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1 From Things to Math
La mathématique est l’art de donner le même nom à des choses différentes.

Henri Poincaré

Nothing in Probability Theory makes sense except in the light of ... choses
Theodosius Dobzhansky (misquoted).

"CHOSES" ? — Never heard of these.
Mathematician.

99% of probability theory are out-
growths of mathematical models of
"real life" phenomena.
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Figure 1: Geometric measure theory

Figure 2: Crystal

Figure 3: Gaz

Figure 4: Protein Folding by Percolation

Figure 5: spectrum

Figure 6: Self avoiding random walk, Flory (1953).
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Such a model is a function (func-
tor?) in two variables: the "real
life" object ("chose") and the math-
ematical/psycological/historical) back-
ground of the one who models.
(Intuition: Heuristics, Naturality, Functoriality)
Synaptic pruning is elimination of extra synapses during

brain development .
Mathematics is the immune system of science

Biologist

A study led by Massachusetts General Hospital (MGH) investi-

gators finds evidence that the process of synaptic pruning, a normal

part of brain development during adolescence, is excessive in indi-

viduals with schizophrenia.

.............................................
————————
Maxwell-Mendel (1860) Boltzmann,

(1890)
... small compound bodies...
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Figure 7: 1713

Figure 8: Buffon (1877) → Kolmogorov (1933 )

Figure 9: Ingenhousz’ (1785) → Einstein&Smoluchowski (1905) → Perrin
(1908)
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are set in perpetual motion
by the impact of invisible blows.
The movement mounts up
from the atoms
and gradually emerges
to the level of our senses.
———————————————

–
The true logic of this world is

in the calculus of probabilities.
James Clerk Maxwell

Boltzmann equation, functoriality,
Enskog-Chapman and the BBGKY
hierarchy,
Physical Chemistry of Polymeres.

Protein folding gelation and perco-
lation
Flory–Stockmayer theory of the

cross-linking and gelation of step-
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growth polymers(1941-46). Broad-
bent & Hammersley (1957),
Evolution Biology.
Natural Languges.
....since most of the ’normal sen-

tences’ of daily life are uttered for
the first time in the experience of
the speaker-hearer ... they will have
had probability zero before this ut-
terance was produced...
...the notion "probability of a sen-

tence" is an entirely useless one, un-
der any known interpretation of this
term.
... probabilistic models give no

particular insight into some of the
basic problems of syntactic struc-
ture. Noam Chomsky
Probability of finding 1024 air molecules

in a definite region of one half of the
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available volume in a box,1 is pro-
hibitively small, of order 2−1024 and
the value of this probability may
fluctuate with a huge factor, say,
> 21024−1024−1/1015

> 2106.
These numbers, the values of prob-

abilities of micro-states of ensem-
bles of particles, are physically mean-
gless.
This doesn’t bother a physicist.

He/she boldly assumes that these
numbers are all mutually equal and
derives from this and a few similar
assumtions physically sound conclu-
sions.
It is symmetry, not any idea of

"measure of underminancy", which
makes the concept of probability to
work so beatifully in physics.

1A cubic meter of air contains about 2.5 ⋅ 1025 molecules.
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But to be applicable to hetero-
geneous structures of "non-physical
worlds", e.g. in the world of lan-
guages, the traditional probabilis-
tic formalism must be limited and
modified in several ways.
For instance, the concept of inde-

pendency must be reinterpreted for
such structures and product formu-
las, e.g. the chain rule P (A&B) =
P (A∣B) ⋅P (A), must be used with
moderation:
unrestricted iteration of such for-

mulas leads to an accumulation of er-
rors, which renders results unaccept-
able, even, where, which is rare in
languages, these P (A∣B) and P (A)
themselves are unambiguously defined.2

2If each consecutive word in the sentence ... probabilistic models... is assigned probability
≈

1
5
– this, albeit inaccurate, is meaningful – then the probability of the whole sentence will

come up as meaningless 5−15 ≈ 1
3⋅1010

, where a minor perturbation, of 1
5
to 1

4
increases the

result by a huge (>28) factor. See ?? section for more about it.
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Winograd Schema Challenge:
Amazingly (for some), Google, which

can’t be blamed for understanding
the concept of size, tells you with
100% certainty what are the an-
tecedents of it, package or bag, in
the following two sentences.

This package doesn’t fit into
my bag because it is too large.

This package doesn’t fit into
my bag because it is too small.
Indeed, the Google search returns:
>10 000 results for "if the pack-
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age is too large" & "doesn’t fit",
< 10 results for "if the package

is too small" & "doesn’t fit",
>10 000 results for "if the bag

is too small" & "doesn’t fit",
<10 results for "if the bag is

too large" & "doesn’t fit",
Unambiguously, "doesn’t fit" goes

along with small bags and large pack-
ages, that is additionally confirmed
by
>400 000 results for "fit" & "the

bags are large",
< 50 000 results for "fit" & "the

bags are small".
How much can you trust Google’s

numbers? The following examples
make you think.
"the package is too large" & "doesn’t
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fit" 13 000,
"the package is too small" & "doesn’t

fit" 16 000,
"this package is too large " & "doesn’t

fit" < 10,
"this package is too small " & "doesn’t

fit" < 10,
These numbers tell us, that
the basic probabilistic concepts: fre-

quency, correlation, entropy, when
applied to recurrent linguistic pat-
terns, must be
interpreted entirely within the net-

work of (quasi)equivalences between
such
"patterns".
Exercise. Should one assign sta-

tistical significance to

11001001000011 1111 011 010101000100010 0001011 01
000 11000010001101 00110001001100011 0011000 10100
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0101110000000110111 000001110011010001

in a signal that comes from the
direction to Alpha Centauri?3

2 Randomization of Geometric structures

???
Example 1. Random Homology in Various Models of

Percolation.
Example 2. Topology of Imbeddings and Hopeless

SAW

3 Between Imagination and Reality

Entropy: Bernoulli, Boltzmann, Shan-
non, Von Neumann Grothendieck,
Subadditivity of Entropy.

ent12 ≤ ent1 + ent2
3 Thesearethefirst128binarydigitsofπ.
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Loomis-Whitney Theorem.
Among all subsets Y ⊂ Rk with

given measures of the projections to
the k coordinate hyperplanes, the
maximal measure is achieved by the
rectangular solids (and all subsets
obtained from them by measurable
transformations ofRk preserving the
coordinate line partitions).
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This implies non-sharp isoperimet-
ric inequality that for k = 3 reads:
The volume/measure of Y ⊂ R3,

denoted vol123, is bounded by the
areas areaij of the there coordi-
nate planar projections of Y as fol-
lows
vol2123 ≤ area12 ⋅ area13 ⋅ area23.

Linearized Loomis-Whitney 3D-isoperimetric
inequality for ranks of bilinear forms
associated with a 4-linear form Φ =
Φ(s1, s2, s3, s4) where we denote ∣...∣ =
rank(...):

∣Φ(s1, s2 ⊗ s3 ⊗ s4)∣2 ≤
∣Φ(s1⊗s2, s3⊗s4)∣⋅∣Φ(s1⊗s3, s2⊗s4)∣⋅

⋅∣Φ(s1 ⊗ s4, s2 ⊗ s3)∣

Grothendieck Semigroup Gr(P),
14



Bernoulli isomorphism Gr(P) =
[1,∞)× and Entropy.
Functorial representation of infi-

nite probability spaces X by sets
of finite partitions of X , that are
sets mor(X → P ), for all P ∈ P
and defining Kolmogorov’s dynam-
ical entropy in these terms.
Fisher metric and von Neumann’s

Unitarization of Entropy.
Hessian h = Hess(e), e = e(p) =
∑i∈I pi log pi, on the simplex △(I)
is a Riemannian metric on △(I)
where the real moment map MR ∶
{xi} → {pi = x2

i} is, up to 1/4-
factor, an isometry from the posi-
tive "quadrant" of the unit Euclidean
sphere onto (△(I), h).
P : positive quadratic forms on
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the Euclidean space Rn,
Σ: orthonormal frames Σ = (s1, ..., sn),
P (Σ) = (p

1
, ..., p

n
), p

i
= P (si),

entV N(P ) = ent(P ) = inf
Σ
ent(P (Σ)).

Lanford-Robinson, 1968. The
function P ↦ ent(P ) is concave
on the space of density states:

ent(P1 + P2

2
) ≥ ent(P1) + ent(P2)

2
.

Indeed, the classical entropy is a
concave function on the simplex of
probability measures on the set I ,
that is {pi} ⊂ RI+,∑i pi = 1, and
infima of familes of concave func-
tions are concave.
Spectral definition/theorem:
entV N(P ) = entShan(spec((P )).
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Symmetrization as Reduction and
Quantum Superadditivity.

Lieb-Ruskai, 1973.
H and G: compact groups of uni-

tary transformations of a finite di-
mensional Hilbert space S
P a state (positive semidefinite Her-

mitian form) on S.
If the actions of H and G com-

mute,
then the von Neumann entropies

of the G- and H-averages of P sat-
isfy

ent(G ∗ (H ∗P )) − ent(G ∗P ) ≤
ent(H ∗ P ) − ent(P ).
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On Algebraic Inequalities. Besides
"unitarization" some Shannon in-
equalities admit linearization, where
the first non-trivial instance of this
is the following
linearized Loomis-Whitney 3D-isoperimetric

inequality for ranks of bilinear forms
associated with a 4-linear form Φ =
Φ(s1, s2, s3, s4) where we denote ∣...∣ =
rank(...):

∣Φ(s1, s2 ⊗ s3 ⊗ s4)∣2 ≤
∣Φ(s1⊗s2, s3⊗s4)∣⋅∣Φ(s1⊗s3, s2⊗s4)∣⋅

⋅∣Φ(s1 ⊗ s4, s2 ⊗ s3)∣

4 Homology Instead of Probability

● Non-Parametric Packings.
Classically, one is concerned with

maximally dense packings of spaces
X by disjoint balls, rather than with
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the homotopy properties of families
of moving balls in X .
The densest packing ofRn are known

only for n = 1, 2, 3, 8, 24,where the
densest packing are Zn-periodic (The
case n = 1 is obvious, the case n =
2 is due to Lagrange, who proved
that the optimal packing is the hexag-
onal one) and the case of n = 3,
conjectured by Kepler was resolved
by Thomas Hales.
In 2016 Maryna Viazovska proved

that the E8 root lattice is the dens-
est sphere packing for n = 8 with
the optimality of the Leech lattice
in dimension 24 to follow (Cohn,
Kumar, Miller, Radchenko and Vi-
azovska)
Problem: Relate packing of Rn

and of Rn+m .
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—————————-
● ● An "ensemble" A = A(X) of

(finitely or infinitely many) parti-
cles in a space X , e.g. in the Eu-
clidean 3-space, is probabilistically
characterised by

U ↦ entU(A) = ent(A∣U), U ⊂X,
that assigns the entropies of the U -
reductions A∣U of A, to all bounded
open subsets U ⊂X . (entU is "the
logarithm of the number of the states
of E that are effectively observable
from U"),
Replace "effectively observable num-

ber of states" by
"the number of significant degrees

of freedom of ensembles of moving
particles"
Packings by r-Balls.
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X is a metric space, P = PI,r(X) =
{xi} ⊂XI , such that dist(xi, xj) ≥
dij = 2r.
Covarinatly functoriality under ex-

panding maps X → Y and
contravariant functoriality under

contracting maps f ∶X → Y .
Packings by Tubes motivated by X = Y × Z → Y . I-

tuples of closed subsets Zi ∈ X, such that mutual dis-

tances between them satisfy dist(Zi, Zj) ≥ dij and such

that Zi ⊂X support given nonzero homology classes hi in

X. (T. Richard On the 2-systole of stretched enough positive scalar

curvature metrics on S2 × S2, arXiv:2007.02705v2.)

Packing Energy and Morse Spec-
trum. ρ(a) = minxi≠xj dist(xi, xj),
E(a) = 1

ρ(a) orE(a) = − log ρ(a).
The homotopy significant (Morse)

spectrum of an energy function E ∶
A → R, is the set of those values
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y ∈ R, where the homotopy type
of the sublevel E−1(−∞, y] under-
goes an irreversible change d
Guth’ Duality between Homology

Spectra of Packings and of Cycles.
Example. Relation between the

cohomology spectrum ofE on (X)I
and (Y )I for Y ⊂ X e.g. X = Tn
and Y = Tm ⊂ Tn. (Viazovska the-
orem)
Results.
1. δ-Waist Inequality. f ∶ Sn →

Rn−k a continuous map. ∃p ∈ Rn−k,
such that vol(Uδ(f−1(p) ≥ vol(Uδ(Sk)
for all δ > 0
2 Guth’ Steenrod Spectrum The-

orem. X be the space ofm-dimensional
submanifolds x in the n-ball V and
F (x) = volm(x).
Then the volume spectrum of this
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F satisfies
λi ≤ const ⋅ i

1
m+1

and
λi ≥ const(ε) ⋅ i

1
m+1−ε for all ε >

0.
Weyl law for the codimension 1

volume spectrum (Liokumovich-Marques-
Neves)
If m = n−1 then λi ∼ constn ⋅ i

1
n.

Question 1. How much of the ge-
ometry of a space X , say with a
metric or symplectic geometry, can
be seen in the homotopies of spaces
of packings of X by such Ui?
Question 2. Is there a good cat-

egory of "abstract packing-like ob-
jects", that are not, a priori, associ-
ated to actual packings of geomet-
ric spaces?
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● Homotopy and Cohomotopy En-
ergy Spectra.
●Homotopy Dimension, Cell Num-

bers and Cohomology Valued Mea-
sures.
● Infinite Packings and Equivari-

ant Topology of Infinite Dimensional
Spaces Acted upon by Non-compact

Groups.
● Bi-Parametric Pairing between

Spaces of Packings and Spaces
of Cycles.
● Non-spherical Packings, Spaces

of Partitions and Bounds on Waists.

● Symplecting Packings.
● Parametric coverings.

Homology Measures

24



(Morse Spectra, Homology Measures and Parametric Packing Problems)

Ψ ⊃D ↦ µ(D) = µ∗(D; Π) =
0∖∗(D; Π) ⊂H∗ =H∗(Ψ; Π),

where Π is an Abelian (homology
coefficient) group, e.g. a field F,
and 0∖∗(D; Π) is the kernel of the
cohomology restriction homomorphism
for the complement Ψ ∖D ⊂ Ψ,

H∗(Ψ; Π)→H∗(Ψ ∖D; Π).

The set function

µ∗ ∶ {subsets ⊂ Ψ}→ {subgroups ⊂H∗}
is additive for the sum-of-subsets in
H∗ and super-multiplicative4 for the
the ⌣-product of ideals in the case
where Π is a commutative ring:

4 This, similarly to Shannon’s subadditivity inequality, implies the existence of "thermody-
namic limits" of Morse Entropies, see [?].
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[∪+]
µ∗(D1∪D2) = µ∗(Di)+µ∗(D2)
for disjoint open subsets D1 and
D2 in Ψ, and
[∩ ⌣]
µ∗(D1 ∩D2) ⊃ µ∗(D1) ⌣ µ∗(D2)
for all open D1,D2 ⊂ Ψ.

Homology spectra on spaces of in-
finitely many particles in non-compact
manifolds
Infinite dimensional space Ψ,
action of an infinite group Υ on

Ψ.
Example. Υ is a countable group

call it Γ, e.g. Γ = Zn, and Ψ = BΓ

is the space of maps Γ→ B.
H∗ is a graded algebra (over some

field) acted upon by a countable
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amenable group Γ.
Exhaust Γ by finite Følner sub-

sets ∆i ⊂ Γ, i = 1, 2, ..., and, given
a finite dimensional graded subal-
gebra K = K∗ ⊂ H∗, let Pi,K(t)
denote the Poincare polynomial of
the graded subalgebra inH∗ gener-
ated by the γ-transforms γ−1(K) ⊂
H∗ for all γ ∈ ∆i.
Define polynomial entropy of the

action of Γ on H∗ as follows.

Poly.ent(H∗ ∶ Γ) = sup
K

lim
i→∞

1

card(∆i)
logPi,K(t).

(Permutation Symmetries and Equiv-
ariant Homology)
?Energy ; Boltzmann distribu-

tion?

Supϑ-Spectra, Scalar Curvature and
Spaces of Symplectic Packings.
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Θ is a set of metrics ϑ on a topo-
logical space X

”Inv”(X,ϑ) is an invariant,
supϑ”Inv” is the supremum of the

invariants ”Inv ∶ (X,ϑ) over all
ϑ ∈ Θ.

Example 1. X = S3 and ϑ are
metrics with Sc(ϑ) ≥ 6.
Then supϑwaist2 = 4π.(Marques-

Neves)

Example 2. X = (X,ω) a sym-
plectic manifold of dimension n =
2m and ϑ are ω-adapted metrics
Question. Which part of the (suit-

ably factorized/coarsened) homotopy/homology
area spectra of (X,ϑ) remains fi-
nite after taking suprema over ϑ?

If k = 2, then upper bounds in
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some cases are obtained with pair-
ing ball pacing with "psedoholomor-
phic curves" defined here as oriented
surfaces Y ⊂ X = (X,ω,ϑ), such
that areaϑ(Y ) = ∫Y ω.
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(Nobel Lecture)
Analogy and Difference between

Gelation and Percolation Process Kazumi
Suematsu
· Percolation Processes: Lower Bounds

for the Critical Probability
JM Hammersley · 1957 ·
JÜRG FRÖHLICH C. E. PFIS-

TER THOMAS SPENCER On the
Statistical Mechanics of Surfaces
From Boltzmann to Euler: Hilbert’s

6 th problem revisited Marshall Slem-
rod
Critical percolation in the plane:

conformal invariance, Cardy’s for-
mula, scaling limits Stanislav SMIRNOV
Smirnov’s Lecture https://www.

youtube.com/watch?v=6hCSSCV7lvQ
HOMOLOGICAL PERCOLATION

ONA TORUS: PLAQUETTES AND
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PERMUTOHEDRA PAUL DUN-
CAN, MATTHEW KAHLE, AND
BENJAMIN SCHWEINHART —
————————-———————
———– NG:
In a Search for a Structure, Part11:

On Entropy.
Geometry, Topology and Spectra

of Non-Linear Spaces of Maps - Wolf-
gang Pauli Lectures
Bernoulli Lecture: Alternative Prob-

abilities
Mathematics of life spaces
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