Probability Versus Topology

Misha Gromov April 21, 2022

BIG QUESTIONS:

1.?Meeting point between probability and algebraic topology.?

2. ?Randomization of Topology and/or algebraisation of probability? (?Random Spaces? ?Categorization of probability?)

3. ?(?Faithful?) Functorial description of (categories of) metric spaces, e.g. Riemannian manifolds and their submanifolds, in algebra-topological or probabilistic terms.?

DEVELOP PERSPECTIVE

Figure 1: Geometric measure theory

Figure 2: Crystal

Figure 3: Gaz

Figure 4: Energy

Figure 5: spectrum

Figure 6: Self avoiding random walk, Flory (1953).

An "ensemble" $\mathcal{A} = \mathcal{A}(X)$ of (finitely or infinitely many) particles in a space X, e.g. in the Euclidean 3-space, is probabilistically characterised by

$$U \mapsto ent_U(\mathcal{A}) = ent(\mathcal{A}_{|U}), \ U \subset X,$$

that assigns the *entropies* of the U-reductions $\mathcal{A}_{|U}$ of \mathcal{A} , to all bounded open subsets $U \subset X$. (*ent*_U is "the logarithm of the number of the states of \mathcal{E} that are effectively observable from U"),

Replace "effectively observable number of states" by

"the number of significant degrees of freedom of ensembles of moving particles"

Packings by r-Balls.

X is a metric space, $\mathcal{P} = \mathcal{P}_{I,r}(X) = \{x_i\} \subset X^I$, such that $dist(x_i, x_j) \ge d_{ij} = 2r$.

Covariantly functoriality under expanding maps $X \to Y$ and

contravariant functoriality under contracting maps $f: X \to Y$. Packings by Tubes motivated by $X = Y \times Z \to Y$. Ituples of closed subsets $Z_i \in X$, such that mutual distances between them satisfy $dist(Z_i, Z_j) \ge d_{ij}$ and such that $Z_i \subset X$ support given nonzero homology classes h_i in X. (T. Richard On the 2-systole of stretched enough positive scalar curvature metrics on $S^2 \times S^2$, arXiv:2007.02705v2.)

Packing Energy and Morse Spectrum. $\rho(a) = \min_{x_i \neq x_j} dist(x_i, x_j),$ $E(a) = \frac{1}{\rho(a)} \text{ or } E(a) = -\log \rho(a).$

The homotopy significant (Morse) spectrum of an energy function $E: \mathcal{A} \to \mathbb{R}$, is the set of those values $y \in \mathbb{R}$, where the homotopy type of the sublevel $E^{-1}(-\infty, y]$ undergoes an *irreversible change* d

Guth' Duality between Homology Spectra of Packings and of Cycles.

Example. Relation between the cohomology spectrum of E on $(X)^{I}$ and $(Y)^{I}$ for $Y \subset X$ e.g. $X = \mathbb{T}^{n}$ and $Y = \mathbb{T}^{m} \subset \mathbb{T}^{n}$. (Viazovska theorem)

Results.

1. δ -Waist Inequality. $f: S^n \to \mathbb{R}^{n-k}$ a continuous map. $\exists p \in \mathbb{R}^{n-k}$, such that $vol(U_{\delta}(f^{-1}(p) \ge vol(U_{\delta}(S^k)))$ for all $\delta > 0$ 2 Guth' Steenrod Spectrum Theorem. X be the space of m-dimensional submanifolds x in the n-ball V and $F(x) = vol_m(x)$.

Then the volume spectrum of this F satisfies

 $\lambda_i \le const \cdot i^{\frac{1}{m+1}}$ and

 $\lambda_i \geq const(\varepsilon) \cdot i^{\frac{1}{m+1}-\varepsilon} \text{ for all } \varepsilon > 0.$

Weyl law for the codimension 1 volume spectrum (Liokumovich-Marques-Neves)

If m = n - 1 then $\lambda_i \sim const_n \cdot i^{\frac{1}{n}}$.

Question 1. How much of the geometry of a space X, say with a metric or symplectic geometry, can be seen in the homotopies of spaces of packings of X by such U_i ?

Question 2. Is there a good category of "abstract packing-like objects", that are not, a priori, associated to actual packings of geometric spaces?

• Classical (Non-parametic) Sphere Packings.

• Homotopy and Cohomotopy Energy Spec-

tra.

• Homotopy Dimension, Cell Numbers and Cohomology Valued Measures.

• Infinite Packings and Equivariant Topology of Infinite Dimensional

Spaces Acted upon by Non-compact Groups.

• Bi-Parametric Pairing between Spaces of Packings and Spaces

of Cycles.

• Non-spherical Packings, Spaces of Partitions and Bounds on Waists.

- Symplecting Packings.
- Parametric coverings.

Homology Measures

(Morse Spectra, Homology Measures and Parametric Packing Problems)

 $\Psi \supset D \mapsto \mu(D) = \mu^*(D;\Pi) =$

 $\mathbf{0}^{\mathsf{h}}(D;\Pi) \subset H^* = H^*(\Psi;\Pi),$

where Π is an Abelian (homology coefficient) group, e.g. a field \mathbb{F} , and $\mathbf{0}^{\times}(D; \Pi)$ is the *kernel* of the cohomology restriction homomorphism for the complement $\Psi \smallsetminus D \subset \Psi$,

$$H^*(\Psi;\Pi) \to H^*(\Psi \smallsetminus D;\Pi).$$

The set function $\mu^*: \{subsets \subset \Psi\} \rightarrow \{subgroups \subset H^*\}$ is additive for the sum-of-subsets in H^* and super-multiplicative¹ for the the \sim -product of ideals in the case where Π is a commutative ring:

 $[\cup +] \mu^*(D_1 \cup D_2) = \mu^*(D_i) + \mu^*(D_2)$ for *disjoint* open subsets D_1 and D_2 in Ψ , and

 $[\cap \sim] \quad \mu^*(D_1 \cap D_2) \supset \mu^*(D_1) \sim \mu^*(D_2)$ for all open $D_1, D_2 \subset \Psi$.

Homology spectra on spaces of infinitely many particles in non-compact manifolds

Infinite dimensional space Ψ , action of an infinite group Υ on Ψ .

Example. Υ is a countable group call it Γ , e.g. $\Gamma = \mathbb{Z}^n$, and $\Psi = B^{\Gamma}$ is the space of maps $\Gamma \to B$.

¹ This, similarly to Shannon's subadditivity inequality, implies the existence of "thermodynamic limits" of Morse Entropies, see [?].

 H^* is a graded algebra (over some field) acted upon by a countable amenable group Γ .

Exhaust Γ by finite $F \not olner \ subsets \Delta_i \subset \Gamma$, i = 1, 2, ..., and, given a finite dimensional graded subalgebra $K = K^* \subset H^*$, let $P_{i,K}(t)$ denote the Poincare polynomial of the graded subalgebra in H^* generated by the γ -transforms $\gamma^{-1}(K) \subset H^*$ for all $\gamma \in \Delta_i$.

Define *polynomial entropy* of the action of Γ on H^* as follows.

 $Poly.ent(H^*:\Gamma) = \sup_{K} \lim_{i \to \infty} \frac{1}{card(\Delta_i)} \log P_{i,K}(t).$

(Permutation Symmetries and Equivariant Homology)

 $?Energy \rightsquigarrow Boltzmann \ distribution?$

 Sup_{ϑ} -Spectra, Scalar Curvature and Spaces of Symplectic Packings.

 Θ is a set of metrics ϑ on a topological space X

"Inv" (X, ϑ) is an invariant,

 sup_{ϑ} "Inv" is the supremum of the in-

variants " $Inv : (X, \vartheta)$ over all $\vartheta \in \Theta$.

Example 1. $X = S^3$ and ϑ are metrics with $Sc(\vartheta) \ge 6$.

Then $sup_{\vartheta}waist_2 = 4\pi$.(Marques-Neves)

Example 2. $X = (X, \omega)$ a symplectic manifold of dimension n = 2m and ϑ are ω -adapted metrics

Question. Which part of the (suitably factorized/coarsened) homotopy/homology area spectra of (X, ϑ) remains finite after taking suprema over ϑ ?

If k = 2, then upper bounds in some cases are obtained with pairing ball pacing with "psedoholomorphic curves" defined here as oriented surfaces $Y \subset X =$ (X, ω, ϑ) , such that $area_{\vartheta}(Y) = \int_{Y} \omega$.