cardinality of L be of order 1010-1013. Then
the corresponding (grammatically and semantically acceptable) language L can
be defined as a subset of A∗, with the following properties.

A. L contains L, or, at least almost all of L, say, with 0.1% exceptions.
B. The subset L ⊂ A∗ is defined in a purely mathematical terms without a

direct reference to L.
C. The mathematical description of the transformation L ; Lmust be short,

functorially natural and logically simple48 say, expressible in a few million words,
where the bulk of such a description would be occupied by information extracted
from L.

D. The expected cardinality of L must be much larger than that of L, con-
ceivably, exponential in the the length l, of order 20cl, for a positive moderately

48See section ??? ??? for more about it.

19



small c, where, possibly, c = c(l) depends on l, yet remains strictly pinched
between 0 and 1 for all l.49 50

Level 2: L-Internal Meaning. If L is a language, then there is a
distinguished class of similarity relations between strings w from L, e.g. between
words and/or sentences, which is generically expressed in English by saying that

w1 and w2 have similar meaning.

This class has several specific formal properties as well as several rules of
strings transformations preserving or controllably modifying this "meaning",
e.g. for making summaries of texts in L.

Level 3: Self-referentiality. Natural languges are universal, they
can encode all kind of messages and express all kinds of ideas. In particular
fragments of a language may contain references to and description of other
fragments.

Most common of these are "local references", which are encoded by syntactic
rules, e.g. modulated by "which", "what", "this" and "that", etc.

An instance of a longer range self-referentiality is as follows.51

Speaking of meaning in the above 2, we have purposefully warded off the idea
of "meaning of a word" residing within something from "the real world".52

Level 4: Mind behind the words. We may have, a priori, no means of
relating what we find in L with events (and objects) in our everyday lives.

However, we assume that the essential mental processes of the authors of
(various fragments) of L closely resemble ours.

Thus we may be able to relate certain words and sentences from an unknown
language L with our own mental states and to understand such phrases as
follows.

I think she may be certain he’ll never know what really happened
49Similar extensions can be defined for other "libraries", e.g. for DNA and protein databases,

but, as in the case of languages, this offshoot of the set theoretic way of thinking shouldn’t
be taken seriously.

50Probably, this c(l) for natural languages, stabilizes for l ≥ 100 (about 10-15 words) for
natural languages, but this may be different for other similar natural extensions of spaces of
the real world sequences, e.g. those of genomes.

51This "as follows" is also such an instance.
52I guess no existing program can pass the Turing test if asked which word in this sentence

contain letter "x" or which word in eight letter has no "x" in it or anything of this kind. An
easier, but still insurmountable for modern programs task would be to properly respond if
asked whose and which disability was described in the previous sentence.
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In sum, it seems to me (or am I missing something?) these 1-4 are necessary
and sufficient for understanding a language L.53

To get an idea of what this understanding means, think of of two linguists
from two different worlds, who learned the language L from a library (different
libraries?) L, found on a third world, and who communicate across the space
with L being their medium of communication.

If they have mastered 1-4 they will be able to productively talk about L
and L, and eventually, will have no difficulty of teaching each other their own
languges and, up to some extent, to explain one to another their ways of life.

1.9 Universality, Novelty, Redundancy, Entropy, Informa-
tion, Prediction, Generalization

...novelty and variety of stimulus are sufficient to arouse curiosity in the rat and
to motivate it to explore (visually), and in fact, to learn...

... notion probability of a sentence is an entirely useless one, under any known
interpretation of this term.

Noam Chomsky

The only alternative to the pessimistic Chomskyan ...we may never come
to understand what makes it [language] possible... is the existence of a purely
mathematical model of learning and understanding language as well as of the
evolutionary development of language(s), where the former54 depends on the
conjecture that
learning and understanding are governed by a limited number of universal princi-

ples, which can be formulated in mathematical terms with no direct reference to
the so called "real world" and/or the "linguistic intuition".55

Some of there principles, being pragmatic, are apparent, such as
the speed of speech production and speech perception:

(Evolutionary speaking, speed is survival – precision is a luxury.)
Another such simple principle is

economy of resources and issuing compression of information.
Interpretation and implementation of these depends on the following func-

tional features of the brain/mind derived from neurophysiological data:
∗ mental processes run in parallel in many channels quasi-independently;
∗ whatever comes to the brain is not accepted directly but
it is continuously compared with what is generated by the brain;
this generation, which depends on the memory of the past, is
activated by –cues – partial/reduced information that the brain receives/extracts
from the flow of incoming signals.56

This is manifested by pervasive brain’s predictions of "what come next",
where

● the success of these predictions depends on detectable redundancy in texts,
53At least 1-4 are sufficient for understanding this sentence.
54We don’ t touch upon the latter in this paper.
55Exclusion of the real world is very much Chomskyan but I doubt this applies to universal

rejection of intuition.
56In a limited way, this may even apply to the brains of newborns.
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● specific predictions rely, besides the memory and textual cues, on brain’s
tendency of maximal generality that is for us synonimous to maximal simplicity
of the prediction rules,

● interpretation of what simplicity means in a particular situation depends
on the background knowledge accumulated by the brain.

With this in mind, we shall define in section ??? the prediction profile, Π(L)
that is a structural invariant of libraries L, which is closely associated with the
annotation A(L) (see section 1.2) and which is essential in developing the first
level of understanding of the language L.

This Π(L), albeit combinatorial and quasi-deterministic, is constructed on
the basis of a statistical input in the form of (a network of) entropy/information
profiles of L.

(These "profiles" appear under different names in the contexts of skipgrams,
intrinsically motivated learning, curiosity driven algorithms, fun as intrinsic
motivation, interesting ergostructures, see [18] [19] [21] [22] [3] [10] [1] [12] [6]
[15] and also sections ??? ???.)

2 Commentaries to the sections 1.1-1.9

2.1 Learnability
Since the natural inclination to language is universal to man, and since all men
must carry the key to the understanding of all languages in their minds, it follows
automatically that the form of all languages must be fundamentally identical
and must always achieve a common objective. The variety among languages can
lie only in the media and the limits permitted the attainment of the objective.
Von Humboldt (1836)

Gold, E. Mark (1967). "Language identification in the limit" (PDF). Infor-
mation and Control. 10 (5): 447-474. doi:10.1016/S0019-9958(67)91165-5.

Kent Johnson, "Gold?s Theorem and Cognitive Science"
http://www.lps.uci.edu/~johnsonk/Publications/Johnson.GoldsTheorem.

pdf
Valiant, Leslie (Nov 1984). "A theory of the learnable" (PDF). Communi-

cations of the ACM. 27 (11): 1134-1142. doi:10.1145/1968.1972
Paul Smolensky, "Learnability in Optimality Theory" (long version)
https://www.researchgate.net/publication/2459518_Learnability_in_

Optimality_Theory_long_version

2.2 Linguistics and Biology
Colloquial language is a part of our organism and
no less complicated than it. Ludwig Wittgenstein

It’s perfectly obvious that there is some genetic factor that distinguishes
humans from other animals and that it is language-specific. The theory of
that genetic component, whatever it turns out to be, is what is called universal
grammar. Noam Chomsky

The idea of biological nature of language had been circulating since early
1800s in several fields. It appears in Darwin’s 1830s notebooks and it is discussed

22



at length in his Descent.57

In the mid1900s, this idea was revitalized by Noam Chomsky58 and Eric
H. Lenneberg 59, who formulated it in definite terms and brought forth an
additional evidence in its support.

From mathematical perspective, the relevance of this idea is twofold.
I.A. The bit-wise description complexity of our M – the universe of models

as a representation of the innate universal grammar is bounded by the amount
of information encoded in the human genome that is responsible for the brain
function and/or – this seems more relevant, in the brain morphogenesis.

Moreover, the logic of genome evolution necessitates simplicity of principles
of combinatorial arrangement of modelsM.

I.B. Comparing language with genome.
About I.A.. Since only a small part of ≈ 2⋅109 base pairs in the human genome

directly contribute to the brain development and function, one can safely bound
the description complexity of M by 107-108 bits.

Figure 9: Taken from Brain Behav. Evol. 2014;84:103-116

A better bound, 104 − 105 bits, is suggested by what is known on the rate
57See [5], also see [?] and references therein.
58E.g: The fact that all normal children acquire essentially comparable grammars of great

complexity with remarkable rapidity suggests that human beings are somehow specially de-
signed to do this, with data-handling or ’hypothesis-formulating’ ability of unknown character
and complexity. A Review of B. F. Skinner’s Verbal Behavior by Noam Chomsky "A Review
of B. F. Skinner’s Verbal Behavior" in Language, 35, No. 1 (1959), 26-58

mutations take place in individuals, not communities, so that whatever rewiring
of the brain yielded the apparently unique properties of language, specifically re-
cursive generation of hierarchically structured expressions.... Human Na-
ture and the Origins of Language, https://www.scribd.com/document/157738595/
124318167-Noam-Chomsky-Human-Nature-and-the-Origins-of-Language

59E.g: ... man’s biological heritage endows him with sensitivities and propensities that lead
to language development in children, who are spoken to... . The endowment has a genetic
foundation, but this is not to say that there are "genes for language," or that the environment
is of no importance.[14]
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of mutations of hominid genome for the last 30 000 - 300 000 generations, but
this remains speculative.60

Besides, a single mutation, e.g. gene doubling, may entail a signifiant change
of genome, and a bit-wise minor modification of a high upstream regulatory gene
may have a profound morphogenetic effect, e.g. by switching on/off an elaborate
morphogenetic mechanism.

The following (very informative) extract from Brain Behav. Evol. 2014;84:103-
116 [24] gives a fair idea of this.

With the exception of echolocating bats where FoxP2 has undergone accelerated
evolution in regions of the protein with unknown functional significance [Li et al.,
2007], FOXP2 is highly conserved among mammals, but two novel amino acids,
T303N and N325S, arose in the protein sequence when the common ancestor of
humans and chimpanzees diverged [Enard et al., 2002]. The timing of these changes
suggests that these two alterations in the human protein may have contributed to
an acceleration in the evolution of FOXP2 functions, including the mechanisms
underlying acquisition of language and speech [Enard et al., 2009; Konopka et al.,
2009]. While it would be interesting to hypothesize as to why FoxP2 has undergone
accelerated evolution in two lineages (bats and primates) in two distinct areas of
the protein, the lack of understanding of the brain circuitry underlying language
and echolocation and how to compare these behaviors would make any hypothesis
extremely speculative at this point.

Also, purely logically, an M , which admits a short description, say in 104

bits may be inaccessible to humanity, neither as a language learning program
in the brain of a child, nor as a product of the collective mathematical brain of
all people on Earth.61

However, since the logic of mutations is quite straightforward and the evo-
lutionary selection process is exceedingly dumb and non-devious62 our M –
universe of models, which represents the universal grammar, must have a hi-
erarchical block structure, where the "basic blocks", which originate from the
learning programs of our animal ancestors, and which, due to the wide applica-
bility and despite the long time (0.5 ⋅109 years) at their disposal for evolutionary
development, are relatively simple.

Thus, language – a product of a mind (or minds) shaped by biological evo-
lution must carry within itself,

multilayer non-scale invariant aperiodic fractal crystal structure,63

The above and learnability of a languages L , that is a possibility of repre-
sentation of a modeM of L by a robust (quasi)fixed point of a transformation
of M impose strong constraints on the structures ofM.

Example. Let a grammar on 100 000 words be defined by the following rule.
Assigne a number n(w) =1,2....100 000, to every word w, e.g. by alphabetically

enumerating all words, and declare a sentence [w1,w2,w3,w4] grammatical, if the
sum

N = n(w1) + n(w2) + n(w3) + n(w4)

60See [1] [4] [9] [23] [24] [25] [28]
61Humanity in the course of all its history can hardly generate more than 1030 strings in

104 bits, that is dwarfed by the number 210000 > 103000 of all such strings.
62When Orgel says to a fellow biologist that evolution is cleverer than you are instead of

what he really thinks of this fellow, he just tries to be polite.
63This is a rephrase of Schrödinger’s the most essential part of a living .cell ... - may

suitably be called an aperiodic crystal.
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is even.
Not only such a grammar can’t by learned64 from, say a trillion, of sample

sentences, but even a direct description of the set G of grammatical strings
would be virtually impossible, since it would require millions of trillion (1018)
words.

Indeed 100 0004 = 1020 and a generic subset G in a set of cardinality 1020

needs 1020 bits for its full characterization.
However artificially silly, this example shows how far we are from a definition

of simplicity.
About I.B. Let us indicate several similarities and dissimilarities between

languages and genomes.65

Eleven Features of Genomes
Formally Similar to those in Languges

⋆ Genomes are comprised by strings of "abstract symbols", called A, T, G,
C for the four bases in DNA.
⋆ Genomes are segmented into distinct units, broadly speaking, called genes.
⋆ Certain string patterns along with their minor (and major) modifications

appear in multiple copies in genomes.
⋆ There is a dense network of cofunctionality links between genes and/or

corresponding proteins.
⋆ Genes encode the "real wold" entities: the architectures of proteins and

cells, instead of networks of linguistic units (concepts) in the subliminal minds
of speakers of a language.66

⋆ Protein coding genes play the roles of content words in languages and
noncoding genes –promoters, enhances, silencers (these regulate transcription),
splicing regulatory elements – stand for function words. 67

⋆ One can draw a parallel between genome evolution on the scale of million
years with language learning on the weekly scale.68

⋆ Similarly to linguistic communication between minds, genomes communi-
cate via lateral gene transfer.
⋆ Mobile regions of DNA – intragenomic parasites generate kind of inner

speech in DNA.
⋆ Self-reference in genome is represented by genes coding for proteins in-

volved in DNA replication, repair, packaging, etc.
⋆ Genomes of all organisms (but not of viruses) contain mutually similar

(evolutionary conserved) cores consisting of the housekeeping genes, including
64For all I know, there is no concept and/or no mathematical proof of learning impossibility

applicable to this example or even to something more complicated, e.g. where N is required
to be a quadratic residue modulo 11177.

65See Commun Integr Biol. 2011 Sep-Oct; 4(5): 516?520. Published online 2011 Sep 1.
doi: 10.4161/cib.4.5.16426 PMCID: PMC3204117 PMID: 22046452 Can mathematics explain
the evolution of human language? Guenther Witzany for a different perspective with many
references

66From a language perspective, the external world is a population of ideas in the mind(s)
where the language resides. (The role of neurophysiology of the brain behind the mind is
similar to how the physical chemistry determines the behavior of macromolecules in the cell.)

67The role of these non-coding genes, however, namely, control of production of proteins is
rather dissimilar to that of function words, which serve in syntactic constructions of sentences
in languages.

68In a sense, language learning mediates between stochasticity of biological evolution and
determinism of morphogenesis.
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those responsible for transcription, translation and DNA replication.69

Mismatches between Genomes and Languages

○ There is a single genome language of cellular Life on Earth divided into
multitude of dialects for different (broadly understood) classes of organisms,
where there is a closer similarity (homology) even between genes of bacteria,
eukarya and archaea than between various human languages.
○ Viral genomes, which are significantly different from cellular genomes,

and their ecological roles– parasitism and gene transfer – have no apparent
counterparts in the life of languages.
○Only rarely, functional cofunctionality of genes and/or of the corresponding

proteins can be derived from mutual positions of genes in genomes.
○ The meaning of a gene, e.g. of a protein coding one (understood as

structure and function of the corresponding protein can be, up to a point,
formally defined as an equivalence class of certain DNA-sequences and the asso-
ciated distance (of meanings) between two protein sequences p1 and p2 defined as
a (broadly understood geometric) distance between shapes of the corresponding
folded protein molecules or as some distance between functions of these proteins
in the cells.

However, unlike unlimited expressive powers of natural languages, the de-
scriptive capabilities of genomes are limited to specific instructions (mainly con-
cerning production of proteins) and this equivalence can’t be implemented by
transformations of these sequences naturally expressible in "genome language"
○ ○ ○... There are hordes of things found in the cell and in genome, which

have no counterparts in the the human mind. But this is, possibly, because
our present knowledge about the cell, albeit far from complete, is incomparably
greater than that about the mind.

For instance nothing like folding of polypeptide chains to proteins – the main
steps from symbolically encoded information to real world entities in the cell,
has been observed, in the function of the human mind/brain.70

Also transcription, where significant segments of DNA are excised and re-
produced in several slightly different copies, as well as alternative splicing, post
translational protein modification and many other features of genome related ac-
tivities in the cell, have no known linguistic counterparts, albeit formally similar
actions, e.g some "multi-copy processes", do take place in the course of language
processing in the human mind.

A mathematician pondering over all this would look for
an ideal class M of mathematical structures/models that would allow a com-

prehensive description of the cell as well as of the mind, such that the similarities
and dissimilarities between the two would be automatically clearly displayed.

But biology’s sobering message reads: this is a dream: structures like M
don’t jump ready and perfect out of a mathematician’s mind as Athena out of
Zeus’s head; in Life, they come at the end of a long chain of little evolutionary
tinkering.

One shouldn’t expect defining our universe M of learnable language models
in one step, but rather looking for many such approximate and adaptable M .

69Probably, all human languages contain mutually structurally similar cores reflecting basic
features of people, actions of people, relations between people.

70There may be something of the kind when chains of electrophysiological events in the
neurons in the brain coalesce into subliminal ideas in the mind.

26



2.3 Similarities, Analogies and Inductive Reasoning
*************************

2.4 Computations, Iterations, and Learning Algorithms
****************************

2.5 Philosophy, Logic, Numbers, Indeterminacy, Proba-
bilities, Ambiguities, Trees

****************************

2.6 Thinking in Parallel
*******************************

2.7 Composition of Maps, Word embeddings, Artificial
Neural Networks and the Game of Chess

... a pawn is the sum of rules for its moves ... just as in the case of language
the rules define the logic of a word. Wittgenstein

***********************************

2.8 In the Mind of the Speaker
******************************

2.9 Predictions, Jumping to Conclusions, Curiosity Driven
Learning and Ergologic

*************************

3 Relevant Mathematics
In this section we give precise definitions/descriptions of the following.

1. Hierarchical networks.
2. Almost commutative not-quite-semigroups operating on spaces networks and

other spaces.
3. Partly composable transformations, including similarity and equivalence rela-

tions between textual units.
4. Spatial relations between textual units.
5. Indeterminacy with and without probability.
6. Compositions of listable and other "simple" functions and maps and their

comparison with the artificial neural networks.
7. Trees, including their role as substitutes for numbers.
8. Bootstrapping of Similarities and coclusterization algorithms.
9. Hierarchies of Classification and Clusterization.
10. Entropic and Prediction profiles.
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