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Solutions f of (systems of partial differential) equations E are expected to

display varieties of global properties obtained by "integrating" the infinitesimal ones
encoded by E.

But ever since the 1954 paper by Nash it was realized that there are "soft
equations" E, which leave almost no trace on the global behaviour of their solutions:

almost all what remains "telescopically visible" in f of a presence of E is
the homotopy properties of spaces of solutions resulting from pure algebra of
equations in E, while "differential" fails to integrate to "global".

Now we face the following.
Soft-versus-Rigid Problem. Outline the softness domain S in the space E

of all PDE and analyze equations on the borderline separating "rigid equations"
from "soft ones".

Experience shows that this borderline host most beautiful mathematics.

Random Historical Remarks

2



1909: Softness of solutions of certain diophantine, rather than differential,
equations shows up in Hilbert’s approach to the Waring problem.

1939: A "soft domain" in the complex analytic world was discovered by Oka.
1949: Onsager suggested Hölder Cα<1/3-softness of the Euler equation as a

reason for turbulence.
1954: Nash proved softness of isomeric C1-immersions of Riemannian man-

ifolds.
1958: Grauert proved the Oka h-principle for holomorphic maps from Stein

manifolds to homogeneous spaces.
1959: Smale proved flexibility of immersions in positive codimensions and

the homotopy principle for immersions of spheres. Hirsch articulated and proved
the general h-principle for immersions.

1967: Phillips proved the h-principle for submersions of open manifolds
1970: Eliashberg proved the h-principle for folded maps.
1974/76: Thurson proved the h-principle for foliations.
1993: Scheffer constructed non-concervative measurable weak solutions of

the Euler equation.
1995: Lohkamp proved the h-principle for Riemannin metrics with Ricci < 0.
1996: Müller and S̆verák Proved softness of Lipschitz solutions of certain

non-linear elliptic equtions by convex integration.
1996: Donaldson proved an h-principle for almost holomorphic maps of sym-

plectic manifols.
2009: De Lellis and L. Székelyhidi brought convex integration to the Euler

Equation.
2014: Borman, Eliashberg and Murphy proved the h-principle for overtwisted

contact structures.
2018: Isett constucted non-conservative Cα<1/3-Hölder solutions of the Euler

equation by convex integration. ...........................................................
*******************************
In fact it is possible to show that the velocity field in such "ideal"

turbulence cannot obey any LIPSCHITZ condition ... for any order n greater than
1/3; otherwise the energy is conserved (1949).1

My reflection, when I first made myself master of the central idea of [.....]
was, ‘How extremely stupid not to have thought of that!’ I suppose that Colum-
bus’ companions said much the same when he made the egg stand on end
(1888).2

Contents

1 C1-Isometric Immersion Theorem
Preamble. Cauchy 1813, Minkowski 1903, Cohn-Fossen’s 1927:

Rigidity Therem. Closed convex surfaces

X ⊂ R3,

1 LarsOnsager

2 ThomasHenryHuxley
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e.g. unit spheres S2, are C2-rigid:
Isometric C2-deformations of these are rigid motions,
where "isometric" means "preserving the lengths of all smooth

curves in the sphere".
(A priori, modifications of the Euclidean distances between points

in X are allowed, where one knows, for instance, that the half-sphere
S2
+ ⊂ S2 admits many isometric C∞-deformations, which do change

all Euclidean distances in it. But no such deformation of the whole
sphere is possible according the rigidity theorem.)
Folk Conjecture: C2 ==> C1.

For instance,
? the unit sphere S2 ⊂ R3 can’t be isometrically C1-imbedded to the interior

of the unit ball. ?
(C2 is obvious by Gauss Theorema Egregium)
********************************
The ansver by Nash (Kuiper) 1954/55: Let

X =X(g0) and Y = (Y,h0)

be Riemannian manifolds.
Euclidean Example. The papers by Nash and Kuiper were concerned with

the case, where Y was a Euclidean space, while X could be any Riemannian
manifold. But,

their arguments (almost) automatically extend to non-Euclidean Y ,
while

the power of these arguments is fully displayed, where both manifols are the
ordinary Euclidean spaces:

X = (Rn, g0 = gEucln =
n

∑
i=1

dx2
i )

and

Y = (RN , h0 = gEuclN ) =
N

∑
k=1

dy2
k).

The Nash-Kuiper theorem claims the existence of of isometric C1-
maps and their deformations, where nothing of the kind is possible in
the C2-category.

Namely, let
f0 ∶X ↪ Y

be a g0-isometric C1-embedding3 where "isometric" signifies that the
Riemannin metric induced on X

f0
↪ (Y,h0) is equal to g0:

[ISO] f∗0 (h0) = g0.

3This "C1-imbedding" means that the image f0(X) ⊂ Y is a C1-smooth submanifold and
the map f0 is a C1-diffeomorphism on its image.
In general, opologists call a continuous map f ∶ X → Y embedding if it is a homeomorphism

from X to a subset in Y .
If X is compact, this is the same as being one-to -one (no double point), but, for instance,

the obvious one-to-one immersion from the disjoint union of the (horizontal) closed segment
[−1/2,1/2] and the (vertical) half-closed (0,2] onto the figure � in the plane is not a topological
embedding.
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(This is the same "isometric" as above but now expressed in the in-
finitesimal terms.)

Euclidean Case. IfX = Rn and Y = RN , then the [ISO] condition f∗0 (gEuclN ) =

gEucln says that the partial derivatives of the Rn-valued vector-function f0(x1, ..., xn)
have unit norms,

∥
∂f

∂xi
∥
RN

= 1, i = 1, ..., n,

and they are mutually orthogonal in RN ,

⟨
∂f

∂xi
,
∂f

∂xj
⟩
RN

= 0, i ≠ j.

Examples The simplest instance of an isometric embedding Rn → RN=n+k

is the standard one:

Rn ∋ (x1, ..., xn) ↦ (x1, ...xn, 0...0
±
k

) ∈ RN .

More interestingly, the map R→ R2, where

y1 = sin(x) and y2 = cos(x),

satisfies [ISO],(check it!) albeit it is not an embedding.
In fact this map sends the real line R onto the unit circle in the

plane R2 and it defines an isomeric embedding of the quotient circle
R/2πZ to the plane.

Then one sees that the map Rn → R2n given by n pairs of sin and
cos,

(x1, x2, ..., xn) ↦ (sin(x1), cos(x1),

sin(x2), cos(x2), ..., sin(xn), cos(x1))

also satisfies [ISO].
Exercises. (a) Show that all C1-smooth isometric maps Rn → Rn, i.e. those

preserving the lengths of curves, also preserve distances between all pairs of
points.

(This fails to be true for non-C1 maps, such as x↦ ∣x∣ on the real
line.)

(b) Construct an isometric C∞-embedding of the real line to the
unit disc in the plane and show that n-copies of such an embedding
R→ B2(1) define an isometric C∞ -imbedding

Rn → B2n
(
√
n) ⊂ R2n.

Remark. One knows (Tompkins 1939) that if N ≤ 2n − 1, then all isometric,
i.e. satisfying [ISO], C3-maps Rn → RN have unbounded images.

But the Euclidean case of the Nash-Kuiper theorem as we shall
see in 1.A. below, delivers such C1-maps for all N ≥ n + 1.

Back to formulation of the general theorem, let

ft ∶X ↪ Y, 0 ≤ t ≤ 1,
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be an isotopy – a C1-continuous family of C1 embeddings.
For instance ft = (1 − t)f0 for f0 ∶X → Y = RN .
Let gt and ht 0 ≤ t ≤ 1, be continuous Riemannian metrics on X

and on Y that are homotopies of g0 and of h0.
Example. The "no-homotopy" case, where gt = g0, ht = h0 for all t is already

significant.
C1-Isometric Approximation Theorem. If the maps ft for

t > 0 are (gt, ht)- short,
f∗t (ht) < gt

and if
N = dim(Y ) > n = dim(X),

then there exists an isotopy of f0 by
(gt, ht)-isometric C1-imbeddings arbitrarily C0-close to ft:

fδ,t ∶X → Y, f∗δ,t(ht) = gt,

distY (fδ,t(x), ft(x)) ≤ δ(x, t).

for a given continuous function δ(x, t) > 0. 4

Amazing Corollaries
1.A. If N ≥ n + 1 then the map ft ∶ Rn → RN for

(x1, ..., xn) ↦ (tx1, ..., txn,0, ...,0)

can be δ-approximated by isomeric C1-imbeddings for all t ∈ [0,1] and all δ =
δ(x) > 0.

Thus, for example, Rn admits an isometric C1-embedding to the unit ball
in Rn+1.

Exercise. Prove the C∞-version of 1.A for n = 1.
1.B. If a manifold X admits a topological C1-embedding to RN and if

dim(X) ≤ N −1 then (X,g) also admits an isometric C1-embedding to RN for
all continuous Riemannian metrics g on X. 5

**************************************
What?! : The equality

f∗(gEucl) = g

in local coordinaes on X and

g = ∑
i≤j=1,...n

gij(x)dxidxj

reads:

∑
k=1,...,N

∂fk(x)

∂xi
⋅
∂fk(x)

∂xj
= gij(x).

These are
s = n(n+1)

2
equations

in N unknown functions.
Not a chance to be solvable for all g if N < s,
every PDE student knows this.
........................................................

4 JohnForbesNashJr

5Derivation of his from C1-isometric approximation theorem for compact manifolds X is
achieved by an obvious homothetic scaling of a given embedding X → RN to a short one,
while such a "scaling" for non-compact X requires an additional effort.
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Science is the belief in the ignorance of experts.6

● ● ● ● ● ● ● ● ●
unprintable

obvious!7

1.1 Existence of (non-Isometric) Immersions
From the geometric point of view the existence of a smooth, not
necessary isometric, immersion or an embedding of an n-manifold X
to the Euclidean space RN may seem a trifle matter.

(Recall that a C1-differentiable map f ∶ X → Y is an immersion if
the differential df ∶ T (X) → T (Y ) has everywhere rank n, i.e. if the
linear maps df(x) ∶ Tx(X) → Tf(x)(Y ) are injective on all tangent spaces
Tx(X) of X or, equivalently, by the implicit function theorem, if f can
be represented in some, depending on f , local coordinates x1, ..., xn at
all x in X and y1, ..., yN , N = n + k at f(x) ∈ Y by the standard linear
embedding (x1, ..., xn) ↦ (x1, ...xn,0, ...,0

´¹¹¹¹¹¹¸¹¹¹¹¹¶
N−n

).)

In fact, in 1936 Whitney showed that all C∞ smooth n-manifolds
X admit C∞ -immersions to R2n.

Here is the standard proof, simple and instructive
Step 1. Cover X by n + 1 mutually open subsets Ul, l = 1, ..., n = 1, where

each Ui is the union of mutually disjoint very small subsets Bl,j ⊂X, j = 1,2, ....
(If X is compact here are finitely many of these Bl,j .)

6 RichardPhillipsFeynman

7 AlfredRusselWallace,CharlesRobertDarwin
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Step 2. Construct C∞-smooth maps fl,j ∶X → Rn, such that the restrictions
of fl,j to Bl,j are immersion, Bl,j → Rn, and such that the supports of fl,j1 and
fl.j2 are disjoint for all l and j1 ≠ j2.

Step 3. Let
Fl = ∑

j

fl, j

and observe that the map

F = (F1, ...Fl, ...Fn+1) ∶X → Rn × ... ×Rn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1

=

= Rn(n+1)

is an immersion.
Conclusion of the proof immediate by induction from the follow-

ing.
Codimension one Cr-Projection Lemma. Let F ∶ X → RN

be a Cr-immersion, r ≥ 2.
If N ≥ 2n + 1, then there exists a 1-dimensional linear subspace Λ ⊂

RN , such that the composition of F with he quotient map,

X
F
→ RN → RN /Λ = RN−1

is an Cr-immersion X → RN−1.
Proof. Let UFT (X) ⊂ T (X) be the set of tangent vectors τ ∈ T (X), which

have unit lengt in RN ,
∥dF (τ)∥ = 1

and observe that UFT (X) is a Cr−1-smooth (2n − 1)-dimensional submanifold
in the (C∞-smooth) tangent bundle T (X). (One loses here one degree of dif-
ferentiability, since UFT (X) is defined via the differential dF of F )

Transport the vectors dF (τ) ∈ T (RN) to the origin and thus obtain
a Cr−1-map from ŨF (X) to the unit sphere, say

T̃F ∶ UF (X) → SN−1
⊂ RN .

Since the map T̃F is (at least) C1, the dimension of the image of
this map

T̃F (UF (X)) ⊂ SN−1

doesn’t exceed 2n − 1 = dim(UFT (X)) (see below).
Thus, the map T̃F can’t be onto for N ≥ 2n + 1: there must exist

a unit vector
λ ∈ SN−1

∖ T̃F (UF (X));

then the line Λ ⊂ RN spanned by this vector does the job.
About Dimension. The relevant dimension in the present context is the

Haussdorf dimension that is defines for subsets A ⊂ RM as the infimum of the
numbers d, such that A can be covered by countably many balls of radii ri,
i = 1,2, ...,, such that

∑
i

rdi < ∞.
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In general, for subsets A in a smooth M -dimensional manifold Z, this is defined
as the supremum of the Euclidean dimHaus of the pullbacks of A ⊂ Z under all
smooth immersions RM → Z.

It is an elementary exercise to check that
dimHaus(Z) = dimZ = dimHaus(RM) for all smooth M -manifold Z and

that this dimension is non-increasing under C1-maps F ∶ Z1 → Z2,

dimHaus(f(A) ≤ dimHaus(A) for all A ⊂ Z1.

(This is a special case of Sard’s theorem, which was refined by Yomdin as is
briefly explained in section??? in PDR ??? )

Exercises. (a) Show by adapting the above argument that generic C2-maps
Xn → Y N are immersions for N ≥ 2n, that is, such maps constitute an open
dense set in the space C∞(X,Y ) of all C∞ maps.8

(This also follows from the general Thom’s transversality theo-
rem.) (If X is non-compact and one insists on "open" one should use
the fine topology in this space)

In 1944, Whitney proved that all n-manifolds of dimensions n ≥ 2
can be smoothly immersed to R2n−2.

The proof is geometric and not very difficult but by no means
obvious, while the follownig generalization, besides a use of an essen-
itally geometric Smale-Hirsch immersion theorem, heavily relies on
algebraic topology.

Ralph Cohen’s 1985-Solution of 1960 of WilliamMassey’s
1960-Conjecture. All n-manifoldsX can be immersed to R2n−α(n),
where α(n) is the number of 1’s in the binary expansion of n. (Seehttp:
//math.stanford.edu/~ralph/immersions-final.pdf.)

1.2 Topological Obstructions to (non-Isometric) Im-
mersions, Embeddings and other non-Singular Maps
The above theorem is optimal.

In fact, Massey proved in his 1960 paper that if n = 2i1 + ... + 2ir ,
then the product of r real projective spaces,

Xn
= RP 2i1

× ...× = RP 2ir

can’t be immersed to R2n−r−1.
(This follows from nonvanishing of the normal Stiefel-Whitney

class w⊥2n−r(Xn) for this Xn.)
For instance (this goes back to Whitney) the projective space

RPn = Sn/±1, where n = 2i, can’t immersed to R2n−2.
We refer to the explanation of all this to http://math.stanford.

edu/~ralph/immersions-final.pdf and limit ourself to the follow-
ing illustration of an intervention of the algebraic topology in the im-
mersion theory, which also helps us to understand Smale’s h-principle.
.

8If X is non-compact and one insists on "open" one should use the so calledfine topology
in this space.
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Start by recalling that, according to the Hirsch theorem, all smooth
maps f0 ∶ Rn → RN , N ≥ n + 1, can be finely C0-approximated by im-
mersions fε ∶ Rn → RN that is, such that

∥f0(x) − fε(x)∥ ≤ ε(x)

for a given continuous function ε(x) > 0, x ∈ Rn.
But, as the following shows, some of these f can’t be C1-approximated

by immersions,
Example. Let X0 ⊂ B

2(1) ⊂ R2 be an annulus in the unit disc around the
circle S1 = ∂B2(1) ⊂ R2 and let f0 ∶X0 →M0 ⊂ R3 be a double covering map of
some Möbius strip in the space.

Then no smooth extension f of f1 to a smooth map f ∶ B2(1) → R3

admits a C1-approximation by immersions.
Indeed, let us apply the differential df1 of f1 to the Euclidean

coordinate 2-frame of tangent vectors on R2 restricted to X0 ⊂ R2.
This defines a continuous map from X0 to the of pairs of linearly

independent (orthonormal for C1-isomeric maps f) vectors in R3, call
it

d1 ∶X) → St2(R3
),

where Stn(RN) denotes the space of n-tuples of linearly independent
vectors in the Euclidean n-space.

Observe that StN(RN) is homeomorphic to the group GL(N) of
linear transformations of RN , since the natural action of GL(N) on
StN(RN) is free and transitive.

It is also clear that StN1(RN) is homotopy equivalent to the special
linear group) SL(N) ⊂ GL(N) of orientation preserving linear trans-
formations of RN , i.e. representable by (N×N)-matrices with positive
determinants ∣xij ∣, because, for given (x1, ..., xN−1 ∈ StN−1(RN), the
space of xN ∈ RN , such that ∣xij∣ > 0, which is homeomorphic to
the space of non-zero vectors in the halfspace RN+ , is (unlike RN ∖ 0)
contractible.

Recall that the fundamental group of the special linear group)
SL(3) of linear transformations of R3 preserving orientation is

π1(SL(3) = Z2 = Z/2Z,

where it is generated by the circle S1 = SO(2) ⊂ SO(3) ⊂ SL(3), and,
observe, that the map d1 applied to S1 ⊂ X represents (essentially)
the same circle in SL(3).

(To visualize this, represent all s ∈ SO(3) ∖ {id} by counter-clock
rotations around the axes of vectors Ð→s R3 of length ≤ π. Since the
vectors Ð→s and −Ð→s for ∥Ð→s ∥ = π represent the same spacial rotation s,
this establishes a homeomorphism between SO(3) and the projective
3-space: the ball B3(π) with the ±opposite points on the boundary
identified.

Thus, π(S)(3) = π1(RP 3) = π1(S
3/Z2) = Z2 .)

It follows that d1 is non-homotopic to the constant map d0 rep-
resented by the differential of standard embedding X0 ⊂ R2 ⊂ R3;
therefore the map d1 doesn’t extend to an immersion from B2 ⊃ X0,
and the C1-non-approximability property trivially follows.
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Remark. This argument applies to those n and N ≥ n where the Stiefel
manifold Stn(RN), has a non-trivial homotopy group πl(Stn(RN)) ≠ 0 for some
l ≤ n − 1, but fails otherwise.

(Note, that being an iterated fiber bundles of spheres of dimen-
sions N − 1, ...,N − n, the space Stn(RN) has all homotopy group
πl(Stn(RN)) = 0 for l ≤ N − n − 1 .)

For example, π2(SL(3)) = St2(R3) = π2(SO(3)) = 0, since the
double cover of SO(3) is equal to SU(2) = S3.

Therefore the differentials of all orientation preserving immersions
from spherical annuli X0 ⊂ R3 around S2(1) ⊂ R3 define mutually
homotopic maps from X0 to SL(3).

For instance if X0 is the annulus between the spheres of radii 1
and 3 written in the polar coordinates as

X = {s,2 + r} ∈ R3
}s∈S2(2),r∈[−1,1]

then the map f1 ∶ (s, r) ↦ (−s,−r) is orientation preserving, and
the corresponding map X → SL(3) is homotopic o the constant map
which correspond to the original embedding, call it f0 from X to R3.

Then by Smale’s h-principle the map f1 ∶ X0 = S2 × [−1,1] → R3

is regularly homotopic to f0 ∶X0 → R3:
f1 can be joined with f0 by a C1-continuous family of immersions

ft ∶ X → R3, 0 ≤ t ≤ 1, which, because of the switch r ↦ −r turns the
axial sphere in X0 inside out.

Exercise. Show that if N ≤ 2n − 1, then, among the C2-maps f ∶ Bn → RN ,
such that rankdf(0) = n − 1, the generic ones admit no C1-approximation by
smooth immersion.
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GENERALITY, NATURALITY and
LEXICOGRAPHIC COMPLEXIY: History versus Logic.
Originally, the isometric immersion theorems were formulated and

proven for embeddings X → RN , while the intrinsic logic of the prob-
lem suggests X → Y for all Riemannin manifolds X and Y .

Here and everywhere, our preference is dictated by the relative
simplicity of writing the corresponding statements in TeX.

For instance, ”Y ” is ten times more efficient TeX-wise than ”RN”,
where "complexity" is measured by the number of symbols in LaTeX:

complexity ”RN”

complexity ”Y ”
=

∣/ m a t h b b R ∧ n∣

∣Y ∣
= 10.

3 Riemannian Manifolds: Concepts, Ter-
minology, Notation

Languages are true analytical methods.9

The limits of my language mean the limits of my world.10

A Riemannian metric/tensor g on a smooth manifold X can be
regarded either as a positive definite quadratic differential form on X

g = g(x) = gx = gx(τ1, τ2) = ⟨τ1(x), τ2(x)⟩gx

or as a strictly positive quadratic function g(τ, τ) on the tangent
bundle T (X),, i.e. such that gx is positive definite for all x ∈X:

g(τ, τ) > 0 for T (X) ∋ τ ≠ 0.

df2-Example. The square
df2

= (df)2

of the differential df ∶ T (X) → R of a smooth function f = f(x) on X, is an
instance of a non-negative form.

If n = dim(X) ≥ 2 this can’t be strictly positive, since it vanishes on ker(df),
but sums of N ≥ n of these may be strictly positive.

Euclidean example.

gEucl =
n

∑
k=1

dx2
i on RN ;

If f = (f1, ...fk, ...fN) ∶X → RN is a C1-map, then

f∗(gEucl) =
N

∑
k=1

df2
k ,

where g = f∗(gEucl) is strictly positive if and only if f is an immersion.

More Notation
9 AntoineLaurentLavoisier

10 LudwigJosefJohannWittgenstein
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Bxo(δ) ⊂X = (X,g) is the δ ball in X,
Txo(δ) = Txo(X,δ) ∈ Tx0 is the ball in the tangent space Tx0(X) = Rn,
n = dim(X).
If g is C2 and δ > 0 is small, then the exponential map eo = expxo

Tx0(X) ⊃ Txo(δ)
eo
→ Bxo(δ) ⊂X,

is an approximately isometric C1-diffeomorphism

∣(e∗o(g)/gEucl) − 1∣ ≤ constX,xoδ.

GW-Construction.11 Let χ = χ(t) be a smooth non-negative function
with the support in [0, ε = εχ > 0] and, given a Riemannin manifold (X,g), let
ρxo(x) = χ(distg(x,xo)).

Integrate the squared differentials of the functions ρxo over X and
get

gχ(x) = ∫
X
(dρxo(x))

2dgxo.

If gχ = gEucl for X = (Rn, gEucl),
then, for all (compact) X and small ε > 0

∣(gχ/g)∣ − 1 ≤ constX,xεφ.

Since integrals can be approximated by (Riemann) sums,
[⋆θ] all g on (compact) X can be C0-approximated by finite sums of R-

inducible forms, say θ = dφ2 .
**************************************
Nash proves [⋆θ] with his twist formula:

a(x)2df(x)2
= dϕ2

ε(x) + dψ
2
ε (x) − ε

2da(x)2,

where
ϕε(x) = εa(x) sin ε−1f(x), ψε(x) = εa(x) cos ε−1f(x).

Exercise. Let fε ∶ (X.g) → RN be an isometric immersion with the image
in the ε-sphere SN−1(ε) ⊂ RN , i.e. ∥f(x)∥ = 1, x ∈ X. Check that the metric
induced by the map a(x)fε(x), for all functions a(x), is

(afε)
∗
(gEucl = a

2g + ε2
(da)2.

11 DavidHilbert,HermannKlausHugoWeyl
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***************************************
Normal Exponential. Let Y = (Y,h) be a Riemannian manifold, e.g.

Y = (RN , gEucl) and let f ∶X ↪ Y be a C1-smooth immersion.
Let the normal bundle T ⊥(X) of X in Y be trivial, e.g. X is homeomorphic

to the (open or closed) ball Bn⊂Rn and let α ∶X ×RN−n → T⊥(X), n = dim(X),
N = dim(Y ), be an isomorphism of vector bundles which implements a trivial-
ization of T ⊥(X).

Let B⊥(δ) = B⊥X(δ) ⊂ T ⊥(X) be the δ-balls subbundle and let

Eδ = exp⊥δ ∶ B
⊥
(δ) → Y

be the normal exponential map.
Let g = ϕ∗(h) be the induced Riemannin metic on X and g⊕ = g⊕ gEuclk be

the Riemannin sum metric on X ×Rk.
[⊥∗] If the map α is C2-smooth, then the map Eδ ∶ B⊥(δ) → Y is C1 and

approximately isometric for small δ:

(α ○Eδ)
∗
(h)/g⊕ → 1 for δ → 0,

where α ○Eδ ∶X ×BN−n(δ) → Y.
++++++++++++++++++++++++
From f to g = f∗(h) and Back. C1-small perturbations of embedding

(and immersions) f ∶ X → (Y,h) result in controllably C0-small perturbations
of the induced metric g = f∗(h) and

the converse is true for δ-small normal displacements f1 of imbeddings
f ∶X → (Y,h) defined as follows.

A map f1 ∶X → Y is called a normal displacement of f ∶X → (Y,h) if
for all x in X, the point f1(x) can be joined with f(x) ∈ Y by a geodesic

segment γ = γ(x) normal to X
f
↪ Y at x, where the unit tangent vectors to these

γ at x ∈ X (which are normal to X) are called the directions of the displacement
and where f1 is called i δ-displacement of f if length(γ(x)) ≤ δ, for all x ∈X.

Observe that
unite normal fields on X define such displacements via the exponential map

B⊥(δ) → Y .
Now the above mentioned bound on the C1-distance between f1 and f reads:
[∗⇆] If X is compact, if h is C2 and δ > 0 is small, then

distC1(f1, f0) ≤ λ
∗
⋅ log(f∗1 (h)/f∗0 (h)).

—————————————–
A quadratic differential form θ on X is Bk(o(1)-inducible if it can be induced

by C1-maps φδ ∶X → Bk(δ) for all δ > 0.
Since the real line R can be isometrically immersed to B2(δ), δ > 0.
[o(1)k] R-inducible forms are Bk(o(1))-inducible for k ≥ 2.
Smooth Immersions, Curvature and Gauss Theorema Egregium.

4 Proof of Nash Theorem
Summary off the above
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RN -immersible ⇐⇒∑
N
1 df2

i

df2 is B2(o(1))-immersible.
(φ2df2 is also B2(o(1))-immersible)
∫X dfε(x,xo)

2dxo Ô⇒ ≈ε ∑
Nε
1 df2

i

(B⊥X(o(1)), gY ) = (X,gY ) ×BN−n(o(1))
graph∗φ(g ⊕ dt

2) = g + dφ2

∣f1 −
⊥
f0∣C1 ≺ ∣g1 − g0∣C0 .

Nash Stretch Lemma. Let f ∶ Xn → (Y N , h) be a smooth embeddings
and θ be a Bk(o(1))-inducible form with support in a topological ball in X,
where k = N − n, Then there exit δ-small normal displacements fδ ∶ X → Y of
f , such that

f∗δ (h) → f∗(h) + θ for δ → 0.

Proof. Let φδ ∶X → Bk(δ) induce θ, let

ψδ ∶X →X ×Bk(δ)

be the graph of this map.
Since ψδ(g ⊕ gEuclk) = g + θ, for g = f

∗(h) the composed map and

fδ = (α ○Eδ) ○ ψδ

does the job due to [⊥∗], which makes sense because the isomorphism α ∶ X ×

Rk → T⊥(X) is defined over the support of θ.
Nash C1-Imbedding Theorem for k ≥ 2. Given a short embedding f0 ∶

(Xn, g) → (Y N , h), where k = N −n ≥ 2, there exists an isometric C1-imbedding
f ∶ (X,g) → (Y,h).

Proof. Since Θ0 = g−f
∗
0 (h) > 0, the form Θ0 approximately decomposes into

sum of R-inducible forms θ, where, by the proof of [⋆θ], these θ can be chosen
with arbitrarily small supports.

By [o(1)k] and stretch lemma, there exist an embedding f1 ∶ X → Y with
an arbitrarily small positive difference Θ1 − g = f

∗
1 )(h). Similarly one obtains

imbeddings
f2, ...fi, ... ∶X → Y,

where
Θi = g − f

∗
i (h) → 0 for i→∞,

and where, because of [∗⇆], these imbeddings C1-converge to the required iso-
metric f .

Fractals and Infinitesimals

5 Codimension k = dim(Y ) − dim(X) = 1

Let
ξε ∶ R→ [−ε, ε]

be continuous piecewise linear map where the segments [(i − 1)ε, (i +
1)ε], i = ... − 1,0,1, ..., are isometrically mapped onto [−ε, ε] with
and/or without reverse of orientation depending on parity of i.

16



Given a smooth function φ ∶X → R, let

φε = ξε ○ φ ∶X → [−ε, ε]

and
fε ∶X → Y

be the normal φε-displacement of a smooth imbedding f ∶X → Y in the direction
of a unit normal vector field on X

f
↪ Y .

The map fε is smooth away from the iε-levels Z ⊂ X of the function φ,
where it has corers along Z, while the induced form f∗ε (h) is continuous and it
uniformly converges to f∗(h) = dφ2. for ε→ 0.

Smooth the corners an get smooth imbeddings , say fε,ε ∶X → Y , ε > 0, such
that

(i) fε,ε is equal to fε away from the ε neighbourhood of Z.
(ii) f∗ε,ε(h) → f∗ε for ε→ 0.
(iii) distY (fε,ε, fε) ≤ ε.
(iv) The distance between the differentials dfε,ε and dfε,ε is bounded by twice

the jump of the differential at the corner.
Granted this, the above proof of the Nash C1-imbedding theorem carries

over to k = N − n = 1.
4???Pseudo-Riemannian Manifolds. The Nash-Kuiper stretching argu-

ment effortlessly generalizes to immersion of manifolds with indefinite "metrics".
Exercises. Let Y = (Y,h) be a Pseudo-Riemannian manifold, with "metric"

h of type (N+,N0), N+ +N0 = N = dim(Y ) and let f0 ∶ X → Y be a smooth
imbedding.

4???Show at if the induced metric g0 = f∗0 (g) is positive (definite), g0 > 0,
and if n = dim(X) < N+, then, for all g > g0, the map f0 can be C0-approximated
by isometric embeddings f ∶ (X,g) →)Y,h) isotopic to f0.

Hint. Use normal displacements directed by h-normal fields ν to Xm such
that h(ν, ν) > 0.

4??? Let the induced "metric" g0 = f
∗
0 (h) have type (n+, n−), n+ +n− = n =

dim(X) and let g be of the same type as g0.
Show that if
N+ > n+, N− > n−,
n+, n− > 0,
and if g is homotopic to g0 in the space of (n+, n−)-"metric " on X (e.g

X is contractible), then f0 can be C0-approximated by isometric embeddings
f ∶ (X,g) → (Y,h) isotopic to f0.

Hint. Follow a homotopy of g by normal stretching f directed by normal
vectors ν away from the isotropic directions, i.e. where h(ν, ν) = 0.

5??? Let X and Y be pseudo-Riemannian manifolds of types (n+, n−) and
(N+,N−) and let f0 ∶X → Y be a continuous map Let the tangent bundle T (X)

admit an isometric homomorphism to the induced bundle f∗0 (T (Y )) →X.12

If N+ > n+, N− > n−, then f0 can be C0-approximated by isometric immer-
sions f ∶ (X,g) → (Y,h).

Hint. Start with the proof of the following proposition by using stretching
in normal directions away from isotropic directions as earlier.

12This condition is satisfied for N± ≥ n± + n and also for contractible X, where N± ≥ n±.
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Homotopy Lemma. Let f0 ∶ X → Y be smooth embedding and let ht, 0 ≤

t ≤ 1, be a ıhomotopy of "metrics" on Y of a given type (N+,N−), N+ +N− =

N = dim(Y ), where the induced g0 = f∗0 (h0) is non-degenerate of type n+, n−,
n+ = n− = n = dim(X).

If either
(a) n± < N±,
or
(b) n− = 0 and n+ < N+, then there exists an isotopy ft, 0 ≤ t ≤ 1, of f0

such that the induced gt = f∗t (ht) are non generate, hence all of the same type
(n+, n−).

The case (b) of the lemma yields the following.
Smale Hirsch’ Homotopy Principle for Immersions. Let X and Y

be smooth manifolds of dimension n = dim(X) and N = dim(Y ).
Let Φ0 ∶ T (X) → T (Y ) be a continuous fiberwise linear fiberwise injective

map13 and let f0 ∶X → Y be the continuous map which underlies Φ0.14

If n < N , then f0 can be approximated by smooth immersions f ∶X → Y , such
that the differentials df ∶ T (X) → T (Y ) can be joined with Φ0 by homotopies of
continuous fiberwise linear fiberwise injective maps Φt ∶ T (X) → T (Y ).

To see how (b) helps, let V be the total space of the bundle T ∗ = f∗0 (T (Y )),

whereX is embedded to V by the zero section, sayX
ψ0
↪ V and let the (co)normal

bundle of X ↪ V be identified with T ∗.
Let f0 be smooth and F0 ∶ V → Y be a smooth map, such that F0∣X = f0

and such that the differential of F0 on T ∗ ⊂ T (V )∣X is equal to the tautological
map T ∗ → T (Y ).

Employ Φt and construct a family ht of "metrics" on V of type (M+,M−)

for M+ = N , M− = n, such that
●0 the metric h0 is positive on T (V ),
●1 the metric h1 is negative on the kernel of the differential dF0 ∶ T (V ) →

T (Y ),
Use the above (b) and approximate ψ0 by smooth imbeddings ψ ∶ X → V

isotopic to ψ0, such that ψ ∗ (h1) > 0.
Then observe that the composed maps f = F0 ○ ψ ∶ X → Y are immersions

which approximate f0.
Remark. The proof of (b) uses only a few lines in the Nash-Kuiper argument:

the existence of stretches, which make the induced metric as large as you want
and, since h is indefinite, one also needs to take care of keeping the displacement
directions away from the isotropic ones.

Isometry on Subbundles

Exercise. Let (X,g) and (Y,h) be Riemannian manifolds and Θ ⊂ T (X) be
a subbundle of rank m ≤ n = dim(X).

Let r < N = dim(Y ) and generalize the Nash-Kuiper stretch argument to
maps f ∶ (X,g) → (Y,h), such that

f∗(h)Θ = g∣Θ

.
13Such a ∆ exists if N ≥ 2n and also if X is contractible of dimension n ≤ N .
14A fiberwise linear map Φ ∶ T (X), T (Y ) is a pair (f, η) where f ∶ X → Y is a continuous

map and η ∶ T (X) → f∗(T (Y )) is a vector bundle homomorphism.
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Also extend Hirsch’ h-principle to maps f where the differentialis injective
on Θ.

Show, for instance that for a arbitrary independent continuous tangent vec-
tor fields θ1, ..., θm on X, m < dim(Y ),

there exists a C1-map f ∶X → Y , such that

∣∣d(θi)∣∣h = 1 and ⟨d(θi), d(θj)⟩h = 0

for all i, j = 1, ...,m, j ≠ i.

6 Codimension Zero: dim(X) = dim(Y)

(A) Let X be a smoothly triangulated manifold with a continuous Riemannin
metric g and f0 ∶ (X,g) → (Y,h) be a short C1-map.

Then, f0 can be approximated by continuous maps f , such that
● the maps f are C1-smooth and isometric on the interiors of the simplices

of dimension m < n = dimX and f is short on the interiors of n-simplices;
● the induced Riemannin metrics f∗(h) on X are continuous.
(B) Let (X,g0) be a C0-Riemannian manifold, let g > g0 be another contin-

uous metric and let εi(x) > 0, i = 1,2, ..., be continuous functions.
Then there exists smooth hypersurfaces Zi ⊂ X, and continuous piecewise

smooth maps
...

fi+1
→ X

fi
→X

fi−1
→ ...

f1
→X,

such that
● the maps fi are smooth on Zi and on the complements X ∖Zi; moreover,

fi are smooth up to the boundaries on the submanifolds with boundaries into
which Zi locally divide X;

● distg(fi(x), x) ≤ εi(x);
● the induced metrics

g1 = f
∗
1 (g0), ..., gi = f

∗
i (gi−1)...

are continuous
f∗i+1(g0) > f

∗
i (g0)

; and gi →C0 for i→∞.
It follows that the composed Lipschitz map f = ...○fi○...○fi ∶ (X,g) → (X,g0)

is isometric: it preserves the lengths of all rectifiable curves and dimtop(f
−1(x)) =

0, x ∈X.
Can one make dimHau(f

−1(x)) ≤ ε, x ∈X, for all ε > 0?

7 Perspectives on Isometric Immersions and the
h-principle

Mathematical phenomena are established by proofs and understood by generaliza-
tion, or more respectfully, by finding underlying general principles/theories.

(1) In these lectures we emphasise the (quasi)analytic point view, which
could elucidate general classes of partial differential equations, which behave
similarly (or highly dissimilarly) to f∗(h) = g.
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(2) A topologist would be mainly intersted in homotopy and homology of
"natural" (e.g. Diff(X)-invariant) mapping spaces and "natural" sheaves so-
lutions of differential relations – equations and inclusions over X in the spirit
of the Smale-Hirsch h-principle.

Definition of Relations R of the First Order for Maps X → Y . Let H =

H(X,Y ) →X × Y be the vector bundle with

Hx,y = hom(Tx(X) → Ty(Y )),

H-morphisms are continuous fiberwise linear maps T (X) → T (Y ) or equiva-
lently sections X →H, where H is fibered over X via the projection X ×Y →X.

Given a subset R ⊂ H – a differential relation in our terms – an H-morphism
X →H is a R-morphism if its image is contained in R, ,

A solution of R is a C1-map X → Y , the differential of which df ∶ T (X) →

T (Y ), regarded as a section of H →X, is an R-morphism.
Isometric Example. If X and Y are Riemannian manifolds then the isometry

relations consists of the isometric homomorphisms Tx(X) → Ty(Y ).
Definition of the h-Principle. A Relation R ⊂ H(X,Y ) and/or its solutions

satisfy the h-principle if all continuous sections X → R ⊂ H, are homotopic to
differentials of solutions of R, by continuous homotopies of R-morphisms.

Exercises. (a) Show that short immersions Xn → RN , N > n, satisfy the
h-principle.

Hint. This follows from Hirsch theorem by homothetic scaling immersions
of compact manifols X, while shortening of immersions of non-compact X needs
special auxiliary immersions f0 ∶X → R, such that

f0(x) → 0 for x→∞,

where the existence of suitable f0 follows from the Hirsch theorem.
(b) Derive the h-principle for isometric C1-immersions Xn → RN for M > n

from (a) by the Nash-Kuiper argument.
(c) Give examples of open Riemannian manifolds Xn smoothly embedded to

RN , N > n, which admit no short embeddings to RN .
Hint. Look at the Möbius band

X = RP 2
∖ p0.

(d) Show that proper embeddings Xn ↪ RN , N > n, can be transformed to
short ones, where the latter can be made proper as well as short for complete
X.

Parametric h-Principle. Let C0(R) be the space of continuous sections
X →R and Sol1(R) be the space of C1-solutions of R.

Then R and its solutions are said to abide by the parametric h-principle if
the differential d ∶ Sol1(R) → C0(R, f ↦ df, induces an isomorphism between
the homotopy groups of these two spaces.

Exercise. Show that isometric C1-immersions Xn → RN , n < N , abide the
parametric h-principle.

(3) From the metric/convexity perspective, isometric immersions (X,g) →
RN are extremal points in the space of distance decreasing maps; accordingly,
one asks what are similar points for distance decreasing maps between more
general metric spaces.
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(4) If you think of g as an instance of a contravariant tensor, you turn
to manifolds equipped with such tensors of a given type T (e.g. symmetric
and/or antisymmetric differential forms of a given degree) and the corresponding
category CT of "T -isometric" maps.

A prominent example is that of symplectic immersions between symplectic
manifolds,

f ∶ (X,ω) → (Y, η),

which, for dim(X) < dim(Y ), satisfy the h-principle with a properly incorpo-
rated cohomology condition f∗[η] = [ω], [η] ∈H2(Y ;R), [ω] ∈H2(X;R).

(5) From the classical differential geometric point of view the isometry con-
dition for f ∶ X → Y prescribes the first fundamental form I1 on X defined by
the Y -scalar products between the first derivatives of f .

This suggests the study of maps f ∶X → Y with given forms II2, II3..., where
the most attractive one is II2, which characterizes the curvature of f(X) ⊂ Y .

(K) Your may dreams, of extending your "soft ideas" to the "rigid worlds"
of complex manifolds and even further to algebraic and diophantine geometry.
15

If you succeed your may delight in the great unity of mathematics or be
humbled by realizing how repetitive our mathematical ideas are.

8 Euler/Onsager

V. Scheffer (1974,1993) 16 Müller-Šverák(2003), 17 De Lellis-Székelyhidi(2007).18

V. Scheffer (1974,1993) 19 Müller-Šverák(2003), 20 De Lellis-Székelyhidi(2007).21

Euler Equation on (v = v(x, t), p = p(x, t)), where v is a time dependent
vector field on a Riemannin manifold X (e.g. on the flat 3-torus), v ∶ X × R ∶

15The h-principle is vaguely reminiscent of the Hasse local-to-global principle and the Nash
proof of the C∞- isometric immersion theorem can be compared to Gilbert’s solution of the
Wring problem; then one wonders if the ideas behind the Hardy-Littlewood circle method can
be useful in PDE.

16Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial
differential equations and inequalities

An inviscid flow with compact support in space-time.
17Convex integration for Lipschitz mappings and counterexamples to regularity.
18The Euler equations as a differential inclusion.
19Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial

differential equations and inequalities
An inviscid flow with compact support in space-time.
20Convex integration for Lipschitz mappings and counterexamples to regularity.
21The Euler equations as a differential inclusion.
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Figure 1: plane Figure 2: B... principle

T (X), and p ∶X × t→ R is a function on X:

∂t(v) + ∇v(v) + gradX(p) = 0,

div(v) = 0.

where ∇v(v) is the covariant derivative ∇v of v:
∇v(v)i = ∑j vj∂jvi =
= ∑j ∂j(vivj) − vi∑j ∂jvj ,
or
∇v(v) = ”div”(v ⊗ v) − div(v)v
for ”div”{vi ⊗ vj}i = ∑j ∂j(vivj)

Energy Conservation.

∂t ∫
X
⟨v, v⟩ = ∫

X
−div⟨v, ∣∣v∣∣2 + p⟩ = 0

———————————
Degression 1: Example of an Onsager Relation.22 Heat flows from the

warmer to the colder parts of a liquid system and matter flows from high-
pressure to low-pressure regions.

But temperature differences can also cause matter flow (convection) and
pressure differences can cause heat flow.

The heat flow per unit of pressure difference and the density (matter) flow
per unit of temperature difference are equal.

This equality follows from microscopic reversibility.
22In 1931, L. Onsager after Kelvin and Helmholtz.
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———————————–
Scheffer-Shnirelman "Paradox". There exists a weak bounded measurable

solution of Euler in dimension 2, with a compact support in X ×R.
Digression 2. Trees Hight Paradox.
=============

Onsager’s H older 1/3 Conjecture (1949)
Positive Direction. If α > 1/3, then every weak Cα-solution v(x, t) to

Euler conserves energy: E(t) = ∫ v
2(x, t)dx is constant in time.

(Final 2-page Proof 23

23G. L. Eyink. Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier
analysis and local energy transfer. Phys. D, 78(3- 4):222–240, 1994.
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Negative Direction. For every α < 1/3, there exist (periodic) weak Cα-
solutions, such that the conservation of energy fails.

Isett-.....De Lellis-Székelyhidi ( (1
10

- 1
5
) - 1

3
) Theorem. For all α < 1/3,

there is a nonzero weak Cα-Hölder solution v(x, t) on the 3-torus X = T 3 with
C2α-pressure p, where v is 0 outside a finite time interval.

References
B. Kirchheim, S. Muller, Sverák(2003) Studying Nonlinear pde by Geometry

in Matrix Space
CÉDRIC VILLANI Paradoxe de Scheffer-Shnirelman revu sous l’angle de

l’intégration convexe [d’après C. De Lellis et L. Székelyhidi] Astérisque, tome
332 (2010), Séminaire Bourbaki, exp. no 1001, p. 101-134

Philip Isett, A Proof of Onsager’s Conjecture arXiv:1608.08301 [math.AP]
——————————————–

9 Convex Integration
Introduction to the H-Principle - Eliashberg, Y., Mishachev.

I. Dimension One. Let X and Y be smooth manifolds and ∂ be a non-
vanishing vector field on X.

Let
A = ⋃

(x,y)∈X×Y
Ax,y ⊂X × T (Y ).

Ax,y ⊂ x × Ty(Y )

and
B = conv.hullT (A) = ⋃

(x,y)∈X
conv.hull(Ax,y)

C1-Case. Let
●regA the obvious projection from A to X × Y , call it P∣A ∶ A → X × Y is a

topological submersion24, (e.g. a locally trivial fibration);
●regB the projection P∣B ∶ B ∶X × Y , call it is a a locally trivial fibration);
●connect the fibers Ax,y are path connected;
●lift the manifold X × Y admits a continuous lift to A, that is a continuous

map L ∶X × Y → A, such that the composed map P ○Q ∶X × Y →X × Y is the
identity map.

Then
the space of A∂-directed C1-maps f ∶X → Y , i.e. such that

∂f(x) = df(∂x) ∈ Ax,f(x), x ∈X,

is C0-dense in the space of B∂-directed C1-maps.
Or, in an analyst’s terms, ∂-subsolutions of A can be approximated by regular

solutions".
Example Let X be the circle S1, let Y = Rk and A = Ao × S

1 × T (Rk), for
Ao ⊂ Rk = Rkx,y = Ty(Rk).

P. CONSTANTIN, W . E & E. S. TITI, Onsager’s conjecture on the energy conservation
for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994),p. 207-209

24Each point inA admits a neighbourhood which fibers over its image in X × Y .
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If Ao is path connected and conv.hull(Ao) contains a neighbourhood of
0 ∈ Rk, then A d

ds
-directed maps f ∶ S1 → Rk, i.e. with df

ds
∈ A, do exist.

Lipschitz Case. Let A be a closed subset, such that
●strA X × Y and A admit stratifications such that for each stratum S ⊂ A

there is a stratum S ⊂X × Y such that
●AB the projection P∣A ∶ A → X × Y sends S → S, where this map is a

topological submersion and the corresponding B-map over S,

B ∩ P∣A(S) → S

is a fibration’
●XY the projections of S to X and to Y are topological submersions.
Then the space of almost everywhere A∂-directed Lipschitz maps f ∶X → Y ,

is C0-dense in the space of a.e. B∂-directed Lipschitz maps. 25

Remark. The analytically most essential case, of the above ??? and ???
where X = [01], is proven by A. F. Filippov: Classical solutions of differential
equations with multi-valued right-hand side, SIAM J. Control 5 (1967), p. 609-
621.)

Our multidimensional formulation is needed for applications to partial dif-
ferential equations and inclusions.

Convex Decomposition. Let U and V be compact smooth manifolds, let
f ∶ U → Rm be a Cl-map, and Φ ∶ V → Rm be a Cr-map, such that the image
f(U) ⊂ Rm is contained in the interior of the convex hull of the image of Φ,

f(U) ⊂ inter.conv.hull(Φ(V )).

If U is connected and r ≥ 1, then there exit finitely many Ck-maps

ψi ∶ U → V , k = min(l, r),

such that f is equal to a convex combination of the composed maps

fi = Φ ○ ψi ∶ U → Rm,

f = ∑
i

pifi, pi ≥ 0, ∑i pi = 1.

Remark. This is not true for r = 0, not even for generic Lipschitz maps
Φ ∶ [0,1] → Rm=1.

The convex decomposition serves in the inductive steps in following.
Codim 1 Reduction and C⊥-Approximation . The convex integra-

tion of certain differential relations – equations and inclusions for vector valued
functions f(x1, ...., xn) can be implemented by treating f as functions in a single
variable, say in xn with values in the space of functions in the remaining n − 1
variables.

Such reduction is present in the proofs of the h-principle in the variety of
cases, starting with its implicit use in the Nash-Kuiper C1-isometric immersion
argument and explicit in the Smale-Hirsch proof of the topological immersion
theorem.

25This is true under weaker conditions, but ●strA, ●AB ,●XY are not so bad since they are
satisfied in many geometric cases, e.g, where A is a semialgebraic set.
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C⊥-Example.
Also a version of this is present in constructions of isometric C∞-immersions

and, with in the modern Oka theory (see section??), where C takes place of R.
But when this reduction becomes impossible, (maybe only invisible?) the

proofs of the h-principle become more difficult e.g. for construction of foliations
and metrics with Ricci < 0.

Two simple(?) questions.
(1) Directed Immersions. Let U ⊂ S2 be a connected open subset in the

unit sphere, such that U ∪ −U = S2.
Does the 2-torus T2 admit an immersion to f ∶ T2 → R3, such that the

tangential Gauss map Gf ∶ T2 → S2 lands in U?
More generally, let Grn(RN) be the Grassmann manifolds of (oriented) n-

subspaces in RN .
Under what conditions on U ⊂ Grn(RN) do immersion of (oriented) n-

manifolds f ∶X → RN with Gf(X) ⊂ U satisfy the h-principle?
For instance let U be an open subset which contains the spherical image

Gf(X) ⊂ Grn(RN) of some immersion f0 ∶ X0 → RN , of a closed n-manifold X
e.g. of the n-torus Tn.

Do then all parallelizable n-manifolds X admit immersions f ∶X → RN with
Gf(X) ⊂ U?

Differential Inclusions: Polyhedral and Lipschitz Solutions.26

If the convex hull of a subset G ⊂ SN − 1 coneains a neighbourhood of zero
0 ∈ RN, then there exists a compact convex polyhedron P = PG ⊂ RN withe the
faces normal to some u ∈ U , in writing, G(∂P ) ⊂ U .

It follows that every smooth immersion of an oriented n-manifold, n = N −1,

f ∶X → RN

can be ε approximated by piecewise linear immersions

fεX → RN

with Gfε ⊂ U
To see this, pretend that f is an imbedding, cover f(X) ⊂ RN by translated

and ε-scaled copies of P = PG,

⋃
i

εPi + yi ⊃ f(X).

Then let fε(X) ⊂ RN be a connected component of the boundary of the
union ⋃i εPi + yi ⊃ f(X).

If X is non-orientable, this applies to the complement of a hypersurface
X(n − 1) ⊂ X = Xn and delivers a Lipschitz immersion X → RN , which is
piecewise linear on the the complement X ∖X(n − 1) and which has all faces
from X ∖X(n − 1) normal to vectors u ∈ U .

This Lipschitz fε can be upgraded to a piecewise linear map if G contains
"sufficiently many" symmetric pairs (u,−u), but...

If N > n + 1, and f ∶ X → Rn is an immersion with a trivial normal bun-
dle, then (again pretend f is an embedding) the submanifold f(X) ⊂ RN is

26Compare with ???[Cellina Inclusions 2005]
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a transversal intersection of (co)-oriented hypersurfaces and transversal inter-
sections of the above ∂P -piecewise linear approximations to these approximate
f(X), where this approximation may change the topology of X.

However this doesn’t happen if the dihedral angles of P are > π − [
π

2(N − n)
but I am not certain what is the true condition on P needed for this purpose.

Also it is unclear, what are U ⊂ Grn(RN , such that all immersions of all
Xn → RN admit piecewise linear approximations by maps with all n-faces par-
allel to these in U .

Exercise. Generalize the above to (approximations by) piecewise smooth
immersions between arbitrary manifolds, f ∶ X → Y , such that the differentials
of these f at smooth points send X to a given subset U in the Y -tangent bundle
over X × Y ,

U ⊂X × T (Y ) →X × Y,

where this U is the union of finitely many smooth hypersurfaces Ui ⊂X ×T (Y )

transversal to the T (Y ) fibers.
Problems
Relate directed p.l. immersions with triangulations of n-manifolds, where

the links of all vertices belong to a given set of triangulations of Sn−1

Study directed piecewise smooth immersions with singular loci of codimen-
sion 2.

(2) Free Maps. Does T2 admit a free immersion to R5?
(A map f ∶ T2 → R5 is free if the five partial derivatives,

∂1f(x), ∂2f(x), ∂1,1f(x),

∂1,2f(x), ∂2,2f(x) ∈ R5

are linearly independent at all
x ∈ T2.)
More generally what are n, r and N , n > 1, r > 1, such that the maps

f ∶X → RN , for which the rth osculation spaces coincide with RN ,

oscr(f(x)) −NRN , x ∈X,

satisfy the h-principle?
Straight and Localized Elimination of Singularities. [G-E], 2.1.5 Em-

bedding Haefliger
Haefliger, A., Plongements différentiables dans le domaine stable, Commen-

tarii Math. Helv. 1962/1963, 37, 155–167
Gromov, M. and Eliashberg, 1.(1971), Construction of nonsingular isoperi-

metric films, Trudy Steklov Inst. 116, pp. 18-33.
Approximation in Sobolev Spaces.[GE]Gromov, M. and Eliashberg, 1.(1971),

Construction of nonsingular isoperimetric films, Trudy Steklov Inst. 116, pp.
18-33.

10 Seymour-Zaslavsky-Hilbert Rationality The-
orem

The the above ??? and ??? as well as their proofs are similar to that of the
Seymour-Zaslavsky theorem stated below and, where as we shall see later on,
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the Hilbert’s (spherical design) case of this theorem applies to the h-principle
for isometric immersions with controlled curvatures.

A point z in the convex hull of X ⊂ Rn is called X-rational if it is equal to
a convex combination of points from X with rational weights,

[pj] z =
N

∑
j=1

pjxj , xj ∈X,

where pi ≥ 0 are rational numbers , such that ∑j pi = 1.
Equivalently, X-rational points z ∈ conv(X) are centers of mass of finite

multi-sets27 from X,

[1/M] z =
1

M

M

∑
k=1

xk,

where [pj] Ô⇒ [1/M] for M equal the common denominator of the numbers
pj .

I. SZ Theorem.28 If a compact subsetX ⊂ RM contains 2M point xi, yi ∈X,
i = 1, ..., n, such that the n vectors xi − yi ∈ R

M are linearly independent and such
that xi and yi lie in the same connected component of X for all i = 1, ...,M , then
all points x in the interior of the convex hull of X, are X-rational.

Moreover, these z are representable by centers of mass of finite subsets (rather
than multi-sets) in X.

Hilbert Theorem.29 For all k and d there exit N = N(k, d) rational ponts
si ∈ S

k = Sk(1) ⊂ Rk+1, such that all polynomial functions P (s) of degrees ≤ d
satisfy

1

N

N

∑
i=1

P (si) = ∫
Sk
P (s)ds

where ds stands for the O(k + 1)-invariant probability measure on Sk.
Exercise. Show that the existence of not-necessarily rational points si with

1
N ∑

N
i=1 P (si) = ∫Sk follows from the SZ-theorem applied to the sphere Sk imbed-

ded to some RM by a polynomial map Q ∶ Sk → RM .

11 Applications and Generalizations of Convex
Integration

Convex integration serves many open relations R, where, for instance, it yields
the following.

Short Immersions Theorem. Let f0 ∶ X → Y be a smooth short (e.g
constant) map between Riemannin manifolds.

If f0 homotopic to an immersion and N > n, then
f0 can be C0-approximated by short immersions.30

27 A multiset is an mage of a map I → X, written as {xi} ⊂ X, i ∈ I, xi ∈ X.
28Seymour, P. D. and Zaslavsky, T., Averaging set. A generalization of mean values and

spherical designs, Adv. Math. 52 (1984), 213-246.
29 This reduces the Waring problem in degree 2d to that for d, Hilbert, D., "Beweis fiir

die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches
Problem)" Math. Ann. 67 (1909), 281-300.

30PDR
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Independent Forms Theorem If a manifold X =Xn admits M linearly
independent differential forms of degree d and if

2 ≤ d ≤ n − 1,

then X admits M linearly independent exact forms N of the same degree D.31

Odd d Decomposition Theorem. Let g be a continuous symmetric differential
form on X =Xn of odd degree d.

If N ≥ 2s(n + 1, d − 1) + 2n, where

s(n + 1, d − 1) =
(n + d − 1)!

(n)!(d − 1)!
,

is the dimension of the space of homogeneous polynomials of degree d − 1 on
Rn+1, then there exists C1-function f1, ..., fN on X, such that

g =
N

∑
i=1

dfdi .
32

Remark. If N < s(n, d) = (n+d−1)!
(n−1)!d!

,,which may happen for

(n + d − 1)!

(n − 1)!d!
> 2

(n + d − 1)!

n!(d − 1)!
+ 2n,

e.g. for d ≥ 2 and n > 4d, the PDE system g = ∑
N
i=1 df

d
i is overdetermined and

has no C∞-solution for generic C∞-smooth g.
Question. Can one significantly improve the bound N ≥ 2s(n+ 1, d− 1) + 2n

in our C1-case.?
Even d Decomposition Problem. Here the h-principle has not been proved

so far and only limited results are available.
Example.33 Let d = 2r and g = gr, where g is a positive definite differential

quadratic form on X =Xn,
(a) If

N = s(n, d) + s(n, d − 1 − n) − n,

then locally, in a neighbourhood U = U(v) ⊂X of each point x ∈X,

g =
N

∑
i=1

dfdi

for some C1-functions fi on U .
(b) If

N ≥ (n + 1)s(n, d) − n)

then g decomposes into the sum

g =
N

∑
i=1

dfdi

31Eliashberg, Y., Mishachev, N.
32This follows from the h-principle for hyperegiuar g-isometric maps, see 2.4.(3’) in PDR.
33See 2.4(4) in PDR and section 10.1.8,10.19 in [Sbornik 1972] for corresponding C∞ results.
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with C1-functions fi on all of X.
Remark Both (a) and even more so (b) are underdetermined, which raises

the following
Question. Does the space of continuous forms of even degree d ≥ 4 on Xn

contain a non-empty open subset of forms g which decompose as

g =
N

∑
i=1

dfdi

for N < s(n, d) with C1=functions fi = fi(x)?

The basic first order realations for C1-maps X → Y , to which the convex
integration doesn’t apply are

R = {Rx,y} ⊂ H = {Hx,y},

Hx,y = hom(Tx(X) → Ti(Y ),

where Rx,y are linear or affine subspaces in Hx,y. However, such R may lie in
the range of the h-principle.

1-dDimensional Example. Let Θ ⊂ T (X) and Ξ ⊂ T (Y ) be smooth
subbundles of ranks no ≤ n = dim(X) and N0 ≤ N = dim(Y ) and let Rx,y =

Rx,y(Θ→Ξ) consist of homomorphisms Tx(X) → Ty(Y ), which send Θx → Ξy
for all x ∈X and y ∈ Y .

[⋆]. Let Ξ by fully non-integrable, i.e the consecutive commutators of tan-
gent vector fields from Θ span all of the tangent bundle T (Y ).

If no = rank(Θ) = 1, then the relation R = {Rx,y} satisfies the h-principle.
(It is common knowledge in the Carnot-Caratheodory community but I don’t

know to whom it must be attributed to.)
There are instances, where the h-principle has been proved for no > 1, e.g. for

immersions between contact manifolds or where N = dimN and No = rank(Xi)
are large depending on no and the corank k = rank)T (Y )/Ξ ofX. The true lower
bounds on No and N = dim(Y ) needed for the h-principle remains problematic
but, without bothering to think hard, No ≥ 2(k + n0)

2 will do.
R⊥(Θ→Ξ)-Relations. The simplest such a relation on f ∶ X → Y is where

the differential df ∶ T (X) → T (Y ) is injective on all linear (sub) spaces Θx ⊂

T (X) and sends them transversally to Ξf(x) ⊂ Tf(x)(Y ).
Question. Do all these R⊥ satisfy the h-principle?
(If no < N −No, this follows by convex integration e.g. by the Nash-Kuiper

stretch as in the proof of the Smale-Hirsch theorem; also the case N−No = no = 1
is easy.)

More General/Difficult Question. Let R♮ ⊂ R(Θ→Ξ) be defined by imposing
bounds on the dimensions of df(Θx) ⊂ Tf(x)(Y ) and on of the intersections
df(Θx) ∩Ξf(x),

r1 ≤ dim(df(Θx)) ≤ r2,

r⊥1 ≤ dim(df(Θx) ∩Ξf(x)) ≤ r
⊥
2

When does such a relation

R
♮
= R

♮
(r1, r2, r

⊥
1 , r

⊥
2)

satisfy the h-principle?
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Non-smooth Ξ. Let Ξ ⊂ T (Y ) be a generic continuous (hence, nowhere
differentiable) subbundle.

When do relations R(Θ→Ξ) and R♮(r1, r2, r
⊥
1 , r

⊥
2) satisfy the h-principle.

Convex Integration in R(Θ→Ξ)

Every class of first order relations for maps fo ∶ Xno
o → Y Noo , {Roxo,yo} ⊂

{Hxo,yo = hom(Txo(Xo) → Tyo(Yo)}, has a counterpart with Θ instead of T (Xo)

and Ξ instead of T (Yo) for rank(Θ) = no and rank(Ξ) = No.
For instance, one may endow Θ and Ξ with symmetric forms g and h of

degrees d and let
R(g, h) ⊂ R(Θ,Ξ) ⊂ H

consist of (g, h)-respecting homomorphisms (Θx, gx) → (Ξy, hy) at all (x, y) ∈
X × Y .

Thus, solutions ofR(g, h) – call them (g, h)-isometric maps fX → Y – satisfy:

df(Θ ⊂ Ξ and (df)∗(h) = g.

A relevant h-principle is proven [Da2000] for a class of "suitably regular"34

isometric immersions for contact structures (Θx, gx) → (Ξy, hy) with quadratic
forms on them by adapting the Nash stretching argument.

Also, a similarly adapted Nash stretching delivers the h-principle for "suit-
ably regular" (g, h)-isometric immersions where Ξ is fully non-integrable of suf-
ficiently large dimension depending on n0 = rank(Θ), d = deg(h) = def(g) and
corank(Ξ) = rank(T (Y )/Ξ).

In fact, this argument adapts to other geometric situations,35 including those
where the general convex integration theorems don’t apply, e.g. to symplectic
isometric embeddings [DL2002].

In a similar spirit, one can prove an h-principle for connection inducing
maps(see 2.2.6 in [PDR]) augmented with an isometry condition.36

Exercise. Formulate and prove a 1-dimensional h-principle simultaneously
generalizing ??? and ???.

12 H-Principle beyond Convex Integration: Foli-
ations, Ricci Curvature, Holomorphic and al-
most Holomorphic Maps

??A. Oka(1939) and Stein(1951).
A complex n-manifoldX is Stein if it possesses "the same kind of abundance"

of holomorphic functions → C as the Euclidean space Cn does.
In concrete terms, X is Stein if and only if it is bi-holomorphic to a complex

analytic submanifold in CN .
34This is typical : proofs (possibly the validities), of h-principles often apply not to relations
R themselves but to subrelations R∖Σ for some Σ ⊂ R of positive codimensions in Σ.

35See [The2019] for generalizations and applications of the Nash-Kuiper stretch argument.
36Given a vector bundle V → X with a Euclidean connection ∇X one proves an h-principle

for maps X to the Grassmann manifold, f ∶ X → Y = Grm(RM ), which induce (V,∇X) from
the canonical bundle (W,∇Y ) over this Y ; if X is endowed with a Riemannin metric, one can
also prove for large M the h principle with the isometry condition for some metric on Y . But
the optimal bound on M remains problematic.
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For instance, all complex algebraic submanifolds in CN are Stein.
A complex n-manifold Y is Oka if it possesses "the same kind of abundance"

of holomorphic lines C→ Y as Cn does.
In precise terms, a connected Y is Oka (elliptic) manifold if the following

mutually equivalent conditions are satisfied for all N and all relatively compact
convex open subsets U ⊂ CN .

RAP(Forstneric̃) All holomorphic maps U → Y can be (Runge) uniformly
approximated on compact subsets in U by maps, which holomorphically extend
to CN ⊃ U.

C-CONNectivity (Kusakabe) Given two holomorphic maps f0, f1 ∶ U → Y ,
there exits a holomorphic map F ∶ U × C → Y , such that F (u,0) = f0(u) and
F (u,1) = f1(u).

ELL1(Kusakabe) For all holomorphic maps from Stein manifolds f ∶X → Y ,
there exist holomorphic maps F ∶ X × CM → Y , such that F (x,0) = f(x) and
the differentials dF (x,0) ∶ Tx,0(X ×CM ∶ CM = x ×CM → Tf(x(Y ) have ranks
N = dimY at all x ∈X.

Examples. Complex homogeneous spaces, (obviously) satisfy ELL1, while
RAP and CONN were proven here by Grauert (1958).

Smooth toric algebraic varieties are Oka, Larusson(2011)
Complements to compact holomorphically convex subsets, 37 in complex semisim-

ple Lie groups of dimensions N ≥ 3, e.g. in CN or in GL(N,C), are Oka (Kusakabe
2020).

H-Principle (Forstneric̃) Holomorphic maps from Stein manifolds to Oka
manifolds satisfy the parametric h -principle, which for holomorphic maps reads
as follows:

every continuous map X → Y is homotopic to a holomorphic one.
None of the above, including the equivalence

RUN⇐⇒ CONN

is trivial.
Two references.
F. Forstneric̃ Recent developments on Oka manifolds(2023), arXiv:2006.07888

[math.CV]
Finnur Larusson, Eight lectures on Oka manifolds,(2014) arXiv:1405.7212v2
Conjecture. Let Y be Oka and Stein and let it also satisfy the density

property:
complete holomorphic vector fields on Y are dense in the space of all holomorphic

fields for uniform convergence on compact subsets, e.g. Y is a semisimple Lie
group.38

37A subset K in a complex space Y is holomorphically convex if, for all yo ∈ Y ∖K, there
exists a holomorphic function fo on Y which separates yo from K, that is

∣fo(yo)∣ > sup
y∈K

∣f(y)∣.

38 Dror Varolin: The density property for complex manifolds and geometric structures. J.
Geom. Anal., 11(1):135–160, 200,

A general notion of shears, and applications, Michigan Math. J. 46 (1999), no. 3, 533–553.
Riccardo Ugolini, Joerg Winkelmann, The Density Property for Vector Bundles arXiv

[2209.05763].
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Then holomorphic maps from Stein manifolds X to Y the ranks of which is
every where bounded from below by a given m ≤ n = dim(X),

rank(df(x)) ≥m,x ∈X,

satisfy the h-principle.
Remark. if N > m, then the elimination of singularities39 used for maps

X → CN , may work with the density property for nonvanishing vector fields, if
N >m, but the case N =m seems very difficult.

Problem. Let g be a holomorphic quadratic differential form on a Stein
manifold X, e.g g = 0, and let h be such a nonsingular form on Y , e.g. h =

∑
N
i=1 dy

2
i on Y = CN .

Under what conditions on (Y,h) (Oka, density,...) do free 40 isometric holo-
morphic maps f ∶ X → CN satisfy the parametric h-principle, at least for
N >> 2n + 2n(n + 1)/2?

Remark. This is motivated by possible reduction of the (quadratic) differ-
ential equations such as f∗(h) = g for h = ∑Ni=1 dy

2
i on Y = CN to algebraic ones,

Compare with 10.1.3 in [G. Smoothing 1972] and 5.4.A in [G. Oka 1989]. but
the problem hasn’t been resolved even in the case of Y = CN .

Also it remains unclear what happens to similar equations of degrees > 2.
More References.

[Oka] K. Oka: Sur les fonctions des plusieurs variables. III: Deuxi‘eme
probl‘eme de Cousin. J. Sc. Hiroshima Univ. 9, 7–19 (1939)

Franc Forstneric̃ The homotopy principle in complex analysis: a survey
arXiv:math/0301067v2 [math.CV] 3 Mar 2003

Franc Forstneric̃, Oka manifolds arXiv:0906.2421v2
F ForstnericWhat is an Oka manifold? https://users.fmf.uni-lj.si › Forstneric-

Krems-2011 PDF

Book © 2017 by F Forstneric Stein Manifolds and Holomorphic Mappings:
The Homotopy Principle in Complex Analysis
Franc Forstneric̃ Oka manifolds: From Oka to Stein and back Annales de la

faculté des sciences de Toulouse Mathématiques (2013)
Volume: 22, Issue: 4, page 747-809 ISSN: 0240-2963

arXiv:2301.01268v1 [math.CV] 3 Jan 2023 Proper holomorphic maps in Eu-
clidean spaces avoiding unbounded convex sets Barbara Drinovec Drnovˇsek
and Franc Forstneriˇc

Yuta Kusakabe 2020 Oka properties of complements of holomorphically con-
vex sets arXiv:2005.08247 [math.CV]

Yuta Kusakabe (2020) An implicit function theorem for sprays and appli-
cations to Oka theory, International Journal of MathematicsVol. 31, No. 09,
205007.

Elliptic characterization and localization of Oka manifolds Yuta Kusakabe
(or arXiv:1808.06290v1 [math.CV] for this version)

39See 2.1.5 in [PDR] and ??? below.
40A holomorphic map f ∶ X → Y is free if the second holomorphic osculating spaces of

Xn f↪ CN have dimension n + n(n + 1)/2.
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Frank Kutzschebauch, Finnur Larusson, Gerald W. Schwarz Gromov’s Oka
principle for equivariant maps, arXiv[1912.07129]

Smooth toric varieties are Oka Finnur Larusson
arXiv:1107.3604v3 [math.AG] for this version)
Approximation and interpolation of regular maps from affine varieties to

algebraic manifolds Finnur Larusson, Tuyen Trung Truong
Cite as: arXiv:1706.00519 [math.AG] (or arXiv:1706.00519v3 [math.AG] for

this version)

The Density Property for Vector Bundles Riccardo Ugolini, Joerg Winkel-
mann

Dror Varolin. The density property for complex manifolds and geometric
structures. J. Geom. Anal., 11(1):135–160, 200 Foliations.

The Density Property for Complex Manifolds and Geometric Structures II
Internat. J. Math. 11 (2000), no. 6, 837–847.

A general notion of shears, and applications Michigan Math. J. 46 (1999),
no. 3, 533–553.

journal of symplectic geometry Volume 18, Number 3, 733–767, 2020 H-
principle for complex contact structures on Stein manifolds Franc Forstnericˇ

Regular Algebraic Ell1-property makes sense for algebraic manifolds Y
over all fields K of characteristic zero and, probbaly, can be meaningfully ex-
tended to characteristic>0 as well. See [Larusson-Truong 2017] 41 for K = C.

Questions. What can be said in the spirit of Larusson-Truong on (possi-
bly,stabilized) spaces of regular maps from affine manifolds X to elliptic Y ,
(e.g. to algebraic groups and homogeneous spaces) over more general fields?

Is there an algebraic counterpart of the Hirsch h-principle for immersions
X → Y ?

If Y = KN , N > dimX, this follows by applying "straight" elimination
of singularities section ???), but the holomorphic version of "localization" is
probematic.

Is there a general theorem for regular maps f ∶ (X,g) → (Y,h) where g and
h are

Is there an h-principle kind of theory for regular maps f ∶ (X,g) → (Y,h)
generalizing Hilbert’s theorem on representation of rational polynomials g of
degree d by sums of d-th powers of rational linear forms?

Is there such a theory for maps from projective varieties X to elliptic ones,
along the lines Gream Segal’s 1979-theorem for rational functions?42

Here one may start with developing "straight" elimination of singularities for
N -tuples of sections of sufficiently ample vector bundles over projective varieties.

Is there an h-principle. where the role of "continuous" is taken by mor-
phisms between "etale homotopy types" of algebraic manifols?43What I mean

41Finnur Larusson, Tuyen Trung Truong,Approximation and interpolation of regular maps
from affine varieties to algebraic manifolds, arXiv:1706.00519v3.

42The topology of spaces of rational functions Acta Math. 143: 39-72
(1979). Jacob Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem
(2003)arXiv:math/0307103v2 [math.AT] for this version)

Alexis Aumonier An h-principle for complements of discriminants Alexis Aumonier(2022)
arXiv:2112.00326v2.

43(
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here, probbaly naively, is the classifying space of the category of non-ramified
coverings of Zariski open subsets in X.

Donaldson’s Almost Holomorphic Maps Of Symplectic Manifolds
Similarly to abundance of holomorphic maps of high degrees from projective

manifolds X to CPN 44 it almost holomorphic maps from symplectic manifolds
with adapted complex structures display a similar behavior.45.

This is reminiscent of a similar abundance of approximately isometric C1-
immersions XnCN , where the Donaldson-Kodaira-Bergman argument is analo-
gous to the GW-construction in section 1.

Apparently, the quasi-complex (as well as complex) flexibility depends on
production of (real) codimension two bubbles, that takes place of the codimen-
sion one corrugations.

But a comprehensive unified treatment of these two classes of overdetermined
PDE is not available yet.

References
S. Bergman, "The kernel function and conformal mapping" , Amer. Math.

Soc. (1950)
Jean-Paul Mohsen Limit holomorphic sections and Donaldson’s construction

of symplectic submanifolds, arXiv:1610.06111v4 [math.SG] 5 Jun 2021
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Foliations.
⋆☀ For all k and n, there exists a (Haefiger universal) foliated (non-empty!)

manifold Y = (Y (n, k),Fn,k) with k-codimensional leaves, such that smooth maps
f of n-manifolds X to Y , such that these f are transversal to the leaves of the
foliation F on Y , satisfy the h-principle.

This theorem for open manifolds X is due to Haefliger (1970) and for closed
ones to Thurston,(1974, 1976), where the proof for codimension k = 1 is more
delicate.46
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Contact Structures Overtwisted contact structures on all manifolds X
satisfy a parametric h-principle, Thus all X admit contact structures in all
homotopy classes of almost contact structures.

In particular, all orientable (2n−1)-manifolds immersible to R2n admit con-
tact structures.

Reference.
Matthew Strom Borman, Yakov Eliashberg, EmmyMurphy (2014) Existence

and classification of overtwisted contact structures in all dimensions. (86 pages)
arXiv:1404.6157 [math.SG]

Roger Casals, Jose Luis Pérez, Álvaro del Pino, Francisco Presas, Existence
h-principle for Engel structures,(2015)

arXiv:1507.05342 [math.SG]

Geometry & Topology 24 (2020) 2471–2546 The Engel–Lutz twist and over-
twisted Engel structures ÁLVARO DEL PINO THOMAS VOGEL

Question. Which integrability/non-integrability conditions C ion C∞-subbundles
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Figure 3: Milnor’s Discs Figure 4: Overtwisted

Θ ⊂ T (X) satisfy the h-principle?
Here C must be expressed by equalities and non-equalities imposed on r-jets

of germs of Θ, which are invariant under diffeomorphisms of X.
For instance, C may say that Θ is everywhere locally generated by m tangent

vector fields, such that the ranks ρl of the subbundles in T (X) generated by
commutators of orders ≤ l of these fields, l = 1, ..., r, are contained in given
intervals,

m ≤ml,1 ≤ ρl ≤ml,2 ≤ n = dim(X).

Alternatively, if Θ is expressed represented as intersection of the kernels n−m
linear differential forms λi on X,

Θ⋂
i

ker(λi),

then C may be described in terms by the (isomorphism class of) the differential
algebra generated by λi.

(This suggests a similar problem for forms of degriees d ≥ 1.)
T Shin · 2021, Directed immersions for complex structures
https://comptes-rendus.academie-sciences.fr › item PDF
Maximally non-integrable almost complex structures: an h-principle and

cohomological properties R. Coelho, G. Placini & J. Stelzig
Research Article Open Access Luis Fernandez, Tobias Shin, and Scott O.

Wilson* Almost complex manifolds with small Nijenhuis tensor https://doi.org/10.1515/coma-
2020-0122 Received September 10, 2021; accepted October 2, 2021

Lohkamp-Ricci h-Principle. If dim(X) ≥ 3 then the space of Riemannin
metricsgon X with Ricci(g) < ρ on on X are contractible for all ρ.

Furthermore, these metric are C0-dense in the space of all metrics47

Curvature h-Principles Joachim Lohkamp
Annals of Mathematics , Nov., 1995, Second Series, Vol. 142, No. 3 (Nov.,

1995), pp. 457-498

Metrics of Negative Ricci Curvature Author(s): Joachim Lohkamp
47These g are not C1 dense, which, along with the inequality dim(X) ≥ 3, indicate that a

direct codimension one reduction doesn’t work here.
Yet the h-principle may be grounded in "C0-local concavity" of the space of metrics g with

Ricci(g) < 0, as opposed to "C0-local convexity" of Ricci(g) ≥ 0, which results in rigidity of
the latter class of metrics.
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Annals of Mathematics , Nov., 1994, Second Series, Vol. 140, No. 3 (Nov.,
1994), pp. 655-683

Question. For which n and N do C∞-immersions f ∶ Xn → RN with
Ricci(f∗(gEucl)) < 0 and/or with scal.curv(f∗(gEucl)) < 0 satisfy the h-principle?48

13 De Lellis - Székelyhidi Rendition of Convex
Integration

49

Version V →W. Let V,W → X be smooth vector bundles, let A ⊂ V be a
subset and DV ∶ C∞(V ) → C∞(W ) be a linear differential operator with smooth
coefficients. Let

B = convV (A) = ⋃
x∈X

conv.hull(Vx) ⊂ V

be the fiberwise convex hull of V .
Call a continuous section (lift) f ∶ X → A, for which DV (f) = 0, where this

equality understood in the sense of distribution a weak ADV -solution and a
section f ∶X → B, for which DV (f) = 0, a subsolution.

The Convex Integration-property of (ADV ) is the density of the space of
solutions in the space of subsolutons with a weak 50 topology.51

Isometric U →W Example. Let V = hom(T (X) → RN), i.e. Vx = hom(Tx(X) →

RN), let A = Ag ⊂ V consist of isometric homomorphisms for a given metric g
on V and DV (f) = df , where d is the exterior differential applied to the N
components of f , which are 1-forms,

f = (f1, ..., fi, ...fN and df = (df1, ..., dfi, ...dfN).

Here, solutions are representations of g by sums of the squares of closed
(rather than exact) 1-forms and subsolutions are weakly approximable by solu-
tion for N ≥ dim(X) by the Nash-Kuiper C1-theorem.

Remark. The above applies to isometric immersions X → Y for flat Y , such
as RN and TN , while the case of non-flat Y needs a (slight) generalization of
the above setting.

Euler V →W Example. Write the Euler equation as an algebraic equation,
which define A,

u = v ⊗ v

and the differential one DV (u, v, p) = 0 for

DV (u, v, p) =

48Compare with Luis A. Florit, Bernhard Hanke,Scalar positive immersions,
arXiv:1910.06290 [math.DG]

49C. D E LELLIS, L. SZÉKELYHIDI - The Euler equations as a differential inclusion
arXiv:math/0702079.

50This needs to be specified. For instance, fi → 0 weakly if fi are bounded and ∫ fi(x)dµx→
0 for all measures supported on smooth segments in X with continuous densities on these
segments.

51Analysts, unlike topologists, do not care for the approximating DV -solutions f ∶ X → A
to be homotopic to given continuous φ0 ∶ X → A.
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= ∂t(v) + ”div”u + gradX(p),divv.

Here the approximation of (suitably defined) subsolutions by solutions (with-
out mentioning homotopies) is a de Lellis- Székelyhidi’s result.

Version U→V. Here instead of W → X and an operator DV on section
X → V we are given a vector bundle U and a differential operator U ∶ C∞(U) →

C∞(V ).
Now solutions of A ⊂ V are defined as sections u ∶X → U , such that

DU(u) ⊂ A

and where subsolutions are u with

DU(u) ⊂ B = conv.hullV (A)

If one insists on Cr-regularity of solutions for r being the order of DU one
can formulate the h-principle without ever mentioning weak topologies.

Isometric U → V Example. Here U = X ×RN and DU(f) is the differential
df , where f is an N -tuple of functions on X. Thus we return to isometric
immersions (X,g) → RN regarded as representations of g by sums of squares of
exact 1-forms.

Euler U → V Example. The V →W Euler equation can be rewritten in terms
of (n + 1)-tuples of exterior (n − 1)-forms, n = dim(X), on X with divergence
replaced by the exterior differential

d ∶
n−1

⋀(X) →
n

⋀(X).

Then one passes to the U → V Euler with the bundle U equal the Whitney
sum of N copies of ⋀n−2 T (X) and the differential

d ∶
n−2

⋀(X) →
n−1

⋀(X).

This suggests the following.
Question. Which systems of polynomial equations imposed on (tuples of)

exterior forms on smooth manifolds are solvable by exact or closed C1-forms?
******************************** *********************************
52

14 Two Convex Integrations Theorems for the
Euler Equation by De Lellis-Székelyhidi

Euler Equation on X (e.g. X = Tn),

∂t(v) + ∇v(v) + gradX(p) = 0,

div(v) = 0.

52D. Spring, Convex integration theory(1998), Y. Eliashberg, N. Mishachev, Introduction
to the H-Principle(2003), Mélanie Theillière Convex integration theory without integration.
(2019)
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∇v(v)i = ∑j vj∂jvi =
= ∑j ∂j(vivj) − vi∑j ∂jvj ,
or
∇v(v) = ”div”(v ⊗ v) − div(v)v
for ”div”{vi ⊗ vj}i = ∑j ∂j(vivj)

Energy Conservation.

∂t ∫
X
⟨v, v⟩ = ∫

X
−div⟨v, ∣∣v∣∣2 + p⟩ = 0

====================

U = (
v ⊗ v + p1n v

v 0
)= (
u + q1n v

v 0
)

divx,t(U = (ui,j , vi, q)) = 0
u = v ⊗ v − 1

n
∣∣v∣∣21n

q = p + 1
n
∣∣v∣∣2

============================
Linear space: U = Rm = {u, v, q} = {Ui,j}, i, j = 1, ..., n + 1, Uij = Uj,i,

Un+1,n+1 = 0, m =
n(n+1)

2
+ n + 1 = (n+1)2

2
,

Linear Operator:
D = DEul = div ∶ {X ×R C∞

→ U} → {X ×R C∞
→ Rn+1}.

D-Neutral directions Ð→r ∈ Rm+1 of codimension k in X. A nonzero
vector Ð→r is such a direction if all points in X admit accommodating local coor-
dinates x1, ..., xk, ...xn, such that the maps from these neighbourhoods to Rn+1

of the form
f(x) = ρ(x1, ..., xk)

Ð→r

satisfy
D(f) = 0

for all smooth function ρin k variable
This definition, which makes sense for all linear differential operators on

manifolds, is usually concerns k = 1, where it goes under the heading of "wave
cone" with references to the work by Tartar, Di and Perna and Murat on "com-
pensated compactness" that is opposite to ConvInt.53

Examples: Exterior Differential (a) let D be an exterior differential on N -
tuples of differential 1-forms on a manifold X =Xn

D ∶ (φ1, ..., φN) ↦ (dφ1, ..., dφN)

Then such anN -tupleÐ→r = (φ1, ..., φN) is a D-neutral direction of codimension 1,
if all φi are multiples of the same form, say φi = pi(x)dx1, with accommodating
coordinates x1, ..., xn.

53Tartar, L. The compensated compactness method applied to systems of conservation laws.
In Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci. Reidel, Dordrecht, 1983, pp. 263–285. and Ronald J. Di
Perna Compensated Compactness and General Systems of Conservation Laws

Transactions of the American Mathematical Society, Vol. 292, No. 2 (Dec., 1985), pp.
383-420 (38 pages).F . Murat - Compacité par compensation, Ann. Scuola Norm. Sup. Pisa
CI. Sci. 5 (1978), p. 489-507, partie II : Proceedings of the International Meeting on Recent
Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, p. 245-256.
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(These correspond to principal directions in convex integration, where the
latter apply to sections f of smooth bundles over X with N -dimensional fibers,
where the differentials of such sections are locally represented by N -tuples of
closed 1-forms.)

(b) Let D be the exterior differential on N -tuples of exterior d-forms. Then
such a tuple Ð→r = (φ1, ..., φN) is a D-neutral direction of codimension k, if all φi
are divisible by dx1, ..., dxk for some coordinate system (x1, ..., xk, xl+1..., xN).

This, for d = n − 1, applies to tuples of divergence free vector fields, where
such fields naturally correspond to closed (n − 1)-forms on X.

Non-Linear: E ⊂ U = {u = uij , v = vi, q} consist of those (u, v, q), which
satisfy

u = v ⊗ v − 1
n
∣∣v∣∣21n

q = p + 1
n
∣∣v∣∣2, where

dim(E) = n + 1,
codim(E) =

n(n+1)
2

and
conv.hull(E) = U .

Figure 5: Schematic E

Solutions of the Euler equations in these terms are maps f ∶X → E ⊂ U such
that DEul(f) = 0.

R-Directed (Convex) Hulls. Given a subset R ⊂ Rk, the R-directed hull of a
subset E ⊂ Rk is the minimal subset hullR(E) ⊂ Rk, wich contains E and such
that all straight segments parallel to vectors r ∈ R with the ends in hullR are
contained in hullR.

Examples. (a) If R = Rk, then this is the ordinary convex hull, hullRk(E) =

conv.hull(E).
(b) If R consist of a single non-zero vector and E ⊂ Rk is a closed convex

hypersurface, then also hullR(E) = conv.hull(E).
(c) let E and R be a smooth submanifolds in general position.
If 2dim(E) + dim(R) + 2 ≤ k, then hullR(E) = E.
Exercise. Evaluate the dimension of hullR(E) for generic smooth submani-

folds E and R in Rk of given dimensions.
Convexity Lemma. Let Ee ⊂ E ⊂ U = {u, v, q} be the subset of those u, v, q

where 1
2
∣∣v∣∣2 = e for a given e > 0.

Let RD ⊂ Rn+1 be the set of the D-neutral directions for the above D ∶ U ↦
div(U). Then

hullRD(Ee) = conv.hall(Ee).
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Moreover, the convex hull of R is equal to the union of segments which are
parallel to vectors r ∈ RD and which have their ends in E .

The proof is straightforward see [DL-S]??? but, combined with the following

property of the linear operator DEul ∶ {X ×R C∞
→ U = Rm} → {X ×R C∞

→ Rn+1},
n = dimX, m =

(n+1)2
2

, it yields Scheffer’s paradox.
Localization Lemma. Let U0 ⊂ U = Rm = {u = uij , v = vi, q}i,j=1,...,n be

an open convex centrally symmetric subset and let

Ð→r0 = (u0, v0, q0) ∈ U0

be a DEul-neutral vector of codimension one.
Then, for all ε > 0 exists a C∞-map

Fε ∶X ×R→ U0

with support in the ε-ball B = B0(ε) ⊂X ×R = Rn+1 such that

DEul(f) = 0,

and such that the v-component of F (x, t) ∈ U0, denoted vε(x, t), satisfies

∫
B
∣∣vε(x, t)∣∣dxdt ≥ constn∣∣v0∣∣, constn > 0.

The proof is achieved with a representation of the kernel of DEul by the
image of some differential operator.54

(Thus would be immediate if U consisted of all (n + 1) × (n + 1)-matrices,
since closed (n − 1)-forms locally are d-images of (n − 2)-forms.

But the conditions Ui,j = Uj,i and Un+1,n+1 = 0 require a specific (linear
algebraic) construction of a suitable operator ∆ (with constant coefficients as
well DEul).

The above convexity and localization lemmas allow a consecutive Nash-style
corrections of subsolutions of the Euler equation, which weakly converge to
"wild" weak solutions and deliver measurable weak solutions v of Euler with
given energies,

1

2
∣∣v∣∣2(x, t) = e(x, t) > 0.55

.
Continuous and Hölder Continuous. If X = T3, then any smooth

subsolution of the Euler equations can be weakly approximated by Hölder-
continuous weak solutions with given energies.

Euler-Reynolds system.

∂t(v) + div(v ⊗ v) + gradX(p) = div(R̆),

div(v) = 0,

where R̆ = R̆(x, t) is (like v⊗ v) a symmetric trace free (n×n)-matrix function.
Smoothing: (v, p) ↦ (v̄, p̄). v = v̄ +w

54 See ???DL-S,[Vil]
55see ???
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∂t(v̄) + div(v̄ ⊗ v̄) + grad(p) = div(Ř),

Ř = v̄ ⊗ v̄ − v ⊗ v = −w ⊗w(??)

"Wild" continuous solutions to the Euler equation are obtained from so-
lutions of the EuRe system by iteration process consecutively diminishing the
R̆-terms, were the main building blocks are Beltrami flows – particular station-
ary periodic solutions to the 3D Euler equation.

Stationary Flows:
v × curl(v) = grad(β)

β = p + ∣∣v∣∣2/2
Beltrami flows are where β = 0 and where the above equation becomes linear:

curl(v) = λv

For constant λ these are eigen vectors of the operator v ↦ curl(v).
Universality of the Euler flows.
56

15 Hölder Immersions
7.A. Problem. Let X =Xn be a smooth Riemannian manifold, which admits
an immersion f0 ∶X → RN .

For which 0 < α ≤ 1, do short maps X → RN admit C0-approximation by
isometric C1+α immersions?

7.B. Borisov Conjecture (1965).57 (a) If α ≤ 1
2
, such an approximation

X → RN exists for all X, f and N > n.
(b) If α > 1

2
, and n ≥ 2, then C1+α-immersions f ∶ X → Rn+1 are smooth for

most smooth Riemannian manifolds X.
For instance, if Xn, n ≥ 2, admits a smooth isometric immersion to Rn+1,

where the Gauss map X → Sn has rank ≥ 2, or at least rank = n, e.g X = Sn,
then, probably, all isometric C1+α-immersions f ∶ X → Rn+1 are C∞. (This is
unclear even for C2-immersions f)

7.C. De Lellis-Székelyhidi-Borisov Hölder Immersion Theorem.58

Short immersions between compact smooth Riemannin manifolds,

f0 ∶X
n
→ Y N , N = n + 1,

can be uniformly approximated by isometric Hölder C1+α-immersions in the
following cases.

(in) α < 1
1+n(n+1)2 ;

56Robert Cardona Aguilar. The geometry and topology of steady Euler flows, integrabil-
ity and singular geometric structures https://upcommons.upc.edu/bitstream/handle/2117/
349573/TRCA1de1.pdf?sequence=1

Steady Euler flows and Beltrami fields in high dimensions Robert Cardona arXiv:2003.08112
[math.DS]

57Yu. Borisov, C1+α-isometric immersions of Riemannian spaces,
58S. Conti, C. De Lellis. L. Székelyhidi Jr. h-Principle and Rigidity for C1+α-Isometric

Embeddings, Also see High dimensionality and h-principle in PDE by De Lellis and László
Székelyhidi.
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(iin) X is homeomorphic to the n-ball and α < 1
1+n(n+1) ;

(iii2) X is homeomorphic to the 2-ball and α < 1
2s2−1

= 1
5
.

Remarks.(a) LetX =Xn admit a smooth immersion to Rn, e.g. it is obtained
by removing a point or a ball from a closed connected hypersurface in Rn+1. 59

Then there exit sn =
n(n+1)

2
smooth functions φi on X, i = 1, ..., sn, such that

the linear combinations

g = g(x) =
sn

∑
i=1

ai(x)dφ
2
i (x),

where ai(x) > 0, i = 1, ...sn, are C2-functions, make an open cone in the space
of continuous Riemannian metrics on X.

It follows (unless I am mistaken) that if α < 1
1+n(n+1)2 , then the proof of (iin)

in ??? delivers isometric C1+α-immersions (X,g) → Rn+1 for all C2-smooth
metrics g on X.

In fact, it seems that
(b) Let X be a stably parallizabe n-manifold,60 then it admits a folded map

Φ ∶X → Rn by Poenaru’s folding theorem. Therefore,
there exits sn + 1 smooth functions φi on X, i = 0, ..., sn, where s0 vanishes

on the folding locus ΣΦ ⊂X and such that the linear combinations

g(x) = aoφ0 +
sn

∑
i=1

ai(x)dφ
2
i (x),

where ai(x) > 0, i = 1, ...sn, are continuous functions and a0 > is a constant,
make an open cone in the space of continuous Riemannian metrics on X,

Since immersions of orientable manifolds X to Rn+1 carry unit normal fields,
the argument in ??? (unless I misunderstood it) shows that

if α < 1
2+n(n+1) . then (X,g) admits an isometric C1+α-immersions (X,g) →

Rn+1 for all C2-smooth metrics g on X.
In fact, it seems that the argument in ??? yields the following relative version

of (1n).
Let φi ∶ Rn, i = 1, ..., sn =

n(n+1)
2

, be C∞-functions with linearly independent
dφ2

i (x), x ∈ Rn, and let

g = (1 − ∣∣x∣∣2)2
sn

∑
i=1

ai(x)dφ
2
i (x)

for C2-smooth functions ai(x) > 0.
Let Y = (Y,h) be a C∞-smooth N -dimensional Riemannian manifold and let

f0 ∶ Rn → Y , be a C1+β-immersion, which is C∞ on the open unit ball B ⊂ Rn.
If α < min (β, 1

1+n(n+1)) then f0 can be C0-approximated by C1+α -immersions
f ∶ Rn → Y , such that

f∗(h) = f∗0 (h) + g.

Granted this, the induction by skeleta argument (as in 2410 and 2411 in
[PDR]) upgrade the above inequality (in) to the (iin)-level:

59 By Hirsch’ immersion theorem all open parallelizable X immerse to Rn.
60That is an orientable n-manifold immersible to Rn+1 by Hirsch theorem.
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if α < 1
2+n(n+1) , then short immersions Xn → Y N , N > n can be approximated

by isometric C1+ε-immersions.
7.D. Borisov Hölder 2/3-regularity Regularity Theorem.61 If

α >
3

2

then C1+α-surfaces where the induced metrics are smooth and have positive cur-
vatures, are smooth.62

Wenger-Young maps Carnot Spaces
Besides isometric immersions and dynamics of liquids "soft and wild" Hölder

solutions of PDE appear among maps between Carnot spaces as is demonstrated
by StefanWenger, Robert Young in Constructing Hölder maps to Carnot groups,
arXiv:1810.02700 (2018)

16 Soft C∞

C∞-immersion of a smooth manifold X to a smooth Riemannian Y = (Y,h),

f ∶X → Y

is called IIh or just II, if the Riemannian metric inducing operator

I = Ih ∶ F = C∞
(X,Y ) → G+(X)

for
f

I
↦ g = f∗(h)

is infinitesimally invertible.
This means that .the differential/linearization of I ,

Lf ∶ Tf(F) → TI (f)(G),

of I is right invertible by a differential operator

Mf ∶ TI (f)(G) → Tf(F), Lf ○Mf = Id ∶ TI (f)(G) → TI (f)(G).

This, if Y = RN , (and in local coordinates for all Y , in general) can be written
as an operator on maps

Ð→
f ∶X → Y ,

Lf(
Ð→
f )) = I (f + ε

Ð→
f ) −I (f) + o(ε), ε→ 0,

and where Mf(
Ð→g ) is a differential operator in (f,Ð→g ), which is linear in Ð→g and

which satisfies
Lf(Mf(

Ð→g )) = Ð→g .

"Free" Example. Free immersions f , i.e. where (second) osculating spaces
osc2(f(x)) ∈ Tf(x(Y ) have dimensions

dim(X)(dim(X) − 1)

2
+ dim(X)

61Yu Borisov, The parallel translation on a smooth surface.
62Compare with Sören Behr, Heiner Olbermann; Extrinsic curvature of codimension one

isometric immersions with Hölder continuous derivatives arXiv:1601.05959 [math.DG]
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at all points x ∈X, are II by the Janet-Burstin-Nash Lemma.
Consequently,

generic f are II for dim(Y ) ≥
dim(X)(dim(X)−1)

2
+ 2dim(X).63

Generalized Nash Implicit Function Theorem for II operators.

Isomeric C2-Immersions with Prescribed Curvature.
Bisymmetric 4-forms Φ on Rn are symmetric bilinear forms on the symmetric

square (Rn) S○,
Φ ∈ S2 = ((Rn) S○

)
S○.

dim(S2) =
n(n + 1)

4
(1 +

n(n + 1)

2
) ≈ n4

/8.

Φ(x1, x2, x3, x4) are symmetric for x1 ↔ x2, x3,↔ x4, (x1, x2) ↔ (x3, x4).
Bisymmetric forms split into fully symmetric and anti symmetric ones for

S2 = S
+
2 ⊕ S

−
2 ,

where , Φ = Φ+ = Φ−, Φ−(x1, x2, x3, x4) = Φ(x1, x2, x3, x4)−Φ(x1, x4, x3, x2) and
where

dimS+2 =
n(n + 1)(n + 2)(n + 3)

24
) ≈ n4

/24,

,

dimS−2 =
n2(n2 − 1)

12
≈ n4

/12.

Φ−(x1, x2, x3, x4) = Φ(x1, x2, x3, x4) −Φ(x1, x4, x3, x2),Φ = Φ+ +Φ−

Isometric C2-immersions f ∶ X → Y come with the "second fundamental"
forms on X

Φf(∂i, ∂i, ∂j , ∂k, ∂l) = ⟨∇ijf,∇klf⟩Y , where (anti symmetric) Φ− is equal to
the curvature tensor of X by the Gauss formula.

A. C2-Curvature Immersion Theorem. Given a free isometric C∞-
immersion f0 ∶X → Y and a form Φ+ > Φ+

f0
onX, there exists a C1-approximation

by free isometric C2-immersions f ∶ X → Y , such that Φ+
f = Φ+, provided

N = dim(Y ) ≥ (n + 2)(n + 5)/2, where the corresponding PDE system of the
second order contains more than n4/24 equations in N -variables.

Question. Is the condition N = dim(Y ) ≥ (n+2)(n+5)/2 necessary for n ≥ 2?
B. Euclidean Example/Corollary. The standard embedding f0 ∶ Rn →

R(n+2)(n+5)/2 can be C1-approximated by isometric C2-embeddings f with a given
strictly positive curvature Φ+

f > 0. (Φ−
f = 0 for isometric f , sinceRiem.curv(Rn) =

0.)
(B reduces to A, with a C∞-approximation of f0 by free isometric embed-

dings.)

17 Immersions with Bounded Curvature
1.G. Small Curvature Approximation Theorem . Let Xn = (Xn, g) and
Y N = (Y N , h) be smooth Riemannian manifold and f0 ∶ X → Y = (Y,h) be a

63See [Gr1986], [Gr2017] and references therein.
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smooth strictly short map, i.e, the quadratic differential form g − f∗(h) is positive
definite.

If Xn is compact and

N ≥
(2n − 1)(2n − 2)

2
+ 3n ∼ 2n2,

( 3n = 2n−1+1+n) then there exist δi-approximation of f0 for δi ≤ 1
i
, i = 1,2, ...,

by isometric C∞-immersions fi ∶Xn → Y with

curv(fi((X)) ≤ i ⋅Cn + o (i) .

If X imbeds to Rn+1, the same is true for N ≥
n(n+1)

2
+ 2n + 3 ∼ n2/2

If N ≥ 10n2 then Cn <
√

3

18 ???
Comparison with the group theory, such as conjectural "phase transition" in
Burnside problem from finite: exponents 2,3,4, 6, problematic for 5 and conjec-
turally "quasihyperbolic" starting from 7.

.... we do not have the mathematical power today to analyze them except
for very small Reynolds numbers—that is, in the completely viscous case. That
we have written an equation does not remove from the flow of fluids its charm
or mystery or its surprise.

Perhaps the fundamental equation that describes the swirling nebulae and
the condensing, revolving, and exploding stars and galaxies is just a simple
equation for the hydrodynamic behavior of nearly pure hydrogen gas.

The next great era of awakening of human intellect may well produce a
method of understanding the qualitative content of equations. Today we cannot.
Today we cannot see that the water flow equations contain such things as the
barber pole structure of turbulence that one sees between rotating cylinders.

Today we cannot see whether Schrödinger’s equation contains frogs, musi-
cal composers, or morality—or whether it does not. We cannot say whether
something beyond it like God is needed, or not. And so we can all hold strong
opinions either way.
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