Probability Versus Topology

Misha Gromov
April 21, 2022

BIG QUESTIONS:

1.?Meeting point between probability and algebraic topology.?
2. ?Randomization of Topology and/or algebraisation of probability? (?Random Spaces? ?Categorization of probability?)
3. ?(?Faithful?) Functorial description of (categories of) metric spaces, e.g. Riemannian manifolds and their submanifolds, in algebra-topological or probabilistic terms.?

DEVELOP PERSPECTIVE

Figure 1: Geometric measure theory

Figure 2: Crystal

Figure 3: Gaz

Figure 4: Energy

Figure 5: spectrum

Figure 6: Self avoiding random walk, Flory (1953).

An "ensemble" $\mathcal{A}=\mathcal{A}(X)$ of (finitely or infinitely many) particles in a space X, e.g. in the Euclidean 3 -space, is probabilistically characterised by

$$
U \mapsto e n t_{U}(\mathcal{A})=\operatorname{ent}\left(\mathcal{A}_{\mid U}\right), U \subset X,
$$

that assigns the entropies of the U-reductions $\mathcal{A}_{\mid U}$ of \mathcal{A}, to all bounded open subsets $U \subset X$. (ent ${ }_{U}$ is "the logarithm of the number of the states of \mathcal{E} that are effectively observable from $U^{\prime \prime}$),
Replace "effectively observable number of states" by
"the number of significant degrees of freedom of ensembles of moving particles"
Packings by r-Balls.
X is a metric space, $\mathcal{P}=\mathcal{P}_{I, r}(X)=$ $\left\{x_{i}\right\} \subset X^{I}$, such that $\operatorname{dist}\left(x_{i}, x_{j}\right) \geq d_{i j}=$ $2 r$.

Covarinatly functoriality under expanding maps $X \rightarrow Y$ and
contravariant functoriality under contracting maps $f: X \rightarrow Y$.

Packings by Tubes motivated by $X=Y \times Z \rightarrow Y . \quad I-$ tuples of closed subsets $Z_{i} \in X$, such that mutual distances between them satisfy $\operatorname{dist}\left(Z_{i}, Z_{j}\right) \geq d_{i j}$ and such that $Z_{i} \subset X$ support given nonzero homology classes h_{i} in X. (T. Richard On the 2-systole of stretched enough positive scalar curvature metrics on $S^{2} \times S^{2}$, arXiv:2007.02705v2.)
Packing Energy and Morse Spectrum. $\rho(a)=\min _{x_{i} \neq x_{j}} \operatorname{dist}\left(x_{i}, x_{j}\right)$,
$E(a)=\frac{1}{\rho(a)}$ or $E(a)=-\log \rho(a)$.
The homotopy significant (Morse) spectrum of an energy function $E: \mathcal{A} \rightarrow \mathbb{R}$, is the set of those values $y \in \mathbb{R}$, where the homotopy type of the sublevel $E^{-1}(-\infty, y]$ undergoes an irreversible change d
Guth' Duality between Homology Spectra of Packings and of Cycles.
Example. Relation between the cohomology spectrum of E on $(X)^{I}$ and $(Y)^{I}$ for $Y \subset X$ e.g. $X=\mathbb{T}^{n}$ and $Y=\mathbb{T}^{m} \subset \mathbb{T}^{n}$. (Viazovska theorem)
Results.

1. δ-Waist Inequality. $f: S^{n} \rightarrow \mathbb{R}^{n-k}$ a continuous map. $\exists p \in \mathbb{R}^{n-k}$, such that $\operatorname{vol}\left(U_{\delta}\left(f^{-1}(p) \geq \operatorname{vol}\left(U_{\delta}\left(S^{k}\right)\right.\right.\right.$ for all $\delta>0$

2 Guth' Steenrod Spectrum Theo-

 rem. X be the space of m-dimensional submanifolds x in the n-ball V and $F(x)=$ $\operatorname{vol}_{m}(x)$.Then the volume spectrum of this F satisfies
$\lambda_{i} \leq$ const $\cdot i \frac{1}{m+1}$
and
$\lambda_{i} \geq \operatorname{const}(\varepsilon) \cdot i^{\frac{1}{m+1}-\varepsilon}$ for all $\varepsilon>0$.
Weyl law for the codimension 1 volume spectrum (Liokumovich-Marques-Neves)

If $m=n-1$ then $\lambda_{i} \sim$ const $_{n} \cdot i^{\frac{1}{n}}$.
Question 1. How much of the geometry of a space X, say with a metric or symplectic geometry, can be seen in the homotopies of spaces of packings of X by such U_{i} ?

Question 2. Is there a good category of "abstract packing-like objects", that are not, a priori, associated to actual packings of geometric spaces?

- Classical (Non-parametic) Sphere Packings.
- Homotopy and Cohomotopy Energy Spec-
tra.
- Homotopy Dimension, Cell Numbers and Cohomology Valued Measures.
- Infinite Packings and Equivariant Topology of Infinite Dimensional
Spaces Acted upon by Non-compact Groups.
- Bi-Parametric Pairing between Spaces of Packings and Spaces
of Cycles.
- Non-spherical Packings, Spaces of Partitions and Bounds on Waists.
- Symplecting Packings.
- Parametric coverings.

Homology Measures

(Morse Spectra, Homology Measures and Parametric Packing Problems)

$$
\begin{aligned}
& \Psi \supset D \mapsto \mu(D)=\mu^{*}(D ; \Pi)= \\
& \mathbf{0}^{\backslash *}(D ; \Pi) \subset H^{*}=H^{*}(\Psi ; \Pi),
\end{aligned}
$$

where Π is an Abelian (homology coefficient) group, e.g. a field \mathbb{F}, and $\mathbf{0}^{* *}(D ; \Pi)$ is the kernel of the cohomology restriction homomorphism for the complement $\Psi \backslash D \subset \Psi$,

$$
H^{*}(\Psi ; \Pi) \rightarrow H^{*}(\Psi \backslash D ; \Pi)
$$

The set function
$\mu^{*}:\{$ subsets $\subset \Psi\} \rightarrow\left\{\right.$ subgroups $\left.\subset H^{*}\right\}$
is additive for the sum-of-subsets in H^{*} and super-multiplicativ』 for the the - -product of ideals in the case where Π is a commutative ring:

$$
[\cup+] \mu^{*}\left(D_{1} \cup D_{2}\right)=\mu^{*}\left(D_{i}\right)+\mu^{*}\left(D_{2}\right)
$$

for disjoint open subsets D_{1} and D_{2} in Ψ, and

$$
[\cap \smile] \mu^{*}\left(D_{1} \cap D_{2}\right) \supset \mu^{*}\left(D_{1}\right) \smile \mu^{*}\left(D_{2}\right)
$$

for all open $D_{1}, D_{2} \subset \Psi$.
Homology spectra on spaces of infinitely many particles in non-compact manifolds
Infinite dimensional space Ψ,
action of an infinite group Υ on Ψ.
Example. Υ is a countable group call it Γ, e.g. $\Gamma=\mathbb{Z}^{n}$, and $\Psi=B^{\Gamma}$ is the space of maps $\Gamma \rightarrow B$.

[^0]H^{*} is a graded algebra (over some field) acted upon by a countable amenable group Γ.
Exhaust Γ by finite $F \varnothing l n e r$ subsets $\Delta_{i} \subset$ $\Gamma, i=1,2, \ldots$, and, given a finite dimensional graded subalgebra $K=K^{*} \subset H^{*}$, let $P_{i, K}(t)$ denote the Poincare polynomial of the graded subalgebra in H^{*} generated by the γ-transforms $\gamma^{-1}(K) \subset H^{*}$ for all $\gamma \in \Delta_{i}$.

Define polynomial entropy of the action of Γ on H^{*} as follows.
Poly.ent $\left(H^{*}: \Gamma\right)=\sup _{K} \lim _{i \rightarrow \infty} \frac{1}{\operatorname{card}\left(\Delta_{i}\right)} \log P_{i, K}(t)$.
(Permutation Symmetries and Equivariant Homology)
?Energy ~Boltzmann distribution?
Sup ${ }_{\vartheta}$-Spectra, Scalar Curvature and Spaces of Symplectic Packings.
Θ is a set of metrics ϑ on a topological space X
" Inv " (X, ϑ) is an invariant,
sup," Inv" is the supremum of the in-
variants "Inv : (X, ϑ) over all $\vartheta \in \Theta$.
Example 1. $X=S^{3}$ and ϑ are metrics with $S c(\vartheta) \geq 6$.
Then sup $_{\vartheta}$ waist $_{2}=4 \pi$. (Marques-Neves)
Example 2. $X=(X, \omega)$ a symplectic manifold of dimension $n=2 m$ and ϑ are ω-adapted metrics

Question. Which part of the (suitably factorized/coarsened) homotopy / homology area spectra of (X, ϑ) remains finite after taking suprema over ϑ ?

If $k=2$, then upper bounds in some cases are obtained with pairing ball pacing with "psedoholomorphic curves" defined here as oriented surfaces $Y \subset X=$ (X, ω, ϑ), such that $\operatorname{area}_{\vartheta}(Y)=\int_{Y} \omega$.

[^0]: ${ }^{1}$ This, similarly to Shannon's subadditivity inequality, implies the existence of "thermodynamic limits" of Morse Entropies, see [?].

