

Two Lectures on ???

Misha Gromov

May 22, 2022

Contents

1 From Things to Math 1
2 Randomization of Geometric structures 12
3 Between Imagination and Reality 12
4 Homology Instead of Probability 18
5 References 29

1 From Things to Math

La mathématique est l'art de donner le même nom à des choses différentes. Henri Poincaré
Nothing in Probability Theory makes sense except in the light of ... CHOSES Theodosius Dobzhansky (misquoted).
"CHOSES" ? - Never heard of these. Mathematician.
> 99% of probability theory are outgrowths of mathematical models of "real life" phenomena.

Figure 1: Geometric measure theory

Figure 2: Crystal

Figure 3: Gaz

Figure 4: Protein Folding by Percolation

Figure 5: spectrum

Figure 6: Self avoiding random walk, Flory (1953).

Such a model is a function (func-

 tor?) in two variables: the "real life" object ("chose") and the mathematical/psycological/historical) background of the one who models.(Intuition: Heuristics, Naturality, Functoriality)
Synaptic pruning is elimination of extra synapses during brain development .

Mathematics is the immune system of science

Biologist

A study led by Massachusetts General Hospital (MGH) investigators finds evidence that the process of synaptic pruning, a normal part of brain development during adolescence, is excessive in individuals with schizophrenia.

Maxwell-Mendel (1860) Boltzmann, (1890)
... small compound bodies...

Figure 7: 1713

Figure 8: Buffon (1877) \rightarrow Kolmogorov (1933)

Figure 9: Ingenhousz' (1785) \rightarrow Einstein\&Smoluchowski (1905) \rightarrow Perrin (1908)
are set in perpetual motion
by the impact of invisible blows.
The movement mounts up
from the atoms
and gradually emerges
to the level of our senses.

The true logic of this world is

 in the calculus of probabilities.
James Clerk Maxwell

Boltzmann equation, functoriality, Enskog-Chapman and the BBGKY hierarchy,
Physical Chemistry of Polymeres. Protein folding gelation and percolation
Flory-Stockmayer theory of the cross-linking and gelation of step-
growth polymers(1941-46). Broadbent \& Hammersley (1957),
Evolution Biology.
Natural Languges.
....since most of the 'normal sentences' of daily life are uttered for the first time in the experience of the speaker-hearer ... they will have had probability zero before this utterance was produced...
...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.
... probabilistic models give no particular insight into some of the basic problems of syntactic structure. Noam Chomsky
Probability of finding 10^{24} air molecules in a definite region of one half of the
available volume in a box ${ }^{1}$ is prohibitively small, of order $2^{-10^{24}}$ and the value of this probability may fluctuate with a huge factor, say, $>2^{10^{24}-10^{24-1 / 10^{15}}}>2^{10^{6}}$.
These numbers, the values of probabilities of micro-states of ensembles of particles, are physically meangless.
This doesn't bother a physicist. $\mathrm{He} /$ she boldly assumes that these numbers are all mutually equal and derives from this and a few similar assumtions physically sound conclusions.
It is symmetry, not any idea of "measure of underminancy", which makes the concept of probability to work so beatifully in physics.

[^0]But to be applicable to heterogeneous structures of "non-physical worlds", e.g. in the world of languages, the traditional probabilistic formalism must be limited and modified in several ways.
For instance, the concept of independency must be reinterpreted for such structures and product formulas, e.g. the chain rule $P(A \& B)=$ $P(A \mid B) \cdot P(A)$, must be used with moderation:
unrestricted iteration of such formulas leads to an accumulation of errors, which renders results unacceptable, even, where, which is rare in languages, these $P(A \mid B)$ and $P(A)$ themselves are unambiguously defined. ${ }^{2}$

[^1]

Winograd Schema Challenge:
Amazingly (for some), Google, which can't be blamed for understanding the concept of size, tells you with 100% certainty what are the antecedents of it, package or bag, in the following two sentences.

This package doesn't fit into my bag because it is too large.

This package doesn't fit into
my bag because it is too small.
Indeed, the Google search returns:
>10000 results for "if the pack-
age is too large" \& "doesn't fit", <10 results for "if the package is too small" \& "doesn't fit",
>10000 results for "if the bag is too small" \& "doesn't fit",
<10 results for "if the bag is too large" \& "doesn't fit",
Unambiguously, "doesn't fit" goes along with small bags and large packages, that is additionally confirmed by
>400000 results for "fit" \& "the bags are large",
<50000 results for "fit" \& "the bags are small".
How much can you trust Google's numbers? The following examples make you think.
"the package is too large" \& "doesn't
fit" 13000 ,
"the package is too small" \& "doesn't fit" 16000 ,
"this package is too large " \& "doesn't fit" <10,
"this package is too small " \& "doesn't fit" <10,
These numbers tell us, that
the basic probabilistic concepts: frequency, correlation, entropy, when applied to recurrent linguistic patterns, must be
interpreted entirely within the network of (quasi)equivalences between such

"patterns".

Exercise. Should one assign statistical significance to

> 110010010000111111011010101000100010000101101 0001100001000110100110001001100011001100010100

2 Randomization of Geometric structures

???

Example 1. Random Homology in Various Models of Percolation.
Example 2. Topology of Imbeddings and Hopeless SAW

3 Between Imagination and Reality

Entropy: Bernoulli, Boltzmann, Shannon, Von Neumann Grothendieck,
 Subadditivity of Entropy.
 $$
e n t_{12} \leq e n t_{1}+e n t_{2}
$$

[^2]

Strong Subadditivity of Entropy.

$$
e n t_{123}+e n t_{2} \leq e n t_{12}+e n t_{23}
$$

Loomis-Whitney Theorem.

Among all subsets $Y \subset \mathbb{R}^{k}$ with given measures of the projections to the k coordinate hyperplanes, the maximal measure is achieved by the rectangular solids (and all subsets obtained from them by measurable transformations of \mathbb{R}^{k} preserving the coordinate line partitions).

This implies non-sharp isoperimetric inequality that for $k=3$ reads: The volume/measure of $Y \subset \mathbb{R}^{3}$, denoted vol $_{123}$, is bounded by the areas area $_{i j}$ of the there coordinate planar projections of Y as follows

$$
\text { vol }_{123}^{2} \leq \text { area }_{12} \cdot \text { area }_{13} \cdot \text { area }_{23} .
$$

Linearized Loomis-Whitney $3 D$-isoperimetric inequality for ranks of bilinear forms associated with a 4-linear form $\Phi=$ $\Phi\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ where we denote $|\ldots|=$ $\operatorname{rank}(\ldots)$:

$$
\left|\Phi\left(s_{1}, s_{2} \otimes s_{3} \otimes s_{4}\right)\right|^{2} \leq
$$

$$
\left|\Phi\left(s_{1} \otimes s_{2}, s_{3} \otimes s_{4}\right)\right| \cdot\left|\Phi\left(s_{1} \otimes s_{3}, s_{2} \otimes s_{4}\right)\right| \cdot
$$

$$
\cdot\left|\Phi\left(s_{1} \otimes s_{4}, s_{2} \otimes s_{3}\right)\right|
$$

Grothendieck Semigroup $\operatorname{Gr}(\mathcal{P})$,

Bernoulli isomorphism $\operatorname{Gr}(\mathcal{P})=$ $[1, \infty)^{\times}$and Entropy.
Functorial representation of infinite probability spaces X by sets of finite partitions of X, that are sets $\operatorname{mor}(X \rightarrow P)$, for all $P \in \mathcal{P}$ and defining Kolmogorov's dynamical entropy in these terms.

Fisher metric and von Neumann's Unitarization of Entropy.
Hessian $h=\operatorname{Hess}(e), e=e(p)=$ $\sum_{i \in I} p_{i} \log p_{i}$, on the simplex $\Delta(I)$ is a Riemannian metric on $\Delta(I)$ where the real moment map $M_{\mathbb{R}}$: $\left\{x_{i}\right\} \rightarrow\left\{p_{i}=x_{i}^{2}\right\}$ is, up to $1 / 4-$ factor, an isometry from the positive "quadrant" of the unit Euclidean sphere onto $(\triangle(I), h)$.
P : positive quadratic forms on
the Euclidean space \mathbb{R}^{n},
Σ : orthonormal frames $\Sigma=\left(s_{1}, \ldots, s_{n}\right)$, $\underline{P}(\Sigma)=\left(\underline{p}_{1}, \ldots, \underline{p}_{n}\right), \underline{p}_{i}=P\left(s_{i}\right)$,
$e n t_{V N(P)}=\operatorname{ent}(P)=\inf _{\Sigma} \operatorname{ent}(\underline{P}(\Sigma))$.
Lanford-Robinson, 1968. The
function $P \mapsto \operatorname{ent}(P)$ is concave on the space of density states:
$\operatorname{ent}\left(\frac{P_{1}+P_{2}}{2}\right) \geq \frac{\operatorname{ent}\left(P_{1}\right)+\operatorname{ent}\left(P_{2}\right)}{2}$.
Indeed, the classical entropy is a concave function on the simplex of probability measures on the set I, that is $\left\{p_{i}\right\} \subset \mathbb{R}_{+}^{I}, \sum_{i} p_{i}=1$, and infima of familes of concave functions are concave. Spectral definition/theorem: $e n t_{V N}(P)=e n t_{\text {Shan }}(\operatorname{spec}((P))$.

Symmetrization as Reduction and Quantum Superadditivity.

Lieb-Ruskai, 1973.
H and G : compact groups of unitary transformations of a finite dimensional Hilbert space S
P a state (positive semidefinite Hermitian form) on S.
If the actions of H and G commute,
then the von Neumann entropies of the G - and H-averages of P satisfy

$$
\begin{gathered}
\operatorname{ent}(G *(H * P))-\operatorname{ent}(G * P) \leq \\
\operatorname{ent}(H * P)-\operatorname{ent}(P) .
\end{gathered}
$$

On Algebraic Inequalities. Besides "unitarization" some Shannon inequalities admit linearization, where the first non-trivial instance of this is the following
linearized Loomis-Whitney 3D-isoperimetric inequality for ranks of bilinear forms associated with a 4 -linear form $\Phi=$ $\Phi\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ where we denote $|.|=$. $\operatorname{rank}(\ldots)$:

$$
\left|\Phi\left(s_{1}, s_{2} \otimes s_{3} \otimes s_{4}\right)\right|^{2} \leq
$$

$\left|\Phi\left(s_{1} \otimes s_{2}, s_{3} \otimes s_{4}\right)\right| \cdot\left|\Phi\left(s_{1} \otimes s_{3}, s_{2} \otimes s_{4}\right)\right| \cdot$ $\cdot\left|\Phi\left(s_{1} \otimes s_{4}, s_{2} \otimes s_{3}\right)\right|$

4 Homology Instead of Probability

- Non-Parametric Packings.

Classically, one is concerned with maximally dense packings of spaces X by disjoint balls, rather than with
the homotopy properties of families of moving balls in X.
The densest packing of \mathbb{R}^{n} are known only for $n=1,2,3,8,24$, where the densest packing are \mathbb{Z}^{n}-periodic (The case $n=1$ is obvious, the case $n=$ 2 is due to Lagrange, who proved that the optimal packing is the hexagonal one) and the case of $n=3$, conjectured by Kepler was resolved by Thomas Hales.
In 2016 Maryna Viazovska proved that the E_{8} root lattice is the densest sphere packing for $n=8$ with the optimality of the Leech lattice in dimension 24 to follow (Cohn, Kumar, Miller, Radchenko and Viazovska)
Problem: Relate packing of \mathbb{R}^{n} and of \mathbb{R}^{n+m}.

- - An "ensemble" $\mathcal{A}=\mathcal{A}(X)$ of (finitely or infinitely many) particles in a space X, e.g. in the Euclidean 3 -space, is probabilistically characterised by
$U \mapsto e n t_{U}(\mathcal{A})=\operatorname{ent}\left(\mathcal{A}_{\mid U}\right), U \subset X$,
that assigns the entropies of the U reductions $\mathcal{A}_{\mid U}$ of \mathcal{A}, to all bounded open subsets $U \subset X$. $\left(e n t_{U}\right.$ is "the logarithm of the number of the states of \mathcal{E} that are effectively observable from $U^{\prime \prime}$),
Replace "effectively observable number of states" by
"the number of significant degrees of freedom of ensembles of moving particles"
Packings by r-Balls.
X is a metric space, $\mathcal{P}=\mathcal{P}_{I, r}(X)=$ $\left\{x_{i}\right\} \subset X^{I}$, such that $\operatorname{dist}\left(x_{i}, x_{j}\right) \geq$ $d_{i j}=2 r$.
Covarinatly functoriality under expanding maps $X \rightarrow Y$ and
contravariant functoriality under contracting maps $f: X \rightarrow Y$.

Packings by Tubes motivated by $X=Y \times Z \rightarrow Y . \quad I-$ tuples of closed subsets $Z_{i} \in X$, such that mutual distances between them satisfy $\operatorname{dist}\left(Z_{i}, Z_{j}\right) \geq d_{i j}$ and such that $Z_{i} \subset X$ support given nonzero homology classes h_{i} in X. (T. Richard On the 2-systole of stretched enough positive scalar curvature metrics on $S^{2} \times S^{2}$, arXiv:2007.02705v2.)
Packing Energy and Morse Spectrum. $\rho(a)=\min _{x_{i} \neq x_{j}} \operatorname{dist}\left(x_{i}, x_{j}\right)$,

$$
E(a)=\frac{1}{\rho(a)} \text { or } E(a)=-\log \rho(a) .
$$

The homotopy significant (Morse) spectrum of an energy function E : $\mathcal{A} \rightarrow \mathbb{R}$, is the set of those values
$y \in \mathbb{R}$, where the homotopy type of the sublevel $E^{-1}(-\infty, y]$ undergoes an irreversible change d
Guth' Duality between Homology Spectra of Packings and of Cycles.
Example. Relation between the cohomology spectrum of E on $(X)^{I}$ and $(Y)^{I}$ for $Y \subset X$ e.g. $X=\mathbb{T}^{n}$ and $Y=\mathbb{T}^{m} \subset \mathbb{T}^{n}$. (Viazovska theorem)
Results.

1. δ-Waist Inequality. $f: S^{n} \rightarrow$ \mathbb{R}^{n-k} a continuous map. $\exists p \in \mathbb{R}^{n-k}$, such that $\operatorname{vol}\left(U_{\delta}\left(f^{-1}(p) \geq \operatorname{vol}\left(U_{\delta}\left(S^{k}\right)\right.\right.\right.$ for all $\delta>0$

2 Guth' Steenrod Spectrum The-

 orem. X be the space of m-dimensional submanifolds x in the n-ball V and $F(x)=\operatorname{vol}_{m}(x)$.Then the volume spectrum of this
F satisfies

$$
\begin{aligned}
& \lambda_{i} \leq \text { const } \cdot i^{\frac{1}{m+1}} \\
& \text { and } \\
& \lambda_{i} \geq \operatorname{const}(\varepsilon) \cdot i^{\frac{1}{m+1}}-\varepsilon \text { for all } \varepsilon>
\end{aligned}
$$

0.

Weyl law for the codimension 1 volume spectrum (Liokumovich-MarquesNeves)

$$
\text { If } m=n-1 \text { then } \lambda_{i} \sim \text { const }_{n} \cdot i^{\frac{1}{n}}
$$

Question 1. How much of the geometry of a space X, say with a metric or symplectic geometry, can be seen in the homotopies of spaces of packings of X by such U_{i} ?
Question 2. Is there a good category of "abstract packing-like objects", that are not, a priori, associated to actual packings of geometric spaces?

- Homotopy and Cohomotopy Energy Spectra.
- Homotopy Dimension, Cell Numbers and Cohomology Valued Measures.
- Infinite Packings and Equivariant Topology of Infinite Dimensional
Spaces Acted upon by Non-compact Groups.
- Bi-Parametric Pairing between Spaces of Packings and Spaces of Cycles.
- Non-spherical Packings, Spaces of Partitions and Bounds on Waists.
- Symplecting Packings.
- Parametric coverings.

Homology Measures

(Morse Spectra, Homology Measures and Parametric Packing Problems)

$$
\begin{aligned}
& \Psi \supset D \mapsto \mu(D)=\mu^{*}(D ; \Pi)= \\
& \mathbf{0}^{\backslash *}(D ; \Pi) \subset H^{*}=H^{*}(\Psi ; \Pi),
\end{aligned}
$$

where Π is an Abelian (homology coefficient) group, e.g. a field \mathbb{F}, and $\mathbf{0}^{\wedge *}(D ; \Pi)$ is the kernel of the cohomology restriction homomorphism for the complement $\Psi \backslash D \subset \Psi$,

$$
H^{*}(\Psi ; \Pi) \rightarrow H^{*}(\Psi \backslash D ; \Pi) .
$$

The set function
$\mu^{*}:\{$ subsets $\subset \Psi\} \rightarrow\left\{\right.$ subgroups $\left.\subset H^{*}\right\}$
is additive for the sum-of-subsets in H^{*} and super-multiplicative ${ }^{4}$ for the the $\smile-p r o d u c t ~ o f ~ i d e a l s ~ i n ~ t h e ~ c a s e ~$ where Π is a commutative ring:

[^3][$\cup+$]
$\mu^{*}\left(D_{1} \cup D_{2}\right)=\mu^{*}\left(D_{i}\right)+\mu^{*}\left(D_{2}\right)$
for disjoint open subsets D_{1} and
D_{2} in Ψ, and
[n -]
$\mu^{*}\left(D_{1} \cap D_{2}\right) \supset \mu^{*}\left(D_{1}\right) \sim \mu^{*}\left(D_{2}\right)$
for all open $D_{1}, D_{2} \subset \Psi$.
Homology spectra on spaces of infinitely many particles in non-compact manifolds
Infinite dimensional space Ψ, action of an infinite group Υ on Ψ.
Example. Υ is a countable group call it Γ, e.g. $\Gamma=\mathbb{Z}^{n}$, and $\Psi=B^{\Gamma}$ is the space of maps $\Gamma \rightarrow B$.
H^{*} is a graded algebra (over some field) acted upon by a countable
amenable group Γ.
Exhaust Γ by finite Følner subsets $\Delta_{i} \subset \Gamma, i=1,2, \ldots$, and, given a finite dimensional graded subalgebra $K=K^{*} \subset H^{*}$, let $P_{i, K}(t)$ denote the Poincare polynomial of the graded subalgebra in H^{*} generated by the γ-transforms $\gamma^{-1}(K) \subset$ H^{*} for all $\gamma \in \Delta_{i}$.
Define polynomial entropy of the action of Γ on H^{*} as follows.
Poly.ent $\left(H^{*}: \Gamma\right)=\sup _{K} \lim _{i \rightarrow \infty} \frac{1}{\operatorname{card}\left(\Delta_{i}\right)} \log P_{i, K}$
(Permutation Symmetries and Equivariant Homology)
?Energy ~ Boltzmann distribution?

Sup $_{\vartheta}$-Spectra, Scalar Curvature and Spaces of Symplectic Packings.
Θ is a set of metrics ϑ on a topological space X
"Inv" (X, ϑ) is an invariant,
$\sup _{\vartheta}{ }^{\prime \prime}$ Inv" is the supremum of the invariants "Inv : (X, ϑ) over all $\vartheta \in \Theta$.
Example 1. $X=S^{3}$ and ϑ are metrics with $S c(\vartheta) \geq 6$.
Then sup $_{\vartheta}$ waist $_{2}=4 \pi$. (MarquesNeves)

Example 2. $X=(X, \omega)$ a symplectic manifold of dimension $n=$ $2 m$ and ϑ are ω-adapted metrics
Question. Which part of the (suitably factorized/coarsened) homotopy / homology area spectra of (X, ϑ) remains finite after taking suprema over ϑ ?

If $k=2$, then upper bounds in
some cases are obtained with pairing ball pacing with "psedoholomorphic curves" defined here as oriented surfaces $Y \subset X=(X, \omega, \vartheta)$, such that $\operatorname{area}_{\vartheta}(Y)=\int_{Y} \omega$.

5 References

Maxwell, James (1860), "V. Illustrations of the dynamical theory of gases.-Part I. On the motions and collisions of perfectly elastic spheres", Philosophical Magazine, 19 (124): 19-32.
1891 percoltion
Paul J . Flory (1941) Molecular Size Distribution in Three Dimensional Polymers. I. Gelation'
Paul J . Flory (1974) Spatial Configuration of Macromolecular Chains
(Nobel Lecture)
Analogy and Difference between
Gelation and Percolation Process Kazumi Suematsu

- Percolation Processes: Lower Bounds for the Critical Probability
JM Hammersley • 1957.
JÜRG FRÖHLICH C. E. PFISTER THOMAS SPENCER On the Statistical Mechanics of Surfaces
From Boltzmann to Euler: Hilbert's 6 th problem revisited Marshall Slemrod
Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits Stanislav SMIRNOV
Smirnov's Lecture https: //www. youtube.com/watch?v=6hCSSCV71vQ
HOMOLOGICAL PERCOLATION
ON A TORUS: PLAQUETTES AND

PERMUTOHEDRA PAUL DUNCAN, MATTHEW KAHLE, AND BENJAMIN SCHWEINHART -

- NG:

In a Search for a Structure, Part11:
On Entropy.
Geometry, Topology and Spectra of Non-Linear Spaces of Maps - Wolfgang Pauli Lectures
Bernoulli Lecture: Alternative Probabilities
Mathematics of life spaces

It is symmetry, not any idea of "measure of underminancy", which makes the concept of probability to work so beatifully in physics.

But to be applicable to heterogeneous structures of "non-physical worlds", e.g. in the world of languages, the traditional probabilistic formalism must be limited and modified in several ways.

For instance, the concept of independency must be reinterpreted for such structures and product formulas, e.g. the chain rule $P(A \& B)=P(A \mid B) \cdot P(A)$, must be used with moderation:
unrestricted iteration of such formulas leads to an accumulation of errors, which renders results unacceptable, even, where, which is rare in languages, these $P(A \mid B)$ and $P(A)$ themselves are unambiguously defined. ${ }^{39}$

Because of this, we shall be careful in saying probabale/impobable when it comes to sentences or even typical words in a languge; instead, we shall often use the concept of feasibility, where we start doing this prior to a (quasi)formal definition coming later on.
...combinatory play seems to be the essential feature in productive thought.
Albert Einstein in a letter to Jacques Hadamard

Our models of language will be, at least overtly, predominantly combinatorial ${ }^{40}$ rather than stochastic with no large numbers (and their reciproacals) in them. Yet, determination of adequate combinatorics will rely on systematic counting observable linguistic patterns.

Here is an example of how it goes.

Winograd Schema Challenge

Amazingly (for some), Google, which can't be blamed for understanding the concept of size, tells you with 100% certainty what are the antecedents of it in the following two sentences.

This package doesn't fit into my bag because it is too large.
This package doesn't fit into nsy bag because it is too small.
Indeed, the Google search returns:
>10000 results for "if the package is too large" \& "doesn't fit",
<10 results for \quad if the packagel is too small" \& "doesn't fit",

JAMES CLERK MAXWELL

....since most of the 'normal sentences' of daily life are uttered for the first time in the experience of the speaker-hearer ... they will have had probability zero before this utterance was produced...
...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

[^4]
[^0]: ${ }^{1} \mathrm{~A}$ cubic meter of air contains about $2.5 \cdot 10^{25}$ molecules.

[^1]: ${ }^{2}$ If each consecutive word in the sentence ... probabilistic models... is assigned probability $\approx \frac{1}{5}$ - this, albeit inaccurate, is meaningful - then the probability of the whole sentence will come up as meaningless $5^{-15} \approx \frac{1}{3 \cdot 10^{10}}$, where a minor perturbation, of $\frac{1}{5}$ to $\frac{1}{4}$ increases the result by a huge (>28) factor. See ?? section for more about it.

[^2]:

[^3]: ${ }^{4}$ This, similarly to Shannon's subadditivity inequality, implies the existence of "thermodynamic limits" of Morse Entropies, see [?].

[^4]: ${ }^{34}$ A physicist's ambition is a theory based on few, say $k<10$, basic rules with exponentially many, $k \sim k^{n}, n=1,2,3,4,5, \ldots$. logically deducible empirical facts. In biology, one would be happy with $K \leadsto K^{n=2}$ for large (about million?) K with admissible 80% error rate. And in linguistic the realistic exponent, I guess, is $n=3$.
 ${ }^{35}$ "Infinite", "arbitrarily small", "arbitrarily large", etc, are bona fide mathematical concepts. Their applications in physics (e.g. via differential equations) is (non-trivially) justifiable and (often inexplicably) successful.

 But the idea of infinity applied to biology, psychology, linguistics and philosophy of AI, be it open or covert, is a common cause of speculative aberrations.
 ${ }^{36} 10^{9}$ words corresponds to a ten thousand average books, and 10^{14} to a hundred billion Google pages, where the number of all books in the world is of order 10^{8} and the number of Google pages is about $3 \cdot 10^{13}$.
 ${ }^{37}$ This is, probably, how much the inborn language learning programs/moduli, most of them operating in parallel, occupy in the brains/subliminal minds of humans.

