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Abstract

Descendants of algebraic kingdoms of high dimensions, enchanted by
the magic of Thurston and Donaldson, lost in the whirlpools of the Ricci
flow, topologists dream of an ideal land of manifolds – perfect crystals of
mathematical structure which would capture our vague mental images of
geometric spaces. We browse through the ideas inherited from the past
hoping to penetrate through the fog which conceals the future.

1 Ideas and Definitions.

We are fascinated by knots and links. Where does this feeling of beauty and
mystery come from? To get a glimpse at the answer let us move by 25 million
years in time.

25 × 106 is, roughly, what separates us from orangutans: 12 million years to
our common ancestor on the phylogenetic tree and then 12 million years back
by another branch of the tree to the present day orangutans.

But are there topologists among orangutans?
Yes, there definetely are: many orangutans are good in ”proving” triviality

of elaborated knots, e.g. they fast master the art of untying boats from their
mooring when they fancy taking rides downstream in a river, much to annoyance
of people making these knots with a different purpose in mind.

A more amazing observation was made by a zoo-psycologist Anne Russon in
mid 90’s at Wanariset Orangutan Reintroduction Project (see p. 114 in [48]).

”... Kinoi [a juvenile male orangutan], when he was in a possession of a
hose, invested every second in making giant hoops, carefully inserting one end
of his hose into the other and jumming it in tight. Once he’d made his hoop,
he passed various parts of himself back anf forth through it – an arm, his head,
his feet, his whole torso – as if completely fascinated with idea of going through
the hole.”

A play with hoops and knots, where there is no visible goal or any practical
gain – be it an ape or a 3D-topologist – appears fully ”non-intelligent” to a
practiaclly minded observer. But we, geometers, feel thrilled at seeing an animal
whose space perception is so similar to ours.

It is unlikely, however, that Kinoi would formulate his ideas the way we
do and that, unlike our students, he could be easily intimidated into accepting
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”equivalence classes of atlases” and ”ringed spaces” as appropriate definitions
of his topological playground. (Despite such display of disobedience, we would
enjoy a company of young orangutans; they are charmingly playful creatures,
unlike aggressive and reckless chimpanzees – our nearest evolutionary neigh-
bors.)

Apart from topology, orangutans do not rush to accept another human def-
inition, namely that of ”tools”, as of

”external detached objects (to exclude a branch used for climbing a tree)
employed for reaching specific goals”.

(A use of tools is often taken by zoo-psicoligists for a measure of ”intelli-
gence” of an animal.)

Being imaginative arboreal creatures, orangutans prefer a broader definition:
For example (see [48]):

● they bunch up leaves to make wipers to clean their bodies without detach-
ing the leaves from a tree;

● they often break branches but deliberately leave them attached to trees
when it suits their purposes – these could not have been achieved if orangutans
were bound by to the ”detached” definition.

Morale. Our best definitions, e.g. that of a manifold, tower as prominent
landmarks of our former insights. Yet, we should not be hypnotized by defini-
tions. After all, they are remnants of the past and tend to misguide us when
we try to probe the future.

Remark. There is a non-trivial similarity between the neurological structures
underlying the behaviour of playful animals and that of working mathematicians
(see [18]).
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2 Homotopies and Obstructions.

For more than half a century, starting from Poincare, topologists have been
laboriously stripping their beloved science of its geometric garments.

”Naked topology”, reinforced by homological algebra, reached its to-day
breathtakingly high plato with the following

Serre [Sn+N → SN ]-Finiteness Therem. (1951) There are at most finitely
many homotopy classes of maps between spheres Sn+N → SN but for the two
exceptions:

● equivi-dimensional case: here πN(SN) = Z and the homotopy class of a
map is determined by its degree. (Brouwer 1912, Hopf 1926. We define degree
in section 4.)

● Hopf case, where N is even and n = 2N − 1. In this case π2N−1(SN)
contains a subgroup of finite index isomorphic to Z.

It follows that
the homotopy groups πn+N(SN) are finite for N >> n.

(H. Hopf proved in 1931 that the map f ∶ S3 → S2 = S3/T, for the group
T ⊂ C of the complex numbers with norm one which act on S3 ⊂ C2 by (z1, z2)↦
(tz1, tz2), is non-contractible.

In general, the unit tangent bundle X = UT (S2k)→ S2k has finite homology
Hi(X) for 0 < i < 4k − 1. By Serre’s theorem, there exits a map S4k−1 → X of
positive degree and the composed map S4k−1 → X → S2k generates an infinite
cyclic group of finite index in π4k−1(S2k).

Also one knows that the group πn+N(SN) does not depend on N for N ≥ n
by the Freudenthal suspension theorem of 1928.)

The proof by Serre – a geometer’s nightmare – consists in tracking a mul-
titude of linear-algebraic relations between homology and homotopy groups of
infinite dimensional spaces of maps between spheres and it tells you next to
nothing about the geometry of these maps.

Recall that the set homotopy classes of maps of a sphere SM to a connected
space X makes a group denoted πM(X), (π is for Poincare who defined the
fundamental group π1) where the definition of the group structure depends on
distinguished points x0 ∈X and s0 ∈ SM . (The groups πM defined with different
x0 are mutually isomorphic, and if X is simply connected, i.e. π1(X) = 1, then
they are canonically isomorphic.)

This point in SM may be chosen with the representation of SM as the one
point compactification of the Euclidean space RM , denoted RM● , where this
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infinity point ● is taken for s0. It is convenient, instead of maps Sm = Rm● →
(X,x0), to deal with maps f ∶ RM → X ”with compact supports”, where the
support of an f is the closure of the (open) subset supp(f) = suppx0(f) ⊂ Rm
which consists of the points s ∈ Rm such that f(s) ≠ x0.

A pair of maps f1, f2 ∶ RM → X with disjoint compact supports obviously
defines ”the joint map” f ∶ RM →X, where the homotopy class of f (obviously)
depends only on those of f1, f2, provided supp(f1) lies in the left half space
{s1 < 0} ⊂ Rm and supp(f2) ⊂ {s1 > 0} ⊂ RM , where s1 is a non-zero linear
function (coordinate) on RM .

The composition of the homotopy classes of two maps, denoted [f1] ⋅ [f2],
is defined as the homotopy class of the joint of f1 moved far to the left with f2

moved far to the right.
Geometry is sacrificed here for the sake of algebraic convenience: first, we

break the symmetry of the sphere SM and then of RM by the choice of s1.
If M = 1, then there are essentially two choices: s1 and −s1, which correspond

to interchanging f1 with f2 – nothing wrong with this as the composition is, in
general, non-commutative.

In general M ≥ 2, these s1 ≠ 0 are, homotopically speaking, parametrized
by the unit sphere SM−1 ⊂ RM . Since SM−1 is connected for M ≥ 2, the
composition is commutative and, accordingly, the composition in πi for i ≥ 2
is denoted denoted [f1] + [f2]. Good for algebra, but the O(M + 1)-ambiguity
seems too great a price for this.

But this is, probably, unavoidable. For example, the best you can do for
maps SM → SM in a given non-trivial homotopy class is to make them symmet-
ric (i.e. equivariant) under the action of the maximal torus Tk in the orthogonal
group O(M + 1), where k =M/2 for even M and k = (M + 1)/2 for M odd.

And if n ≥ 1, then, with a few exceptions, there are no apparent symmetric
representatives in the homotopy classes of maps Sn+N → SN ; yet Serre’s theorem
does carry a geometric message.

If n ≠ 0,N − 1, then every continuous map f0 ∶ Sn+N → SN is homotopic to
a map f1 ∶ Sn+N → SN of dilation bounded by a constant,

dil(f1) =def sup
s1≠s2∈Sn+N

dist(f(s1), f(s2))
dist(s1, s2)

≤ const(n,N).

Dilation Questions. (1) What is the asymptotic behaviour of const(n,N)
for n,N →∞?

For all we know the Serre dilation constant constS(n,N) may be bounded
for n → ∞ and, say, for 1 ≤ N ≤ n − 2, but a bound one can see offhand is
that by an exponential tower (1+ c)(1+c)

(1+c)...

, of hight N , since each geometric
implementation of the homotopy lifting property in a Serre fibrations may bring
along an exponential dilation.

(2) Let f ∶ Sn+N → SN be a contractible map of dilation d, e.g. f equals the
m-multiple of another map where m is divisible by the order of πn+N(SN).

What is, roughly, the minimum Dmin =D(d,n,N) of dilations of maps F of
the unit ball Bn+N+1 → SN which are equal to f on ∂(Bn+N+1) = Sn+N?

Of course, this dilation is the most naive invariant measuring the ”geometric
size of a map”. Possibly, an interesting answer to the these questions needs a
more imaginative definition of ”geometric size/shape” of a map.
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Serre’s theorem and its decedents underly most of the topology of the high
dimensional manifolds. Below are frequently used corollaries which relate ho-
motopy problems concerning general spaces X to the homology groups Hi(X)
(see section 4 for definitions) which are much easier to handle.

[Sn+N →X]-Theorems. Let X be a compact connected triangulated space,
or, more generally, a connected space with finitely generated homology groups
Hi(X), i = 1,2, ... . If the space X is simply connected, i.e. π1(X) = 1, then its
homotopy groups have the following properties.

(1) Finite Generation. The groups πm(X) are (Abelian!) finitely generated
for all m = 2,3, ....

(2) Sphericity. If πi(X) = 0 for i = 1,2,N − 1, then the (obvious) Hurewicz
homomorphism

πN(X)→HN(X),

which assigns, to a map SN → X, the N -cycle represented by this N -sphere in
X, is an isomorphism. (This is elementary, Hurewicz 1935.)

(3) Q-Sphericity. If the groups πi(X) are finite for i = 2,N − 1 (recall that
π1(X) = 1), then the Hurewicz homomorphism tensored with rational numbers,

πN+n(X)⊗Q→HN+n(X)⊗Q,

is an isomorphism for n = 1, ...,N − 2.
Because of the finite generation property, The Q-sphericity is equivalent to
(3’) Serre m-Sphericity Theorem. Let the groups πi(X) be finite (e.g.

trivial) for i = 1,2, ...,N − 1 and n ≤ N − 2. Then
an m-multiple of every (N +n)-cycle in X for some m ≠ 0 is homologous to

an (N + n)-sphere continuously mapped to X;
every two homologous spheres SN+n →X become homotopic when composed

with a non-contractible i.e. of degree m ≠ 0, self-mapping Sn+N → Sn+N . In
more algebraic terms, the elements s1, s2 ∈ πn+N(X) represented by these spheres
satisfy ms1 −ms2 = 0.

The following is the dual of the m-Sphericity.
Serre [→ SN ]Q- Theorem. Let X be a compact triangulated space of

dimension n +N and let f, g ∶X → SN be continuous maps.
If n < N − 1 and the maps are ”homologous”, i.e. if the homology homomor-

phisms f∗, g∗ ∶HN(X)→HN(SN) = Z are equal, then there exists a continuous
self-maping σ ∶ SN → SN of non-zero degree such that the composed maps σ ○ f
and σ ○ f ∶X → SN are homotopic.

Moreover, a non-zero multiple of every homomorphism HN(X) → HN(SN)
can be realized by a continuous map X → SN .

These Q-theorems follow from the Serre finitness theorem for maps between
spheres by an elementary argument of induction by skeletons and rudimentary
obstruction theory which run, roughly, as follows.

Let X be a triangulated space, denote by Xi ⊂ X the i-skeleton of X, i.e.
the union of all closed i-simplices ∆i in X, and let Y be a connected space such
that πi(Y ) = 0 for i = 1, ..., n − 1 ≥ 1.
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Given a continuous map f ∶ X → Y , let us construct, by induction on i =
0,1, ..., n − 1, a map fnew ∶ X → Y which is homotopic to f and which sends
Xn−1 to a point y0 ∈ Y as follows.

Assume f(Xi−1) = y0. Then the map ∆i f→ Y , for each i-simplex ∆i from
Xi, makes an i-sphere in Y , because the boundary ∂∆i ⊂ Xi−1 goes to a single
point – our to y0 in Y .

Since πi(Y ) = 0, this ∆i in Y can be contracted to y0 without disturbing its
boundary. We do it all i-simpices from Xi and, thus, contract Xi to y0. (One
can not, in general, extend a continuous map from a closed subset X ′ ⊂ X to
X, but one always can extend a continuous homotopy f ′t ∶ X ′ → Y , t ∈ [0,1], of
a given map f0 ∶ X → Y , f0∣X ′ = f ′0, to a homotopy ft ∶ X → Y for all closed
subsets X ′ ⊂ X, similarly to how one extends R-valued functions from X ′ ⊂ X
to X.)

The contraction of X to a point in Y can be obstructed on the n-th step,
where πn(Y ) ≠ 0, and where each oriented n-simplex ∆n ⊂X mapped to Y with
∂(∆n) → y0 represents an element c ∈ πn(Y ). (When we switch an orientation
in ∆n, then c↦ −c.) It is easy to see that the function c(∆n) is (obviously) an
n-cocycle in X with values in the group πn(Y ), i.e. the sum of these c(∆n) over
the (n + 2) simplices ∆n ⊂ ∂∆n+1 equals zero, for all ∆n+1 in the triangulation
(if we canonically/correctly choose orientations in all ∆n).

The cohomology class [c] ∈ Hn(X;πn(X)) of this cocycle does not depend
(by an easy argument) on how the (n − 1)-skeleton was contracted. Moreover,
every cocycle c′ in the class of [c] can be obtained by a homotopy of the map
on Xn which is kept constant on Xn−2. (Two A-valued n-cocycles c and c′,
for an abelian group A, are in the same cohomology class if there exits an
A-valued function d(∆n−1) on the oriented simplices ∆n−1 ⊂ Xn−1, such that
∑∆n−1⊂∆n d(∆n−1) = c(∆n) − c′(∆n) for all ∆n. The set of the cohomology
classes of n-cocycles with a natural additive structure is called the cohomology
group Hn(X;A). It can be shown that Hn(X;A) depends only on X but not
an a particular choice of a triangulation of X.)

In particular, if dim(X) = n we, thus, equate the set [X → Y ] of the ho-
motopy classes of maps X → Y with the cohomology group Hn(X;πn(X)).
Furthermore, this argument applied to X = Sn shows that πn(X) = Hn(X)
and, in general, that

the set of the homotopy calsses of maps X → Y equals the set of homomor-
phisms Hn(X)→Hn(Y ), provided πi(Y ) = 0 for 0 < i < dim(X).

Finally, when we use this construction for proving the above Q-theorems
where one of the spaces is a sphere, we keep composing our maps with self-
mappings of this sphere of suitable degree m ≠ 0 that kills the obstruction by
the Serre finiteness theorem.

The obstruction theory well displays the logic of algebraic topology: the
geometric symmetry of X (if there was any) is broken by an arbitrary triangu-
lation and then another kind symmetry, an Abelian algebraic one, emerges on
the (co)homology level.

This idea was developed into a full fledged obstruction theory by Eilenberg
in 1940 following Pontrygin’s 1938 paper.
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3 Generic Pullbacks.

A common zero set of n smooth (i.e. infinitely differentiable) functions fi ∶
Rn+N → R, i = 1, ...N , may be very nasty even for n = 1 – every closed subset
in Rn+N can be represented as a zero of a smooth function. However, if the
functions fi are taken in general position, then the common zero set is a smooth
n-submanifold in Rn+N .

Here and below, ”f in general position” or ”generic f”, where f is an element
of a topological space F , e.g. of the space of C∞-maps with the C∞-topology,
means that what we say about f applies to all f in an open and dense subset
in F . (Sometimes, one allows not only open dense sets in the definition of
genericity but also their countable intersections.)

Generic smooth (unlike continuous) objects are as nice as we expect them
to be; the proofs of this ”niceness” are local-analytic and elementary (at least
in the cases we need); everything trivially follows from Sard’s theorem + the
implicit function theorem.

The representation of manifolds with functions generalizes as follows..
Generic Pullback Construction (Pontryagin 1938, Thom 1954). Start with

a smooth N -manifold V , e.g. V = RN or V = SN , and let X0 ⊂ V be a smooth
submanifold, e.g. 0 ∈ RN or a point x0 ∈ SN . Let W be a smooth manifold of
dimension M , e.g. M = n +N .

if f ∶W → V is a generic smooth map, then the pullback X = f−1(X0) ⊂W is
a smooth submanifold in W with codimW (X) = codimV (X0), i.e. M−dim(X) =
N − dim(X0).

Moreover, if the manifolds W , V and X0 are oriented, then X comes with
a natural orientation.

Furthermore, if W has boundary then X is a smooth submanifold in W with
boundary ∂(X) ⊂ ∂(W ).

Examples. (a) Let f0 ∶ W ⊂ V ⊃ X0 be a smooth, possibly non-generic,
embedding. Then a small generic perturbation f ∶W ⊂ V of f0(W ) in V makes
W = f(W ) transversal (i.e. nowhere tangent) to X0 and one sees with the full
geometric clarity (with a picture of two planes in the 3-space which intersect at
a line) that the intersection X =W ∩X0(= f−1(X0)) is a submanifold in V with
codimV (X) = codimV (W ) + codimV (X0).

(b) Let f ∶ S3 → S2 be a smooth map and S1, S2 ∈ S3 be the pullbacks of two
generic points s1, s2 ∈ S2. These Si are smooth closed curves; they are naturally
oriented, granted orientations in S2 and in S3.

Let Di ⊂ B4 = ∂(S3), i = 1,2, be generic smooth oriented surfaces in the ball
B4 ⊃ S3 = ∂(B4) with their oriented boundaries equal Si and let h(f) denotes
the intersection index (defined in the next section) between Di.

Suppose, the map f is homotopic to zero, extend it to a smooth generic map
F ∶ B4 → S2 and take the F -pullbacks D′

i of si.
Let S4 be the 4-sphere obtained from the two copies of B4 by identifying

the boundaries of the balls and let Ci =Di ∪D′
i ⊂ S4.

Since ∂(Di) = ∂(D′
i) = Si, these Ci are closed surfaces; hence, the intersection

index between them equals zero (because they are homologous to zero in S4,
see the next section), and since D′

i do not intersect, the intersection index h(f)
between Di is also zero.
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It follows that non-vanishing of the Hopf invariant h(f) implies that f is
non-homotopic to zero.

For instance, the Hopf map S3 → S2 is non-contractable, since every two
transversal flat dicks Di ⊂ B4 ⊂ C2 bounding equatorial circles Si ⊂ S3 intersect
at a single point.

The essential point of the seemingly trivial pull-back construction, is that
starting from ”simple manifolds” X0 ⊂ V and W , we produce complicated and
more interesting ones by means of ”complicated maps” W → V . (It is next
to impossible to make an interesting manifold with the ”equivalence class of
atlases” definition.)

For example, if V = R, and our maps are functions on W , we can generate
lots of them by using algebraic and analytic manipulations with functions and
then we obtain maps to RN by taking N -tuples of functions.

And less obvious (smooth generic) maps, for all kind of V and W , come as
smooth generic approximations of continuous maps W → V delivered by the
algebraic topology.

Following Thom (1954) one applies the above to maps into one point com-
pactifications V● of open manifolds V where one still can speak of generic pull-
backs of smooth submanifolds X0 in V ⊂ V● under maps W → V●

Thom spaces. The Thom space of a vector bundle V → X0 over a compact
space X0 (where the pullbacks of all points x ∈ X0 are Euclidean spaces Rn) is
the one point compactifications V● of V , where X0 is canonically embedded into
V ⊂ V● as the zero section of the bundle (i.e. v ↦ 0 ∈ Rnv ).

If X =Xn ⊂W =Wn+N is a smooth submanifold, then the total space of its
normal bundle denoted U⊥ →X is (almost canonically) diffeomorphic to a small
(normal) ε-neighbourhood U(ε) ⊂W of X, where every ε-ball BN(ε) = BNx (ε)
normal to X at x ∈X is radially mapped to the fiber RN = RNx of U⊥ →X at x.

Thus the Thom space U⊥● is identified with U(ε)● and the tautological map
W● → U(ε)●, that equals the identity on U(ε) ⊂ W and sends the complement
W ∖ U(ε) to ● ∈ U(ε)●, defines the Atiyah-Thom map for all closed smooth
submanifold X ⊂W ,

A⊥● ∶W● → U⊥● .

Recall that every RN -bundle over an n-dimensional space with n < N , can
be induced from the tautological bundle V over the Grassmann manifold X0 =
GrN(Rn+N) of N -planes (i.e. linear N -subspaces in Rn+N ) by a continuous
map, say G ∶X →X0 = GrN(Rn+N).

For example, if W = Rn+N , one can take the normal Gauss map for G that
sends x ∈ X to the N -plane G(x) ∈ GrN(Rn+N) = X0 which is parallel to the
normal space of X at x.

Since the Thom space construction is, obviously, functorial, every U⊥-bundle
inducing map X → X0 = GrN(Rn+N) for X = Xn ⊂W =Wn+N , defines a map
U⊥● → V● and this, composed with with A⊥● , gives us the Thom map

T● ∶W● → V● for the tautological N -bundle V →X0 = GrN(Rn+N).

Since all n-manifolds can be (obviously) embedded (by generic smooth maps)
into Euclidean spaces Rn+N , N >> n, every closed, i.e. compact without bound-
ary, n-manifold X comes from the generic pullback construction applied to maps
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f from Sn+N = Rn+N● to the Thom space V● of the canonical N -vector bundle
V →X0 = GrN(Rn+N),

X = f−1(X0) for generic f ∶ Sn+N → V● ⊃X0 = GrN(Rn+N).

In a way, Thom has discovered the source of all manifolds in the world
and responded to the question ”Where are manifolds coming from?” with the
following

1954 Answer. All closed smooth n-manifolds X come as pullbacks of Grass-
mannians X0 = GrN(Rn+N) in the ambient Thom spaces V● ⊃X0 under generic
smooth maps Sn+N → V●.

The manifolds X obtained with the generic pull-back construction come with
a grain of salt: generic maps are abundant but it is hard to put your finger on
any one of them – we can not say much about topology and geometry of an
individual X. (It seems, one can not put all manifolds in one basket without
some ”random string” attached to it.)

But, empowered with Serre’s theorem, this construction unravels an amazing
structure in the ”space of all manifolds” (Before Serre, Pontryagin and following
him Rokhlin proceeded in the reverse direction by applying smooth manifolds
to the homotipy theory via the Pontryagin construction.)

Selecting an object X, e.g. a submanifold, from a given collection X of
similar objects, where there is no distinguished member X⋆ among them, is a
notoriously difficult problem which had been known since antiquity and can be
traced De Cael of Aristotle. It reappeared in 14th century as Buridan’s ass
problem and as Zermelo’s choice problem at the beginning of 20th century.

A geometer/analyst tries to select an X by first finding/constructing a ”value
finction” on X and then by taking the ”optimal” X. For example, one may go
for n-submanifolds X of minimal volumes in an (n +N)-manifold W endowed
with a Riemannin metric. However, a minimal X is usually singular with the
only known exception Xn ⊂Wn+1 for n ≤ 6 (Simons, 1968).

Picking up a ”generic” or a ”random” X from X is a geometer’s last resort
when all ”deterministic” options have failed. This is aggravated in topology,
since

● on the one hand, there is no known construction delivering all manifolds
X besides generic pullbacks and their close relatives;

● on the other hand, geometrically interesting manifolds X are not anybody’s
pullbacks. Often, they are ”complicated quotients of simple manifolds”, e.g.
X = S/Γ, where S is a symmetric space and Γ is a discrete isometry group
acting on S, possibly, with fixed points.

(It is obviouos that every surface X is homeomorphic to such a quotient,
and this is also so for compact 3-manifolds by a theorem of Thurston. But if
n ≥ 4, one does not know if every closed smooth manifold X is homeomorphic
to such S/Γ.)

Starting from another end, one has ramified covers X → X0 of ”simple”
manifolds X0, where one wants the ramification locus Σ0 ⊂X0 to be a subvariety
with ”mild singularities” and with an ”interesting” fundamental group of the
complement X0∖Σ0, but finding such Σ0 is difficult (see the discussion following
(3) in section 7).
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4 Duality and the Signature.

Define i-cycles C in a smooth n-manifold X, which represent homology classes
[C] ∈ Hi(X), as ”compact oriented i-submanifolds C ⊂ X with singularities of
codimension two”.

Such a C contains, by definition, an open dense subset Creg ⊂ C which is
a smooth i-submanifold in X and where the complement Csing ⊂ C ∖Creg is a
”piecewise smooth subset of dimension ≤ i − 2”. This may be understood in a
most generous sense, e.g. by allowing Csing to be a closed set which is contained
in a locally finite union of submanifolds of dimensions i− 2. (Different concepts
of a cycle, i.e. as of ”sub-pseudo-manifold”, as in section 9, lead to an equivalent
definition.)

If X is a closed oriented manifold, then it itself makes an n-cycle which
represents what is called the fundamental class [X] ∈ Hn(X). Other n-cycles
are ±-combinations of the oriented connected componets of X.

If Y is a manifold with a boundary X = ∂(Y ), then relative (i + 1)-cycles
D in Y are required to be products near X: a small neighbourhood (collar)
Uε ⊂ Y of X in Y is the product Uε =X × [0, ε] and we want D ∩U = C × [0, ε].
And such a D must be a smooth oriented ”submanifold” with codimension ≥ 2
singularities in Y away from X.

Cycles C1 and C2 are called homologous, written C1 ∼ C2, if there is a relative
cycle D in X × [0,1], such that ∂(D) = C1 × 0 − C2 × 1 where the minus sign
signifies the switch of the orientation of C2.

For example every contractible cycle C ⊂X is homologous to zero, since the
cone over C in Y =X × [0,1] (corresponding to a smooth generic homotopy) is
a relative cycle. (There is a little problem here for codimX(C) = 1, which will
go away presently.)

Define Hi(X) as the Abelian group with generators [C] for all i-cycles C
in X and with the relations [C1] − [C2] = 0 whenever C1 ∼ C2. Similarly
one defines Hi(X; Q), for the field Q of rational numbers, by generating the
vector space over Q by the cycles with this relation. It is not hard to see that
Hi(X; Q) =Hi(X)⊗Q for all compact triangulated spaces X.

Next, define Hi(X) of an arbitrary triangulated n-space X as Hi(Uε(X)),
where Uε(X) ⊂ Rn+N , N >> n, is a small regular neighbourhood of this X
imbedded into Rn+N by a generic piecewise smooth map.

Regular Neighbourhoods. Recall (this is fairly obvious) that a small open
ε-neighbourhhod U = Uε(X) ⊂ Rn+N of a generically embedded X ⊂ Rn+N is
regular in the following sense.

There is a continuous family of maps Rt ∶ U → U , t ∈ [0,1], such that
● Rt=0 = id(entity) on U ;
● Rt = id∣X for all t;
● Rt2(U) ⊂ Rt1(U) for all 0 ≤ t1 ≤ t2 ≤ 1;
● the map Rt is a diffeomorphism of U onto its image for every t < 1 and the

family Rt is C∞-continous in t for t < 1;
● Rt=1(U) =X.
Every continous map f ∶ X1 → X2, when extended to Uε(X1) → Uε(X2)

and then approximated by a generic map, defines a homomorphism Hi(X1) →
Hi(X2). In fact, if N >> n, then generic maps send cycles to cycles. (Clearly,
N ≥ 2i + 1 is big enough for this, but N ≥ 2 also suffices.)
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This homomorphism does not depend on the extension and approximation
and it is denoted f∗i.

Moreover, f∗i is invariant under homotopies represented by generic maps F ∶
X1×[0,1]→X2, since F (C,0) ∼ F (C,1), for F (C,0)−F (C,1) = ∂(F (C×[0,1]).

It follows, by approximation of continous homotopies by smooth generic
ones, that f∗i is, indeed, correctly defined and is invariant under all continuous
homotopies.

A particular role is played by the homomorphism f∗n ∶ Hn(X1) → Hn(X2)
between closed oriented n-manifolds. If X1 and X2 are connected, then f∗n is
determined by the integer f∗n[X1] ∈ Z = Hn(X2), called the degree of f (the
definition of which needs only connectedness of X2).

If f is a smooth map, then the f -pullback Ũ ⊂X1 of some small open subset
U ⊂ X2 consists of finitely many connected components Ũi ⊂ Ũ , such that the
map f ∶ Ũi → U is a diffeomorphism for all Ũi. Thus, every Ũi carries two
orientations: one induced from X1 and the second from X2 via f .

If the two orientations agree, we assign +1 to Ũi and −1 otherwise. Then the
sum of these ±1 equals the degree of f which must by obvious by now.

For example l sheeted covering maps have degree l.
The homotopy invariance of f∗i trivially implies the invariance of Hi un-

der homotopy equivalences, and thus, under homeomorphisms, between spaces;
other familiar properties of homology also easily follow from our definition, such
as the bound on the number of generators of Hi(X) by the number of the i-
simplices of the triangulation.

(Recall that a homotopy equivalence between X1 and X2 is given by a pair
of maps f12 ∶ X1 → X2 and f21 ∶ X2 → X1, such that both composed maps
f12 ○f21 ∶X1 →X1 and f21 ○f12 ∶X2 →X2 are homotopic to the identity maps.)

Example. The spheres have H0(Sn) = Hn(Sn) = Z (where non-vanishing of
the fundamental class [Sn] ∈Hn(Sn) and of m[Sn] for m ≠ 0 will become clear
presently) while Hi(Sn) = 0 for 0 < i < n, since the complement to a point in Sn

is homeomorphic to Rn and has zero homologies in positive dimensions.

There is a more subtle geometric property of regular neighbourhoods for
N >> n due to B. Mazur (1961) that we shall prove in section 7.

Every homotopy equivalence Uε(X1)→ Uε(X2) is homotopic to a diffeomor-
phism.

If X is a non-compact manifold, one may drop ”compact” in the definition of
cycles. The resulting group is denoted H1(X,∂∞). If X is compact with bound-
ary, then this group of the interior of X is called the relative homology group
Hi(X,∂(X)). (The ordinary homology groups of this interior are canonically
isomorphic to those of X.)

The intersection of cycles in general position defines a multiplicative struc-
ture on the homology of an n-manifold X where this intersection product of
[C1] ∈Hn−i(X) and [C2] ∈Hn−j(X), is denoted

[C1] ⋅ [C2] = [C1] ∩ [C2] = [C1 ∩C2] ∈Hn−(i+j)(X)

(where [C]∩ [C] is defined by intersecting C ⊂X with its small generic pertur-
bation C ′ ⊂X).

It is easy to see that this product is invariant under oriented (i.e. of degrees
+1) homotopy equivalences between closed equidimensional manifolds.
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Also notice that the intersection of cycles of odd codimensions is anti-commutative
and if one of the two has even codimension it is commutative.

Examples. (a) The intersection ring of the complex projective space CP k is
multiplicatively generated by the homology class of the hyperplane, [CP k−1] ∈
H2k−2(CP k), with the only relation [CP k−1]k+1 = 0 and where, obviously,
[CP k−i] ⋅ [CP k−j] = [CP k−(i+j)].

The proof is straightforward by observing that CP k∖CP k−1 is homeomorphic
to R2k.

(b) The intersection ring of the n-torus is isomorphic to the exterior algebra
on n-generators, i.e. the only realatios between the multiplicative generators
hi ∈ Hn−1(Tn) are hihj = −hjhi, where hi are the homology classes of the n
coordinate subtori Tn−1

i ⊂ Tn.
This follows from the Künneth fomula below, but can be also proved directly

with a minor effort.
The intersection ring structure immensely enriches homology. Additively,

H∗ = ⊕iHi is just a graded Abelian group – the most primitive algebraic object
(if finitely generated) – fully characterized by simple numerical invariants: the
rank and the orders of their cyclic factors.

But the ring structure, say on Hn−2 of an n-manifold X, for n = 2d defines
a symmetric d-form, on Hn−2 = Hn−2(X) which is, when it is simplified by
tensoring with Q, is the same as a rational polynomial of degree d in r variables,
r = rank(Hn−2). All number theory in the world can not classify these for d ≥ 3
(to be certain, for d ≥ 4).

One can also intersect non-compact cycles, where an intersection of a com-
pact C1 with a non-compact C2 is compact; this defines the intersection pairing

Hn−i(X)⊗Hn−j(X,∂∞) ∩→Hn−(i+j)(X).

Finally notice that our 0 cycles C in X are finite sets of points x ∈ X with
the ”orientation” signs ±1 attached to each x in C, where the sum of these ±1 is
called the index of C. If X is connected, then ind(C) = 0 if and only if [C] = 0.

Doesn’t it look non-sensical? You orient Rn for n > 0 by choosing a basis in
it, where you can say when two bases are the same or different orientation-wise.
But what is a basis in the 0-dimensional space? Yet, the 0-dim ”orientation” is
indispensable in the definition of homologous 0-cycles.

Also, the bona-fide concept of the intersection index of cycles C1 and C2

of complementary dimensions in general position in an oriented manifold X
(the sum of ±1, assigned to each intersection point x ∈ C1 ∩ C2 with the sign
depending on whether C1 and C2 give the original orientation to X at x or the
opposite one) can be defined as the index of the zero cycle C1 ∩C2.

Euler Class. Let X be an oriented 4k-manifold and X → B be a fibration
with R2k-fibers. Then, clearly, H∗(X) = H∗(B) and the self-intersection index
of h ∈H2k(X), regarded as a function on H2k(B) is called the Euler class e(X)
of the fibration.

In particular, if B is a closed connected oriented manifold, then e([B]) is
called the the Euler number of X → B also denoted e.

More geometrically, one embeds B ⊂X as the zero section, i.e. by b↦ 0b ∈ Rkb
and defines e as the self-intersection index of B ⊂X.
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Observe that since the intersection pairing is symmetric on H2k the sign of
the Euler number does not depend on the orientation of B, but does depend on
the orientation of X.

Also notice that if X is embedded into a larger 4k-manifold X ′ ⊃X then the
self-intersection index of B in X ′ equals that in X.

If X equals the tangent bundle T (B) then X is canonically oriented (even
if B is non-orientable) and the Euler number is non-ambigusly defined.

Poincare Formula. The Euler number e of the tangent bundle T (B) of
every closed oriented 2k-manifold B satisfies

e = χ(B) = ∑
i=0,1,...k

rank(Hi(X; Q)).

It is hard the believe this may be true! The single cycle knows something about
all the homology of B.

The simplest proof of this formula is, probably, via the Morse theory (known
to Poincare) and it hardly can be called ”trivial”.

The Euler number can be defined for connected non-orientable B as follows.
Take the canonical oriented double covering B̃ → B, where each point b̃ ∈ B̃ over
b ∈ B is represented as b + an orientation of B near b. Let the bundle X̃ → B̃ be
induced from X by the covering map B̃ → B, i.e. this X̃ is the obvious double
covering of X corresponding to B̃ → B. Finally, set e(X) = e(X̃)/2.

The Poincare formula for non-orientable 2k-manifolds B follows from the
orientable case by the multiplicativity of the Euler characteristic χ which is
valid for all compact triangulated spaces B,

an l-sheeted covering B̃ → B has χ(B̃) = l ⋅ χ(B).
If the homology is defined via the triangulation, then χ(B) equals the al-

ternating sum ∑i(−1)iN(∆i) of the numbers of i-simplices by straightforward
linear algebra and the multiplicativity follows. But it is not so easy with our
geometric cycles. (If B is a closed manifold, this also follows from the Poincare
formula and the obvious multiplicativity of the Euler number for covering maps.)

Künneth Theorem. The rational homology of the Cartesian product of
two spaces equals the graded tensor product of the homologies of the factors. In
fact, the natural homomorphisms

⊕
i+j=k

Hi(X1; Q)⊗Hj(X2; Q)→Hk(X1 ×X2; Q), k = 0,1,2, ...

is an isomorphism. Moreover, if X1 and X2 are closed oriented manifolds, this
homomorphism is compatible (if you say it right) with the intersection product.

This looks obvious, but the proof is unpleasant in our setting.

Poincare Q-Duality. Let X be a connected oriented manifold. Then the
intersection pairing

Hi(X)⊕Hn−i(X,∂∞) ∩→H0(X) = Z

is faithful: a multiple of a compact i-cycle C is homologous to zero if and only
if its intersection index with every non-compact (n− i)-cycle in general position
equals zero.

Furthermore, if X equals the interior of a compact manifolds with a bound-
ary, then a multiple of a non-compact cycle is homologous to zero if and only
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if its intersection index with every compact generic cycle of the complementary
dimension equals zero.

In other words, the intersection index establishes a linear duality between the
Q-vector spaces Hi(X)⊗Q =Hi(X; Q) and Hn−i(X,∂∞)⊗Q =Hn−i(X,∂∞; Q).

The non-obvious and hard for us to prove part of the duality is ”if”, but
the obvious ”only if” is also powerful, as it allows one to give a lower bound on
the homology by producing sufficiently many non-trivially intersecting cycles of
complementary dimensions.

For instance, one immediately sees that Hn(Xn) ≠ 0 for all closed orienatable
n-manifolds X, since the intersection of the fundamental n-cycle [X] ∈ Hn(X)
with a one point 0-cycle c0 equals c0 ≠ 0. It follows that X is non-contractible,
which is virtually invisible even for X = Sn, n ≥ 3, from inside the category
of all continuous (rather then smooth generic or piece-wise linear) maps. (The
existence of the covering map R → S1 implies that S1 is non-contractible and
then one sees that S2 is also non-contractible with the Hopf fibration S3 → S2,
where smooth and/or piece-wise linear maps need not be used.)

The Q-duality does not tell you the whole story. For example, the following
simple property of closed n-manifolds X depends on the full homological duality:

Connectedness/Contractibiliy. If X is a closed k-connected n-manifold,
i.e. πi(X) = 0 for i = 1, ..., k, then the complement to a point, X ∖ {x0}, is
(n−k−1)-contractible, i.e. there is a homotopy ft of the identity map X∖{x0}→
X∖{x0} with P = f1(X∖{x0}) being a smooth triangulated subspace P ⊂X∖{x0}
with codim(P ) ≥ k + 1.

For example, if πi(X) = 0 for 1 ≤ i ≤ n/2, then X is homotopy equivalent to
Sn.

Thom Isomorphism. Let p ∶ V → X be a fiber-wise oriented smooth
(which is unnecessary) RN -bundle over X, where X ⊂ V is embedded as the zero
section and let V● be Thom space of V . Then there are two natural homology
homomorphisms.

Intersection ∩ ∶ Hi+N(V●) → Hi(X). This is defined by intersecting generic
(i +N)-cycles in V● with X.

Thom Suspension S● ∶ Hi(X) → Hi(V●), where every cycle C ⊂ X goes to
the Thom space of the restriction of V to C, i.e. C ↦ (p−1(C))● ⊂ V●.

These ∩ and S● are mutually reciprocal. Indeed (∩ ○ S●)(C) = C for all
C ⊂ X and also (S● ○ ∩)(C ′) ∼ C ′ for all cycles C ′ in V● where the homology is
established by the fiberwise radial homotopy of C ′ in V● ⊃ V , which fixes ● and
move each v ∈ V by v ↦ tv. Clearly, tC ′ → (S● ○ ∩)(C ′) as t→∞ for all generic
cycles C ′ in V●.

Thus we arrive at the Thom isomorphism

Hi(X)↔Hi+N(V●).

Similarly we see that
The Thom space of every RN -bundle V → X is (N − 1)-connected, i.e.

πj(V●) = 0 for j = 1,2, ...N − 1.
Indeed, a generic j-sphere Sj → V● with j < N does not intersect X ⊂ V ,

where X is embedded into V by the zero section. Therefore, this sphere radially
(in the fibers of V ) contracts to ● ∈ V●.
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Signature. The intersection of (compact) k-cycles in an oriented, possibly
disconnected, 2k-manifold X defines a bilinear form on the homology Hk(X).
If k is odd, this form is antisymmetric and if k is even it is symmetric.

The signature of the latter, i.e. the number of positive minus the number of
negative squares in the diagonalized form is called sig(X), which is well defined
if Hk(X) has finite rank, e.g. if X is compact.

Geometrically, a diaganolization of the inetersection form is achived with a
maximal set of mutually disjoint k-cycles in X where each of them has a non-zero
(positive or negative) self-intersection index.

Examples. (a) S2k × S2k has zero signature, since the 2k-homology is gen-
erated by the classes of the two coordinate spheres [s1 × S2k] and [S2k × s2],
which both have zero self-intersections.

(b) The complex projective space CP 2m has signature one, since its miiddle
homology is generated by the class of the comlex projective subspace CPm ⊂
CP 2m with the self-intersection = 1.

(c) The tangent bundle T (S2k) has signature 1, since Hk(T (S2k)) is gener-
ated by [S2k] with the self-intersection equal the Euler characteristic χ(S2k) = 2.

It is obvious that sig(mX) = m ⋅ sig(X), where mX denotes the disjoint
union of k copies of X, and that sig(−X) = −sig(X), where ”−” signifies rever-
sion of orientation. Furthermore

The oriented boundary X of every compact oriented (4k+1)-manifold Y has
zero signature.(Rokhlin 1952).

(An orientation of a Y induces an orientation of its boundary ∂(Y ), if we
agree on a choice of directions of the normals to the boundary, either we agree
on taking all looking inward or all outward. There is no apparent rational for
preferring one of the two, but we stick to ”inward” once and for ever.

Oriented boundaries of non-orienatble manifolds may have non-zero signa-
tures, For example the double covering X̃ → X with sig(X̃) = 2sig(X) non-
orientably bounds the corresponding 1-ball bundle Y over X.)

Sketch of the Proof. It is obvious that the intersection form vanishes on
the kernel kerk ⊂ Hk(X) of the inclusion homomorphism Hk(X) → Hk(Y ):
if k-cycles Ci, i = 1,2, bound relative (k + 1)-cycles Di in Y , then the (zero-
dimensional) intersection C1 with C2 bounds a relative 1-cycle in Y which makes
the index of the intersection zero.

On the other hand, the obvious identity

[C ∩D]Y = [C ∩ ∂D]X

and the Poincare duality show that that the spaces kerk ⊂Hk(X) andHk(X)/kerk
have equal ranks over Q. QED.

It is also easy to see with the Künneth formula that

sig(X1 ×X2) = sig(X1) ⋅ sig(X2).

Amazingly, the multiplicativity of the signature of closed manifolds under cov-
ering maps can not be seen with comparable clarity.

Multiplicativity Formula if X̃ →X is a l-sheeted covering map, then

sign(X̃) = l ⋅ sign(X).
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We prove this in the next section with the use of the Serre finiteness theorem.

Our presentation of homology is similar to the first approach by Poincare
(this is pursued further in [26]), where the essential stumbling block is proving
the Poincare duality.

(Thinking in the language of generic cycles is well suited for observing and
proving the multitude of obvious little things you come across every moment
in topology. Yet, you do not expect to arrive at anything like Serre’s finite-
ness theorem without the computational power of the fully linearized homology
theory.)

If you think about it, the Poincare duality is quite amazing: you can say
what happens to i-cycles for i = (0.9)10100 in a 10100-dimensional manifold X
(something like the ”classical phase space of the universe”) by looking at the
dimensions 1099 and 1099 + 1.

It is unclear (at least to me) what should be a comprehensive formulation
and/or a ”natural” proof of the Poincare duality which would make transparent,
for example, the multiplicativity of the signature and the topological nature of
rational Pontryagin classes (which can be derived from the Poincare duality,
albeit in a circumvent way [42]) and which would apply to ”cycles” of dimensions
βN where N =∞ and 0 ≤ β ≤ 1 in spaces like these we shall meet in section 11.

5 The Signature and Bordisms.

Let us proof the multiplicativety of the signature by constructing a compact
oriented manifold Y with a boundary, such that the oriented boundary ∂(Y )
equals mX̃ −mlX for some integer m ≠ 0.

Embed X into Rn+N , N >> n = 2k = dim(X) let X̃ ⊂ Rn+N be an embedding
obtained by a small generic perturbation of the covering map X̃ → X ⊂ Rn+N
and X̃ ′ ⊂ Rn+N be the union of l generically perturbed copies of X.

Let Ã● and Ã′
● be the Atiyah-Thom maps from Rn+N● to the Thom spaces

Ũ● and U ′
● of the normal bundles Ũ → X̃ and Ũ ′ → X̃ ′.

Let P̃ ∶ X̃ → X and P̃ ′ ∶ X̃ ′ → X be the normal projections. These projec-
tions, obviously, induce the normal bundles Ũ and Ũ ′ of X̃ and X̃ ′ from the
normal bundle U⊥ →X. Let

P̃ ∶ Ũ● → U⊥● and P̃ ′ ∶ Ũ ′
● → U⊥●

be the corresponding maps between the Thom spaces and let us look at the two
maps of the sphere Sn+N = RN+n

● to the Thom space U⊥● ,

B̃● = P̃ ○ Ã● ∶ Sn+N → U⊥● , and B̃′
● = P̃ ′ ○ Ã′

● ∶ Sn+N → U⊥● .

Clearly

[●̃●̃′] (B̃●)−1(X) = X̃ and (B̃′
●)−1(X) = X̃ ′.

On the other hand,
B̃● sends [Sn+N ] to the S●n-image of [X]∼ = P̃∗n[X̃] ∈Hn(X)

and
B̃′
● sends [Sn+N ] to the S●n-image of [X]′∼ = P̃ ′

∗n[X̃ ′] ∈Hn(X),
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where [Sn+N ] ∈Hn+N(Sn+N) is the fundamental class of the sphere, where
S●n ∶Hn(X)→Hn+N(U⊥● )

is the Thom suspension homomorphism, while
P̃∗n and P̃ ′

∗n
are the homology homomorphisms induced by the projections.
Since the projections P̃ ∶ X̃ →X and P̃ ′ ∶ X̃ ′ →X have equal degrees (= l),

[X]′∼ = [X]∼ ∈Hn(X); hence, B̃′
●[Sn+N ] = B̃●[Sn+N ] ∈Hn+N(U⊥● ),

and since πi(U⊥● ) = 0, i = 1, ...N − 1,
some non-zero m-multiples of the maps

B̃●, B̃
′
● ∶ Sn+N → U⊥●

can be joined by a (smooth generic) homotopy F ∶ Sn+N × [0,1]→ U⊥● by Serre’s
theorem.

Then, because of [●̃●̃′], the pullback F −1(X) ⊂ Sn+N × [0,1] establishes a
bordism between mX̃ ⊂ Sn+N × 0 and mX̃ ′ =mlX ⊂ Sn+N × 1. This implies that

m ⋅ sig(X̃) =ml ⋅ sig(X) and since m ≠ 0 we get sig(X̃) = l ⋅ sig(X). QED.

Bordisms and the Rokhlin-Thom-Hirzebruch Formula. Let us modify our
definition of homology of a manifold X by allowing only non-singular i-cycles
in X, i.e. smooth closed oriented i-submanifolds in X and denote the resulting
Abelian group by Boi (X).

If 2i ≥ n = dim(X) one has a (minor) problem with taking sums of non-
singular cycles, since generic i-submanifolds may intersect and their union is
unavoidably singular. We assume below that i < n/2; otherwise, we replace X
by X ×RN for N >> n, where, observe, Boi (X ×RN) does not depend on N for
N >> i.

Unlike homology, the bordism groups Boi (X) may be non-trivial even for
a contractible space X, e.g. for X = Rn+N . (Every cycle in Rn equals the
boundary of any cone over it but this does not work with manifolds due to the
singularity at the apex of the cone which is not allowed by the definition of a
bordism.) In fact,

if N >> n, then the bordism group Bon = Bon(Rn+N) is canonically isomorphic
to the homotopy group πn+N(V●), where V● is the Thom space of the tautological
oriented RN -bundle V over the Grassmann manifold V = GrorN (Rn+N+1) (Thom,
1954).

Proof. Let X0 = GrorN (Rn+N) be the Grassmann manifold of oriented N -
planes and V →X0 the tautological oriented RN bundle over this X0.

(The space GrorN (Rn+N) equals the double cover of the space GrN(Rn+N) of
non-oriented N -planes. For example, Gror1 (Rn+1) equals the sphere Sn, while
Gr1(Rn+1) is the projective space, that is Sn divided by the ±-nvolution.)

Let U� →X be the oriented normal bundle of X with the orientation induced
by those of X and of RN ⊃ X and let G ∶ X → X0 be the oriented Gauss map
which assigns to each x ∈ X the oriented N -plane G(x) ∈ X0 parallel to the
orineted normal space to X at x.
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Since G induces U⊥ from V , it defines the Thom map Sn+N = Rn+N● → V●
and every bordism Y ⊂ Sn+N × [0,1] delivers a homotopy Sn+N × [0,1] → V●
between the Thom maps at the two ends Y ∩ Sn+N × 0 and Y ∩ Sn+N × 1.

This define a homomorphism

τbπ ∶ Bon → πn+N(V●)

since the additive structure in Bon(Ri+N) agrees with that in πi+N(V o● ).
Also note that one needs the extra 1 in Rn+N+1, since bordisms Y between

manifolds in Rn+N lie in Rn+N+1, or, equivalently, in Sn+N+1 × [0,1].
On the other hand, the generic pullback construction

f ↦ f−1(X0) ⊂ Rn+N ⊃ Rn+N● = Sn+N

defines a homomorphism τπb ∶ [f] → [f−1(X0)] from πn+N(V●) to Bon, where,
clearly τπb ○ τbπ and τbπ ○ τπb are the identity homomorphisms. QED.

Now Serre’s Q-sphericity theorem implies the following
Thom Theorem. The (Abelian) group Boi is finitely generated;
Bon⊗Q is isomorphic to the rational homology group Hi(X0; Q) =Hi(X0)⊗Q

for X0 = GrorN (Ri+N+1).
Indeed, πi(V ●) = 0 for N >> n, hence, by Serre,

πn+N(V●)⊗Q =Hn+N(V●)⊗Q,

while
Hn+N(V●)⊗Q =Hn(X0)⊗Q

by the Thom isomorphism.

In order to apply this, one has to compute the homologyHn(GrorN (RN+n+j)); Q),
which, as it is clear from the above, is independent of N ≥ 2n + 2 and of j > 1;
thus, we pass to

Gror =def ⋃
j,N→∞

GrorN (RN+j).

Let us state the answer in the language of cohomology, with the advantage
of the multiplicative structure.

(Every cohomology class c ∈Hi(X; Q) defines a Q-linear map Hi(X; Q)→ Q,
denoted h↦ c(h) which establishes an isomorphism between Hi(X; Q) and the
F-linear dual of Hi(X; Q).

If X is a closed oriented n-manifold, then the Poincare duality delivers an iso-
morphism Hi(X; Q)↔Hn−i(X; Q) where the cohomology product corresponds
to the intersection product on homology.)

The cohomology ring H∗(Gror) ⊗ Q is the polynomial ring in some distin-
guished integer classes, called Pontryagin classes pi ∈H4i(Gror; Z), i = 1,2,3, ...
[32].

(It would be awkward to express this in the homology language when N =
dim(X) →∞, although the cohomology ring H∗(X) is canonically isomorphic
to HN−∗(X) by the Poincare duality.)

IfX is a smooth oriented n-manifold, its Pontryagin classes pi(X) ∈H4i(X; Z)
are defined as the classes induced from pi by the normal Gauss map G →
GrorN (RN+n) ⊂ Gror for an embedding X → Rn+N , N >> n.
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If Q is a unitary (i.e. a product of powers) monomial in pi of graded de-
gree n = 4k, then the values Q(pi)[X] is called the (Pontryagin) Q-number.
Equivalently, these are the values of Q(pi) ∈ H4i(Gror; Z) on the image of (the
fundamental class) of X in Gror under the Gauss map.

The Thom theorem now can be reformulated as follows.
Two closed oriented n-manifolds are Q-bordant if and only if they have equal

Q-numbers for all monomials Q. In particular Bon ⊗Q = 0, unless n is divisible
by 4.

Furthermore, the rank of Bon⊗Q equals the nunber of Q-monomials of graded
degree n, that are ∏i p

ni

i with ∑i 4ni = n.
For example, if n = 4, then there is a single such monomial, p1; if n=8, there

two of them: p2 and p2
1; if n = 12 there three monomials: p3, p1p2 and p3

1; if
n = 16 there are five of them, etc.

Thom also observes that, since the top Pontryagin classes pk of the complex
projective spaces do not vanish, pk(CP 2k) ≠ 0, (see [32]) the products of these
spaces constitute a basis in Bon ⊗Q.

Finally, notice that the bordism groups together make a commuative ring
under the Cartesian product of manifolds, denoted Bo∗, and the Thom theorem
says that
Bo∗ ⊗Q is the polynomial ring over Q in the variables [CP 2k], k = 0,2,4, ...
Sice the signature, is additive and also multiplicative under this product it

defines a homomorphism [sig] ∶ Bo∗ → Z which can be expressed in each degree
4k by means of a universal polynomial in the Pontryagin classes, denoted Lk(pi),
by

sig(X) = Lk(pi)[X] for all closed oriented 4k-manifolds X.

For example,

L1 =
1
3
p1, L2 =

1
45

(7p2 − p2
1), L3 =

1
945

(62p3 − 13p1p2 + 2p3
1).

Accordingly,

sig(X4) = 1
3
p1[X4], (Rokhlin 1952)

sig(X8) = 1
45

(7p2(X8) − p2
1(X8))[X8], (Thom 1954)

and where a concise general formula (see blow) was derived by Hirzebruch who
evaluated the coefficients of Lk using the known values of pi and sig for the
products of the complex projective spaces and by substituting these products
X = ×jCP 2kj with ∑j 4kj = n = 4k, for X = Xn into the formula sig(X) =
Lk[X].

Hirzebruch Signature Theorem. Let

R(z) = 1 + z/3 + z/45 + ... =∑
l≥0

22lB2lz
l

(2l)!
=

√
z

tanh(
√
z)
,

where B2l are the Bernully numbers:

B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, ...
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Write
R(z1) ⋅ ... ⋅R(zk) = 1 + P1(zj) + ... + Pk(zj) + ...

where Pj are homogeneous symmetric polynomials of degree j in z1, ..., zk and
rewrite

Pk(zj) = Lk(pi)

where pi = pi(z1, ..., zk) are the elementary symmetric functions in zj of degree
i.

The Hirzebruch theorem say that this Lk is exactly the polynomial which
makes the equality Lk(pi)[X] = sig(X).

A significant aspect of this formula is that the Pontryagin numbers and
the signature are integers while the Hirzebruch polynomilas Lk have non-trivial
denominators. This yields certain universal divisibility properties of the Pon-
tryagin numbers (and sometimes of the signatures) for closed smooth orientable
4k-manifolds.

But despite a significant ”integer load” carried by the signature formula, it
depends only on the rational bordism groups Bon ⊗Q. This point of elementary
linear algebra was overlooked by Thom (isn’t it incredible?) who derived the
signature formula for 8-manifolds from his special and more difficult computa-
tion of the true bordism group Bo8. However, the shape given by Hirzebruch to
this formula is something more than just linear algebra.

Is there an implementation of the analysis/arithmetic encoded in the Hirze-
bruch formula by some infinite dimensional manifolds?

Geometric Questions about Bordisms. Let X be a closed oriented Rieman-
nian n-manifold with locally bounded geometry, which means that every R-ball
in X admits a λ-bi-Lipshitz homeomorphism onto the Euclidean R-ball.

Suppose X is bordant to zero and consider all compact Riemannian (n+1)-
manifolds Y extending X = ∂(Y ) with its Riemannian tensor and such that the
local geometries of Y are bounded by some constants R′ << R and l′ >> λ with
the obvious precaution near the boundary.

One can show that the infimum of the volumes of these Y is bounded by

inf
Y
V ol(Y ) ≤ F (V ol(X)),

with the power exponent bound on the function F = F (V ). (F also depends on
R,λ,R′, λ′, but this seems non-essential for R′ << R,λ′ >> λ.)

What is the true asymptotic behaviour of F (V ) for V → ∞ ? It may be
linear for all we know.

Is there a better setting of this question with some curvature integrals and/or
spectral invariants rather than volumes?

The real cohomology of the Grassmann manifoIds can be analytically repre-
sented by invariant differential forms. Is there a compatible analytic/geometric
representation of Bon⊗R? (One may think of a class of n-foliations, for instance,
or something more sophisticated than that.)

Combinatorial Pontryagin Classes. Let Lj(X) = Lj(pi(X)) ∈ H4j(X; Q)
and take a generic smooth map f ∶ X → Sn−4j , n = dim(X). Observe that
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Z = f−1(s0) ⊂ X is a 4j-dimensional submanifold with trivial normal bundle;
hence

Lj(Z) = Lj(X)∣Z and sig(Z) = Lj(X)[Z],

where [Z] ∈ H4j(X) is the homology class of Z, where the orientation of Z
(needed to define [Z]) comes with the orientation in X and an orientation in
its (trivial!) normal bundle of Z in X.

Moreover, the class Lj(X) for 4j < n/2 is uniquely determined by the sig-
natures of all 4j-submanifolds Z ⊂ X with trivial normal bundles, since the
homology classes of these Z span H4j(X; Q) according to Serre’s [→ Sn−4l]-
theorem for 4j < n/2.

This allows one, following Rokhlin (1957) and Thom (1958), to express the
rational Pontryagin classes by these signatures as well: this is possible, since the
coefficient at pj in Lj = Lj(p1, ..., pj) is non-zero (this can be seen with Hirze-
bruch’s description of his polynomials) and the rational (since Lj are rational
rather then integer polynomials) Pontryagin classes pi of an X can be expressed
in terms of Lj(X) ∈ H4j(X; Q) for j = 1, ..., i. (If 4j ≥ n/2 one does this for
X ′ =X × Sn).

Thom and independetly Rochlin-Schwartz observe that this definition of
Lj , and hence of rational pi, applies to triangulated (not necessarily smooth)
manifolds X, since the pullback of a point s ∈ Sn−4j under a simplicial map is a
triangulated topological manifold provided s lies in the interiour of an (n − 4)-
simplex in Sn−4j . These manifolds satisfy the Poincare duality; hence, the
signatures of 4j-manifolds are invariant under bordisms by (4j + 1)-manifolds
because the Poincare duality is all what is needed for the proof of the bordism
invariance of the signature.

In particular,
rational Pontryagin classes of smooth manifolds are invariant under piece-

wise smooth homeomorphisms between such manifolds.
In fact, the Thom-Rokhlin-Schwartz argument applies to all rational ho-

mology or Q-manifolds, that are compact triangulated n-spaces where the link
Ln−i−1 ⊂X of every i-simplex in X has the same rational homology as the sphere
Sn−i−1. These X satisfy the Poincare duality. In fact the standard combinato-
rial argument for proving duality does not differentiate between true manifolds
and Q-manifolds.

The class of Q-manifolds class is by far wider then that of smooth (or com-
binatorial) manifolds due to a possibility of having enormous (and beautiful)
fundamental groups π1(Ln−i−1).

Yet, the naturally defined bordism ring of Q-manifolds is only marginally
different from Bo∗: the natural homomorphism Bo∗ → QBo∗ has finite kernel and
cokernel in each degree. (This can be easily derived from Serre’s theorems.)

Is there a finer, yet workable, notion of bordisms between Q-manifold that
would (partially) keep track of π1(Ln−i−1)?

The Thom-Rokhlin-Schwartz combinatorial pull-back argument breaks down
in the topological category since there is no good notion of a generic continuous
map. Yet, S. Novikov (1966) proved that the L-classes and, hence, the rational
Pontryagin classes are invariant under arbitrary homeomorphisms (see section
10).
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6 Exotic Spheres.

In 1956, to everybody’s amazement, Milnor found smooth manifolds Σ7 which
were not diffeomorphic to SN ; yet, each of them was decomposable into the
union of two 7-balls B7

1 ,B
7
2 ⊂ Σ7 intersecting over there boundary S6 = ∂(B7

1) =
∂(B7

2) ⊂ Σ7 like the ordinary sphere.
In fact, this decomposition does imply that Σ7 is ”ordinary” in the topological

category: such a Σ7 is (obviously) homeomorhic to S7.
The subtlety resides in the ”equality” ∂(B7

1) = ∂(B7
2); this identification of

the boundaries is far from being the identity map from the point of view of
either of the two balls – it does not come from any diffeomorphisms B7

1 ↔ B7
2 .

This equality can be regarded as a self-diffeomorphism f of the round sphere
S6 – the boundary of standard ball B7 but this f does not extend to a diffeo-
morphism of B7; otherwise, Σ7 whoud be diffeomorphic to S7. (Yet f radially
extends to a piecewise smooth homeomorphism of B7 which yields a piecewise
smooth homeomorphism between Σ7 and S7.)

It follows, that such an f can not be included into a family of diffeomorphisms
bringing it to an isometric transformations of S6. Thus, any geometric ”energy
minimazing” flow on the diffeomorphism group diff(S6) either gets stuck or
develops singularities. (It seems little, if anything at all, is known about such
flows and their singularities.)

Milnor’s spheres Σ7 are rather innocuous spaces – the boundaries of (the
total spaces of) certain 4-ball bundles Θ over S4, i.e. these Σ7 are certain
S3-bundles over S4.

The 4-ball bundles over S4 are easy to describe: each is determined by two
numbers: the Euler number e, that is the self-intersection index of S4 ⊂ Θ, which
assumes all integer values and the Pontryagin number p1 (i.e. the value of the
Pontryagin class p1 ∈H4(S4) on [S4] ∈H4(S4)) which may be an arbitrary even
integer.

Obviously, all Σ7 are 2-connected, but H3(Σ7) may be non-zero (e.g. for
the trivial bundle). It is not hard to show that Σ7 has the same homology as
S7, hence, homotopy equivalent to S7, if and only if e = ±1 which means that
the selfintersection index of the zero section sphere S4 ⊂ Θ equals ±1; we stick
to e = 1 for our candidates for Σ7.

The basic example of Σ7 with e = ±1 (the sign depends on the choice of the
orientation in Θ) is the ordinary 7-sphere which comes with the Hopf fibration
S7 → S4, where this S7 is positioned as the unit sphere in the quaternion
plane H2 = R8, where it is freely acted upon by the group G = S3 of the unit
quaternions and where S7/G equals the sphere S4 representing the quaternion
projective line.

(Alternatively, our bundles are classified by the homotopy group π3(SO(4)),
which is isomorphic to Z ⊕ Z, since the double cover of the special orthogonal
group SO(4) equals S3 × S3.)

If Σ7 were diffeomorphic to S7 one could attach the 8-ball to Θ along the
boundary and obtain a smooth closed 8-manifold, say Θ+ .

Milnor observes that the signature of Θ+ equals ±1, since the homology of
Θ+ is represented by a single cycle – the sphere S4 ⊂ Θ ⊂ Θ+ the selfintersection
number of which equals the Euler number.
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Then Milnor invokes the Thom signature theorem

45sig(X) + p2
1[X] = 7p2[X]

and concludes that the number 45 + p2
1 must be divisible by 7 and, therefore,

the boundaries Σ7 of those Θ which fail this condition, say for p1 = 4, must be
exotic.

Finally, using quaternions, Milnor explicitly constructs a Morse function
Σ7 → R with only two critical points – maximum and minimum on each Σ7

with e = 1; this yields the two ball decomposition.
(Mlnor’s topological arguments, which he presents with a meticulous care,

became a common knowledge and can be now found in any textbook; his lemmas
look apparent to a to-day topology student. The hardest for the modern reader
is the final Milnor’s lemma claiming that his function Σ7 → R is Morse with two
critical ponts. Milnor is laconic at this point: ”It is easy to verify” is all what
he says.)

The 8-manifolds Θ+ with Milnor’s exotic Σ7 can be triangulated with a
single non-smooth point in such a triangulation. Yet, they admit no smooth
structures compatible with these triangulations (as defined below), since their
combinatorial Pontryagin numbers (defined by Rochlin-Schwartz and Thom)
fail the divisibility condition issuing from the Thom formula sig(X8) = L2[X8];
in fact, they are not combinatorially bordant to smooth manifolds.

Moreover, these Θ+ are not even topologically bordant, and therefore, they
are non-homeomorphic to smooth manifolds by (slightly refined) Novikov’s topo-
logical Pontraygin classes theorem.

Recall that a triangulation S of a smooth n-manifold X is smooth and/or the
smooth structure of X is compatible with S, if S is locally diffeomorphic to a tri-
angulation of Rn into affine simplices, where ”local” means ”in a neighbourhood
of each closed simplex of S”.

Every smooth manifoldX can be smoothly triangulated as follows. Smoothly
embed X ⊂ RN , let T be a standard affine simplicial subdivision of the standard
partition of RN into ε-cubes and let T ′ be an affine triangulation of RN obtained
by generic δ-small moves of the vertices of T .

If ε ≤ ε0 = ε0(X) > 0 and if δ ≲ N−Nε, then the intersection of X with T ′

in the r-ball Bx(r) ⊂ RN , say for r = (10
√
n)ε, around each point x ∈ X is

diffeomorphic to the intersections of the tangent n-plane Tx(X) ⊂ RN with T ′

by the implicit function theorem.
Then the intersection of X with T ′ can be esily refined to a smooth trian-

gulation S of X.

The number of exotic spheres, i.e of mutually non-diffeomorhic manifolds
which are homotopic to Sn is not that large, in fact it is finite (e.g. 28 for n = 7)
for all n ≥ 5 according to the subsequent work by Milnor and Kervaire-Milnor,
where, by surgery, it is reduced to the Serre finiteness theorem, and where the
final step is furnished with Smale’s h-cobordism theorem (see section 8).

By Perelman, there is a single smooth structure on the homotopy 3 sphere
and the case n = 4 remains open.
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7 Isotopies and Intersections.

Besides constructing, listing and classifying manifolds X one is concerned with
the spaces of maps X → Y .

The space [X→Y ]smth of all C∞ maps carries little geometric load by itself
since this space is homotopy equivalent to [X→Y ]cont(inuous).

An analyst may be concerned with completions of [X→Y ]smth, e.g. with
Sobolev’ topologies while a geometer is keen at studieng geometric structures,
e.g. Riemannian metrics on this space.

But from a differential topologist point of view the most interesting is the
space of smooth embeddings F ∶ X → Y which diffeomorphically send X onto a
smooth submanifold X ′ = f(X) ⊂ Y .

If dim(Y ) > 2dim(X) then generic f are embeddings, but, in general, you
can not produce them at will so easily. However, given such an embedding
f0 ∶ X → Y , there are plenty of smooth homotopies, called (smooth) isotopies
ft, t ∈ [0,1], of it which remain embeddings for every t and which can obtained
with the following

Isotopy Theorem. (Thom, 1954.) Let Z ⊂ X be a compact smooth
submanifold (boundary is allowed) and f0 ∶ X → Y is an embedding, where the
essential case is where X ⊂ Y and f0 is the identity map.

Then every isotopy of Z in Y can be extended to an isotopy of all of X. More
generally, the restriction map R∣Z ∶ [X→Y ]emb → [Z→Y ]emb is a fibration;
in particular, the isotopy extension property holds for an arbitrary family of
embeddings X → Y parametrized by a compact space.

This is similar to the homotopy extension property (mentioned in section
1) for spaces of continous maps X → Y – the ”geometric” cornerstone of the
algebraic topology.)

The proof easily reduces with the implicit function theorem to the case,
where X = Y and dim(Z) = dim(W ).

Since diffeomorphisms are open in the space of all smooth maps, one can
extend ”small” isotopies, those which only slightly move Z, and since diffeomor-
phisms of Y make a group, the required isotopy is obtained as a composition of
small diffeomorphisms of Y . (The details are easy.)

Both ”open” and ”group” are crucial: for example, homotopies by locally
diffeomorphic maps, say of a disk B2 ⊂ S2 to S2 do not extend to S2 whenever a
map B2 → S2 starts overlapping itself. Also it is much harder (yet possible, [7],
[25]) to extend topological isotopies, since homeomorphisms are, by no means,
open in the space of all continuos maps.

For example if dim(Y ) ≥ 2dim(Z) + 2. then a generic smooth homotopy of
Z is an isotopy: Z does not, generically, cross itself as it moves in Y (unlike,
for example, a circle moving in the 3-space where self-crossings are stable un-
der small perturbations of homotopies). Hence, every generic homotopy of Z
exetends to a smooth isotopy of Y .

Mazur Construction Let U1, U2 be compact n-manifolds with boundaries and
f12 ∶ U1 → U2 and f21 ∶ U2 → U1 be embeddings which land in the interiors of
their respective target manifolds.

Let W1 and W2 be the unions (inductive limits) of the infinite increasing
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sequences of spaces

W1 = U1 ⊂f12 U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 ...

and
W2 = U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 U1 ⊂f12 ...

Observe that W1 and W2 are open manifolds without boundaries and that
they are diffeomorphic since dropping the first term in a sequence U1 ⊂ U2 ⊂
U3 ⊂ ... does not change the union.

Similarly, both manifolds are diffeomorphic to the unions of the sequences

W11 = U1 ⊂f11 U1 ⊂f11 ... and W22 = U2 ⊂f22 U2 ⊂f22...

for
f11 = f12 ○ f21 ∶ U1 → U1 and f22 = f21 ○ f12 ∶ U2 → U2

Next, we observe with the isotopy theorem, that if the self-embedding f11

is isotopic to the identity map, then W11 is diffeomorphic to the interior of U1

and the same applies to f22 (or any self-embedding for this matter).
Thus we conclude with the above, that, for example,
open normal (regular) neighbourhoods Uop1 and Uop2 of two homotopy equiv-

alent n-manifolds (and triangulated spaces in general) Z1 and Z2 in Rn+N ,
N ≥ n + 2, are diffeomorphic.

An everybody guess would be that the ”open” condition is a pure techni-
cality and everybody believed so untill Milnor’s !961 countersexample to the
Hauptvermutung – the main conjecture of the combinatorial topology.

Milnor has shown that there are two free isometric actions A1 and A2 of the
cyclic group Zp on the sphere S3, for every prime p ≥ 7, such that

the quotient (lens) spaces Z1 = S3/A1 and Z2 = S3/A2 are homotopy equiv-
alent, but their closed normal neighbourhoods U1 and U2 in any R3+N are not
diffeomorphic. (This could not have happened to simply connected manifolds
Zi by the h-cobordism theorem.)

Moreover,
the polyhedra P1 and P2 obtained by attaching the cones to the boundaries

of these manifolds admit no isomorphic simplicial subdivisions.
Yet, the interiors Uopi of these Ui , i = 1,2, are diffeomorphic for N ≥ 5. In

this case,
P1 and P2 are homeomorphic as the one point comactifications of two home-

omorphic spaces Uop1 and Uop2 .
It was previously known that these Z1 and Z2 are homotopy equivalent (J. H.

C. Whitehead, 1941); yet, they are combinatorially non-equivalent (Reidemeis-
ter, 1936) and, hence, by Moise’s 1951 positive solution of the the Hauptvermu-
tung for 3-manifolds, non-homeomorphic.

There are few direct truly geometric constructions of diffeomorphisms, but
those available, are extensively used, e.g. fiberwise linear diffeomorphisms of
vector bundles. Even the sheer existence of the humble homothety of Rn, x↦ tx,
combined with the isotopy theorem, effortlessly yields, for example, the following

[B→Y ]-Lemma. The space of embeddings f of the n-ball (or Rn) into an
arbitrary Y = Y n+k is homotopy equivalent to the space of tangent n-frames in
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Y ; in fact the differential f ↦Df ∣0 establishes a homotopy equiavlence between
the respective spaces.

For example,
the assignment f ↦ J(f)∣0 of the Jacobi matrix at 0 ∈ Bn is a homotopy

equivalence of the space of embeddings f ∶ B → Rn to the linear group GL(n).

Corollary: Ball Gluing Lemma. Let X1 and X2 be (n + 1)-dimensional
manifolds with boundaries Y1 and Y2, let B1 ⊂ Y1 be a smooth submanifold
diffeomorphic to the n-ball and let f ∶ B1 → B2 ⊂ Y2 = ∂(A2) be a diffeomrphism.

If the boundaries Yi of Xi are connected, the diffeomorphism class of the
(n + 1)-manifold X3 = X1 +f X2 obtained by attaching X1 to X2 by f and
(obviously canonically) smoothed at the ”corner” (or rather the ”crease”) along
the boundary of B1, does not depend on B1 and f .

ThisX3 is denotedX1#∂X2. For example, thus ”sum” of balls, Bn+1#∂B
n+1,

is again a smooth (n + 1)-ball.
Connected Sum. The boundary Y3 = ∂(X3) can be defined without any

reference to Xi ⊃ Yi, as follows. Glue the manifolds Y1 an Y2 by f ∶ B1 → B2 ⊂ Y2

and then remove the interiors of the balls B1 and of its f -image B2.
If the manifolds Yi (not necessarily anybody’s boundaries or even being

closed) are connected, then the resulting connected sum manifold is denoted
Y1#Y2.

Isn’t it a waste of glue? You may be wondering why to bother glueing the
interiors of the balls if you are going to remove them anyway. Wouldn’t it be
easier first to remove these interiors from both manifolds and then glue what
remains along the spheres Sn−1

i = ∂(Bi)?
This is easier but also it is also a wrong thing to do: the result may depend

on the diffeomorphism Sn−1
1 ↔ Sn−1

2 , as it happens for Y1 = Y2 = S7 in Milnor’s
example; but the connected sum defined with balls is unique by the [B→Y ]-
lemma.

Similarly to gluing along balls, the diffeomorphism class of X1 +f X2 for an
f , defined on an n-submanifold C1 ⊂ X1 which is homotopy equivalent to a
space of dimension ≤ n

2
− 1, depends only on the homotopy class of f ∶ C → X2;

yet, Milnor’s exotic spheres show that you can not replace balls by anything you
like.

The ball gluing operation may be used many times in succession; thus, for
example, one builds ”big (n + 1)balls” from smaller ones, where this lemma in
lower dimension may be used for ensuring the ball property of the gluing sites.

All of the above is rather obvious and equally apply to all dimensions. Here
is a more interesting construction due to Haefliger (1961) and routed in the
Whitney Lemma of 1944.

Let Y be a smooth n-manifold and X ′,X ′′ ⊂ Y be smooth closed submani-
folds in general position. Denote Σ0 =X ′ ∩X ′′ ⊂ Y and let X be the (abstract)
disjoint union of X ′ and X ′′. (If X ′ and X ′′ are connected equividimensional
manifolds, one could say that X is a smooth manifold with its two ”connected
components” X ′ and X ′′ being embedded into Y .)

Clearly,

dim(Σ0) = n− k′ − k′′ for n = dim(Y ), n− k′ = dim(X ′) and n− k′′ = dim(X ′′).
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Let ft ∶ X → Y , t ∈ [0,1], be a smooth generic homotopy which disengages
X ′ from X ′′, i.e. f1(X ′) does not intersect f1(X ′′), and let

Σ̃ = {(x′, x′′, t)}ft(x′)=ft(x′′) ⊂X
′ ×X ′′ × [0,1],

i.e. Σ̃ consists of the triples (x′, x′′, t) for which ft(x′) = ft(x′′).
Let Σ ⊂ X ′ ∪X ′′ be the union S′ ∪ S′′, where S′ ⊂ X ′ equals the projection

of Σ̃ to the X ′-factor of X ′ ×X ′′ × [0,1] and S′′ ⊂ X ′′ is the projection of Σ̃ to
X ′′.

Thus, there is a correspondence x′ ↔ x′′ between the points in Σ = S′ ∪ S′′,
where the two points correspond one to another if x′ ∈ S′ meets x′′ ∈ S′′ at some
moment t∗ in the course of the homotopy, i.e.

ft∗(x′) = ft∗(x′′) for some t∗ ∈ [0,1].

Finally, let W ⊂ Y be the union of the ft-paths, denoted [x′ ∗t x′′] ⊂ Y ,
travelled by the points x′ ∈ S′ ⊂ Σ and x′′ ∈ S′′ ⊂ Σ until they meet at some
moment t∗. In other words, [x′ ∗t x′′] ⊂ Y consists of the union of the points
ft(x′) and ft(x′′) over t ∈ [0, t∗ = t∗(x′) = t∗(x′′)] and

W = ⋃
x′∈S′

[x′ ∗t x′′] = ⋃
x′′∈S′′

[x′ ∗t x′′].

Clearly,

dim(Σ) = dim(Σ0)+1 = n−k′−k′′+1 and dim(W ) = dim(Σ)+1 = n−k′−k′′+2.

To grasp the picture look at X consisting of a round 2-sphere X ′ (where
k′ = 1) and a round circle X ′′ (where k′′ = 2) in the Euclidean 3-space Y , where
X and X ′ intersect at two points x1, x2 – our Σ0 = {x1, x2} in this case.

When X ′ an X ′′ move away one from the other by parallel translations
in the opposite directions, their intersection points sweep W which equals the
intersection of the 3-ball bounded by X ′ and the flat 2-disc spanned by X ′′.
The boundary Σ of this W consists of two arks S′ ⊂X ′ and S′′ ⊂X ′′, where S′

joins x1 with x2 in X ′ and S′′ join x1 with x2 in X ′′.
Back to the general case, we wantW to be, generically, a smooth submanifold

without double points as well as without any other singularities, except for the
unavoidable corner in its boundary Σ, where S′ meet S′′ along Σ0. We need for
this

2dim(W ) = 2(n − k′ − k′′ + 2) < n = dim(Y ) i.e. 2k′ + 2k′′ > n + 4.

Also, we want to avoid an intersection of W with X ′ and with X ′′ away from
Σ = ∂(W ). If we agree that k′′ ≥ k′, this, generically, needs

dim(W ) + dim(X) = (n − k′ − k′′ + 2) + (n − k′) < n i.e. 2k′ + k′′ > n + 2.

These inequalities imply that k′ ≥ k ≥ 3, and the lowest dimension where they
are meaningful is the the first Whitney case: dim(Y ) = n = 6 and k′ = k′′ = 3.

Accordingly, W is called Whitney’s disk, although it may be non-homeomorphic
to B2 with the present definition of W (due to Haefliger) of W .
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Haefliger Lemma (Whitney for k + k′ = n). Let the dimensions n − k′ =
dim(X ′) and n−k′′ = dim(X ′′), where k′′ ≥ k′, of two submanifolds X ′ and X ′′

in the ambient n-manifold Y satisfy 2k′ + k′′ > n + 2.
Then every homotopy ft of (the disjoint union of) X ′ and X ′′ in Y which

disengages X ′ from X ′′, can be replaced by a disengaging homotopy fnewt which
is an isotopy, on both manifolds, i.e. fnewt (X ′) and fnew(X ′′) reman smooth
without self intersection points in Y for all t ∈ [0,1] and fnew1 (X ′) does not
intersect fnew1 (X ′′).

Proof. Assume ft is smooth generic and take a small neighbourhood U3ε ⊂ Y
of W . By genericity, this ft is an isotopy of X ′ as well as of X ′′ within U3ε ⊂ Y :
the intersections of ft(X ′) and ft(X ′′) with U3ε, call them X ′

3ε(t) and X ′′
3ε(t)

are smooth submanifolds in U3ε for all t, which, moreover, do not intersect away
from W ⊂ U3ε.

Hence, by the Thom isotopy theorem, there exists an isotopy Ft of Y ∖ Uε
which equals ft on U2ε ∖Uε and which is constant in t on Y ∖U3ε.

Since ft and Ft within U3ε are equal on the overlap U2ε∖Uε of their definition
domains, they make together a homotopy of X ′ and X ′′ which, obviuoulsy,
satisfies our requirements.

There are several immedaite generalizations/applications of this theorem.
(1) One may allow self-intersections Σ0 within connected components of X,

where the necessary homotopy condiition for removing Σ0 (which was expressed
with the disengaging ft in the present case) is formulated in terms of maps
f̃ ∶X ×X → Y ×Y commuting with the involutions (x1, x2)↔ (x2, x1) in X ×X
and (y1, y2) ↔ (y2, y1) in Y × Y and having the pullbacks f̃−1(Ydiag) of the
diagonal Ydiag ⊂ Y × Y equal Xdiag ⊂X ×X, [20].

(2) One can apply all of the above to p parametric families of maps X → Y ,
by paying the price of the extra p in the excess of dim(Y ) over dim(X), [20].

If p = 1, this yield an isotopy classifiaction of embeddings X → Y for 3k > n+3
by homotopies of the above symmetric maps X ×X → Y ×Y , which shows, for
example, that there are no knots for these dimensions (Haefliger, 1961).

if 3k > n + 3, then every smooth embedding Sn−k → Rn is smoothly isotopic
to the standard Sn−k ⊂ Rn.

But if 3k = n + 3 and k = 2l + 1 is odd then there are
infinitely many isotopy of classes of embeddings S4l−1 → R6l, (Haefliger

1962).
Non-triviality of such a knot S4l−1 → R6l is detected by showing that a

map f0 ∶ B4l → R6l × R+ extending S4l−1 = ∂(B4l) can not be turned into an
embedding, keeping it transversal to R6l = R6l × 0 and with its boundary equal
our knot S4l−1 ⊂ R6l.

The Whitney-Haefliger W for f0 has dimension 6l + 1 − 2(2l + 1) + 2 = 2l + 1
and, generically, it transversally intersects B4l at several points.

The resulting (properly defined) intersection index of W with B is non-zero
(otherwise one could eliminate these points by Whitney) and it does not depend
on f0. In fact, it equals the linking invariant of Haefliger.

(3) In view of the above, one must be careful if one wants to relax the dimen-
sion constrain by an inductive application of the Whitney-Haefliger disengag-
ing procedure, since obstructions/invariants for removal ”higher” intersections
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which come on the way may be not so apparent.
But this is possible, at least on the Q-level, where one has a comprehensive

algebraic control of self-intersections of all multiplicities for maps of codimension
k ≥ 3 and where he answers are the simplest in the combinatorial category. For
example,

there is no combinatorial knots of codimension k ≥ 3 ( Zeeman, 1963).
The essential mechanism of knotting X = Xn ⊂ Y = Y n+2 depends on the

fundamental group Γ of the complement U = Y ⊂ X. The group Γ may look
a nuisance when you want to untangle a knot, especially a surface X2 in a
4-manifold, but these Γ = Γ(X) for various X ⊂ Y form beautifully intricate
patterns which are poorly understood.

For example, the groups Γ = π1(U) capture the étale cohomology of algebraic
manifolds and the Novikov-Pontryagin classes of topological manifolds (see sec-
tion 9). Possibly, the groups Γ(X2) for surfaces X2 ⊂ Y 4 have much to tell
about the smooth topology of 4-manifolds.

There are few systematic ways of constructing ”simple” X ⊂ Y , e.g. im-
mersed submanifolds, with ”interesting” (e.g. far from being free) fundamental
groups of their complements.

Offhand suggestions are pullbacks of divisors X0 in complex algebraic man-
ifolds Y0 under generic maps Y → Y0 and immersed subvarieties Xn in cubi-
cally subdivided Y n+2, where Xn are made of n-sub-cubes ◻n inside the cubes
◻n+2 ⊂ Y n+2 and where these interior ◻n ⊂ ◻n+2 are parallel to the n-faces of
◻n+2.

It remains equally unclear what is the possible topology of self-intersections
of immersions Xn → Y n+2, say for S3 → S5, where the self-intersection makes a
link in S3, and for S4 → S6 where this is an immersed surface in S4.

(4) One can control the position of the image of fnew(X) ⊂ Y , e.g. by
making it to land in a given open subset W0 ⊂ W , if there is no homotopy
obstruction to this.

The above generalizes and simplifies in the combinatorial or ”piecewise
smooth” category, e.g. for ”unknotting spheres”, where the basic construction
is as follows

Engulfing. Let X be a piecewise smooth polyhedron in a smooth manifold
Y .

If n − k = dim(X) ≤ dim(Y ) − 3 and if πi(Y ) = 0 for i = 1, ...dim(Y ), then
there exists a smooth isotopy Ft of Y which eventually (for t = 1) moves X to a
given (small) neighbourhood B○ of a point in Y .

Sketch of the Proof. Start with a generic ft. This ft does the job away from
a certain W which has dim(W ) ≤ n− 2k + 2. This is < dim(X) under the above
assumption and the proof proceeds by induction on dim(X).

This is called ”engulfing” since B○, when moved by the time reversed isotopy,
engulfs X; engulfing was invented by Stallings in his approach to the Poincare
Conjecture in the combinatorial category, which goes, roughly, as follows.

Let Y be a smooth n-manifold. Then, with a simple use of two mutually
dual smooth triangilations of Y , one can decompose Y , for each i, into the
union of regular neighbourhoods U1 and U2 of smooth subpolyhedra X1 and X2

in Y of dimensions i and n − i − 1 (similarly to the handle body decomposition
of a 3-manifold into the union of two thickened graphs in it), where, recall, a
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neighbourhood U of an X ⊂ Y is regular if there exists an isotopy ft ∶ U → U
which brings all of U arbitrarily close to X.

Now let Y be a homotopy sphere of dimension n ≥ 7, say n = 7, and let
i = 3 Then X1 and X2, and hence U1 and U2, can be engulfed by (diffeomorphic
imags of) balls, say by B1 ⊃ U1 and B2 ⊃ U2 with their centers denoted 01 ∈ B1

and 02 ∈ B2.
By moving the 6-sphere ∂(B1) ⊂ B2 by the radial isotopy in B2 toward 02,

one represents Y ∖02 by the union of an increasing sequence of isotopic copies of
the ball B1. This implies (with the isotopy theorem) that Y ∖02 is diffeomorphic
to R7, hence, Y is homeomorphic to S7.

(A refined generalization of this argument delivers the Poincare conjecture
in the combinatorial and topological categories for n ≥ 5. See [47] for an account
of techniques for proving various ”Poincare conjectures” and for references to
the source papers.)

8 Handles and h-Cobordosms.

The original approach of Smale to the Poincare conjecture depends on han-
dle decompositions of manifolds – counterparts to cell decompositions in the
homotopy theory.

Such decompositions are more flexible, and by far more abundant than tri-
angualtions and they are better suited for a match with algebraic objects such
as homology. For example, one can sometimes realize a basis in homology by
suitably chosen cells or handles which is not even possible to formulate properly
for triangulations.

Recall that an i-handle of dimension n is the ball Bn decomposed into the
product Bn = Bi ×Bn−i(ε) where one think of such a handle as an ε-thickening
of the unit i-ball and where

A(ε) = Si ×Bn−1(ε) ⊂ Sn−1 = ∂Bn

is seen as an ε-neighbourhood of its axial (i− 1)-sphere Si−1 × 0 – an equatotial
i-sphere in Sn−1.

If X is an n-manifold with boundary Y and f ∶ A(ε) → Y a smooth em-
bedding, one can attach Bn to X by f and the resulting manifold (with the
”corner” along ∂A(ε) made smooth) is denoted X +f Bn or X +Si−1 Bn, where
the latter subscript refers to the f -image of the axial sphere in Y .

The effect of this on the boundary, i.e. modification

∂(X) = Y ↝f Y ′ = ∂(X +Si−1 Bn)

does not depend on X but only on Y and f . It is called an i-surgery of Y at
the sphere f(Si−1 × 0) ⊂ Y .

The manifold X = Y × [0,1] +Si−1 Bn, where Bn is attached to Y × 1, makes
a bordism between Y = Y ×0 and Y ′ which equals the surgically modified Y ×1-
component of the boundary of X. If the manifold Y is oriented, so is X, unless
i = 1 and the two ends of the 1-handle B1 ×Bn−1(ε) are attached to the same
connected componet of Y with opposite orientations.

When we attach an i-handle to an X along a zero-homologous sphere Si−1 ⊂
Y , we create a new i-cycle in X+Si−1Bn; when we attach an (i+1)-handle along
an i-sphere in X which is non-homologous to zero, we ”kill” an i-cycle.
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These creations/annihilations of homology may cancel each other and a han-
dle decomposition of anX may have by far more handles (balls) than the number
of independent homology classes in H∗(X).

Smale’s argument proceeds in two steps.
(1) The overall algebraic cancelation is decomposed into ”elementary steps”

by ”reshaffling” handles (in spirit of Whitehead’s theory of the simple homotopy
type);

(2) each elementary step is implemented geometrically as in the example
below (which does not elucidates the case n = 6).

Cancelling a 3-handle by a 4-handle. Let X = S3 ×B4(ε0) and let us attach
the 4-handle B7 = B4 ×B3(ε), ε << ε0, to the (normal) ε-neigbourhood A∼ of
some sphere

S3
∼ ⊂ Y = ∂(X) = S3 × S3(ε0) for S3(ε0) = ∂B4(ε0).

by some diffeomorphism of A(ε) ⊂ ∂(B7) onto A∼.
If S3

∼ = S3 × b0, b0 ∈ S3(ε0), is the standard sphere, then the resulting X∼ =
X +S3

∼

B7 is obviously diffeomorphic to B7: adding S3 ×B4(ε0) to B7 amounts
to ”bulging” the ball B7 over the ε-neighbourhood A(ε) of the axial 3-sphere
on its boundary.

Another way to see it is by observing that this addition of S3 × B4(ε0) to
B7 can be decomposed into gluing two balls in succession to B7 as follows.

Take a ball B3(δ) ⊂ S3 around some point s0 ∈ S3 and decompose X =
S3 ×B4(ε0) into the union of two balls that are

B7
δ = B3(δ) ×B4(ε0)

and
B7

1−δ = B3(1 − δ) ×B4(ε0) for B3(1 − δ) =def S3 ∖B3(δ).

Clearly, the attachment loci of B7
1−δ to X and of B7

δ to X +B7
1−δ are diffeo-

morphic (after smoothing the corners) to the 6-ball.
Let us modify the sphere S3 × b0 ⊂ S3 × B4(ε0) = ∂(X) by replacing the

original standard embedding of the 3-ball

B3(1 − δ)→ B7
1−δ = B3(1 − δ) × S3(ε0) ⊂ ∂(X)

by another one, say,

f∼ ∶ B3(1 − δ)→ B7
1−δ = B3(1 − δ) × S3(ε0) = ∂(X),

such that f∼ equals the original embedding near the boundary of ∂(B3(1−δ)) =
∂(B3(δ)) = S2(δ).

Then the same ”ball after ball” argument applies, since the first gluing site
where B7

1−δ is being attached to X, albeit ”wiggled”, remains diffeomorphic to
B6 by the isotopy theorem, while the second one does not change at all. So we
conclude:

whenever S3
∼ ⊂ S3 × S3(ε0) transversally intersect s0 × S3(ε0), s0 ∈ S3, at a

single point, the manifold X∼ =X +S3
∼

B7 is diffeomorphic to B7.
This shows, for instance, that a Milnor’s Σ7 (section 6) minus a small ball

is diffeomorphic to B7 if e = ±1.
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Finally, by Whitney’s lemma, every embedding S3 → S3 × S3(ε0) ⊂ S3 ×
B4(ε0) which is homologous in S3×B4(ε0) to the standard S3×b0 ⊂ S3×B4(ε0),
can be isotoped to another one which meets s0×S3(ε0) transversally at a single
point. Hence,

the handles do cancel one another: if a sphere

S3
∼ ⊂ S3 × S3(ε0) = ∂(X) ⊂X = S3 ×B4(ε0),

is homologous in X to

S3 × b0 ⊂X = S3 ×B4(ε0), b0 ∈ B4(ε),

then the manifold X +S3
∼

B7 is diffeomorhic to the 7-ball.
The handles shaffling/cancellation techniques do not solve the existence

problem for diffeomorphisms Y ↔ Y ′ but rather reduce it to the existense of
h-cobordisms between manifolds, where a compact manifold X with two bound-
ary components Y and Y ′ is called an h-cobordism (between Y and Y ′) if the
inclusion Y ⊂X is a homotopy equivalence.

Smale h-Cobordism Theorem. If an h-cobordism has dim(X) ≥ 6 and
π1(X) = 1 then X is diffeomorphic to Y × [0,1], by a diffeomorphism keeping
Y = Y × 0 ⊂ X fixed. In particular, h-cobordant simply connected manifolds of
dimensions ≥ 5 are diffeomorphic.

Notice that the Poncare conjecture for the homotopy spheres Σn, n ≥ 6,
follows by applying this to Σn minus two small open balls, while the case m = 1
is solved by Smale with a construction of an h-cobordism between Σ5 and S5.

Also Smale’s handle techniques deliver the following geometric version of the
Poincare connectedness/contractibilty correspondence (see section 4).

Let X be a closed n-manifold, n ≥ 5, with πi(X) = 0, i = 1, ..., k. Then X
contains a (n − k − 1)-dimensional smooth sub-polyhedron P ⊂ X, such that the
complement of the open regular neighbourhood Uε(P ) ⊂X of P is diffeomorphic
to the n-ball, (where the boundary ∂(Uε) is the (n − 1)-sphere ”ε-collapsed”
onto P = Pn−k−1).

If n = 5 and if the normal bundle of X embedded into some R5+N is trivial,
i.e. if the normal Gauss map of X to the Grassmanian Gr(R5+N) is contractible,
then Smale proves, assuming π1(X) = 1, that

one can choose P = P 3 ⊂X =X5 that equals the union of a smooth topolog-
ical segment s = [0,1] ⊂X and several spheres S2

i and S3
i , where each S3

i meets
s at one point, and also transversally intersects S2

i at a single point and where
there are no other intersections between s, S2

i and S3
i .

In other words,
(Smale 1965) X is diffeomorphic to the connected sum of several copies of

S2 × S3.

The triviality of the bundle in this theorem is needed to ensure that all
embedded 2-sheres in X have trivial normal bundles, i.e. their normal neigh-
bouthoods split into S2 ×R3 which comes handy when you play with handles.

If one drops this triviality condition, one has
Classifiaction of Simply Connected 5-Manifolds. (Barden 1966) There

is a finite list of explicitly constructed 5-manifolds Xi, such that every closed
simply connected manifold X is diffeomorphic to the connected sum of Xi.
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This is possible, in view of the above Smale theorem, since all simply con-
nected 5-manifolds X have ”almost trivial” normal bundles e.g. their only
possible Pontryagin class p1 ∈ H4(X) is zero. Indeed π1(X) = 1 implies that
H1(X) = π1(X)/[π1(X), π1(X)] = 0 and then H4(X) = H1(X) = 0 by the
Poincare duality.

When you encounter bordisms, the generecity sling launches you to the
stratosphere of algebraic topology so fast that you barely discern the geometric
string attached to it.

Smale’s cells and handles, on the contrary, feel like slippery amebas which
merge and disengage as they reptate in the swamp of unruly geometry, where
n-dimensional cells continuously collapse to lower dimensional ones and keep
squeezing through paper-thin crevices. Yet, their motion is governed, for all we
know, by the rules dictated by some algebraic K-theory (theories?)

This motion hardly can be controlled by any traditional geometric flow. First
of all, the ”simply connected” condition can not be encoded in geometry ([34],
[15] [35] and also breaking the symmetry by dividing a manifold into handles
along with ”genericity” poorly fare in geometry.

Yet, some generalized ”Ricci flow with partial collapse and surgeries” in the
”space of (generic, random?) amebas” might split away whatever it fails to
untangle and bring fresh geometry into the picture.

9 Manifolds under Surgery.

The Atyiah-Thom construction and Serre’s theory allows one to produce ”ar-
bitararily large” manifolds X for the m-domination X1 ≻m X2, m > 0, meaning
that there is a map f ∶X1 →X2 of degree m.

Every such f between closed connected oriented manifolds induces a sur-
jective homomomorphisms f∗i ∶ Hi(X1; Q) → Hi(X1; Q) for all i = 0,1, ..., n,
or equivalently, an injective cohomology homomorphism f∗i ∶ Hi(X2; Q) →
Hi(X2; Q).

Indeed, by the Poincare Q-duality, the cup-product pairing Hi(X2; Q) ⊗
Hn−i(X2; Q) → Q = Hn(X2; Q) is faithful; therefore, if f∗i vanishes, then so
does f∗n. But the latter amounts to multiplication by m = deg(f),

Hn(X2; Q) = Q→⋅d Q =Hn(X1; Q).

If m = 1, then (by the full cohomological Poincare duality) the above remains
true for all coefficient fields F; moreover, the induced homomorphism πi(X1)→
πi(X2) is surjective as it is seen by looking at the lift of f ∶ X1 → X2 to the
induced map from the covering X̃1 → X1 induced by the universal covering
X̃2 →X2 to X̃2. (A map of degree m > 1 sends π1(X1) to a subgroup in π1(X2)
of a finite index dividing m.)

Let us construct manifolds starting from pseudo-manifolds, where a compact
oriented n-dimensional pseudo-manifold is a triangulated n-space X0, such that

● every simplex of dimension < n in X0 lies in the boundary of an n-simplex,
● The complement to the union of the (n−2)-simplices in X0 is an orieneted

manifold.
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Pseudo-manifolds are infinitely easier to construct and to recognize than
manifolds: essentially, these are simplicial complexes with exactly two n-simplices
adjacent to every (n − 1)-simplex.

There is no comparably simple characteriziation of triangulated n-manifolds
X where the links Ln−i−1 = L∆i ⊂ X of the i-simplices must be topological
(n− i− 1)-spheres. But even deciding if π1(Ln−i−1) = 1 is an unsolvable problem
except for a couple of low dimensions.

Acoordingly, it is very hard to produce manifolds by combinatorial con-
structions; yet, one can ”dominate” any pesudo-manifold by a manifold, where,
observe, the notion of degree perfectly applies to oriented pseudo-manifolds.

Let X0 be a connected oriented n-pseudomanifold. Then there exists a smooth
closed connected oriented manifold X and a continuous map f ∶ X → X0 of
degree m > 0.

Moreover, given an oriented RN -bundle V0 → X0, N ≥ 1, one can find an
m-dominating X, which also admits a smooth embedding X ⊂ Rn+N , such that
our f ∶X →X0 of degree m > 0 induces the normal bundle of X from V0.

Proof. Since that the first N − 1 homotopy groups of the Thom space of
V● of V0 vanish (see section 5), Serre’s m-sphericity theorem delivers a map
f● ∶ Sn+N → V● a non-zero degree m, provided N > n. Then the ”generic
pullback” X of X0 ⊂ V0 (see section 3) does the job as it was done in section 5
for Thom’s bordisms.

In general, if 1 ≤ N ≤ n, the m-sphericity of the fundamental class [V●] ∈
Hn+N(V●) is proven with the Sullivan’s minimal models – the ultimate algebraic
embodiment of the Q-homotopy theory (see theorem 24.5 in [12]).

Surgery and the Browder-Novikov Theorem (1962 [6],[36]). Let X0 be a
smooth closed simply connected oriented n-manifold, n ≥ 5, and V0 → X0 be a
stable vector bundle where ”stable” means that N = rank(V ) >> n. We want to
modify the smooth structure of X0 keeping its homotopy type unchanged but
with its original normal bundle in Rn+N replaced by V0.

There is an obvious algebraic-topological obstruction to this highlighted by
Atiyah in [1] which we call [V●]-sphericity and which means that there exists
a degree one, map f● of Sn+N to the Thom space V● of V0, i.e. f● sends the
generator [Sn+N ] ∈ Hn+N(Sn+N) = Z (for some orientation of the sphere Sn+N

to the fundamental class of the Thom space, [V● ∈ Hn+N(V●) = Z, which is
distinguished by the orientation in X. (One has to be pedantic with orientations
to keep track of possible/impossible algebraic cancellations.)

However, this obstruction is ”Q-nonessential”, [1] : the set of the vector
bundles admitting such an f● constitutes a coset of a subgroup of finite index
in Atiyah’s (reduced) K-group by Serre’s finiteness theorem.

Recall that K(X) is the Abelian group formally generated by the isomor-
phism classes of vector bundles V over X, where [V1] + [V2] =def 0 whenever
the Whitney sum V1 ⊕ V2 is isomorphic to a trivial bundle.

The Whitney sum of an Rn1-bundle V1 →X with an Rn2 -bundle V2 →X, is
the Rn1+n2-bundle over X. which equals the fiber-wise Caresian product of the
two bundles.

For example the Whitney sum of the tangent bundle of a smooth submanifold
Xn ⊂ Wn+N and of its normal bundle in W equals the tangent bundle of W
restricted to X. Thus, it is trivial for W = Rn+N , i.e. it isomorphic to Rn+N ×
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X →X, since the tangent bundle of Rn+N is, obviously, trivial.

Granted an f● ∶ Sn+N → V● of degree 1, we take the ”generic pullback” X of
X0,

X ⊂ Rn+N ⊂ Rn+N● = Sn+N ,

and denote by f ∶ X → X0 the restriction of f● to X, where, recall, f induces
the normal bundle of X from V0. .

The map f ∶ X1 → X0, which is clearly onto, is far from being injective – it
may have uncontrollably complicated folds. In fact, it is not even a homotopy
equivalence – the homology homomorphism induced by f

f∗i ∶Hi(X1)→Hi(X0),

is, as we know, surjective and it may (and usually does) have non-trivial kernels
keri ⊂Hi(X1). However, these kernels can be ”killed” by a ”surgical implemen-
tation” of the obstruction theory as follows.

Assume keri = 0 for i = 0,1, ..., k − 1, invoke Hurewicz’ theorem and realize
the cycles in kerk by k-spheres mapped to X1, where, observe, the f -mages of
these spheres are contractible in X0 by a relative version of the (elementary)
Hurewicz theorem.

Furthermore, if k < n/2, then these spheres Sk ⊂X1 are generically embedded
(no self-intersections) and have trivial normal bundles in X1, since, essentially,
they come from V → X1 via contractible maps. Thus, small neighbourhoods
(ε-annuli) A = Aε of these spheres in X1 split: A = Sk ×Bn−kε ⊂X1.

It follows, that the corresponding sperical cycles can be killed by (k + 1)-
surgery (where X1 now plays the role of Y in the definition of the surgery);
moreover, it is not hard to arrange a map of the resulting manifold to X0 with
the same properties as f .

If n = dim(X0) is odd, this works up to k = (n − 1)/2 and makes all keri,
including i > k, equal zero by the Poincare duality.

Since
a continuous map between simply connected spaces which induces an isomor-

phism on homology is a homotopy equivalence by the (elementary) Whitehead
theorem,

the resulting manifold X is a homotopy equivalent to X0 via our surgically
modified map f , call it fsrg ∶X →X0.

Besides, by the construction of fsrg, this map induces the normal bundle of
X from V →X0. Thus we conclude,

the Atiyah [V●]-sphericity is the only condition for realizing a stable vector
bundle V0 →X0 by the normal bundle of a smooth manifold X in the homotopy
class of a given odd dimensional simply connected manifold X0.

If n is even, we need to kill k-spheres for k = n/2, where an extra obstruction
arises. For example, if k is even, the surgery does not change the signature;
therefore, the Pontryagin classes of the bundle V must satisfy the Rokhlin-
Thom-Hirzebruch formula to start with.

(There is an additional constrain for the tangent bundle T (X) – the equality
between the Euler characteristic χ(X) = ∑i=0,...,n(−1)irankQ(Hi(X)) and the
Euler number e(T (X)) that is the self-intersection index of X ⊂ T (X).)
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On the other hand the equality L(V )[X0] = sig(X0) (obviously) implies that
sig(X) = sig(X0). It follows that

the intersection form on kerk ⊂Hk(X) has zero signature,
since all h ∈ kerk has zero intersection indices with the pullbacks of k-cycles from
X0.

Then, assuming keri = 0 for i < k and n ≠ 4, one can use Whitney’s lemma
and realize a basis in kerk ⊂ Hk(X1) by 2m embedded spheres Sk2j−1, S

k
2j ⊂ X1,

i = 1, ...m, which have zero self-intersection indices, one point crossings between
Sk2j−1 and Sk2j and no other intersections between these spheres.

Since the spheres Sk ⊂X with [Sk] ∈ kerk have trivial stable normal bundles
U⊥ (i.e. their Whitney sums with trivial 1-bundles, U⊥ ⊕ R, are trivial), the
normal bundle U⊥ = U⊥(Sk) of such a sphere Sk is trivial if and only if the
Euler numbere(U⊥) vanishes (this is easy) where e(U⊥(Sk)) is conveniently
equals the self-intersection index of Sk in X. (e(U⊥(Sk)) equals, by definition,
the self-intersecion of Sk ⊂ U⊥(Sk) which is the same as the self-intersection of
this sphere in X.)

Then it easy to see that the (k + 1)-surgeries applied to the spheres Sk2j ,
j = 1, ...,m, kill all of kerk and make X →X0 a homotopy equivalence.

There several points to check (and to correct) in the above argument, but ev-
erything fits amazingly well in the lap of the linear algebra (with a few subtleties
for odd k).

Notice, that our starting X0 does not need to be a manifold, but rather a
Poincare (Browder) n-space, i.e. a finite cell complex satisfying the Poincare
duality: Hi(X0,F) = Hn−i(X0,F) for all coefficient fields (and rings) F, where
these ”equalities” must be coherent in an obvious sense for different F.

Also, besides the existence of smooth n-manifolds X, the above surgery ar-
gument applied to a bordism Y between homotopy equivalent manifolds X1

and X2 under suitable conditions on the normal bundle of Y , delievers an h-
cobordism. This with the h-cobordism theorem, leads to an algebraic classifi-
cation of smooth structures on simply connected manifolds of dimension n ≥ 5.
(see [36]).

Then the Serre finiteness theorem implies that
there are at most finitely many smooth closed simply connected n-manifolds

X in a given a homotopy class and with given Pontryagin classes pk ∈H4k(X).
Summimg up, the question ”What are manifolds?” has the following
1962 Answer. Smooth closed simply connected n-manifolds for n ≥ 5, up to

a ”finite correction term”, are ”just” simply connected Poincare n-spaces X with
distinguished cohomology classes pi ∈ H4i(X), such that Lk(pi)[X] = sig(X) if
n = 4k.

This is a fantastic answer to the ”manifold problem” undreamed of 10 years
earlier. Yet,

● Poincare spaces are not classifiable. Even the candidates for the cohomol-
ogy rings are not classifiable over Q.

Are there special ”interesting” classes of manifolds and/or coarser than
diff classifications? (Something mediating between bordisms and h-cobordisms
maybe?)

● The π1 = 1 is very restrictive. The surgery theory extends to manifolds
with an arbitrary fundamental group Γ and, modulo the Novikov conjecture – a
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non-simply connected counterpart to the relation Lk(pi)[X] = sig(X) (see next
section) – delivers a comparably exhaustive answer in terms of the ”Poincare
complexes over (the group ring of) Γ” (see [58]).

But this does not tells you much about ”topologically interesting” Γ, e.g.
fundamental groups of n-manifold X with the universal covering Rn (see [8] [9]
about it).

10 Elliptic Wings and Parabolic Flows.

The geometric texture in the topology we have seen so far was all on the side of
the ”entropy”; topologists were finding gentle routes in the rugged landscape of
all possibilities, you do not have to sweat climbing up steep energy gradients on
these routs. And there was no essential new analysis in this texture for about
50 years since Poincare.

Analysis came back with a bang in 1963 when Atiyah and Singer discovered
the index theorem.

The underlying idea is simple: the ”difference” between dimensions of two
spaces, say Φ and Ψ, can be defined and be finite even if the spaces themselves
are infinite dimensional, provided the spaces come with a linear (sometimes
non-linear) Freholm operator D ∶ Φ→ Ψ . This means, there exists an operator
E ∶ Ψ → Φ such that (1 −D ○E) ∶ Ψ → Ψ and (1 −E ○D) ∶ Φ → Φ are compact
operators. (In the non-linear case, the definition(s) is local and more elaborate.)

If D is Fredholm, then the spaces ker(D) and coker(D) = Ψ/D(Φ) are
finite dimensional and the index ind(D) = dim(ker(D)) − dim(coker(D)) is
(by a simple argument) is a homotopy invariant of D in the space of Fredholm
operators.

If, and this is a ”big IF”, you can associate such a D to a geometric or
topological object X, this index will serve as an invariant of X.

It was known since long that elliptic differential operators, e.g. the ordinary
Laplace operator, are Fredholm under suitable (boundary) conditions but most
of these ”natural” operators are self-adjoint and always have zero indices: they
are of no use in topology.

”Interesting” elliptic differential operators D are scares: the ellipticity con-
dition is a tricky inequality (or, rather, non-equality) between the coefficients
of D. In fact, all such (linear) operators currently in use descend from a single
one: the Atiyah-Singer-Dirac operator on spinors.

Atiyah and Singer have computed the indices of their geometric operators in
terms of traditional topological invariants, and thus discovered new properties
of the latter.

For example, they expressed the signature of a closed smooth Riemannian
manifold X as an index of such an operator Dsig acting on differential forms on
X. Since the parametrix operator E for an elliptic operator D can be obtained
by piecing together local parametrices, the very existence of Dsig implies the
multiplicativity of the signature.

The elliptic theory of Atiyah and Singer and their many followers, unlike the
classical theory of PDE, is functorial in nature as it deals with many intercon-
nected operators at the same time in coherent manner.

Thus smooth structures on potential manifolds (Poincare complexes) define
a functor from the homotopy category to the category of ”Fredholm diagrams”
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(e.g. operators – one arrow diagrams); one is tempted to forget manifolds and
study such functors per se. For example, a closed smooth manifold represents
a homology class in Atiyah’s K-theory – the index of Dsig, twisted with vector
bundles over X with connections in them.

Interestingly enough, one of the first topological applications of the index
theory, which equally applies to all dimensions be they big or small, was the
solution (Massey, 1969) of the Whitney 4D-conjecture of 1941 which, in a sim-
plified form, says the following.

The number N(Y ) of possible normal bundles of a closed connected non-
orientable surface Y embedded into the Euclidean space R4 equals ∣χ(Y )−1∣+1,
where χ denotes the Euler characteristic.Equivalently, there are ∣χ(Y ) − 1∣ = 1
possible homeomorphisms types of small normal neighbourhoods of Y in R4.

If Y is an orienetable surface then N(Y ) = 1, since a small neigbourhood of
such a Y ⊂ R4 is homeomorphic to Y ×R2 by an elementary argument.

If Y is non-orienatble, Whitney has shown that N(Y ) ≥ ∣χ(Y ) − 1∣ + 1 by
constructing N = ∣χ(Y )−1∣+1 embeddings of each Y to R4 with different normal
bundles and then conjectured that one could not do better.

Outline of Massey’s Proof. Take the (unique in this case) ramified double
covering X of S4 ⊃ R4 ⊃ Y branched at Y with the natural involution I ∶X →X.
Express the signature of I, that is the quadratic form on H2(X) defined by the
intersection of cycles C and I(C) in X, in terms of the Euler number e⊥ of
the normal bundle of Y ⊂ R4 as sig = e⊥/2 (with suitable orientation and sign
conventions) by applying the Atiyah-Singer equivariant signature theorem. Show
that rank(H2(X)) = 2−χ(Y ) and thus establish the bound ∣e⊥/2∣ ≤ 2−χ(Y ) in
the agreement with Whitney’s conjecture.

(The experience of the high dimensional topology would suggest thatN(Y ) =
∞. Now-a-days, multiple constrains on topology of embeddings of surfaces into
4-manifolds are derived with Donaldson’s theory.)

Non-simply Connected Analytic Geometry. The Browder-Novikov theory
implies that, besides the Euler-Poincare formula, there is a single ”Q-essential
(i.e. non-torsion) homotopy constrain” on tangent bundles of closed simply
connected 4k-manifolds– the Rokhlin-Thom-Hirzebruch signature relation.

But in 1966, Sergey Novikov, in the course of his proof of the topological
invariance of the of the rational Pontryagin classes, i.e of the homology ho-
momorphism H∗(Xn; Q) → H∗(GrN(Rn+N); Q) induced by the normal Gauss
map, found the following new relation for non-simply connected manifolds X.

Let f ∶ Xn → Y n−4k be a smooth map. Then the signature of the 4k-
dimensional pullback manifold Z = f−1(y) of a generic point, sig[f] = sig(Z),
does not depend on the point and/or on f within a given homotopy class [f]
by the generic pull-back theorem and the cobordism invariance of the signature,
but it may change under a homotopy equivalence h ∶X1 →X2.

By an elaborated (and, at the first sight, circular) surgery + algebraic K-
theory argument, Novikov proves that

if Y is a k-torus, then sig[f ○ h] = sig[f],
where the simplest case of the projection X ×Tn−4k → Tn−4k is (almost all) what
is needed for the topological invariance of the Pontryagin classes.

Novikov conjectured (among other things) that a similar result holds for an
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arbitrary closed manifold Y with contractible universal covering. (This would
imply, in particular, that if an oriented manifold Y ′ is orientably homotopy
equivalent to such a Y , then it is bordant to Y .) Mishchenko (1974) proved
this for manifolds Y admitting metrics of non-positive curvature with a use of
an index theorem for operators on infinite dimensional bundles, thus linking the
Novikov conjecture to geometry.

(Hyperbolic groups also enter Sullivan’s existence/uniquenss theorem of Lip-
schitz structures on topological manifolds of dimensions ≥ 5.

A bi-Lipschitz homeomorphism may look very nasty. Take, for instance,
infinitely many disjont round balls B1,B2, ... in Rn of radii → 0, take a dif-
feomorphism f of B1 fixing the boundary ∂(B1) an take the scaled copy of
f in each Bi. The reslting homeomorpism, fixed away from these balls, be-
comes quite complicated whenever the balls accumulate at some closed subset,
e.g. a hypersurface in Rn. Yet, one can extend the signature index theorem
and some of the Donaldson theory to this unfriedly bi-Lipschitz, and even to
quasi-conformal, enviroment.)

The Novikov conjecture remains unsolved. It can be reformulated in purely
group theoretic terms, but the most significant progress which has been achieved
so far depends on geometry and on the index theory.

In a somewhat similar vein, Atiyah (1974) introduced L2-cohomology on
non-compact manifolds X̃ with cocompact discrete group actions and proved
the L2-index theorem. For example, he has shown that

if a compact Riemannian 4k-manifolds has non-zero signature, then the uni-
versal covering X̃ admits a non-zero square summable harmonic 2k-form.

This L2-index theorem was extended to foliatated spaces with transversal
measures (and eventually without such a measure) by Alain Connes, where the
two basic manifolds’ attributes– the smooth structure and the measure – are
separated: the smooth structures in the leaves allow differential operators while
the transversal measures underly integration and where the two cooperate in
the ”non-commutaive world” of Alain Connes.

(Possibly there is a similar non-linear analysis on foliation, where solutions
of, e.g. parabolic Hamilton-Ricci for 3D and of elliptic Yang-Mills/Seiberg-
Witten for 4D, equations fast, e.g. L2, decay on each leaf where ”decay” for
non-linear objects may refer to a decay of distances between pairs of objects.)

Linear operators are difficult to delinearize keeping them topologically inter-
esting. The two exceptions are the Cauchy-Riemann operator and the signature
operator in dimension 4. The former is used by Thurston (starting from late
70s) in his 3D-geometrization theory and the latter, in the form of the Yang-
Mills equations, begot Donaldson’s 4D-theory (1983) and the Seiberg-Witten
theory (1994).

The logic of Donaldson’s approach has some similarity to that of the index
theorem. Yet, his operator D ∶ Φ→ Ψ is non-linear Fredholm and instead of the
index he studies the bordism-like invariants of (finite dimensional!) pullbacks
D−1(ψ) ⊂ Φ of suitably generic ψ.

These invariants for the Yang-Mills and Seiberg-Witten equations unravel
an incredible richness of the smooth 4D-topological structures which remain
invisible from the perspectives of pure topology” and/or of linear analysis.

The non-linear Ricci flow equation of Richard Hamilton, the parabolic rela-
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tive of Einstein, does not have any built-in topological intricacy; it is similar to
the plain heat equation associated to the ordinary Laplace operator. Its poten-
tial role is not in exhibiting new structures but, on the contrary, in showing that
these do not exist by ironing out all geometric bumps of Riemannian metrics.
This potential was realized in dimension 3 by Perelman in 2003:

The Ricci flow on Riemannian 3-manifolds, when manually redirected at its
singularities, eventually brings every closed Riemannian 3-manifold to a canon-
ical geometric form predicted by Thurston.

There is hardly anything in common between the proofs of Smale and Perel-
man of the Poincare conjecture. Why the statements look so similar? Is it the
same ”Poincare conjecture” they have proved? Probably, the answer is ”no”.

To get a perspective let us look at another, seemingly remote, fragment of
mathematics – the theory of algebraic equations, where the numbers 2,3 and 4
also play an exceptional role.

If topology followed a contorted path 2→5...→4→3, algebra was going straight
1→2→3→4→5... and it certainly did not stop at this point.

Thus, by comparison, the Smale-Browder-Novikov theorems correspond to
non-solvability of equations of degree ≥ 5 while the present day 3D- and 4D-
theories are brethren of the magnificent formulas solving the equations of degree
3 and 4.

What does, in topology, correspond to the Galois theory, class field theory,
the modularity theorem... ?

Is there, in truth, anything in common between this algebra/arthmetic and
geometry?

It seems so, at least on the surface of things, since the reason for the partic-
ularity of the numbers 2, 3, 4 in both cases arises from the same formula:

4 =3 2 + 2 ∶

a 4 element set has exactly 3 partitions into two 2-element subsets and where,
observe 3 < 4. No number n ≥ 5 admits a similar class of decompositions.

In algebra, the formula 4 =3 2 + 2 implies that the alternating group A(4)
admits an epimorphism onto A(3), while the higher groups A(n) are simple
non-Abelian.

In geometry, this transforms into the splitting of the Lie algebra so(4) into
so(3) ⊕ so(3). This leads to the splitting of the space of the 2-forms into self-
dual and anti-self-dual ones which underlies the Yang-Mills and Seiberg-Witten
equations in dimension 4.

In dimension 2, the group SO(2) ”unfolds” into the geometry of Riemann
surfaces and then, when extended to homeo(S1), brings to light the conformal
field theory.

In dimension 3, Perelman’s proof is grounded in the infinitesimal O(3)-
symmetry of Riemannian metrics on 3-manifolds (which is broken in Thurston’s
theory and even more so in the high dimensional topology based on surgery )
and depends on the irreducibility of the space of traceless curvature tensors.

It seems, the geometric topology has a long way to go in conquering high
dimensions with all their symmetries.
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11 Crystals, Liposomes and Drosophila.

Many geometric ides were nurtured in the cradle of manifolds; we want to follow
these ideas in a larger and yet unexplored world of more general ”spaces”.

Several exciting new routes were recently opened to us by the high energy
and statistical physics, e.g. coming from around the string theory and non-
commutative geometry – somebody else may comment on these, not myself.
But there are a few other directions where geometric spaces may be going.

Infinite Cartesian Products and Related Spaces. A crystal is a collection
of identical molecules molγ = mol0 positioned at certain sites γ which are the
elements of a discrete (crystallographic) group Γ.

If the space of states of each molecule is depicted by some ”manifold” M ,
and the molecules do not interact, then the space X of states of our ”crystal”
equals the the Cartesian power MΓ = ×γ∈ΓMγ .

If there are inter-molecular constrains, X will be a subspace of MΓ; further-
more, X may be a quotient space of such a subspace under some equivalence
relation, where, e.g. two states are regarded equivalent if they are indistinguish-
able by a certain class of ”measurements”.

We look for mathematical counterparts to the following physical problem.
Which properties of an individual molecule can be determined by a given class
of measurement of the whole crystal?

Abstractly speaking, we start with some category M of ”spaces” M with
Cartesian (direct) products, e.g. a category of finite sets, of smooth manifolds
or of algebraic manifolds over some field. Given a countable group Γ, we enlarge
this category as follows.

Γ-Power Category ΓM. The objects X ∈ ΓM are projective limits of finite
Cartesian powers M∆ for M ∈M and finite subsets ∆ ⊂ Γ. Every such X is
naturally acted upon by Γ and the admissible morphisms in our Γ-category are
Γ-equivariant projective limits of morphisms in M.

Thus each morphism, F ∶X =MΓ → Y = NΓ is defined by a single morphism
in M, say by f ∶M∆ → N = N where ∆ ⊂ Γ is a finite (sub)set.

Namely, if we think of x ∈X and y ∈ Y as M - and N -valued valued functions
x(γ) and y(γ) on Γ then the value y(γ) = F (x)(γ) ∈ N is evaluated as follows:

translate ∆ ⊂ Γ to γ∆ ⊂ Γ by γ, restrict x(γ) to γ∆ and apply f to this
restriction x∣γ∆ ∈Mγ∆ =M∆.

In particular, every morphism f ∶ M → N in M tautologically defines a
morphism in MΓ, denoted fΓ ∶MΓ → NΓ, but MΓ has many other morphisms
in it.

Which concepts, constructions, properties of morpisms and objects, etc.
from M ”survive” in ΓM for a given group Γ? In particular, what happens to
topological invariants which are multiplicative under Cartesian products, such
as the Euler characteristic and the signature?

For instance, let M and N be manifolds. Suppose M admits no topological
embedding into N (e.g. M = S1, N = [0,1] or M = RP 2, N = S3). When does
MΓ admit an injective morphism to NΓ in the category MΓ?

(One may meaningfully reiterate these questions for continuos Γ-equivariant
maps between Γ-Cartesian products, since not all continuos Γ-equivariant maps
lie in MΓ.)
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Conversely, let M → N be a map of non-zero degree. When is the corre-
sponding map fΓ ∶MΓ → NΓ equivariantlty homotopic to a non-sujective map?

Γ-Subvarieties. Add new objects to MΓ defined by equivariant systems of
equations in X =MΓ, e.g. as follows.

Let M be an algebraic variety over some field F and Σ ⊂M ×M a subvariety,
say, a generic algebraic hypersurface of bi-degree (p, q) in CPn ×CPn.

Then every directed graph G = (V,E) on the vertex set V defines a subvari-
ety, in MV , say Σ(G) ⊂MV which consists of those M -valued functions x(v),
v ∈ V , where (x(v1), x(v2)) ∈ Σ whenever the vertices v1 and v2 are joined by a
directed edge e ∈ E in G. (If Σ ⊂M ×M is symmetric for (m1,m2)↔ (m2,m1),
one does not need directions in the edges.)

Notice that even if Σ is non-singular, Σ(G) may be singular. (I doubt, this
ever happens for generic hypersurfaces in CPn × CPn.) On the other hand, if
we have a ”sufficiently ample” family of subvarietis Σ in M ×M (e.g. of (p, q)-
hypersurfaces in CPn×CPn) and, for each e ∈ E, we take a generic representative
Σgen = Σgen(e) ⊂M ×M from this family, then the resulting generic subvariety
in M ×M , call it Σgen(G) is non-singular and, if F = C, its topology does not
depend on the choices of Σgen(e).

We are manly interested in Σ(G) and Σgen(G) for infinite graphs G with
a cofinite action of a group Γ, i.e. where the quotient graph G/Γ is finite. In
particular, we want to understand ”infinite dimensional (co)homology” of these
spaces, say for F = C and the ”cardinalities” of their points for finite fields F
(see [4] for some results and references). Here are test questions.

Let Σ be a hypersurface of bi-degree (p, q) in CPn × CPn and Γ = Z. Let
Pk(s) denote the Poincare polynomial of Σgen(G/kZ), k = 1,2, .... and let

P (s, t) =
∞
∑
k=1

tkP (s) =∑
k,i

tksirank(Hi(Σgen(G/kZ)).

Observe that the function P (s, t) depends only on n, and (p, q).
Is P (s, t) meromorphic in the two complex variables s and t? Does it satisfy

some ”nice” functional equation?
Similarly, if F = Fp, we ask the same question for the generating function in

two variables counting the Fpl -points of Σ(G/kZ).
Γ-Quotients. These are defined with equivalence relations R ⊂X ×X where

R are subobjects in our category.
The transitivity of (an equivalence relation) R, and it is being a finitary

defined sub-object are hard to satisfy simultaneously. Yet, hyperbolic dynamical
systems provide encouraging examples at least for the categoryM of finite sets.

If M is the category of finite sets then subobjects in MΓ, defined with
subsets Σ ⊂ M ×M are called Markov Γ-shifts. These are studied, mainly for
Γ = Z, in the context of symbolic dynamics [27], [5].

Γ-Markov quotients Z of Markov shifts are defined with equivalence relations
R = R(Σ′) ⊂ Y × Y which are Markov subshifts. (These are called hyperbolic
and/or finitely presented dynamical systems [13], [14].)

If Γ = Z, then the counterpart of the above P (s, t), now a function only in
t, is, essentially, what is called the ζ-function of the dynamical system which
counts the number of periodic orbits. It is shown in [13] with a use of (Sinai-
Bowen) Markov partitions that this function is rational in t for all Z-Markov
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quotient systems.
The local topology of Markov quotient (unlike that of shift spaces which are

Cantor sets) may be quite intricate, but some are topological manifolds.
For instance, classical Anosov systems on infra-nilmanifolds V and/or ex-

panding endomorphisms of V are representable as a Z- Markov quotient via
Markov partitions [22].

Another example is where Γ is the fundamental group of a closed n-manifold
V of negative curvature. The ideal boundary Z = ∂∞(Γ) is a topological (n−1)-
sphere with a Γ-action which admits a Γ-Markov quotient presentation [14].

Since the topological Sn−1-bundle S → V associated to the universal cov-
ering, regarded as the principle Γ bundle, is, obviously, isomorphic to the unit
tangent bundle UT (V ) → V , the Markov presentation of Z = Sn−1 defines the
topological Pontryagin classes pi of V in terms of Γ.

Using this, one can reduce the homotopy invariance of the Pontryagin classes
pi of V to the ε-topological invariance.

Recall that an ε-homeomorphism is given by a pair of maps f12 ∶ V1 → V2

and f21 ∶ V2 → V1, such that the composed maps f11 ∶ V1 → V1 and f22 ∶ V2 → V2

are ε-close to the respective identity maps for some metrics in V1, V2 and a small
ε > 0 depending on these metrics.

Most known proofs, starting from Novikov’s, of invariance of pi under home-
omorphisms equally apply to ε-homeomorphisms.

This, in turn, implies the homotopy invariance of pi if the homotopy can be
”rescaled” to an ε-homotopy.

For example, if V is a nil-manifold Ṽ /Γ, (where Ṽ is a nilpotent Lie group
homeomorphic to Rn) with an expanding endomorphism E ∶ V → V (such a V is
a Z-Markov quotient of a shift), then a large negative power Ẽ−N ∶ Ṽ → Ṽ of the
lift Ẽ ∶ Ṽ → Ṽ brings any homotopy close to identity. Then the ε-topological
invariance of pi implies the homotopy invariance for these V . (The case of
V = Rn/Zn and Ẽ ∶ ṽ → 2ṽ is used by Kirby in his topological torus trick.)

A similar reasoning yields the homotopy invariance of pi for many (manifolds
with fundamental) groups Γ, e.g. for hyperbolic groups.

Questions. Can one effectively describe the local and global topology of
Γ-Markov quotinets Z in combinatorial terms? Can one, for a given (e.g. hy-
perbolic) group Γ, ”classify” those Γ-Markov quotients Z which are topological
manifolds or, more generally, locally contractible spaces?

For example, can one describe the classical Anosov systems Z in terms of
the combinatorics of their Z-Markov quotient representations? How restrictive
is the assumption that Z is a topological manifold? Is the topology of the local
dynamics at the periodic points in Z essential?

Liposomes and Micelles are surfaces of membranes surrounded by water
which are assembled of rod-like (phospholipid) molecules oriented normally to
the surface of the membrane with hydrophilic ”heads” facing the exterior and the
interior of a cell while the hydrophobic ”tails” are buried inside the membrane.

These surfaces satisfy certain partial differential equations of rather general
nature (see [17]). If we heat the water, membranes dissolve: their constituent
molecules become (almost) randomly distributed in the water; yet, if we cool
the solution, the surfaces and the equations they satisfy re-emerge.

Question. Is there a (quasi)-canonical way of associatiing statistical ensem-
bles S to geometric system S of PDE, such that the equations emerge at low
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temperatures T and also can be read from the properties of high temperature
states of S by some ”analytic continuation” in T?

The architectures of liposomes and micelles in an ambient space, say W ,
which are composed of ”somethings” normal to their surfaces X ⊂W , are remi-
niscent of Thom-Atiyah representation of submanifolds with their normal bun-
dles by generic maps f● ∶W → V●, where V● is the Thom space of a vector bundle
V0 over some space X0 and where manifolds X = f−1

● (X0) ⊂W come with their
normal bundles induced from the bundle V0.

The space of these ”generic maps” f● looks as an intermediate between an
individual ”deterministic” liposome X and its high temperature randomization.
Can one make this precise?

Poincare-Sturtevant Functors. All what the brain knows about the geometry
of the space is a flow Sin of electric impulses delivered to it by our sensory
organs. All what an alien browsing through our mathematical manuscripts
would directly perceive, is a flow of symbols on the paper, say Gout.

Is there a natural functorial-like transformation P from sensory inputs to
mathematical outputs, a map between ”spaces of flows” P ∶ S → G such that
P(Sin)”=”Gout?

It is not even easy to properly state this problem as we neither know what
our ”spaces of flows” are, nor what the meaning of the equality ”=” is.

Yet, it is an essentially mathematical problem a solution of which (in a
weaker form) is indicated by Poincare in [39]. Besides, we all witness the solution
of this problem by our brains.

An easier problem of this kind presents itself in the classical genetics.
What can be concluded about the geometry of a genome of an organism by

observing the phenotypes of various representatives of the same species (with
no molecular biology available)?

This problem was solved in 1913, long before the advent of the molecular
biology and discovery of DNA, by 19 year old Alfred Sturtevant (then a student
in T. H. Morgan’s lab) who reconstructed the linear structure on the set of
genes on a chromosome of Drosophila melanogaster from samples of a probability
measure on the space of gene linkages.

Here mathematics is more apparent: geometry of a space X is represented
by something like a measure on the set of subsets in X; yet, I do not know
how to formulate clear-cut mathematical questions in either case (compare [16],
[18]).
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Who knows where manifolds are going?
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