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BIG QUESTIONS:
1.?Meeting point between probability and

algebraic topology.?
2. ?Randomization of Topology and/or

algebraisation of probability? (?Random
Spaces? ?Categorization of probability?)

3. ?(?Faithful?) Functorial description
of (categories of) metric spaces, e.g. Rie-
mannian manifolds and their submanifolds,
in algebra-topological or probabilistic terms.?

DEVELOP PERSPECTIVE
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Figure 1: Geometric measure theory

Figure 2: Crystal

Figure 3: Gaz

Figure 4: Energy

Figure 5: spectrum

Figure 6: Self avoiding random walk, Flory (1953).
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An "ensemble"A = A(X) of (finitely or
infinitely many) particles in a space X ,
e.g. in the Euclidean 3-space, is proba-
bilistically characterised by

U ↦ entU(A) = ent(A∣U), U ⊂X,
that assigns the entropies of the U -reductions
A∣U of A, to all bounded open subsets
U ⊂ X . (entU is "the logarithm of the
number of the states of E that are effec-
tively observable from U"),
Replace "effectively observable number

of states" by
"the number of significant degrees of free-

dom of ensembles of moving particles"
Packings by r-Balls.
X is a metric space, P = PI,r(X) =

{xi} ⊂ XI , such that dist(xi, xj) ≥ dij =
2r.
Covarinatly functoriality under expand-

ing maps X → Y and
contravariant functoriality under contract-

ing maps f ∶X → Y .
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Packings by Tubes motivated by X = Y × Z → Y . I-

tuples of closed subsets Zi ∈ X, such that mutual dis-

tances between them satisfy dist(Zi, Zj) ≥ dij and such

that Zi ⊂X support given nonzero homology classes hi in

X. (T. Richard On the 2-systole of stretched enough positive scalar

curvature metrics on S2 × S2, arXiv:2007.02705v2.)

Packing Energy and Morse Spectrum.
ρ(a) = minxi≠xj dist(xi, xj),
E(a) = 1

ρ(a) or E(a) = − log ρ(a).
The homotopy significant (Morse) spec-

trum of an energy function E ∶ A→ R, is
the set of those values y ∈ R, where the
homotopy type of the sublevelE−1(−∞, y]
undergoes an irreversible change d
Guth’ Duality between Homology Spec-

tra of Packings and of Cycles.
Example. Relation between the coho-

mology spectrum of E on (X)I and (Y )I
for Y ⊂X e.g. X = Tn and Y = Tm ⊂ Tn.
(Viazovska theorem)
Results.
1. δ-Waist Inequality. f ∶ Sn → Rn−k

a continuous map. ∃p ∈ Rn−k, such that
vol(Uδ(f−1(p) ≥ vol(Uδ(Sk) for all δ > 0
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2 Guth’ Steenrod Spectrum Theo-
rem. X be the space of m-dimensional
submanifolds x in the n-ball V and F (x) =
volm(x).
Then the volume spectrum of this F sat-

isfies
λi ≤ const ⋅ i

1
m+1

and
λi ≥ const(ε) ⋅ i

1
m+1−ε for all ε > 0.

Weyl law for the codimension 1 volume
spectrum (Liokumovich-Marques-Neves)
If m = n − 1 then λi ∼ constn ⋅ i

1
n .

Question 1. How much of the geome-
try of a space X , say with a metric or
symplectic geometry, can be seen in the
homotopies of spaces of packings of X by
such Ui?
Question 2. Is there a good category of

"abstract packing-like objects", that are
not, a priori, associated to actual packings
of geometric spaces?
● Classical (Non-parametic) Sphere Pack-

ings.
●Homotopy and Cohomotopy Energy Spec-
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tra.
● Homotopy Dimension, Cell Numbers

and Cohomology Valued Measures.
● Infinite Packings and Equivariant Topol-

ogy of Infinite Dimensional
Spaces Acted upon by Non-compact Groups.
● Bi-Parametric Pairing between Spaces

of Packings and Spaces
of Cycles.
●Non-spherical Packings, Spaces of Par-

titions and Bounds on Waists.
● Symplecting Packings.
● Parametric coverings.

Homology Measures
(Morse Spectra, Homology Measures and Parametric Packing Problems)

Ψ ⊃D ↦ µ(D) = µ∗(D; Π) =
0∖∗(D; Π) ⊂H∗ =H∗(Ψ; Π),

where Π is an Abelian (homology coeffi-
cient) group, e.g. a field F, and 0∖∗(D; Π)
is the kernel of the cohomology restric-
tion homomorphism for the complement
Ψ ∖D ⊂ Ψ,

H∗(Ψ; Π)→H∗(Ψ ∖D; Π).
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The set function
µ∗ ∶ {subsets ⊂ Ψ}→ {subgroups ⊂H∗}
is additive for the sum-of-subsets in H∗

and super-multiplicative1 for the the ⌣-product
of ideals in the case where Π is a commu-
tative ring:

[∪+] µ∗(D1∪D2) = µ∗(Di)+µ∗(D2)
for disjoint open subsets D1 and D2 in Ψ,
and
[∩ ⌣] µ∗(D1 ∩D2) ⊃ µ∗(D1) ⌣ µ∗(D2)
for all open D1,D2 ⊂ Ψ.

Homology spectra on spaces of in-
finitely many particles in non-compact
manifolds
Infinite dimensional space Ψ,
action of an infinite group Υ on Ψ.
Example. Υ is a countable group call it

Γ, e.g. Γ = Zn, and Ψ = BΓ is the space
of maps Γ→ B.

1 This, similarly to Shannon’s subadditivity inequality, implies the existence of "thermody-
namic limits" of Morse Entropies, see [?].
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H∗ is a graded algebra (over some field)
acted upon by a countable amenable group
Γ.
Exhaust Γ by finite Følner subsets ∆i ⊂

Γ, i = 1, 2, ..., and, given a finite dimen-
sional graded subalgebra K = K∗ ⊂ H∗,
let Pi,K(t) denote the Poincare polyno-
mial of the graded subalgebra in H∗ gen-
erated by the γ-transforms γ−1(K) ⊂ H∗

for all γ ∈ ∆i.
Define polynomial entropy of the action

of Γ on H∗ as follows.

Poly.ent(H∗ ∶ Γ) = sup
K

lim
i→∞

1

card(∆i)
logPi,K(t).

(Permutation Symmetries and Equivari-
ant Homology)
?Energy ; Boltzmann distribution?

Supϑ-Spectra, Scalar Curvature and
Spaces of Symplectic Packings.

Θ is a set of metrics ϑ on a topological
space X

”Inv”(X,ϑ) is an invariant,
supϑ”Inv” is the supremum of the in-
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variants ”Inv ∶ (X,ϑ) over all ϑ ∈ Θ.

Example 1. X = S3 and ϑ are metrics
with Sc(ϑ) ≥ 6.
Then supϑwaist2 = 4π.(Marques-Neves)

Example 2. X = (X,ω) a symplectic
manifold of dimension n = 2m and ϑ are
ω-adapted metrics
Question. Which part of the (suitably

factorized/coarsened) homotopy/homology
area spectra of (X,ϑ) remains finite after
taking suprema over ϑ?
If k = 2, then upper bounds in some

cases are obtained with pairing ball pac-
ing with "psedoholomorphic curves" de-
fined here as oriented surfaces Y ⊂ X =
(X,ω,ϑ), such that areaϑ(Y ) = ∫Y ω.

9


