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1 Perspectives

.
What is Randomness?

What is Probabiliy?
Standpoints and contexts:
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(Non-exhaustive list of 10 items.)
○ History of the idea of
probability.
● Use and misuse of Metaphors of
randomness.
● Psychology of randomness.
● Natural evolution and human
history.
◯ Statistics in physics, in astron-

omy and in formal genetics.
◯ Probabilistic reasoning in com-

binatorics and in geometry; random-
ization of categories.
◯ Categorisation and generalisa-

tion of measure theory and of prob-
ability.
◻ Molecular evolution.
◻ Statistical analysis of natural

languages.

2



◻ Learning languages and
learning mathematics.

Two related questions:
What is entropy?
What makes ”information”
in the cells and in the brains
non-Shannon?

Origin of Probability
Theory.

Gambling.
Rituparna, a king of Ayodhya said
5 000 years ago:
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I of dice possess the science and
in numbers thus am skilled.

(Cardano, Galileo, Pascal, Huy-
gence, Bernoulli...)

Brownian Motion.

... small compound bodies...
are set in perpetual motion
by the impact of invisible blows...
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.
The movement mounts up

from the atoms
and gradually emerges
to the level of our senses.

Said by...

Titus Lucretius in 50 BCE.

Translated to numbers by
Thiele (1880), Bachelier (1900),
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Einstein (1905), Smoluchowski
(1906), Wiener (1923).

Is, as Maxwell believed,
The true logic of this world the

calculus of probabilities?.
Are

all the mathematical sciences
founded on relations between phys-
ical laws and laws of numbers?

Symmetry Enhanced by Ran-
domness.

”Classical probability” depends on
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(quasi)invariant Haar(-like) mea-
sures, such as the infinite product
measure in the space X of binary
sequences, denoted

{○ 1
2

, ● 1
2
}N, N = 1, 2, 3, ...,

that are functions from N to the
set {○, ●} with both values ○ and ●
being equiprobable.

Besides the transitive action of the
compact group ZN

2 , this X is acted
by the infinite ”permutation” group
of the set N; in fact the number
structure in N is immaterial at this
point – any countable set S in place
of N will do.

The ”Haar symmetry” may be not
apparent in the space

X = {○p , ●1 − p}
S

for p ≠ 1/2, but this space has a
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kind of ”tensorization symmetry”:
X can be decomposed in a vari-
ety of ways into Cartesian product
of several spaces isomorphic to this
very X . In fact, every partition of
the (countable) set S into infinite
subsets induces such a decomposi-
tion of X .

This kind of ”symmetry” is pro-
nounced in in Gaussian measures
such as measures Brownian Wiener
measures and up to a lesser degree
in more general Gibbsian (Boltz-
mann’s) measures as it underlies the
Bernoulli Approximation Theorem
and Boltzmann entropy as we shall
see below.

More recently, Schram discovered
a conformally (quasi)invariant mea-
sures in spaces of curves in Rie-
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mann surfaces that are parametrised
by Brownian measures.

Most likely, there are no math-
ematically significant probability
measures that would be ”fully asym-
metric”.

And if one can not postulate equiprob-
ability and/or ”parametrise random-
ness by independence” then the clas-
sical probability does not work in
the ”real world”.

Probability and Measure.
According to Kolmogorov (1933)

(and Buffon’s needle example of 1733)
”random events” are represented by
subdomains Y in the square ∎;

probability of Y equals area(Y ).
Kolmogorov’s mode of thought (as

that in André Weil’s Foundations
9



of Algebraic Geometry 1946) is man-
ifestly set theoretic one.

On the other hand, Boltzmann’s
ideas in statistical mechanics are
naturally embraced by the language
of non-standard analysis and by
Grothendieck’s style category the-
oretic formalism.

Also, the idea of probability in
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languages and in mathematics of
learning deviates from Kolmogorov-
Buffon ∎.

The notion of a probability of a
sentence is an entirely useless one,
under any interpretation of this term
[that you find in 20th century text-
books].

Naum Chomsky.
In fact, ”linguistic events” such as

sentences, are members of category
theoretic like ”anssembles” that are
structurally quite different from what
one encounters in statistical mechan-
ics and in physics in general. And
probabilities of these ”events” are
not number valued functions but
rather something akin to functors
from ”categories of linguistic events”
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to similar, but significantly simpler/smaller,
combinatorial category, such, for in-
stance, as the category of (weighted)trees.
⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆

Alternatives to Classical
Probability and Entropy.

1. Entropy via Grothendieck Semi-
group.

2. Probability spacers as covari-
ant functors.

3. Large deviations and Non-Standard
analysis for classical and quantum
entropies.

4. Linearized Measures, Proba-
bilities and Entropies.

5. Combinatorial Probability with
Limited Symmetries.

We discuss the above issues at length
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in the following articles posted on
http://www.ihes.fr/ gromov/ in sec-
tion ”Recent”

Quotations and Ideas,
Ergostructures, Ergodic and the

Universal Learning Problem,
Math Currents in the Brain,
In a Search for a Structure.

2 Naive Mathematician’s Entropy.

... pure thought can grasp reality...

. Albert Einstein.
...exceedingly difficult task of our

time is to work on the construction
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of a new idea of reality.... .
Wolfgang Pauli.
The introduction of the cipher 0

or the group concept was general
nonsense...

Alexander Grothendieck.

A ”physisit’s system” S, e.g.
”supported by a crystal”, is an in-
finite ensemble of ”infinitely small”
mutually equal ”states”. The log-
arithm of the properly normalised
number of these states is (mean
statistical Boltzmann) entropy of
S .

The ”space of states” of S is NOT
a mathematician’s ”set”, it is ”some-
thing” that depends on a class of
mutually equivalent imaginary ex-
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perimental protocols.
Finite Measure Spaces.

A finite measure space P = {p}
is a finite set, called a background
of P or a supporting set of P , de-
noted set(P ), of ”atoms” p with
a positive function set(P ) → R+,
denoted p ↦ ∣p∣ > 0, thought of as
weights/masses of atoms.

If one gives a ”name” to this back-
ground, say I = set(P ), then one
writes P = {pi}i∈I where pi denote
not ”atoms themselves” but rather
their weights.

(Should one allow ”atoms” p with
∣p∣ = 0? Classical answer is: ”not
necessary”; but ”massless atoms”
can not be swept under the rug in
quantum probability.)
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∣P ∣ = ∑p ∣p∣: the (total) mass of
P .

If ∣P ∣ = 1, then P is called a prob-
ability space.

Scaling and Normalization. The
multiplicitive group R×+ acts on ”the
set of all” measure spaces P by what
we call λ-scaling, λ ∈ R×+,
P ↦ λ ⋅ P = {λp} for all p ∈ P .
If λ = 1/∣P ∣, then this is called

normalisation of P that turns a
finite measure space P into a prob-
ability space.

In statistics – and this is essential
– ”probabilities” are defined (if at
all) via ratios ni ∶ nj of numbers of
occurrences of ”events” i ∈ I , where
the normalising factor 1/∑ni (and
even the set I) is often unavailable.

16



Thus, ”probability distributions on
I” reside in the projective space
(RI∖0)/R×+ rather than in the Eu-
clidean space RI itself.

Reductions. A map P f
→ Q (that

is a shorthand for set(P )
f
→ set(Q))

is a reduction if the q-fibers Pq =
f−1(q) ⊂ P satisfy ∣Pq∣ = ∣q∣ for all
q ∈ Q. Q itself in this case is called
a reduction of P .

Since the space Q is uniquely de-
termined by P and by the map be-
tween sets, f ∶ set(P ) → set(Q),
thisQmay be called the f -reduction,
sometimes just a reduction of P .

(Imagine Q is an ”apparatus” for
observing P . What you see of P
is a ”reduced picture” of what ”fil-
ters” through the ”windows” of Q.)
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Conditioning. The group (R×+)set(Q)

of functions
λ ∶ set(Q) → R×+, q ↦ λq,

acts on the fibers Pq ⊂ P of reduc-
tions f ∶ P → Q by λq-scaling,

Pq ↦ λqPq.

If λ(q) = 1/∣Pq∣ (where usually
P is a probability space), then this
fiberwise normalisation is called con-
ditioning of P associated to f .

Notice that this conditioning does
not depend on the measure space
structure Q in the set set(Q). The
definition makes sense for all (sur-
jective) maps from measure spaces
P to (finite) sets J (with J = set(Q)

in our case), where such maps f ∶

P → J may be called J-partitions
of P into fibers/slices Pj = f−1(j) ⊂
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P .
Cartesian Products:
P ×Q = {(p, q)} with the masses

∣(p, q)∣ = ∣p∣ ⋅ ∣q∣.
(Think of P ×Q as a joint system

with non-interacting components
P and Q.)
P: Category of finite probabil-

ity measure spaces and reductions.

Why P
f
→ Q rather than ”sim-

ply” P ≻ Q?
Physically, ”≻” per se is meaning-

less, it must be implement by a par-
ticular operation f . (In fact, ”pro-
tocols of attaching Q to P ”, make
2-category.)

Notationally, one may write ent(f)
but not ent(≻).
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However, many concept of proba-
bility theory can not be expressed
purely in the language of the cat-
egory P . For instance, the above
defined ”conditioning of P ” needs
maps from probability spaces to ”bare
sets”.
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Let us make sense of :
Entropy is a number equal the ”log-

arithm of the number of states” of
???
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Expected/Desirable
Properties of Entropy.

Additivity for non-Interacting
Systems.
ent(P1×P2) = ent(P1)+ent(P2).
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Symbolically:
ent[1 2] = ent[1] + ent[2]
Pictorially:

[1 2]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ..................
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[1]
...........
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

[2]

Subadditivity for Joint
Interacting systems.

ent(P1 ∨P2) ≤ ent(P1) + ent(P2)

or
ent[12] ≤ ent[1] + ent[2]

[12]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ..................
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[1]
...........
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

[2]
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This ”∨” is not a canonically de-
fined operation; correct notation would
be ”∨ρ” where ρ is a particular ”re-
lation/interaction” between P1 and
P2.

For instance, if P1 and P2 do not
interact, then P1 ∨ P = P1 × P2; if
P1 and P2 are related by a reduc-
tion P1

ρ
→ P2 then, by definition,

P1 ∨ρ P2 = P1.
Formally, one may define P1 ∨P2

as a probability space Q, such that
set(Q) ⊂ set(P1) × set(P2)

and such that the coordinate pro-
jections Q → P1 and Q → P2 are
reductions.

The following
Strong Subadditivity of Entropy

is less intuitive than simple ”sub-
22



additivity”.

ent(P1 ∨ P2 ∨ P3) + ent(P2) ≤

ent(P1 ∨ P2) + ent(P2 ∨ P3),
or

ent[123]+ent[2] ≤ ent[12]+ent[23]
(According to our definition of ”∨”,
set[123] ⊂ set[1]×set[2]×set[3]

where the coordinate projections [ijk] →
[ij] → [i] are reductions.)

..................
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[1]

[23]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ...........
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

[2]
..........................
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[3]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[123]

Corollary.
2⋅ent[123] ≤ ent[12]+ent[23]+ent[13].
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○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

If Q is a reduction of P then
ent(Q) ≤ ent(P ).

(This seems a most natural prop-
erty but it fails to be true in the
quantum case.)

The entropy of a finite probability
space is related to the cardinalty of
the underlying set by the inequality

ent(P ) ≤ log ∣set(P )∣,

where the equality takes place if
and only if the measure is equidis-
tributed (homogeneous) on set(P ),
i.e. if all atoms p ∈ P have equal
weights ∣p∣ = ∣set(P )∣−1.

(However simple, this linksP with
another world – the category of fi-
nite sets.)

The very existence of entropy with
24



all these properties (that we prove
below) harbours unexpected math-
ematical resources. For instance, it
implies the following refinement of
the (non-sharp) isoperimetric in-
equality

voln(Y )k−1 ≤ vol(∂Y )k

for all measurable subsets Y in the
Euclidean space Rk.
Loomis-Whitney Inequality.
Among all subsets Y ⊂ Rk with

given measures of the projections
to the k coordinate hyperplanes,
the maximal measure is achieved
by rectangular solids

(+ subsets obtained from them by
measurable transformations of Rk
preserving the coordinate line par-
titions).
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This follows from the strong sub-
additivity and ent(P ) ≤ log∣set(P )∣.

In the first non-trivial case of k =
3, the above inequality for Y , de-
noted

Y = [123]p ⊂ R3,

says that

vol2[123]p ≤

area[12]∎ ⋅ area[13]∎ ⋅ area[23]∎
for the three planar coordinate pro-
jections
[ij]∎ ⊂ R2, i, j = 1, 2, 3, of [123]p .

The proof of this starts with an
obvious approximation argument that
reduces the desired inequality be-
tween volume and areas to the cor-
responding inequality between car-
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dinalities (denoted ∣...∣) of finite sub-
sets in product sets,
Yappr = [123]∶∶∶ ⊂ R = R1×R2×R3,

and their ”binary” coordinate pro-
jections to R1 × R2, R1 × R3 and
R2 ×R3:
∣[123]∶∶∶∣2 ≤ ∣[12]∶∶∣ ⋅ ∣[13]∶∶∣ ⋅ ∣[23]∶∶∣.
Then the latter inequality is proven
by applying
2⋅ent[123] ≤ ent[12]+ent[23]+ent[13]
to the probability space [123] with
set[123] = [123]∶∶∶ and with the equidis-
tributed measure on this set [123]∶∶∶,
where one uses the equality

ent[123] = log ∣[123]∶∶∶∣,
along with the inequalities
ent[ij] ≥ log∣[ij]∶∶∣, i, j = 1, 2, 3, i ≠ j.
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for the measure projections (reduc-
tions) [ij] of [123] to Ri ×Rj.

Open Question. The Loomis
Whitney inequality is invariant un-
der the group Sk of the coordinate
permutations of Rk and of Carte-
sian power sets Rk in general.

Are there similar inequalities for
other symmetry groups?

For instance, is there an orthogo-
nally invariant version of the Loomis-
Whitney inequality in Rk that would
imply the sharp isoperimetric in-
equality?

Linearized Loomis-Whitney. The
Loomis-Whitney inequality for co-
ordinate projections of a subset Y
in the Cartesian product of finite
sets, Y ⊂ R = R1×R2× ...×Rk can

28



be formulated in terms of the (k +
1)-linear form ΦY (z, x1, x2, ..., xk)
on functions z ∶ R → R, xi ∶ Ri →
R, that is

ΦY (z, x1, ..., xk) =

∑
(r1,...,rk)∈Y

z(r1, ...rk)⋅x1(r1)⋅...⋅xk(rk)dµ.

Then the so written inequality eas-
ily (this is an exercise) generalises
to all multilinear forms Φ. For in-
stance, the algebraic counterpart of
the 3D Loomis -Whitney reads:

The bilinear forms associated with
an arbitrary 4-linear form Φ (over
any field) satisfy:

∣Φ(x1, x2 ⊗ x3 ⊗ x4)∣2 ≤

∣Φ(s1⊗x2, x3⊗x4)∣⋅∣Φ(x1⊗x3, x2⊗x4)∣⋅
⋅∣Φ(x1 ⊗ x4, x2 ⊗ x3)∣

29



where
∣Φ(... , ...)∣

denote ranks of these bilinear forms.
(See Entropy and Isoperimetry for

Linear and non-Linear Group Ac-
tions, in section ”Recent” on my
webpage.)

Grothendieck Semigroup, Bernoulli
isomorphism and Entropy.

Homogeneous Spaces.
Categorically, P is homogenous

if the morphisms P → Q that are
invariant under the group of au-
tomorphisms of P factor through
P → ● for terminal objects ● ∈ P .

Concretely: all atoms p ∈ P have
equal masses ∣p∣.

Reductions f ∶ P → Q between
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homogeneous spaces (non-canononically)
split, that is P decomposes into Carte-
sian product P = P ′×Q where the
projection P → Q equals f .

Entropy of a homogeneous P is
defined as

ent(P ) = log ∣set(P )∣.

Asymptotic Equivalence.
Injective correspondence between

probability spaces:

P ⊃ P ′ ∋ p
π
↔ q ∈ Q′ ⊂ Q.

∣p ∶ q∣ = max(p/q, q/p)
M = min(∣set(P )∣, ∣set(Q)∣).

Additive Distance:
∣P −Q∣π = ∣P ∖ P ′∣ + ∣Q ∖Q′∣.
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Normilaised Multiplicative Dis-
tance:

∣ logP ∶ Q∣π = sup
p∈P ′

log ∣p ∶ q∣

logM , where 0/0 =def 0,

Total Distance:
distπ(P,Q) = ∣P−Q∣π+∣ logP ∶ Q∣π.

DIST (P,Q) = inf
π
distπ(P,Q).

Definition. {PN} is asymp-
totically equivalent to {QN} for
N = 1, 2, 3, ...→∞, if

DIST (PN ,QN) → 0.

Bernoulli Topological Semigroup.
Ber(P) is the set of the asymp-

totic equivalence classes of {PN}

for all P ∈ P , where the product
inBer(P) is induced by the Carte-
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sian product P ×Q and the topol-
ogy by DIST (PN ,QN)N→∞.

Definition: Boltzmann entropy of
P : Bernoulli class of P in Ber(P).

The Law of Large Numbers ⇒
Approximation/Equipartition The-

orem. The sequence of Cartesian
powers PN admits Bernoulli ap-
proximations for all finite proba-
bility spaces P .

By definition, this means that, for
each P , there exists a sequenceHN
of homogeneous probability spaces
that is asymptoticly equivalent to
the sequence of the Cartesian pow-
ers PN .

This is a reformulation of the Law
of Large Numbers applied to the
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(real valued) function p↦ log p (ran-
dom variable) on the probability space
P . (One can avoid logarithms if
one is comfortable with the law of
large numbers for functions with val-
ues in the multiplicative group R×+,
where the relevant function is the
tautological R+ ∋ p↦ p ∈ R×+.)

Permutation Symmetry of
Bernoulli subsets.

The supporting sets set(HN) of
these homogenyous HN naturally
come up as subsets in the Carte-
sian power set (set(P ))N where
(set(P ))N is acted upon by the
symmetric group SymN that per-
mutes N factors of this Cartesian
product.

This action preserves the power
measure of PN and the Bernoulli
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subsets
BN = set(HN) ⊂ (set(P ))N

can be chosen (by no means uniquely)
SymN -invariant as well.

In fact all proofs of the law of
large numbers deliver invariant sub-
sets BN ⊂ (set(P ))N such that
the corresponding homogeneous spaces
HN , with equidistributed probabil-
ity measure on the sets BN that
serve as set(HN), Bernoulli approx-
imate PN .

Moreover, this approximation is-
sues from the inclusions πN ∶HN ⊂

PN , that is
distπN(HN , P

N) → 0 for N →∞.

Thus one may justifiable say that

the sequences BN ⊂ set(P )N
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Bernoulli approximate PN .
It seem unquestionable, that the
SN -symmetry is an indispensable
property of Bernoulli approximation;
yet, it plays no role at the present
moment.

Bernoulli Entropy:
ent(P ) = lim

N→∞
N−1 log ∣set(HN)∣.

This definition allows an effortless
reduction of basic properties of en-
tropy, such as subbadiitivity, to the
corresponding inequalities for ho-
mogeneous spaces where these in-
equalities are obvious.

It is also clear that
”Boltzmann = Bernoulli”:

The homomorphismH ↦ ∣set(H)∣
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for homogeneous spaces H ∈ P ex-
tends to a topological isomorphism
of the Bernoulli semigroupBer(P)
onto the multiplicative semigroup
R×
≥1 of real numbers ≥ 1.
Corollary: ”Boltzmann Formula”:

ent(P ) = − ∑
p∈P

∣p∣ log ∣p∣

(that may be misguidedly taken for
the definition of entropy).

In other words, {PN} is asymp-
totically equivalent to {QN} if and
only if ∑p ∣p∣ log ∣p∣ = ∑q ∣q∣ log ∣q∣.

(There is nothing ”misguided” about
physisists’

ent(P ) = −K∑
p

∣p∣ log ∣p∣.

This formula, where K is the unit
conversion constant, numerically links
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microworld on the 10−9±1m scale
with what we see with the ”naked
eye”.)

On Sharpness of Entropy Inequal-
ities. The proof of the subadditiv-
ity and/or of the bound ent(P ) ≤

log ∣P ∣ via Bernoulli approximation
theorem does not tell you what are
the equality cases in these inequal-
ities; one has resort to an analytic
use of Boltzmann’s formula.

Is there a more conceptual proof
of sharpness of these inequalities away
from the standard equality cases?

Relative Entropy entλ(µ). This
is classically defined for pairs of mea-
sures λ and µ on some space X ,
where µ = f ⋅ λ for a λ-measurable
function f on X , such that the in-
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tegral ∫ f ∣ log f ∣dλ converges.
If the function f = f(x) is con-

stant on its support
S = supp(f) = {x ∈X}f(x)≠0 ⊂X,

then one postulates:
entλ(µ) = log ∣S∣ =def logλ(S),

where
log ∣S∣ = logµ(S)−µ(S)−1

∫
S

log fdµ,

since f equals µ(S)/∣S∣ on S.
In general, if f(x), x ∈ S, is non-

constant, the entropy of µ = f ⋅ λ
is defined, at least for probability
measures µ, as earlier via the corre-
sponding Bernoulli approximation
(law of large numbers) for the ten-
sorial powers µ⊗N on the Cartesian
power spaces
(X×N , λ⊗N) for N →∞.
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And if µ = f ⋅ λ is a probability
measure, that is if ∫ fdλ = 1, then
the traditional Boltzmann formula
for the resulting entropy reads

entλ(µ) = ∫
S

log 1
f
dµ = ∫

S
f log 1

f
dλ

If λ and µ are measures on a finite
set I with atoms of weights

qi = λ(i) and pi = µ(i)
then we write entQ(P ) for entλ(µ)
and observe that if qi = 1 for all i,
then

entQ(P ) equals ent(P ).
And if Q = {qi} is a homogeneous

probability space with all atoms of
weights qi = 1/m, m = ∣I ∣, then

entQ(P ) = ent(P ) − logm.

In general, for all background mea-
sures λ, the basic properties of entλ(µ)
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follow from those of ent(P ) since
general measure spaces (X,λ) (with-
out atoms) can be approximated
by finite ones with equidistributed
measures on them.

The beloved physicists’ example
is where λ is the Liouville(-Lebesgue-
Haar) infinite(!) measure on X =

R2n.
In the information theory, one is

keen on λ and µ being both prob-
ability measures. In this case, ob-
viously,

entλ(µ) ≤ 0
and −entλ(µ) is regarded as (the

Kullback-Leibler) information di-
vergence between λ and µ.

Mellin’s ζP (s). Additivity of the
entropy under Cartesian products
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is shared by many other invariants
of P = {p} that are symmetric func-
tions of the weights ∣p∣, p ∈ P .

In a way, all such functions are
encompassed by the Mellin trans-
form of P = {p}, that is

ζP (s) = ∑
p∈P

∣p∣s.

Since the function ζP itself is mul-
tipilcative

ζP×Q(s) = ζP (s) ⋅ ζQ(s),

log ζP (s), that is defined for all real
s, is additive and the integrals

∫ log ζP (s)φ(s)ds

are additive for P ×Q as well.
But in order to extract entropy of
P from ζP one has to differentiate
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rather than to integrate:

−ent(P ) = ∑
p∈P

∣p∣ log ∣p∣ =
d

ds
ζP (s)s=1,

where the additivity of the value
of d

dsζP (s) at s = 1 for Cartesian
product of (only!) probability spaces
follows from multiplicativity of ζ
and the relation

ζP (1) = ∑
p∈P

∣p∣ = 1.

On Riemann’s ζ(s) = ζN(−s).
The multiplicativity of ζP (−s) for
the infinite measure space

P = N = {1, 2, 3, 4, 5, ...},
that decomposes into the (restricted)
Cartesian product of the ”prime mea-
sure spaces”

P2 = {1, 2, 4, 8, 16, ...,},
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P3 = {1, 3, 9, 27, 81, ...},
P5 = {1, 5, 25, 125, 625, ...},
P7 = {1, 7, 49, 343, 2401, ...},
P11 = {1, 11, 121, 1331, 14641, ...},
..................................................,

is known as
Euler’s product formula.

Question. Is there anything in-
teresting in counterparts to entropy
for categories of spacesX = {xi}i∈I
where xi are elements of a topologi-
cal semiring (some monodical cat-
egory?) R different from real num-
bers?

Arithmetically attractiveR would
be fields of p-adic numbers and/or
adelic rings. But a more realistic
possibility, motivated by Mendelian
dynamics, is where R is a trun-
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cated polynomial ring with its the
exponential and logarithmic func-
tions similar to those for real num-
bers.

Also one wonders whether it is
worthwhile to replace finite sets I
by something more substantial, e.g.
by some ”algebraic varieties” with
constructive R-valued functions on
them.

Grothendieck-Bernoulli
Group and (Relative)
Entropy of Reductions.
Grothendieck groupGr(P) is gen-

erated by symbols [f] for all reduc-
tions f ∶ P1 → P2 with the relations
[f1 ○ f2]Gr = [f1]Gr + [f2]Gr
and
[f × idQ]Gr = [f]Gr for the iden-
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tity morphisms idQ ∶ Q → Q of all
Q ∈ P , where
f × idQ ∶ P1 ×Q→ P2 ×Q.
As usual, [P ]Gr is defined for spaces

(objects) P as
[PGr → ●] for PGr → ● being the

morphisms to the (terminal) monoatomic
space.
DIST naturally extends from ob-

jects to morphisms (reductions) in
Gr(P) in a natural way: such a
distance between f1 ∶ P1 → Q1 and
f2 ∶ P2 → Q2 must be implemented
by pairs of partially defined corre-
spondences π ∶ P1 ↔ P2 and χ ∶

Q1 ↔ Q2, such that the obvious
diagram commutes. (One could re-
place ”commute” by ”commute up-
to ε” and add this ε to DIST .)

We keep the same notation for the
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so extended DIST and for the cor-
responding (non translation invari-
antt) metric induced on the group
Gr(P).

The Grothendieck-Bernoulli group.
Divide the groupGr(P) by the Bernoulli
equivalence relation
g1 ∼

∞
g2 ⇔DIST (N ⋅g1,N ⋅g2) →

N→∞
0

and denote the resulting qutient space
with the induced group structure
by GroBer(P).

Since Cartesian products of reduc-
tions f1 × f2 ∶ P1 × P2 → Q1 ×Q2
decompose as

P1×P2
f1×idP2
→ Q1×P2

idQ1×f2
→ Q1×Q2

one has:
[fN]Gr = N ⋅ [f]Gr;

This allows a use of the Law of large
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numbers that (obviously) yields the
Bernoulli approximation theorem
for reductions as well as for spaces.
It follows that

the group GroBer(P) is isomor-
phic to the multiplicative group
R×+ with the image of P consist-
ing of numbers ≥ 1.

A posteriori,
ent(f ∶ P → Q) = ent(P )−ent(Q).

But the categorical definition of
ent(f) (unlike the above numeri-
cal formula) generalises to reduc-
tions f between countable infinite
measure spaces

P = {pi} and Q = {qj},

∑
i
∣pi∣ = ∑

j
∣qj ∣ = 1, i, j = 1, 2, 3, ... .

Even if these spaces have infinite
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entropies:
∑
i
∣pi∣log∣pi∣ = ∑

j
∣qj ∣ log ∣qj ∣ = −∞,

ent(f ∶ P → Q) may remain finite
nevertheless.
⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉ ⇉

Fans and ∨-Categories. Given
a set I of morphisms fi ∶ x → bi,
i ∈ I , in a category, we call these
x-fans over {bi}, say that an a-fan
f ′i ∶ a→ bi lies between x and {bi}
if there is a morphism g ∶ x → a
such that f ′i ○g = fi for all i ∈ I . To
abbreviate we may say ”a between
x and bi”.

Minimal Fans and Injectivity. An
x-fan over bi in a category is called
minimal if every a between x and
{bi} is isomorphic to x. (More pre-
cisely, the arrow x → a that im-
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plements ”between” is an isomor-
phism.)
ent(f) = lim

N→∞
N−1ent(φN).

Bernoulli Functoriality Question.
As we mentioned above, the Bernoulli
approximation theorem extends from
objects to morphisms f in P (that
was needed to approximation of Carte-
sian powers fN by sequences of re-
ductions between homogeneous spaces).

More generally, let {fi}, i ∈ I , be
a finite set of reductions between
some objects in P . Do they admit
homogeneous Bernoulli approxima-
tions φiN of all fNi , such that
[fi = fj○fk] ⇒ [φiN = φjN○φkN],

and such that injectivity (minimal-
ity) of all fans is being preserved,
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i.e.
injectivity (minimality) of fiν ∶

P → Qν⇒ injectivity (minimality)
of φiνN ∶HN →HiνN?

Probably, this is not always pos-
sible but what little we need for
our present purposes, is true and
does directly follow from the Law
of large numbers.

Shannon Inequalities.
LetQ = ∨iPi be a (non-canonical)

minimal, hence injective, fan {Q→
Pi}. (This injectivity is a category
theoretic way of saying that
set(Q) = ⨉i set(Pi) as we did

earlier.)
Injectivity implies subadditivity:

ent(∨iPi) ≤ ∑
i
ent(Pi),
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as well as
subadditivity for reductions
fi ∶ Pi → Qi,

ent(∨ifi) ≤ ∑
i
ent(fi).

Since

ent(fi) = ent(Pi) − ent(Qi) =

ent(Qi ∨ Pi) − ent(Qi),

this amounts to
ent(∨i(Qi ∨ Pi)) − ent(∨iQi) ≤

∑
i
[ent(Qi ∨ Pi) − ent(Qi)].

Alternatively, one can formulate
such an inequality in terms of mini-
mal/injective fans of reductions P →
Qi, i = 1, 2, ..., n, coming along with
(cofans of) reductionsQi → R, such
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that the obvious diagrams commute:
ent(P )+(n−1)ent(R) ≤ ∑

i
ent(Qi).

The subadditivity of entropy for
reduction implies strong subbadi-
tivity:

since P ∨ P = P and
(P1∨P2)∨(P2∨P3) = P1∨P2∨P3,

the joint reduction of
f12 ∶ P1 ∨ P2 → P2
and
f23 ∶ P2 ∨ P3 → P2
is
f12 ∨ f23 ∶ P1 ∨ P2 ∨ P3 → P2.

Hence,
ent(P1 ∨ P2 ∨ P3) − ent(P2) ≤

ent(P1 ∨ P2) − ent(P2)+
ent(P2 ∨ P3) − ent(P2).
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3 Representation of infinite probability spaces X by
sets of finite partitions of X and Kolmogorov’s dy-
namical entropy .

Spaces over P. A space X over
the category P of finite probability
spaces is, by definition, a covariant
functor from P to the category of
sets, where the value of X on P ∈ P

is denoted X(P ).
For example, if X is an ordinary

measure space, then the correspond-
ing X assigns the sets of (classes of)
measure preserving maps (modulo
sets of measure zero) f ∶X → P to
all P ∈ P .

In general, an element f in the set
X(P ) can be regarded as a mor-
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phism f ∶ X → P in a category
P/X that is obtained by augment-
ing P with an object correspond-
ing to X , such that every object, in
P/X receives at most one (possi-
bly none) morphism from X . Con-
versely, every category extension writ-
ten of P with such an object defines
a space over P .

(Strictly speaking, in order to have
the ”at most one” property, each
P ∈ P , must appear in the category
P/X in several ”copies” indexed by
the set X(P ).)
∨-Categories and Measure Spaces.

Recall that an x-fan over a set
of objects {bi} in a category is a
set I of morphisms fi ∶ x → bi,
i ∈ I , in this category, where an a-
fan f ′i ∶ a→ bi is said to lie between
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x and {bi} and a itself is said to be
between x and bi, if there is a mor-
phism g ∶ x→ a such that f ′i○g = fi
for all i ∈ I .

Definition. An X over the the
category P of finite measure spaces
is called a measure space if P/X a
∨-category, that is if every X -fan
over finitely many Pi ∈ P admits a
Q ∈ P between X and {Pi}.

This Q, when seen as an object
in P is unique up to an isomor-
phism; the same Q is unique up to
a canonical isomorphism in P/X .
We call this ∨-(co)product of Pi in
P/X and write: Q = ∨iPi.

This product naturally/functorially
extends to morphisms g in P/X ,
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denoted
∨igi ∶ ∨iPi → ∨iP

′
i

for given reductions gi ∶ Pi → P ′i .
Observe that this ∨ = ∨X is de-
fined (only) for those objects and
morphisms in P/X that lie under
X .

An essential feature of minimal
fans, say fi ∶ Q → Pi, a feature
that does not depend on X (un-
like the ∨-product itself) is the in-
jectivity of the corresponding (set)
map from Q to the Cartesian prod-
uct ∏iPi (that, in general, is not
a reduction).

Resolution of Infinite Spaces X .
Say that a set P∞ = {Pi} of ob-

jects Pi ∈ P resolves a Q ∈ P/X
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that lies under X
ent(Q ∨ Pi) − ent(Pi) ≤ εi →

i→∞
0.

If P∞ resolves all Q, then, by def-
inition, it is a resolution of X .

(”Physically” speaking, observa-
tion performed by Pi contain the
full infermation about X .)

Example: Infinite Products. Say
that X is representable by a (usu-
ally countable) Cartesian product
Ps ∈ P/X , s ∈ S, briefly, X is a
Cartesian product ∏s∈S Ps, if the
finite Cartesian products

ΠT = ∏
s∈T

Ps, s ∈ T,

lie under X for all finite subsets
T ⊂ S and if these ΠT resolve X ,
namely, some sequence ΠTi resolves
X . (The subsets Ti ⊂ S exhaust S
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in this case.)
Sub-Examples. (a) A productX =

∏s∈S Ps is called minimal if a Q
in P/X lies under X if and only if it
lies under some finite product ΠT .
For instance, all Q under the min-
imal Cartesian power {1

2,
1
2}
S are

composed of dyadic atoms.
(b) The classical Lebesgue-Kolmogorov

productX = ∏s∈S Ps is also a prod-
uct in this sense, where the resolu-
tion property depends on the fol-
lowing (obvious in the present form)

Lebesgue’s density lemma.
Let P f

← R → Q be a minimal
R-fan of reductions, let P ′ ∈ P be a
subspace, denote byRp′ = f−1(p′) ⊂
R, p′ ∈ P ′, the p′-fibers of f and let
MII(p

′) be the mass of the second
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greatest atom in Rp′.
If

∣P∖P ′∣ ≤ λ⋅∣P ∣ and MII(p
′) ≤ λ∣Rp′∣

for some (small) 0 ≤ λ < 1 and
all p′ ∈ P ′, then
ent(f) ≤ (λ+ε)⋅∣set(Q)∣ for ε = ε(λ) →

λ→0
0.

(Secretly, ε ≤ λ ⋅ (1 − log(1 − λ))
by Boltzmann formula.)

To see this, observe that ent(Rp) ≤
∣set(Rp∣ ≤ ∣set(Q∣ for all p ∈ P ,
that ent(Rp′) ≤ ε →

λ→0
0 by conti-

nuity of entropy for MII(p
′) → 0

and conclude by using the
Entropy Summation Formula.

The entropies of reductions be-
tween probability spaces, f ∶ R →
P , satisfy
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ent(f) = ∑
p

∣p∣ ⋅ ent(∣Rp∣
−1Rp).

(Recall that ∣S∣−1S, denote the prob-
ability space obtained by normal-
isation the measure space S, e.g.
S = Rp.)

This formula is obvious for reduc-
tions f between homogeneous spaces
and the general case follow by Bernoulli
approximation theorem for reduc-
tions. Alternatively, one can derive
it by a two line computation from
Boltzman’s formula.

Exercise. Reformulate the defi-
nition of Lebesgue’s integral in the
present terms and reprove its basic
properties.

Normalisation and Symmetry.
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Infinite systems/spaces X have in-
finite entropies that need be renor-
malised, e.g. with some ”natural”
approximation ofX by finite spaces
PN , such that

”ent(X ∶ size)” = lim
N→∞

ent(PN)

”size”(PN)
.

To be specific, let ∆N be finite
sets of transformations δ of the space
X represented by self-maps of the
(small) categoryP/X (which causes
no logical problem in the present
case).

These δ act on finite spaces P ∈

P/X and we let

entP (X ∶ ∆∞) =

lim
N→∞

∣∆N ∣−1ent( ∨
δ∈∆N

δ(P ))
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for some sequence ∆N with ∣∆N ∣ →

∞, where ∣∆N ∣ denotes the cardi-
nality of the set ∆N (and where we
pass to a subsequence if the limit
does not exist).

Since a single P , and even all of
∨

δ∈∆N

δ(P ) may not suffice to fully
”resolve” X , we take a resolution
P∞ = {Pi} of X (that, observe, has
nothing to do with our transforma-
tions) and define
ent(X ∶ ∆∞) = entP∞(X ∶ ∆∞) =

lim
i→∞

entPi(X).

This, indeed, does not depend on
P∞. If Q∞ = {Qi} is another res-
olution (or any sequence for this
matter), then the entropy contri-
bution of each Qj to Pi, that is the
difference ent(Pi∨Qj)−ent(Pi) is
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smaller than εi = ε(j, i) →
i→∞

0 by
the above definition of resolution.

Since δ are automorphisms, the
entropies do not change under δ-
moves and
ent(δ(Pi)∨δ(Qj))−ent(δ(Pi)) =

ent(Pi ∨Qj) − ent(Pi) ≤ εi;
therefore, when ”renormalized by
size” of ∆N , the corrspomding ∨-
products satisfy the same relations
by the relative Shannon inequality.
Thus,
Ent∨Qj −EntPi

∣∆N ∣
≤ εi →

i→∞
0,

where

EntPi = ent( ∨
δ∈∆N

δ(Pi)) ,
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and

Ent∨Qj = ent( ∨
δ∈∆N

(δ(Pi) ∨ δ(Qj)))

Now we see that adjoiningQ1,Q2, ...,Qj
to P∞ does not change the above
entropy, since it is defined with i→
∞ and adding all of Q∞ does not
change it either. Finally, we turn
the tables, resolve Pj by Qi and
conclude that P∞ and Q∞, that
represent ”equivalent experimental
protocols”, give us the same entropy:
entP∞(X ∶ ∆∞) = entQ∞

(X ∶ ∆∞).

Kolmogorov’s 1958 Theorem for
the Bernoulli (Shift) Systems. Let
P be a finite probability space and
X = PZ. This means in our lan-
guage that the corresponding X is
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representable by a Cartesian power
PZ with the obvious shift action of
Z on it.

If the probability spaces PZ and
QZ are Z-equivariantly isomor-
phic then ent(P ) = ent(Q).

Proof. Let Pi denote the Carte-
sian Power P {−i,...0,...i}, let ∆N =

{1, ...N} ⊂ Z, observe that
∨

δ∈∆N

δ(Pi) = P
{−i,...,i+N}

and conclude that ent( ∨
δ∈∆N

δ(Pi)) =

(N + i)ent(P ) for all, i = 1, 2, ... .
Therefore,

entPi(X ∶ ∆∞) =

lim
N→∞

N−1ent( ∨
δ∈∆N

δ(Pi)) =

lim
N→∞

N + i

N
ent(P ) = ent(P )

66



and
ent(X ∶ ∆∞) = lim

i→∞
entPi(X ∶ ∆∞) = ent(P ).

Similarly, ent(QZ ∶ ∆∞) = ent(Q)

and since PZ andQZ are Z-equivariantly
isomorphic, ent(PZ ∶ ∆∞) = ent(QZ ∶
∆∞); hence ent(P ) = ent(Q). QED.

Discussion (A) The above argu-
ment applies to all amenable (e.g.
Abelian and solvable) groups Γ (that
satisfy a generalized ”(N + i)/N →
1, N →∞” property) where it also
shows that the entropy is decreas-
ing under Γ-reductions:

if QΓ is a Γ-reduction of PΓ

then ent(Q) ≤ ent(P ).
(”Reduction” means that QΓ re-

ceives a Γ-equivariant measure pre-
serving map from PΓ that is a nat-
ural transformation of functors rep-
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resented by the two Γ-spaces.
Also recall that a countable group

Γ is called amenable if it admits
an exhaustion by finite subsets ∆N
such that the cardinalities of their
group products with all finite sub-
set ∆ ⊂ Γ satisfy

∣∆N ⋅∆∣

∣∆N ∣
→

N→∞
1,

where A ⋅B = {a ⋅ b}a∈A,b∈B.)
Questions. Have the logic of en-

tropy for ”Bernoulli (and more gen-
eral) crystals” PZ3, been apparent
to physicists all along?

Why was it blocked by a blind
spot in mathematicians’ mind’s eye?

What are other blind spots in our
minds?

Ultralimits and Sofic Groups. Kol-
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mogorov argument does not apply
to non-amenabale groups. In fact
entropy is not necessarily decreas-
ing under Γ-reductions for non-amenable,
e.g. free, groups Γ.

But it was shown by Lewis Bowen
a few years ago that

Γ-isomorphism between Bernoulli
systems PΓ

1 ↔ PΓ
2 implies that

ent(P1) = ent(P2) for many non-
amnable groups Γ, including, for
example, free groups.

In fact, Bowen proved this for all
sofic groups Γ.

Question. Is there a category the-
oretic definition of dynamic entropy
that would automatically yield Kol-
mogorob’s and Bowen’s entropies?

Definition of ”sofic”. Sofic groups
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Γ can be defined as subgroups of
(properly defined) metric ultra lim-
its of finite groups.

In simple words, this means the
existence of ”ε-approximate actions”
of these Γ on finite sets X that
spells out as follows.

Maps φ1, φ2 ∶ X → Y are said to
ε-agree or agree up-to ε if the sub-
set of those x ∈ X where φ1(x) ≠
φ2(x) has cardinality ≤ ε∣X ∣ for
∣X ∣ denoting, as earlier, the cardi-
nality of X .

Then a map A from Γ to the set
of self-maps X → X is called an
ε-monomorphism on ∆ ⊂ Γ if
● the maps A(δ1 ⋅ δ2) ∶ X → X

and A(δ1) ○A(δ2) ∶ X → X agree
up to ε for all δ1, δ2 ∈ ∆.
● A(id) ∶ X → X , id ∈ Γ, agrees
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up to ε with the identity mapX →
X .
● The map A is one-to one on

∆ up to ε: that is the cardinality
of the set of those x ∈ X where
A(δ)(x) = x is ≤ ε∣X ∣ for all δ ∈ ∆
except for δ = id ∈ Γ.

Now, a countable group Γ is sofic
if,

given a finite set ∆ ⊂ Γ and an
ε > 0, there exists a finite set X =

X(∆, ε) and a map A from Γ to
the set of self maps X →X which
is an ε-monomorphism on ∆.

Amenable as well as residually
finite groups are, obviously, sofic,
but the full extend of ”sofic” re-
mains unclear.

(Recall that Γ is residually finite if
it admits a faithful isometric action
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on a compact metric space. Notice
that all subgroups of linear groups,
e.g. free groups, are residually fi-
nite.)

Probably, a predominant major-
ity of infinite groups are non-sofic,
but the existence of a single non-
sofic group remains problematic.

4 Simplex of Probability ”Laws” and Fisher Metric.

Probability spaces P represented by
probability measures, sometimes called
”laws”, on the same background fi-
nite set I = set(P ) of cardinality
m can be visualised as points in the
Euclidean simplex
△ = △(I) ⊂ RI = Rm,m = ∣I ∣,
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defined, in these notation, by
pi ≥ 0, ∑

i∈I

pi = 1.

In this terms, objects of the cate-
gory P of finite probability spaces
and reductions becomes simplices
△ with markings P ∈ △ and mor-
phisms are simplicial maps between
sumplices, say△1 = △(I1) and△2 =
△(I2),

f ∶ (△1 ∋ P1) → (△2 ∋ P2),
such that f(P1) = P2.

(The category S of unmarked sim-
plices △ and simplical maps can
be regarded as a particular imple-
mentation or materialisation of the
category I of finite sets I . This
is supposed to say something more
than that S is canonically equiva-
lent to I .)
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The simplex △(I) can be recon-
structed ”combinatorially” from I
as

the limit of the 1
N -rescaled finite

spaces that are quotients of IN
by the symmetric group SymN .

In fact, the set IN/SymN can be
seen as a subset in the the integer
lattice Zm ⊂ Rm that equals the
intersection of this lattice with the
scaled simplex N ⋅ △(I) ⊂ Rm.

This symmetrisation tremendously
diminishes (simplifies?) the power
set IN : its cardinality drops from
M =mN to Ms =

(m+N−1)!
m!(N−1)! .

On limits of Bernoulli sets
BN = set(HN) ⊂ IN = (setP )N
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projected to
△(I) = lim

N→∞

1
N

(IN/SymN).

Given a sequence of Bernoulli sub-
setsBN ⊂ IN that support Bernoulli
homogeneous approximating spaces
HN of PN , we project these sets to
the set IN/SymN embedded into
Zm ⊂ Rm, m = ∣I ∣, and then send
them to the simplex △(I) ⊂ Rm
by 1

N -scaling.
Let

lim
N→∞

1
N
BN/SymN ⊂ △(I)

be the set of the limit points of
the subsets BN/SymN so imbed-
ded into△(I) and letBsym = Bsym(P )

be the intersection of these limit
sets for all Bernoulli sequences BN
approximating PN .
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It follows from the Boltzmann for-
mula, that Bsym(P ) equal the in-
tersection of △(I) with an affine
hyperplane TP ⊂ RM that contains
the point {pi} ∈ △(I) that repre-
sent our probability space P and
such that this TP is tangent to the
levelEP of the function∑i∈I pi log pi
that contain {pi}. Thus, EP and
TP are defined by the equations

∑
i∈I

xi logxi = −ent(P )

and
∑
i∈I

xi log pi = −ent(P ).

(If all pi = 1/m then Bsym(P ) =

{1/m, ....1/m} as well.)

Logarithmic Rate Decay Formula.
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The symmetrized Cartesian pow-
ers PN/SymN of spaces P = {pi},
i ∈ I , that are reductions of PN by
the quotient map IN → IN/Symn,
can be similarly seen in ∆(I).

Namely, let P △ be the measure
on Rm, m = ∣I ∣, supported on the
vertex set of△(I) ⊂ Rm with masses
pi assigned to these vertices and
P△⊗N be its tensorial power that

is the measure on RmN = (Rm)N

– that represents PN .
Let σ ∶ RmN → Rm be the aver-

aging map:

σ(x1, ..., xN) ↦
x1 + ... + xN

N
,

x1, ..., xN ∈ Rm.
and let P▲N = σ∗(P△⊗N) be the
push forward of the measure (P△)⊗N

by σ to △(I) ⊂ Rm.
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This P▲N , that, in fact, equals
the 1

N -scaledN-th convolution power
of ∆P , serves as a representation of
PN/SymN in the simplex △(I).

The asymptotics of the values of
the measures P▲N on ”infinitesimally
small” neighbourhoodsU{qi}

⊂ △(I)

of the points {qi}i∈I ∈ △(I) ⊂ Rm
encoded by the
(logarithmic) rate (decay) function,

rateP ∶ △(I) → R+
defined as
rateP{qi} = inf

U{qi}

lim
N→∞

1
N

logPN▲ (Uq),

where the infimum is taken over all
neighbourhoods of {qi} ∈ △(I) and
where the limit (almost) obviously
exists.

This rate, as was shown by Boltz-
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mann, equals
minus relative entropy entP{qi},

inf
U{qi}

lim
N→∞

1
N

logPN▲ (Uq) = −entP{qi},

where the points
{qi} ∈ △(I) ⊂ RI = Rm, m = ∣I ∣,

are regarded as probability measures
on the set I that supports the mea-
sure {pi} of P when it comes to
entP{qi}.

Verification of this asymptotic for-
mula, (probably, known to Euler) is
trivial modulo

Boltzmann’s
entP{qi} = ∑

i
qi log pi/qi

and rough Stirling’s
1
M

logM ! = logM − 1 + o(1)
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applied to the multinomial coeffi-
cients N !

∏iMi!, ∑iMi = N .
But everything can be seen di-

rectly with our Bernoullian defini-
tion of entropy, say for homogeneous
P = {pi = 1/m}, m = ∣I ∣, where
entP (Q) = ent(Q) − logm is de-
fined via the law of large numbers
applied to the function

i↦ log qi
on the probability space Q = {qi},
that says that one counts only those
”states” (i1, ..., iN) ∈ IN where
∑i qi log qi is close to −ent(Q).
In fact, the function −rate is of-

ten taken for a mathematical defi-
nition of entropy corresponding to
”logarithm of the proportion of
the number of micro-states”, where
these ”micro-states” are those com-
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prising ”macro-states” Uq.
Also Boltzmann’s formula
rateP{qi} = ∑i qi log qi/pi

can be seen as an antecedent of
the large deviation theory, that
we briefly explain in section 8.

Cartesian multiplication of prob-
ability spaces,

(P1, ..., PN) ↦ P1 × .... × PN ,

can be seen in the light of the Segre
(tensor product) map
Rm1×...×Rmk×...×RmN → RM =

= Rm1 ⊗Rmk ⊗ ...⊗RmN

that is restricted to the simplices
△k= △(Ik) ⊂ Rmk, mk = ∣Ik∣,
△1 × ... ×△k × ... ×△N →△ ⊂ RM ,
△ = △(I1 × ... × Ik × ... × IN),

M =m1 ⋅mk ⋅ ... ⋅mN .
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In the particular case where all
factors are mutually equal, the re-
striction of the Segre map to the di-
agonal is called Veronese N-power
map,
VN ∶ Rm → RMs = (Rm) SON ⊂

RM = (Rm)⊗N

where (Rm) SON denotes the space
of symmetric N -tensors.

(The dimension

Ms =
(m +N − 1)!
m!(N − 1)! < (m +N)m,

is much smaller than M = mN for
large N >>m.)

The space (Rm) SON can be seen
as (it is isomorphic to) the space
of homogeneous polynomials of de-
gree N in m variables, where the
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Veronese map sends polynomials of
degree one (linear forms)∑i pixi to
(∑i pixi)

N that are polynomials of
degree N .

(One may think these maps are
too simple to deserve special names,
but if one looks at them closer, one
realises that their geometry, e.g. the
properties of the metrics distN on
Rm induced by these maps, are far
from being apparent.)

So far, the role of logarithms in
the definition of entropy was purely
cosmetic – we were not obliged to
use the isomorphism log ∶ R×+ → R+
and could remain in the multiplica-
tive group R×+.

But ent(P ) in the present pic-
ture, that is seen as a particular
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function on the simplex△(I) ⊂ RI ,
has some remarkable properties due
to its logarithmic origin. Namely

The Fisher Information metric
associated to the entropy function,
that is the Riemannian metric h on
△(I) defined as the

Hessian of minus entropy,
h =Hess(e), e = e(P ) = ∑

i∈I

pi log pi

(unbelivably!) has constant posi-
tive curvature (where semipositiv-
ity of h allows from subadditivity
of entropy).

In fact the Euclidean moment
map

MR ∶ RI → RI ,
for

MR ∶ {xi} → {pi = x
2
i}
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is, up to 1/4-factor, an isometry
from the positive ”quadrant” of the
unit Euclidean sphere onto (△(I), h).

Proof. Start by observing that
the strict convexity of p log p im-
plies positive definiteness of the
quadratic form h = Hess(e) that
makes it, indeed, a Riemannian met-
ric.

In fact, this metric written in pi-
coordinates in RI reads:

h = ∑
i

d2(pi log pi)
d2pi

dp2
i =

∑
i
dp2
i /pi,

for d
2(p log p)
d2p

= 1/p.
This agrees up to 1/4 factor with

the Riemannian metric induced by
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M−1
R from the Euclidean metric:
∑
i
(d

√
pi)

2 = ∑
i
dp2
i /4pi.

QED.
(MR extends to the ”full” mo-

ment map
M ∶ CI → RI+ = CI/TI

for
M ∶ zi → zizi

where TI is the n-torus naturally
acting on CI and where the the re-
striction of M to the unit sphere
in CI → RI+ factors through the
complex projective space CP (I) of
complex dimension ∣I ∣−1 that sends
CP (I) → △(I).)

Fisher Metric via Information
Divergence. The information di-
vergence δ = δ(Q,P ) = −entQ(P )
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between P = {pi} and Q = {qi} is
a smooth function on △(I)×△(I).
Since this function is non-positive
and it vanishes on the diagonal, the
differential of this d vanishes on the
diagonal as well.

Hence, the second differential of δ
is defined on the diagonal, where it
can be seen as a family of, necessar-
ily positive semidefinite, quadratic
formsD2

P (δ(Q,P )) on the tangent
spaces Tq(△(I)), that is a quadratic
differential form, say hδ on △(I),
and since
−entQ(P ) = ∑

i
pi(log pi − log qi)

by Boltzmann formula, this δ equal
the Fisher metric h = Hess(e) for
e = ∑p1 log pi.

The derivation of Fisher metric
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via the second differential D2(δ)
has the advantage of relying only
on the smooth structure in the sim-
plex △(I), while the definition of
Hess(e) depends on the affine struc-
ture in △(I).

Fisher Metric (almost) without
Logarithms. The space of mea-
sures on the simplex △(I) is natu-
rally acted upon by the multiplica-
tive group R×

>0.
Pick up an invariant Riemannian

metric g on R×
>0, and thus define

Riemannian metrics, that are posi-
tive differential quadratic forms, in
the spaces of positive weights pi ∈
R>0, i ∈ I , on the vertices of △(I).

Denote these forms by hi = hg,i
and observe that the weighted sum
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hg = ∑i pihi is a Riemannian met-
ric on the simplex △(I) where this
△(I) is regarded as the space of
I-tuples of positive weights {pi}.

Since, obviously, g = Cgdp2/p for
the standard additive p-parametrization
of the positive real line R>0, the
form hg equals Fisher’s h = ∑i dp2

i /pi
times a constantCg, where it is also
clear thatCg = 1 if g is the Rieman-
nian metric for which distg(r1, r2) =
∣ log r1 − log r2∣.

Remark. The above construction
(going back to Fisher? to Rao?)
delivers Rinannian metrics in a va-
riety of (moduli) spaces of geomet-
ric structures” that contain ”mea-
sures” among their ”constituents”.

The two prominent examples are
spaces of symplectic structures (forms)
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on a smooth manifolds and spaces
of Riemannian metrics/forms, where
the latter for metrics of constant
negative curvature on surfaces is called
the Weil-Petersson metric.

Question. Is there an algebra-
geometric setting where the entropy
and the classical probability theory
in general, would find there proper
place along with the moment map
from CPn to the n-simplex?

Reference. Frédéric Barbaresco,
Koszul Information Geometry and
Souriau Geometric Temperature/Capacity
of Lie Group Thermodynamics.

**************************
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5 Mendelian Next Generation Map.

In 1908, Godfrey Harold Hardy sent
a ”letter to the editor of Science”,
entitled:

”Mendelian proportions in a mixed
population”, where he writes:

”...suppose that ... mating may
be regarded as random, that the
sexes are evenly distributed among
the three varieties, and that all are
equally fertile. A little mathemat-
ics of the multiplication-table type
is enough to show that in the next
generation the numbers will be as
(p+ q)2 ∶ 2(p+ q)(q + r) ∶ (q + r)2,
or as p1 ∶ 2q1 ∶ r1.

The interesting question is in what
circumstances will this distribution
be the same as that in the genera-
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tion before? It is easy to see that
the condition for this is q2 = pr.
And since q2

1 = p1r1, whatever the
values of p, q, and r may be, the
distribution will in any case con-
tinue unchanged after the second
generation.”

(This nine lines, unknowingly to
Hardy, firmly associated his name
with genetics – one of the great-
est scientific discoveries of all times,
that has surpassed everything he
has achieved in pure mathematics.)

A single formula expressing what
Hardy says, called

Castle-Hardy-Weinberg Law,
reads:
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(A2 +AB)
2

(A2 +AB) ⋅ (AB +B2)
=
A2

AB

for A = p + q and B = q + r.

This ”multiplication-table type” iden-
tity expresses idempotence, custom-
ary called

equilibrium property,
(of an instance) of the Mendelian
next generation map G that, in
the simple case considered by Hardy,
sends the projective plane into it-
self:

p ∶ 2q ∶ r G↦ p1 ∶ 2q1 ∶ r1,

for
p1 = (p + q)2

q1 = (p + q)(r + q)

r1 = (q + r)2,
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where the Castle-Hardy-Weinberg law,
often called equilibrium principle,
(undobtfully known to Mendel) as-
certains that

G ○G = G.

(Such a relation is unusual, al-
most paradoxical, for polynomial
and rational transformationsG. This
contributed to befuddlement of bi-
ologists faced with counterintuitive
and ideologically unacceptable for
many of them predictions of Mendelian
inheritance theory.)

In biological terms, the map G
acts on allele distributions in pop-
ulations O of diploid organisms. If
these alleles, that are variants of a
particular gene present in a popu-
lation, are market by indices i ∈ I
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(in Hardy’s case there are two alle-
les), then the set of these distribu-
tions can be represented by ”vec-
tors” {ni} for ni being the number
of i-th alleles present in O.

More realistically, one deals with
ratios ni ∶ nj, since the numbers ni
themselves are usually unknown. Thus
the space of distribution lies in the
projective space
Pm−1 = P I = (RI∖0)/R×, m = ∣I ∣.

Every diploid organism o ∈ O con-
tains two sets of genes, and the
distribution of occurrences of pairs
(i, j) of alleles can be written as a
matrix {rij}, i, j ∈ I . (This ma-
trix is often symmetric, e.g. it is
so in the Hardy case, but this not
essential at the moment.)
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The next generation map G asso-
ciated with ”random matings” be-
tween members of the population
acts on matrices R = {rij} by sub-
stituting each (i, j)-entry rij by the
product (Segre embedding) of the
sums of the entries in the i-row and
the j-column:

{rij}
G
↦ {rchldij }

for
{rchldij } = ∑

i
rij ⋅ ∑

j
rij,

where ”child” is for ”children”.
Then, by pure algebra (see be-

low), the distribution of genotypes
(at a single locus)

achieves equilibrium
after the first round of reproduction,
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i.e. the projectivized map G is
idempotent:

G(G(R)) = const ⋅G(R)

for
const = ∑

ij
rij.

It is also clear that the image of
G consists of matrices of rank one
and, when restricted to symmetric
matrices, thisG retracts quadratic
polynomials onto the Veronese va-
riety (we return to ”Veronese” in
the next section) where, observe the
fibers of these retraction are affine
subspaces in the space of polyno-
mials.

Also G preserves the hyperplane
where ∑ij rij = 1 and, in the case
of real entries, the positivity of rij
is also preserved.
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Then, non-surprisingly, G is en-
tropy increasing:

ent(G(R)) ≥ ent(R),

where – this is immediate with Boltz-
mann’s formula,

[ent(G(R)) = ent(R)] ⇔

⇔ [G(R) = R].

Questions. Is there a purely ”Mendelian”
proof of ent(G(R)) ≥ ent(R) and/or
of ”⇒”?

Let us describe the above in more
general invariant terms.

⟨⟩-Spaces.
These are linear spaces A with

distinguished non-zero linear func-
tions a↦ ⟨a⟩ on them.

Examples. (a) Spaces of distribu-
tions {ri} are endowed with ⟨{ri}⟩ =
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∑i ri.
(b) Linear operators with finite

ranks have their traces for ⟨⟩ and
quadratic forms on Hilbert spaces
also have traces for ⟨⟩. (This sug-
gests a non-commutative counter-
part to Mendelian formalism.)

(c) Homologies of topological spaces
X with coefficients in a filed come
with distinguished zero dimensional
cohomology classes that represent
constant functions (0-cochains) on
X , that serve as ⟨o⟩ on these ho-
mologies.

Tensor productsA⊗B of ⟨⟩-spaces
come with ⟨⟩-structures. for

⟨a⊗ b⟩ = ⟨a⟩ ⋅ ⟨b⟩.

Besides, there are ⟨⟩-natural lin-
ear maps from C = A⊗B to its
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tensorial components:
EA ∶ C → A and EB ∶ C → B

that are the linear extensions of the
(bilinear) maps
a⊗ b↦ ⟨b⟩a and a⊗ b↦ ⟨a⟩b

In these terms the ”next gener-
ation map” G from C to itself is
expressed as

G(c) = EA(c) ⊗EB(c),

where the equilibrium property reads:
G ○G(c) = ⟨c⟩G(c).

Proof. Clearly, c′ = G(c) is a
monomial, say c′ = a′⊗ b′ that is
sent by G to

⟨b′⟩a′⊗⟨a′⟩b′ = ⟨b′⟩⟨a′⟩a′⊗ b′,
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where ⟨b′⟩⟨a′⟩ = ⟨c′ = G(c)⟩ = ⟨c⟩2

since G is a quadratic ⟨⟩ respecting
map. QED

(This is what becomes of Hardy’s
”multiplication table” in the linear
algebraic language.)

The above generalises to mul-
tiple tensor products of ⟨⟩-spaces,
⊗l∈LAl for an arbitrary finite set
L.

Such a product can be seen as a
subspace in the polynomial alge-
bra A∗ = A∗(X) on the Euclidian
space X that is the sum (Carte-
sian product) ⊕l∈LXl of the linear
spaces Xl dual to Al: the product
⊗l∈LAl is identified with the set
of homogeneous polynomials of de-
gree 1 in each xl-variable where ⟨a⟩
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is represented by the value a(x0) at
some vector x0 ∈X .

For instance, x0 = 1 = (1, 1, ..., 1)
for distribution spaces. But since
one can go from one vector to an-
other by a parallel translation of X
and translations induce automor-
phisms of the algebra A∗(X), the
choice of x0 makes no difference and
we stick to x0 = 0 in X . (This sup-
presses multinomial formulae com-
mon in traditional expositions of
G.)

Given a subset K ⊂ L we asso-
ciate to it the coordinate projection
PK fromX to the coordinate plane
XK = ⊕l∈KXl ⊂ X and denote
by EK = P ∗K the induced endo-
morphism of the algebra A∗, where
EK(a(xl)) is obtained by equating
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all xl in a with l ∈ L −K to zero.
Since PK are commuting idem-

potents so are EK for all K ⊂ L,
where E associated to the empty
set sendsA∗ to the constants. Given
a collection K of subsets K ⊂ L
we define EK as the (polynomial)
product of EK for all K ∈ K, i.e.
EK(a) = ∏K∈KEK(a).

Since the multiplicative semigroup
of polynomials is commutative and
the maps EK are endomorphisms,
the transformations EK are multi-
plicative endomorphisms ofA∗ (but
not additive ones for more than one
K in K). Since all EK commute,
so do EK and the composition of
EK’s is expressible in terms of in-
tersections of the underlying sub-
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sets K ⊂ L by the simple rule:
EK ○EK′ = ∏

K∈K,K′∈K′
EK∩K′

that follows from the similar rule
for the composition of the maps PK ’s.

Equilibrating Maps. IfK is made
of d non-intersecting non-empty
subsets, e.g. K is a partition of L
into d subsets, then E = EK (that
correspond to our old G, is called
an equilibrating map of degree d.
Equilibrating maps obviously sat-
isfy:

(A) Quasi-idempotence.
E ○E(a) = a(0)d2−dE(a)

where d denotes the degree of E
and where the exponent d2−d cor-
responds to the presence of d2 − d
empty intersections between differ-
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ent subsets K1, ...,Kd in L under-
lying E.

(B) Polynomiality. Equilibrat-
ing maps preserves subspacesA≤k ⊂

A∗ of polynomials of degree ≤ k in
each variable. Thus A∗ is repre-
sentable as a union of finite dimen-
sional E-invariant subspaces and
if K is made of d subsets K ⊂ L
then the corresponding equilibrat-
ing map E is

a polynomial map of degree d
on each linear space A≤k.

(C) Linearizability. Let us re-
gard A≤k as the algebra of

k-truncated polynomials
that is a quotient of (rather than a
subspace in)A∗ obtained by adding
the relations xk+1

l
= 0 to A∗.

105



Then the mapsEK (not only equi-
librating ones) act on this algebra
as multiplicative endomorphisms; they
can be ”simultaneously linearized”
with the exponential map,

exp(a) = 1 + a + 1
2a

2 +
1
6a

3 + ...,

that isomorphically maps the addi-
tive group of k-truncated polyno-
mials to the multiplicative group
of k-truncated polynomials satisfy-
ing a(0) > 0.

(D) Retraction to Veronese. It
follows from (A) (and also from (C))
that each equilibrating map E =

EK,K = (K1,K2, ...,Kd), retracts
the normalizing hyperplane

A× = A×(X) ⊂ A∗

defined by a(0) = 1 to the Segre-
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Veronese product set
V = VE = E(A×) = A×1 ⋅A

×
2 ⋅...⋅A

×
d ⊂ A

×

for A×i = A×(XKi
), that is the set

of products of d polynomials ai ∈
A×i , where composition of E’s cor-
responds to intersection of V ’s:

VE○E′ = VE ∩ VE′.

The fibersE−1(v) ⊂ A× are affine
subspaces: they are, obviously, equal
the fibers of the additive counter-
part to E = EK, that is EK1 + ...+
EKd

, where Ki ⊂ L are the con-
stituents of K = (K1, ...,Kd).

(E) G-equivariance. The equili-
brating maps E commute with the
group G of linear transformations
of X preserving the decomposition
X = ⊕l∈LXl that naturally act on
polynomials. (For example, the Veronese
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varieties are G-invariant.) In par-
ticular, All E commute with the
scaling transformation Λ correspond-
ing to x↦ λx inX which fixes con-
stant polynomials, e.g. 1 ∈ A×, and
has other eigenvalues equal λ,λ2, λ3,
etc. Thus, for λ > 1, the trans-
formation Λ expands A× with the
fixed point 1 and so global prop-
erties of maps commuting with Λ,
e.g. of equilibrating maps and lin-
ear combinations of these, can be
derived from the corresponding lo-
cal ones at the fixed point 1 of Λ by
transporting all points close to 1 by
applying Λ−N with large N →∞.

Remark on Λ-equivariant maps.
LetA be a linear space (e.g. A×⋂A≤k

with the constant polynomial 1 taken
for the origin) with a linear trans-
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formation Λ, where A splits into
n eigenspaces of Λ with the corre-
sponding eigenvalues λ,λ2, ..., λn,
where λ is not a root of unity, e.g.
λ > 1. It is easy to see that ev-
ery smooth transformation F of A
commuting with Λ is a polynomial
map of degree at most n; a trans-
formation F is invertible (necessar-
ily by a polynomial transformation)
if and only if its differential D0(F )

at 0 is invertible; transformations
F with D0(F ) = 1 make a nilpo-
tent Lie group. For example, all
iterates F j are polynomials of de-
grees bounded by the same n that,
non-surprisingly, admit explicit (al-
beit complicated) expression in terms
of n.
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Observe that neither topology, nor
positivity, were entering our account
of Mendelian dynamics. But all
this comes back with the following

Robbins-Geiringer
Convergence Property.
LetE1, ...,Em ∶ A∗ → A∗ be equi-

librating maps defined on the poly-
nomial algebraA∗ on a linear space
X . These Ei, as we know, retract
the normalising hyperplane A× ⊂

A∗ to the respective Veronese vari-
eties

Ei → Vi = VEi.

Let
V = VE = E(A×) = ⋂

i
Vi
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be the Veronese variety
V = E(A×) = ⋂

i
Vi

of the composition
E× = E1 ○E2 ○ ... ○Em

Let F = c1E1+ c2E2+ ...+ cmEm
be a convex combination with strictly
positive coefficients c1, c2, ..., cm.

Then the iterates F 1 = F , F 2 =
F ○ F 1, ..., F j = F ○ F j−1, ... on
A× converge to the above equili-
brating map E× ∶ A× Ð→ V ⊂ A×,
where the convergence is uniform
and exponentially fast on the com-
pact subsets in A×⋂A≤k for all
k = 1, 2, ....

Proof. Since c1 + c2 + ... + cn = 1
and since all Ei fix the Veronese
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variety V = E×(A×) = ⋂iVi of the
composition E× = E1○E2○...○Em,
so does F and for the same reason
F sends each (affine!) fiber E−1

× (v)
into itself.

The differentials D1 of Ei on A×
at 1 have all their eigenvalues≤ 1
where the equalities are achieved
on the vectors tangent to the cor-
responding Veronese varieties Vi =
Ei(A

×), becauseEi are smooth re-
tractions to Vi (and where the eigen-
values equal 0 tangentially to their
respective fibers).

The differential of F equals the
convex combination of those of Ei;
if we assume all ci > 0, we conclude
that all eigenvalues of the differen-
tialD(F ) on V on the tangent vec-
tors transversal to V are< 1, since

112



the tangent space to V equals the
intersection of those to Vi. (Tan-
gentially to V the eigenvalues of
D(F ) equal 1 since V is fixed un-
der F .) In other words, the dif-
ferential D(F ) strictly contracts
the tangent vectors at V that are
transversal to V . It follows that F
also contracts some neighborhood
U ⊂ A× of V ; therefore, each point
v ∈ U exponentially fast approaches
V under iterates of F . In fact, the
F -orbit of v converges to E×(v) ∈
V since F preserves the fibers of E.

This local property obviously glob-
alizes with the expanding transfor-
mation Λ from the above (E) and
impilies the convergence of F j. QED.

Crossover and Recombination.
The above convergence property can
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be applied to distributions of genomes
of a population where this genomes
undergo recombination by crossover
under random matings, where it is
called

Robbins-Geiringer
Asymptotic Equilibrium Theorem.

The gamete probability distribu-
tions a(Xi) of the genomes of pop-
ulations X0, X1, X2,..., Xi,... re-
sulting from consecutive rounds
of random matings and recombi-
nations, converge to equilibrium.
for i→∞.

This is explained in detail in Mendelian
Mendelian Dynamics and Sturte-
vant’s Paradigm” that can be found
on my web page.

On Entropy. This theorem can
be also seen by observing that each
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round of random mating increases
the entropy of the distributions of
alleles by a definite amount.

The above mathematical scheme,
provides a highly idealised outline
of statistics of real life genomes, the
true complexity of which is still far
from being fully understood or even
adequately formalised. (See Logic
of Chance by Eugene V. Koonin for
the present state of art.)

But, amazingly, using this kind
of mathematics, Mendel, unprece-
dentedly in science, extracted non-
trivial structural information, such
as disctretnes of genomic informa-
tion and diploidy of certain organ-
isms, from raw statistical data.
⊛⊠ ⊛⊠ ⊛⊠ ⊛⊠ ⊛⊠ ⊛⊠ ⊛⊠ ⊛⊠
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6 Von Neumann’s ”Hilbertization” and Strong Sub-
additivity of Entropy.

The orthogonal symmetry of the Fisher
metric disclosed by the moment map
suggests an orthogonally invariant
extension of entropy.

Start with an orthogonally invari-
ant counterpart of the ”simplex prob-
ability measures”.

This simplex
△(I) ⊂ RI = ⨉

i∈I
R

equals the convex hull of the set I
realised in RI by an orbit of the
permutation group Sym(I) that acts
on I .

Replace I by the real projective
space Pn−1 acted upon by the or-
thogonal groupO(n), that is ”max-
imally O(n)-homogeneous” space
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in the same sense as I is ”maxi-
mally Sym(I)-homogeneous”.

This space Pn−1 embeds to the
Euclidean space R

(n+1)(n+2)
2 via the

(Segre)-Veronese squaring map from
the linear space L = Rn to the sym-
metric tensorial square of L.

V ∶ L→ L SO2 = R
(n+1)(n+2)

2 .

If L is realised by linear functions
l on the dual space L⊥(= Rn), then
L SO2 identifies with the space of quadratic
functions (forms) on this L⊥ and
V acts by the ordinary squaring of
functions, l V↦ l2.

Since the squaring map is sym-
metric under l↔ −l, its restriction
to the unit sphere Sn−1 ⊂ Rn = L
factors via a map from the projec-
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tive space Pn−1 = Sn−1/±

Pn−1 → L SO2

where the image equals an orbit of
the orthogonal group O(n) natu-
rally acting on

L SO2 = (Rn) SO2 = R
(n+1)(n+2)

2 .

In terms of quadratic forms, this
image, called Veronese variety

PV er = P
n−1
V er ⊂ L

SO2 = R
(n+1)(n+2)

2

consists of quadratic forms l on the
Euclidean space Rn, such that
rank(l) = 1 and trace(l) = 1,

where the latter equality shows that
PV er is contained in an affine hy-
perplane H ⊂ L SO2.

Observe thatH is invariant under
the action of the orthogonal group
O(n) with the centre of mass o ∈H
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of PV er being fixed. This o rep-
resent the normalised background
Euclidean form, that is

o =
1
n

∑
i=1,...n

x2
i .

Example. The 1-dimensional Veronese
is the ordinary circle in the plane
but the 2-dimensional Veronese va-
riety P 2

V er that is situated in H =

R5 is harder to visualise.
Density States. Define states P

on a Euclidean space S as positive
semidefinite quadratic forms on S,
where density (probability) states
P are distinguished by the condi-
tion trace(P ) = 1.

Every density state equals the con-
vex combination of pure (Veronese)
states that have ranks equal one.
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Every pure state is vanishes on a
hyperplane in S; we say it is sup-
ported on the line normal to this
hyperplane in S, where the (projec-
tive) space of these lines represents
the Veronese variety.

If S = RI for a finite set I , then
pure states supported on the coor-
dinate lines, that are pix2

i , i ∈ I ,
correspond to atomic measures of
weight pi supported on i ∈ I , while
general measures {pi} correspond
to the states ∑i∈I pix2

i .
Thus, our states provide an or-

thogonally invariant extension of the
concept of a finite measure space.

”Unitary” Remark. Quantum me-
chanics, lives in the world of com-
plex, rather than real Hilbert spaces.
But this is non-essential for what
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we do here.
States P can be seen as a measure-

like functions on linear subspaces
T ⊂ S, where the ”P -mass” of T ,
denoted P (T ), is the sum∑tP (t),
where the summation is taken over
an orthonormal basis {t} in T , where
the result does not depend on the
basis by the Pythagorean theorem.
(Without this theorem neither Hilbert
spaces nor Quantum mechanics would
be possible.) The total mass of P
is denoted

∣P ∣ = P (S) = trace(P ).

Observe that
P (T1 ⊕ T2) = P (T1) + P (T2)

for mutually orthogonal subspaces
T1 and T2 in S and that the tensor
product of states P1 on S1 and P2
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on S2, that is a state on S1 ⊗ S2,
denoted P = P1 ⊗ P2, satisfies
P (T1 ⊗ T2) = P1(T1) ⋅ P2(T2)

for all T1 ⊂ S1 and T2 ⊂ S2.
Notice, that we excluded spaces

with zero atoms from the category
P in the definition of classical mea-
sure spaces with no(?) effect on the
essential properties of P . But one
needs to keep track of these ”zeros”
in the quantum case. For exam-
ple, there is a unique, up to a scale
homogeneous state, on S that is
the background Hilbert/Euclidean
form of S, but the states that are
homogeneous on their supports that
are, by definition, the orthogonal
complements of the null-spaces
0(P ) ⊂ S, constitute the respectable
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space of all linear subspaces in S.
Von Neumann Entropy. There

are several equivalent definitions of
this entropy ent(P ).

1. ”Minimalistic” Definition.
States P evaluated on vectors from

finite or countable subsets Σ ⊂ S
define measures on these Σ denoted
P ∣Σ.

Then define
ent(P ) = inf

Σ
ent(P ∣Σ)

for Σ ⊂ S running over all full or-
thonormal frames in S.

(The supremum of ent(P ∣Σ) equals
log dim(S). In fact, there always
exists a full orthonomal frame {si},
such that P (si) = P (sj) for all
i, j ∈ I by Kakutani-Yamabe-Yujobo’s
theorem that is applicable to all con-
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tinuous function on spheres. Also,
the average of ent(P ∣Σ) over the
space of frames is close to log dim(S)
for large ∣I ∣ by an easy argument.)

It is immediate with this defini-
tion that

the function P ↦ ent(P ) is con-
cave on the space of density states:

ent(
P1 + P2

2 ) ≥
ent(P1) + ent(P2)

2 .

Indeed, the classical entropy, as we
know, is a concave function on the
simplex △(Σ) ⊂ RΣ of probability
measures on the set Σ and infima
of familes of concave functions are
concave.

2. ”Spectral” Entropy.
The entropy of P was defined by

von Neumann as the classical en-
tropy of the spectral measure of P .
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That is ent(P ) equals ent(P ∣Σ)

for a frame Σ = {si} that diago-
nalizes the quadratic form P , i.e.
where si is P -orthogonal to sj for
all i ≠ j.

Equivalently, ”spectral entropy” can
be defined as the (obviously unique)
unitary invariant extension of Boltz-
mann’s entropy from the subspace
of classical states to the space of
quantum states, where ”unitary in-
variant” means that ent(g(P )) =

ent(P ) for all unitary transforma-
tions g of S.

Concavity of entropy is non-obvious
with this definition – it was proven
in 1968 by Lanford and Robinson,
but is clear that

the spectrally defined entropy is
additive under tensor products of
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states:
ent(⊗kPk) = ∑

k

ent(Pk),

and if ∑k ∣Pk∣ = 1, then the direct
sum of Pk satisfies
ent(⊕kPk) = ∑

1≤k≤n
∣Pk∣ent(Pk)+

+ ∑
1≤k≤n

∣Pk∣ log ∣Pk∣,

This follows from the correspond-
ing properties of the classical en-
tropy, since tensor products of states
correspond to Cartesian products
of measure spaces:
(P1 ⊗ P2)∣Σ1 ⊗Σ2 = P 1∣Σ1×P 2∣Σ2
and the direct sums correspond to
disjoint unions of sets.

3. entε-Definition.
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Denote by Tε = Tε(S) the set of
the linear subspaces T ⊂ S such
that P (T ) ≥ (1−ε)P (S)) and de-
fine

entε(P ) = inf
T ∈Tε

log dim(T ).

By Weyl’s variational principle,
the supremum of P (T ) over all n-
dimensional subspaces T ⊂ S is achieved
on a subspace, say S+(n) ⊂ S spanned
by n mutually orthogonal spectral
vectors sj ∈ S, that are vectors
from a basis Σ = {si} that diag-
onalizes P . Namely, one takes sj
for j ∈ J ⊂ I , ∣J ∣ = n, such that
P (sj) ≥ P (sk) for all j ∈ J and
k ∈ I ∖ J .

(To see this, orthogonally split S =

S+(n) ⊕ S−(n) and observe that
the P -mass of every subspace T ⊂
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S increases under the transforma-
tions (s+, s−) → (λs+, s−) that even-
tually, for λ→ +∞, bring T to the
span of spectral vectors.)

Thus, this entε equals its classical
counterpart for the spectral mea-
sure of P .

To arrive at the actual entropy,
we evaluate entε on the tensorial
powers P⊗N on S⊗N of states S
and, by applying the law of large
numbers to the corresponding Carte-
sian powers of the spectral measure
space of P , conclude that

the limit
ent(P ) = lim

N→∞

1
N
entε(P

⊗N)

exists and it equals the spectral
entropy of P for all 0 < ε < 1.
(One may send ε→ 0 if one wishes.)
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It also follows from Weyl’s varia-
tional principle that the entε-definition
agrees with the ”minimalistic” one.
(It takes a little extra effort to check
that ent(P ∣Σ) is strictly smaller
than lim 1

Nentε(P
⊗N) for all non-

spectral frames Σ in S but we shall
not need this.)
P (Σ) = (p1, ..., pn), p

i
= P (si),

entV N(P ) = ent(P ) = inf
Σ
ent(P ∣Σ).

Symmetrization by Averaging.
Groups G that lineally act on S

also naturally act on states P that
are after all are quadratic forms on
S. A priori, such an action may
change the mass (trace) of P , but
this mass ∣P ∣, is, obviously, kept
unchanged for isometric actions that
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preserve the background Euclidean/Hilbert
form in S.

If G is compact, we average states
P acted by G over G, by integrat-
ing over G, where the resulting av-
eraged state is denoted G ∗ P ,

G ∗ P = ∫
G
g(P )d(g),

for dg being the normalised (i.e.
probability) Haar measure on G.
The stateG∗P is, clearly,G-invariant,

G ∗ (G ∗ (P )) = P

and ∣G ∗ P ∣ = ∣P ∣ for isomeric ac-
tions of G.

Symmetrization by averaging is also
possible for finite probability spaces
P = {pi}, i ∈ I , with finite groups
G acting on the set I = set(P ).

For instance, let f ∶ I → J be a
surjective map and let G act on I ,
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such that this action preserves the
fibbers Ij = f−1(j) ⊂ I , j ∈ J , and
is transitively on every one of these
fibers.

Then the averaged measure space
G∗P on I faithfully represents the
f -reduction Q = {qj} of P , since
the G ∗ P -masses of all atoms in
all Ij, j ∈ J , equal qj/∣Ij ∣
for qj = ∑

i∈Ij

pi and ∣Ij ∣ = card(Ij).

Consequently,
ent(G∗P ) = ent(Q)+∑

j∈J

qj log ∣Ij ∣

that reduces to
ent(G ∗ P ) = ent(Q) + logm

if all fibers Ij have equal cardinali-
ties m.

Canonical Reductions.
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Let S = S1 ⊗ S2, and let G = G1
be an isometry group of S1 that
naturally acts on S1 ⊗ S2.

If the linear isometric action of G
on S1 is irreducible, or (obviously)
equivalently, it admits no invari-
ant state except for scalar multi-
ples of the background Euclidean/Hilbert
state/form, then there is a one-to-
one correspondence betweenG1-invariant
states Q on S and states P2 on S2.

In fact, this correspondence is de-
fined by the condition

Q = P⟨1⟩ ⊗ P2
where P⟨1⟩ denotes the normalised
background Euclidean/Hilbert state/form
on S1; if Q is a density state then
the normalising factor equals 1/dim(S1)
that makes P⟨1⟩ a density state.
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(Customary, one regards states as
selfadjoint operators O on S de-
fined by ⟨O(s1), s2⟩ = P (s1, s2)).
The reduction of an O on S1 ⊗S2,
to an operator, say, on S2 is defined
as the S1-trace of O that does not
use the Hilbertian structure in S.)

Strong Subadditivity of
von Neumann Entropy.
Theorem: Let P = P123 be a

state on S = S1 ⊗ S2 ⊗ S3 and let
P23, P13 and P3 be the canonical
reductions of P123 to S2 ⊗ S3, to
S1 ⊗ S3 and to S3.

Then
ent(P3) + ent(P123) ≤

ent(P23) + ent(P13).

This was conjectured in 1968 by
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Lanford and Robinson who estab-
lished simple subadditivity
ent(P12) ≤ ent(P1) + ent(P2).

as a (simple) corollary of concavity
of the von Neumann entropy.

The strong subadditivity was proven
by Lieb and Ruskai in 1973 with
operator convexity techniques.

Strong Subadditivity follows from
the following

Double Average Inequaity.
Let H and G be compact groups of
isometric linear transformations of
a Euclidean space S and let P be a
density state (positive semidefinite
quadratic form with trace one) on
S.

If the actions of H and G com-
mute, then the von Neumann en-
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tropies of the G- and H-averages
of P satisfy
ent(G ∗ (H ∗P )) − ent(G ∗P ) ≤

ent(H ∗ P ) − ent(P ).

This inequality (trivially) implies
strong subadditivity when it is ap-
plied to the actions of the orthogo-
nal (full isometry) groupsH = O(S1)
andG = O(S2) on S = S1⊗S2⊗S3.

(The double average inequality may
look significantly more general than
strong subadditivity but the former
follows from the latter by a simple
argument.)

Non-Standard Proof of the
double average inequality.
The relative Shannon inequality
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(that is not fully trivial) for mea-
sures reduces by our argument (that
goes back to Boltzmann-Gibbs and
Bernoulli) to a trivial intersection
property of subsets in a finite set.
Let us explain how this woks for
the von Neumann entropy.

Recall that the support of a state
P on S is the orthogonal comple-
ment to the null-space 0(P ) ⊂ S
– the subspace where the (positive
semidefinite) quadratic form P van-
ishes. We denote this support by
0⊥(P ) and write rank(P ) for dim(0⊥(P )).

Observe that

(⇔) P (T ) = ∣P ∣ ⇔ T ⊃ 0⊥(P )

for all linear subspaces T ⊂ S.

A state P is called sub-homogeneous,
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if P (s) is constant, say equal λ(P ),
on the unit vectors from the sup-
port 0⊥(P ) ∈ S of P . (These states
correspond to subsets in the classi-
cal case.)

If, besides being sub-homogeneous,
P is a density state, i.e. ∣P ∣ = 1,
then, obviously,
ent(P ) = − logλ(P ) = log dim(0⊥(P )).
Also observe that if P1 and P2 are

sub-homogeneous states such that
0⊥(P1) ⊂ 0⊥(P2), then the satisfy
what we call

Localization Inequality:
P1(s)/P2(s) ≤ λ(P1)/λ(P2)

for all s ∈ S (with the obvious con-
vention for 0/0 applied to s ∈ 0(P2)).

if a sub-homogeneous state Q
equals the G-average of some (not

137



necessarily sub-homogeneous)state
P , then 0⊥(Q) ⊃ 0⊥(P ).

Indeed, by the definition of the
average, Q(T ) = P (T ) for all G-
invariant subspaces T ⊂ S. Since
Q(0⊥(Q)) = Q(S) = P (S) = P (0⊥(Q))

and the above (⇔) applies.
Corollary. The double average

inequality holds in the case where
all four states: P , P1 =H∗P , P2 =
G ∗P and P12 = G ∗ (H ∗P ), are
sub-homogeneous.

Proof. The double average in-
equality translates in the sub-homogeneous
case to the corresponding inequal-
ity between the values of the states
on their respective supports:

λ2/λ12 ≤ λ/λ1,

for λ = λ(P ), λ1 = λ(P1), etc. and
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the proof of desired inequality is re-
duces to showing that the implica-
tion
(≤⇒≤) λ ≤ cλ1 ⇒ λ2 ≤ cλ12
holds for all c ≥ 0.

Since 0⊥(P ) ⊂ 0⊥(P1), the in-
equality λ ≤ cλ1 implies, by the
above localisation inequality, that
P (s) ≤ cP1(s) for all s, where this
integrates overG to P2(s) ≤ cP12(s)
for all s ∈ S.

Since 0⊥(P2) ⊂ 0⊥(P12), there ex-
ists at least one non-zero vector
s0 ∈ 0⊥(P2)∩0⊥(P12) and the proof
follows, because P2(s0)/P12(s0) =
λ2/λ12 for such an s0.

”Nonstandard” Proof of the gen-
eral double average inequality for
general density states.
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Since tensorial powers P⊗N of all
states P ”converge” to ”ideal sub-
homogeneous states” P⊗∞ by Bernoulli’s
theorem, the above argument, ap-
plied to these ”ideal states” P⊗∞,
yields the desired inequality for all
P , where ”ideal sub-homogeneous
states” are understood as objects of
a non-standard model of the first
oder R-language of the category of
finite dimensional Hilbert spaces.

I must confess at this point that a
suitable formalism that would make
the above 100% rigorous has not
been worked out and one needs to
check all ”non-standard” points one
by one. This takes a couple of pages
instead of, as it should be, a couple
of lines.

(These ”two pages” can be found
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in ”In a Search for a Structure, Part
1: On Entropy”, where they are
written in a ”semi-non-standard”
language of Bernoulli sequences of
density states.)

Question. Is ”non-standard Eu-
clidean geometry” worth pursuing?

Some arguments in favour of this
are presented in my article ” ... On
Entropy” but new results and/or
specific questions are badly needed.

Reformulation of Reduction. The
entropy inequalities for canonical re-
ductions can be more symmetrically
expressed in terms of entropies of
bilinear forms Φ(s1, s2), si ∈ Si
i=1,2, where the entropy of a Φ is
defined as the entropy of the quadratic
form P1 on S1 that is induced by
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the linear map Φ′1 ∶ S1 → S′2 from
the Hilbert form on the linear dual
S′2 of S2, where, observe, this en-
tropy equal to that of the quadratic
form on S2 induced by Φ′2 ∶ S2 →
S′1.

In this language, for example, sub-
additivity translates to

Araki-Lieb Triangular Inequal-
ity (1970). The entropies of the
three bilinear forms associated to
a given 3-linear form Φ(s1, s2, s3)
satisfy

ent(Φ(s1, s2 ⊗ s3)) ≤

ent(Φ(s2, s1⊗s3))+ent(Φ(s3, s1⊗s3)).

On Algebraic Inequalities. Be-
sides ”hilbertization” some Shannon-
like inequalities admit linearization,
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where the first non-trivial instance
of this is the linearized Loomis-
Whitney isoperimetric inequality
that we have met earlier.

More generally, let Xi, i ∈ I , be
vector spaces over some field and
denote by XJ , J ⊂ I , the tensor
product of Xi over J , i.e.

XJ = ⊗i∈JXi.

Define the J-reduction YJ ⊂ XJ
of a linear subspace YI ⊂XI as the
minimal subspace in XJ , such that
YJ ⊗XI∖J contains YI .

To see it better, take the tensor
product ZI =XI⊗Y ′ for some lin-
ear space Y ′ take a vector z = ZI
and let

zJ ∶X
′
I∖J ⊗ Y

′ →XJ

be the homomorphism correspond-
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ing to z under the canonical iso-
morphism
XI ⊗ Y

′ =Hom(X ′
I∖J ⊗ Y

′,XJ),

whereX ′
I∖J denotes the linear dual

of XI∖J .
Then the J -reduction of the im-

age Y ⊂ XI of zI equals the im-
age of zJ in XJ ; thus, rank(YJ) =
rank(zJ).

Tensorial Reduction Inequality.
The ranks of the J-reductions of
every linear subspace Y ⊂ XI =

⊗i∈IXi satisfy

∏
J⊂I

(rank(YJ))
αi ≥ rank(Y )

for an arbitrary partition of unity
{αJ} on I , that is an assignment of
a non-negative number αJ to each
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J ⊂ I , such that∑αJχJ = 1, where
χJ ∶ I → {0, 1} ⊂ R denote the
characteristic (indicator) functions
of the subsets J ⊂ I .

This algebraic inequality easily re-
duces to the corresponding combi-
natorial inequality known as Shearer
Lemma, that bounds the cardinal-
ities of finite subsets S ⊂ RI in
terms of its projections SJ ⊂ RJ

by
∏J⊂I ∣SJ ∣

αi ≥ ∣S∣,
where this combinatorial inequality
(or rather a refined entropic ver-
sion of it) follows via the inclusio-
exclusion principle from strong sub-
additivity of entropy similarly the
Loomis-Whitney isoperimetric in-
equality that corresponds to the case
where
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α(J) = 1/(∣I ∣ − 1) if ∣J ∣ = ∣I ∣ − 1
and α(J) = 0 otherwise.
(See my ”Entropy and Isoperime-

try for Linear and non-Linear Group
Actions”.)

Question. What is the full range
of such inequalities?

7 Measures Defined via Cohomology with Applica-
tions to the Morse Spectra and Parametric Packing
Problem.

Entropy serves for the study of ”en-
sembles” A = A(X) of (finitely or
infinitely many) particles in a space
X , e.g. in the Euclidean 3-space by
U ↦ entU(A) = ent(A∣U), U ⊂X,

that assigns the entropies of the
U-reductions A∣U of A, to all bounded
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open subsets U ⊂ X . In the physi-
cists’ parlance, this entropy is

”the logarithm of the number of
the states of E

that are effectively observable from
U”,

We want to replace ”effectively ob-
servable number of states” by

”the number of effective degrees
of freedom of ensembles of moving
particles”.

Let us prepare the topological lan-
guage for expressing this idea.
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Graded Ranks, Poincare Poly-
nomials and Ideal Valued Mea-
sures.

The images as well as kernels of
(co)homology homomorphisms that
are induced by continuous maps are
graded Abelian groups and their ranks
are properly represented not by in-
dividual numbers but by Poincaré
polynomials, ∑i rankiti.

The set functionU ↦ PoincU that
assigns Poincaré polynomials to sub-
sets U ⊂ A, (e.g. U = Ar) has
some measure-like properties that
become more pronounced for the
set function
A ⊃ U ↦ µ∗(U) ⊂H∗(A; Π),

µ∗(U) =

Ker(H∗(A; Π) →H∗(A∖U ; Π)),
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where Π is an Abelian (homology
coefficient) group.

By elementary topology,
µ∗(U) is additive for the sum-

of-subsets in H∗(A; Π) and super-
multiplicative for the the ⌣-product
of ideals in the case Π is a com-
mutative ring:

µ∗(U1 ∪U2) = µ(Ui)+µ∗(U2)

for disjoint open subsets U1 and U2
in A, and
µ∗(U1 ∩U2) ⊃ µ∗(U1) ⌣ µ∗(U2)

for all open U1, U2 ⊂ A

”Θ-Measures” ∣µΘ(U)∣F.
We shall use below (co)homology

with coefficient in some field F and,
given a linear subspace Θ ⊂H∗(A;F),
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write
µΘ(U) = Θ ∩KerA∖U

for KerA∖U denoting the kernel of
the homomorphism

H∗(A;F) →H∗(A ∖U ;F)
and denote the rank of µΘ(U), by
∣µΘ(U)∣F.

Homology Measures
in Cartesian powers.

Poincare polynomials that encode
ranks of (co)homologies with coef-
ficients in a field F, are multiplica-
tive for Cartesian products of spaces
and Poincare polynomials of Carte-
sian power spacesA =XI are power
polinomolas,
PoincA;F = (PoincX ;F)

N , N = ∣I ∣.

for all finite sets I and all fields F.
150



The asymptotics of coefficients of
polynomials PN for N → ∞ (that
are ranks of the cohomologies of
XN for P = PoincXN ) are seen
with Boltzmann’s logarithmic rate
decay formula.

Besides, the tensorial reduction in-
equality (linearizied of Shearer’s) from
the previous section provides

a bound on the ranks of the ho-
mology inclusion homorphisms of
open subsets U ⊂ XI in terms of
such ranks of the coordinate pro-
jections UJ ⊂XJ from U to XJ ,
J ⊂ I, that is

∏
J⊂I

r
α(J)
J ≥ rI ,

where α(J), J ⊂ I, is a positive
function on subsets J ⊂ I, such
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that
∑
J⊂I

α(J)χJ = 1,

for the {0, 1}-characteristic (in-
dicator) function of the subsets
J ⊂ I.

This inequality fails to be true for
the ranks of homomorphismsH∗(U) →

H∗(XJ), but, possibly, something
can be recovered with a suitable
positivity condition, e.g. where X
is an algebraic variety, where U ⊂

XI is a subvariety and where ”posi-
tivity classes” are those representable
by subvarieties. And if the vari-
eties in question are defined over
C one may use some positivity on
differential forms coming from the
Hodge theory.

In fact, to seems some cones of
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”Hodge positive” (harmonic) forms
on (infinite dimensional?) algebraic
varieties may serve as a basis for a
generalised probability theory.

There also nontrivial inequalities
between the ”measures” µΘ of sys-
tems of subsets in A =XN , e.g. as
follows.

Separation inequality
in the N-torus.

LetU1, U2 ⊂ TN be non-intersecting
(closed or open) subsets and let

Θ1 =Hn1(TN ;F),
Θ2 =Hn2(Tn;F)

for ni ≤ N/2, i = 1, 2, and some
field F. Then
∣µΘ1(U1)∣F⋅∣µΘ2(U2)∣F ≤ c⋅∣Θ1∣F⋅∣Θ2∣F

for c = n1n2/N2.
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Observe that

∣Θi = ∧niF∣F = (
N

ni
).

About the Proof. This is reduced
by a simple ordering argument in
the Grassmann algebraH∗(TN ;F)
to the special case of U1 and U2 be-
ing monomial subsets, i.e. unions
of coordinate subtori in TN where
this amounts to a combinatorial in-
equality due to Matsumoto and Tokushige.
(See part 2 of my Singularities, Ex-
panders and Topology of Maps.)

Question. What is the ”full set”
of (asymptotic) inequalities between
cohomology measures of (finite?) sys-
tems of open subsetsUk ⊂XN with
a given pattern (nerve) of intersec-
tions between Uk?
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Homotopy Spectra.
Let A be a topological space and
E ∶ A→ R a continuous real valued
function, that is thought of as an
energy E(a) of states a ∈ A or as
a Morse-like function on A.

The subsets
Ar = A≤r = E

−1(∞, r] ⊂ A, r ∈ R,
are called the (closed) r-sublevels
of E.

A number r○ ∈ R is said to lie in
the homotopy spectrum ofE if the
homotopy type of Ar undergoes an
essential, that is irreversible, change
as r passes through the value r =

r○.
Quadratic Example. Let A be

an infinite dimensional projective
space and E equal the ratio of two
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quadratic functionals. More specif-
ically, letEDir be the Dirichlet func-
tion(al) on differentiable functions
a = a(x) normalised by the L2-
norm on a compact Riemannian man-
ifold X ,

EDir(a) =
∣∣da∣∣2L2
∣∣a∣∣2L2

=
∫X ∣∣da(x)∣∣2dx

∫X a
2(x)dx

.

The eigenvalues r0, r1, r2, ..., rn, ...
of EDir (i.e. of the corresponding
Laplace operator) are homotopy es-
sential since the rank of the inclu-
sion homology homomorphism

H∗(Ar;Z2) →H∗(A;Z2)
strictly increases (for ∗ = n) as r
passes through rn.

Volume as Energy. Besides Dirich-
let’s there are other natural ”en-
ergies” on spaces A of continuous
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maps between Riemannian mani-
folds, a ∶X → R, such as

the k-volume of the pullback of a
subset R0 ⊂ R,

a↦ volk(a
−1(R0)),

k = dim(R0)+(dim(X)−dim(R)).

(This volume may be understood
as the corresponding Hausdorff mea-
sure but if k ≥ 2 or as the Minkovski
measure.)

Notice that only the topology of
the range space R enters this def-
inition, but often some symmetry
group of the pair (R,R0) is essen-
tial. For instance if R = R and
k = dim(X) − 1 then one works
with the (infinite projective) space
of non-zero continuous functions a ∶
X → R divided by the involution
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a↔ −a.
A more sophisticated version of

the above is the k-volume function
on the
space Ck(X ; Π) of k-dimensional

Π-cycles in a Riemannian mani-
fold X ,
where Π is an Abelian group with a
norm-like function on it, e.g. Π = Z
or Γ = Zp = Z/pZ.

These spaces of (rectifiable) cy-
cles with natural (flat) topologies
are homotopy equivalent to prod-
ucts of Eilenberg-MacLane spaces
that have quite rich homology struc-
tures that makes the homotopy spec-
tra of the volume energies on these
spaces,

E = volk ∶ Ck(X ; Π) → R+,
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quite non-trivial. (See Minimax prob-
lems related to cup powers and Steen-
rod squares by Larry Guth.)

Packing Energy. Let X be a
metric space and A = AN(X) be
the set of subsets a ⊂ X of finite
cardinality N . Let

ρ(a) = min
x,y∈a,x≠y

dist(x, y)

and define packing energy as

EN(a) =
1

ρ(a)
for the energy of a.

Sublevel A1/r of this energy rep-
resent packings of X by r-balls.

(There is nothing special about
1
ρ – one could use, instead of 1

ρ,
an obituary positive monotone de-
creasing function in ρ.)

Permutation Symmetry and
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Fundamental Group.
The spaceAN(X) of (unordered!)
N -tuples of points inX can be seen
as the quotient space of the space
XIinj ⊂ XI of injective maps of a
set I of cardinalityN intoX by the
permutation group SN = Sym(I),
AN =XIinj/Sym(I), card(I) = N.

This suggest a G-equivariant set-
ting for the homotopy spectrum for
energy functions E(x1, x2, ..., xN)

onXI that are invariant under sub-
groups G ⊂ SN , where even for
fully symmetric E it may be prof-
itable to use subgroups G ⊊ SN
containing only special permutations.

Since the action of SN = Sym(I)

onXIinj , (unlike the corresponding
action of Sym(I) on the Cartesian

160



power XI) is free the group SN is
seen in the fundamental group of
AN(X), provided, for instance, X
is a connected manifold of dimen-
sion n ≥ 2. And ifX equals the Eu-
clidean n-space, the n-ball or the
n-sphere, for n ≥ 3, then

the fundamental group π1(AN(X))

is isomorphic to the permutation
group SN and the main contribu-
tion to the homotopy complexity
of the space A = AN(X) comes
from this fundamental group.

Numbers and Orders.
The role of real numbers in the

concept of ”homotopy essential spec-
trum” reduces to indexing the sub-
sets Ar ⊂ A according to their or-
der by inclusion: Ar1 ⊂ Ar2 for
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r1 ≤ r2.
Homotopy ”spectra” make sense

for functions X → R where R is in
an arbitrary partially ordered set,
where it is convenient to assume
that R is a lattice i.e. it admits
inf and sup.

Additivity, that is the most essen-
tial feature of physical energy, be-
comes visible only for spacesA that
split as A = A1×A2 forE(a1, a2) =
E(a1) +E(a2).

Induced Energy E○ on Category H○(A)

Let S be a class of topologicl spaces
S and let H○(A) = H○(A;S) be
the category where the objects are
homotopy classes of continuous maps
φ ∶ S → A and morphisms are ho-
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motopy classes of maps ψ12 ∶ S1 →
S2, such that the corresponding tri-
angular diagrams are (homotopy)
commutative, i.e. the composed maps
φ2 ○ψ12 ∶ S1 → A are homotopic to
φ1.

Extend functionsE ∶ A→ R from
A to H○(A) as follows. Given a
continuous map φ ∶ S → A let
E(φ) = Emax(φ) = sup

s∈S
E ○ φ(s),

denote by [φ] = [φ]hmt the homo-
topy class of φ. and set
E○[φ] = Emnmx[φ] = inf

φ∈[φ]
E(φ).

In other words,
E○[φ] ≤ e ∈ R if and only if the
map φ = φ0 admits a homotopy of
maps
φt ∶ S → A, 0 ≤ t ≤ 1, such that
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φ1 sends S to the sublevel Ae =

E−1(−∞, e] ⊂ A.

Definition. The covariant (ho-
motopy) S-spectrum of E is the
set of values E○[φ] for some class
S of (homotopy types of) topolog-
ical spaces S and (all) continuous
maps φ ∶ S → A.

For instance, one may take for S
the set of homemorphism classes of
countable (or just finite) cellular spaces.
In fact, the set of sublevels Ar, r ∈
R, themselves is sufficient for most
purposes.
Cohomotopy S-Spectra on H○(A).

Now, instead ofH○(A) we extend
E to the category H○(A) of homo-
topy classes of maps ψ ∶ A → T ,
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T ∈ S , by defining E○[ψ] as the
supremum of those r ∈ R for which
the restriction map of ψ to Ar,

ψ∣Ar ∶ Ar → T,

is contractible that is expressed in
writing as [ψ] = 0.

(In some cases, e.g. for maps ψ
into discrete spaces T such as Eilenberg-
MacLane’sK(Π; 0), ”contractible”,
must be replaced by ”contractible
to a marked point serving as zero”
in T .)

Then the set of the values E○[ψ],
is called the contravariant homo-
topy (or cohomotopy) S-spectrum
of E.

For instance, if S is comprised of
the Eilenberg-MacLane K(Π, n)-
spaces, n = 1, 2, 3, ..., then this is

165



called the Π-cohomology spectrum
of E.

Relaxing Contractibility via Co-
homotopy Operations. Let us ex-
press ”contractible” in writing as
[ψ] = 0, let σ ∶ T → T ′ be a con-
tinuous map and let us regard the
(homotopy classes of the) composi-
tions of σ with ψ ∶ A → T as an
operation [ψ]

σ
↦ [σ ○ ψ].

Then define E○[ψ]σ ≥ E○[ψ] by
maximising over those r where [σ○
ψ∣Ar] = 0 rather than [ψAr] = 0.

Supermultiplicativity of
”cohomology measures” µ∗(U)

in ”spectral” terms.
The supermultiplicativity of µ∗ for

intersections of susbsetsDr,i = E−1
i (r,∞) ⊂

A can be equivalently expressed in
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terms of cohomomoly spectra as fol-
lows.
[min ⌣]-Inequality. Let
E1, ...,Ei, ..,EN ∶ A→ R

be continuous functions/energies and
let Emin ∶ A→ R be the minimum
of these,
Emin(a) = min

i=1,...,N
Ei(a), a ∈ A.

Let hi ∈Hki(A; Π) be cohomology
classes, where Π is a commutative
ring, and let

h⌣ ∈H∑i
ki(A; Π)

be the ⌣-product of these classes,
h⌣ = h1 ⌣ ... ⌣ hi ⌣ ... ⌣ hN .

Then
E∗
min(h⌣) ≥ min

1=1,...,N
E∗
i (hi).
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Consequently, the value of the ”to-
tal energy”

EΣ = ∑
i=1,...,N

Ei ∶ A→ R

on this cohomology class h⌣ ∈H∗(A; Π)

is bounded from below by
E∗

Σ(h⌣) ≥ ∑
i=1,...,N

E∗
i (hi).

On ∧-Product. The (obvious) proof
of [min ⌣] relies on locality of the
⌣-product that, in homotopy the-
oretic terms, amounts to factorisa-
tion of ⌣ via ∧ that is the smash
product of (marked) Eilenberg-MacLane
spaces that represent cohomology,
where, recall, the smash product
of spaces with marked points, say
T1 = (T1, t1) and T2 = (T2, t2) is

T1 ∧ T2 = T1 × T2/T1 ∨ T2
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where the factorisation ”/T1 ∨ T2”
means ”with the subset (T1 × t2) ∪
(t1 × T2) ⊂ T1 × T2 shrunk to a
point” (that serves to mark T1 ∧
T2).

In fact, general cohomotopy ”mea-
sures” and spectra defined with maps
A → T satisfy natural (obviously
defined) counterparts/generalizations
[min ⌣].

Pairing Inequality
for Cohomotopy Spectra.

Let A1,A2 and B be topological
spaces and let

A1 ×A2
⊛
→ B

be a continuous map where we write
b = a1 ⊛ a2 for b = ⊛(a1, a2).

For instance, composition a1 ○ a2 ∶
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X → Z of morphisms X a1
→ Y

a2
→

Z in a topological category defines
such a map between sets of mor-
phisms,

mor(X → Y ) ×mor(Y → Z)
⊛
→

mor(X → Z).

A more relevant example for us is
the following

Cycles ⨉ packings.
Here,
A1 is a space of locally diffeomor-

phic maps U → X between mani-
folds U and X ,
A2 is the space of cycles inX with

some coefficients Π,
B is the space of cycles U with

the same coefficients,
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⊛ stands for ”pullback”
b = a1 ⊛ a2 =def a

−1
1 (a2) ∈ B.

ThisU may equal the disjoint unions
ofN manifoldsUi that, in the spher-
ical packing problems, would go to
balls inX ; since we want these balls
not to intersect, we take the space
of injective maps U →X for A1.

Explanatory Remarks. (a) Our
”cycles” are defined as subsets in
relevant manifoldsX and/orU with
Π-valued functions on these sub-
sets.

(b) In the case of open manifolds,
we speak of cycles with infinite sup-
ports, that, in the case of compact
manifolds with boundaries or of open
subsets U ⊂X , are, essentially, cy-
cles modulo the boundaries ∂X .
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(c) ”Pullbacks of cycles” that pre-
serve their codimensions are defined,
following Poincaré, for a wide class
of smooth generic (not necessar-
ily equividimensional) maps U →

X . (This is spelled out in my arti-
cle Manifolds: Where Do We Come
From?... .)

Let hT be a (preferably non-zero)
cohomotopy class in B, that is a
homotopy class of non-contractible
maps B → T for some space T ,
(where ”cohomotopy” reads ”coho-
mology” if T is an Eilenberg-MacLane
space) and let
h⊛ = ⊛ ○ hT ∶ [A1 ×A2 → T ]

be the induced class on A1 × A2,
that is the homotopy class of the
composition of the maps A1×A2

⊛
→
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B
hT
→ T .

(We do not always notationally
distinguish maps and homotopy classes
of maps.)

Let h1 and h2 be homotopy classes
of maps S1 → A1 and S2 → A2 for
some spaces Si, i = 1, 2,

(In the case where hT is a coho-
mology class, these hi may be re-
placed by homology – rather than
homotopy – classes represented by
these maps.)

Compose the three maps,

S1 × S2
h1×h2
→ A1 ×A2

⊛
→ B

hT
→ T,

and denote the homotopy class of
the resulting map S1 × S2 → T by
[h1⊛h2]hT = h

⊛○(h1×h2) ∶ [S1×S2 → T ]

Let χ = χ(e1, e2) be a function in
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two real variables that is monotone
unceasing in each variable. Let Ei ∶
Ai → R, i = 1, 2, and F ∶ B → R
be (energy) functions on the spaces
A1,A2 and B, such that the ⊛-
pullback of F to A ×B denoted

F⊛ = F ○ ⊛ ∶ A1 ×A2 → R
satisfies
F⊛(a1, a2) ≤ χ(E(a1),E(a2)).

In other words, the ⊛-image of
the product of the sublevels
(A1)e1 = E

−1
1 (−∞, e1) ⊂ A1 and (A2)e2 = E

−1
2 (−∞, e2) ⊂ A2

is contained in the f -sublevel Bf =
F−1(−∞, f) ⊂ B for f = χ(e1, e2),
⊛((A1)e1 × (A2)e2) ⊂ Bf=χ(e1,e2).

⊛-Pairing Inequality.
Let [h1 ⊛ h2]hT ≠ 0, that is the
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composed map
S1 × S2 → A1 ×A2 → B → T

is non-contractible. Then the val-
ues of E1 and E2 on the homotopy
classes h1 and h2 are bounded from
below in terms of a lower bound on
F ○[hT ] as follows.

χ(E1○[h1],E2○[h2]) ≥ F ○[hT ].

In other words

(E1○[h1] ≤ e1)&(E2○[h2] ≤ e2) ⇒

(F ○[hT ] ≤ χ(e1, e2))
for all real numbers e1 and e2; thus,

upper bound E○
1[h1] ≤ e1 +

lower bound F ○[hT ] ≥ χ(e1, e2)
yield

upper bound E○
2[h2] ≥ e2,
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where, observe, E1 and E2 are in-
terchangeable in this relation.

First ”Proof”. Unfold the defini-
tions.

Second ”Proof”. Look at the h⊛-
spectral line in the (e1, e2)-plane

Σh⊛ = ∂Ωh⊛ ⊂ R2

where Ωh⊛ ⊂ R2 consists of the pairs
(e1, e2) ∈ R2 such that the restric-
tion of h⊛ to the Cartesian product
of the sublevelsA1e1 = E

−1
1 (−∞, e1) ⊂

A1 and A2e2 = E
−1
2 (−∞, e2) ⊂ A2

vanishes,
h⊛
∣A1e1×A2e2

= 0.

This pairing was used by Larry
Guth in ”Minimax problems related
to cup powers and Steenrod squares”
for lower bounds on the homology
spectrum of volume functions in spaces
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of Z2-cycles but it also provide some,
albeit limited, information on para-
metric sphere packings.

(Critical points of packing energy
are studied in

Min-type Morse theory for config-
uration spaces of hard spheres

by Yuliy Baryshnikov, Peter Bubenik,
and Matthew Kahle, and in

Computational topology for con-
figuration spaces of hard disks

by Gunnar Carlsson, Jackson Gorham,
Matthew Kahle, Jeremy Mason.)

Also such pairing applies to para-
metric symplectic packings. (See
From Symplectic Packing to Alge-
braic Geometry and Back. by Paul
Biran for a survey of non-parametric
case.)

All of the above concerns finite
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systems of balls and is not directly
applicable to infinite systems, such
as the following.

Let I ⊂ Rn be a countable sub-
set and let A be the space of maps
a ∶ I → Rn that move ponts by
bounded amount,
sup
i∈I

dist(a(i), i) ≤ C = C(a) < ∞.

This space carries a natural topol-
ogy and it is acted upon by the
Group G generated by

(1) isometric transformations of
Rn;

(2) transformations I → I that
belong to A.

We are still infinitely far from so-
lution of the following
Homotopy Packing Problem.
What is the G-equaivariant (co)homotopy,
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in particular cohomology, spectrum
of the packing energy

E ∶ a↦ sup
i≠j∈I

1
dist(a(i), a(j))

?

8 Two Words On Large Deviations.

A conceptual, albeit rather compu-
tational, proof of Boltzmann’s rate
formula follows from a general ex-
pression of the Legendre transform
of logarithmic vanishing rates of
certain sequences Φ = {φN} of prob-
ability measures φN on a topologi-
cal linear space X defined by

rateΦ{x} = inf
Ux

lim
N→∞

1
N

logφN(Ux),

where the infimum is taken over all
neighbourhoods Ux ∈X of x ∈X .

One defines this rateΦ(x) only
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for those Φ for which this limit ex-
ists and one usually assumes that
the function rateΦ(x) is concave
(”⌢’) at those points x ∈ X where
rateΦ(x) > 0.

A typical example of such Φ is
the 1

N -scaled sequence of convolu-
tion powers φ∗N of a single mea-
sure φ onX , say with compact sup-
port in X , where our ”scaling” is
induced by the homotheties of X ,
that are x↦ x/N .

Then by the
Donsker-Varadahn formula

(going back to to Boltzmann and
Gibbs in certain cases)

the Legendre transform
of the function rateΦ(x), denoted
rate⊥Φ(y), y ∈ Y , where Y is the
linear dual of X , is expressible by
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the (what is now-a-days called ”trop-
ical”) limit of the Laplace trans-
forms of the measures φN ,

rate⊥Φ(y) =

− lim 1
N

log∫
X

expN⟨y, x⟩dφN

where ⟨y, x⟩ denotes the value of
linear functionals y on x ∈ X and
where ∫X ...dφ stand for integra-
tion against a measure φ on X .

If φN equal the 1/N -scaled con-
volution N -powers of a φ, then this
simplifies since

1
N

log∫
X

expN⟨y, x⟩dφN =

log∫
X

exp⟨y, x⟩dφ
for all N .

Legendre Transform. Given a
smooth function f(x) in a domain
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U of a linear – let it be finite dimen-
sional at this point – space X , re-
gard the differentials dx(f), x ∈X
as vectors in the linear dual Y =

X⊥ and denote by L ∶ U → Y the
map L ∶ x↦ y = dx(f).

Now we assume that U ⊂ X is
convex and the function f(x) is
concave. In this case, the map L is
one-to-one and the ”L-transport”
f⊥ = f ○ L−1 of f from U ⊂ X to
U⊥ = L(U) ⊂ Y is called the Leg-
endre transform of f .

It is amazing, albeit (almost) ob-
vious after being stated, that this
transform is involutive:

(f⊥)⊥ = f.
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